Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2261
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJung, Namgee
dc.contributor.authorBhattacharjee, Satadeep
dc.contributor.authorGautam, Sanjeev
dc.contributor.authorPark, Hee-Young
dc.contributor.authorRyu, Jaeyune
dc.contributor.authorChung, Young-Hoon
dc.contributor.authorLee, Sang-Young
dc.contributor.authorJang, Injoon
dc.contributor.authorJang, Jong Hyun
dc.contributor.authorPark, Sae Hum
dc.contributor.authorChung, Dong Young
dc.contributor.authorSung, Yung-Eun
dc.contributor.authorChae, Keun-Hwa
dc.contributor.authorWaghmare, Umesh V.
dc.contributor.authorLee, Seung-Cheol
dc.contributor.authorYoo, Sung Jong
dc.date.accessioned2017-01-24T06:50:12Z-
dc.date.available2017-01-24T06:50:12Z-
dc.date.issued2016
dc.identifier.citationJung, N.; Bhattacharjee, S.; Gautam, S.; Park, H. Y.; Ryu, J.; Chung, Y. H.; Lee, S. Y.; Jang, I.; Jang, J. H.; Park, S. H.; Chung, D. Y.; Sung, Y. E.; Chae, K. H.; Waghmare, U. V.; Lee, S. C.; Yoo, S. J., Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. Npg Asia Materials 2016, 8, 10 http://dx.doi.org/10.1038/am.2015.143en_US
dc.identifier.citationNPG Asia Materialsen_US
dc.identifier.citation8en_US
dc.identifier.issn1884-4049
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2261-
dc.descriptionOpen Accessen_US
dc.description.abstractIn Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.en_US
dc.description.uri1884-4057en_US
dc.description.urihttp://dx.doi.org/10.1038/am.2015.143en_US
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.rights@Nature Publishing Group, 2016en_US
dc.subjectMaterials Scienceen_US
dc.subjectCarbon-Supported Platinumen_US
dc.subjectMixed-Ligand Complexesen_US
dc.subjectFuel-Cell Catalystsen_US
dc.subjectPtxni1-X Nanoparticlesen_US
dc.subjectElectronic-Structureen_US
dc.subjectAlloy Nanoparticlesen_US
dc.subjectSurface-Compositionen_US
dc.subjectCharge-Transferen_US
dc.subjectSkin Surfacesen_US
dc.subjectPt3Co Alloyen_US
dc.titleOrganic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reductionen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Umesh V. Waghmare)

Files in This Item:
File Description SizeFormat 
114-OA.pdf3.39 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.