Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2583
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Biswarup
dc.contributor.authorGoswami, Debashish
dc.contributor.authorSinha, Kalyan B.
dc.date.accessioned2017-02-21T09:40:30Z-
dc.date.available2017-02-21T09:40:30Z-
dc.date.issued2014
dc.identifier.citationDas, B; Goswami, D; Sinha, KB, A Homomorphism Theorem and a Trotter Product Formula for Quantum Stochastic Flows with Unbounded Coefficients. Communications In Mathematical Physics 2014, 330 (2) 435-467, http://dx.doi.org/10.1007/s00220-014-1993-1en_US
dc.identifier.citationCommunications In Mathematical Physicsen_US
dc.identifier.citation330en_US
dc.identifier.citation2en_US
dc.identifier.issn0010-3616
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2583-
dc.descriptionRestricted Accessen_US
dc.description.abstractWe give a new method for proving the homomorphic property of a quantum stochastic flow satisfying a quantum stochastic differential equation with unbounded coefficients, under some further hypotheses. As an application, we prove a Trotter product formula for quantum stochastic flows and obtain quantum stochastic dilations of a class of quantum dynamical semigroups generalizing results of Goswami et al. (Inst H Poincare Probab Stat 41:505-522, 2005).en_US
dc.description.uri1432-0916en_US
dc.description.urihttp://dx.doi.org/10.1007/s00220-014-1993-1en_US
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.rights@Springer, 2014en_US
dc.subjectMathematical Physicsen_US
dc.subjectUHF Algebrasen_US
dc.subjectSemigroupsen_US
dc.subjectExistenceen_US
dc.titleA Homomorphism Theorem and a Trotter Product Formula for Quantum Stochastic Flows with Unbounded Coefficientsen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Kalyan B. Sinha)

Files in This Item:
File Description SizeFormat 
7.pdf
  Restricted Access
412.31 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.