Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2377
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKurra, Narendra
dc.contributor.authorReifenberger, Ronald G.
dc.contributor.authorKulkarni, G. U.
dc.date.accessioned2017-02-21T06:59:33Z-
dc.date.available2017-02-21T06:59:33Z-
dc.date.issued2014
dc.identifier.citationKurra, N; Reifenberger, RG; Kulkarni, GU, Nanocarbon-Scanning Probe Microscopy Synergy: Fundamental Aspects to Nanoscale Devices. ACS Applied Materials & Interfaces 2014, 6 (9) 6147-6163, http://dx.doi.org/10.1021/am500122gen_US
dc.identifier.citationACS Applied Materials & Interfacesen_US
dc.identifier.citation6en_US
dc.identifier.citation9en_US
dc.identifier.issn1944-8244
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2377-
dc.descriptionRestricted Accessen_US
dc.description.abstractScanning probe techniques scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have emerged as unique local probes for imaging, manipulation, and modification of surfaces at the nanoscale. Exercising the fabrication of atomic and nansocale devices with desired properties have demanded rapid development of scanning probe based nanolithographies. Dip pen nanolithography (DPN) and local anodic oxidation (LAO) have been widely employed for fabricating functional patterns and prototype devices at nanoscale. This review discusses the progress in AFM bias lithography with focus on nanocarbon species on which many functional quantum device structures have been realized using local electrochemical and electrostatic processes. As water meniscus is central to AFM bias lithography, the meniscus formation, estimation and visualization is discussed briefly. A number of graphene-based nanodevices have been realized on the basis AFM bias lithography in the form of nanoribbons, nanorings and quantum dots with sufficiently small dimensions to show quantum phenomena such as conductance fluctuations. Several studies involving graphitic surfaces and carbon nanotubes are also covered. AFM based scratching technique is another promising approach for the fabrication of nanogap electrodes, important in molecular electronics.en_US
dc.description.urihttp://dx.doi.org/10.1021/am500122gen_US
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights@American Chemical Society, 2014en_US
dc.subjectNanoscience & Nanotechnologyen_US
dc.subjectMaterials Scienceen_US
dc.subjectNanocarbonen_US
dc.subjectGrapheneen_US
dc.subjectBias Lithographyen_US
dc.subjectScanning Probeen_US
dc.subjectElectrochemicalen_US
dc.subjectQuantum Devicesen_US
dc.subjectAtomic-Force Microscopyen_US
dc.subjectDip-Pen Nanolithographyen_US
dc.subjectField-Effect Transistorsen_US
dc.subjectTunneling Microscopeen_US
dc.subjectNanometer-Scaleen_US
dc.subjectCarbon Nanotubesen_US
dc.subjectGraphene Nanoribbonsen_US
dc.subjectElectron-Microscopyen_US
dc.subjectAmbient Conditionsen_US
dc.subjectSilicon Surfacesen_US
dc.titleNanocarbon-Scanning Probe Microscopy Synergy: Fundamental Aspects to Nanoscale Devicesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Kulkarni, G. U.)

Files in This Item:
File Description SizeFormat 
162.pdf
  Restricted Access
2.42 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.