Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/557
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSelvi, B Ruthrotha-
dc.contributor.authorKundu, Tapas K-
dc.date.accessioned2012-03-05T11:23:55Z-
dc.date.available2012-03-05T11:23:55Z-
dc.date.issued2009-
dc.identifier1860-6768en_US
dc.identifier.citationBiotechnology Journal 4(3), 375-390 (2009)en_US
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/557-
dc.descriptionRestricted Accessen_US
dc.description.abstractThe eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamicity of the chromatin is responsible for the regulation of all the DNA-templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP-dependent remodeling factors and the chromatin-modifying enzymes, mediate the combinatorial post-translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small-molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy.en_US
dc.description.urihttp://dx.doi.org/10.1002/biot.200900032en_US
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbHen_US
dc.rights© 2009 Wiley-VCH Verlag GmbH& Coen_US
dc.subjectChromatinen_US
dc.subjectDiseaseen_US
dc.subjectTherapeuticsen_US
dc.titleReversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeuticsen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (Tapas K. Kundu)

Files in This Item:
File Description SizeFormat 
2009 Biotechnol. J. , 4, 375-390.pdf
  Restricted Access
492.47 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.