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Synopsis

When a microbial population is exposed to a hostile environment, as for

example on introduction of antibiotics, it might die out or undergo changes

that increase its chances of survival. These changes termed mutations occur

in the genome of the individuals and may get transmitted to the subsequent

generations [1]. The beneficial ones lead to adaptation resulting in higher

reproductive ability that is indicated by an increase in a numerical value

called fitness.

In the thesis we study the dynamics of adaptation of asexually reproduc-

ing genomic sequences starting from a low fitness value. We have calculated

quantities that can experimentally be measured in populations like the num-

ber of mutations and the increase in fitness during adaptation. These depend

majorly on two factors: the size of the population and the correlation between

fitness of the parent and its mutants. The first plays a role in the fixation of

a beneficial mutation. When the population size is small, it evolves stochas-

tically since the better mutations can get lost due to random sampling or

genetic drift whereas in large populations these effects are negligible and

adaptation is deterministic. Large populations also produce greater number
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of mutations and thus evolve to reach higher fitness values. The second fac-

tor, correlation between fitnesses is a reflection of the environment [2] and

affects the steady state of the two population sizes attained via adaptation,

in a fixed environment.

In the thesis we consider a population of asexually reproducing genomic

sequences when the mutation rate is small so that most of the population has

same sequence at all times. This sequence is thus the most populated or the

dominant sequence and the properties of the whole population reflect those

of this sequence. We study the dynamics of evolution by tracking changes in

this sequence which depend on the population size and the path to the fittest

sequence. The population size determines the number of mutants produced

per generation and when the size is very large, all sequences are populated

and a sequence many mutations away from the current most populated se-

quence can become the next, whereas small populations are localised at the

most populated sequence and can access only the neighbouring one mutant

sequences which can then replace the current sequence. Therefore the most

populated sequence of both the population sizes will reach the highest fitness

only when it can be reached via one mutant neighbours starting from any

initial sequence. But when this is not the case, only that of large populations

can reach the fittest value and small populations will proceed only till fitter

mutations are available. Our question of interest is the average number of

changes in the identity and the fitness of the most populated sequence for

the two population sizes.

In Chapter 1 we introduce some basic terms pertinent to our work and

define the quantities that shall be used in later calculations. For the sake of



Figure 1: Schematic representation of a rugged fitness landscape with many
fitness peaks. Here A and C are local fitness peaks which are fitter than
all their nearest neighbours while B is the fittest sequence and hence the
global peak. The arrows represent the change in the sequence and fitness of
the population. The population (shown by dot) climbs the fitness landscape
during adaptation.

simplicity, we work with binary sequences which can replicate and mutate.

The replication rate of each sequence is given by its fitness and all possible

sequences along with their associated fitness comprise the fitness landscape

which encodes information about the environment. For example, when the

carbon source of a E.coli population is composed of glucose there is only a

single metabolism pathway and as expected, the fitness landscape is smooth

with a single fitness peak but becomes rugged with many local peaks when

the medium is a complex mixture of carbon sources which can be metabolised

in multiple ways [3]. The ruggedness of the fitness landscape is determined

by the correlations between fitness of the sequences: decreasing correlations

produce increasing ruggedness with the completely correlated fitness land-

scape being smooth. The correlations are introduced in our work using the

Block model [4] in which a sequence of length L is assumed to be composed



of blocks of equal length LB with independent and identically distributed

(i.i.d.) fitness and the fitness of the sequence is the average of the fitness

of the blocks present in the sequence. The length of the block, LB can be

used to tune the correlations between the sequence fitnesses spanning from

fully correlated corresponding to LB = 1 to uncorrelated corresponding to

LB = L. During adaptation a population climbs the fitness landscape via

muations as shown in Fig. 1 and the dynamics of adaptation depend strongly

on the supply of beneficial mutations given by the product of population size

and mutation probability. If beneficial mutations are easily available as in

population of infinite size, the population can reach the global fitness peak on

rugged fitness landscapes while a population for which beneficial mutations

are rare gets trapped in a local fitness peak. A brief outline of the adaptation

models we shall consider in our work is shown in Fig. 2

In Chapter 2 we review earlier works that have dealt with the adapta-

tion of small and infinite population sizes. To study the infinite populations

a quasispecies model [5] is used in which a phase transition occurs in the

steady state. For most fitness landscapes, this occurs at a critical mutation

rate above which the population is uniformly scattered on the fitness land-

scape and below which it is localised around the fittest sequence surrounded

by a suite of mutants [6, 7]. During adaptation the population at each se-

quence grows and the identity of the dominant sequence may move by many

mutations as its population overtakes the current one. Earlier work has fo-

cussed on uncorrelated fitness landscapes (LB = L) [8,9] and we discuss their

results in this chapter. The simple case of fully correlated fitness landscapes

(LB = 1) is also discussed here. Unlike the infinite populations where all



Figure 2: Models of evolution of asexual populations. The parameters we
shall consider in our work are highlighted in red.

sequences are populated at all times and the dynamics is due the dominant

sequence overtaken by another, small populations are localised at a single

sequence and when the mutation rate is low, dynamics involves the whole

population moving to fitter one mutant neighbours. The steady state is triv-

ial with the population stabilising at the local fitness peak. An adaptive walk

model [1], in which the transition probability determines to which of the bet-

ter mutant the population would move, is used to study the adaptation of

these populations . In this chapter, the known results of the two limiting

cases namely greedy walk [10] and random adaptive walk [11] are discussed.

In the first case, the transition probability of the population moving to the

fittest of the L neighbors is one and in the second, it is equal for all fitter

neighbours. However in the biologically relevant situations, the transition



probability of the population moving to a better sequence is proportional

to the difference between the fitness of that sequence and the current se-

quence [1]. The first step of this walk starting with a high initial fitness has

been well studied theoretically [12] and experimentally [13] and we discuss

some of these results.

In Chapter 3 we describe our results on the dynamics of a quasispecies

model [5] when nonzero correlations between fitnesses are present. Starting

with a population localised at a sequence at time t = 0, the initial population

of all other sequences depend on the number of mutations D from the initial

sequence. But when the probability of mutations is low, their subsequent

growth is exponential with a rate equal to their fitness. The logarithmic

population E(D, t) of a sequence with D mutations grows in time as [9]

E(D, t) = −D + f(D)t. (1)

As illustrated in Fig. 3 the logarthmic population of each sequence grow

linearly in time with a slope equalling its logarthmic fitness f(D). The

sequence corresponding to the highest E(D, t) is the dominant sequence at

that t and at a later time when it is overtaken by another population, its

fitness assumes that of the population. We have considered evolution on

fitness landscapes with strong correlations by choosing block length LB = 2

and with weak correlations by choosing LB = L/2. In the first case, we

have shown exactly that the average number of changes J̄ in the dominant

sequence is independent of the sequence length but depends on the fitness
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Figure 3: Growth of the logarithmic population E(D, t) at each D with time
for L = 8 and LB = 2. The initial dominant sequence at D = 0 is replaced
by the fittest sequence at D = 4 which in turn is overtaken by the one at
D = 8.

distribution p(f) of the blocks. Specifically we find [14]

J̄ =











23

72
(p(f) = e−f ) (2)

17

48
(p(f) = 1) (3)

In contrast, when LB = L/2 our simulations show that the average number

of changes in the dominant sequence grows as
√

L with a prefactor that varies

with the distribution p(f) [15]. However irrespective of the fitness distribu-

tion and the degree of correlation, the temporal distribution of reaching the

global fitness maximum has a 1/t2 dependence [14].

In Chapter 4 we study the properties of the adaptive walk with low initial



Figure 4: Adaptive walk for L = 3. The mutant sequences with better fitness
than that of the parent are shown in green and the worse ones in red. The
walk stops at the step J = 2 since 101 is a local maximum.

fitness. Unlike previous works [12] which deal with the first step here we

present results on the entire walk. As shown in Fig. 4 the population scans

its L one mutant neighbours and moves to one of the fitter sequences. The

walk terminates when no further beneficial mutations are available as shown

in Fig.4. For large sequence length L and uncorrelated fitness, the transition

probability that the population will move from current fitness h to fitness f

in the next step is given by [18]

T (f ← h) =
(f − h)p(f)

∫ u

h
dg(g − h)p(g)

, f > h. (4)

where the fitness are chosen from p(f). If we define the probability of a

sequence having a fitness less than the current value h as q(h) =
∫ h

l
dgp(g),

then the probability that not all the L one mutant neighbours of the present

sequence have a lower fitness is 1− qL(h). Now the probability PJ+1(f) that



Figure 5: Average number J̄ of adaptive steps as a function of sequence
length L for uniform and exponential fitness distributions on uncorrelated
fitness landscapes.

the walker would take the (J +1)th step and assume fitness f is given by [18]

PJ+1(f) =

∫ f

l

dh T (f ← h) (1− qL(h))PJ(h) , J ≥ 0 (5)

On solving the above equation analytically within an approximation, we ob-

tain the average number J̄ of adaptive steps to reach the local fitness maxi-

mum as [18]

J̄ ≈











1

2
lnL (p(f) = e−f ) (6)

2

3
lnL (p(f) = 1) (7)



The above theoretical predictions agree well with the simulation results as

shown in Fig. 5. When correlations are introduced using the block model,

we have shown that the average number of steps J̄B(L) in the adaptive walk

of sequences of length L with B blocks increases linearly with B [18]:

J̄B(L) = BJ̄(LB), (8)

where J̄(LB) is the average number of steps in the adaptive walk for uncor-

related sequences of length LB. We get the above solution using the fact

that the probability of taking J steps for a correlated sequence can be fac-

torised into product of probabilities of each block taking ji steps such that

ΣB
i=1ji = J . Our results show that the adaptive walks are short which is

consistent with experimental data [19].

Chapter 5 is a brief discussion about the results obtained for the two

population sizes. Especially infinite population results and the connection

to the adaptive walk of small populations are discussed. The last part of

the thesis deals with the open questions in the adaptive walk model that

we intend to address in the near future. These include the change in the

properties of the walk due to recombination, the fitness advantage conferred

by a beneficial mutation and the time taken by it to get fixed in a population.
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Chapter 1

Introduction

1.1 Biological evolution

Biological evolution refers to changes over time in populations of individuals

and may cause varied outcomes like� Adaptation: This makes the organisms better suited to their envi-

ronment, an example of which is the antibiotic resistance developed by

microorganisms.� Extinction: This refers to the disappearance of a whole species. This

could occur due to accumulation of deleterious mutations or external

factors like change in the climate.� Speciation: This refers to two or more subpopulations descended from

a common ancestor, developing into different species during the course

of evolution, due to lack of genetic mixing between them and the ac-

cumulation of different sets of mutations.

1



1.2 Concepts and definitions 2

Of these, we are interested in the process of adaptation caused by ben-

eficial mutations as represented schematically in Fig. 1.1 for an asexual

population. Recent laboratory experiments on adaptation are measuring

the changes in genomes and the corresponding effects on physical traits [1].

Along with the progress in experiments, mathematical models have been de-

veloped that not only provide insight into the experimental results, but also

make novel predictions that can be experimentally verified [2]. We study the

adaptation of a population of asexually reproducing genomic sequences in

two population size limits. If the size of the population is infinite, it can be

dealt using deterministic equations while the finite sized population requires

a stochastic formulation. In this thesis, we discuss analytical solutions to

some of the questions related to adaptation.

1.2 Concepts and definitions

Before defining the mathematical models, we explain some basic concepts

and definitions which are relevant to the discussion in the thesis [3].

Sequence and sequence space: A sequence σ = {σ1, ..., σL} is a string of L

letters which are chosen from an alphabet of size a. It represents a protein

or a genotype when the letters are amino acids or nucleotides respectively.

The total sequence space consists of all possible strings of length L and thus

has a size aL which increases exponentially with L. For computational ease,

the alphabet size can be decreased by lumping some of the information in a

single letter. In our work we differentiate between genotypes by the absence

or presence of a mutation which corresponds to a = 2 [4] and hence work with
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Figure 1.1: A simplified schematic representation of adaptation. Different
sequences produced due to mutations in the parent sequence are shown in
different colors. If a mutant is fitter than the parent, it may spread within
the population.

binary sequences. Such 2L sequences can be arranged on a L-dimensional

sequence space, where the distance D(σ, σ′) between two sequences σ and σ′

is equal to the number of loci by which they differ. For a binary sequence in

which σi = 0 or 1, one may write

D(σ, σ′) =
L

∑

i=1

(σi − σ′i)
2 (1.1)

The sequence space for L = 3 is shown in Fig. 1.2(a). Here each sequence is

at a vertex and the number of edges between two sequences gives the number
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(a) (b)

Figure 1.2: (a) Fitness landscape for sequence length L = 3. The sequence
space is represented by a cube and the fitness are shown by red lines. (b)
Schematic representation of fitness landscape. In the plot, all possible se-
quences are on the x-axis and their associated fitness on the y-axis. A and
C are local fitness peaks while B is the global fitness peak.

of loci by which they differ.

Fitness: The fitness f(σ) of a sequence σ is a measure of its reproductive

success in a given environment. Its definition is context dependent and may

represent the replication rate of a genotype or the functionality of a protein.

For sequences of length L, its sequence space along with the fitness of each

sequence comprises the L + 1 dimensional fitness landscape [5] as shown in

Fig. 1.2(a) for L = 3. For large L, the exact fitness landscape representation

is complicated and is shown schematically in two or three dimensional plane.

An example of a high-dimensional fitness landscape is shown in Fig. 1.2(b)

in which there are several local fitness peaks, defined as sequences that are

fitter than their nearest neighbours besides the global fitness peak, which is

the fittest of all sequences.
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Empirical measurement of fitness landscapes is very hard since the num-

ber of sequences increases exponentially with the sequence length L. However

several qualitative features particularly the topography of the fitness land-

scapes has been deduced in experiments on proteins and microbes either by

an explicit construction of the fitness landscapes for small L(. 5) or indi-

rect measurements of relevant quantities. These experiments show that the

fitness landscapes can be smooth as evidenced by fast adaptation in some

proteins [6] or have multiple peaks as seen in microbial populations that

evolve towards different fitness maxima [7–9] and enzymes with short uphill

paths to the global fitness peak [10]. Detailed studies in which all or a set

of mutants from wild type to an optimum are created and their fitness mea-

sured [11] have also indicated the smooth [12] and rugged [4,13] nature of the

fitness landscapes. The topography of the fitness landscape can be changed

by changing the environment. For example, in a E.coli population the fitness

landscape is expected to be smooth when the carbon source is simple sugar

since there is only a single metabolism pathway but becomes rugged with

many peaks due to multiple metabolism pathways when the medium is a

complex mixture of carbon sources in form of a broth [14].

Adaptation occurs when the population climbs a fitness landscape via

mutations and is determined by the topography of the fitness landscape. If

the fitness landscape is smooth with a single peak so that from any sequence

the fittest sequence can be reached via fitter neighbours, the population may

reach the global fitness maximum. On the other hand, if the fitness landscape

is rugged with many local fitness peaks, the path to the fittest sequence from

any other may encounter fitness valleys in which case, the population can get
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Figure 1.3: Schematic representation of adaptation dynamics on smooth and
rugged fitness landscapes. The red curve is the fitness landscape before the
change in environment and the blue curve is the new fitness landscape after
the change. The adaptation of a population (represented by a dot) depends
on the shape of the landscape (see text).

trapped at a local fitness peak as can be seen in Fig. 1.3.

Correlations between sequence fitnesses are a measure of the ruggedness

of the fitness landscapes, with decreasing correlations producing increased

ruggedness. Experiments suggest an intermediate degree of correlations in

fitness landscapes [10,15,16] and many theoretical models like the NK model

[17], Mt. Fuji model [18] and block model [10] have been proposed to vary

the correlations in fitness landscapes. Of these, we use the block model in

which a sequence of length L is divided into B blocks of equal length LB

with independent and identically distributed (i.i.d.) fitnesses from a fitness

distribution p(f). The fitness of a block may or may not depend on its

position in the sequence and in our work we have considered both the cases.

The fitness of the sequence is the average of the fitness of the blocks present
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Figure 1.4: Block model. The blocks in the bottom sequence that are differ-
ent from the top one are shaded green. Left: When block length LB = L,
though the sequences vary by only one mutation, they are uncorrelated as
each block fitness is an i.i.d. variable. Right: When block length LB = 1,
the sequences are correlated due to the presence of common blocks.

in it. The correlations in the fitness landscape can be tuned by varying LB

with the extreme cases LB = 1 and L producing fully correlated and fully

uncorrelated landscapes respectively as described in Fig. 1.4.

A fitness landscape can be constant in time if the environment is fixed or

it can be time dependent due to a constantly changing environment or if the

fitness depends on the population density [3]. In this thesis, we assume that

a fitness landscape has changed due to a sudden change in the environment,

so that a population previously at a fitness peak drops to a fitness valley.

From this point onwards, the fitness landscape is taken to be constant over

the time scales considered.

Mutation: Stochastic changes known as mutations may happen in the

genome of an individual during replication or when it is exposed to certain

external mutagens like radiation. These may insert, delete or change the

nucleotides in the genome and thus create a new sequence as shown in Fig.
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Figure 1.5: (a) Insertion mutation. (b) Deletion mutation. (c) Point muta-
tion. Mutations are highlighted in red.

1.5. In this thesis, we will consider only point mutations that change a letter

from 0 to 1 and vice versa thus preserving the length of the sequence. If µ is

the mutation probability per locus per generation, the sequence σ′ of length

L will mutate to σ separated from it by D point mutations with a probability

pσ←σ′ = µD(1− µ)L−D (1.2)

A mutation may increase the fitness of a sequence (beneficial) or reduce it

(deleterious) or cause no change in the fitness (neutral) [19]. If the mutation

is beneficial, the change may propagate in the population, otherwise it may

get eliminated.

In this thesis, we work in the weak mutation limit, which corresponds

to Nµ ≪ 1 if the population is of finite size N and µ ≪ µc in the case of

infinitely large populations, where µc is a critical mutation rate which shall

be explained in Chapter 2. In this limit, most of the population is localised

at a single sequence and the properties of the whole population is determined

by this sequence.

Genetic drift: Real populations are finite in size and as a result, they are

subject to stochastic fluctuations due to random sampling termed genetic
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drift. To understand this evolutionary force, consider a population of fixed

size N with fitness of the wild type 1 and that of the mutant 1+s. Here s is the

selection coefficient giving the relative fitness difference between the mutant

and the non-mutant with respect to the latter such that s = 0 corresponds

to a neutral mutation while s > 0 and s < 0 correspond to beneficial and

deleterious mutations respectively. Then, the fixation probability γi that the

mutant will sweep through the population at large times starting with an

initial number i is given by [20]

γi =
1− (1 + s)−i

1− (1 + s)−N
(1.3)

The evolution is this case is stochastic where, beneficial mutations might get

lost if the mutation is rare and deleterious mutation might get fixed if i is

large as shown in Fig. 1.6(a). Let us now consider the fate of a rare mutation

(i = 1) when N → ∞, s → 0 such that Ns is finite. The probability of

fixation of the mutant can be written as

γ1 =
s

1− e−Ns
(1.4)

If Ns ≪ 1 (weak selection limit), the mutation is nearly neutral and its

probability of fixation is 1/N as expected. But if Ns ≫ 1 corresponding

to the strong selection limit, the probability of fixation of the mutant in the

population can be approximated as

γ1 ≈
{

s if s > 0 (1.5)

0 if s < 0 (1.6)
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Figure 1.6: (a) The probability of a mutation being fixed in the population
when N = 10. (b) The probability of a single mutation getting fixed as a
function of the population size.

The probability if fixation of a rare mutant as a function of population size

N is shown in Fig. 1.6(b).

Although the real populations are finite and evolve stochastically, phe-

nomena observed in deterministic setting may survive in the presence of

stochasticity as well [21], and deterministic solutions can also be utilised

to get insight in the corresponding stochastic problem [22] and to develop

stochastic theories [23].

1.3 Overview of the thesis

In this thesis, we study the adaptation of asexual populations on rugged fit-

ness landscapes with many local peaks. The limiting cases of strong and weak

fitness correlations are considered. We are mainly interested in the number of

beneficial mutations accumulated and the corresponding fitness increase dur-

ing the course of adaptation. We study the following two models in which

the number of mutants produced per generation are infinite (Quasispecies
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Figure 1.7: Adaptation dynamics of a quasispecies population. Different col-
ors represent different sequences with the area of the circle being proportional
to the population size of that sequence and the circle with the largest area is
the dominant sequence at that time. The fitness of the whole population is
close to that of the dominant sequence and changes every time the dominant
sequence changes (as shown by the color of the dot) on the fitness landscape.

model) or less than one (Adaptive walk model).

1. Quasispecies model: For infinite populations, all sequences are pop-

ulated at all times but when the mutation rate µ → 0, most of the

population is localised at a fit sequence and therefore the population be-

haviour is largely determined by the properties of this sequence termed

the dominant sequence as shown in Fig. 1.7. Using a quasispecies

model [3, 24] of infinitely large populations, the number of times the

dominant sequence changes till the population reaches the global fit-

ness maximum is studied. Since the dominant sequence can change
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Figure 1.8: An adaptive walk of a population with sequence length L = 3.
The one mutant sequences fitter than the current sequence are shown in green
and the less fit ones are shown in red.

by more than one mutation, this model is also termed the adaptive

flight model. Another quantity of interest in this model is records or

sequences whose fitness is greater than all the previous dominant se-

quences. For strongly correlated fitness landscapes we find that the

record probability is independent of the length of the sequence and the

underlying fitness distribution. The average number of changes in the

dominant sequence is also found to be independent of L but unlike

records, it is shown to depend on the fitness distribution.

2. Adaptive walk model: If a finite population is subjected to strong

selection, then unlike infinite population, it is localised at a single se-

quence. At low mutation rates, the population can move to fitter se-

quences one mutation away and can only reach a local fitness maximum

as shown in Fig. 1.8. In the adaptive walk model, the population from

the present sequence moves to any of the fitter one mutant neighbours

with a probability that is proportional to the fitness difference between
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the two. Using this model we find that the number of mutations ac-

cumulated during adaptation till it reaches a local fitness peak is pro-

portional to the logarithm of the sequence length. Moreover we find

the distribution of walk length and fitness at any step in the walk for

uniform and exponential underlying fitness distributions.

An outline of adaptation models studied in this thesis is shown in Fig. 1.9.

1.4 Plan of the thesis

In Chapter 2, we review some of the earlier works that have dealt with the

adaptation of finite and infinite populations. We discuss the steady state

solution of quasispecies models in which a phase transition occurs on most

fitness landscapes at a critical mutation rate µc, above which the population

is uniformly distributed over all sequences. Below this value, the population

is concentrated at the fittest sequence surrounded by a suite of mutants.

Most theoretical works deal with the dynamics of the quasispecies popula-

tion in the weak mutation regime, µ → 0. The analytical results for the

dynamics on uncorrelated and fully correlated fitness landscapes is discussed

here along with our numerical results for weakly correlated fitness landscape

corresponding to block length LB = L/2. For the adaptive walk model, the

average walk length for the limiting cases of greedy walk, in which the pop-

ulation moves to the fittest of the one mutant neighbours and random walk,

in which the population moves to any of the fitter one mutant neighbours

with equal probability are explained. For the biologically relevant adaptive

walk model, we discuss the theoretical results regarding the first step and
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Figure 1.9: Models of evolution of asexual populations. The parameters we
shall consider in our work are highlighted in red.

the experimental verification of the same.

In Chapter 3, we discuss our results on the dynamics of an infinite quasis-

pecies population with strong fitness correlations that are introduced using

the block model. Our exact calculations for the number of changes in the

identity of the dominant sequence is shown when the block length LB = 2.

We find that this value is independent of the length of the sequence but

varies with the underlying block fitness distributions. Other quantities of

interest such as the record probability of a sequence fitness exceeding the

fitness of the previous dominant sequences and the change in the fitness of

the dominant sequences are also derived.

In Chapter 4 we present our results on the adaptive walk model. We
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show that the number of steps in the adaptive walk has a logarithmic de-

pendence on the length of the sequence with a prefactor determined by the

underlying fitness distribution. The length of the walk when correlations are

introduced using the block model is shown to increase linearly with the num-

ber of blocks. Other results pertaining to walk length and fitness distribution

are also described in detail.

Finally in Chapter 5, we discuss a connection between the results of the

quasispecies model and the adaptive walk model and briefly outline the open

questions that we intend to address in the near future.
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Chapter 2

Review of previous works

2.1 Introduction

Consider a microbial population evolving in a complex environment that

can be modeled by rugged fitness landscapes. At large times, most of the

population resides at the globally fittest sequence of the fitness landscape

and due to mutations, a suite of mutants is also present. If the population

size is infinite, a nonzero population is present at all the sequences whereas

a finite population produces only a small number of mutants around the

present sequence [1] and may acquire a fitter mutation only if it does not get

lost due to genetic drift as discussed in Chapter 1.

In this thesis, we examine the adaptation dynamics in these two limits.

Before discussing our work, we review earlier results on adaptive dynamics

obtained using the quasispecies and adaptive walk models. We also discuss

the block model that is used to introduce fitness correlations in our system.

19
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2.2 Block model of tunably correlated fitnesses

The block model was introduced by Perelson and Macken who were motivated

by the observation that many biomolecules such as proteins and antibodies

are composed of domains or partitions [2]. In this model, sequence of length

L is divided into B independent blocks of equal length LB = L/B , 1 ≤

LB ≤ L. Each block configuration is assigned a fitness which may also

depend on the position of the block. In this work, we consider both the

cases when a block configuration at any location in the sequence carries the

same block fitness (position independent block fitness) and when the fitness

of a block depends on its location in the sequence (position dependent block

fitness) Thus the number of independent random fitnesses are 2LB or B2LB

respectively. In each case the block fitnesses are chosen independently from

a common distribution with support on the interval [l, u] where l and u are

respectively the lower and upper limits of the block fitness distribution. The

sequence fitness is given by the average of the corresponding block fitnesses.

The topographical features such as the number of local maxima depends

on LB. To explain this point, let us consider the model where the block

sequence fitnesses are position dependent. For a sequence to be a local max-

imum, each of its B block sequences must also be a local maximum. Since

a sequence is composed of independent blocks and the average number of

local optima of a sequence of length LB with i.i.d. fitness is 2LB/(LB + 1), it

follows that the average number nopt of local maxima of a sequence of length

L and block length LB is given by (2LB/(LB +1))B [2]. Except for LB = 1 for

which there is a single local (same as global) fitness peak, nopt increases with
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increasing LB and L (see Fig. 2.1(a)). For example in the case of LB = 2

there are ≈ 1.15L local optima on an average. Arguing as above for local

maximum, it can be seen that the globally fittest sequence is composed of

identical blocks with the largest block fitness.

An attractive feature of the block model is that the correlations can be

tuned with the block length LB. As illustrated in Fig. 1.4, when two se-

quences have at least one common block, their respective fitnesses are cor-

related. For LB = 1, the sequence fitnesses are maximally correlated while

for LB = L, we obtain the model with maximally uncorrelated fitnesses.

This statement can be quantified by considering the correlation function C0,j

between the fitness w0 = w(σ(0)) of a sequence, σ(0) with identical position

independent blocks and the fitness wj of a sequence one mutation away from

it, which is given by

wj =
(L− LB)f0 + LBfj

L
, j = 0, ..., LB (2.1)

where fj is the fitness of the block of length LB with 1 in the jth posi-

tion. Using the fact that fj’s are i.i.d. random variables, we can write the

correlation function as [2]

C0,j = 〈w0wj〉 − 〈w0〉〈wj〉 =
L− LB

L
σ2 (2.2)

where σ2 is the variance of the block fitness distribution p(f). The above

correlation function is largest at LB = 1 and vanishes at LB = L. Similarly
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(a) (b)

Figure 2.1: (a) Average number nopt of local maxima in block model as a
function of LB for various L. (b) Correlation function between two sequences
separated by a single mutation as a function of the block length of the se-
quences.

the correlation function Ci,j amongst the one mutant neighbors given by [3]

Ci,j = 〈wiwj〉 − 〈wi〉〈wj〉 =

[

(

L− LB

L

)2

+ δi,j

(

LB

L

)2
]

σ2 (2.3)

is a monotonically decreasing function of LB for i 6= j as can be seen in Fig.

2.1(b).

2.3 Quasispecies model

Let us consider an infinitely large population of binary sequences where a

sequence σ ≡ {σ1, ..., σL} , σi = 0, 1 is a string of L letters. Due to the

infinite size of the population, there are no fluctuations in the population

frequency of a sequence and one can work with the averages. The population

evolves by the elementary processes of replication and mutation. We study

adaptation by tracking the evolution of the dominant sequence in time. In the
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following, we begin with the quasispecies model of biological evolution [4, 5]

and proceed to relate it to the shell model [6]. Now if the environment is

changed by changing (say) the nutrient medium of the microbial population,

the fittest subpopulation before the environment change will be typically

maladapted to the new environment and due to the large population size, a

small population may be present at the new fittest sequence. The question

of interest is how the new global maximum is reached starting with an initial

condition in which the whole population is at the sequence that was globally

fittest before the environmental change.

If the replication rate A(σ) of the sequence σ is defined as the average

number of copies produced per generation and pσ←σ′ is the probability that

a sequence σ′ mutates to the sequence σ at a mutational distance D(σ, σ′)

given by (1.1), the population fraction X(σ, t) of sequence σ at time t evolves

according to the following quasispecies equation [4, 7]:

X(σ, t + 1) =

∑

σ′ pσ←σ′A(σ′)X(σ′, t)
∑

σ′ A(σ′)X(σ′, t)
(2.4)

where the denominator on the right hand side ensures the normalisation

condition
∑

σ X(σ, t) = 1 is satisfied at all times and pσ←σ′ is defined in

(1.2).

2.3.1 Steady state: Error threshold transition

For certain fitness landscapes, there exists a error threshold, µc below which

at large times the fittest sequence is maximally populated surrounded by

a suite of mutants [8]. If the mutation rate exceeds this value then the
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population does not have a dominant sequence and is uniformly scattered

on the fitness landscape. This can be shown by considering a sharp peaked

fitness landscape given by [7]

A(σ) = A0δσ,0 + (1− δσ,0) , A0 > 1 (2.5)

where 0 = {0, 0, ..., 0} is the fittest sequence with all zeros. This sequence

has replication rate A0 > 1 and all others have fitness 1. Using this choice

for A(σ) in (2.4) for the sequence 0, we get in the steady state

X(0) =
A0(1− µ)LX(0) +

∑

σ′ 6=0
M(σ ← σ′)X(σ′)

A0X(0) + 1−X(0)
(2.6)

In the scaling limit µ→ 0, L→∞, the terms in the numerator on the right

hand side of the equation arising due to mutations to sequence 0 vanish and

by rearranging the terms one obtains [9]

X(0) =
A0(1− µ)L − 1

A0 − 1
= 1− µ

µc
(2.7)

where µc = lnA0/L is the critical mutational probability. Thus the master

sequence 0 supports a finite fraction of population below µc. Above the

critical probability µc, the population is homogeneously distributed over the

sequence space.

The error threshold for the two extreme cases of correlations correspond-

ing to LB = L and LB = 1 in the block model have also been calculated as

explained below.

Block model: Uncorrelated fitness landscapes
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The error threshold has been calculated on uncorrelated fitness landscapes

for sequences of length L, whose fitness is defined as

A(σ) = eκf(σ) (2.8)

where κ > 0 and f(σ) is chosen from a Gaussian distribution given by

P (f) =
1√
Lπ

exp

(−f 2

L

)

(2.9)

It has been shown that the critical mutation probability µc in this uncorre-

lated fitness landscape is given by [10–12]

µc = 1− exp[
κ2

4
− κ
√

ln 2] (2.10)

Block model: Fully correlated fitness landscapes

Here a multiplicative (or Fujiyama) fitness landscape is considered where

the fitness of any sequence is given by

A(σ) =

L
∏

i=1

eλσi = exp[λ(L− 2D(σ, σ′))] (2.11)

where λ > 0 and σ̃ = {1, 1, 1, ..., 1}. It has been shown that a population

evolving on this fitness landscape always exists in the localised phase and

does not have a phase transition corresponding to the error threshold [13].

The logarithm of A(σ) gives the fully correlated fitness landscape of the block

model and hence the case, LB = 1 does not have phase transition.
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2.3.2 Dynamics: Shell model

The quasispecies equation (2.4) can be transformed by introducing the un-

normalised population Z(σ, t) defined as X(σ, t) = Z(σ, t)/
∑

σ′ Z(σ′, t) [14].

The evolution of Z(σ, t) is given as

Z(σ, t + 1) =
∑

σ′

µD(σ,σ′)(1− µ)L−D(σ,σ′)A(σ′)Z(σ′, t) (2.12)

We take a monomorphic initial population that is localised at the sequence

σ(0) so that X(σ, 0) = Z(σ, 0) = δσ,σ(0) . In the first step, all sequences are

populated depending on the number of mutations, D(σ, σ(0)) that separate

them from σ(0) as

Z(σ, 1) ∼ µD(σ,σ(0))A(σ(0)) (2.13)

As the mutation probability µ ≪ µc, beyond the first step the growth of

the population at sequence σ will be dominated by the replication of the

existing population in it than due to the mutation of other sequences. Then

beyond the first step, the population Z(σ, t + 1) ∼ A(σ)Z(σ, t) and earlier

works [6, 7, 15] have shown that, the statistical properties of the dominant

sequence in the quasispecies model are accurately described by a simplified

shell model which approximates the solution of (2.12) by

Z(σ, t) ∼ µD(σ,σ(0))At(σ) (2.14)

It has been shown that this result exactly matches that of quasispecies model

for the dominant sequence at all times but in case of others, it produces

similar results only for highly fit sequences and for very short times [15].
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Our quantities of interest involve only the dominant sequence at any time

and hence this approximation works well in this case.

Taking the logarithm of both sides in (2.14) and rescaling by | lnµ| to get

rescaled logarithmic population E(σ, t) ∼ ln Z(σ, t). This grows linearly in

time with a slope w(σ) = ln A(σ) as given by the equation

E(σ, t) = −D(σ, σ(0)) + w(σ)t (2.15)

At t = 0 corresponding to the first step in evolution of our system, all

sequences differing from σ(0) by D(σ, σ(0)) = D number of mutations will

have the same initial seeding population. Thus we can consider them as

emerging out of a shell of radius D with different growth rates. Of these
(

L
D

)

sequences the fittest one with fitness w(max)(D) grows the fastest and has the

probability of becoming the dominant sequence in the population. Though

in this case the fittest sequence at every shell is non-identically distributed,

there are also other models, in which it is identically distributed [6]. At every

D value we denote this sequence by its shell number and in both cases, its

growth is given by

E(D, t) = −D + w(max)(D)t (2.16)

The fitness of the dominant sequence changes abruptly whenever its identity

changes. This occurs whenever the population of the fittest sequence of shell

D equals, in the shortest time, the current dominant sequence in shell D′ such

that D > D′. From (2.16) the time at which this occurs can be calculated
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to be

T (D, D′) =
D −D′

w(max)(D)− w(max)(D′)
(2.17)

From the above equation we see that for the fittest sequence in shell D to

be the dominant sequence, it must be fitter than all sequences in D′ < D,

that is it must be a record. However, not every record will become the

dominant sequence since for D > D′, the record in shell D might equal the

current dominant sequence faster than that in shell D′. This abrupt change

in fitness of the dominant sequence is termed a jump. For example, for L = 4,

the growth of the logarithmic populations of the fittest sequence at every D

is shown in Fig. 2.2 for uncorrelated fitnesses. For the choice of fitnesses

made, the sequence at D = 2 becomes the dominant sequence after D = 0

and it is later replaced as the dominant sequence by the one at D = 4 even

though the fitnesses at D = 1 and D = 3 are also records. Thus to become

the dominant sequence, not only should a sequence be a record but it should

also overtake the current dominant sequence in minimum time.

The quantities of interest are the statistics of the number of records,

number of changes in the dominant sequence when the correlations between

the fitnesses are varied using the block model as explained in Chapter 1.

The fitness and the number of blocks of each kind are represented by fi and

ni respectively, where i is the decimal equivalent of the block sequence so

that i = 0, 1..., LB. The constraint is
∑LB

i=1 ni = L/LB . For the sake of

convenience, the initial sequence is chosen to be a string of 0s and has fitness

f0. The known results for the extreme cases LB = 1 and LB = L and the
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Figure 2.2: The growth of the fittest logarithmic population at each D. The
change in dominant sequence is indicated by the circle.

numerical results for LB = L/2 are discussed in this Chapter.

Dynamics of shell model when LB = 1

For the position independent blocks in the fully correlated case, LB = 1, only

two kinds of block sequences are possible, namely {0} and {1} with fitness

f0 and f1 respectively. At any D, the maximum fitness is given by

w(max)(D) =
n0f0 + (L− n0)f1

L
(2.18)

It is obvious that when f0 > f1, the total number of records and changes in

the dominant sequence is 0. But if f1 > f0, there is a record at every D. So

the average number of records is L/2. In this case, the time at which the
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fittest population at any D will equal the original population is

T (D, 0) =
D − 0

w(max)(D)− w(max)(0)
=

1

f1 − f0
(2.19)

As (2.19) is independent of D, all record populations equal the population of

the initial dominant sequence at the same time and beyond this the fittest

sequence at D = L assumes this identity. So the average number of changes

in the identity of the dominant sequence is 0.5 [16]. Both the results are

independent of the underlying fitness distribution.

Dynamics of shell model when LB = L

At each D there are
(

L
D

)

sequences with i.i.d. fitnesses. The distribution of

the maximum fitness amongst them is

Pmax(f) =

(

L

D

)

p(f)

(
∫ f

l

p(f ′)df ′
)(L

D)−1

(2.20)

For large
(

L
D

)

, the distribution Pmax(f) moves towards the tail of the fitness

distribution, p(f). From extreme value statistics, the asymptotic distribution

of Pmax(f) can be shown to fall into one of the three universal distributions

depending on the underlying distribution p(f) [17]� Gumbel distribution: If p(f) = γfγ−1e−fγ
, γ > 0� Fréchet distribution: If p(f) = (δ − 1)(1 + f)−δ , δ > 1� Weibull distribution: If p(f) = ν(1− f)ν−1 , ν > 0, f < 1
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In all three cases, the probability of D being a record is given by

PR(D) =

(

L
D

)

∑D
i=0

(

L
i

) ≈ 1− D

L−D
(2.21)

From the above equation we can show that the average number of records

increases linearly with L as (1− ln 2)L. In case of exponential distribution,

the number of jumps has been calculated as J =
√

Lπ/2 and the temporal

distribution of the last jump is shown to have 1/t2 dependence [6, 7, 15].

Dynamics of shell model when LB = L/2

When a sequence is built of two blocks of length LB = L/2, the total number

of possible blocks is 2 2LB when the block fitnesses are position dependent

and 2LB in case of position independent block fitnesses. We work with ex-

ponential fitness distribution and generate the fitness of the extreme cases

corresponding to D′ = 0 and L/2 from it. Since it is computationally very ex-

pensive to generate
(

L/2
D

)

random variables and choose the maximum amongst

them at each D, we produce them for all 1 ≤ D < L/2 from the Gumbel

distribution. If f(j, k) is the fittest amongst the

(

LB

k

)

blocks at position j

having k mutations, the maximum at each D is determined by comparing

f(1, i) + f(2, D − i) between all i = 0, .., D and choosing the highest. The

sequence fitness at D is a record if its fitness is higher than all D′ < D. Every

time the population of the leader is overtaken by another in minimum time,

the number of jumps is incremented by 1. The whole process is iterated 106

times and the average calculated.
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Figure 2.3: The simulation results for the record distribution PR(D) when
L = 1000.

The population at D < L/2 is a record when [18]

f(1, i) + f(2, D − i) = max{(f(1, i) + f(2, D′ − i))} (2.22)

where D′ = 0, .., D and i = 0, .., D. For the first step this value is given by

PR(1) =
2LB

LB + 1
−

(

LB

LB + 1

)2

(2.23)

In case of position independent fitness, the position of the block loses its

significance and so f(1, i) = f(2, i) and the probability of the first step being

a record is trivial with

PR(1) =
LB

LB + 1
(2.24)

The plot of PR(D) against D is shown in Fig. 2.3 for both position dependent
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(a)

(b)

Figure 2.4: (a) The simulation results for the average number of records when
LB = L and LB = L/2 along with the theoretical expressions of LB = L and
LB = 1. (b) The simulation results for the average number of jumps when
LB = L/2 for position independent and position independent exponentially
distributed fitnesses along with the theoretical expression for LB = L.
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and independent blocks with exponentially distributed fitness. The record

probability of position independent model displays a similar pattern as LB =

2 (See Chapter 3) with even D having a higher value than odd D.

The general expression for PR(D) and the average number of records are

yet to be worked out. The simulation results comparing the average number

of records between LB = L and LB = L/2 are shown in Fig. 2.4(a). Moving

on to jumps, the average number of jumps scales with B and in the case

of exponential distribution it is found to be, J ∝
√

LB as shown in Fig.

2.4(b) [3, 18].

Having dealt with large populations using the quasispecies model, we now

shift our focus to small populations and study them using an adaptive walk

model.

2.4 Adaptive walk models

We now turn to a discussion of an adaptive walk model for a population of

haploid binary sequences of size N [19]. The model is defined in the strong

selection, Ns ≫ 1 and weak mutation Nµ ≪ 1 regime where s is the selec-

tion coefficient and µ is the mutation probability per locus per generation.

In this regime, beneficial mutations arise sequentially and fix rapidly [20].

Due to the small number of mutants produced in any generation, it is a

good approximation to neglect two or higher mutations and assume that the

mutational neighbourhood accessible to a sequence at any time comprises of

only its L one-step mutants. Due to the strong selection, one of the better

mutants will sweep through the population earlier than the others and thus,
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the population can be considered to be localised at a single genotype. Such

a monomorphic population performs an adaptive walk by moving uphill on

a fitness landscape until no more beneficial mutations can be found.

If the sequence at which the population is located and its one mutant

neighbours are ranked according to their fitnesses, with rank 1 accorded to

the sequence with the highest fitness, the transition probability that the

population will move from the present rank i to a fitter one mutant of rank

j is given by

T (j ← i) =
f(j)− f(i)

∑i−1
k=1 f(k)− f(i)

, 1 ≤ j ≤ i− 1 (2.25)

The underlying fitness distribution is chosen from one of these three cate-

gories

p(f) =



















(δ − 1)(1 + f)−δ , δ > 2 (Fréchet) (2.26)

γfγ−1e−fγ

, γ > 0 (Gumbel) (2.27)

ν(1− f)ν−1 , ν > 0, f < 1 (Weibull) (2.28)

since the distribution of the maximum of a large number of values from these

will belong to the universal extreme value distributions as discussed in Sec.

2.3.2. The first step in the adaptive walk model has been well studied and

we discuss it in Sec. 2.4.3. The two limiting cases for which adaptive walk

has been analysed are defined as� Greedy walk: This is obtained from (2.25) when δ → 1 in (2.26). The

population moves from the present sequence to the fittest one mutant

neighbour with probability one so that T (j ← i) = δj,1 (see Sec. 2.4.1).
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population moves to any one of the fitter one mutant neighbours with

equal probability so that T (j ← i) =
1

i− 1
(see Sec. 2.4.2).

In the next few subsections assuming uncorrelated fitness landscapes we

calculate the average length of the walk, that is, the average number of

mutations that occurs till the population reaches a local fitness peak in case

of greedy walk and random walk. We show that greedy walk has the shortest

walk length and the random walk has a walk length that diverges with L.

The average walk length of the adaptive walk is expected to be in between

these two values and shall be dealt with in Chapter 4. However, this Chapter

shall deal with the properties of the first step of the adaptive walk.

2.4.1 Greedy walk

As mentioned before, in this model the population moves to the fittest of

all the L one mutant neighbours of the present sequence [22]. This process

stops when all the nearest neighbours have a lower fitness than the present

sequence. We are interested in the record probability, αJ(L) defined as the

probability of a sequence at step J being fitter than all other sequences in

the steps J ′ < J and the probability, PJ(L) of the walker taking at least

J steps from which the average walk length J̄ can be calculated. We first

discuss the known results for L → ∞ and then present some of our results

for finite L.

When L≫ 1 we can ignore the fact that a few of the one mutant neigh-

bours have been already sampled in the walk and approximate the number
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of novel mutants by L at each step. The probability that the step J is a

record is given by

αJ(L→∞) =
L

JL
=

1

J
(2.29)

The walk will last at least J steps if at each step, the population encounters

a record, the probability of which is given by

PJ(L→∞) =

J
∏

i=1

αi =
1

J !
(2.30)

Since the probability of taking exactly J steps is given by

QJ(L→∞) = PJ(L→∞)− PJ+1(L→∞) =
J

(J + 1)!
(2.31)

we have the average length of the walk as [22]

J̄(L→∞) =

∞
∑

i=0

JQJ = e− 1 (2.32)

We note that the above results are independent of the distribution p(f) and

thus the statistics is universal.

We now turn to a discussion of greedy walk on uncorrelated landscapes

when the sequence length is finite [18]. When sequence length is small, as

the number of one mutant neighbours sampled in the previous steps becomes

comparable to the number of new neighbours that appear as the walk pro-

ceeds, it is necessary to keep track of the sequences and their corresponding

fitness. We first attack the problem for small L by enumerating the possible

paths that the walker can take starting from a binary sequence comprising of
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Figure 2.5: All possible path configuration for L = 3. The number of adaptive
steps is independent of the path taken in the sequence space.

all 0s, and obtaining the probability αJ(L) that the step J has record fitness.

We find that

α1(L) =
L

L + 1
(2.33)

α2(L) =
L− 1

2L
(2.34)

α3(L) =
L− 2

3L− 2
(2.35)

α4(L) =
L− 3

4L− 4
+

1

4L− 4
(2.36)

α5(L) =
L− 3

5L− 6
+

L− 3

(L− 2)(5L− 7)
(2.37)

α6(L) =
(L− 3)2

(L− 2)(6L− 8)
+

(L− 3)2

(L− 2)2(6L− 9)
+

1

6L− 9
(2.38)

In the first step, the path has L sequences to choose from and hence the

record probability is given by L/(L + 1) whereas in the second and the third
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Figure 2.6: Some possible paths for L = 4 to illustrate sequence dependence
J = 5 onwards. The number of adaptive steps depends on the path taken in
the sequence space.

steps the number of new sequences encountered decreases by one and hence

the values of α2(L) and α3(L) are (L−1)/2L and (L−2)/(3L−2) respectively.

The paths for L = 3 are shown in Fig. 2.5. Here, all the paths are identi-

cal in the sense that the number of sequences accessible to a given sequence

at some step is the same irrespective of the specific choice of the sequence.

Interesting features of the problem emerge for higher L. When we consider

L = 4, we find that J = 4 onwards, the subsequent paths cease to be iden-

tical. Depending on which particular sequence is chosen, different number

of sequences become accessible for the next step. This history-dependence

becomes more pronounced for L = 5 and higher, and appears as the absence

of symmetry in the path configurations. Thus, the probability αJ(L) become

history-specific, and we need to add separately the individual contributions

of paths originating from different sequences as can be seen formulae (2.36-

2.38). One set of paths is shown in Fig. 2.6 to illustrate the path-specificity

of αJ(4). We can see that beyond the fourth step the number of new one

mutant sequences depends on the present sequence thus necessitating the

summing over different paths to obtain αJ(L). We also note that there is a
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By counting By simulation
α1(4) 0.800000 0.799990
α2(4) 0.375000 0.375303
α3(4) 0.200000 0.200179
α4(4) 0.166666 0.166695
α5(4) 0.109890 0.110181
α6(4) 0.114582 0.114616
α7(4) 0.015625 0.015453

Table 2.1: Comparison of αJ(4) obtained by numerical simulations with those
obtained by counting the possible paths.

J∗(L) such that αJ(L) is zero for all J ≥ J∗(L). This occurs when all points

in the sequence space accessible to a certain sequence have been explored

previously, and hence the walk terminates. For example, when L = 3 this

occurs at J∗(3) = 5 and for L = 4, J∗(4) = 8. Rosenberg had calculated the

same quantities in [23]. However we note that the probabilities computed

above are not in agreement with his results for two reasons. One, Rosen-

berg’s formula does not take into account the sequence-specificity that arises

at J = 5 and persists subsequently. Thus, the results in [23] give only the

largest of the αJ(L) terms. Second, the formula does not incorporate the

fact that αJ(L) = 0 for all J > J∗(L). For example, we find that J∗(3) = 5

implying α5(3) = 0 when L = 3 whereas Rosenberg’s formula gives 1
9
. Thus

we see that the analytical formulation of αJ(L) is a nontrivial problem, and

we now resort to numerical simulations.

Numerical simulations were done where the probabilities αJ(L) were ob-

tained by considering 106 different realisations of the fitness landscape, with

fitnesses assigned randomly from an exponential distribution. Table 2.1 com-

pares αJ(4) values obtained above with the numerical simulations.
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Figure 2.7: The variation of αJ(L) with J for various L and the inset shows
the scaling collapse of αJ(L) with J∗(L).

Our simulation results for αJ(L) against J for various L is plotted in Fig.

2.7. We notice that the plot shows a 1/J dependence for small J matching

the large L limit and drops sharply as the finite effects set in. The plot thus

has the following scaling form

αJ(L) =
1

J
F

(

J

J̃

)

(2.39)

where F (x) = 1 for x ≪ 1 and decays for x ≫ 1. Assuming that there is

a single scale in the system, we expect that J̃ ∝ J∗ and therefore a data

collapse can be obtained as shown in the inset of Fig. 2.7.

To find the dependence of the maximum walk length J∗ on L, we plot
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Figure 2.8: Straight line fit for log J∗(L) versus L.

it as a function of L and find that there exists an exponential relationship

between J∗(L) and L (see Fig. 2.8). A plot of the mean walk length, J̄

versus L is shown in Fig. 2.9. As discussed before, in the limit of large

L, mean path length approaches e − 1. To see how quickly the mean path

lengths converge to this value, we plot the difference between this limit and

the mean lengths for various L and note that the convergence is fast (inset

of Fig. 2.9). Thus due to a fast rise in fitness at every step, the walk length

in greedy walks is short and converges to a constant for large L. In the next

section, we shall show that the other extreme case of random walk has an

average walk length which diverges with L.
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Figure 2.9: The variation of mean walk length with L and the inset shows
the convergence of J̄(L) to the infinite limit with increasing L.

2.4.2 Random adaptive walk

Here we briefly review the known results for random adaptive walk in which

all better mutants are chosen with equal probability [24, 26, 27]. The proba-

bility distribution of the walk lasting at least J steps and assuming fitness f

in that step, PJ(f) obeys the following recursion relation [26]:

PJ+1(f) =

∫ f

l

dh
p(f)

∫ u

h
dg p(g)

[

1− qL(h)
]

PJ(h) (2.40)

where q(f) =
∫ f

l
dg p(g), the probability that a sequence has fitness less than

f . A change of variable from the fitness f to the cumulative probability q(f)

gives

PJ+1(q) =

∫ q

0

dq′
1− q′L

1− q′
PJ(q′) (2.41)
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If we define PJ =
∫ u

l
dfPJ(f), since the walk length distribution for the

random adaptive walk obeys QJ = PJ − PJ+1 =
∫ u

l
dh qL(h)PJ(h), we have

the probability that the walk lasts exactly J steps as

QJ =

∫ u

l

dh qL(h)PJ(h) =

∫ u

l

dq qLPJ(q) (2.42)

which shows that QJ is a universal distribution in that it is independent of

the underlying fitness distribution p(f). Differentiating (2.41) with respect

to q immediately gives

dPJ+1(q)

dq
=

1− qL

1− q
PJ(q) =

L
∑

n=0

qn PJ(q) (2.43)

The generating function G(x, q) =
∑∞

J=1 xJPJ(q) then obeys the following

first order differential equation:

G′(x, q)− xP ′1(q) = x
1− qL

1− q
G(x, q) (2.44)

For the initial condition P0(f) = δ(f), we have P1(q) = 1 and due to

(2.41), the distribution PJ(0) = 0. Solving the above differential equation

using these boundary conditions gives G(x, q) = xexHL(q) where HL(q) =
∑L

k=1 qk/k and hence the distribution PJ(q) is given by [26]

PJ(q) =
HJ−1

L (q)

(J − 1)!
(2.45)

Since the product qLPJ(q) in random adaptive walk peaks around q = 1,

using HL(q) ≈ lnL for q close to unity for finite but long sequences and
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performing the integral in (2.42), we get

QJ ≈ e−J̄ J̄J−1

(J − 1)!
(2.46)

where J̄ = ln L. Thus the walk length distribution is a Poisson distribution

(in J) with mean J̄ = ln L [26].

We shall show in Chapter 4 that the average walk length of an adaptive

walk lies between the two limiting case results of Greedy walk (J̄ = e−1) and

random walk (J̄ = ln L). But before we discuss the entire walk properties,

we show in the next section the properties of the first step of the adaptive

walk.

2.4.3 Adaptive walk: First step in the walk

We discuss the first step in the adaptive walk where the transition probability

given by (2.25) depends on the fitness difference between the sequences [28].

Due to a change in the environment, the rank at which the population resides

drops from 1 to i among the L+1 sequences where rank 1 corresponds to the

fittest sequence, 2 to the second highest and so on. The rank at which the

population now resides is assumed to be near the top in fitness (i is small)

since a lot of mutations are deleterious and the change in rank cannot be

drastic since environmental changes are mostly gradual.

When the number of sequences L+1 is large, from Extreme value theory

that describes the tail behaviour of most distributions, the average of the
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fitness spacing, ∆ between the fittest sequences can be shown to be [17]

E[∆1] = Cm E[∆2] = Cm/2 E[∆3] = Cm/3 (2.47)

where ∆1 is the fitness difference between the fittest sequence and the 2nd

fittest sequence, ∆2 is the difference between the 2nd and 3rd fittest sequences

and so on. The value of Cm is determined by the underlying fitness dis-

tribution. Using the fitness difference described above in (2.47) the mean

transition probability is obtained as [28]

E[T (j ← i)] =
1

i− 1

i−1
∑

k=j

1

k
(2.48)

and the average rank to which the population jumps is

E[j] =
i + 2

4
. (2.49)

When i is large, this value as expected is between the expected rank of the

greedy walk where rank 1 is always fixed and the random walk where the

mean average rank is i/2.

To test the above prediction Rokyta et al., [29] carried out 20 single

step adaptations from a single ancestral genotype of an icosahedral, single

stranded DNA bacteriophage, ID11. Replicate populations were allowed to

fix a single beneficial mutation under strong selection and weak mutation.

The identity of the substitution was determined by whole-genome sequencing

of each final population and the ranks of the sequences were determined by

standard fitness assays [30].
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From the adaptive walk model discussed above, the fittest mutation

should occur the maximum number of times, the second fittest should be the

second most frequent and so forth. But in this experiment, though the fittest

mutation was a G → T transversion (pyrimidine-purine substitution), the

most frequent substitutions were C → T transitions (pyrimidine-pyrimidine

substitution). The discrepancy is due to the mutational bias since transitions

occur at a higher rate than transversions. While in the adaptive walk model

the mutation rates are averaged out and so, the mutational bias ignored,

in real scenarios they may play a major role and the model is altered to

accommodate it, so that the mean transition probability is written as

E[T (j ← i)] =
µj

∑i−1
k=1 µ̄k

i−1
∑

k=j

1

k
(2.50)

where µ̄k =
1

k

∑k
i=1 µi. With this correction the results are consistent with

the experiment.

In the next Chapters, the progress that we have made and the results

that we have obtained by building on these models shall be explained.
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Chapter 3

Quasispecies model on strongly

correlated fitness landscapes

3.1 Introduction

In the last Chapter we reviewed the quasispecies model and related it to the

shell model. Also the known results for the shell model on fully correlated

and uncorrelated fitness landscapes were discussed. But experiments [1, 2]

show that real fitness landscapes have an intermediate degree of correlations.

In Chapter 2, our simulation results for weakly correlated fitness landscapes,

where LB = L/2, were presented. In this Chapter we study the dynamics of

adaptation in the quasispecies model using the shell model approximation,

when the correlations amongst the fitnesses are high corresponding to the

block length LB = 2. We mainly deal with position independent block model,

though a few results of the position dependent model are also discussed [3].

In the position independent block model, all sequences of length L are

51
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built of blocks {0, 0}, {0, 1}, {1, 0} and {1, 1}. The fitness of the four blocks is

denoted by f0, f1, f2 and f3 and the number of blocks of each kind by n0, n1, n2

and n3 respectively. The initial sequence, σ(0) is a string of 0s and so, the

constraints on the system is 2(n0 +n1 +n2 +n3) = L and n1 +n2 +2n3 = D.

If the values of n1 and n2 are known, then from these two equations n0 and

n3 are calculated as n0 = (L−D−n1−n2)/2 and n3 = (D−n1−n2)/2. The

fitness of any sequence of length L and differing from the initial sequence by

D mutations is given by

wn1,n2(D) =
(L−D − n1 − n2)f0 + 2n1f1 + 2n2f2 + (D − n1 − n2)f3

L

(3.1)

The constraints will hold only when for even D, the sum n1 + n2 is even

whereas for odd D, it is odd. Also in order to ensure the non-negativity of

n0 for D ≤ L/2, the conditions n1 + n2 ≤ D, n1 ≤ D must be satisfied as

n3 ≥ 0 and for D > L/2, n1 + n2 ≤ L−D, n1 ≤ L−D are required.

In the next section, we discuss the properties of the largest fitness at

fixed D. In section 3.3 the statistics of records (introduced in Chapter 2) are

studied and finally in section3.4.1 we address the statistics of jumps.

3.2 Extreme value statistics

Since our question of interest deals with the identity of the dominant sequence

at any point of time, we need to consider only the fittest sequence at every

D. If f1 > f2, then for fixed n = n1 + n2, the maximum fitness occurs

when n1 = n. Now the fitness of wn+k,0 , k 6= 0 for D ≥ 2 is given by
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wn+k,0 = wn,0(D) − (k/L)(f0 + f3 − 2f1). When f1 > f2, the sign of the

second term determines the value of n that gives the maximum fitness at

each D and is shown to be

w(max)
n1,n2

(D) =



















wD,0(D) if f0 − 2f1 + f3 < 0 (3.2)

w1,0(D) if f0 − 2f1 + f3 > 0 and D is odd (3.3)

w0,0(D) if f0 − 2f1 + f3 > 0 and D is even (3.4)

For D > L/2, the largest possible fitness is obtained on replacing D by L−D

and when f1 < f2 the corresponding conditions are obtained by interchanging

fitnesses f1 and f2 and the indices n1 and n2 in the preceding equations.

Only one of the above three fitnesses can be the maximum at constant D

and the cumulative distribution of the maximum being less than w is given

by PE(w, D). For unbounded underlying distribution p(f) with f > 0, we

can write

PE(w, D) =

∫ ∞

0

df0p(f0)

∫ ∞

0

df1p(f1)

∫ u

l

df2p(f2)
∫ ∞

0

df3p(f3)Θ(w − wD,0)Θ(w − w0,D)Θ(w − w0,0)

=

∫ w
1−r

0

df0 p(f0)

∫

w−(1−r)f0
r

0

df3 p(f3)

[

∫

w−(1−2r)f0
2r

0

df1 p(f1)

]2

(3.5)

where Θ(...) is the Heaviside step function and r = D/L < 1/2. Specifically,
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Figure 3.1: Distribution PE(w, D) of maximum fitness for (a) r = 0.1 (solid)
and r = 0.4 (broken) with δ = 1 and (b) δ = 1 (solid) and δ = 2 (broken)
with r = 0.1.

for p(f) = δf δ−1e−fδ
, δ > 0, we have

PE(w, D) = δ

∫ w
1−r

0

dff δ−1e−fδ

[

1− e−(
w−(1−r)f

r )
δ
] [

1− e−(
w−(1−2r)f

2r )
δ
]2

= a

∫ 1

0

dfe−af

[

1− e
−a

„

(1−r)(1−f1/δ)
r

«δ]





1− e

−a

 

(1−r)(1− 1−2r
1−r f1/δ)

2r

!δ






2

(3.6)

where a = (w/(1−r))δ. The probability PE(w, D) = dPE/dw that the largest

sequence fitness with D mutations has a value w can be easily computed for

δ = 1 and is given by

PE(w, D) =
e−

w
1−r − e−

2w
r + 2e−

3w
2r

1− 2r
− 2e−

w
2r

1− 4r
−

(

e−
2w
1−r − e−

w
r

)

r

1− 5r + 6r2
+

4e
− 3w

2(1−r) r

1− 6r + 8r2

(3.7)

In the above expression when r is increased the plot shifts to the right as

can be seen in Fig. 3.1(a). This is because the value of the maximum fitness
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increases with D. Similar trend is also noted for higher δ values as the four

fitness values to be chosen tend to stay close to the mean of the distribution

(Fig. 3.1(b) ). This is in contrast to finding the maximum of a large number

of variables, where due to the fast decaying tails, the plot will move to the

left for increasing δ values.

3.3 Statistics of record fitnesses

As explained in the previous section, the relation between block fitnesses

determines the maximum fitness at any D ≤ L/2 (see (3.2)-(3.4)). Here, the

fitness wD,0(D) can be a record if it exceeds all the fitnesses at constant D

as well as the ones with number of mutations D′ < D. The first condition

is met if (3.2) is satisfied. As the conditions in (3.2) are independent of

D (barring parity), the largest fitness in a shell with D′ mutations is also

wD′,0(D
′), 1 < D′ < D. Then wD,0(D) > wD′,0(D

′) for all D′ ≥ 0 if f1 > f0.

Thus the probability of wD,0(D) being a record can be written as

P (wD,0 is a record) =

∫ u

l

3
∏

i=0

dfip(fi)Θ(f1 − f0)Θ(f1 − f2)Θ(2f1 − f0 − f3)

=

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ 2f1−f0

l

df3p(f3)(3.8)

For D > L/2, the fitness wL−D,0(D) can be record if wL−D,0(D) >

wL−D′,0(D
′) for D′ ≥ L/2 and wL−D,0(D) > wD′,0(D

′) for D′ < L/2 along

with the conditions f1 > f2 and f0 − 2f1 + f3 < 0 (see (3.2)). The first two
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inequalities are satisfied if f3 > f1 and f0 < f1. Thus we can write

P (wL−D,0 is a record) =

∫ u

l

3
∏

i=0

dfip(fi)Θ(f1 − f0)Θ(f1 − f2)

×Θ(f3 − f1)Θ(2f1 − f0 − f3)

=

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ 2f1−f0

f1

df3p(f3)(3.9)

For even D, the fitness w0,0(D) can be a record if w0,0(D) > w0,0(D
′)

for even D′ and w0,0(D) > w1,0(D
′) for odd D′ besides satisfying (3.4). If

f2 < f1, the fitness w0,0(D) can be a record if f3 > f0 and f3 > 2f1−f0. The

last two conditions can be split into two cases, namely f3 > f0 if f0 > f1 and

f3 > 2f1 − f0 if f0 < f1. Similarly, for f2 > f1, the conditions for w0,0(D)

to be a record are obtained by interchanging f2 and f1. Combining all the

above conditions, we get

P (w0,0 is a record) = 2

∫ u

l

3
∏

i=0

dfip(fi)Θ(f1 − f2)Θ(f3 − f0)Θ(f0 + f3 − 2f1)

= 2[

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ u

2f1−f0

df3p(f3)

+

∫ u

l

df3p(f3)

∫ f3

l

df0p(f0)

∫ f0

l

df1p(f1)

∫ f1

l

df2p(f2)](3.10)

For odd D, the fitness w1,0(D), D > 1 can be a record if (3.3) is satisfied,

w1,0(D) > w1,0(D
′) for odd D′ < D and w1,0(D) > w0,0(D

′) for even D′ < D.

The last two conditions are satisfied if f0 < f3 and f0 < f1 respectively. Then
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the probability of w1,0(D), D > 1 being a record is given by

P (w1,0 is a record) =

∫ u

l

3
∏

i=0

dfip(fi)Θ(f1 − f0)Θ(f1 − f2)Θ(f3 − f0)

×Θ(f0 + f3 − 2f1)

=

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ u

2f1−f0

df3p(f3)(3.11)

The above expression holds for D = 1 also as w1,0(1) is a record if w1,0(1) >

w0,0(0) which implies f0 < f1 besides f2 < f1.

3.3.1 Record occurrence distribution

Using the results derived above, we now calculate the probability PR(D) that

a record occurs in the shell with D > 0 mutations given PR(0) = 1. Fig. 3.2

shows that PR(D) is not a smooth function - the value of PR(D) depends

on whether D is odd or even and whether it is below or above L/2. Thus

four distinct cases arise due to this character of PR(D) which we will discuss

below. We shall find that the distribution PR(D) is universal i.e. does not

depend on the choice of the underlying distribution of the block fitness. As

the global maximum is the last record and the only global maximum for

D > L/2 occurs with probability 1/4, we may expect the record occurrence

probability for D > L/2 to be smaller than that for D ≤ L/2.

Even D: When D is even, either wD,0(D) or w0,D(D) can be a record for

D ≤ L/2, wL−D,0(D) or w0,L−D(D) for D > L/2 or w0,0(D) for any even D
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Figure 3.2: Variation of record occurrence probability PR(D) with the num-
ber of mutations D for L = 64.

.Thus the probability of even D for D ≤ L/2 having a record is given by

PR(D) = 2(P (wD,0 is a record) + P (w0,0 is a record)) (3.12)

= 2

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

+ 2

∫ u

l

df3p(f3)

∫ f3

l

df0p(f0)

∫ f0

l

df1p(f1)

∫ f1

l

df2p(f2)

=
2

3
+

1

12
=

3

4
, D ≤ L/2 (3.13)
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Similarly for D > L/2, the record occurrence probability is given by

PR(D) = 2P (wL−D,0 is a record) + P (w0,0 is a record) (3.14)

= 2

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ u

f1

df3p(f3) +
1

12

=
1

4
, D > L/2 (3.15)

Odd D: For wD,0(D), D > 1 to be a record when D is odd, the same condi-

tions as for even D are required so that (3.8) holds. Thus the probability of

a shell with odd D, 1 < D ≤ L/2 having a record is given by

PR(D) = 2 [P (wD,0 is a record) + P (w1,0 is a record)] (3.16)

= 2

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

=
2

3
, D ≤ L/2 (3.17)

For D > L/2, the probability that wL−D,0(D) is a record is given by (3.9)

and w1,0(D) is a record by (3.11). Thus the probability of a record occurring

for odd D > L/2 can be expressed as

PR(D) = 2 [P (wL−D,0 is a record) + P (w1,0 is a record)] (3.18)

= 2

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ u

f1

df3p(f3)

=
1

6
, D > L/2 (3.19)
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3.3.2 Record value distribution

In this subsection, we calculate the probability PR(w, D) that the record

value in shell D is smaller than or equal to w. For this purpose, we will

need the probability PR(w(D) ≤ w) that the fitness w(D) in shell D does

not exceed w. As the record value distribution is not expected to be univer-

sal, we will restrict ourselves to distributions with support on the interval

[0,∞). It can be checked that the cumulative distribution PR(w, D) gives

the probability PR(w) obtained in the last subsection when w → ∞. Below

we present the expressions for D ≤ L/2 as the corresponding distributions

for D > L/2 can be written in an analogous manner.

Even D: As discussed before, the distribution for the record value is a func-

tion of the ratio r = D/L for even D. Since either wD,0(D) or w0,0(D)

can be a record for even D ≤ L/2, the cumulative probability PR(w, D) =

2P(wD,0 ≤ w) + P(w0,0 ≤ w) where

P(wD,0 ≤ w) =

∫ ∞

0

3
∏

i=0

dfip(fi) Θ(w − wD,0)Θ(f1 − f2)

×Θ(2f1 − f0 − f3)Θ(f1 − f0)

=

∫ w

0

df0p(f0)

∫

w−f0
2r

+f0

f0

df1p(f1)

∫ f1

0

df2p(f2)

∫ 2f1−f0

0

df3p(f3)(3.20)
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and

P(w0,0 ≤ w) = 2

∫ ∞

0

3
∏

i=0

dfip(fi) Θ(w − w0,0)Θ(f3 − f0)

×Θ(f1 − f2)Θ(f0 + f3 − 2f1)

= 2

∫ w

0

df0p(f0)

∫ f0

0

df1p(f1)

∫ f1

0

df2p(f2)

∫

w−f0
r

+f0

f0

df3p(f3)

+ 2

∫ w

0

df0p(f0)

∫

w−f0
2r

+f0

f0

df1p(f1)

∫ f1

0

df2p(f2)

∫

w−f0
r

+f0

2f1−f0

df3p(f3)(3.21)

Using these expressions, it is straightforward to see that

PR(w, D) = 2

∫ w

0

df0p(f0)

∫ f0

0

df1p(f1)

∫ f1

0

df2p(f2)

∫

w−f0
r

+f0

f0

df3p(f3)

+ 2

∫ w

0

df0p(f0)

∫

w−f0
2r

+f0

f0

df1p(f1)

∫ f1

0

df2p(f2)

∫

w−f0
r

+f0

0

df3p(f3)(3.22)

Taking the derivative of the last expression with respect to w, we obtain the

distribution PR(w, D) that the record value equals w. For p(f) = e−f , the

distribution PR(w, D) is given by

PR(w, D) =
e−4w + 2e−

3w
2r − e−

2w
r

1− 2r
− 2e−

w
2r

1− 4r
+

e−2w(3− 8r)

1− 6r + 8r2
+

e−
w
r r − e−3w(3− 8r)

1− r(5− 6r)

(3.23)

The above result for the record value distribution is compared with the

extreme value distribution PE(w, D) given by (3.7) in Fig. 3.3 for two values

of r. Though the record fitness is also the extreme fitness in shell D, the

converse is not true and the distribution PR(w, D) < PE(w, D) for all w at

a given D. We also note that the most probable record value in shell D is

smaller than the corresponding extreme value - this behavior is unlike that
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Figure 3.3: The probability distribution of the extreme value (solid lines)
given by (3.7) and record value (dashed lines) by (3.23) for r = 0.1 (left
curves) and r = 0.4 (right curves) for p(f) = e−f .

for uncorrelated fitnesses for which record is a maximum of a larger set of

independent variables.

Odd D: To find the record value distribution for odd D, besides P(wD,0 ≤ w),

we require the cumulative probability P(w1,0 ≤ w) that the fitness w1,0(D)

in shell D does not exceed w. The latter can written as

P(w1,0 ≤ w) =

∫ ∞

0

3
∏

i=0

dfip(fi) Θ(w − w1,0)Θ(f1 − f2)

×Θ(f0 + f3 − 2f1)Θ(f1 − f0)Θ(f3 − f0)

=

∫ w

0

df0p(f0)

∫

L(w−f0)
2D

+f0

f0

df1p(f1)

∫ f1

0

df2p(f2)

∫

Lw−(L−D−1)f0−2f1
D−1

2f1−f0

df3p(f3)(3.24)

which reduces to the second integral in (3.21) for L≫ 1. Thus for large L, the

cumulative distribution PR(D, w) for odd D is also a function of r. However
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unlike extreme value distribution for odd D, the distributions for even and

odd D do not match for L≫ 1 as the expression for the distributions for the

distributions P(w1,0 ≤ w) and P(w0,0 ≤ w) do not coincide.

3.3.3 Distribution of the number of records

To find the probability NR(n) that the total number of records equals n, we

first calculate the record configuration probability Q({wn1,n2(D)}) defined

as the probability that all the elements in the set {wn1,n2(D)} are records.

This distribution depends on the location of the global maximum. If f0 is

the largest block fitness, the global maximum occurs at D = 0 and obviously

there are no records beyond D = 0 in this case.

When f0 is not a global maximum and f1 > f2, only four record configu-

rations occur with a nonzero probability. When the fittest block has a fitness

f1, a record cannot occur beyond D = L/2 and only the conditions in (3.8)

are satisfied since 2f1 − f0 − f3 must be positive. Thus the fitness wD,0(D)

for all D ≤ L/2 is a record with probability

Q(w1,0(1), ..., wL/2,0(L/2)) =
1

4
(3.25)

When the block fitness f3 is the largest, the records occur until D = L at

a spacing of one or two depending on the sign of f1 − f0 as explained below:

(i) Using the conditions in (3.10), we can see that when f2 < f1 < f0 < f3

, a record occurs only in even D shells. As fi’s are independent and identically

distributed (i.i.d.) random variables, all 4! block fitness configurations are
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equally likely and therefore we get

Q(w0,0(2), w0,0(4), ..., w0,0(L)) =
1

24
(3.26)

(ii) If f1 > f0 (and f2), the fitness w1,0(1) is a record. The next record

depends on the sign of 2f1 − f0 − f3. From (3.10) and (3.11), it follows that

if 2f1−f0−f3 < 0, the fitness w0,0(D) is a record for all even D and w1,0(D)

for all odd D with probability

Q(w1,0(1), w0,0(2), ..., w1,0(L− 1), w0,0(L))

=

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ u

2f1−f0

df3p(f3) (3.27)

If 2f1 − f0 − f3 > 0, due to (3.8) and (3.9), the fitnesses wD,0(D) for all

D ≤ L/2 and wL−D,0(D) for all D > L/2 are records. This event occurs with

probability

Q(w1,0(1), ..., wL/2,0(L/2), wL/2−1,0(L/2 + 1), ..., w0,0(L))

=

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ 2f1−f0

f1

df3p(f3) (3.28)

From the above discussion, it is evident that the total number of records

(ignoring the one at D = 0) can be either L/2 (due to (3.25) and (3.26)) or L

(see (3.27) and (3.28)). The probability NR(n) of total number n of records

is independent of underlying block fitness distribution and is given by

NR(L/2) = 2

(

1

4
+

1

24

)

=
7

12
, NR(L) =

2

12
=

1

6
(3.29)
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where we have used that twice the sum of (3.27) and (3.28) equals (3.19).

The average number R of records can be found using NR(n) or PR(D) and

is given by

R =

L
∑

n=1

nNR(n) =

L
∑

D=1

PR(D) =
11L

24
≈ 0.458L (3.30)

for any even L.

3.4 Statistics of the jumps

As discussed in Chapter 2, all records are contenders for being a leader; how-

ever only those records for which the overtaking time is minimised qualifies

to be a jump [4–6]. Like records, the statistics of jumps depends on the

location of the global maximum. If f0 is the fittest block, the unmutated

sequence with fitness w0,0(0) = f0 is the leader throughout.

If f1(> f2) is the global maximum, the last record and hence the last jump

occurs at D = L/2. Since the time of intersection T (0, D) of the population

E(D, t), D ≤ L/2 with the population E(0, t) given by

T1 = T (0, D) =
D

wD,0(D)− w0,0(0)
=

L

2(f1 − f0)
, D ≤ L/2 (3.31)

is independent of D, all the populations overtake the population of the initial

sequence at the same point. Thus all the record populations participate in

the evolutionary race. But as the population E(L/2, t) has the largest fitness,

it becomes the final leader thus leading to a single jump when f1 (or f2) is

the largest fitness.
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If the global maximum is f3 which occurs at D = L, the following cases

as discussed in Sec. 3.3.3 arise:

(i) If f1 < f0, the population with the record fitness w0,0(D), D ≤ L

overtakes that with the initial fitness w0,0(0) at a time given by

T3,1 = T (0, D) =
D

w0,0(D)− w0,0(0)
=

L

f3 − f0
, D ≤ L (3.32)

so that all the populations with record fitness w0,0(D) intersect at the same

time and the population of the global maximum at D = L takes over in a

single jump.

(ii) If f1 > f0 and 2f1 − f0 − f3 < 0, the population with fitness w0,0(D)

for all even D and w1,0(D) for all odd D intersects E(0, t) at the following

intersection time:

T (0, D) =
D

w1,0(D)− w0,0(0)

=
LD

(D − 1)f3 + 2f1 − (D + 1)f0
, for odd D (3.33)

T (0, D) =
D

w0,0(D)− w0,0(0)
=

L

f3 − f0
, for even D (3.34)

By virtue of the condition 2f1 − f0 − f3 < 0, the intersection time for odd

D is greater than that for even D. Therefore the current leader at D = 0 is

overtaken by D = L resulting in a single jump at time T3,2 = L/(f3 − f0).

If 2f1 − f0 − f3 > 0, the record fitnesses are wD,0(D) for D ≤ L/2 and

wL−D,0(D) for D > L/2. The populations corresponding to these fitnesses
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overtake the leader at D = 0 at time

T (0, D) =
L

2(f1 − f0)
, D ≤ L/2 (3.35)

T (0, D) =
DL

(2D − l)f2 + 2(L−D)f1 − Lf0
, D > L/2 (3.36)

As the intersection time for D ≤ L/2 is minimum amongst the rest and

wL/2,0(L/2) is the largest fitness, the first jump occurs when the population

of the sequence with fitness wL/2,0(L/2) overtakes E(0, t). The next change in

leader occurs at the point of intersection of populations involving the fitness

wL−D,0(D), D > L/2 with the current leader at a time

T3,3 = T (L/2, D) =
L

2(f3 − f1)
, D > L/2 (3.37)

which is again D independent. Thus the population E(L, t) is the leader

after E(L/2, t) and the global maximum is reached in two jumps.

3.4.1 Distribution of the number of jumps

It is obvious that when any block fitness other than f0 is the globally largest

fitness, there will be at least one jump (corresponding to globally fittest being

the final leader) so that the probability of at least one jump equals 3/4. In

addition, there can be one more jump when f3 is the global maximum and

2f1− f0− f3 > 0 (see (3.37)). Due to (3.28), the probability p2 of the second
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jump is given by

p2 = 2

∫ u

l

df0p(f0)

∫ u

f0

df1p(f1)

∫ f1

l

df2p(f2)

∫ 2f1−f0

f1

df3p(f3)Θ(u− 2f1 + f0)

(3.38)

Thus the average number J of jumps is given by (3/4) + p2. As p2 is inde-

pendent of L, the average number of jumps is of order unity for any under-

lying distribution but the constant p2 is not universal. For instance, when

the block fitnesses are chosen from an exponential probability distribution,

p2 = 5/72 ≈ 0.069 while for uniform distribution, it equals 5/48 ≈ 0.104.

3.4.2 Temporal jump distribution

We are interested in the probability P (t) that the last jump occurs at time

t > 0 shown in Fig. 3.4 for p(f) = e−f . This distribution is a sum of the

probability PA(t) that the last jump occurs at t when f1 or f2 is a global

maximum and PB(t) when f3 is a global maximum. We first consider the

cumulative probability PA(t) =
∫ t

0
dt′PA(t′) which on using that f1 (or f2) is

a global maximum and (3.31) gives

PA(t) = 2

∫ u

l

3
∏

i=0

dfip(fi)Θ(t− T1)Θ(f1 − f0)Θ(f1 − f2)Θ(f1 − f3)

= 2

∫ u

l+ L
2t

df1p(f1)

∫ f1− L
2t

l

df0p(f0)

∫ f1

l

df2p(f2)

∫ f1

l

df3p(f3) (3.39)

Differentiating PA(t) with respect to time t yields

PA(t) =
−L

2t2
dPA

dǫ
=

L

t2

∫ u

l+ǫ

dfp(f)p(f − ǫ)

(
∫ f

l

dgp(g)

)2

(3.40)
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where we have defined ǫ = L/(2t). For large times t ≫ L/2, the integral

on the right hand side of the above equation reduces to the probability G(0)

that the gap between the globally largest and the second largest in a set

of i.i.d. random variables is zero [5]. Thus the probability PA(t) decays as

∼ LG(0)/t2 at large times.

When f3 is the largest fitness (and f1 > f2), the last jump can occur at

times given by (3.32), (3.34) and (3.37). As T3,1 = T3,2, the corresponding

conditions (discussed in Sec. 3.3.3) on the block fitnesses can be combined

to give the following cumulative probability

P1(t) =

∫ u

l+2ǫ

df3p(f3)

∫ f3−2ǫ

l

df0p(f0)

∫

f0+f3
2

l

df1p(f1)

∫ f1

l

df2p(f2) (3.41)

and the probability distribution

P1(t) =
L

t2

∫ u

l+2ǫ

df3p(f3)p(f3 − 2ǫ)

∫ f3−ǫ

l

df1p(f1)

∫ f1

l

df2p(f2) (3.42)

which also decays as 1/t2 at large times. An expression for the distribution

for the last jump time T3,3 can also be written down in an analogous manner

and reads as

P2(t) =
L

2t2

∫ u

l+ǫ

df1p(f1)p(f1 + ǫ)

∫ f1−ǫ

l

df0p(f0)

∫ f1

l

df2p(f2)
ǫ→0→ L

2t2
G(0)(3.43)

Clearly the distribution PB(t) = 2(P1(t)+P2(t)) ∼ t−2. Thus the probability

distribution P (t) = PA(t) + PB(t) obeys the inverse square law for any block

fitness distribution.
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Figure 3.4: Log-log plot of the distribution P (t) of the last jump for p(f) =
e−f and L = 100. The broken line has a slope −2.

3.5 Discussion

In this Chapter we have studied a deterministic model [4] describing the evo-

lution of a population of self-replicating sequences on a class of strongly cor-

related fitness landscapes with several fitness peaks [7]. The broad questions

addressed have been studied on completely uncorrelated fitness landscapes

in previous works [4–6]. Here we are interested in finding how the various

evolutionary properties are affected when the sequence fitnesses are strongly

correlated.

We are primarily interested in the evolutionary dynamics and in partic-

ular, the properties of jumps that occur in the population fitness when the

most populated sequence changes. As discussed in Chapter 2, the largest
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fitness at a constant mutational distance from the initial sequence only need

to be considered for this purpose. This led us to consider the problem of the

extreme statistics of correlated random variables [8,9] which has been much

less studied than its uncorrelated counterpart. We found that the extreme

value distribution is not of the Gumbel form which is obtained when the ran-

dom variables are i.i.d. and their distribution decays faster than a power law.

In fact, we expect that the universal scaling distributions which depend only

on the nature of the tail of the underlying distribution do not exist for such

correlated random variables as the number of independent variables namely

the block fitnesses is too small.

As the minimum requirement of a sequence to qualify as a leader is that

it must be a record, we also studied several record properties of correlated

variables. Recently the statistics of record events when the number of ob-

servations added at each time step increases either deterministically [10] or

stochastically [11] have been studied. The records defined in the shell model

are an example of the former category as the number of observations changes

as
(

L
D

)

with D. It was shown that when the block fitnesses are position in-

dependent the probability for a record to occur in a shell with D mutations

is not a continuous function unlike the record distributions for independent

random variables [5]; however the universality property that the distribution

is independent of block fitness distribution continues to hold. The average

number of records was found to increase linearly with L as in the maximally

uncorrelated case but with the prefactor given by (1− ln 2) ≈ 0.306 for the

latter case which is smaller than in (3.30).
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Figure 3.5: Average number of jumps as a function of B for the block model
with position dependent block fitness chosen from exponential distribution
and fixed LB = 2. The line has a slope given by 3/4 + p2 = 0.819.

In the uncorrelated and the weakly correlated fitness models, the L de-

pendence of the average number of jumps was seen to depend on the class of

the fitness distribution p(f). For p(f) decaying faster than a power law, the

average number of jumps increased as
√

L [4,5]. In contrast, for the strongly

correlated case the average number of jumps was shown to be independent of

L for any choice of block fitness distribution p(f) although the value of the

constant was found to be nonuniversal. These results suggest that for block

fitness distributions decaying faster than a power law, the average number

of records increases but the average number of jumps decreases with increas-

ing correlations. But the result of our numerical simulations shows that the

average number of jumps increases linearly with the number of blocks when
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the fitness of the blocks depend on their position in the sequence. How-

ever the prefactor is given by the average number of jumps obtained in the

position independent block fitness model namely (3/4) + p2 (see Fig. 3.5).

This suggests that the different blocks behave independently in the position

dependent block fitness model.

The temporal distribution for the last jump to occur at time t obeys

t−2 law for infinite (and finite) populations evolving on uncorrelated fitness

landscapes [4–6]. Here we have shown that on a class of strongly correlated

fitness landscapes, the same law is obeyed. The origin of this power law can

be understood using a simple scaling argument when the fitness variables

are independent variables [4] but it is not obvious at the outset that such an

argument can be used here since the sequence fitnesses are correlated. But it

turns out that the jump time involves the i.i.d. block fitnesses and therefore

t−2 law is obtained here as well.

So far we have studied infinitely large populations but stochastically

evolving finite populations will be the focus of our next Chapter and we

study their properties till they evolve to reach a local fitness peak.
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Chapter 4

Adaptive walk on correlated

and uncorrelated fitness

landscapes

4.1 Introduction

In this Chapter we present our results [1] on the adaptive walk model in which

beneficial mutations arise sequentially and fix rapidly [2]. As explained in

Chapter 2, if the mutation rate is small and the selection coefficient is large

(compared to the inverse population size), it is a good approximation to

assume that only the one-step mutants are accessible at any time and the

population is localised at a single genotype. Such a monomorphic population

performs an adaptive walk by moving uphill on a fitness landscape until no

more beneficial mutations can be found.

The results from the limiting cases of choosing the beneficial mutation

75
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in the next step, namely the greedy [3] and the random [4] adaptive walks

have been discussed in Chapter 2 . As already mentioned in Chapter 2,

adaptive walk is a more realistic model whose first step is well studied [5,6].

However as the properties of the entire walk are required to design a drug or a

biomolecule [7] and as experimental data on multiple adaptive substitutions

is becoming available [8, 9], it is important to extend the existing theory

to address the statistical properties of the entire walk. With this aim, we

present our results on the entire adaptive walk on rugged fitness landscapes

with many local fitness optima [1]. An important difference between our

work and the previous ones is that we start the adaptive walk with low

fitness to describe the adaptation process in novel environments such as when

antibiotics are introduced [10,11] whereas the initial fitness is assumed to be

high in other studies [2, 5, 12, 13].

For generic fitness distributions, we argue that the average number of

adaptive steps increases logarithmically with sequence length with a prefac-

tor that depends on the choice of fitness distribution. Although our argument

does not capture the proportionality constant correctly, the logarithmic de-

pendence is seen to be in excellent agreement with the simulation results. We

also present detailed results on the statistical properties of entire walk for

exponentially and uniformly distributed fitnesses as these two distributions

lend themselves to an analytic treatment and are also consistent with the

experiments [14, 15]. Following the approach of [4], we write a recursion re-

lation for the fitness distribution of fixed beneficial mutations at an adaptive

step which is valid for long sequences and fitness distributions with a finite

mean. For the above mentioned distributions, we also find the distribution
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of walk length. The average walk length calculated using this approach gives

a prefactor consistent with the numerical results.

Although in most part of this Chapter we consider uncorrelated fitnesses

and assume that the distribution of the fitness does not change during the

course of evolution, the effect of correlations is also discussed. As discussed

in Chapter 2, experiments support an intermediate degree of correlations in

fitness landscapes [16,17] and changing fitness distributions may be modeled

by correlated fitnesses [12], we calculate the average number of steps to an

optimum on a fitness landscape generated by the block model of correlated

fitnesses in which a sequence is divided into several independent blocks and

correlations arise when two sequences share some blocks [18]. The average

walk length has been measured using numerical simulations in a block model

in [12] and it was speculated that the average number of adaptive steps is

independent of the underlying fitness distribution and increases linearly with

the number of blocks. We show that while the latter result is roughly correct,

the average number of steps to a local optimum is not independent of the

fitness distribution which is a consequence of the result discussed above for

the uncorrelated fitness landscapes.

4.2 Adaptive walk model for long sequences

As explained in Chapter 2 we work with haploid binary sequences of length

L in the strong selection-weak mutation (SSWM) regime [1]. If the fitnesses

of the wild type sequence and its L one-mutant neighbors are arranged in

a descending order with the best fitness assigned the rank 1, the transition
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probability that the population moves from the wild type with fitness rank

i and value f(i) to a mutant with rank j < i and value f(j) is proportional

to the fixation probability which is well approximated by 2(f(j)− f(i))/f(i)

in the strong selection limit [2]. The normalised transition probability from

fitness f(i) to fitness f(j) is given by

T (f(j)← f(i)) =
f(j)− f(i)

∑i−1
k=1 f(k)− f(i)

, 1 ≤ j ≤ i− 1 (4.1)

Once the population has moved to a mutant sequence with fitness f(j) with

probability T (f(j)← f(i)), it produces a set of new mutants which are rank

ordered and chosen according to (4.1) and the process repeats itself until

the population reaches a local optimum whose nearest neighbors are all less

fit than itself. Note that the parameters N and µ have dropped out of the

picture and the properties of the model depend on the sequence length (or

the initial rank) and the distribution of sequence fitnesses.

The model described above has been studied using (4.1) and EVT (Ex-

treme Value Theory )in previous works [2,5,12,13] assuming the initial fitness

to be high (small i). In contrast, we start with a low fitness and write a re-

cursion relation for the probability PJ(f) that an adaptive walk has at least

J steps and the fitness is f at the Jth step, following [4] who studied this

distribution for random adaptive walks as explained in Chapter 2. In the

following discussion, it is assumed that the sequence length is large which

allows the following two simplifications: first, the events in which a sequence

is backtracked can be ignored and second, the transition rates can be written

in terms of absolute fitnesses instead of fitness ranks. Consider a population
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at the Jth adaptive step and with fitness h. It can proceed to the next step

provided at least one fitter mutant is available. If q(h) =
∫ h

l
dg p(g), this

event occurs with a probability 1 − qL(h) where it is assumed that at each

step in the evolutionary process, L novel mutants are available which have

not been encountered before. While this is true at the first step, the number

of novel mutants is L− 1 at the second step since one of the mutants is the

parent sequence itself which is not an allowed descendant as the walk always

proceeds uphill. In fact for any J ≥ 2, some of the mutants have already

been probed but the error introduced by ignoring this complication is of the

order of 1/L which is negligible for large L [4]. Then for long sequences we

can write

PJ+1(f) =

∫ f

l

dh p(f)T (f ← h) (1− qL(h))PJ(h) , J ≥ 0 (4.2)

where the underlying fitness of the sequences is chosen from one of following

three distributions

p(f) =



















(δ − 1)(1 + f)−δ , δ > 2 (Fréchet) (4.3)

γfγ−1e−fγ

, γ > 0 (Gumbel) (4.4)

ν(1− f)ν−1 , ν > 0, f < 1 (Weibull) (4.5)

In (4.2), p(f)T (f ← h) gives the probability that a mutant with fitness f > h

is chosen. Furthermore for large L, it is a good approximation to replace the

sum in the denominator of (4.1) by an integral and we may write

T (f ← h) =
f − h

∫ u

h
dg (g − h) p(g)

, f > h (4.6)
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Thus we work with absolute fitnesses instead of fitness ranks. Since the tran-

sition probability (4.6) is undefined for slowly decaying fitness distributions

p(f) ∼ f−δ , δ ≤ 2, we restrict δ > 2 in (4.3). Using (4.6) in (4.2), we finally

obtain

PJ+1(f) =

∫ f

l

dh
(f − h)p(f)

∫ u

h
dg (g − h) p(g)

(1− qL(h))PJ(h) , J ≥ 0 (4.7)

The above equation is the central equation of this part of the Chapter

and we will employ it to obtain various results on the statistical properties of

adaptive walks. In the following, we assume the initial condition P0(f) = δ(f)

corresponding to zero initial fitness. As PJ(f) obeys an integral equation

which are harder to analyse, we may try to write a differential equation for

PJ(f). Differentiating (4.7) with respect to f , we get:

P ′J+1(f) =

∫ f

l

dh
(f − h)p′(f) + p(f)
∫ u

h
dg (g − h) p(g)

(1− qL(h))PJ(h) , J ≥ 0(4.8)

P
′′

J+1(f) =

∫ f

l

dh
(f − h)p′′(f) + 2p′(f)

∫ u

h
dg (g − h) p(g)

(1− qL(h))PJ(h)

+
p(f)(1− qL(f))

∫ u

f
dg (g − f) p(g)

PJ(f) , J ≥ 1 (4.9)

where prime denotes a f -derivative. On using (4.7) and (4.8) in (4.9), we

find

P
′′

J+1(f) = 2
p′(f)

p(f)
P ′J+1(f) +

[

p′′(f)

p(f)
− 2

(

p′(f)

p(f)

)2
]

PJ+1(f)

+
p(f)(1− qL(f))

∫ u

f
dg (g − f) p(g)

PJ(f) , J ≥ 1 (4.10)
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The first derivative term in the above equation can be eliminated by writing

PJ(f) = p(f)P̃J(f) which finally yields

P̃
′′

J+1(f) =
p(f)(1− qL(f))

∫ u

f
dg (g − f) p(g)

P̃J(f) , J ≥ 1 (4.11)

Here we will restrict our attention to exponentially and uniformly dis-

tributed fitnesses as these two fitness distributions are consistent with the

available empirical data. We show that due to (4.11), a second order or-

dinary differential equation is obeyed by a generating function of PJ(f) for

these two distributions which can be solved within an approximation subject

to the following boundary conditions:

PJ(f)|f=l = 0 , J ≥ 1 (4.12)

P ′J(f)|f=l =
p(l)

∫ u

l
dg g p(g)

δJ,1 (4.13)

where (4.12) is a direct consequence of (4.7) and the equation (4.13) arises

on using the initial condition in (4.8).

Besides PJ(f), we also find the walk length distribution QJ and the av-

erage fitness f̄J at the Jth step which can be related to PJ(f) as explained

below. Integrating over f on both sides of (4.7), we get

PJ+1 =

∫ u

l

df PJ+1(f) (4.14)

=

∫ u

l

dh

∫ u

h

df
(f − h)p(f)

∫ u

h
dg(g − h)p(g)

(1− qL(h))PJ(h) (4.15)

=

∫ u

l

dh (1− qL(h))PJ(h) = PJ −
∫ u

l

dh qL(h)PJ(h) (4.16)
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Then the walk length probability QJ that exactly J steps are taken is given

by

QJ = PJ − PJ+1 =

∫ u

l

dh qL(h)PJ(h) (4.17)

with Q0 = 0 since the initial fitness is zero. The above equation has a simple

interpretation: Since PJ(h) is the probability that at least J steps are taken

and the fitness at the Jth step is h, exactly J steps will be taken if all the L

mutants of the sequence at the Jth step carry a fitness smaller than h from

which (4.17) follows. The average walk length J̄ =
∑2L

J=0 JQJ ≈
∑∞

J=0 JQJ

for large L. The average fitness f̄J is defined as f̄J =
∫ u

l
df fPJ(f). Using

(4.7), we can write

f̄J+1 =

∫ u

l

dff

∫ f

l

dh
(f − h)p(f)

∫ u

h
dg(g − h)p(g)

(1− qL(h))PJ(h) (4.18)

=

∫ u

l

dh
(1− qL(h))PJ(h)
∫ u

h
dg(g − h)p(g)

∫ u

h

dff(f − h)p(f) (4.19)

Note that neither (4.17) nor (4.19) are closed equations.

Our analytical results are also compared with numerical simulations which

were performed using an exact procedure for L ≤ 10 and an approximate

method outlined in [5] for larger L as explained. While simulating short

sequences of length L ≤ 10 and uncorrelated fitnesses, a randomly chosen

sequence was assigned a fitness equal to zero. Then the rest of the fitness

landscape comprising of 2L − 1 fitnesses was generated by drawing random

variables independently from a common distribution p(f). The transition

probability from the initial sequence to each of the better sequences among
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the L nearest neighbors was calculated according to (4.1) and the fixed se-

quence at the first step in the adaptive walk was chosen. Then the tran-

sition probability from the chosen mutant sequence to its better neighbors

was calculated and this process was repeated until a fitter sequence was not

available. To simulate sequences with length L & 102, we followed an ap-

proximate procedure outlined in [5] as the total number of sequences 2L is

prohibitively large for long sequences. Starting with zero fitness, L i.i.d. ran-

dom variables were generated and a higher fitness f was chosen according to

the transition probability (4.1). During the next step in the process, L new

i.i.d. random variables were generated and the transition probability from f

to a better fitness was calculated. These steps were repeated until the new

set of random fitnesses does not exceed the currently fixed fitness. The block

model was simulated to generate weakly correlated fitnesses by assigning in-

dependent fitnesses to each block sequence. In all the simulations, the data

was collected using 106 independent realisations of the fitness landscape and

the results obtained were used to verify the theoretical claims as explained

below.

4.3 Average fitness and walk length for gen-

eral fitness distributions

For a broad class of fitness distributions, the average fitness for an infinitely

long sequence can be computed. Although this limit is biologically unreal-

istic, it provides a good approximation to the average fitness f̄J for small
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J (see Fig. 4.1) as the population can not sense the finiteness of sequence

length far from the local optimum. On taking the limit L→∞ in (4.19) and

denoting the average fitness in this limit by FJ , we obtain

FJ+1 =

∫ u

l

dh

∫ u

h
df f(f − h)p(f)

∫ u

h
dg (g − h)p(g)

PJ(h)|L→∞ (4.20)

Algebraically decaying fitness distributions: On substituting (4.3) in

(4.20) and performing the integrals involving p(f), we get

FJ+1 =

∫ ∞

0

dh
2 + (δ − 1)h

δ − 3
PJ(h)|L→∞ =

2

δ − 3
+

δ − 1

δ − 3
FJ , δ > 3 (4.21)

where we have used that PJ |L→∞ = 1 due to (4.16) and the initial condition

P0 = 1. Repeated iteration with F0 = 0 yields

FJ =

(

δ − 1

δ − 3

)J

− 1 (4.22)

which increases geometrically with J . This result is compared in Fig. 4.1a

with the average fitness for finite sequences which shows that the number of

steps up to which f̄J and FJ match increases with L.

Exponential fitness distribution: For fitness distributions given by (4.4),

the equation for FJ does not close except for γ = 1. For p(f) = e−f , we get

FJ = 2 + FJ−1 which gives

FJ = 2J (4.23)

Fig. 4.1b shows that the rate of increase of fitness f̄J is slower than a constant

at larger J ’s.
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Figure 4.1: Evolution of average fitness with the number of adaptive steps
starting from zero initial fitness obtained numerically (points) and compared
with the average fitness in infinite sequence length limit (lines) for (a) power
law distributed fitness with δ = 6, equation (4.22) (b) exponentially, equation
(4.23) and (c) uniformly distributed fitness, equation (4.25).
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Bounded fitness distributions: A calculation similar to above for p(f) in

(4.5) gives

FJ+1 =
2 + νFJ

2 + ν
(4.24)

and therefore

FJ = 1−
(

ν

2 + ν

)J

(4.25)

For uniformly distributed fitness (ν = 1), we find that 1− FJ = 3−J in good

agreement with the numerical data in Fig. 4.1(c) for small J .

We now give an argument to estimate the average walk length J̄ using the

above results for the average fitness FJ and the EVT [4]. We first note that

since PJ |L→∞ = 1 for all J , every step in the adaptive walk is definitely taken

for infinitely long sequences and hence the average walk length is expected

to diverge with L. For a sequence of finite length, the adaptive walk stops

when the population has reached a local optimum whose fitness is the largest

among L+1 i.i.d. random variables. But since the average number of fitnesses

with value ≥ f is given by (L+1)(1− q(f)), at a local optimum we have [19]

(L + 1)

∫ u

FJ̄

df p(f) = 1 (4.26)

where we have approximated f̄J̄ by FJ̄ . The above equation yields

FJ̄ ≈



















L
1

δ−1 − 1 (Algebraic) (4.27)

ln L (Exponential) (4.28)

1− L−
1
ν (Bounded) (4.29)

On matching the expected fitness FJ̄ with the FJ obtained in the above
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discussion for various distributions, we get

J̄ ≈



































1

δ − 1

ln L

ln( δ−1
δ−3

)
(Algebraic) (4.30)

1

2
ln L (Exponential) (4.31)

1

ν

ln L

ln(2+ν
ν

)
(Bounded) (4.32)

Thus the above argument shows that for large L,

J̄ ≈ α ln L (4.33)

where the prefactor α depends on p(f). We note that αalgebraic < αexponential <

αbounded which implies that smaller number of substitutions occur for fat-

tailed fitness distributions than the bounded ones. To understand this qual-

itative trend, consider the transition probability for the first step given by

T (f ← 0)p(f) ∼ fp(f). At large f , this probability is higher for slowly

decaying distributions and thus a large fitness gain occurs initially. But as

the probability to exceed the high fitness achieved at the first step is small,

the walk terminates sooner for broad distributions.

The results of our numerical simulations for J̄ shown in Fig. 4.2 are

in agreement with the logarithmic dependence on L but the value of the

prefactor does not match with that obtained above (except for p(f) = e−f).

The prefactor α is expected to interpolate between the two limiting cases of

adaptive walks namely greedy walk in which the best mutant is chosen with

probability one and random adaptive walk in which all better mutants are

chosen with equal probability. As explained in Chapter 2, the former limit
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Figure 4.2: Average number J̄ of adaptive steps as a function of sequence
length L for various fitness distributions when the fitnesses are uncorrelated.
The points show the data obtained using numerical simulations and the lines
are the best fit to the function J̄ = α lnL + β. The results for greedy
walk and random adaptive walk (up to an additive constant) are also shown.
The numerical fit for the prefactor α for exponential and uniform fitness
distribution matches well with the analytical results given by (4.46) and
(4.56) respectively.

is obtained when δ → 1 in (4.3) and the latter when ν → 0 in (4.5) [13].

Since the average walk length for a greedy walker is a finite constant equal to

e−1 ≈ 1.718 for infinitely long sequences [3], the prefactor α = 0 while α = 1

for random adaptive walk. In the following sections, we find that α = 1/2

for exponentially distributed fitness and 2/3 for the uniform case which are

consistent with the results in Fig. 4.2 and the analytical results of [20] which

are obtained using a simpler version of the adaptive walk model considered

here.
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4.4 Distribution of fitness and walk length

We now present our calculation for the distribution of the walk length and

the fitness at the J th step of the walk. Our results obtained using an ap-

proximation work well as long as the walker is not close to the local fitness

optimum. If we consider the whole population to have an initial fitness f0,

using P0(f) = δ(f − f0) in (4.7) we have

P1(f) =
(f − f0)p(f)(1− qL(f0))

∫ u

l
dg gp(g)

∝ (f − f0)p(f) (4.34)

The above fitness distribution at the first step is nonmonotonic for all fitness

distributions in (4.3)-(4.5) except for truncated distributions with ν ≤ 1.

The implications of this result are examined in Sec.4.6. Though the solution

for the first step is trivial, it is complicated for J > 1 and we have used

certain approximations to solve it for uniform and exponential distributions

as shall be explained in the next few sections.

4.4.1 Entire walk with exponentially distributed fit-

ness

For p(f) = e−f , from (4.11) we obtain

P̃
′′

J+1(f) = (1− qL(f))P̃J(f) , J ≥ 1 (4.35)

where q(f) = 1−e−f . Due to (4.12) and (4.13), the boundary conditions are

PJ(0) = 0 and P ′J(0) = δJ,1.
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We define a generating function G(x, f) =
∑∞

J=1 P̃J(f)xJ , x < 1 which

obeys the following second order ordinary differential equation:

G
′′

(x, f) = x(1− qL(f))G(x, f) (4.36)

To arrive at the above equation, we have used that P̃1(f) = f which is

obtained on using the initial condition in (4.7). The generating function

G(x, f) obeys a Schrödinger equation for the wave function of a particle in

a one-dimensional potential V (f) ∼ 1 − qL(f) and energy zero [21]. Since

1 − qL(f) ≈ 1 − e−Le−f
is close to unity for f ≪ ln L and vanishes for

f ≫ ln L, the potential V (f) decreases smoothly from one to zero and moves

rightwards with increasing L. Similar potentials also arise when two materials

with different transport properties are joined together and in such systems, an

analytical solution is obtained within a step function potential approximation

[22, 23]. We follow this approach here and approximate the distribution

1− qL(f) by the Heaviside theta function Θ(f̃ − f) where f̃ = ln L. Within

this step distribution approximation, we have

G
′′

(x, f) =















xG(x, f) , f < f̃

0 , f > f̃

(4.37)

For f < f̃ , the differential equation (4.37) has a solution of the form

G<(x, f) = a+e
√

xf +a−e
−
√

xf which reduces to G<(x, f) = c sinh(
√

xf) since

G(x, 0) = 0 due to PJ(0) = 0. Since the solution for f < f̃ can not depend

on f̃ , we appeal to the infinite sequence length limit to fix the proportionality
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constant c. As noted earlier, the distribution PJ |L→∞ = 1 for all J ≥ 0 which

implies that
∫ ∞

0

df e−fG<(x, f) =
x

1− x
(4.38)

and therefore

G<(x, f) =
√

x sinh(
√

xf) (4.39)

We check that the boundary condition P ′J(0) = P̃ ′J(0) = δJ,1 which is equiv-

alent to G′(x, 0) = x is also satisfied by the above solution.

For f > f̃ , the solution G>(x, f) = af + b where the constants of in-

tegration a, b can be fixed by matching the solutions G< and G> and their

first derivative at f = f̃ . Thus the constant a and b are determined by the

following conditions:

G<(x, f̃) = G>(x, f̃) = af̃ + b (4.40)

G′<(x, f)|f=f̃ = G′>(x, f)|f=f̃ = a (4.41)

A simple algebra shows that

G>(x, f) = x cosh(
√

xf̃)(f − f̃) +
√

x sinh(
√

xf̃) (4.42)

Using the above expressions for G(x, f), the fitness distribution PJ(f) for

the fixed beneficial mutations can be calculated. On expanding (4.39) and

(4.42) in a power series about x = 0 and picking the coefficient of xJ , we
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Figure 4.3: Main: Comparison of the distribution PJ(f) for J = 1, 2, 3, 5
obtained numerically (points) and analytically (lines) given by (4.43) for
exponentially distributed fitness and sequence length L = 1000. Inset: Nu-
merical data for PJ(f) for J = 4, 5, 6 to show that the fitness distribution
does not shift appreciably beyond J̄ ≈ 4.6 as local optimum with average
fitness ≈ 7 is approached.

have

PJ(f) =
e−ff 2J−1

(2J − 1)!
×















1 , r ≤ 1

(2J−1)r−(2J−2)
r2J−1 , r > 1

(4.43)

where r = f/f̃ . Figure 4.3 shows our numerical results for PJ(f) for the first

few adaptive steps. As the walk proceeds, the distribution moves rightwards

as expected and its amplitude decreases since the probability qL(f) that the

walker can not find a better neighbor approaches unity with increasing f .

Our analytical result (4.43) is also shown in Fig. 4.3 for comparison.

For L = 103, the step distribution approximation used to find (4.43) gives

1 − qL(f) ≈ 1 for f < ln L = 6.9 and zero otherwise. However as the

probability 1− qL(f) stays close to unity for f ≤ 5 and decreases gradually

to zero when f ≈ 12, the distribution (4.43) in the region 5 < f < 12
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does not match well with the simulation results but outside this crossover

region, we see a good quantitative agreement. We also note that the fitness

distribution does not move appreciably for J ≥ 4 and is centred around f ≈ 7

(see inset of Fig. 4.3). This is because the average walk length for L = 103

is about 4.6 steps (refer Fig. 4.2) and as the local optimum is approached,

the fitness distribution of fixed beneficial mutation remains centred close to

the typical fitness of the local optimum given by (4.26) which is ln L ≈ 6.9.

This also explains the initial linear rise in the average fitness followed by a

slower increase in Fig. 4.3.

We next calculate the walk length distribution QJ defined by (4.17). Since

qL(f) = Θ(f−f̃) within the step distribution approximation discussed above,

(4.17) reduces to

QJ =

∫ ∞

f̃

df PJ(f) (4.44)

On integrating PJ(f) given in (4.43), we get

QJ = e− lnL

[

(ln L)2J−2

(2J − 2)!
+

(ln L)2J−1

(2J − 1)!

]

, J > 0 (4.45)

This expression is compared with numerical results in Fig. 4.4 and shows

a reasonable agreement. The average number of adaptive steps calculated

using (4.45) is given by

J̄ =

∞
∑

J=1

JQJ ≈
1

2
ln L (4.46)

which is in good agreement with the simulation result in Fig. 4.2. The width

of the distribution QJ measured using the variance σ2 = J̄2 − J̄2 ≈ ln L/4
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Figure 4.4: Walk length distribution QJ for p(f) = e−f comparing numerical
(points) and analytical result (lines) given by (4.45).

also increases with L.

4.4.2 Entire walk with uniformly distributed fitness

For p(f) = 1, since PJ(f) = P̃J(f), the differential equation (4.11) reduces

to

P
′′

J+1(f) =
1− fL

∫ 1

f
dg (g − f)

PJ(f) =
2(1− fL)

(1− f)2
PJ(f) , J ≥ 1 (4.47)

with boundary conditions PJ(0) = 0 and P ′J(0) = 2δJ,1. As before, we define

a generating function G(x, f) =
∑∞

J=2 xJ−2PJ(f) which obeys the following

second order ordinary differential equation:

G
′′

(x, f) =
2(1− fL)

(1− f)2
(xG(x, f) + 2f) (4.48)
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where we have used that P1(f) = 2f . We treat this case also within the

step distribution approximation discussed earlier. Since the probability 1−

fL ≈ 1 − e−L(1−f), we approximate it by a step function Θ(f̃ − f) where

f̃ = (L − 1)/L. For f < f̃ , we obtain an inhomogeneous second order

ordinary differential equation with variable coefficients:

G
′′

<(x, f) =
2x

(1− f)2
G<(x, f) +

4f

(1− f)2
(4.49)

This equation can be solved by standard methods (as detailed in Appendix

A) to yield

G<(x, f) = a+(1− f)α+ + a−(1− f)α− + u+(f)(1− f)α+ + u−(f)(1− f)α−

(4.50)

where the exponents

α± =
1±
√

1 + 8x

2
(4.51)

The first two terms on the right hand side give the solution of the homoge-

neous equation and the last two terms are the particular integral involving

the variational parameters u±(f) given in Appendix A. The constants of

integration a± can be obtained using the boundary conditions G(x, 0) = 0

and
∫ 1

0
df G<(x, f) = (1− x)−1. After some straightforward algebra, we find

that

G<(x, f) =
−2

x

[

(1− f)α+ − (1− f)α−

α+ − α−
+ f

]

(4.52)

We verify that the condition P ′J(0) = 0 for J > 1 which amounts to G′(x, 0) =

0 is also satisfied. For f > f̃ , as G
′′

>(x, f) = 0, the solution G>(x, f) = af +b
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Figure 4.5: Comparison of the distribution PJ(f) for J = 1, 2, 3, 4 obtained
numerically (points) and analytically (lines) given by (A.6)-(A.9) for uni-
formly distributed fitness and sequence length L = 100. The distribution for
f ≤ f̃ is shown in the main plot and for f > f̃ in the inset.

where a, b can be determined using (4.40) and (4.41) to give

G>(x, f) =
−2

x

[

α−(1− f̃)α−−1 − α+(1− f̃)α+−1

α+ − α−
+ 1

]

f

− 2

x

[

(1− f̃)α+ − (1− f̃)α− − α−f̃(1− f̃)α−−1 + α+f̃(1− f̃)α+−1

α+ − α−

]

(4.53)

Explicit expressions for PJ(f) for first few adaptive steps are given in Ap-

pendix A and a comparison between the analytical and the simulation results

is shown in Fig. 4.5.
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To find the walk length distribution QJ =
∫ 1

f̃
df PJ(f), we define

H(x) =

∞
∑

J=1

xJQJ = xQ1 + x2

∫ 1

f̃

df G>(x, f) (4.54)

=
x(1− f̃)

α− − α+

[

(2− α+)(1− f̃)α+ − (2− α−)(1− f̃)α−

]

(4.55)

As an explicit expression for QJ is rather unwieldy, its derivation and the

expression itself are given in Appendix A and a comparison with the simu-

lations is shown in Fig. 4.6. The average number of steps is given by

J̄ =
dH(x)

dx

∣

∣

∣

∣

x=1

=
−6 ln(1− f̃)

9
(4.56)

which shows that for large L, the number of adaptive steps grows as (2/3) lnL

in agreement with the numerical results shown in Fig. 4.2. The higher mo-

ments can also be found straightforwardly and we find that the variance

J̄2 − J̄2 ≈ (10/27) lnL and the skewness of the distribution decays slowly as

(ln L)−1/2.

4.5 Effect of correlations on the number of

adaptive steps

We now turn to a discussion of adaptive walk properties when the fitnesses are

correlated and given by a block model introduced in Chapter 1. We compute

the average number J̄B(L) of adaptive steps given by
∑∞

J=1 JQJ (L, B) where

QJ (L, B) is the probability that exactly J adaptive mutations occur when a
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Figure 4.6: Walk length distribution QJ for uniformly distributed fitnesses
comparing simulation (points) and analytical result (lines) in (A.27).

sequence of length L is divided in B blocks.

Consider the distribution Q(m1, ..., mB) which gives the joint probability

that the ith block of length LB in a sequence of length L carries mi adaptive

mutations where i = 1, ..., B. An important property of the block model is

that this joint distribution factorises, that is [18]

Q(m1, ..., mB) =

B
∏

b=1

Qmb
(LB, 1) (4.57)

where QJ(LB, 1) ≡ QJ(LB) is the walk length probability when the fitnesses

are uncorrelated and the sequence length is LB. The above equation expresses

the fact that the block fitnesses evolve independently. As only one mutation

occurs in the sequence at any step so that all but one block sequence remains

unchanged and since the block fitnesses are i.i.d. random variables, (4.57)

holds.
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Since the distribution QJ(L, B) is given by

QJ(L, B) =

J
∑

m1,...,mB=0

Q(m1, ..., mB)δ(m1 + ... + mB − J) (4.58)

it follows that

J̄B(L) =

∞
∑

J=1

J

J
∑

mB=0

QmB
(LB)

J−mB
∑

m1,...,mB−1=0

B−1
∏

b=1

Qmb
(LB)δ(

B−1
∑

b=1

mb − (J −mB))

=
∞

∑

J=1

J
J

∑

mB=0

QmB
(LB)QJ−mB

(L− LB, B − 1)

=
∞

∑

m=0

Qm(L− LB, B − 1)
∞

∑

n=0

(n + m)Qn(LB)

= J̄(LB) +
∞

∑

m=1

mQm(L− LB, B − 1)

= J̄(LB) + J̄B−1(L− LB)

= BJ̄(LB) (4.59)

where we have used that
∑∞

J=0 QJ (L, B) = 1 and J̄ is the average number

of steps in the adaptive walk for uncorrelated fitnesses. Figure 4.7 shows the

results of our numerical simulations for average walk length when the block

length LB = L/B is kept fixed and the block fitnesses are exponentially and

uniformly distributed. For fixed LB, (4.59) predicts that J̄B increases linearly

with B which is in excellent agreement with the numerical data.

For large L, due to (4.33) we have

J̄B(L) ≈ αB ln(L/B) + Bβ (4.60)
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Figure 4.7: Average number J̄B of adaptive steps as a function of block
number B for fixed L/B = 100. The numerical data is in excellent agreement
with (4.59) shown by solid line.

where β is a constant in Fig. 4.7. For small B, a linear rise in the average

number of steps with the number of blocks has been seen numerically for

exponential-like distributions and it was inferred that the mean walk length

is independent of underlying fitness distributions [12]. However as discussed

in the previous sections, the average number J̄ depends on the fitness distri-

bution p(f) and therefore the average J̄B is also nonuniversal.

4.6 Discussion

In the last few years, several analytical results have been obtained for the

adaptive walk model [2]. However many of these results deal with the first

step in the adaptation process [5, 12, 13] and an extension of the theory to
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full adaptive walk is necessary. Previous studies also assume that the process

of adaptation starts from a highly fit sequence which is not applicable to

situations in which the population is subjected to high stress and hence has

a very low initial fitness [10,11]. In this Chapter, we have obtained results for

the entire adaptive walk starting from a low initial fitness but as discussed

below, we expect some of these results to hold for moderately high initial

fitness also.

4.6.1 Walk length distribution and average walk length

In previous works, the walk length distribution for the greedy walk and the

random adaptive walk have been studied and found to be universal in that

they are independent of the underlying fitness distribution p(f). The origin of

this universality property is clear in the light of the results of [13] who pointed

out that these two models can be obtained as a limit of (4.1) which defines the

adaptive walk model. For the random adaptive walk, the distribution QJ for

infinitely long sequence vanishes and the average walk length diverges with

sequence length. In contrast, for greedy walk, the walk length distribution in

the L→∞ limit decreases exponentially fast with J for the greedy walk as a

result of which the average number of steps turns out to be a constant [3,24].

In this Chapter, we have calculated the walk length distribution for ex-

ponentially and uniformly distributed fitnesses and found the average walk

length for general fitness distributions. An important conclusion of our study

is that the average number of adaptive steps increases logarithmically with

the sequence length with a prefactor smaller than unity if the walk starts
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sequence for L = 100 and exponential distribution. The numerical results
for L = 100 (black circles) is plotted along with the theoretical prediction

given by J̄ =
1

2
ln i ( red line).

from zero fitness. Our simulations also indicate that if the initial rank is of

order L, the average number of steps increases logarithmically with the rank

and with the same proportionality constant as that for the zero initial fitness

case as shown in Fig. 4.8 for L = 100. Thus for a wild type sequence with

initial rank (or L) of the order 100, the number of substitutions are expected

to be less than 5. Although short adaptive walks have been observed in ex-

periments [8, 9], more detailed experimental studies testing the logarithmic

dependence would be desirable. Although a test of the L-dependence of the

average walk length may not be experimentally viable, it should be possible

to study the average walk length as a function of the initial rank.
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Besides the sequence length, the number of steps to a local optimum

depend on the underlying fitness distribution and the fitness correlations

also. If the fitnesses are uncorrelated, as the numerical data in Fig. 4.2 shows,

the prefactor α in (4.33) depends on the shape of the fitness distribution and

therefore a rather detailed knowledge of the full fitness distribution (how fast

it decays) is required to test this which is presently unavailable. However one

can discern a trend in the value of α: it decreases as the fitness distribution

broadens. This suggests that systems with fitness distribution in the Gumbel

class [6,10,25–27] will register shorter walks than those in the Weibull domain

[15]. As shown here in the block model of correlated fitnesses, the average

number of adaptive steps increases as the number of blocks (and hence fitness

correlations) increase. This is in accordance with the expectation that on a

smooth correlated fitness landscape, as the local optima are less common

[18], there is a less chance to get trapped and therefore uphill walk can last

longer [12, 28, 29].

4.6.2 Distribution of fixed beneficial mutations during

the walk

The fitness distribution PJ(f) has not been studied in previous theoretical

studies of adaptive walks in the SSWM limit and here we have computed

this fitness distribution analytically using the recursion relation (4.7). The

fitness distribution at the first step given by (4.34) can give a qualitative idea

about the shape of p(f). For most fitness distributions, P1(f) is expected to

be nonmonotonic but for bounded distributions which diverge at the upper
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limit or the uniform distribution, P1(f) increases monotonically towards the

upper bound. An inspection of the experimental data of [6] shows the fitness

distribution at the first step to be nonmonotonic which is consistent with their

assumption of exponentially decreasing distribution of beneficial effects. It

would be interesting to check if the distribution P1(f) in [15] is monotonic

as the data in this study is consistent with a uniformly distributed fitness.

The above behavior of P1(f) is expected to be robust in the presence of

correlations as at the first step in evolution, the population has not sensed

the correlations in the fitness landscape [12].

For the fitness distribution for the entire walk, we presented an analysis for

two distributions namely exponential and uniform which are consistent with

the available experimental data. The distribution PJ(f) is obtained within

a step distribution approximation which captures the shape of the fitness

distribution correctly for the first few steps and leads to an accurate estimate

of the number of average steps. Our approximation consists of replacing the

probability 1−qL(f) by a step function Θ(f̃−f) where f̃ is given by (4.28) for

exponentially and (4.29) for uniformly distributed fitnesses. For f ≪ f̃ and

f ≫ f̃ , our approximate solution matches the simulation results well for any

J . With increasing J , the distribution PJ(f) shifts towards higher fitnesses

and peaks about f̃ for larger J ’s. As explained earlier, the fitness f̃ is reached

when J is close to J̄ ∝ ln L and therefore we expect our approximation to

work well for J ≪ ln L.

When the underlying fitness distribution is exponential, we find that the

fitness distribution of the fixed beneficial mutation also has an exponential
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tail (see (4.43)). The robustness of this result i.e. whether any fitness distri-

bution in the Gumbel class exhibits exponential tail for PJ(f) is however not

clear. For uniformly distributed fitnesses, as the width of the distribution

1 − qL(f) decreases with increasing L, the step distribution approximation

works better in this case than in the exponential case where the width is a

constant (compare Figs. 4.4 and 4.6).

In the next and the last Chapter of this thesis, we shall present a few

preliminary results on other statistical properties of adaptive walk and a

brief outlook of the problems we hope to address in the near future.
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Chapter 5

Summary and outlook

5.1 Summary of the results

In our work, we studied the adaptation process using a quasispecies model

for infinite populations and an adaptive walk model for finite populations. A

block model was used to introduce fitness correlations in both the cases. In

this last Chapter, we give a brief summary of our results and the relation be-

tween the models that we have used. The final part of the Chapter discusses

the questions that we hope to address in the near future.

We first compare the deterministically evolving populations of infinite size

studied here vis-a-vis finite populations that are subject to stochastic fluc-

tuations on multi-peaked fitness landscapes. The basic difference between

a finite and an infinite population is that while the former has a finite mu-

tational spread in the sequence space [1], all the mutants are available at

all times in the deterministic case. In infinite population, a transition to

a higher fitness peak takes place by overtaking the less fitter populations
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as explained in Chapter 3. Also the most populated sequence involved in

the jump event is not necessarily a local maximum (for any correlation)

for infinite populations. To see this, consider the fittest sequence with fit-

ness w(max)(D) at a fixed number of mutations D from the initial sequence

σ(0). Barring the initial sequence, all the one-mutant neighbors of sequence

with fitness w(max)(1) are at mutational distance two from the initial se-

quence. Consider the scenario when the sequence with fitness w(max)(2)

is a nearest neighbor of sequence with fitness w(max)(1). Then the fittest

sequence at distance unity from the initial sequence can be a jump if at

least w(max)(1) > w(σ(0)) and the minimum intersection time condition

(w(max)(1) − w(σ(0)))−1 < 2(w(max)(2) − w(σ(0)))−1 is obeyed. Clearly the

latter condition rewritten as w(max)(2)−w(max)(1) < w(max)(1)−w(σ(0)) can

be satisfied even when w(max)(1) is not a local maximum. Thus the number

of jump events are not related to the number of local optima for an infinite

population. In contrast, on rugged fitness landscapes, a finite population

can get trapped at a local optimum from which it can escape by tunneling

through a fitness valley [2]. In fact at late times, most of the population

passes exclusively through the local fitness peaks and thus such sequences

are the most populated ones when the population size is finite.

In the study of quasispecies model, our main concern is how the fitness

correlations affect the dynamics. By varying the fitness correlations using

the block model from strongly correlated fitnesses (LB = 1, 2) to weakly cor-

related fitnesses (LB = L, L/2), we found that the temporal distribution of

the last jump has 1/t2 dependence which suggests that this property maybe

universal, in that it is independent of the fitness correlations. The average
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number of records was found to increase linearly with sequence length L, with

a prefactor that increases with correlations. The results are however inde-

pendent of the underlying fitness distribution, p(f). On the other hand, the

average number of jumps was found to increase with the sequence length as
√

L for weakly correlated fitnesses but linearly with L for strongly correlated

ones. Also this number depends on the underlying fitness distribution.

In the adaptive walk model, the effect of correlations on the length of the

adaptive walk was studied. We showed that the walk length is dependent on

the logarithmic length of their genomic sequence and as in the case of the

quasispecies model, here also for fixed L, this number increases linearly with

the number of blocks and hence correlations.

5.2 Relation between the quasispecies and adap-

tive walk models

In the adaptive walk model used in Chapter 4, at every step L in the walk

new one mutant fitnesses are produced and the population moves to one of

them according to the transition probability defined in (4.1). We found the

relation between the walk length and sequence length for two choices of p(f).

Recently, this has been generalised to a larger class of fitness distributions

without using the step distribution approximation [3] (see Chapter 4).

A simpler adaptive walk model, in which the walk proceeds in a fixed

neighbourhood has also been studied. Here the population performs an adap-

tive walk on a space of L mutually accessible alleles till it reaches the fittest
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sequence [4]. For various fitness distributions, the mean walk length was

calculated analytically [5] in this model by averaging the time taken to reach

the fittest sequence with respect to the fitness distribution and the result was

found to be identical to the full model considered here. It was noted in [5]

that the transition probability from the present sequence to a one mutant

neighbour in the adaptive walk model and the rate at which the dominant

sequence jumps from one sequence to another in quasispecies model depend

linearly on the fitness difference between the two. As a result the number

of jumps for i.i.d fitnesses in quasispecies model [6, 7] and the walk length

distribution in the adaptive walk model are found to be identical.

5.3 Future work

The properties of multiple steps in an adaptive walk have been studied in

some recent experiments [8,9]. In Schoustra et al., [9] 118 replicate evolving

populations of a fungus Aspergillus nidulans were studied and the number

and fitness effects of new mutations in each lineage was measured. They

find a negative correlation between the mean fitness of an evolving popu-

lation and the fraction of beneficial mutations available at each step, thus

indicating that the supply of beneficial mutations is depleted as the fitness

of the population increases. Also, it was observed in this experiment that

the increase in fitness becomes smaller with successive mutations indicating

reduction in the selection coefficient values.

We intend to calculate in our model the distribution P (sJ) of the selection

coefficient sJ = (fJ − fJ−1)/fJ−1 at the Jth step in the adaptive walk. As
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Figure 5.1: Distribution P (sJ) of selection coefficient sJ for L = 1000 and
p(f) = e−f . The inset shows the decay in average selection coefficient s̄J as
a function of J . The points are joined by line to guide the eye.

we start with zero fitness, the selection coefficient is defined for J ≥ 2. Our

preliminary numerical results for P (sJ) are shown in Fig. 5.1 for the first

few steps in the walk and we observe that the typical selection coefficient

decreases as the walk proceeds. This behavior matches qualitatively with

the experimental results of [9]. A theoretical analysis of the distribution

P (sJ) requires the joint distribution of the fitness at step J − 1 and J and

we hope to address this question in a future work. We are also interested

in the time taken for a fitter mutant to get fixed in a population and how

this is related to the fitness difference between the present sequence and the

mutant one.
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Appendix A

Adaptive walk model for

uniformly distributed fitness

Solution of differential equation 4.49 The generating function G<(x, f)

obeys the following inhomogeneous second order differential equation:

G
′′

(x, f)− 2x

(1− f)2
G(x, f) =

4f

(1− f)2
(A.1)

where we have dropped the subscript for brevity. The general solution of such

differential equations is a linear combination of the general solution GH(x, f)

of the homogeneous equation obtained by setting the right hand side equal

to zero and the particular solution GP of the inhomogeneous equation [1].

The homogeneous solution is of the form

GH(x, f) = a+(1− f)α+ + a−(1− f)α− (A.2)

where α± are the solutions of the quadratic equation α2−α−2x = 0 and given
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by (4.51). The particular solution is found using the method of variation of

parameters and is of the form GP (x, f) = u+(x)(1− f)α+ + u−(x)(1− f)α−

where the functions u±(f) obey the following first order differential equations

[1]:

u′+(f)(1− f)α+ + u′−(f)(1− f)α− = 0 (A.3)

α+u′+(f)(1− f)α+−1 + α−u′−(f)(1− f)α−−1 =
4f

(1− f)2
(A.4)

On solving the above equations, we obtain

GP (x, f) =
4

α+α−
− 4(1− f)

(1− α+)(1− α−)
=
−2f

x
(A.5)

Finally using the boundary conditions in the general solution G<(x, f) =

GP (x, f) + GH(x, f), the desired result (4.52) is obtained.

Distribution of fixed beneficial mutations: The fitness distribution

found using (4.52) and (4.53) is given below for the first few adaptive steps:

P1(f) = 2f , f ≤ 1 (A.6)

P2(f) =











−8f + 4(f − 2) ln(1− f) , f ≤ f̃

4f̃(f+f̃−2)

1−f̃
+ 4(f − 2) ln(1− f̃) , f > f̃

(A.7)

P3(f) = 4























12f + ln(1− f)(12− 6f + f ln(1− f)) , f ≤ f̃

1
1−f̃

[

6f̃(2− f − f̃) + 2(6− (6− f̃)f̃ − f(3− 2f̃)) ln(1− f̃)

+ f(1− f̃) ln2(1− f̃)
]

, f > f̃

(A.8)
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P4(f) =
−8

3























120f + 60(2− f) ln(1− f) + 12f ln2(1− f) + (2− f) ln3(1− f) , f ≤ f̃

1
(1−f̃)

[

60f̃(2− f − f̃)− 12(f(5− 3f̃)− 2(5− (5− f̃)f̃)) ln(1− f̃)

+ 3(f(2− 3f̃) + (2− f̃)f̃) ln2(1− f̃) + (2− f)(1− f̃) ln3(1− f̃)
]

, f > f̃

(A.9)

Walk length distribution: On matching powers of xJ on both sides in

(4.55), we get

Q1 = e−2ℓ(−1 + 2eℓ) (A.10)

Q2 = 2e−2ℓ(3 + ℓ + (−3 + 2ℓ)eℓ) (A.11)

Q3 = e−2ℓ
[

−2(18 + 8ℓ + ℓ2) + 4eℓ(9− 5ℓ + ℓ2)
]

(A.12)

Q4 =
4e−2ℓ

3

[

180 + 84ℓ + 15ℓ2 + ℓ3 + eℓ(−180 + 96ℓ− 21ℓ2 + 2ℓ3)
]

(A.13)

where ℓ = ln L. A general solution of QJ by this method does not seem

possible but an approximate analytic expression for QJ can be obtained as

explained below.

From the definition of the generating function H(x) in (4.55), it follows

that

QJ =
1

J !

dJH(x)

dxJ

∣

∣

∣

∣

x=0

(A.14)

By the residue theorem for complex variables, we have [1]

1

2πi

∫

C

dz f(z) =
1

n!

dn

dzn

(

(z − z0)
n+1f(z)

)

∣

∣

∣

∣

z=z0

(A.15)

where z0 is a pole of order n + 1 of the function f(z) and the contour C
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encloses the singularities of f(z). From (A.14) and (A.15), we can write

QJ =
1

2πi

∫

C

dz
H(z)

zJ+1
=

1

2πi

∫

C

dz eK(z) (A.16)

where K(z) = ln H(z) − (J + 1) ln z. We solve this integral by the method

of steepest descent which for large J gives [1]

QJ ≈
√

1

2πK ′′(zs)
eK(zs) =

√

1

2πK ′′(zs)

H(zs)

zJ+1
s

(A.17)

where prime refers to derivative with respect to z. In the above equation, zs

is a solution of the equation

H ′(zs)

H(zs)
=

J

zs
(A.18)

and

K ′′(zs) =

(

H ′(z)

H(z)

)′ ∣
∣

∣

∣

z=zs

+
J

z2
s

(A.19)

=

(

H ′(z)

H(z)

)′ ∣
∣

∣

∣

z=zs

+
1

zs

H ′(zs)

H(zs)
(A.20)

where prime denotes a derivative with respect to z. Since α+ > 0, neglecting

the exponentially small term in (1− f̃)α+ in (4.55), we get

H(z) ≈ e−3ℓ/2eℓy/2(3 + y)(y2 − 1)

16y
(A.21)
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where y =
√

1 + 8z. Differentiating H(z) once with respect to z gives

H ′(z)

H(z)
≈ 8(y + 3) + 4(2y + 3)(y2 − 1) + 2y(y + 3)(y2 − 1)ℓ

y2(y2 − 1)(y + 3)
(A.22)

Using the above expression in (A.18) for large y, we get ys ≈ 4J/ℓ and

therefore

zs ≈
2J2

ℓ2
(A.23)

On differentiating (A.22) once, we have

(

H ′(z)

H(z)

)′
≈ 4

y

[

4

3(y + 3)2
+

4

(1 + y)2
− 4 + 6ℓ

3y2
+

8

y3
− 4

(1− y)2

]

(A.24)

Using (A.22) and (A.24) in (A.20), we obtain

K ′′(zs) ≈
8 [−36 + 6ys(y

2
s − 3) + ys(ys + 3)2(1 + ys)

2ℓ]

y4
s(ys + 3)2(y2

s − 1)
(A.25)

≈ 8ℓ

y3
s

=
a4

8J3
(A.26)

Thus we have

QJ ≈
2J3/2

√
πℓ2
× 2− α−(zs)

α+(zs)− α−(zs)
× (1− f̃)1+α−(zs)

zJ
s

(A.27)

where α± is given by (4.51).
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