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ABSTRACT: An understanding of the origin of f ragility, which the rapidity of change
of viscosity and related dynamical quantities, has been sought by a variety of
approaches over the years. Within the framework of the Adam−Gibbs relation, fragility
is in principle related to both the temperature variation of configurational entropy and
the high temperature activation energy. Many theoretical analyses have been focused
on the variation of configuration entropy, although the importance of the high
temperature activation energy in determining the fragility of a glass former has also
been emphasized. We explore the latter aspect by considering a model liquid whose
high temperature activation energy is modified by hand, through the introduction of a
tunable barrier to bond breaking. We show that changes in such a barrier are able to
modify the fragility measured from the temperature dependence of dynamical
quantities, while a thermodynamic measure of fragility obtained from the
configurational entropy remains unchanged. We discuss the implications of our
results to our understanding of fragility, and outline open questions that merit further investigation.

■ INTRODUCTION

The rapid rise of viscosity and relaxation times in supercooled
liquids, leading to the glass transition, at which viscous liquids
transform to an amorphous solid state, is a subject of long-
standing investigation. Apart from the nature of the glass state,
and the glass transition, understanding the strong, super-
Arrhenius, temperature dependence of the viscosity and
relaxation times, and rationalizing the observed diversity in
manner in which the large viscosities at the glass transition are
attained, have attracted considerable attention. How quickly
viscosity and relaxation times increase as one cools a glass
forming liquid is quantified by f ragility.1 Quantification of
fragility amounts to characterizing the degree of super-Arrhenius
behavior, which is material specific and has proved to be useful in
organizing and understanding the diversity of behavior seen in
glass formers.2 Fragility is easily visualized, e.g., through the
celebrated Angell plot1 of the logarithm of the viscosity vs the
inverse temperature scaled by the glass transition temperatureTg.
Fragile liquids display deviation from Arrhenius behavior, the
degree of deviation being an indication of the degree of fragility,
whereas strong liquids display nearly Arrhenius behavior. Many
quantitative measures of the degree of deviation from Arrhenius
behavior, or fragility, have been described in the literature. Two
of the commonly used quantifications are in terms of the [i]
steepness index (m) and [ii] Vogel−Fulcher−Tammann (VFT)
fits to the temperature dependence of relaxation times or
viscosity.
The steepness index m is defined to be the slope of the

logarithm of viscosity at the glass transition temperature Tg, with
respect to scaled inverse temperate Tg/T:
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From VFT fits to dynamic quantities (viscosity, relaxation times,
or the diffusion coefficient), one can quantify fragility KVFT by
employing the form (shown for relaxation times)
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which defines kinetic fragility (KVFT) assuming that relaxation
times diverge at the temperature TVFT. We distinguish in what
follows the steepness index m and KVFT kinetic measures of
fragility from thermodynamic fragility.
In order to define thermodynamic fragility, we employ the

Adam−Gibbs relation,3 that relates growing relaxation times to a
decrease in the configurational entropy Sc:
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The Adam−Gibbs relation is based on a picture of
cooperatively rearranging regions (CRRs) which lead to
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relaxation, and whose size increases with a lowering of
temperature. The coefficient A may be viewed as being related
to the high temperature activation energy, by noting that a
constant high temperature Sc, Sc∞, would lead to an Arrhenius
temperature dependence with activation energy E∞ = A/(Sc∞/
kB).We refer to it in what follows as a high temperature activation
free energy, since A has in principle both enthalpic and entropic
contributions. The configurational entropy, Sc, associated with
themultiplicity of structures in a liquid, is obtained by subtracting
the “vibrational” contribution from the total entropy. In the
simplest procedure, this is accomplished by subtracting the
entropy of the crystal from the total liquid entropy. Such a
procedure was employed by Martinez and Angell, who showed a
correlation between kinetic and thermodynamic fragilities
defined using the temperature variation of the excess entropy.4

However, the excess entropy can also include a vibrational
contribution, since the crystal and liquid (or glass) vibrational
entropies are not identical, and the latter can vary with a
temperature dependent change in structure. The relevance of this
has also been discussed in ref 4 with particular reference to
constant pressure conditions, in ref 8, and much earlier by
Goldstein.5 Such a limitation does not apply to an evaluation of
configurational entropy by subtracting the vibrational contribu-
tion in the liquid state without reference to the crystal, as in the
inherent structure approach.8 In the inherent structure
approach,6 Sc is associated with the number of local energy
minima or inherent structures, and has been computed in many
computational studies (e.g., refs 7 and 8 and other work
mentioned in refs 9 and 10). A number of studies11−17 have
addressed the manner in which the fragility of a glass former may
be determined by its composition, the nature of the interparticle
interactions, etc.
If the temperature dependence of Sc is given by
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the Adam−Gibbs relation yields the VFT relation with the
identification KVFT = KT/A, TVFT = TK and KT is a
thermodynamic measure of fragility. The thermodynamic
fragility KT can be understood in terms of parameters of the
potential energy landscape, the distribution of inherent
structures, and vibrational or basin entropy corresponding to
inherent structures on these energies.8 In addition to KT, the
activation free energy A can influence the kinetic fragility, as has
been emphasized as a general consideration in the past,18 and
arises more specifically in the context of discussions of density−
temperature scaling.19−22 Some of this discussion was anticipated
by Angell23 who considered a “kinetic” contribution to the
fragility that might arise from the presence of barriers to bond-
breaking (though the application of this idea to hydrogen bonded
liquids was inconclusive). A notable recently studied example of
the role of the high temperature activation free energy A is the
analysis of the fragilities of model liquids with differing softness of
interaction.17 It is found that, as the softness of the interactions is
increased, the kinetic fragilities increase, while the thermody-
namic fragilities decrease. A rationalization of these results
requires consideration of the variation of A with the softness of
interactions. Inclusion of the variation of A, which needs to be
estimated from high temperature data, results in a satisfactory,
but not highly quantitatively accurate, estimation of the variation
of kinetic fragilities with the softness of interactions.

In view of the above discussion, further analysis of the role of
the activation free energy A in determining fragility is desirable.
An appealing avenue to do so is to study a model system wherein
the high temperature activation energy can be tuned without
affecting the thermodynamics of the system. In this paper, we
study such a model liquid, for which the bond lifetime can be
tuned.24 This model has previously been studied in the context of
dynamical arrest in short-range attractive colloids,25,26 which
exhibits a diffusivity maximum in the studied attraction and
density range.
We begin in the next section with a description of the model

and themethods employed to study it, followed by a presentation
of results, a discussion of their implicaitons, and concluding
remarks.

■ MODEL AND METHODS

Model. We study a 50:50 binary mixture with hard core
repulsion between particles followed by an attractive square well,
with a tunable barrier at its outer edge. The ratio of diameters of
the two types of particles is 1.20, with σAA = 1.20σBB. Further, for
the AB interaction, the hard core diameter is additive, with σAB =
(σAA + σBB)/2.
The interaction potential, illustrated in Figure 1, is given by
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where r is the distance between particle i and j. The depth of the
attractive shell is u0, and the width Δij of the square well is such
thatΔij/(σij +Δij) = 0.03. Particles are considered to be bonded if
they lie within the attractive shell (i.e., σij < rij < σij + Δij). The
height h of the barrier is tunable and the width wB = 3 × 10−4σBB.
This thin and tunable barrier allows us to modulate the bond
lifetime without affecting the thermodynamics of the system.24

We use reduced units throughout, with distances expressed in
units of the smaller particle diameter σBB, energies (and
temperatures) in the units of the square well depth uo, and

Figure 1. Schematic representation of the interaction potential. Here σij
is the hard sphere diameter, the attractive shell width isΔij, and the width
of the barrier of height h is wB.
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time t in units of σBB(m/uo)
1/2. The packing fraction is defined as

ϕ = (∑i ρiσii
3)(π/6), where i ∈ [A, B], ρi is the number density,

and σii is the diameter of particle type i.
Since the particles interact via a pair potential that changes

discretely, we perform event driven molecular dynamics
simulations in a cubic box with periodic boundary conditions.
All particles travel in straight line trajectories at constant velocity
between successive collisions. Collision times between pairs of
particles are calculated for relative separations where the
potential changes discontinuously27 and velocities are updated
accordingly. ConstantNVT simulations have been performed for
N = 256 particles using the Lowe−Anderson thermostat28,29 for
the temperature range T ∈ [0.28, 40.0] and barrier heights h ∈
[0, 5] with run length > 100τα. (τα is the relaxation time, which
will be described in the next section.)
Methods.Dynamics is characterized by the α relaxation times

obtained by the self-intermediate scattering function, and the
diffusion coefficient, from the mean squared displacements. The
α relaxation time is calculated for particles of type A, as the time
at which the self-intermediate scattering function Fs

AA(k,⃗ t) at k =
2π decays to a value of 1/e. Fs

AA(k,⃗ t) is calculated using
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where ri⃗(t) are the positions of particle i at time t and the
averaging is done over all initial times.
Configurational Entropy. Configurational entropy is calcu-

lated by subtracting from the total entropy30 of the system the
vibrational component:

= −T T T( ) ( ) ( )c total vib (6)

The total entropy of the liquid is obtained via thermodynamic
integration (TI)31,32 from the ideal gas limit.30 The pressures are
estimated from collision rates33 using
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where is the total time of the simulation and the summation is
over collisions that occur between all pairs of particles j and k.
The pressure is integrated over densities at a high reference
temperature of kBTref/uo = 50, and further potential energies
were integrated with respect to temperature at the desired
packing fraction of ϕ = 0.55 to evaluate the total entropy at any
desired temperature.
In the inherent structure formalism,6 the configuration space is

partitioned into basins of attraction of local minima of the PEL,
known as inherent structures (IS) and the vibrational free energy
and entropy evaluated by a partition function integral over a
basin.9 However, for the system with the discrete interaction
potential that we consider, it has been proposed that the basins
can be identified with a given bond pattern,34 a procedure which
avoids the necessity to make any approximations in order to
evaluate the basin entropy. We follow the same procedure here,
and evaluate the basin free energies from thermodynamic
integration with respect to an Einstein crystal reference state. A
perturbation λ⃗λ r( , )= λ∑i=1

N ⃗ − ⃗r r( )i i
o 2 is added to the original

interaction Hamiltonian o, and Monte Carlo simulations are
performed for a range of λ values, subject to the constraint that
the bond pattern remains invariant during the simulation, up to a
maximum λmax at which the free energy is obtained using only the

perturbation term. Excess free energy of the model can then be
calculated from this reference system in the usual way, as
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where ri⃗
o represents the reference configuration we start with. For

λmax, the system sees only the harmonic confining potential, and
the condition λmax∑i=1

N ⃗ − ⃗r r( )i i
o 2 = 3NkBT/2 obeyed. On the

basis of this, the basin entropy can be written as
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where xi, i ∈ [A, B], is the fraction of each type of particle.
Equation 9 is the exact expression for the basin entropy vib

ex for
the model. In Figure 2, we show the calculated λ dependence of

βλ⟨∑i=1
N (ri⃗ − ri⃗

o)2⟩λ/N for various temperatures. At sufficiently
large values of harmonic perturbation (λmax ≈ 1010), the particles
are localized in a much narrower space compared to the attractive
shell and the square well interactions are irrelevant.

■ RESULTS

Dynamics. In Figure 3, we show the self-intermediate
scattering function Fs

AA(k, t) for kσBB = 2π and the mean squared
displacement for a range of temperatures. The data show that the
dynamics gets slower as the temperature decreases. Next, we
show in Figure 4 these quantities for a fixed temperature of T =
0.8 for various values of barrier height h. Clearly, the increasing of
the barrier height has the expected effect of slowing down the
dynamics. We expect that the cage size at which transient
localization occurs for finite barriers to bond breaking will be
dictated by the width of the attractive well rather than the
location of the neighbors, but further analysis is required to
validate this expectation.

Figure 2. Thermodynamic integration scheme to estimate the basin
entropy. λ dependence of βλ⟨∑i=1

N (ri⃗ −ri⃗o)2⟩λ/N for different temper-
atures and barrier values. Clearly, the barrier heights do not affect the
value of the quantity shown. The horizontal line indicates the expected
value 3/2 for the purely harmonic behavior.
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To study the variation of kinetic fragility with a change of
barrier heights, we plot relaxation times τ obtained from the
Fs
AA(k, t) and the diffusion coefficients DAA, in an “Angell” plot,

where the temperature is scaled with a “glass transition”
temperature, where the relaxation times reach a value of 105.
From Figure 5, we see clearly that the apparent effect of a change
in barrier height is to decrease the fragility of the liquid. We also
note that the relaxation times and diffusion coefficients display a
nonmonotonicity at high temperatures, which we return to later.
Figure 5 also shows VFT fits to the data, both in the Angell plot
and in linearized VFT form. From these fits, we obtain values of
the kinetic fragility KVFT and the Kauzmann temperature TK
which are listed in Tables 1 and 2, respectively, for relaxation
times and diffusion coefficients. As noted, KVFT decreases as h
increases, as does TK.
Thermodynamics. In order to assess thermodynamic

aspects of the barriers, we consider here various static quantities
for varying barrier heights. Since the barrier width is infinitesimal
(=3 × 10−4σBB), we expect a negligible influence of the barrier
height of static properties. The pair correlation functions,
pressure, and average potential energy, shown in Figure 6, clearly
demonstrate this to be the case.
From the pressure and potential energy data, we calculate the

total excess entropy from thermodynamic integration as

described earlier. Shown in Figure 7, the excess entropy too
does not depend on the barrier heights h.
We next show in Figure 8 the basin entropies computed as

described earlier from thermodynamic integration. The basin
entropies too do not depend on the barrier heights h. Thus, we
conclude that the introduction of a barrier to bond breaking,
while influencing the dynamics strongly, has no bearing on the
thermodynamics.

Relationship between Dynamic and Thermodynamic
Quantities. Before discussing the temperature variation of the
configurational entropy in the context of fragility, we discuss the
high temperature behavior of Sc and diffusion coefficient DAA.
Shown in Figure 9, both of these quantities display the presence
of a local maximum around T = 0.8. Such behavior has been
observed for the square well and relatedmodels before25,26 where
attention was drawn to the fact that the variation of the
configurational entropy captures the interesting nonmonotonic-
ity of the diffusion coefficient.
Figure 10 shows TSc(T) as a function of T, and as would be

expected in order to recover the VFT relation, TSc(T) exhibits
linear behavior at low temperatures, which allows us to identify a
Kauzmann temperature (TK = 0.11) and a thermodynamic
fragility (KT = 0.72) from plotting TSc(T) vs T/TK. Curiously,

Figure 3. Dynamical properties for h = 0. (a) The self-intermediate scattering function at σ π=k 2BB displays longer relaxation times at lower
temperatures. (b) The mean squared displacement (MSD) indicates a decrease in diffusion coefficient as temperature decreases.

Figure 4. Dynamics slows down with increase in barrier height. (a) The self-intermediate scattering function and (b) mean squared displacement, at
temperature T = 0.80, for different barrier heights h.
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these values are not consistent with any of the kinetic fragility and
VFT temperatures we find.
Next, we show in Figure 11 the plots of relaxation times and

diffusion coefficients against TSc, in an Adam−Gibbs plot, for a
range of barrier heights.We note that the data for different barrier
heights clearly do not overlap, and further show a marked
deviation from the Adam−Gibbs relation, eq 3. A substantial part

of this deviation arises from the nonmonotonic or nearly
nonmonotonic behavior observed at high temperatures. For
relaxation times, however, even low temperature data for h = 0 do
not show very good agreement with the Adam−Gibbs form,
while, for diffusion coefficients, the behavior is in much closer
conformity with the Adam−Gibbs relation. We return to the
possible origins of this behavior shortly. However, the data in
Figure 11 clearly shows that a change in barrier heights to bond
breaking strongly affects the relationship between dynamical
quantities and the configurational entropy.
However, since we know the exact origin of the differences in

dynamics, we are in a position to seek simple relations between
dynamics for different h values. A simple minded expectation,
tested in Figure 12, is that the addition of the barrier modifies the
“microscopic” time τo for relaxation processes, and by assuming
that such modification is given by a Boltzmann factor to bond
breaking, we may write

τ τ= h k Texp( / )o o
(o)

B (10)

where τo
(o) is the assumed constant prefactor for h = 0. Thus, the

data for different h values should collapse when scaled by the
factor exp(h/kBT). As seen in Figure 12, this expectation is
satisfied at low temperatures, but surprisingly, at high temper-
atures, it is not. The physics associated with the diffusivity
maximum apparently is nontrivial and not simply scaled out.

Figure 5. Kinetic fragility decreases with increase in barrier height. (a) Angell plot for relaxation times and (b) diffusion coefficients. The “glass
transition” temperatureTg corresponds to a reference relaxation time of 10

5. The lines are VFT fits. (c) Relaxation times and (d) diffusion coefficients are
shown in linearized VFT form.

Table 1. Comparison of the Kinetic Fragility and the
Kauzmann Temperature for Various Barrier Heights
Obtained from VFT Fits to Relaxation Timesa

barrier height

parameters h = 0 h = 1 h = 2 h = 3 h = 4 h = 5

KVFT 0.762 0.335 0.128 0.066 0.040 0.027
TK 0.252 0.234 0.191 0.159 0.134 0.117

aThe table shows that fragility decreases with increasing barrier height.

Table 2. Comparison of the Kinetic Fragility and the
Kauzmann Temperature for Various Barrier Heights
Obtained from VFT Fits to the Diffusion Coefficientsa

barrier height

parameters h = 0 h = 2 h = 4

KVFT 0.700 0.125 0.0514
TK 0.235 0.184 0.1626

aThe table shows that fragility decreases with increasing barrier height.
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In order to understand the relation between dynamical data for
different barrier heights in the context of the Adam−Gibbs
relation, we write for h = 0

τ τ= + A TSln ln /o c (11)

For other values of h, we may write τo as τo = τo
(o) exp(h/kBT).

From this, we may write

τ τ= + A h TSln ln ( )/o
(o)

c (12)

Figure 6. There is no effect significant of the barrier height on thermodynamic and structural quantities as seen by the invariance of (a) the radial pair
correlation functions (shown forT = 1.00), (b) the excess pressure (vs density at reference temperatureTref = 50), and (c) the average potential energy at
packing fraction ϕ = 0.55 over a wide temperature range.

Figure 7. Temperature dependence of the total excess entropy for
various barrier heights. Since the pressure and mean potential energies
are the same regardless of barrier height, the estimated total excess
entropy does not depend on the barrier height.

Figure 8. Temperature dependence of the basin entropy for various
barrier heights, demonstrating that the basin entropy does not depend
on the barrier height.
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where A(h) = A(0) + hSc/kB. This quantity is of course not
temperature independent, but we choose the value of Sc at a high

temperature of T = 0.8 (where Sc is maximum) to obtain values
for A(h), which are used in Figure 13 to plot relaxation times and

Figure 9.Diffusion coefficient exhibiting a shallow maximum in temperature for h = 0 at high temperature. The configurational entropy Sc also shows a
corresponding maximum in the same temperature range.

Figure 10. Thermodynamic fragility of the system is independent of the barrier height. (a) Temperature dependence of TSc for the model to determine
the Kauzmann temperature. The line represents the linear fit using TSc = KT(T/TK − 1). (b) The scaled plot with TK = 0.11 shows that the
thermodynamic fragility KT = 0.72 is the same for all barrier heights.

Figure 11. Adam−Gibbs plot for (a) relaxation times and (b) diffusion coefficients, for different choices of barrier height. The Adam−Gibbs relation
does not seem to hold for h = 0 very well in either case, though it is better observed for diffusion coefficients. For low temperatures and for finite h values,
the agreement with the Adam−Gibbs relation is better. The fit lines for h = 0 are used to obtain the Adam−Gibbs coefficient AD, which is used in the plot
of relaxation times (dashed line). On the basis of the fractional Stokes−Einstein behavior observed in Figure 14, the dash-dotted line using AD/ζ instead
of AD describes the expected behavior of relaxation times at low temperatures, and is found to describe the simulation data very well.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.5b03122
J. Phys. Chem. B 2015, 119, 11243−11252

11249

http://dx.doi.org/10.1021/acs.jpcb.5b03122


diffusion coefficients against A(h)/TSc. We find that the
relaxation times do not scale so well, but the diffusion coefficients
show a satisfactory data collapse.
We now return to the observation earlier that the Adam−

Gibbs relation is reasonably well observed for diffusion

coefficients for h = 0, whereas they are not in the case of
relaxation times. In the original formulation, the Adam−Gibbs
relation was derived for particle mobilities, and thus a priori
applicable to diffusion, and only by association to relaxation
times. However, in view of the known breakdown of the Stokes−

Figure 12. Relaxation times multiplied by (a) exp(−h/kBT) and (b) exp(5− h/kBT) to scale out the change of bond lifetime. In both cases, the τ values
overlap at low temperatures, indicating that the “intrinsic” dependence of relaxation times on temperature is not affected by the barrier heights. The
superposition of data is not good (worse in part a) at high temperatures, where anomalous behavior of dynamics is observed. The corresponding plots
for the diffusion coefficient are shown in parts c and d.

Figure 13. Adam−Gibbs plot with estimated A(h) for (a) relaxation time and (b) diffusion coefficient. While the scaling does not produce a very good
data collapse for relaxation times, the collapse is reasonable for the diffusion coefficient, with the observation of a low temperature region where the
Adam−Gibbs relation is obeyed.
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Einstein relationship, the Adam−Gibbs relation cannot be valid
both for diffusion and relaxation times. This situation has not
been directly addressed previously, to our knowledge, since most
studies have focused on a temperature regime where a f ractional
Stokes−Einstein result appears valid. In our study, we straddle
the temperature window where both the Stokes−Einstein and
fractional Stokes−Einstein relations are valid. We show, in Figure
14, a Stokes−Einstein plot, which demonstrates that, for h = 0,

the Stokes−Einstein relation is strongly violated at low
temperatures. Representing by AD the Adam−Gibbs free energy
for diffusion, the corresponding free energy for relaxation times
may be written as Aτ = −AD/ζ, where ζ = 1 when the Stokes−
Einstein relation holds. The slopes (on a semilog plot) Aτ for the
two regimes, shown in Figure 11 for relaxation times,
convincingly demonstrate that the apparent deviation from
Adam−Gibbs behavior of the relaxation times is indeed
extremely well explained by the known violation of the
Stokes−Einstein relation, along with the expectation that the
Adam−Gibbs relation holds principally for diffusion coefficients
rather than relaxation times. To our knowledge, this is the first
time that the validity of the Adam−Gibbs relation for diffusion
coefficients vs relaxation times has been explored to show
convincingly that the AG relation is valid primarily for diffusion
coefficients rather than other related quantities such as relaxation
times.

■ DISCUSSION AND CONCLUSIONS
A principal conclusion that is apparent from the work described
is that changes in the details of interactions between particles that
do not affect their thermodynamics can have a strong influence
on the dynamics, in a sufficiently nontrivial manner that one may
deduce from the analysis of dynamical data dramatically different
characterizations, such as widely different fragilities. To a first
approximation, we can view the dynamics of the studied system
for different barriers as being simply related, and therefore that
their intrinsic fragilities are the same. Such a view would privilege
in the present case the thermodynamic fragility as the “true”
fragility, and lead one to argue that the apparent differences in
measured kinetic fragilities arise from the additional contribution
of the changes in high temperature activation energy. Such a

view, however, is not consistent with treating the dynamical data
as the primary object of classification according to fragility, nor
with analyses that have argued that high temperature activation
energy scales should be factored out in order for fragility to be
evaluated properly. Our results therefore highlight an ambiguity
in the definition of fragilty that needs to be sorted out by future
work.
Our work should also be treated as preliminary for other

reasons. The first is the choice of the model system. For the given
choice of parameters, the presence of a diffusion anomaly proves
to be an inconvenience, and other parametrizations need to be
considered to avoid this situation. The second reason is the
observation that the Adam−Gibbs relation appears to not be so
well observed in this system. The possible origins are the
definition of basins which are specific to this class of models with
discrete interaction energies, and the possibility that the violation
of the Stokes−Einstein relation in this system means that the
Adam−Gibbs relation is not simultaneously valid for both
diffusion coefficients and relaxation times. Both of these are
interesting questions in their own right. Our results concerning
the violation of the Stokes−Einstein relation, however,
convincingly show that the Adam−Gibbs relation is valid at
low temperatures for diffusion coefficients, and the observed lack
of conformity in the case of the relaxation times stems directly
from the violation of the Stokes−Einstein relation. Finally, the
question of how best to quantify fragility remains open at the end
of the present exercise and must be pursued further to a
satisfactory resolution. Further work is in progress to address
these issues.
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