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Synopsis

Beautiful patterns are very common in nature. Often similar patterns

are observed in many different systems and in varied length scales. There

has been significant recent activities in understanding pattern formation and

underlying universality. In the theoretical literature of pattern formation,

among others, the complex Ginzburg-Landau (CGL) equation, written as

∂ψ(~r,t)
∂t

= ψ(~r, t)+(1+iα)∇2ψ(~r, t)−(1+iβ)|ψ(~r, t)|2ψ(~r, t), (1)

has received much attention. In Eq.(1), ψ is a space- and time-dependent

complex order parameter, while α and β are real parameters. This equation

has very diverse applications, encompassing physics, chemistry and biology.

In chemistry, e.g., the CGL equation can be used to understand spiral pat-

tern in Belouzov-Zhabotansky (BZ) reaction, since, for large ranges of the

parameter values α and β, CGL equation exhibits spiral dynamics. In this

thesis, we have been interested in numerically studying pattern formation

and related dynamics in the CGL equation.

In the Introductory chapter of the thesis we discuss the basics of pat-

tern formation. There the CGL equation is introduced in significant length.

In addition, we also present various analytical and numerical tools to under-

stand pattern formation.

In the limiting case α = β = 0, Eq. (1) becomes the real Ginzburg-

Landau (RGL) equation where the pattern is characterized by vortex defect,

a special case of spiral. Here we note that, the multi-spiral patterns are frozen

in the CGL equation which is not the case for RGL. From the single defect

solution of the CGL equation, obtained by P.S. Hagan and others, it appears



that, rather generally, for α = β = λ, the defect structure is vortex. So, it

is of obvious interest to make a general study for α = β, in the multi-defect

context. In the second chapter, we present results from comparative stud-

ies of CGL equation for wide range of values of λ. Interestingly, we observe

that the pattern and dynamics, in general, for α = β, are quantitatively

similar to the RGL equation. Here, we note that, even though single spiral

solution generally predicts vortex structure for α = β, the frequencies of the

traveling wave solutions, which is zero for RGL, are different. So, it is not

very straight forward to anticipate that the inter-defect interaction is same

for all values of α = β. Nevertheless, our quantitative results, presented in

this chapter, for the pattern and dynamics, is suggestive of that and supports

some approximate analytical calculations. This observation also verifies the

utility of single-defect solution in multi-defect context. In addition, we pre-

sented results from single-spiral experiments as well, to verify some other

crucial aspects of Hagan’s solution.

In third and the last chapter, we present results on the effects of

disorder in α and β in the otherwise frozen spiral dynamics when α 6= β.

Note that in the context of BZ reaction, α and β are interpreted as the

catalyst concentration and diffusivity, which are never constant in space. A

recent study was motivated by this later fact where effect of disorder in β

(by fixing α = 0) was found to be positive in unlocking the frozen dynamics.

In this chapter, we show that disorder in both α and β can unlock the frozen

spiral dynamics in CGL equation.
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Chapter 1

Introduction

Interesting patterns are observed almost everywhere in nature start-

ing from structure of a cell to that of a galaxy. In the area of pattern

formation [1], an interesting fact is that similar patterns are observed in

a vast variety of systems, giving rise to universalities. There is strong

recent research interest [2–10] in finding explanation of the appearance

and further evolution of various types of patterns and selection of one

pattern over the other. In addition to natural science, it will have ap-

plications in many other fields, e.g., economics, population dynamics,

etc [11]. A primary aim of studies on pattern formations [1] is to iden-

tify the similarities in patterns in apparently different systems and to

develop theories for a quantitative understanding for this important and

interesting universal phenomena.
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1.1 Universality of patterns

Examples of some patterns are shown in Figs.1.1 and 1.2. In Fig.1.1,

it is interestingly observed that striped patterns are present in a wide

variety of systems like sand ripples in desert, black and white stripes

on zebra skin, black stripes on tiger skin, pattern on wood. In these

examples, although the systems are very different in nature and size,

they exhibit such striking similarity in structure. Similarly in Fig.1.2,

it is observed that the beautiful spiral patterns are present in diverse

systems in nature like galaxy, structure of broccoli, spiral arrangement

of florets in sunflower and spiral pattern in sea-snail. Further description

and in some cases mechanisms (if understood), taking help of Wikipedia

and other references [1, 12], responsible to form some of these patterns

are given in brief below.

The reason for the sand ripple formation in desert is the action of

wind on loose sand. For strong enough wind, the sand-grains are lifted

by the air and carried to some distance. Then due to the weight they are

unable to stay suspended for long time, so return to the ground again.

While returning they impart significant energy and momentum to the

ground sand and energize other grains to fly. These later grains have

lower energy because of which they can fly up only a small distance.

This generates a cascade process. There exist many models [13–23] to

explain the emergence of ripples under discussion. One of these is the
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(a) Ripples of sand in desert (b) Zebra skin

(c) Tiger skin (d) Pattern on wood

Figure 1.1: Some striped patterns observed in different objects in nature
are shown. (a) Sand ripples formed due to the action of wind. (b) Striped
patterns on zebra. (c) Pattern on tiger’s skin. (d) The striped pattern ob-
served on wood. Source: bbpaperandink.com, amstranger.blogspot.com,
art.com, ukflooringdirect.co.uk
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(a) Spiral galaxy (b) Romanesco broccoli

(c) Sunflower (d) Sea snail

Figure 1.2: Some beautiful spiral patterns observed in nature are shown.
(a) Spiral galaxy. (b) A small portion of broccoli (Italian cauliflower).
(c) The spiral arrangement of florets in sunflower. (d) The spiral pattern
of cleavage on the shell of a sea snail. Source: nasa.gov, leavingbaby-
lon.wordpress.com, wikipedia.org, elephantjournal.com
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Anderson model [22,23]. Understanding from this model states that the

ripple formation occurs entirely due to the spatial variation of the flux

of these low energy grains.

The patterns on animal skin is due to morphogenesis [11] which essen-

tially is a chemical reaction involving substances called the morphogenes

along with the diffusion through the tissue. Such a system, originally

being quite homogeneous, may later develop a pattern or structure due

to an instability set by some perturbation.

A galaxy consists of stars and other interstellar objects. It has a spiral

structure. There the spiral arms may form due to some disturbance in

a uniformly rotating mass of stars. These spiral arms are the areas of

high-density matters. Due to high gravitational pull in the spiral arm

regions, the stars accumulate in these regions and thus resulting in the

growth of the spirals.

Romanesco broccoli resembles a cauliflower but green in colour. It has a

self-similar structure where the branched meristem (the tissue in plants

which makes the leaves, flowers, etc.) makes the so called logarithmic

spirals. Each bud there is composed of a series of similar smaller buds

all of which are again arranged in a similar logarithmic spirals. This

self-similar structure continues to several smaller levels.

In Fig.1.2, we also show sunflower which consists of numerous florets.

(The florets inside the circular head mature into seeds.) The florets

arrange themselves in interconnecting logarithmic spirals in order to gain
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the closest packing structure.

In Fig.1.3 we show further interesting spiral pattern in colonies of the

slime mold Dictyostelium discoidium amoeba. When deprived of heat or

moisture, members of the colony start cross-talk. This communication

helps them aggregate into multicellular bodies that can better survive

hardship. Essentially depending upon the need some pioneer cells release

pulse of the compound called cyclic adenosine monophosphate (cAMP)

and nearby cells then follow this trail. When a slime mold colony starts

to undergo such chemotaxis, it behaves as an excitable medium and forms

spiral structure involving the moving cells.

Our last example of spiral structure here is from the Belousov-

Zhabotansky reaction [24] shown in Fig.1.4. This is an oscillatory chem-

ical reaction. In this reaction, malonic acid is oxidized by bromate ions

in presence of cerium catalyst. During the process, cerium breaks into

Ce(III) ions which is colorless and Ce(IV) ions which is yellow in colour.

These two different ions arrange themselves in such a way that some white

spirals are seen in yellow background. Basically, the fixed concentrations

of Ce(III) form spiral.

So, it was quite clear that similar patterns can form in very different

systems. Even though mechanisms for similar patterns in different sys-

tems may appear different, it should still be possible to bind them under

same theoretical framework. As already mentioned, an objective in the

area of nonequilibrium statistical mechanics is to gain understanding of
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Figure 1.3: Slime-mold colony of Dictyostelium-Discoidium amoeba. The
bright regions correspond to the accumulation of moving cells, forming
spiral structures. Source: metafysica.nl

Figure 1.4: Spiral patterns in Belousov-Zhabotansky reaction. Some
white spirals are observed in the yellow background which are due to
variation of concentration of ions of some chemical species. Source: sci-
encephoto.com
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such pattern formation under unified framework. Here we also note that

many interesting and beautiful patterns are due to presence of defects [25]

that destroy the regular ordering of the relevant order-parameter. Below

we discuss some important defect structures.

1.2 Topological defects

A defect can be defined as point, line, or surface where the order param-

eter vanishes. Thus we need here to define the order parameter. An order

parameter is the quantity which characterizes the ordering of the system

and useful in the context of phase transition. E.g., in magnetic systems

magnetization is zero above the critical or Curie point when the system

is completely disordered (paramagnetic phase) and is non-zero below the

critical point when the system is partially or completely ordered (ferro-

magnetic phase). So the quantity “magnetization” is the order parame-

ter in ferromagnetic systems. One of the simplest defects is the domain

wall in multi-component mixtures where domains of different species are

separated from each other by the wall. Typically, in this case the order-

parameter is a scalar quantity. In general for d-dimensional system, with

n-component vector order parameter, the defect is (d-n)-dimensional [25].

E.g., in 2-dimensional system with scalar order parameter(i.e, n=1), the

defects are the line boundary (i.e, 1-dimensional), in 2-dimensional sys-

tem with 2-component order parameter, the defects are the vortices which
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are the point defects (i.e, 0-dimensional), in 3-dimensional systems with

2-component order-parameter, the defects are strings or vortex lines (i.e,

1-dimensional), in 3-dimensional system with 3-component order param-

eter, the defects are monopoles (i.e, 1-dimensional). These different types

of defects are shown in Figure 1.5.

Figure 1.5: Schematic diagram of different types of topological defects.
(a) One dimensional domain wall formed in two space dimensions (b)
A zero dimensional vortex defect, in 2-space dimensions (c) An anti-
vortex. (d) A vortex line in three dimensional space. (e) A monopole (of
dimension zero) formed in d=3 space dimensions. Courtesy ’Kinetics of
phase ordering’-A.J.Bray

We are particularly interested in the study of spiral patterns, which

are more general defect structures of vortex variety, in reaction and spa-

tial diffusions. So the discussion on the reaction-diffusion system and

its modeling are discussed in the following sections. Before moving to

that, below (see Fig.1.6) we provide a comparative picture of a vortex

and spiral which will be useful for discussion of our results in subsequent

chapters. Let us consider ordering of a 2-dimensional vector order pa-
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rameter (ψ = ρeiγ) in d = 2. For a vortex defect, the lines for constant

phases γ are radially outward from the core of the defect. On the other

hand, for a spiral, these constant phase lines show bending, thus giving

rise to phase gradient in the radial direction. This bending of the arms in

a spiral destroys scaling property in various morphology characterizing

functions, e.g., the two-point equal time correlation function, as we will

see later.

(a) Vortex (b) Spiral

Figure 1.6: (a) Four constant phase lines in a vortex defect. (b) One
constant phase line in a spiral defect.

1.3 Some theoretical methods to study pat-

tern formation

Pattern formation can be theoretically studied via Monte Carlo [26]

or molecular dynamics [27] simulations of microscopic models, via ap-

proximate analytical or numerical solutions of coarse-grained dynamical
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equations [25], as well as via cellular automata [28]. For the sake of

brevity, below we briefly discuss only the last two methods.

Coarse-grained dynamical equations: Typically the coarse-grained

dynamical equations are obtained by writing down appropriate free en-

ergy functional and using it in Langevin equation. Below we provide

one example, viz., the Swift-Hohenberg equation [1]. This will set the

stage for the general discussion of reaction-diffusion systems. Note that

the complex Ginzburg-Landau equation [1], on which the thesis is based,

also represents reaction-diffusion systems. The Swift-Hohenberg equa-

tion is one of the well known equations to study pattern formation and

is given by

∂ψ(~r, t)

∂t
= µψ(~r, t)− (∇2 + 1)2ψ(~r, t)− ψ(~r, t)3 (1.1)

where ψ(~r, t) is the space and time dependent order parameter of the

system. Depending on value of the control parameter µ this equation

exhibits hexagonal patterns or striped patterns. The striped patterns

observed in Rayleigh-Bennard convection [1] can be studied by solving

this equation. Time-evolution snap-shots obtained from numerical so-

lutions of Swift-Hohenberg equation on a 2-d square lattice by fixing

µ = 0.25 is shown in Fig.1.7. This shows striped pattern.
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t = 10 t = 10000

Figure 1.7: Time-evolution snap-shots obtained from simulation of Swift-
Hohenberg equation on a 2-d square lattice of linear dimension L =
256 with µ = 0.25. Courtesy: ‘Pattern Formation and Dynamics in
Nonequilibrium Systems’-Michael Cross and Henry Greenside.

Cellular automata: Cellular automata is an approach to study pat-

tern formation on computers. In this method, one considers a regular

grid of cells. There the cells can take only a discrete set of values. Start-

ing from an initial state, some fixed rules depending on the state of the

chosen cell and its neighbors are imposed on the cells. This determines

the state of the system in next time step. This is a rather popular method

to study pattern formation.

1.4 Reaction-diffusion system

This thesis deals with pattern formation in complex Ginzburg-Landau

equation which belongs to the reaction-diffusion [1] variety. So, here

we introduce the reaction-diffusion systems in more general context.
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Reaction-diffusion systems are governed by some chemical reaction which

causes transformation of one substance to another and further, the spa-

tial diffusion of the reactants and the products due to space gradient.

By the action of these two mechanisms patterns are formed. Despite the

fact that it has been defined in the context of chemical systems, by no

means reaction-diffusion systems are restricted to that.

Reaction-diffusion systems are mathematically represented as [1, 12]

∂ψ(~r, t)

∂t
= f(λ, ψ) +∇· [D(λ, ψ)∇ψ] (1.2)

where ψ(~r, t) is an order-parameter that may represent concentrations

of one or multiple (providing the dimensionality of the order-parameter)

chemical or biological species in the system, and λ represents some pa-

rameter such as a catalyst concentration. Here f(λ, ψ) represents the

reaction term, and the term involving the gradient operators represents

diffusion with D(λ, ψ) being the diffusivity of the system which may

have dependence upon λ and ψ. As stated, ψ can have many different

components thus representing the concentrations of multiple chemical or

biological species. One can thus also introduce component dependent

diffusivities to address more complex situations. For constant diffusivity,

Eq.(1.2) becomes
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∂ψ(~r, t)

∂t
= f(λ, ψ) +D∇2ψ. (1.3)

For diffusionless system D = 0. So in that case one simply works with

reaction part

∂ψ(~r, t)

∂t
= f(λ, ψ). (1.4)

1.5 Complex Ginzburg-Landau Equation

One of the extremely useful mathematical models which is extensively

used to study dynamics of pattern formation in a variety of reaction-

diffusion systems is the well known complex Ginzburg-Landau(CGL)

equation [1,12]. The CGL equation is also extensively studied in nonlin-

ear dynamics and has the general form

∂ψ(~r, t)

∂t
= ψ(~r, t) + (1 + iα)∇2ψ(~r, t)− (1 + iβ)|ψ(~r, t)|2ψ(~r, t). (1.5)

Here ψ(~r, t) is a 2-component vector or complex order parameter that

depends upon space and time. This may represent concentrations of

chemical substances in the system. Patterns are certainly observed due

to the variation of order-parameter in space. Here α and β are some



1.5 Complex Ginzburg-Landau Equation 15

real parameters variations of which give rise to diversity in patterns. As

already stated, the components of ψ can represent the concentrations of

different chemical species. Then α, β are related to the catalyst concen-

trations and their diffusivities.

For α = 0, β = 0, this equation reduces to the well studied real

Ginzburg-Landau (RGL) equation [25, 29]

∂ψ(~r, t)

∂t
= ψ(~r, t) +∇2ψ(~r, t)− |ψ(~r, t)|2ψ(~r, t). (1.6)

This is often referred to as the dynamical XY model [25, 29] and is ex-

tensively used in the study of ordering in ferromagnet, superconductor,

etc. RGL equation can directly be obtained from the Ginzburg-Landau

free energy functional [25, 29]

F [ψ(~r, t)] =

∫

d3r
[

aψ2(~r, t) + bψ4(~r, t) + c(▽(ψ(~r, t)))2
]

, (1.7)

where the coefficients a, b, cmay have dependence upon temperature and

other physical parameters. The functional derivative of this free energy

δF
δψ

provides a force in generalized sense. The rate at which an out of

equilibrium system relaxes to equilibrium is assumed to be proportional

to this generalized force. This is a valid approximation in slow dynamics

situation and leads to the Langevin equation [25]
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∂ψ

∂t
= −Γ

δF

δψ
(1.8)

where the parameter Γ is related to the relaxation rate. Substitution of

the expression of free energy from Eq.(1.7), into Eq.(1.8), leads to the

RGL Eq.(1.6), for appropriate values of a, b and c.

For α, β → ∞, the CGL Eq.(1.5) reduces to the nonlinear Schrödinger

equation [30] which has solitonic solutions. Note that RGL is a relax-

ational equation and the latter is Hamiltonian. The CGL is a bridging

equation between the above two and does not have a free energy func-

tional in general.

Despite the complex nature, the CGL equation has some approximate

analytical solution [12, 31] in the single spiral situation (note that this

equation exhibits spiral pattern for large ranges of the parameter values

α and β). This we will discuss subsequently when we present results.

1.6 Overview of the Thesis

In this thesis, we aim to study pattern formation in the CGL equation

and compare the results with the RGL equation. Of special interest is

the case α = β and the effect of disorder [32, 33] in α and β in the

dynamics. It is well known that for α 6= β, the CGL equation exhibits

statistically frozen spiral dynamics [8–10]. We want to investigate what
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effect the above mentioned disorder can have on the dynamics. This

latter study is motivated by disorder mediated studies in scalar order-

parameter systems [34–36], e.g., in Ising model.

To achieve the objective, we have solved the CGL equation numeri-

cally applying simple Euler discretization method [37]. In this method,

a partial differential equation

∂P

∂t
= X(P ) (1.9)

is solved as

Pt+∆t = Pt +∆tX(Pt), (1.10)

where the subscripts t and t+∆t represent the value of P at times t and

t+∆t. Here, we have calculated the Laplacian (that appears in the CGL

equation) as

∇2P =

(

∑

i

Pi − nPo

)

/(∆x)2, (1.11)

where the summation is over the nearest neighbors, n is the number of

nearest neighbors and o is the central site. In Eqs.(1.10) and (1.11),
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∆t and ∆x are discretization in time and space. One needs to choose

reasonably small values for these quantities to obtain stable solutions of

the equations.
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Chapter 2

A Comparative Study of

Pattern and Dynamics in

Complex and Real

Ginzburg-Landau Equations

2.1 Introduction

The complex Ginzburg-Landau (CGL) equation [1–3] has the general

form

∂ψ(~r, t)

∂t
= ψ(~r, t) + (1 + iα)∇2ψ(~r, t)− (1 + iβ)|ψ(~r, t)|2ψ(~r, t), (2.1)
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where ψ is a space (~r) and time (t) dependent complex order parameter

[ψ(~r, t) = ρ(~r, t)eiγ(~r,t), ρ being the amplitude and γ the phase] and α, β

are real parameters. With the variation of the parameters α and β, the

CGL equation exhibits a variety of interesting patterns and dynamics.

The equation has two interesting limiting forms. For α = β = 0, one has

∂ψ(~r, t)

∂t
= ψ(~r, t) +∇2ψ(~r, t)− |ψ(~r, t)|2ψ(~r, t), (2.2)

which we will refer to as the real Ginzburg-Landau (RGL) equations.

Often in the literature of phase ordering dynamics, the RGL is referred

to as the dynamical XY model [4, 5]. This latter nomenclature is due

to the fact that ψ is a two-component vector order parameter and the

corresponding Hamiltonian is same as the XY model.

The RGL exhibits relaxational dynamics where the pattern is char-

acterized by vortices and antivortices [4]. Starting from the Ginzburg-

Landau (GL) hamiltonian or free energy [4]

F [ψ(~r, t)] =

∫

d3r
[

−|ψ|2 + (▽ψ)2 + |ψ|4
]

, (2.3)

the RGL can be obtained from the Langevin equation [6]
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∂ψ

∂t
∝ −

δF

δψ
, (2.4)

in the slow dynamics approximation. In space dimension d = 2, these

above mentioned vortices and antivortices are point defects where the

constant phase lines move radially outwards from the defect cores [4].

These defects interact with each other via Coulomb potential [7]. Because

of this, the defects and anti-defects annihilate each other. This orders

the system and lowers the energy. In d = 3, such point defects from

different planes meet and the cores form lines which we will refer to as

vortex lines [4].

In another limit α = β = ∞, the CGL equation becomes

i
∂ψ

∂t
= ∇2ψ − |ψ|2ψ, (2.5)

which is the well known nonlinear Schrödinger (NLS) equation [8]. This

equation provides solitonic solution and is nondissipative.

Both RGL and NLS are analytically better tractable than the general

one, i.e., the CGL equation. Nevertheless, there exists some approximate

analytical solution and analysis for the CGL equation as well [3, 9], in

the single defect limit. The CGL equation can be thought of as a system

of coupled oscillations. In its general form, the equation provides spiral
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pattern in the phase field of the order parameter [1]. This equation is

used for general understanding of spiral pattern observed in a variety of

interesting physical systems [1]. An interesting and important example

is the Belouzov-Zhabotansky (BZ) chemical reaction [10] where constant

concentration of certain chemical species form spiral pattern in space

which oscillates in time. In the context of the BZ reaction, the parameters

β and α can be related to the catalyst concentration and diffusivity.

The dynamics of RGL equation is rather well studied. Note that the

vortex pattern that this equation exhibits is a special case of spiral, as

expected. Essentially, for a vortex the constant phase lines move radially

outward from the core of the defect whereas in case of spirals they wind

or exhibit bending around the centre or core. The characteristic length

scale, ℓ(t), which can be thought of as the average length under a defect,

diverges for RGL with time as [4]

ℓ(t) ∼ t1/z , (2.6)

with z = 2. In d = 2, of course, a logarithmic correction is predicted [4].

However, in computer simulations it is extremely difficult to probe such

weak correction.

The pattern formation in various dynamical systems is characterized
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by the two-point equal time correlation function [4]

C(r = |~r1 − ~r2|, t) = Re < ψ(~r1, t)ψ
∗(~r2, t) >, (2.7)

where ψ∗(~r2, t) is the complex conjugate of the order parameter field at

~r2 at time t. In case of RGL, the analytical form of such correlation

function is due to Bray, Puri and Toyoki (BPT) [4,11,12] which has the

form

C(r, t) =

[

e−r
2/2ℓ2

π

]

[

B

(

3

2
,
1

2

)]2

F

(

1

2
,
1

2
; 2; e−r

2/ℓ2
)

, (2.8)

where B(a, b) is the Beta function and F (e, f ; g; h) is the hypergeometric

function [13]. Eq.(2.8) describes the multi-defect morphology in RGL

rather remarkably. On the other hand, it has been possible to obtain the

semi-analytical form of C(r, t) for the CGL equation only in single spiral

limit [14]. The latter however appears to be a reasonable description of

multi-spiral pattern.

The single spiral oscillatory solution for the CGL equation is written

as [3, 9]

ψ(~r, t) = ρ(r) exp[−iωt + iθ − iφ(r))]. (2.9)
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It is clear that for nonzero value of frequency ω, Eq.(2.9) provides trav-

eling wave. The limiting forms of ρ and φ in Eq.(2.9) are given as

ρ(r) → ar, r → 0; →
√

1− q2, r → ∞ (2.10)

φ′(r) → r, r → 0; → q, r → ∞ (2.11)

where a is a constant and the parameter q can be obtained from the

knowledge of ω, α and β as

q =

√

ω − β

α− β
. (2.12)

In Eq.(2.12), ω, that depends upon α and β, can be obtained from nu-

merical experiments as we will discuss later [14].

For the RGL equation (α = β = 0), ω = 0 and one obtains stationary

solution [1, 3]. There, of course, φ′(r) is also zero. Note that q = φ′(r)

represents the gradient of the total phase in the radial direction which, in

case of a vortex, is by definition absent. However, for a vortex structure

ω need not be zero in general - the only requirement is that q must be

zero. From more general analysis [3], it appears that, for α = β = λ

(from here on usage of λ will indicate that α = β), the defect structure
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is vortex, even though for λ 6= 0, ω 6= 0. In that case, one can naturally

ask, is the dynamics for λ 6= 0 is similar to λ = 0, i.e., the RGL equation,

as well as the corresponding patterns in multi-defect situation? Here we

note that, in general, for α 6= β, it is understood that, in the multi-defect

context, CGL exhibits frozen dynamics [2,14–16]. Essentially, as opposed

to the RGL where the interaction between a vortex and anti-vortex is all

along Coulombic, there is a repulsive barrier in case of spiral and anti-

spiral interaction beyond a certain distance [1]. This does not allow such

pairs to approach each other below that characteristic length scale of the

system. In this work, via numerical solution of the CGL equation on a

square (d = 2) and simple cubic (d = 3) lattice systems, we verify, if that

is also true for λ 6= 0 and if not, how similar the dynamics is, for general

values of λ, compared to the RGL equation. While we have carried

out studies for multiple nonzero values of −2 ≤ λ ≤ 2, for the sake of

brevity, we will present detailed results only for λ = ±1. In addition, we

also verify the single spiral solution for rather general values of α and β.

The rest of the chapter is arranged as follows. We discuss the details

of numerical methods in Section 2.2. Results are presented in Section

2.3. Finally the chapter is concluded with a brief summary of results in

Section 2.4.
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2.2 Methodology

We have solved the CGL equation either on a square lattice or a

simple cubic lattice depending upon whether we are working in d = 2 or

d = 3. We have implemented the standard Euler discretization technique

to solve the equations. Periodic boundary conditions were applied in all

directions.

The characteristic length scale or the average defect size, ℓ(t), was

calculated from two different methods. Note that in ordering dynamics

the correlation function C(r, t) exhibits the scaling behavior [4]

C(r, t) ≡ C̃(r/ℓ(t)), (2.13)

where C̃(x) is a master function independent of time. This behavior of

C(r, t) reflects the self-similar nature of pattern formation, essentially

meaning that the structure at different times are equivalent, differing

only by a change in length scale. We have used this scaling property, as

a method of calculation of ℓ(t). Essentially, in this method we obtained

ℓ(t) from the distance at which C(r, t) decays to 1/2 its maximum value.

In case of vortex pattern it is well known that the scaling property in

Eq.(2.13) holds good [4]. However for spirals there is no such structural

scaling [14] and so we need to introduce another method for the calcu-

lation of ℓ(t). In this second method we have calculated the number of
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defects N(t) at a time t by identifying a defect with the condition [4]

∮

dγ = 2πm, (2.14)

where m is a +ve or -ve integer. Basically, for a point in space, if the

sum of phase changes along the smallest loop around the point under

consideration is an integral multiple of 2π, then there is a defect inside

the loop. This way, sweeping through the whole lattice, N(t) can be

calculated. Once we have the knowledge about N(t), ℓ(t), e.g., in d = 2

can be obtained as

ℓ(t) =
L

√

N(t)
, (2.15)

where L is the linear dimension of the system under study.

Further to characterize the growth law, in addition to using standard

methods, we have calculated the instantaneous exponent [17]

1

zi
=
d ln ℓ(t)

d ln t
. (2.16)

This, of course, is appropriate for the assumption that we are dealing with

power-law growth [see Eq.(2.6)]. The calculation of the instantaneous
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exponent is often useful considering the fact that there may be deviation

of the exponent at early time for various reasons. E.g., for scalar order

parameter with conserved order-parameter dynamics the curvature of

small domains at early time can give rise to correction [17] and in that

case it becomes necessary to take a limit ℓ → ∞ to obtain information

about the value of zi in this asymptotic limit. Here, of course, we are

dealing with a nonconserved order parameter. Such correction may be

present in the nonconserved dynamics also. However, due to much faster

growth in this case (compared to the conserved dynamics), not much

difficulty is usually encountered in realizing the true asymptotic value.

In the Euler discretization method, unless otherwise mentioned, we

have used ∆t = 0.01 and ∆x = 1 throughout the thesis. All the ob-

servables or physical quantities were calculated from averaging over 10

independent initial configurations for L = 256 in d = 2 and L = 128 in

d = 3.

2.3 Results

This section is divided into two subsections. In the first one we present

results in d = 2 and the results for d = 3 are presented in the second

subsection.
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2.3.1 d=2

In Fig.2.1 we present the evolution snapshot for the 2-d CGL equation

with L = 256 and periodic boundary conditions in both x− and y− di-

rections, starting from a specially prepared vortex initial configurations,

core of which is located at the centre of the lattice system. The different

colors in the snapshots correspond to phase values γ = 0 and π. With

passing time, spiral nature of the defect becomes prominent and area

under the spiral also increases. Here note that, due to discrete nature of

the lattice and small size of the system, in order to make the look of the

spiral arms continuous, we have used an width of 0.4 around the mean

value of phase. The values of α and β, in this case, was fixed to 1.0 and

0 respectively. From the snapshots at different times, it is also clear that

these spirals are traveling waves.

Even though we have started with a single defect at the centre of the

system, it appears that there are other defects in the boundary region of

the system. This is due to the application of periodic boundary condi-

tions that allow images. These peripheral spirals collide with the central

one and form the so called “shock defect” [2].

Next to test the single spiral solution [see Eqs. (2.9),(2.10),(2.11),(2.12)],

in Fig.2.2 we present a plot of ρ(x), corresponding to the last snapshot in

Fig.2.1, as a function of x, by fixing y = L/2, i.e., for the horizontal line

passing through the centre of the central defect. It appears that starting

from small value at the centres of the defects ρ saturates or tries to settle
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Figure 2.1: Snapshots during the evolution of spiral(s) obtained via nu-
merical solutions of the complex Ginzburg-Landau equations on a 2-d
square lattice, starting from an artificially created vortex initial configu-
ration with the core located at the centre of the lattice system. Periodic
boundary conditions were used in both x- and y-directions. In numerical
solutions we have set the sizes ∆x and ∆t to 1 and 0.01. The different col-
ors correspond to the phase values γ = 0 and π with some width around
these mean values so that the lines look continuous. We have fixed the
values of α and β to 1 and 0, respectively. The linear dimension of the
system is L = 256. Pictures from four different times are presented.
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to a constant asymptotic value far away from the defect core. But in the

regions where two defects collide, it shows a (smooth) jump [2]. We will

examine the asymptotic value later. Before that, in Fig.2.3, we take

0 64 128
x

0

0.5

1

ρ(
x)

Figure 2.2: Plot of the order-parameter amplitude ρ as a function of the
x coordinate of Fig.2.1, by fixing y = L/2. This plot corresponds to the
latest time picture of Fig.2.1.

a closer look at ρ in the vicinity of the core. In this picture we have

shifted the x−coordinate so that the core appears at x = 0. The dashed

line in the figure is a straight line. It is clearly seen that the behavior of

ρ, for x→ 0, is nicely consistent with this dashed line. This confirms one
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Figure 2.3: Close up of Fig.2.2, focusing in the core the region of the
central spiral. The dashed line represents expected linear behavior of ρ
in this region.
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of the predictions of the single spiral approximate analytical solution, of

course.

In Fig.2.4, we show the variation of overall phase γ as a function of t

for a point inside the central spiral of Fig.2.1 but reasonably away from

0 100 200 300 400 500

t
0

1

2

3

4

5

6

7

γ

Figure 2.4: Plot of phase γ vs t, for a site far away from the core but
within the central spiral of Fig.2.1.

the core. It is clearly seen that this is periodic and from the time period

of this oscillation, we calculate the frequency ω. Further, using ω in

Eq.(2.12), we calculate the value of q. Now we are in a position to check
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the prediction of single spiral solution for ρ in the limit (r or) x→ ∞.

In Fig.2.5(a), we replot Fig.2.2 but in this case the value of the ordinate

for ρ =
√

1− q2 is marked by the dashed line. It is quite clear that far

away from the core, ρ is approaching towards
√

1− q2 thus verifying

another prediction of the single spiral solution. In Fig.2.5(b) we show a

similar figure for α = 0, β = 1 where also such consistency is seen. This

latter case, i.e., α = 0, β = 1 was varified in another recent study [18].

In Fig.2.6, we replot the snapshots of Fig.2.1 but here we have shaded

the region where ρ >
√

1− q2. It appears that in the region where

spiral nature of the defects is prominent ρ <
√

1− q2. From the two

latest time snapshots, it is evident that in the “shock region”, where

two defects meet, ρ assumes values greater than
√

1− q2. Recently it

has been pointed out that such behavior of ρ may be responsible for the

appearance of repulsive barrier [18]. Finally, the single spiral solution

appears to be good even for multi-spiral morphology (note that due to

the periodic boundary condition, effectively we obtained a multi-defect

structure despite starting from a single defect initial configuration), but

this solution does not provide information in the shock region. It was

recently observed that if the amplitude in the shock region (in special

case for α = 0 and varying only β) is artificially suppressed to
√

1− q2,

the spirals are able to interact again and in that case the pattern and

growth of the system is very similar to the RGL [18].

Having discussed about the pattern and dynamics starting from single
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Figure 2.5: (a) Re-plot of Fig.2.2 to investigate the value of ρ far away
from the spiral core. The horizontal dashed line here has value ρ =
√

1− q2, q = 0.2223 for α = 1, β = 0. (b) Same as (a) but for
α = 0, β = 1 (q = 0.306).
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defect initial configuration, now we move on to multi-spiral case. Note

that multi-defect morphology can be obtained by starting from initial

configurations random in both amplitude and phase.

Figure 2.6: Same as Fig.2.1 but here the region where ρ is greater than
√

1− q2 is shaded.
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In Fig.2.7 we present the snapshots for the evolution starting from ran-

dom initial configurations. Again we have set α = 1, β = 0 and L = 256.

The color coding here has similar meaning as earlier. The black dots

in this picture represent the defect cores and were determined by the

method described in the previous section. It is clearly seen that starting

from very high defect density the system orders in time. However, the

snapshots at t = 1000 and 10000 gives the impression of a frozen dynam-

ics [2, 14–16] since not much change has happened over this long period

of time.

To compare the pattern of Fig.2.7 with the RGL, in Fig.2.8 we present

similar snapshots, again starting from random initial configuration, for

λ = 0. It appears that there is no regular bending of the constant phase

lines as in the spiral case. Here emerging from the defect cores (where

two different colors meet), these lines are radially outward (with respect

to the coordinate system having origin at the cores of the defects). The

random bending, observed far away from cores, is due to the inter defect

interaction.

Coming to the primary objective of this chapter, i.e., a general study

of pattern dynamics in the CGL equation for α = β = λ, in Fig.2.9 we

show evolution snapshots for λ = −1. The nature of the pattern here

and the RGL equation (see Fig.2.8) is very similar. In addition, here also

it is seen that the vortices and anti-vortices are continuously annihilating

each other and the system is evolving towards a perfectly ordered state
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Figure 2.7: Snapshots from four different times during the evolution of
the CGL equation with α = 1, β = 0;L = 256, starting from random
initial configuration, using periodic boundary conditions. The color cod-
ing is same as Fig.2.1. The values of ∆x and ∆t were set to 1 and 0.01,
respectively. The black dots mark the location of the defect cores.
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t=10 t=100

t=1000 t=10000

Figure 2.8: Same as Fig.2.7 but for α = β = 0
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Figure 2.9: Same as Fig.2.7 but for α = β = −1
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Figure 2.10: Same as Fig.2.7 but for α = β = 1
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without any defect. Note that an empty box (also in Figs.2.8 and 2.10)

corresponds to a defect-free system. Analogous snapshots are shown in

Fig.2.10, for λ = 1. Here also the basic pattern and dynamics are same

as the RGL equation. Here again, we recall that the equations for λ 6= 0

is different from the RGL equation. The single spiral solution for general

values of λ, of course, predicts that q = 0. It is interesting, nevertheless,

to note that the structure in multi-defect context also remains similar

despite the rotational motion for nonzero value of λ giving nonzero fre-

quency ω.

To compare the morphology at a qualitative level, in Fig.2.11 we have

shown the correlation functions from λ = 0, 1 and −1, from late time

configurations. It is seen that results from all different values of λ are in

nice agreement with each other. In this figure, we have also shown the

BPT function which nicely passes through the numerical data points.

To quantify the dynamics, in Fig.2.12 we plot ℓ(t) as a function of time,

on a double linear scale. Data for α = β = 0,−1, 1 and α = 1, β = 0 are

included. All results in this figure correspond to the calculation from the

decay of the correlation functions.

As already pointed out, for α 6= β (viz., α = 1, β = 0), ℓ(t), after

a certain time, does not grow, implying that the system is locked in a

frozen state. On the other hand, for all values of α = β, ℓ(t) continuously

increases. It appears that for nonzero value of λ, the growth is faster than

the RGL. This enhanced growth may be due to the higher value of ampli-
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Figure 2.11: Plots of correlation functions, C(r, t), vs the scaled distance
r/ℓ(t), from t=250 for α = β = 0,−1, 1. The length scale ℓ(t) was ob-
tained from the distance where C(r, t) decays to 0.5 its maximum value.
The continuous line represents the Bray-Puri-Toyoki form of C(r, t).
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Figure 2.12: Plots of ℓ(t) vs t for four different cases, viz., α = β =
−1, 0, 1 and α = 1, β = 0. A linear scale is used. In all the cases the data
were obtained from the decay of the two-point equal time correlation
functions.
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tude or exponent which we will check later. Another observation is that

the dynamics for λ = ±1 is very similar [3]. This is, of course, expected

due to the following fact.

For α = β = λ, using the transformation ψ → ψeiλt, the CGL equation

can be written as [3]

∂ψ

∂t
= (1 + iλ)(ψ +∇2ψ − |ψ|2ψ). (2.17)

Further, writing ψ = ψ1 + iψ2, Eq.(2.17) can be written for the time

evolutions of ψ1 and ψ2 as

∂ψ1

∂t
= ψ1 +∇2ψ1 − |ψ|2ψ1 − λ(ψ2 +∇2ψ2 − |ψ|2ψ2) (2.18)

and

∂ψ2

∂t
= ψ2 +∇2ψ2 − |ψ|2ψ2 + λ(ψ1 +∇2ψ1 − |ψ|2ψ1). (2.19)

It is now quite clear that for the transformation λ → −λ, merely ψ1

changes to ψ2 and vice versa. Thus we expect the pattern and dynamics

to be same under change of sign for λ.

To learn about the growth exponent z, in Fig.2.13 we show the results

for ℓ(t) for λ = 0, 1,−1 on a double-log scale. All the data sets are
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reasonably consistent with a power-law behavior. The dashed line there

corresponds to t1/2 growth which however is not perfectly parallel to the

numerical data, particularly for λ = 0, i.e., the RGL equation. This

discrepancy can be due to the presence of some initial length or time

dependent correction to the exponent or the logarithmic correction in

d = 2 that is mentioned in the Introductory section. We will check this

subsequently.

Before moving into that, we take a relook at the length scale data

for α 6= β, in Fig.2.12. It is observed that there is a strange maximum

at small t, for this case. We have previously mentioned that there is no

scaling in the structure in case of spiral patterns. This maximum is due

to that, as explained below.

In Fig.2.14, we take a look at the correlation functions for this case,

viz., α = 1, β = 0, as a function of r. Data from three different times

are shown. It is seen that data for t = 50 decay slower than that for

t = 10, as expected for normal phase ordering dynamics, say with vortex

pattern. However, interestingly, data for t = 1000 falls faster than that

for t = 50 and develops a minimum below zero [14]. This, of course,

explains the maximum in Fig.2.12.

In view of the above, we also calculated ℓ(t) from Eq.(2.15)(see

Fig.2.15). This calculation does not provide much additional informa-

tion, for α = β will be however useful in the next chapter where we

present quantitative results for α 6= β.
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Figure 2.13: Same as Fig.2.12 but on a double double-log scale and data
for α = 1, β = 0 are excluded.
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Figure 2.14: Plots of C(r, t) vs r for α = 1, β = 0. Data from three
different times are shown.
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ℓ(t)

t

Figure 2.15: Plots of ℓ(t) vs t for α = β = −1, 0, 1. As opposed to
Fig.2.13, here ℓ(t) was obtained directly by calculating number of defects
in the system at different instants.

Because of the mismatch of the numerical data with t1/2 behavior

in Figs.2.13 and 2.15, particularly for λ = 0, we present the instanta-

neous exponent 1/zi, calculated via Eq.(2.16), in Fig.2.16, as a function

of 1/ℓ(t). It is seen that in all the cases the numerical data have ten-

dency to converge towards z = 2, in the limit ℓ → ∞. Being even on

the conservative side, it can at least be concluded from this figure that

the exponent z is reasonably close to 2 in all the cases. For further un-

derstanding of dependence of z on λ, in Fig.2.17 we show ℓ(t) vs t for more
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Figure 2.16: Plots of instantaneous growth exponent as a function of
1/ℓ(t), for the data in Fig.2.13. The solid straight lines are guides to the
eyes.

values of λ, on a double-log scale. It appears that with the increase of

λ, the data become more parallel to t1/2. This is an interesting fact and

needs appropriate theoretical attention to understand. Here we note that

the deviation of data, for λ = 0, from t1/2 behavior could well be due

to the logarithmic correction mentioned earlier. But to understand why

this correction disappears for higher values of λ, one needs further studies.
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Figure 2.17: Plots of ℓ(t) vs t for multiple values of λ as indicated. A
double log scale is used. The t1/2 behavior is also indicated by the dashed
line.
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2.3.2 d=3

In this subsection, we present results from the solutions of the CGL

equations in d = 3, for simple cubic lattice. In Fig.2.18 we show the

snapshots for α = β = 0 (a), 1 (b) and −1 (c). All the snapshots are

from the same time. For the sake of clarity, we did not show the constant

phase lines here. What is seen in these pictures are the vortex lines. As

already mentioned, point defects at different planes meet to form these

lines. Recall that the dimensionality of a defect [4] in d dimensions for

n-component order parameter is d− n. Considering that we are working

with 2-component order parameter in 3 space dimensions, we indeed ex-

pect such line defects.

Figure 2.18: Snapshots from the evolutions of CGL equation in d = 3.
Pictures are shown from one particular time for the combinations α =
β = 0, 1,−1. For the sake of clarity, only the defect cores are shown.
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An important observation from Fig.2.18 is the following. While the

defect density in (b) and (c) look similar, in (a) it is relatively higher.

This is consistent with our observation in d = 2 that for λ 6= 0, the

dynamics is faster than λ = 0, i.e., the RGL equation. Also, similar

defect density in (b) and (c) reconfirm that dynamics for α = β = ±λ

are equivalent.

In Fig.2.19, we present the plots for ℓ(t) vs t for λ = 0,−1 and 1.

Again, it is seen that data for λ 6= 0 are more consistent with the t1/2

behavior. This, of course, raises question if our earlier conclusion about

the logarithmic correction in d = 2 is correct!

2.4 Conclusion

In this chapter, we have presented results from the Euler discretized

solutions of the CGL equation, in both d=2 and 3, using square and

simple cubic lattices respectively.

In d=2, the single spiral solution was verified for different combina-

tions of α and β. It appears that even for multi-spiral morphology, such

solutions describe the system rather well, except for the shock regions

where two spirals meet.



2.4 Conclusion 58

ℓ(t)

t

Figure 2.19: Plots of ℓ(t) vs t for 3-d CGL equations with α = β =
−1, 0, 1. A double-log scale is used. All data were obtained from the
number of defects.
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In both d=2 and 3, we have characterized the multi-defect pattern and

dynamics of CGL equation for α = β = λ. The λ = 0 case corresponds

to the RGL equation. It is shown that, even for nonzero values of λ,

the pattern is very similar to the RGL where vortex defects characterize

the pattern formation. Further, for α = β, in general, the characteristic

length ℓ increases in a power-law fashion, with exponent very close to

z = 2. We however, observed that, for |λ| > 0, the effective exponent is

higher than the RGL.
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Chapter 3

Effect of Disorder in the

Multi-Spiral Dynamics of

Complex Ginzburg-Landau

Equation

3.1 Introduction

In phase ordering dynamics, there has been much recent interest about

the effect of disorder [1–8]. Significant understanding has been obtained

in simple situations like random field and random bond Ising models.

There it has been observed that introduction of disorder essentially slows

down the rate of growth or ordering of the system. This happens due to
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creation of local energy barriers.

Such studies, however, are confined to systems with scaler order param-

eter, in the theoretical literature. Only recently [9,10] the case of vector

order parameter was considered in the context of complex Ginzburg-

Landau (CGL) equation [11–13]

∂ψ

∂t
= ψ + (1 + iα)∇2ψ − (1 + iβ)|ψ|2ψ, (3.1)

where ψ is a space (~r) and time (t) dependent complex (ρeiγ) order

parameter and α, β are real parameters. In this study [9, 10], α was set

to zero and disorder was introduced in β. Note that, for α 6= β and for

uniform values of these parameters throughout the whole system, CGL

equation provide frozen spiral dynamics [12,14–16]. In this study [9,10],

with disorder in β, it was, however, observed that this frozen dynamics

is unlocked. Noting that in the context of Belouzov-Zhabotanski (BZ)

reaction [17], β may correspond to the concentration of catalyst which is

not really constant over space, the introduction of disorder is certainly

physically meaningful. Further meaning can be added to it by noting the

fact that in the BZ reaction one observes microscopically big spirals as

opposed to the frozen states with very small spirals for constant values

of α and β in the CGL equation. With the same reasoning, we feel, it is

also important to investigate the effects of disorder in α. This chapter is
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devoted to that.

In this context, it is worth mentioning that there have been significant

recent activities [9, 10, 18–22] in understanding or learning mechanisms

to unlock statistical freezing in the CGL or similar equations. Here note

that CGL equation can also be written as [13]

∂ψ

∂t
= (1 + iµ)ψ + (1 + iα)∇2ψ − (1 + iβ)|ψ|2ψ. (3.2)

However, under a rotating frame transformation [13] ψ → ψeiµt, Eq.(3.2)

is equivalent to Eq.(3.1). In another recent study [18, 19], the freezing

was unlocked by introducing space gradient in the value of the real pa-

rameter µ. This space variation in µ allowed formation of spirals with

different frequencies. It was observed that spirals with higher frequencies

grew at the cost of the ones with smaller frequencies, providing an all

time coarsening dynamics. In the study with quenched randomness in

β, however, it was shown that the mechanism of higher frequency spirals

killing the smaller frequency ones is not true.

In another study [20], it was demonstrated that if a reaction-diffusion

system, with two components and exhibiting frozen dynamics, is coupled

to a slowly varying third component, the freezing can be unlocked.

We are interested in the unlocking of frozen dynamics in the CGL

equation by invoking disorder in α and β. As already mentioned, this
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is our objective in this chapter rest of which is organized as follows.

Having described the method in details in the previous chapter, we will

straightaway present the results in Section 3.2. Note here that except for

the last figure we will work only in d = 2. Finally, the chapter will be

closed with a brief summary of results in Section 3.3.

3.2 Results

In Fig.3.1, we show the evolution snapshots from the solutions of

the CGL equation on a 2-d square lattice of linear dimension L = 256,

with Euler discretization mesh sizes ∆x = 1 and ∆t = 0.01. Throughout

this chapter, we will use these values of ∆x and ∆t. For this picture,

we have used α = 0, β = 1. Here, in addition to showing the constant

phase lines (with two different values of γ), we have also shaded the

region [13, 23] where the amplitude ρ is larger than
√

1− q2. It appears

that in prominent spiral regions, ρ is less than
√

1− q2 and shades appear

mainly in the shock regions [12,13], i.e., places where two spirals collide.

Similar snapshots are presented in Fig.3.2. This time we have set the

parameters to α = 1 and β = 0. Here also it is quite clear that in the

shock regions ρ assumes value higher than
√

1− q2. In both the figures,

viz., Figs.3.1 and 3.2, the values of α and β are uniform throught the

system.

From both Fig.3.1 and Fig.3.2, it is quite evident that the dynamics
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Figure 3.1: Snapshots from four different times during the evolution of
the CGL equation with α = 0, β = 1;L = 256, starting from random
initial configuration using periodic boundary conditions. The color cod-
ing is same as Fig.2.1. The values of ∆x and ∆t were set to 1 and 0.01,
respectively.
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Figure 3.2: Same as Fig.3.1 but with the parameters α = 1, β = 0.
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gets frozen at later time, as already pointed out in the previous chapter.

This is quantitatively demonstrated in Fig.3.3. In this figure we have

plotted the average defect size ℓ(t) as a function of t. In addition to the

ℓ(t)

t

Figure 3.3: Plots of ℓ(t) vs t for three different combinations of α and β,
as indicated.

cases α = 0, β = 1 and α = 1, β = 0, we have also included data from

α = β = 0, i.e., the real Ginzburg-Landau (RGL) equation [24], for

the sake of comparison. In all the cases, ℓ(t) was calculated directly by

counting the number of defects N(t) at time t. It is clearly seen that for

α 6= β cases, beyond a certain time (∼ 102), ℓ(t) ceases to grow.
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Next we introduce disorder in α and β as

α(x, y) ∈ [α0 ± δα] (3.3)

and

β(x, y) ∈ [β0 ± δβ], (3.4)

where δα and δβ are uniformly distributed random numbers around the

mean values α0 and β0, respectively. It will also be interesting to use

random numbers from other distributions, e.g., Gaussian. But we do not

expect any qualitative difference in results by doing so. In the rest of the

chapter, we will refer to the values α0, β0, δα and δβ.

In Fig.3.4, we show the first snapshots with disorder. Here the pa-

rameter values are α0 = 0, δα = 0, β0 = 1 and δβ = 0.25. Again, as

earlier, two constant phase values are used. In this figure also shaded

region corresponds to ρ >
√

1− q2 with q being the value corresponding

to α0 and β0. It is clearly seen that the system is not trapped, rather it is

continuously coarsening. Here also the shades appear along the shocks.

Considering that q was calculated from the central values of α and β, this

already says that spirals with only fixed values of q and ω exist, related

to α0 and β0. The remark on q can be justified from the snapshots from

where it is obvious that the gradient of phase along the radial directions
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Figure 3.4: Same as Fig.3.1 but with introduction of spatial disorder in
the value of β with the strength of disorder δβ = 0.25.
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for all spirals is same, at most with minor fluctuations.

In Fig.3.5 we present snapshots from four different times for the

parameter values α0 = 0, δα = 0.25, β0 = 1 and δβ = 0. The trend

is qualitatively similar to the case in Fig.3.4. Essentially, there is no

dynamical freezing in the system. In this case, the picture is even more

clear that there exist defects corresponding to the central values of α and

β, i.e., α0 and β0.

The last two figures nicely demonstrated that disorder in both α and

β are capable of unlocking the frozen dynamics in the CGL equation.

However, in both these cases we have used α0 = 0 and β0 = 1. Next we

examine a case with nonzero value of α0.

In Fig.3.6 we present evolution snapshots for αo = 1, δα = 0.25, β0 = 0

and δβ = 0.0. While there is some qualitative similarity of these results

with the one in last two figures, in this case, the process of unlocking, if

at all, is rather slow. Only at t = 10000, one big size spiral is emerging.

In Fig.3.7 we have shown the snapshots from same values of α0 and

β0 as in Fig.3.6, but this time we have introduced disorder in β, i.e.,

the snapshots correspond to α0 = 1, δα = 0, β0 = 0, δβ = 0.25. In

this case, again, the effect is rather robust showing very fast growth of

spirals. Another important observation here is that, even though the

shades are mainly confined to the shock regions, they appear within the

spirals also. But the appearance of shades inside the spirals has some

random character. Perhaps because of this random character, the value
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Figure 3.5: Same as Fig.3.1 but with introduction of spatial disorder in
the value of α with the strength of disorder 0.25.
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Figure 3.6: Same as Fig.3.2 but with introduction of spatial disorder in
the value of α with the strength of disorder 0.25.
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Figure 3.7: Same as Fig.3.2 but with introduction of spatial disorder in
the value of β with the strength of disorder 0.25.
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of q, i.e., the phase gradient along the radial direction does not exhibit

any systematic change. Having drawn only qualitative conclusions, about

the effect of disorder, from the snapshots, next we present quantitative

results.

In Fig.3.8 we plot ℓ(t) as a function of t. Three sets of parameter

values are included, as mentioned on the figure. As already discussed,

for α0 = 0, β0 = 1, δα = 0 and δβ = 0, we have frozen dynamics. But for

disorder in α or β, both are showing nice increase in the average size of

the spirals over the whole time range studied, confirming that disorder in

both α and β, are independently capable of getting rid of the otherwise

frozen dynamics.

In Fig.3.9 we show similar plots for the cases α0 = 1, β0 = 0 and

related disorders. Here it is seen that disorder in β is helping the system

grow but disorder in α within this time window have not yet unlocked

the freezing. In the latter case, even though the last snapshot in Fig.3.6

showed the appearance of a large spiral, the total number of spirals in the

system did not decrease yet. From direct observation of the dynamics

with disorder what we have learnt is the following. At intermediate time

some big spirals push the smaller ones to one region. During this period

practically no annihilation occurs. Only at much late time (this depends

upon the parameters), when these small spirals are significantly nearby,

very rapid annihilation occurs, providing a fast growth of length when

calculated from the number of spirals N(t). Note that forcing these small
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Figure 3.8: Plots of ℓ(t) vs t for three cases, viz., α0 = 0, β0 = 1, δα =
0, δβ = 0;α0 = 0, β0 = 1, δα = 0.25, δβ = 0 and α0 = 0, β0 = 1, δα =
0.0, δβ = 0.25. A linear scale is used. In all the cases the data were
obtained from the number of defects.



3.2 Results 77

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

α0=1, β0=0, δα=0, δβ=0
α0=1, β0=0, δα=0.25, δβ=0
α0=1, β0=0, δα=0, δβ=0.25

ℓ(t)

t
Figure 3.9: Similar to Fig.3.8, but with α0 = 1, β0 = 0 and various
combinations of disorder.
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spirals to collide with each other may require significant time depending

upon the height of the repulsive barrier which, in turn, depends upon

the values of α and β. A knowledge about this interaction barrier, as a

function of α and β, to the best of our knowledge, is still lacking in the

literature. Once this barrier is overcome, the spirals can spontaneously

approach and annihilate each other to make the growth possible. Fur-

ther, what makes the big spirals to push the smaller ones due to the

introduction of disorder is a nontrivial task to understand and certainly

requires significant theoretical attention. Here we mention that these

results are extremely counter intuitive consider the effects of disorder in

Ising like systems reported in the literature [1–7].

Finally, in Fig.3.10 we present results from the solutions of the CGL

equation in d = 3 for a simple cubic lattice. For the sake of brevity, we

show only the plots of ℓ(t) vs t. In this figure we have included two sets

of parameter values, each with α0 = 1 and β0 = 0. For the case without

any disorder, i.e., δα = 0 and δβ = 0, here also we observed freezing.

However, it is seen that, for δα = 0.25, δβ = 0, the system continuously

grows. For the computational demand to deal with 3 − d systems, we

have confined our studies to these two sets of parameters only.
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Figure 3.10: Plots of ℓ(t) vs t obtained from 3-d simulations of the CGL
equations for α0 = 1, β0 = 0, δα = 0, δβ = 0 and α0 = 1, β0 = 0, δα =
0.25, δβ = 0.0. A linear scale is used. In all the cases the data were
obtained from the number of defects.
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3.3 Conclusion

In this chapter we have presented results for the pattern and dynamics

in the complex Ginzburg-Landau equation [11–13] for α 6= β. For all

combinations it is observed that the patterns are characterized by spiral

defects.

For constant values of α and β throughout the system, the dynamics

gets locked, in a statistical sense, beyond a certain time and length that

depend upon the values of α and β. Interestingly, randomness in the

values of α and β is capable of unlocking the dynamics.

The reason behind such unlocking in the disordered cases we do

not clearly understand and the phenomena is certainly counter-intuitive

considering our lesson from other phase ordering systems, e.g., in random

bond and random field Ising models [1–7], the effects of disorder is to slow

down the growth.

A reason for the opposite effect in the present problem can possibly

be understood in the following way. Note that the amplitude of the

order parameter deviates from the single spiral solution, discussed in the

previous chapter, in shock region. This might be a possible reason for

the spiral-antispiral repulsive barrier. In fact, in a recent study [10],

it was shown that if the amplitude in the shock region is artificially

suppressed to the asymptotic (r → ∞) value predicted by this single

spiral solution, the spirals are again able to favorably interact with each
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other to come closer. Perhaps, the disorder also somehow modulates

the value of amplitude to overcome this barrier. Nevertheless, we feel

that more sophisticated studies are needed to understand this interesting

phenomena.
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Appendix

1. At the end of the paragraph containing Eq.(1.5), we add “The first and

third terms in the right hand side of Eq.(1.5) form f(λ, ψ), the reaction term

in a reaction-diffusion situation and the second term corresponds to diffusion.

For α = β = 0, they come directly from the coarse-graining of the Ising model.

In case of coupled oscillator equations, α and β simply are coupling constants.

An educative phase diagram in the plane of these parameters are presented in

Physica A 224, 348 (1996). The diagram is rather complex. For α = 0, we

discuss it with respect to the variation in β. Within the range 0 ≤ β ≤ 1.397,

the spirals, the pattern the CGL equation exhibits, are linearly stable. For

1.397 < β ≤ 1.82, the spirals are linearly unstable to fluctuations and beyond

that the spirals are globally unstable—essentially, one enters a chaotic regime.

In this thesis we will deal with parameter values that provide stable pattern.”

2. We add the following snapshot to Fig.3.6, in addition to the ones pre-

sented.

3. The y-axes in the Figs.2.15, 2.17, 3.3, 3.8, 3.9 should be scaled by a

factor 1.1.
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