Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhogra, Meha
dc.contributor.authorRamamurty, U.
dc.contributor.authorWaghmare, Umesh V.
dc.date.accessioned2017-02-21T09:03:23Z-
dc.date.available2017-02-21T09:03:23Z-
dc.date.issued2014
dc.identifier.citationBhogra, M; Ramamurty, U; Waghmare, UV, Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis. Journal of Physics-Condensed Matter 2014, 26 (38), 385402 http://dx.doi.org/10.1088/0953-8984/26/38/385402en_US
dc.identifier.citationJournal of Physics-Condensed Matteren_US
dc.identifier.citation26en_US
dc.identifier.citation38en_US
dc.identifier.issn0953-8984
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2568-
dc.descriptionRestricted Accessen_US
dc.description.abstractWe present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 (1) over bar 0] and [1 (2) over bar 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 (2) over bar 1]) in Cu reveals structural instabilities, indicating that the energy barrier (gamma(usf)) along the (1 1 1)[1 (2) over bar 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.en_US
dc.description.uri1361-648Xen_US
dc.description.urihttp://dx.doi.org/10.1088/0953-8984/26/38/385402en_US
dc.language.isoEnglishen_US
dc.publisherIoP Publishing Ltden_US
dc.rights@IoP Publishing Ltd, 2014en_US
dc.subjectCondensed Matter Physicsen_US
dc.subjectFcc Metalsen_US
dc.subjectDensity Functional Theoryen_US
dc.subjectStacking Faultsen_US
dc.subjectLattice Vibrationsen_US
dc.subjectDeformation And Plasticityen_US
dc.subjectGeneralized Gradient Approximationen_US
dc.subjectDensity-Functional Theoryen_US
dc.subjectElastic-Constantsen_US
dc.subjectMetalsen_US
dc.subjectEnergiesen_US
dc.subjectAlloysen_US
dc.subjectCrystalsen_US
dc.subjectAluminumen_US
dc.subjectCopperen_US
dc.subjectCreepen_US
dc.titleTemperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysisen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Umesh V. Waghmare)

Files in This Item:
File Description SizeFormat 
265.pdf
  Restricted Access
1.69 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.