Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2570
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaranasi, Arun Kumar
dc.contributor.authorBhowmik, Arghya
dc.contributor.authorSarkar, Tanmay
dc.contributor.authorWaghmare, Umesh V.
dc.contributor.authorBharadwaj, Mridula Dixit
dc.date.accessioned2017-02-21T09:03:23Z-
dc.date.available2017-02-21T09:03:23Z-
dc.date.issued2014
dc.identifier.citationVaranasi, AK; Bhowmik, A; Sarkar, T; Waghmare, UV; Bharadwaj, MD, Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin. Ionics 2014, 20 (3) 315-321, http://dx.doi.org/10.1007/s11581-013-0970-6en_US
dc.identifier.citationIonicsen_US
dc.identifier.citation20en_US
dc.identifier.citation3en_US
dc.identifier.issn0947-7047
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2570-
dc.descriptionRestricted Accessen_US
dc.description.abstractWith a goal to improve the performance of LiCoO2 as a cathode material in Li-ion batteries, we simulate substitution of various elements (X = Be, Mg, Al, Ga, Si and Ti) for Co using first-principles density functional theory and predict changes in its electrochemical potential. While the electrochemical potential of LiCoO2 is enhanced with substitution of Be, Mg, Al and Ga for Co, an opposite effect is predicted of Si and Ti substitution. We determine the electronic origin of these changes in electrochemical potential using (a) Bader method of topological analysis of charge density, (b) partial density of electronic states to estimate oxidation states of metal and oxygen, and charge re-distribution upon lithiation. We find that the distribution of electronic charge donated by Li is influenced by the nature of the X-O bond. A larger electron transfer to O (in XO6 octahedron) upon lithiation leads to stronger Li intercalation and thereby higher electrochemical voltage. Our findings provide a platform for a rational design of cathode materials in Li batteries with enhanced voltage.en_US
dc.description.uri1862-0760en_US
dc.description.urihttp://dx.doi.org/10.1007/s11581-013-0970-6en_US
dc.language.isoEnglishen_US
dc.publisherSpringer Heidelbergen_US
dc.rights@Springer Heidelberg, 2014en_US
dc.subjectPhysical Chemistryen_US
dc.subjectElectrochemistryen_US
dc.subjectCondensed Matter Physicsen_US
dc.subjectLithium-Ion Battery Cathodeen_US
dc.subjectDensity Functional Theoryen_US
dc.subjectBader Charge Analysisen_US
dc.subjectElectrochemical Potentialen_US
dc.subjectLithium-Ion Batteriesen_US
dc.subjectAugmented-Wave Methoden_US
dc.subjectCathode Materialsen_US
dc.subjectDoped Licoo2en_US
dc.subjectIntercalationen_US
dc.subjectPerformanceen_US
dc.subjectPrinciplesen_US
dc.subjectDesignen_US
dc.titleTuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic originen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Umesh V. Waghmare)

Files in This Item:
File Description SizeFormat 
280.pdf
  Restricted Access
449.08 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.