Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Anshuman J.
dc.contributor.authorShivanna, Ravichandran
dc.contributor.authorNarayan, K. S.
dc.date.accessioned2017-02-21T07:00:13Z-
dc.date.available2017-02-21T07:00:13Z-
dc.date.issued2014
dc.identifier.citationDas, AJ; Shivanna, R; Narayan, KS, Photoconductive NSOM for mapping optoelectronic phases in nanostructures. Nanophotonics 2014, 3 (01-Feb) 19-31, http://dx.doi.org/10.1515/nanoph-2013-0043en_US
dc.identifier.citationNanophotonicsen_US
dc.identifier.citation3en_US
dc.identifier.citation01-Feben_US
dc.identifier.issn2192-8606
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2395-
dc.descriptionRestricted Accessen_US
dc.description.abstractThe advent of optically functional materials with low-intensive processing methods is accompanied by a growing need for high resolution imaging to probe the inherent inhomogeneities in the underlying microstructure. Atomic force microscopy based techniques are typically utilized for imaging the surface of organic thin films, quantum dots and other nanomaterials with ultrahigh resolution. Several modes like conductive, Kelvin, electrostatic amongst others have been particularly successful in imaging the local current, potential and charge distribution of variety of systems. However, the functionality of photoconduction in these materials cannot be directly imaged by these modes alone. There is a requirement for a local excitation source or collection arrangement that is compatible with scanning microscopy techniques followed by a current monitoring mechanism. Near-field scanning optical microscopy (NSOM) possesses all the advantages of scanning microscopy and is capable of local excitation that overcomes the diffraction limit faced by conventional optical microscopes. Additionally, NSOM can be carried out on actual photoconductive two terminal and three terminal device structures to image local optoelectronic properties. In this review, we present the various geometries that have been demonstrated to perform photoconductive NSOM (p-NSOM). We highlight a representative set of important results and discuss the implications of photocurrent imaging in macroscopic device performance.en_US
dc.description.uri2192-8614en_US
dc.description.urihttp://dx.doi.org/10.1515/nanoph-2013-0043en_US
dc.language.isoEnglishen_US
dc.publisherWalter De Gruyter Gmbhen_US
dc.rights@Walter De Gruyter Gmbh, 2014en_US
dc.subjectNanoscience & Nanotechnologyen_US
dc.subjectMaterials Scienceen_US
dc.subjectOpticsen_US
dc.subjectApplied Physicsen_US
dc.subjectMicroscopyen_US
dc.subjectNear Fielden_US
dc.subjectScanningen_US
dc.subjectNanomorphologyen_US
dc.subjectScanning Optical Microscopyen_US
dc.subjectNear-Field Photoconductivityen_US
dc.subjectElectronic Conduction Mediumen_US
dc.subjectHeterojunction Solar-Cellsen_US
dc.subjectPhotocurrent Microscopyen_US
dc.subjectConjugated-Polymeren_US
dc.subjectBacteriorhodopsin Monolayersen_US
dc.subjectCurrent Generationen_US
dc.subjectCarrier Transporten_US
dc.subjectEffect Transistoren_US
dc.titlePhotoconductive NSOM for mapping optoelectronic phases in nanostructuresen_US
dc.typeReviewen_US
Appears in Collections:Research Articles (Narayan K. S.)

Files in This Item:
File Description SizeFormat 
190.pdf
  Restricted Access
4.93 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.