Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2499
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuin, Satya N.
dc.contributor.authorNegi, Devendra S.
dc.contributor.authorDatta, Ranjan
dc.contributor.authorBiswas, Kanishka
dc.date.accessioned2017-02-21T08:58:12Z-
dc.date.available2017-02-21T08:58:12Z-
dc.date.issued2014
dc.identifier.citationGuin, SN; Negi, DS; Datta, R; Biswas, K, Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2-ZnSe. Journal of Materials Chemistry A 2014, 2 (12) 4324-4331, http://dx.doi.org/10.1039/c3ta14901cen_US
dc.identifier.citationJournal of Materials Chemistry Aen_US
dc.identifier.citation2en_US
dc.identifier.citation12en_US
dc.identifier.issn2050-7488
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2499-
dc.descriptionRestricted Accessen_US
dc.description.abstractThermoelectric "waste heat-to-electrical energy" generation is an efficient and attractive option for robust and environmentally friendly renewable energy production. Simultaneous tailoring of interdependent thermoelectric parameters, i.e. electrical conductivity, thermopower and thermal conductivity, to improve the thermoelectric figure of merit is the utmost challenge in this field. Another important aspect is to develop high performance materials based on cheap and earth abundant materials. We have chosen AgSbSe2, a homologue of AgSbTe2 containing earth abundant selenium, as a model system for thermoelectric investigation due to its low thermal conductivity and favourable valence band structure. Herein, we show that by integrating different but synergistic concepts: (a) carrier engineering, (b) second phase endotaxial nanostructuring and (c) bond anharmonicity, we can achieve a maximum ZT of similar to 1.1 at 635 K in AgSbSe2-ZnSe (2 mol%), which is significantly higher than that of pristine AgSbSe2. The above system therefore offers promise to replace traditional metal tellurides for mid-temperature power generation. We demonstrate a design strategy which provides simultaneous enhancement of electrical transport through optimized doping, superior thermopower by the convergence of degenerate valence bands, and glass-like thermal conductivity due to the effective scattering of phonons by nanostructuring, bond anharmonicity and a disordered cation sublattice.en_US
dc.description.uri2050-7496en_US
dc.description.urihttp://dx.doi.org/10.1039/c3ta14901cen_US
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rights@Royal Society of Chemistry, 2014en_US
dc.subjectPhysical Chemistryen_US
dc.subjectEnergy & Fuelsen_US
dc.subjectMaterials Scienceen_US
dc.subjectFigure-Of-Meriten_US
dc.subjectBulk Thermoelectricsen_US
dc.subjectEnhanced Figureen_US
dc.subjectAgsbte2en_US
dc.subjectAgpbmsbte2+Men_US
dc.subjectDisorderen_US
dc.subjectAgbise2en_US
dc.subjectPbteen_US
dc.titleNanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2-ZnSeen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Ranjan Datta)
Research Papers (Kaniska Biswas)

Files in This Item:
File Description SizeFormat 
165.pdf
  Restricted Access
1.16 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.