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Abstract. We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of the Ising
model, employing the Glauber spin-flip mechanism, in space dimensions d = 2 and 3, on square and simple
cubic lattices. Results for the persistence probability and the domain growth are discussed for quenches
to various temperatures (T¢) below the critical one (T¢), from different initial temperatures T; > T.. In
long time limit, for T; > T., the persistence probability exhibits power-law decay with exponents 6 ~ 0.22
and ~ 0.18 in d = 2 and 3, respectively. For finite T;, the early time behavior is a different power-law
whose life-time diverges and exponent decreases as T; — T.. The two steps are connected via power-law
as a function of domain length and the crossover to the second step occurs when this characteristic length
exceeds the equilibrium correlation length at T' = T;. T; = 1. is expected to provide a new universality
class for which we obtain # = 6. ~ 0.035 in d = 2 and ~0.105 in d = 3. The time dependence of the
average domain size £, however, is observed to be rather insensitive to the choice of T;.

1 Introduction

When a homogeneous system is quenched below the
critical point, the system becomes unstable to fluctua-
tions and approaches towards the new equilibrium via
the formation and growth of particle rich and particle
poor domains [1-4]. In such nonequilibrium evolutions,
over several decades, aspects that received significant at-
tention are the domain pattern [3,5-9], rate of domain
growth [5,10-15], persistence [16-25] and aging [26-31].
Average size, ¢, of domains typically grows with time ()
as [5]

o~ e, (1)

The value of the exponent « for nonconserved order-
parameter dynamics [5,12], e.g., during ordering in a uni-
axial ferromagnet, is 1/2; in space dimension d = 2. In
addition to the interesting structures exhibited by the do-
mains of like spins (or atomic magnets) in a ferromag-
net, the unaffected or persistent spins also form beautiful
fractal patterns [16-19,21,22]. Typically, fraction of such
spins, henceforth will be referred to as the persistent prob-
ability, P, decays as

P~tY (2)

with [20,21] 6 having a value ~0.22 for the Ising model in
space dimension d = 2 and ~0.18 in d = 3.

The values of the exponents mentioned above are un-
derstood to be true for the perfectly random initial con-
figurations, mimicking the paramagnetic phase at temper-
ature T' = oco. Another relevant situation is to quench a
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system from finite initial temperature (7;) with a large
equilibrium correlation length £. However, this problem
has received only occasional attention [32-35], though ex-
perimentally very relevant. In this context, the behavior of
the two-time equal point correlation function, relevant in
the aging phenomena, was studied [33,34] for T; = T,
the critical temperature. It was pointed out that such
quenches would form a mew wuniversality class and was
shown that the decay of the above correlation was sig-
nificantly slower for T; = T, than T; = occ. In view of that,
a slower decay of P is also expected [35]. On the other
hand, the behavior of P and ¢ are expected to be discon-
nected [36]. Nevertheless, the rate of growth of ¢ may be
different for 7; = T, and T; = oo, at least during the tran-
sient period. In this paper, we address the T; dependence
for persistence and domain growth in a ferromagnet, via
Monte Carlo (MC) simulations [37] of nearest neighbor
Ising model [37]

H=-JY SS;; S;=+1,J>0, (3)
(i5)

in d = 2 and d = 3, on square and simple cubic lattices,
respectively.

Starting from a high value, as T; approaches T, [37]
(~2.27J/kp in d = 2 or 4.51J/kp in d = 3, kg be-
ing the Boltzmann constant), a two-step decay in P be-
comes prominent, except for T; = T,. For the latter initial
temperature, power-law behavior with exponents much
smaller than the ones observed for quenches from 7; = oo
lives forever. In addition to identifying these facts, a pri-
mary objective of the paper is to accurately quantify these
decays and find out the influence of dimensionality. For the
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domain growth, on the other hand, we do not observe a
modification to the time dependence with the variation
of T;, almost from the very beginning.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly describe the methods. Results from both
the dimensions are presented in Section 3. Section 4 con-
cludes the paper with a summary and outlook.

2 Methods

The nonconserved order-parameter dynamics in the MC
simulations have been incorporated via the Glauber spin-
flip mechanism [38]. In this method, a randomly chosen
spin is tried for a change in sign which is accepted accord-
ing to the standard Metropolis algorithm [37]. We apply
periodic boundary conditions in all directions. Time is ex-
pressed in units of MC steps (MCS), each MCS consisting
of L% trials, L being the linear dimension of a square or
cubic box. We have computed ¢ from the domain size dis-
tribution, P;(€q,t), as [15]

0t) = /éde(ld,t)dEd, (4)

where ¢4 is calculated as the distance between two suc-
cessive interfaces along any direction. All lengths are ex-
pressed in units of the lattice constant a. We present the
results after averaging over multiple initial configurations.
This number ranges from 20 (for L = 1024) to 200 (for
L = 400) in d = 2 and from 10 (for L = 256) to 50 (for
L = 64) in d = 3. The initial configurations for T; close
to T, were carefully prepared via very long runs. At T,
for d = 2, depending upon the system size, length of such
runs varied between 5 x 105 to 108 MCS.

3 Results

In this section we present the MC results and their anal-
yses, first from d = 2 (Sect. 3.1), followed by d = 3
(Sect. 3.2).

31d=2

Growth of the domains have been demonstrated in the
upper frames of Figure 1 for the system size L = 512 in
d = 2. There we show snapshots from two different times
during the evolution of the Glauber Ising model. In the
lower frames of the figure, we show pictures marking only
the persistent spins. Beautiful patterns are visible. These
results correspond to a quench from T; = oo to the final
temperature Ty = 0.

Plots of P, for T; = oo and few different values of 7%,
vs. t, are shown in Figure 2. The data for Ty = 0 and
0.25T, are consistent with each other and follow power-
law, the exponent being 6 ~ 0.22. The flat behavior at the
end is due to the finite-size effects. This value of 8 is consis-
tent with the previous observations [20,21]. However, for
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500 MCS
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Fig. 1. Upper panels show snapshots during the evolution of
the Glauber Ising model with T; = oo, Ty = 0 and L = 512.
The black regions represent domains of up spins. The lower
panels show the unaffected spins, marked in black, correspond-
ing to the evolution snapshots above them. These results cor-
respond to d = 2.
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Fig. 2. Plots of persistence probability P vs. time, on a log-
log scale, for quenches from T; = oo, with L = 512, in d = 2.
Four different values of T are included. The solid line there
has a power-law decay with exponent 0.22.

higher values of T, as also previously observed [18,19],
the decay is not of power-law type. This is thought to
be due to thermal fluctuation. When this fluctuation is
taken care of, via the method described below, we observe
0 ~ 0.22 for all the values of T included in Figure 2, in
agreement with reference [20]. In zero temperature situ-
ation spin-flips are related to the motion of the domain
boundaries, leading to the growth of . At nonzero tem-
perature, on the other hand, thermal noise causes flips in
the bulk of the domains as well. Following Derrida [19],
counting of these bulk spins was discarded by simulating
an ordered configuration. In this method, flips common
between the original (coarsening) system and the ordered
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Fig. 3. (a) Log-log plots of P vs. t, for quenches from dif-
ferent values of T; (>T.), to Ty = 0. Continuous lines there
correspond to power-law decays with exponents 0.22 and 0.04.
(b) Instantaneous exponents 6; are plotted vs. 1/¢, for the
quenches in (a), excluding T; = T, case. Here we have included
only the late time behavior. The dashed lines in this figure are
guides to the eyes. All results are from simulations in d = 2.

system were identified as part of bulk dynamics and thus
were subtracted from the total number of flips, to stay
only with the effects of boundary motion.

It is thought that persistence and domain growth are
not strongly connected to each other. Interestingly, differ-
ent behavior in Figure 2 for T > 0.257 and T < 0.257,
is strongly reflected in the domain growth also. Essentially
a faster early time growth is observed for T < 0.257.
This we will briefly discuss later.

In Figure 3a we show P vs. t plots, on a log-log scale,
for quenches to Ty = 0, from a few different values of Tj,
all for the same system size L = 512. It appears that, in
the long time limit, for T; > T, the decay is power-law,
with the same exponent 6 ~ 0.22. Crossover to this expo-
nent gets delayed as T; approaches T,. In the pre-crossover
regime, another power-law decay, with smaller exponent,
to be represented by 61, becomes prominent with the de-
crease of T;. Such a slower decay becomes ever-lived for
T; = T.. The exponent for the latter case will be denoted
by 90 [: 91 (Tz = TC)]
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In Figure 3b, we present the instantaneous exponent,
0;, calculated as [14,15]

o= )
dint

vs. 1/¢, with the objective of accurate quantification of the
second step of the decays for T; close to, but greater than,
T.. For the abscissa variable we have adopted 1/¢, instead
of 1/t, to visualize the long time limit better. This is due to
the fact that when plotted vs. 1/t, overall abscissa range
increases which makes appreciation of an extrapolation
difficult for the data sets corresponding to lower 7;. Within
statistical error, for all the presented temperatures, it ap-
pears that the values of 6 are consistent with that for the
quench from 7; = oo to Ty = 0. From this exercise we
conclude 6 = 0.225 £ 0.005.

Next we move to identify the exponent for T; = T, and
Ty = 0. In Figure 3a, it appears that the T; = T, data are
reasonably consistent with 6. = 0.04. Nevertheless, before
the final finite-size effects appear (showing flat nature at
very late time), there is a faster decay, albeit for a brief
period. This can well be due to the fact that for a finite
system, & is not infinite at T' = T, effectively implying
that the initial configurations are prepared away from 7.
Thus, in this problem, finite-size effects have two sources.
One coming from the finiteness of the equilibrium corre-
lation length, other being faced when the nonequilibrium
domain size is close to the system size. Thus, a quantifica-
tion of the exponent 6, via finite-size scaling [39] becomes
a challenging task. However, we appropriately take care
of the shortcoming below, in various different ways which
provide results consistent with each other.

In Figure 4a we show the instantaneous exponents 6;,
vs. 1/¢, with the objective of quantifying the first step
of the decays, for two values of T;, close enough to T..
As demonstrated, from the flat regions we identify the
exponent, f;, which exhibits T; dependence. These num-
bers are plotted in the inset of this figure as a function of
€ = T; — T,.. The continuous line there is a fit to the form

01(T;) = 0. + Ae”, (6)

providing 6. = 0.034, A = 0.15 and & = 0.54. Recall that
0. is the only decay exponent for T; = T.

To verify the above value of . further, in Figure 4b
we present an exercise with different system sizes. In the
main frame of this figure, we present P vs. t data, for
T; = T., from two different values of L. It is seen that
with the increase of the system size, there is a tendency
of the data to settle down to a power-law for a longer pe-
riod of time, following a marginally faster decay at very
early time. In the upper inset of this figure we show 6; vs.
1/¢ for three different system sizes with T; = T.. The early
time behavior appears linear, extrapolation of which leads
to 6. ~ 0.029. However, if the data in the main frame is
closely examined, as already mentioned above, this part
corresponds to the preasymptotic behavior, thus, should
be discarded from the analysis. Actual exponents should
be extracted from the flat regions of the plots. In these
plots of 6; vs. 1/¢, the flat portions appear very short. But
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Fig. 4. (a) Instantaneous exponents 6; are plotted vs. 1/¢ for
two of the quenches in Figure 3a. Here we have focussed on the
first step of the decays, exponents for which are obtained from
the flat regions, marked by the horizontal solid lines. These
values of 61 are plotted vs. ¢ = T; — T¢, in the inset of the
figure. The continuous line there is a power-law fit (see text).
(b) Plots of P vs. t, for two different system sizes, with T; = T,
and Ty = 0. The upper inset shows 6; vs. 1/¢ for three different
values of L, with T; = T.. The dashed line in this inset is
a linear extrapolation using data in the small ¢ region. The
L-dependent exponents, 0.(L), obtained from flat regions of
the plots (see the horizontal solid lines) are plotted vs. 1/L in
the lower inset. The solid line there is a linear fit. All results
correspond to d = 2.

the actual time (or length) range over which the flat be-
havior, before deviating due to finite-size effects, extends,
is reasonably long, say, a few hundred MCS for the largest
system size. The numbers obtained from these flat parts,
as discussed, differs due to the finite-size effects and thus,
should be extrapolated to L = oo appropriately. These
L-dependent values, 6.(L), are plotted in the lower inset
as a function of 1/L. A very reasonable linear fit (see the
solid line) is obtained, providing 6. = 0.(L = co0) = 0.035.
On the other hand, a nonlinear fit (by adding a quadratic
term) provides 6. = 0.037. From all these exercises we
conclude that 6. = 0.035 £ 0.005. This picture remains
true for quenches from 7 to nonzero values of T as well,
if thermal fluctuation effects are appropriately taken care
of. On this issue of thermal fluctuation, here, as well as for
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Fig. 5. Average domain sizes, {(t), are plotted vs. t, for
quenches to Ty = 0 from T3 = oo and T¢, in d = 2. The solid
line represents t'/2 behavior. Corresponding instantaneous ex-
ponents, vs. 1/t, are shown in the inset. All these results are

for L = 512. For «;, long time limit data, suffering from strong
finite-size effects, have been discarded.

T; = oo, our conclusions are based on studies with small
system sizes. The above quoted value is extremely close to
the conclusion from a recent study [35] of the same model
on triangular lattice. This implies, the lattice structure
plays insignificant role.

The decay of the previously mentioned two-time cor-
relation is also of power-law type. For quenches from
T; = T, the value of the exponent for this quantity in
d = 2 gets reduced by a factor ~10, compared to T; = co.
In the present case the reduction factor is ~6.3. While
there may be connection between the two phenomena,
but a search for matching between the two factors may
not be justified. As we will see, this reduction factor is
much smaller in d = 3, which is consistent with the corre-
sponding prediction for aging dynamics [34].

It is certainly relevant to ask, if, like the decay of the
persistence probability and the two-time correlation [33],
the growth of the average domain size also exhibits initial
temperature dependence. While it is expected [32-34,30]
that the long time behavior will be similar, there may
be difference at the transient level. For this quantity we
make direct examination only for the cases T; = oo and
T; = T, for quenches to Tt = 0. Conclusion drawn from
these cases will be indirectly shown to be true for other
T; values later.

In Figure 5 we present the ¢ vs. t plots for these two
cases, using a log-log scale. Both the data sets appear to
grow slower than t!/2, even if marginally. This can well
be due to the presence of significantly big initial length
{y, which we examine below. While from this figure it is
difficult to identify any difference in the growth exponent
between the two cases, there certainly exists visible differ-
ence in the finite-size effects, noting that L = 512 in both
the cases.

To learn better about the exponents, in the inset of
Figure 5 we present the instantaneous exponents [14,15]

_ dIn/

 dnt’ (7)

Qg
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with the variation of ¢. Here, while calculating «;, we have
subtracted ¢y which are ~2 and ~6.65, respectively, for
T; = oo and T,. This subtraction is meaningful, consid-
ering the fact that the pure scaling with respect to time
is contained in ¢ — {y. Calculation of «;, without such
subtraction, provided early time exponents much smaller
than the theoretical expectation for the conserved dynam-
ics [14]. This has previously been understood to be due
to the curvature dependent correction in small domain
size limit. Such confusion has recently been corrected [15].
Note that, there may be a delay time for a system to be-
come unstable following a quench. Thus, for an even more
appropriate understanding of a time dependent exponent,
the value of £y need not be treated as the length at ¢t = 0,
rather as the (fluctuating) length at which the system falls
unstable. Via finite-size scaling analysis, this was demon-
strated in a recent work [15]. Here, however, we do not
undertake such a task.

For the analysis related to the inset of Figure 5, the
value of £y, as mentioned above, was taken to be that of £
at t = 0. Thus, ¢y may be identified as € at T' = T;. Ques-
tion, however, may be raised that the value of £y should
then match the system size L for T; = T, since £ is of the
order of L at T,.. Note here that, at criticality fluctuations
exist at all length scales, giving rise to clusters of all possi-
ble sizes, the average, ¢y here, being much smaller than L.
These estimates, even though obtained as first moments of
the cluster size distributions, are also related to the decay
of the two-point correlation functions. The latter function,
at the critical point, has power-law decay. The exponential
part, that contains information on &, is unity at criticality
due to diverging value of . Our calculation of ¢y cannot
thus be directly related to &, particularly close to T..

First important observation from the inset of Figure 5
is that the value of «; approaches 1/2 from the upper
side. This fact remains true for 7 < 0.257¢, as previously
mentioned. This is in contrast with the corresponding be-
havior for the conserved order parameter dynamics with
T very close to zero [40]. In the latter case, the early time
dynamics provides a growth exponent much smaller than
the expected asymptotic value 1/3. Second, after ¢ ~ 5,
both the data sets practically follow each other, implying
no difference in the growth of ¢ almost from the beginning]!

From the length (or time) dependence of «;, one can
write

a; = a+ f(1/0), (8)

to obtain

a0
/az[1+ ) = ()

If f(1/¢) can be quantified accurately from the simulation
data, a full time dependence of ¢ is obtainable. E.g., if
f(1/0) is a power law, Az/¢% Ag being a constant, by
taking al® > Ag, one finds

(/e 1

In . 02308 (10)
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Assuming that a correction disappears fast, such that ¢ ~
t®, we obtain

o C
l~t exp( aﬂt‘lﬁ)’ (11)
C being a constant. Such full forms are useful for a finite-
size scaling analysis to accurately quantify the exponent
a. Tt appears that even for a power-law behavior of f(1/£),
the asymptotic behavior in the growth law can be reached
exponentially fast. Of course, from least square fitting ex-
ercise of the ¢ vs. t data also one can aim to obtain the
early time corrections. However, this method is more arbi-
trary. Often derivatives help guessing the functional forms
better. This full form with the exponential correction fac-
tor provided a good fitting to the simulation data from
which we obtain « within less than 2% deviation from the
expected number 0.5.

Before moving on to presenting results in d = 3, we dis-
cuss the issue of persistence again. The essential feature
in the initial configurations prepared at different tempera-
tures is the variation in the equilibrium correlation length
&. The basic question, prior to the study, one asks, how
does the value of ¢ affect the decay of persistence prob-
ability? For each value of £, do we have a unique expo-
nent describing the full decay? The answer, as we have
observed, is certainly not in affirmative. Essentially, the
decay exponent for T; = oo is recovered for all { (<oo) in
the long time limit. Only the crossover to this asymptotic
behavior gets delayed with the increase of £. It is then
relevant to ask if this crossover occurs when ¢ crosses &,
an expectation naturally occurs from renormalization or
coarse-graining point of view. Of course a confirmation on
this expectation can be obtained from scaling plots (see
below) of P(t) by invoking the critical singularity of &.
However, without detailed knowledge about the finite-size
effects of P and &, we take an alternative route, by ap-
propriately estimating the crossover length /., from the
available simulation data.

In the main frame of Figure 6a we show plots of persis-
tence from different values of T;, for quenches to Ty = 0.
Here the time axis is scaled by appropriate factors (pro-
portional to cross over time t.) to obtain collapse of data
in the asymptotic regime. Quality of collapse, on top of
the T; = oo data set, again confirms that 6 ~ 0.225
in the t — oo limit for all 7; (> T.). From the square
roots of these T; dependent scaling factors, one can ob-
tain ¢, (within a proportionality factor) which is expected
to scale as

be~E~e . (12)

Note that for the Ising model ¥ =1 in d = 2 and ~0.63
in d = 3. Considering that the T; = oo data have been
used as the reference case, it will be appropriate to fit the
data set for £. to the form ¢. — 1 = A.e™”, since (for the
current method of estimation) ¢, — 1 for T; = co. Unless
we are very close to T, such additional term cannot be
neglected. In the inset of Figure 6a we have plotted ¢, —1
as a function of €, on a log-log scale. The data set (cir-
cles) appear consistent with » = 1. When /.. is extracted
from t., a more careful exercise requires incorporation of ¢,


http://www.epj.org

Page 6 of 9
Qe
_o LI I T -
101 -
o i 1
A - =il
- O =25 b
S =24
A =235
01 -
r (a) Coap
FEEERTTTY B SRR ETITT BT RTTTT B ETRETITT M ERTT |
10° 10" 10 10° 0% Jt] 0°
1-6_ L
- ]
500 3
s | |
< 1.4f .
O o ]
5 [p ]
1oLo 16— ]
Iy |
LO i
4| ]
- U T;=2.35" 1
i e |
? 0'8%.61 10 20 (b) ]
PSR S R S S T N S S SR S SR R
0'80 10 20

30 4/, 40

Fig. 6. (a) Scaling plot of persistence probability versus t/t.
where the crossover time (to the asymptotic behavior) t. has
been used as an adjustable parameter to obtain optimum data
collapse. Inset: plots of £. — 1 vs. e. The circles correspond
to estimates of /. from t., the squares are directly obtained
from the scaling plots of P vs. £/f.. The solid line has d = 2
Ising critical divergence of correlation length. All results were
obtained using I = 512 in d = 2. (b) Plots of P(t)(£/.)*, 6
being set to 0.225 (see Fig. 3b), vs. the scaled variable ¢/¢.,
for several values of T;, using linear scale. Inset: same as the
main frame but on a log-log scale and only for 7; = 2.35.
The continuous line there is a fit to equation (13) (see text for
details).

and growth amplitude for each T;. To avoid this problem,
we have also obtained /. directly from the scaling plots
of persistence data vs. £/, (see this exercise in Fig. 6b).
These values of /. are represented by squares. Both data
sets appear nicely consistent with each other. Least square
fittings of these data sets provide v ~ 0.95.

As mentioned above, in Figure 6b we show scaling plots
of the persistence probability as a function of ¢/¢., for
three values of T;. There, in the ordinate, P(t) has been
multiplied by (£/£.)??, the factor 2 in the exponent coming
from the expectation that o = 1/2 for all values of T;. For
0, we use 0.225, the value we obtained from the analysis
in Figure 3b. The regions of the data sets that suffer from
finite-size effects have been carefully discarded. The nice
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collapse of the data and flat behavior in the long time
limit reconfirm the following facts: o = 1/2 for all values
of T; and, for £ > £, ~ &, in all cases, P(t) decays as t 7.

It will be interesting to extract the crossover behavior
from the transient (first step) to the asymptotic (second
step) decay. For this purpose, in the inset of Figure 6b
we have plotted the T; = 2.35 data set on a log-log scale,
for better visibility of the early time regime. In critical
phenomena, in the finite-size scaling analysis of simula-
tion results [41,42], there have been long standing interest
in obtaining such crossover functions involving thermody-
namic and finite-size limit behaviors. There typically one
aims to identify if these two limits are bridged by a power-
law or by an exponential function. Along the same line we
write

P(t)z?® = (13)

For an exponential convergence to the asymptotic behav-
ior we write

By
9(x) 1+ By exp(Bax)’ (14)
and for a power-law one
Co
= ) 1
9@ = o (15)

In the limit  — 0, P(t)z?’ ~ 2%, for both the forms of
g(x). This limiting behavior was set by considering the
fact that for £ < &, there exist a power-law decay in P(t)
with an exponent 6;, different from 6. For T; = 2.35, this
value is 6; = 0.073 (see Fig. 4a). In that case ¢ ~ 0.304,
taking @ = 0.225. The constant A in equation (13) sets
the value of the plateau in the plots of Figure 6b, since for
r — oo, P(t)z%% — A. It appears that fit to the power-law
form of g(x) looks better and is best for the integral value
1) = 2. Other best fit parameters are A = 1.52, Cy = 3.52
and C7 = 0.033. The correctness in the value of A can
straightway be checked from the figure. The continuous
line in the inset of Figure 6b represents the corresponding
full function of equation (13). It will be interesting to see if
such empirical full form can be confirmed via first principle
analytical calculations.

32d=3

In this subsection we explore d = 3. The important
facts being discussed in the previous subsection, here we
straightway present the results. Noting that nothing re-
markable happened for domain growth in the lower dimen-
sion, we do not present any direct results for this aspect.
However, remarks will be made from indirect analysis.

In Figure 7 we show the P vs. t plots for quenches from
T; = oo and T; = T, keeping Ty = 0 in both the cases.
For each value of T}, results from two different system sizes
are presented. The data for T; = oo are consistent with
6 = 0.18, reported previously [20]. Thus, here we aim to
accurately quantify the value of 6. only.
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Fig. 7. Plot of P vs. t, for quenches from T; = oo and T; = T,
to Ty = 0. In each of the cases, results from two different system
sizes are included. The solid lines have power-law decays with
exponents 0.1 and 0.18; as indicated on the figure. All results
correspond to d = 3.
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Fig. 8. Instantaneous exponents 6; are plotted vs. 1/¢, for
quenches from T; = T, to Ty = 0 in d = 3. Results from
different values of L are included. The horizontal solid lines are
related to the estimation of L-dependent 0.. Inset: system size
dependent 6. are plotted as a function of 1/L. The continuous
line there is a linear fitting (see text for details).

Even though, for T; = T,, data from both the system
sizes in Figure 7 look consistent with each other, finite-
size effects are detectable from a closer look. In the main
frame of Figure 8 we plot 6; versus 1/ for a few different
values of L. Like in d = 2, from the flat regions we identify
system size dependent 6., a plot of which is shown in the
inset of this figure. Again, the 6.(L) vs. 1/L data exhibits
a reasonable linear trend and an extrapolation to L = oo
provides 0. = 0.(L = o) ~ 0.106.

Similar to d = 2, for T, < T; < oo, two step decays
exist in d = 3 as well. In the main frame of Figure 9a
we have demonstrated the estimation of 0y corresponding
to the first step, for two representative values of T;. In
the inset of Figure 9a we have plotted these exponents
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Fig. 9. (a) Estimation of 6 corresponding to the first step of
decay is demonstrated in d = 3. Inset: exponent 6; is plotted as
a function of ¢, in d = 3. The continuous line is a non-linear fit-
ting. Further details are provided in the text. Presented results
are for L = 256. (b) Scaling plot of P vs. £/{., in d = 3, for
L = 128. The solid line has a power-law decay with exponent
0.54. Inset: plot of £. — 1, in d = 3, vs. €. The solid line there
has d = 3 Ising critical divergence of £&. We have presented
results for L = 128 (circles) as well as L = 256 (squares).

as a function of e. A fit of this data set to the form in
equation (6) provides 0;(T; = T.) = 0. = 0.103, A = 0.074
and x = 0.47. Note the similarity in the values of x in
d = 2 and 3. This value of 6. is in good agreement with
the one obtained from Figure 8. In d = 3, we quote 6, =
0.105+0.005. Thus, the effect of growing correlation length
in the initial configurations certainly appears weaker in
this space dimension. Even though, in both d = 2 and 3,
fits to the power-law form in equation (6) appear good,
due to the similarity of the values in different dimensions,
x cannot be connected to any of the other exponents, v
and «, used in this paper, in a simple way. In this work,
thus, we treat this exercise only as a reasonably accurate
numerical analysis whose validity is justified by the fact
that the derivatives of the corresponding simulation data
sets, with respect to €, in both dimensions, provide linear
looks on double-log plots.
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using linear scale. Inset: Log-log plot of P(t)(¢/£.)% vs. £/¢.
for T; = 4.6. The continuous line is a fit to the function in
equation (13). Further details are provided in the text.

In Figure 9b we show scaling plots of P vs. /¢, using
data from different values of T;, with L = 128. Collapse of
data is again good. The late time behavior is power-law
and is consistent with a decay exponent 0.54. Considering
that 0 ~ 0.18 in d = 3, this implies &« = 1/3 in d = 3. The
nice collapse of data sets in Figure 9b, for all values of T},
implies the initial configuration independence of this ex-
ponent. As stated in reference [43], deviation of «, in this
dimension, from 1/2, is not yet understood. To avoid this
fact, as well as to get rid of the influence of T; dependent
lo and growth amplitude, we have obtained ¢, from these
plots only and no attempts have been made to extract it
from scaling plots vs. t/t.

In the inset of Figure 9b we plot /. — 1 as a func-
tion of €, on a log-log scale, for two different system sizes.
The divergence of the length scale is consistent with a
power law exponent 0.63 which is the critical exponent for
¢ in d = 3. The deviation from this exponent at smaller
values of € is due to finite-size effects. It is clearly seen
that for the bigger system (L = 256) the effects are much
less pronounced. Note that in d = 3 it is extremely time
consuming to deal with bigger systems, including initial
configuration preparation at T; = T.. To save time for
the preparation of initial configuration, in this dimension
we have used a combination of Wolff algorithm [44] and
Glauber kinetics. In both d = 2 and 3, behavior of /., as
a function of €, have been analyzed for T; values deviating
by maximum of 10% from T.

An exercise similar to Figure 6b is shown in Figure 10,
for d = 3. In this case the exponent on the ordinate is
36, instead of 26. This is due to a different value of « in
the present dimension. Here also we see nice collapse for
all the three sets of data we have presented. In the inset
we do the exercise related to the crossover function, using
T; = 4.6 data set. Here the value of ¢ was set to 0.17,
in accordance with the first step of the decay. Again a
power-law form of g(z) with the integral value of ¢ = 2

Eur. Phys. J. B (2015) 88: 160

provides best fit, with other parameters being A = 1.76,
Cy = 12.46 and C; = 0.055. Corresponding full function
is represented by the continuous line in the inset.

In both d = 2 and 3, expectation from coarse-graining
point of view that when ¢ exceeds the value of £(T3), P(t)
decays with the exponent #, has been confirmed. In the
present case, the value of £ at T is zero. It remains to be
seen how &(T), for Ty # 0, interferes with the crossover.
Even though we have studied cases where both £(7;) and
&(Ty) are nonzero, this particular aspect requires more
careful study.

4 Conclusions

In conclusion, we have studied phase ordering dynamics in
Ising ferromagnets for various combinations of initial (77;)
and final (Ty) temperatures in d = 2 and 3. In this work,
the primary focus has been on the persistence probability,
P, and its connection with the growth of average domain
size, ¢, as well as with the equilibrium initial correlation
length &.

Our general observation has been that, irrespective of
the value of T;, the decay of P becomes faster with the
increase of T, after a certain critical number for the latter.
This is understood to be due to spins affected by thermal
fluctuations. When this effect is taken care of [19], the long
time decay appears to be power law with exponent [20,21]
consistent with the one for quench to 7 = 0.

As T; approaches T., two-step power-law decay be-
comes prominent, the second part having exponent 6 ~
0.225 in d = 2 and ~0.18 in d = 3, same as T; = co and
Ty = 0 case. For T; = T, thought to provide a new uni-
versality class, the first part of the two-step process lives
for ever. The corresponding values of the exponent have
been identified to be 6. ~ 0.035in d = 2 and 6. ~ 0.105 in
d = 3. Thus the decay of persistence probability is strongly
connected with the initial correlation length. It has been
shown that the crossover length to the second step of decay
diverges as the equilibrium correlation length in both the
dimensions. This leads to the question of difference in the
fractal dimensions in the pre- and post-crossover regimes.
Our preliminary study in this respect confirms the expec-
tation that, for finite 75, in the post-crossover regime only
the fractal dimension is same as the T; = oo case. We
have also estimated the crossover function between the
two steps. It appears, a convergence to the asymptotic
decay occurs in a power-law manner, as a function of ¢/¢.

We have not observed any initial configuration depen-
dence of the growth of the average domain size. This is
consistent with a previous study [36] but more explic-
itly demonstrated here. Essentially, even the transients are
only weakly affected due to change in initial temperature.
However, stronger finite-size effects are detected for lower
values of T;. For domain growth, a striking observation
is that the early time exponent is much higher than the
asymptotic value, despite T’y being zero. This is at vari-
ance with the conserved order parameter dynamics. These
are all interesting new results, requiring appropriate the-
oretical attention.
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In future we will focus on persistence for the con-
served order parameter dynamics. For the conserved dy-
namics, initial temperature dependence of aging and do-
main growth are also important open problems.
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