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A Simple Approach for the Computation of Multiple
Periodicities in Biological Time Series
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1Kasturba Medical College, Mangalore, India; 2Chronobiology laboratory,
Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced
Scientific Research, Jakkur, Bangalore, India

Abstract

We have described a simple approach for the analysis and isolation of multiple 
periodicities from a biological time series. For the estimation of the periodicities, we
used simulated data and data from ongoing experiments in our laboratory. Two time
series were simulated, one which consisted of only white noise and the other con-
sisted white noise along with periodicities of 6, 11, 17 and 23h, to demonstrate that
our method can successfully isolate multiple patterns in a time series. Our method of
analysis is objective, simple, flexible and adaptive since it distinctly delineates the
individual contribution from an overlap of multiple periodicities. The key features of
our method are: (i) identification of a reliable phase reference point, (ii) scanning the
time series using a moving window in increments, (iii) use of Siegel’s modification
of Fisher’s method to detect significant periodicit(y)ies in the time series. The use of
window sizes of increasing length to examine the time series elegantly reduces noise
while identifying periodicities that are otherwise not apparent. Finally, the peri-
odogram can be smoothed in order to normalize the contribution by attendant fre-
quency components within the waveform. A minimum critical value for relative
contribution of various frequencies was calculated to delineate the periodicities that
contributed significantly to the time series. We executed this method of time series
analysis using MS Excel and C.
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Introduction

Oscillatory phenomenon in various time domains is a commonly and conspicuously
observed phenomenon in biological systems. They are known to occur at several
levels of organizational hierarchy; from molecular to populational (Takahashi & Zatz,
1982; Vanden Driessche, 1989; Takahashi, 1991; Pedersen & Johnsson, 1994; Rosato
et al., 1997). Body temperature, hormone levels, immune cells and their response (De
Boer et al., 1993), sleep-wake cycle, biochemical cycle (Goldbeter & Decroly, 1983),
cell division cycle (Smaaland, 1996), are a few well-studied examples (Robertson &
Takahashi, 1983; Ishida et al., 1999). Identification and precise quantification of such
fluctuations in biological systems constitute an important step in order to relate to
and understand its regulatory mechanisms. Amplitude and period are two important
parameters that characterize such oscillations which are represented as a time series.
A time series can be continuous (observations made continuously over time) or 
discrete (observations made only at certain times); stationary (data that fluctuate
around a constant value) or non-stationary (a series having parameters of the cycle
i.e., length, amplitude or phase, change over time); deterministic (data can be 
predicted exactly) or stochastic (data are only partly determined by past values and
successive values have to be described with a probability distribution).

While estimating the parameters of biological oscillations, several authors have
used empirical procedures that include eye fitting, approximations to sine curves,
spectral analysis (Cambras & Diez-Noguera, 1988), Fast Fourier transform (FFT)
(Cambras & Diez-Noguera, 1988; Araujo & Marques 1996; Wang & Brown, 1996),
maximum entropy spectral analysis (Dowse & Ringo 1989; Mormont et al., 1996),
autocorrelation, Enrights (chi square) periodogram method (Siegel, 1980; Araujo &
Marques, 1996), Sokolove-Bushell’s Q statistic (Refinetti, 1991), linear regression of
onsets, inter onset averaging, acrophase counting and semi parametric periodic spline
function (Araujo & Marques, 1996). Mathematical models of a given biological
rhythm (Edmunds Jr, 1983; Diez-Noguera, 1994; Pedersen & Johnsson, 1994;
Scheper et al., 1999), are close approximations of the temporal process. Geometric
methods such as phase plane plot aid in visual representation of the dynamics (Li &
Goldbeter, 1989; Goldbeter & Moran, 1988). These methods are based on several
assumptions and prerequisites such as regular sampling, prior knowledge of range of
period, detrending and so forth, and between them, the results are often inconsistent.
The crux of using an unambiguous method for analyzing biological time series 
data lies in the fact that the period derived by a method may considerably alter our
perception and inference of the underlying biological rhythm and therefore, the choice
of an appropriate technique is crucial. Several authors have tried to compare the avail-
able methods of time series analysis (Refinetti, 1993; Klemfuss & Clopton, 1993;
Mormont et al., 1996). Some of their results indicate the necessity to collate several
methods for computation of the period. However, the choice of the method of analy-
sis depends considerably on the nature of data such as its length, multiplicity of fre-
quency components, noise, effects of smoothening apart from experimental and
sampling error.

Often, sampling a biological rhythm yields data sets with no apparent temporal
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pattern. In such circumstances, the analysis needed to extract a pattern in the 
oscillation can be simplified if there is a simple and unambiguous mathematical
approach to this problem. In this paper, we describe our effort towards developing 
a simple method that does not warrent any preconditions such as prior knowledge of
period, scale of measurement, regularity of sampling, detrending and continuity of
data, imperative.

Mathematical Approach

Our aim was to derive a simple mathematical procedure to isolate and quantify the
significant periodicit(y)ies in a biological time series. Consider a variable y(i) = y1,
y2, y3 . . . yn, that is sampled at time, t(i) = t1, t2, t3 . . . tn. A time series plot can be
obtained by joining the points, (t1,y1), (t2,y2), (t3,y3) . . . (tn,yn) . . . .

The waveform is characterized by determining the time of occurrence of the
extremes in amplitude (the ‘local’ maxima and minima). Let yk, yl and ym define three
successive amplitudes of the waveform, sampled at time tk, tl and tm, respectively. The
inequality, yk < yl, and yl > ym holds true for all the local maxima (for three succes-
sive points). Let yp, yq and yr define three successive amplitudes in the waveform. The
inequality, yp > yq and yr > yq is true for all the local minima (for three successive
points). Similarly, a local maxima/minima can be determined for an odd number of
successive points along the evolution of a time series. Therefore, in principle, if a
local maxima/minima exists, it is located halfway along an odd number of successive
points in the time series. Therefore, if we consider using a window of size ‘w’ = 5 for
scanning a time series that spans from t1,y1 to t7,y7, then the maxima/minima for the
overlapping points t1,y1–t5,y5, t2,y2–t6,y6, t3,y3–t7,y7 could be t3,y3 or t4,y4 or t5,y5, respec-
tively, or there could be none at all if the maxima/minima does not lie right in the
middle for that segment of time series.

The x coordinate of each of these maxima and minima represents its occurrence
with respect to time and we called it the ‘time tag’. A time series therefore yielded
two sets of time tags, one for each maxima and minima. In principle, the time series
can be resolved to an array of time tag outputs that represents the occurrence of the
critical temporal events (maxima/minima) over several time scales (increasing
window sizes). The absolute value of differences between time of occurrence of suc-
cessive maxima or minima was used as an appropriate means of estimation of the
possible period of the signal. We relied on these numerical differences for further
analysis. A critical aspect of our method is that a moving window scans the entire
time series and this process was iterated over increasing window size, ‘w’. To begin
with, the entire length of the time series was scanned with a window size of 3 (three
points at a time) until the end of the time series. Window size of 3 is minimum, since
fewer than three points cannot be examined for locating local minima. The same
process was then iterated over window size of 5, 7 and so on, awaiting that size of
the window that yielded a single, global maxima. In principle, if a significant pattern
is present in a time series, it should be detectable consistently as the window size is
increased. It is worthwhile to note that as the window size is increased (and a longer
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490 A.V. Rao and V.K. Sharma

Figure 1a–b. A Step-wise approach for the computation of significant periodicit(y)ies in the
time series. Step 1: As a first step the critical points, maxima (A) or minima (B) were located
along the evolution of the time series. This operation was repeated with a dynamically scaled
window. Step 2: The differences between successive maxima or minima (C) were computed to
estimate the cycle to cycle periods. Step 3: The normalized periodogram was examined for the
critical frequency (D) using Siegels’ modification of the Fisher test to locate the significant 
frequency (E).

segment of time series is examined) the local maxima/minima lose their connotation
as they might be transcended by other maxima/minima (Fig. 2a–c).

In summary, the calculation of differences between successive phase reference
points (maxima/minima) in the time series was repeated for each time tag output 
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A Simple Approach for the Computation of Multiple Periodicities 491

Figure 2a–c. (a) A moving window of (w = 7 in above example), scanning the time series
starting from window size w = 3. It locates the maximum (or minimum) only when it is the
middle of the window but not otherwise. Therefore, window size is always an odd number. A
portion of time series is magnified for clarity and annotated in Figure 2b. (b) The time tags
denote x intercept of the maxima/minima. Successive differences between time tags (d1, d2, d3,
. . . dn) are computed. The process is iterated for window size w = 3 to that value of w that
results in one global maxima/minima. In this example, notice that using a window size w = 5
results in four local maxima. (c) Increasing the window size to w = 7 decreases the number of
maxima detected (e.g., maxima 3, when w = 5 is not detected when w = 7).
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starting from a window size of 3 until that window size which yields a global
maxima/minima. The global maxima or minima is actually a numerical artifact of 
the biological time series and does not impart any significance to the time series or
the computation, otherwise. Differences of time tags across all window sizes were
clustered together and represented as a periodogram. The periodogram was normal-
ized by representing the magnitude of the difference (that represents the period) 
as x-coordinate and the relative contribution of each frequency as the y coordinate.
The likelihood that such a difference is a plausible significant frequency was aug-
mented when it was sustained over increments in window size (i.e., several time
scales). Among others, this repetition precludes chance as a factor in yielding a ‘dif-
ference’ and its subsequent classification as a possible frequency. In contrast, those
differences that are ill sustained typically arise due to minor fluctuations that 
exist over shorter time scales. Noise is predominant with a smaller window size.
Therefore, increasing the window size is accompanied by a reduction in noise along
with an emergence of those differences that are most likely to represent the signifi-
cant periodicities.

Short-term fluctuations in biological rhythms can result in differences that may 
be numerically close yet discrete and independent. Their independence is arbitrary;
therefore the periodogram may not truly represent the original pattern due to a 
leakage of frequencies (translation of power from a discrete spectral peak to adjacent
frequencies above and below the true frequency). This usually arises due to discon-
tinuous sampling of the data. A weighted moving average of the periodogram could
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Figure 2a–c. Continued
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be used as a remedial measure to obviate the leakage of frequencies and validate their
contribution.

Critical frequency

Fisher’s test is considered as a powerful and decisive test in detecting the periodic-
ities that exist at a single frequency (Fisher, 1929). However, this method may not be
suitable for complex biological rhythms with coexistent periodicities. For identifying
significant frequencies in a time series with multiple periodicities, Siegel’s modifica-
tion of Fisher’s test is used (Siegel, 1980). We delineated the frequency components
of the periodicity by defining a critical frequency g = (1 - 0.051/(n-1)) where n is the
number of independent differences. This value g is then expressed as percentage and
is depicted by a line, y = g, parallel to the x-axis. All the frequencies above g were
considered significant. Siegel’s method for estimation of significant contribution has
been used in many publications in chronobiology (Sheeba et al., 1999; Koilraj et al.,
1999; Koilraj et al., 2000; Sheeba et al., 2001a,b).

Steps of the program

We first examined the time series for the maxima and minima as described. The time
tag output file of a set of maxima was then processed to compute absolute values of
their successive differences. This operation was repeated over all odd values from w
= 3 to that value of w which elicits one global extreme. The frequency of occurrence
of each difference was transformed into a periodogram that carries the option of being
normalized by using a weighted moving average in order to justify the contribution
of individual periodicities (periodogram). For the points t1,y1, t2,y2, t3,y3 . . . the nor-
malized x coordinate for the point (t1,y1) for a window of three points, is calculated
by the equation:

The critical frequency was computed using Siegel’s modification factor l, in the
equation g = l (1 - [0.051/(n-1)]); where l can attain values 0.6 or 0.8 (Siegel, 1980).
The value of l is taken based on the number of distinct periodicities constituting the
periodogram. Periodicites that contributed more than the critical frequency were 
considered significant.

Relevant portion of the C code

Relevant portions of the C code, which we wrote to execute the program, are given
below.

int data [MAX]; int diff [MAX];
float diff2 [MAX]; float i2 [MAX];

t y t y t y
y y y

1 1 2 2 3 3

1 2 3

+ +
+ +

Ï
Ì
Ó

¸
˝
˛
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int lastWindow = 0; int lastMaxIndex = 0;
void CheckMax (int window, int base)
{int i; for (i = 1; i <= window/2; i++)
if ((data[base+window/2-i] >= data[base + window/2]) ||
(data[base+window/2+i] >= data[base + window/2]))
return; if (lastWindow ! = window)
{lastWindow = window; lastMaxIndex = base + window/2;
return;} else {diff [base + window/2 - lastMaxIndex]
++;
lastMaxIndex = base + window/2;}}
float GetSiegel (int i)
{float Siegel[50] = {.684, .684, .684, .684, .684, .616,

.561, .516, .477, .445, .445, .445, .445, .445,

.335, .335, .335, .335, .335, .270, .270, .270,

.270, .270, .228, .228, .228, .228, .228, .198,

.198, .198, .198, .198, .175, .175, .175, .175,

.175, .131, .131, .131, .131, .131, .131, .131,

.131, .131, 131};
if (i <= 0) return 1; if (i >= 50)
return 0.131; return Siegel[i];}
int main(int argc, char *argv[])
{FILE *fptr = fopen (argv[1], “r”);
int i, j, windowSize;
int sizeData, numFreq, SigmaFreq;
for (i = 0; i < MAX; i++) {diff[i] = 0; data[i] = 0;}
i = 0; do {if (feof (fptr)) break;
fscanf (fptr, “%d”, &data[i]); if (feof (fptr))
break; i++;} while (1);
sizeData = i; fclose (fptr);
for (windowSize = 3; windowSize < sizeData; windowSize
+ = 2)
{for (j = 0; j <= sizeData-windowSize; j++)
CheckMax (windowSize, j);}
numFreq = 0; diff2 [0] = diff [0];
diff2 [sizeData - 1] = diff [sizeData-1];
if (diff2 [0] > 0) numFreq++;
if (diff2 [sizeData-1] > 0) numFreq++; SigmaFreq = 0;
for (i = 1; i < sizeData - 1; i++)
{i2 [i] = diff [i-1] * (i-1) + diff [i] * i + diff
[i+1] * (i+1);
if ((diff[i-1] + diff[i] + diff[i+1]) > 0)
i2 [i] = i2 [i] / (diff[i-1] + diff[i] + diff[i+1]);
else i2 [i] = i; diff2 [i] = (diff [i-1] + diff[i] +
diff [i+1]) / 3;if (diff [i] > 0) numFreq++;
SigmaFreq += diff2 [i];}
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SigmaFreq += diff2 [0] + diff2[sizeData-1];
printf (“SigmaFreq = %d, numFreq = %d\n”, SigmaFreq,
numFreq);
printf (“Cutoff freq = %f\n”, 0.6 * GetSiegel(numFreq)
* SigmaFreq);printf (“Smoothened frequencies are:
\n\n”);
for (i = 1; i < sizeData-1; i++)
if (diff2 [i] > 0) printf (“%f \t %f\n”, i2 [i], diff2
[i]);
printf (“\n\n\n Raw frequencies are \n\n\n”);
for (i = 1; i < sizeData-1; i++)
if (diff [i] > 0) printf (“%d \t %d\n”, i, diff [i]);
printf (“\n\n\n Significant frequencies are \n\n\n”);
for (i = 1; i < sizeData-1; i++) if (diff [i] > 0.6 *
GetSiegel(numFreq) * SigmaFreq) printf (“%f \t %f\n”,
i2 [i], diff2 [i]); getchar(); return 0;}

Examples of data analyzed

We analyzed the experimental data from oviposition (egg laying) and eclosion rhythm
(adult flies emerging from the pupal case) in the fruit fly, Drosophila melanogaster
(Figs. 3, 4) and simulated data (Fig. 5a–b).

The simulated time series data were either white noise (Fig. 5a1) or a time series
obtained by overlapping time series of periodicities 7, 11, 17 and 23h along with
white noise (Fig. 5b1).

The critical frequency was incorporated in the periodogram. For the x-axis to 
represent the true periodicity, the time scale of this periodogram has to be rescaled
to correspond to the time interval of sampling. The periodogram of the experimental
data shows a significant pattern of 24h present in the time series (Figs. 3, 4). The
periodogram of the simulated data revealed four periodicities of value 6, 11, 17 and
23h, contributing significantly in the time series (Fig. 5b2). When a time series con-
sisting of white noise was used in our analysis (Fig. 5a1), the periodogram (Fig. 5a2)
revealed significant contribution from very short periodicities of magnitude 1 and 
2h. The analysis of the simulated time series using multiple periodicities along with
white noise (Fig. 5b1), successfully isolated all of the periodicities (Fig. 5b2).
However, when a time series obtained by pooling two time series of equal amplitude,
one with shorter periodicity and longer periodicity, was analyzed, the periodogram
revealed that the shorter periodicity always contributed significantly. The longer 
periodicities were identified as significant patterns only when their amplitude was
higher than the shorter periodicity.

Discussion

In analyzing a biological time series, several approaches have been adopted. The 
conclusions drawn thereafter depend very much on its mathematical basis. In our
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approach, we have tried to overcome some of the shortcomings of the conventional
methods of time series analysis and tried to address some issues that considerably
influence the outcome of the data analysis. We believe that the problem of aliasing
can be avoided by using this method where we use sampling of data at a sampling
interval much shorter than the expected period. Experimental data can be periodic,
may have noise that obscures periodicity or may have white noise alone. Analysis 
of periodic data is relatively simple when compared to periodic data in association
with noise. In the presence of noise, as we increase ‘w’, the number of ‘local’
maxima/minima decreases. This decrease persists as an increasing number of (odd)
successive points which is examined for the presence of a local maxima/minima.
Eventually, we arrive at a value of ‘w’, which yields one ‘global’ maxima/minima for
the entire time series; a result obtained as an artifact of variations in amplitude.

Several methods are used to analyze biological time series and most of them have
several limitations. A Fourier Transform converts equally spaced information from

496 A.V. Rao and V.K. Sharma

Figure 3a1, a2, b1, b2. Representation of the time series data of D. melanogaster oviposi-
tion rhythm. The data was collected at fixed intervals of 2h. The number of eggs is indicated
on the Y axis. The time series (a1 and b1) does not explicitly exhibit a pattern. The normal-
ized periodograms (a2 and b2) are used to delineate significant periodicit(y)ies within this time
series.
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the time domain to the frequency domain, and vice versa (Van Dongen et al., 1999).
It has been used extensively by biologists for the detection and analysis of frequency
components of their interest. However, this method cannot be used when the sam-
pling of biological variables is irregular (Van Dongen et al., 1999). Spectral analysis
is used when there is no prior knowledge to suspect a specific period. Like the Fourier
transform, it relies on a regularly sampled time series to be decomposed into a sum
of trigonometric periodic functions with different frequencies, amplitudes and phases
(Van Dongen et al., 1999). Another disadvantage of the spectral analysis method is
that preprocessing of the data such as insertion of means for missing data points or
removal of a linear trend must be performed in order to obtain reliable estimate of
the period. Harmonic analysis includes various techniques, in which the time series
is decomposed into a number of periodic components of sinusoidal form. Neverthe-
less, before using a harmonic analysis technique, any trend in the data needs to be
removed. Lomb Scargle Periodogram uses linear least-squares regression method for

A Simple Approach for the Computation of Multiple Periodicities 497

Figure 4a1, a2, b1, b2. Representation of the time series data of D. melanogaster eclosion
rhythm. The data was recorded at fixed intervals of 2h. The number of enclosed flies was plotted
on the Y axis. The time series (a1 and b1) does not explicitly exhibit a pattern. The normal-
ized periodograms (a2 and b2) are used to delineate significant periodicit(y)ies within this time
series.
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transforming unevenly spaced data to a sine or cosine series of different frequencies.
However, this periodogram has to be normalized for better representation of the orig-
inal time series (Scargle, 1982; Ruf, 1999). The autocorrelation function may also 
be used to detect deterministic components masked by a random background 
(Blackman & Tukey, 1958). Nevertheless, noise has to be reduced for better assess-
ment of the period using the autocorrelation function. Sine curve fits involve decom-
position of the waveform and its representation as a sine wave (Blackman and Tukey,
1958; Hickey, 1984). While biological oscillations can be periodic, not all of them
can be expressed as a sine wave (Mercer, 1960). Cosinor method is a frequently used
parametric method that provides a least-squares fit and consists of one or more cosine
curves with one or more periods expected to represent the data (Nelson et al., 1979;
Bingham et al., 1984). The chi-square method for computing the periodicities deter-
mines the intensity (power) of rhythms in the time series for a range of periods
(Enright, 1965; Ruf, 1999). In this method, significant frequencies are identified on
the basis of a threshold. However, the chi-square test does not take into account the
ordered structure of the data, and it does not distinguish between irregular fluctua-
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Figure 5a–b. (a1) Time series data consisting of white noise and its periodogram (a2), reveal-
ing significant contributions from very short periodicities. (b1) Simulated time series data
obtained by pooling five time series data of periodicities 6, 11, 17 and 23h. A 250-h long time
series was simulated and then subjected to analysis using our method. (b2) Periodogram for
the time series data simulated using four periodicities (b1). The periodogram reveals signifi-
cant contributions from all of the periodicities.
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tion and a smooth cyclical pattern (James, 1976; Walter, 1977). It is also designed
for equally sampled data and not unequally spaced time series (Ruf, 1999). The
Maximum Entropy Spectral Analysis (MESA), a parametric method, also makes use
of the autocorrelation function that is approximated by an autoregressive process
(Dowse & Ringo, 1989). A study found MESA to be no better than FFT or autocor-
relation in estimating period (Klemfuss & Clopton, 1993). Noise is inherent in 
biological time series. To reduce noise, preprocessing (smoothening) of the data is
frequently resorted to. While doing so there may be a loss of vital data points at the
cost of obtaining regularity of the data structure. Eye fitting, a commonly used pro-
cedure in biological time series analyses, is an empirical estimation of the periodic-
ity that is limited in terms of repeatability.

With our method, we satisfactorily analyzed data without smoothening. While
computing the periodicities, we assigned a scale that was independent of the original
sampling time and interval. This aids the evaluation of any length of sampled time
series, irrespective of the scale of its measurement. This makes our analysis flexible
for the elucidation of multiple periodicities that might exist in a biological time series.
Our method focuses on the temporal organization of the rhythms and, consequently,
the variation in the amplitude of the waveform does not influence the outcome of our
computation. However, the detection of the critical points is of utmost importance.
Erroneous or missing data may alter the periodogram significantly, if it were to cor-
respond with a nominal peak. Missing data elsewhere along the time series may be
accompanied by a flattening of the periodogram. Computing successive differences
between all the time tags and using an overlapping window with a variable size offers
an elegant solution for minimizing the errors due to missing data. The margin of error
of estimation of the resultant periodicities is of the order of the sampling interval 
(regularly sampled data) or lesser than the largest sampling interval (for irregularly
sampled data). Periodicities may be estimated by normalizing this periodogram by
computing a weighted moving average. The weight for each case is proportional to
its contribution to the cumulative frequency. To account for inherent biological vari-
ability we can use a window of three points to compute the weighted moving average,
for this operation (Sollberger, 1965). Siegel’s modification of the Fisher’s test incor-
porates a variable multiplication factor, l to distinguish significant frequenc(y)ies that
would have otherwise been neglected.

If two or more successive observations are equal and they otherwise correspond
to a nominal ‘peak’, our method fails to detect it as we rely on the determination of
a ‘local’ peak for an odd set of points. Nevertheless, the user has the option of com-
puting the periodicities using the local minima instead of the maxima. However, in a
case where the waveform has no apparent maxima/minima, one can estimate periodi-
cities by incorporating alternate points of reference, for example the points of inflec-
tion. Hence, the algorithm for the detection of critical points should then be modified
accordingly.

Our method worked very well with time series with single frequency embedded
in white noise. It successfully identified the pattern present in the time series without
any smoothing or detrending. Our method isolated all of the frequencies from a
pooled time series consisting of several time series with multiple frequencies em-
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bedded in white noise. However, the analyses of white noise alone resulted in a 
periodogram, which revealed significant contribution from very short periodicities.
This demonstrates that our methods works equally well with experimental data with
single periodicity and simulated time series data with multiple periodicities.

Conclusions

Our method can be used to analyze time series data that has been sampled at irregu-
lar intervals. It is simple but lucid, flexible and unambiguous since each of the few
operations has a simple mathematical basis. It is an objective method of estimation
of the period with an option for the user to refine the periodogram by computing 
a weighted moving average. The method can also be tailored to use several other
points of reference in a time series for computation of periodicities; for example
maxima/minima (as we have described) or other points of inflection. In summary, our
approach is a simple means of decomposing time series with compound periodicities
without any prior assumption of the pattern(s) present. No pre-processing, detrend-
ing of data, is required to identify the significant pattern(s) present in the data. We
can analyze time series of any length irrespective of the scale of measurement. This
method can also be used to analyze irregularly sampled time series data and also time
series data with missing points. We also feel that this method is flexible, because one
can analyze time series data with various waveforms by using well-defined phase 
reference points.
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