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Abstract 

The ‘language’ of covalent histone modifications translates environmental and cellular cues 

into gene expression. This vast array of post translational modifications on histones are more than just 

covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals 

are relayed. The reversible lysine acetylation has emerged as an important post translational 

modification of both histones and non-histone proteins, dictating numerous epigenetic programs 

within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is 

essential for the development of epigenetic therapeutics. In this review, we will attempt to address the 

complexity of lysine acetylation in the context of tumorigenesis, their role in cancer progression and 

emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment. 
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Abbreviations and Acronyms 

AA Anacardic Acid 

AML Acute Myeloid Leukemia 

AML1-ETO Acute Myeloid Leukemia1-Eleven Twenty One 

AP-1 Activator Protein-1 

AR Androgen Receptor 

ATM Ataxia Telangiectasia Mutated 

CBP CREB -binding protein 

CTCL Cutaneous T-cell lymphoma  

DNA Deoxyribonucleic acid 

DNMT DNA methyltransferase 

ECM Extracellular matrix 

ERK1 Extracellular signal-regulated kinase 
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ESCC Esophageal Squamous Cell Carcinoma 

GCN5 General Control Non-derepressible5 

GNAT GCN5-related N-acetylatransferase 

GOF Gain of Function 

HAT Histone Acetyltransferase 

HBO1 HAT bound to ORC1 

HCC Hepatocellular Carcinoma 

HIF1α Hypoxia-inducible factor 1α 

HMG High Mobility Goup 

HNSCC Head and Neck Squamous Cell Carcinoma 

HPV Human Papilloma Virus  

KAT Lysine Acetyltransferase 

KDAC Lysine Deacetylase 

LOH Loss of Heterozygosity  

MDR1 Multi Drug Resistance 

MLL Mixed-lineage Leukemia 

MOF Males absent On First 

MORF MOZ-related factor 

MOZ Monocytic Leukemia Zinc-finger protein 

MYST MOZ, Ybf2, Sas2, TIP60  

NPM1Nucleophosmin 

NF-κB Nuclear factor ĸB 

NOS Nitric Oxide Synthase 

NSCLC Non-Small Cell Lung Carcinoma 
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PCAF p300/CBP-associated factor 

PTM Post Translational Modification 

SMAD Sma and Mad (Mothers against decapentaplegic) 

SIRT1 Sirtuin 1 

STAGA SPT3-TAF9-GCN5 acetyltransferase 

STAT3 Signal Transducer and Activator of Transcription 3 

TIF2 Transcription Intermediary Factor 2  

Tip60 HIV1 Tat interacting protein 
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1. Introduction 

Internal and external environmental cues are translated into cellular responses via the 

modulation of differential gene expression. The extensive repertoire of post translational 

modifications (PTMs) on histone as well as non-histone proteins, aid in the integration of these 

various stimuli leading to distinct gene expression profiles. These modifications often dictate 

important cellular events such as gene expression, replication, cell cycle, DNA damage response, cell 

signaling pathways and metabolism. PTMs such as phosphorylation, N-terminal acetylation, 

methylation, sumoylation, ubiquitination, propionylation, butyrylation, carbonylation, neddylation, 

proline isomerization and ADP ribosylation regulate the diverse protein functions (Kouzarides, 2007; 

Lee et al., 2010). In addition to these, N--lysine acetylation has been identified to play a pivotal role 

in various cellular processes and is known to be key modification involved in the manifestation of 

patho-physiological conditions such as tumorigenesis. 

 Lysine acetylation is the transfer of an acetyl group from Acetyl Coenzyme A (acetyl-CoA) 

to the ɛ-Nitrogen on the lysine residue. The dynamics of acetylation is regulated by lysine 

acetyltransferases (KATs) which are the ‘writers’ of this modification and lysine deacetylases 

(KDACs), the ‘erasers’ of acetylation (Figure 1). Lysine acetylation of histones neutralize the 

positive charge on the lysine residue and loosens the chromatin, this in turn  facilitates the  access of 
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protein machineries involved in replication, transcription or DNA repair, onto the DNA template 

(Capell and Berger, 2013; Unnikrishnan et al., 2010; Vo and Goodman, 2001). Lysine acetylation has 

been associated with chromatin architecture (Shogren-Knaak et al., 2006), DNA repair (Chatterjee et 

al., 2012) , protein stability and protein-protein interaction (Kouzarides, 2007), and has emerged as 

the ubiquitous post-translational modification that is found across the entire proteome (Choudhary et 

al., 2009; Zhao et al., 2010). The extensive presence of lysine acetylation on proteins involved in a 

range of cellular functions emphasizes the importance of the modification in the maintenance of 

cellular homeostasis. The first global acetylome analysis was accomplished by Choudhary et al., in 

which 3600 acetylation sites were identified on 1750 proteins, which were distributed across the 

different compartments of the cell and were not confined to the nucleus (Choudhary et al., 2009). 

Currently, public repositories such as phosphositeplus database show over 35,000 acetylation sites in 

human cells (Hornbeck et al., 2012).  

Several proteins have been identified as lysine acetyltransferases. KATs are mainly classified 

into two groups depending on their cellular localization and the ability to acetylate chromatinized 

histones. Type-B KATs are predominantly located in the cytoplasm and acetylate histone H4 on 

lysine-5 (-K5) and lysine-12 (-K12) on nascent histones. Type-A KATs are nuclear KATs which can 

acetylate histones incorporated into chromatin. The major families of KATs are GNAT (GCN5-

related N-acetylatransferase) family, p300/CBP (KAT3) family and MYST (MOZ, Ybf2, Sas2, and 

TIP60) family which will be discussed in details in Section 3. Apart from these, two other KAT 

families exist, which belong to transcription factor-related KATs and nuclear receptor family of 

KATs. The KDACs are broadly  classified as the classical KDACs consisting of Class I (homologs of 

yeast Rpd3, which comprises of KDAC 1,2,3 and 8), Class II (homologs of yeast Hda1, which 

comprises of KDAC 4,5,6,7,9,10) and Class IV (KDAC 11) and NAD
+ 

-dependent Class III KDACs 

or Sirtuins which resemble yeast Sir2. KDACs have been implicated in many diseases and they play 

an active role in the progression of cancer (Falkenberg and Johnstone, 2014).  

Lysine acetylation is ‘read’ by specialized protein domains which can specifically bind to the 

acetylated lysine residue. These are bromodomains (BrD), tandem plant homeodomain (PHD) and the 

YEATS domain (Dhalluin et al., 1999; Li et al., 2014; Zeng et al., 2010). Bromodomains are the 

protein domains that contain an evolutionally conserved structural fold, ‘BrD fold’, consisting of a 

left-handed four-helix bundle motif that specifically recognize ɛ-N- lysine acetylation modification of 

proteins (Dhalluin et al., 1999). The tandem PHD domain consists of two typical PHD fold, each fold 

comprises of two-strand anti-parallel β-sheet and an α-helix stabilized by two zinc atoms, placed in 

tandem (Zeng et al., 2010). The YEATS domain of AF9 protein specifically recognizes H3K9 

acetylation. The domain acquires an eight-strand immunoglobin fold and the acetyl-lysine is 

recognized by a serine-lined aromatic cage (Li et al., 2014). The acetyllysine moiety on histones and 

non-histone proteins serve as docking sites for effector-proteins possessing these ‘reader’ domains, 
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which recognize specific acetylation patterns leading to the downstream readouts and resulting in 

various cellular signaling cascades. Thus, it is not unlikely to find that BrDs play a role in the 

perturbation of transcription programs in different malignancies. Details of KDAC and BrD inhibitors 

are beyond the scope of this review; they have been extensively reviewed in excellent articles 

previously (Falkenberg and Johnstone, 2014; Filippakopoulos and Knapp, 2014; Ropero and Esteller, 

2007; You et al., 2012).  

In this review, we will attempt to summarize the function of acetylation in the manifestation 

of malignancies, emphasizing on their role in inflammation and the maintenance of cancer stem-like 

cells. Here, we will also highlight the physiological functions of KATs, while giving an insight about 

their roles in the progression of cancer. Finally, we will discuss the achievements and drawbacks of 

epigenetic therapeutics targeting the lysine acetylation modification and the contribution of these 

small molecules to the field of anti-neoplastic drug development. 

2. Lysine Acetylation in Cancer 

2.1. The Role of Aberrant Histone Acetylation in Cancer Manifestation 

Histone acetylation is well characterized in the context of gene regulation and global levels of 

many distinct histone marks have been mapped in cell lines, human and mouse tissues, allowing for 

the correlation of their presence or absence to gene expression or repression. Many studies have also 

correlated alterations in histone acetylation as potential diagnostic or prognostic biomarkers in human 

diseases such as cancer (Struhl, 1998). 

H4K16ac is an important histone acetylation mark which regulates chromatin higher order 

structures. In mouse ESCs, acetylation on H4K16 marks active enhancers and is involved in 

transcription regulation (Taylor et al., 2013). H4K16ac, along with H4K20me3, is often lost in 

cancers and is considered a universal hallmark for malignant transformation (Fraga et al., 2005).  

Alteration of histone acetylation patterns is also predictive of prognosis and recurrence, as in the case 

of prostate cancer, where hypoacetylation of histone H3 at K9, K18 and H4K16 strongly correlates 

with cancer recurrence (Seligson et al., 2005). While elevated global histone hyperacetylation 

correlates with oral cancer manifestation (Arif et al., 2010). Loss of H4K16ac in breast cancer may 

serve as an early sign of cancer, and low levels of H3K9ac, H3K14ac and H4K12ac are prognostic of 

poor outcomes (Elsheikh et al., 2009). In non-small cell lung carcinoma (NSCLC), the reduction in 

H3K9ac is predictive of better survival while contrastingly, hypoacetylation at H2AK5 is correlated 

with poor prognosis (Barlesi et al., 2007). In another study, hyperacetylation of H4K5, H4K8 and 

hypoacetylation of H4K12, H4K16 correlated with the progression of NSCLC (Van Den Broeck et 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 | P a g e  
 

al., 2008). Loss of H3K9 and K18 acetylation is predictive of better prognosis in glioma (Liu et al., 

2010). The low levels of H3K18ac correlates with better survival in esophageal squamous cell 

carcinoma and poor survival in pancreatic adenocarcinoma patients (Manuyakorn et al., 2010; Tzao et 

al., 2009). The globular histone acetylation mark, H3K56ac, is often upregulated in cancers and 

undifferentiated cells (Das et al., 2009).  

The alteration in the epigenetic landscape is an important hallmark in cancer progression and 

the dysregulation of histone acetylation patterns is a critical prognostic marker of the disease outcome. 

Thus, the gross deregulation of the epigenetic machinery justifies the necessity of epigenetic-based 

therapeutics. Table 1 summarizes the alteration of global histone acetylation marks in cancer.     

2.2. The Role of Non-Histone Protein Acetylation  

Lysine acetylation is a reversible, dynamic modification, providing functional diversity to 

proteins. The acetyltransferases that acetylate histones are also capable of acetylating non-histone 

proteins, hence termed lysine acetyltransferases (KATs). Lysine acetylation of target proteins can 

have varied consequences to the function of the modified protein. Mechanistically, addition of an 

acetyl group neutralizes the positive charge, changing the electrostatic property and size of the 

residue, leading to different and often opposing functions in proteins.  

Acetylation can lead to increase in DNA binding affinity of transcription factors such as p53, 

STAT3, E2F1 (Gu and Roeder, 1997; Martinez-Balbas et al., 2000; Marzio et al., 2000; Yuan et al., 

2005), this in turn could lead to increase in transactivation and gene expression by these proteins. 

Alternatively, acetylation could also decrease the DNA binding ability of certain proteins such as 

YY1, RelA, HMG proteins (Kiernan et al., 2003a; Lührs et al., 2002; Munshi et al., 1998; Yao et al., 

2001). Acetylation can increase the transactivation potential of proteins such as AR, GATA proteins, 

MyoD (Boyes et al., 1998; Fu et al., 2000; Gaughan et al., 2002; Hayakawa et al., 2004; Polesskaya et 

al., 2000; Sartorelli et al., 1999; Yamagata et al., 2000), but acetylation can also decrease 

transactivation potential of other proteins such as ERα, and HIF1α (Jeong et al., 2002; Wang et al., 

2001). Protein stability can be increased on acetylation, by blocking ubiquitination of the same lysine 

residues, which will target the protein for proteosomal degradation, this has been observed in p53, c-

Myc, Smad7 (Grönroos et al., 2002; Ito et al., 2002; Patel et al., 2004), contrastingly, acetylation of 

some proteins can decrease their stability, like acetylated DNMT1 has reduced stability and gets 

proteosomally degraded (Du et al., 2010). Protein acetylation can create new surfaces for interaction 

with other proteins, for example, acetylation of Importin-α at a single residue can promote its 

interaction with Importin-β enhancing nuclear import of HuR (Bannister et al., 2000; Wang et al., 

2004). Conversely, acetylation can disrupt protein-protein interactions, as seen in the case of proteins 

such as Ku70, Hsp90 (Cohen et al., 2004; Kovacs et al., 2005). Another interesting regulatory 
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phenomenon mediated by acetylation is the sub-cellular localization of proteins. SRY protein gets 

localized to the nucleus upon acetylation and consequently interacts with Importin-β (Thevenet et al., 

2004), c-Abl acetylation leads to its nuclear to cytoplasmic delocalization (di Bari et al., 2006). 

Acetylation of the histone chaperone NPM1 leads to change in its localization from the nucleolus to 

the nucleoplasm leading to RNA Polymerase II-mediated transcription co-activation (Shandilya et al., 

2009). Recently, β-catenin acetylation has been implicated in its increased membrane localization 

(Iaconelli et al., 2015). Acetylation of certain enzymes can alter their enzymatic activity; p300 

autoacetylation enhances its acetyltransferase activity (Thompson et al., 2004), acetylation of ATM 

kinase by Tip60 increases its kinase activity (Sun et al., 2005) on the other hand, KDAC1 acetylation 

can lead to dampening of its deacetylase activity (Qiu et al., 2006), similarly, acetylation of PTEN 

reduces its phosphatase activity (Okumura et al., 2006).  

In summary, through these abundant mechanisms, acetylation of non-histone proteins has 

been implicated in varied processes such as transcription, signaling, DNA repair, DNA replication, 

cell cycle regulation, viral pathogenesis, metabolism, differentiation and development, cytoskeletal 

dynamics, mRNA stability, autophagy, apoptosis and many more (Glozak et al., 2005; Singh et al., 

2010; Spange et al., 2009). Deregulation of these cellular processes upset the homeostatic balance of 

the cell, which is a hallmark of diseases such as cancer. Thus, numerous reports exist in current 

literature, correlating the acetylation of non-histone proteins to cancer. Table 2 summarizes a few 

non-histone protein acetylations implicated in cancer manifestation.  

2.3. Lysine Acetylation, Inflammation and Cancer 

Inflammation refers to the set of symptoms including redness, swelling, heat and pain 

(cardinal signs) that is observed after innate immune response to infection, injury or irritation. The 

link between inflammation and cancer is now well established. Inflammation alone however does not 

lead to cancer, many factors including genetic and epigenetic factors, suppressed immunity and 

environmental agents are players in the genesis of inflammatory cancers (Schottenfeld and Beebe-

Dimmer, 2006). Chronic inflammation occurs when immune cells get activated to produce excessive 

pro-inflammatory molecules, leading to prolonged inflammation. This creates severe and progressive 

tissue injury and fibrosis, creating a microenvironment conducive to the development of malignancies 

(Aggarwal et al., 2006). 

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is an important and 

ubiquitous, pro-inflammatory transcriptional regulator and can be constitutively activated in the 

absence of external factors. In addition, NF-κB has emerged as a key transcription factor in chronic 

inflammation-driven initiation and progression of cancer (DiDonato et al., 2012; Hoffmann et al., 
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2006; Karin, 1999; Sethi et al., 2008; Sethi and Tergaonkar, 2009; Shanmugam and Sethi, 2013). The 

NF-κB family of proteins is actually a group of structurally similar proteins. In mammals, these are; 

NF-κB1/p50, NF-κB2/p52, RelA/p65, RelB, and c-Rel.  NF-κB exists as a heterodimer and is present 

in the cytoplasm in association with IκBα. Numerous physiological, environmental and stress factors 

have been shown to activate NF-κB in the cells (Sethi et al., 2008). Upon stimulation, IκBα and NF-

κB are predominantly phosphorylated by their upstream kinase IKKα/β, this subsequently leads to 

rapid polyubiquitination and degradation of IκBα. The free phosphorylated NF-κB subsequently 

translocates to the nucleus and initiates transcription of genes that encode cytokines, chemokines, 

angiogenic factors which play roles in continuous tumor cell proliferation, survival, invasion and 

metastasis (Sethi et al., 2012; Sethi and Tergaonkar, 2009).  

Just like the histone code, there seems to be an ‘NF-κB signaling code’ where many 

components of the NF-κB pathway and associated molecules are regulated by post translational 

modification in a stimulus responsive manner (Calao et al., 2008). 

Chromatin-associated  mechanisms such as chromatin remodeling, co-activator recruitment or 

deposition of positive histone marks (histone acetylation) and removal of co-repressors or negative 

histone marks play important roles in NF-κB mediated inflammatory gene expression (Reviewed in 

(Bhatt and Ghosh, 2014)). NF-κB associates with co-activators through the transactivation domain. 

The most well studied association is that of the RelA subunit. In non stimulated conditions, RelA 

interacts with KDAC complexes to keep the inflammatory genes repressed, but upon inflammatory 

signals, RelA is phosphorylated at Ser276 by many kinases. This event promotes the interaction of 

RelA with KAT3 and causes transactivation of the NF-κB responsive genes through histone 

acetylation (Chen et al., 2005; Dong et al., 2008; Gerlo et al., 2011; Mukherjee et al., 2013; Nihira et 

al., 2010; Vermeulen et al., 2003; Zhong et al., 2002; Zhong et al., 1998). Moreover, acetylation of 

RelA itself at Lysine 310 by KAT3, directs its interaction towards Tip60, Brd4, P-TEFb implicating 

this modification in transactivation. Brd4 can also recruit PTEF-B, which phosphorylates the CTD of 

Pol II , leading to successful transcription elongation (Barboric et al., 2001; Brasier et al., 2011; 

Hargreaves et al., 2009; Huang et al., 2009; Kim et al., 2012; Luecke and Yamamoto, 2005; Sharma 

et al., 2007). Conversely, SIRT1 deacetylates RelA at Lysine 310 and decreases its transactivation 

potential (Yeung et al., 2004).  

Importantly, constitutive activation of NF-κB is often observed in chronic inflammation-

driven cancers. The importance of the acetylation of RelA for constitutive activation of NF-κB can be 

inferred from a study in leukemia cells, where KDACi treatment led to the accumulation of acetylated 

RelA in the nucleus and constitutive NF-kappaB activation (Dai et al., 2005). 
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Acetylation of RelA is also associated with IκBα assembly in the cytoplasm, its subcellular 

localization, and subsequently targets NF-κB translocation to the nucleus and regulates NF-κB DNA 

binding affinity (Chen and Greene, 2003). Also, acetylation of RelA by p300 and PCAF at K122 and 

K123 decreases its affinity towards NF-κB binding DNA elements. Deacetylation of RelA by KDAC3 

leads to its IκBα mediated nuclear export and a replenished pool of NF-κB in the cytoplasm, ready for 

the next activation signal (Chen Lf et al., 2001; Kiernan et al., 2003b). 

The p50 subunit also gets acetylated at K431, K440 and K441 by p300 which augments the 

NF-κB transcriptional activation (Deng and Wu, 2003; Deng et al., 2003; Furia et al., 2002).  

Some of the IKK complex proteins which are cytoplasmic can shuttle to the nucleus and can 

recruit KATs and KDACs. The NF-κB pathway upstream kinase IKKα, upon TNFα induction, is 

recruited to NF-κB dependent promoters where it can associate with CBP. This leads to a concerted 

H3S10 phosphorylation and H3K9 and H3K14 acetylation and activation of pro-inflammatory genes. 

IKKα can also promote RelA phosphorylation and also its acetylation by CBP at certain promoters. 

Cigarette smoke is known to induce pro-inflammatory gene transcription, interestingly; IKKα has 

been shown to mediate this effect through the concerted phosphorylation and acetylation of H3 as 

well as RelA (Gloire et al., 2007; Hoberg et al., 2006; Lubin and Sweatt, 2007; Yamamoto et al., 

2003; Yang et al., 2008). The regulatory subunit of the IKK complex, IKKγ/NEMO can interact with 

CBP in the nucleus, it competes with RelA and IKKα for this interaction and can thus repress CBP 

induced transcriptional activation through RelA or IKKα (Verma et al., 2004). 

 IκBα is generally known as the inhibitor of NF-κB in the cytoplasm, but this protein can also 

shuttle to the nucleus and can repress non classical NF-κB target genes, like hes1 by recruiting 

KDACs to their promoters (Aguilera et al., 2004). 

Another protein, Poly (ADP-ribose) polymerase-1 (PARP-1) associates with NF-κB in 

chronic inflammation-driven diseases and is a promoter specific co-activator of NF-κB in vivo 

(Aguilar-Quesada et al., 2007; Hassa et al., 2003). It has been also reported that p300 can acetylate 

PARP-1 at specific lysine residues in a variety of cell lines and can also directly interact with p50 and 

RelA leading to synergistic activation of NF-κB in these cell lines (Hassa et al., 2005).  

STAT family of proteins is another important class of transcription factors which mediate 

inflammatory responses. STAT1, 2, 3, 5 and 6 have all been shown to be acetylated by KAT3 proteins 

(Krämer et al., 2006; Ma et al., 2010; McDonald and Reich, 1999; Ray et al., 2005; Tang et al., 2007; 

Wang et al., 2005; Yuan et al., 2005) STAT3 gets acetylated by KAT3 at K685, which enhances its 

protein-protein interaction, dimerization, DNA binding affinity and transcriptional activity. This 

phenomenon can be reversed by deacetylase KDAC3, leading to loss of STAT3-DNA binding and 
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suppression of transcription  (Yuan et al., 2005) (reviewed extensively in (Icardi et al., 2012) and 

(Zhuang, 2013)). In hepatocellular carcinoma (HCC) Hep3B cells and in HEK293T cells, Ohbayashi 

et al. showed that IL-6 or leukemia inhibitory factor induced STAT3 acetylation at lysine K685. 

However, this was abolished by PI3K inhibitor, LY294002 (Ohbayashi et al., 2007). Numerous 

studies have shown that cytokines mediate acetylation of STAT3, while inhibitors of deacetylases 

have also been implicated in rapid acetylation of STAT3. In diffuse large B-cell lymphoma (DLBCL) 

KDAC inhibitor LBH589 hyperacetylates STAT3 and inhibits its transcriptional activity (Gupta et al., 

2012). In another interesting study it was observed that persistently activated STAT3 positively 

regulated NF-κB acetylation by p300. The cross-talk between constitutively active STAT3 and NF-κB 

was essential for driving tumorigenesis (Lee et al., 2009). It was also found that acetylated STAT1 has 

a cross-talk with NF-κB (RelA) and negatively regulates NF-κB activation in various tumor cells 

(Krämer et al., 2006). Thus, acetylation and deacetylation reaction constitute a novel signaling 

mechanism that regulates IL-6/STAT pathway in cancer. 

Furthermore, the innate immune response activated by toll like receptors (TLRs) in response 

to lipopolysaccharide (LPS) often leads to chronic inflammation. Stimulation of TLRs induce the 

expression of mitogen activated protein kinase (MAPK) phosphatase-1 (MKP1) which when 

acetylated at K57, dephosphorylates p38 MAPK and c-Jun N-terminal kinase (JNK) resulting in 

attenuated production of pro-inflammatory cytokines .  

Thus, it is evident that reversible acetylation of NF-κB pathway members and histones plays 

an important role in regulating inflammation specific gene expression. The critical role of lysine 

acetylation in regulating inflammation-associated cancer signaling pathways is depicted in Figure 2.  

2.4. Lysine Acetylation in Cancer Stem Cells Maintenance 

Cancer progression from an initiating tumor to an aggressive metastasis requires the cancer 

cells to acquire various cellular properties; these properties can enable cancer cells to invade and 

metastasize to various tissues in the body. Moreover, the ability to self renew is also essential for 

cancer cells to colonize a distant site (Scheel and Weinberg, 2012). Indeed cells capable of generating 

new tumors with high efficiency in immune-compromised host mice in limiting dilutions have been 

described previously. They are termed as cancer-initiating cells or cancer stem cells (CSCs) (Alison et 

al., 2010). There is still discordance in the field about their relative population in the tumors and their 

origin; nonetheless, CSCs have been described in acute myeloid leukemia, breast cancer, brain 

tumors, colon cancer and pancreatic cancer (Al-Hajj et al., 2003; Hermann et al., 2007; Lapidot et al., 

1994; O'Brien et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2004). Cancer cells gain these 

properties through the activation of a well-defined program called the Epithelial to Mesenchimal 
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Transition (EMT). Activation of EMT has been linked to normal and cancerous cells acquiring stem 

cell-like properties (Mani et al., 2008; Morel et al., 2008). EMT is a cellular program that usually 

occurs during development, generating mesenchymal cell types from epithelial or endothelial cells. It 

is an important cellular program during morphogenesis, enabling cellular movements (Acloque et al., 

2009; Singh and Settleman, 2010; Thiery et al., 2009). EMT is controlled by a set of transcription 

factors (EMT-TFs) which are responsive to signals from the cellular microenvironment and can in 

turn regulate many genes and pathways. Since epithelial cells are characterized by strong cell to cell 

adhesion, EMT-TFs act to downregulate factors associated with cell adhesion such as E-cadherin. 

Some of the well characterized EMT-TFs are Snail, Slug, Zeb1, Twist (Bolós et al., 2003; Cano et al., 

2000; Eger et al., 2005; Yang et al., 2010). 

Histone modifications have been implicated in EMT (Micalizzi et al., 2010). Generally, active 

or permissive chromatin is marked by histone acetylation whereas deacetylation indicates a repressed 

or closed chromatin. EMT requires the repression of epithelial genes, thus the EMT-TFs recruit 

repressor complexes that include histone deacetylases to the target promoter and repress transcription. 

EMT-TFs have been demonstrated to bind to E-cadherin promoter and recruit Class I KDACs (Sims 

and Wade, 2011; von Burstin et al., 2009; Ye et al., 2010). KDACi treatments have been shown to 

promote EMT, suggesting the role of acetylation in maintaining the epithelial phenotype (Giudice et 

al., 2013). Some proteins interact or recruit co-activators such as p300 or CBP to maintain epithelial 

phenotype as seen in the case of HNF-3 in breast cancer cells which interacts with p300 and AML1 

and upregulates E-cadherin expression, reducing the metastatic potential (Liu et al., 2005). In lung 

cancer cells, upon ZEB1 induction, H3K27ac mark was reduced on the ZEB1 responsive elements, 

thus favoring EMT (Roche et al., 2013). miR200b and miR200c increase H3 acetylation at E-cadherin 

promoter through the disruption of ZEB1 and KDAC interaction (Tryndyak et al., 2010).  The 

expression of the EMT-TFs are themselves tightly regulated, H3 acetylation on Snail, ZEB1, ZEB2 

promoters was seen to be facilitated by the lysine methyltransferase, DOT1L (Disruptor Of Telomeric 

Silencing 1-Like) protein, by associating with the c-Myc/p300 complex, conferring CSC-like 

properties in breast cancer cells (Cho et al., 2015), conversely UTX (an H3K27 demethylase) 

negatively regulates EMT by facilitating the reduction of H3 acetylation on the Snail, ZEB1, ZEB2 

promoters, repressing their expression, thus loss of UTX was seen to induce EMT and CSC-like 

properties in breast cancer cells (Choi et al., 2015). Metadherin (MTDH) is implicated in drug 

resistance and metastasis; in a recent study it was seen to expand CSCs in breast cancer. MTDH was 

seen to interact with CBP, stabilize it and recruit it to TWIST promoter, facilitating promoter 

proximal H3 acetylation, thus regulating TWIST expression and driving EMT (Liang et al., 2015). 

Wnt signaling pathway has also been linked to EMT. The current understanding is that CBP 

promotes self-renewal of stem cells and p300 promotes differentiation, in a Wnt/β-catenin-dependent 

pathway (Figure 3) (Ma et al., 2005; Moheimani et al., 2015). Cancer stem cells have also been 
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known to be resistant to chemotherapeutic agents, implicating them in recurrence. Furthermore, it has 

come to light that cancer stem cells can either be a cause or a consequence of drug resistance. In a 

recent study, it was observed that cancer cells that are highly tumorigenic and drug-resistant develop 

cancer stem cell-like phenotype through the PI3K/Akt/β-catenin pathway. Interestingly, β-catenin 

interacts with CBP to modulate this conversion. It is likely that this is mediated through histone 

acetylation (He et al., 2014). TGF-β signaling has also been implicated in EMT, the induction of this 

signaling is through H3 hyperacetylation on TGF-β gene promoter (Yang et al., 2015). Interestingly it 

has also been observed that TGF-β induces EMT through induction of KAT3 activity, this is through 

the acetylation of the Smad2 and Smad3 proteins in lung cancer cells (Ko et al., 2013).Thus lysine 

acetylation modulates EMT to drive cancer progression through the generation of cancer stem cells.  

3. Lysine Acetyltransferases and their Link to Tumorigenesis 

Lysine acetyltransferases play important roles in the maintenance of cellular homeostasis. 

Deregulation of these enzymes lead to pathological conditions including cancer, inflammatory 

disorders and neurological disorders. Chromosomal instabilities during cancer progression may lead 

to deletions, mutations, fusions and duplications in many vital cellular genes including KAT genes. In 

malignancies, the levels and functions of KATs have been observed to be severely dysregulated. 

KATs have also been associated with multidrug-resistance to conventional cancer therapies. In this 

section, we will discuss in-depth the intimate association of KATs with cancerous transformations. 

3.1. CBP/p300 (KAT3) family 

The transcription co-activators, CBP (KAT3A) and its paralog p300 (KAT3B) are large 

adaptor proteins possessing intrinsic acetyltransferase activity, which bridge the basal transcription 

machinery to DNA sequence-specific transcription factors. (Bannister and Kouzarides, 1996; Chan 

and La Thangue, 2001; Ogryzko et al., 1996). They share an overall 63% amino acid sequence 

identity and around 86% sequence identity at the histone acetyltransferase (HAT) domain. These 

highly homologous proteins are involved in a variety of cellular functions. As described earlier, they 

are integrally involved in transcription by virtue of their acetyltransferase activity and interaction with 

transcription factors. They are required for faithful cell cycle progression and cell proliferation. 

Interruption of KAT3 activity either by microinjection of specific antibodies or by chemical inhibition 

leads to G1/S arrest (Ait-Si-Ali et al., 2000) and an increase in senescence (Yan et al., 2013). 

Moreover, fibroblasts isolated from p300 null embryos have severe cell proliferation defects (Yao et 

al., 1998).   

CBP and p300 also play an important role in DNA damage response and apoptosis, especially 

through the modulation of the p53 pathway. Surprisingly, in spite of the close homology between 
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CBP and p300, the roles of these proteins in vivo are relatively distinct, which is evident due to the 

haplo-insufficiency observed in germline mutations in CBP or p300, which lead to the genetic 

disorder known as Rubinstein-Tyabi syndrome. This disorder is marked by cranio-facial defects, 

mental retardation and a predisposition to cancer (Miller and Rubinstein, 1995; Rubinstein and Taybi, 

1963). Hematological malignancies are frequent in mice heterozygous for CBP (Kung et al., 2000). 

Moreover, chimeric mice have tumors arising from the CBP-/- and p300-/- null cells (Rebel et al., 

2002). Moreover, CBP or p300 knock-out and double heterozygosity for CBP and p300 result in 

embryonic lethality in mice (Yao et al., 1998).   

Given the importance of these enzymes in the maintenance of cell homeostasis, perturbation 

in their functions can lead to severe pathological conditions. In cancers, KAT3 proteins can function 

both as tumor suppressors or oncogenes depending on several parameters which govern their cellular 

functions.  

Somatic mutations of both p300 and CBP have been observed in many malignancies. In cell 

lines and primary tumors, the loss of heterozygosity (LOH) at the p300 or CBP loci due to 

chromosomal loss or inactivating mutations such as missense mutations, frameshift or truncations, 

have indicated a probable tumor suppressive role of these proteins. LOH at the p300 locus (22q13) 

has been observed in numerous cancers including hepatocellular, colorectal, oral, breast, ovarian, 

gastric carcinomas and glioblastomas (Iyer et al., 2004). The biallelic loss and inactivating mutations 

are rarer at the CBP locus (16p13). CBP gene mutations have been observed in lung, colon, breast and 

ovarian cancers (Kishimoto et al., 2005; Ozdağ et al., 2002; Tillinghast et al., 2003). Although the 

frequency of mutations at the p300 and CBP gene locus is significantly low in cancers, these proteins 

may still function as putative tumor suppressors.    

In hematological malignancies such as acute myeloid leukemia (AML) and acute lymphocytic 

leukemia (ALL), chromosomal instability at the CBP or p300 loci occurs at a low frequency, but these 

mutations are often associated with poor prognosis of the disease (Diab et al., 2013). Chromosomal 

translocations resulting in chimeric proteins retain the KAT catalytic activity and BrDs of KAT3 

proteins. In-frame translocation confer oncogenic potential to these fused proteins, like in the case of 

mixed lineage leukemia (MLL)-CBP t(11;16) (q23;p13) or in MLL-p300 t(11;22)(q23;q13) fusions 

(Krivtsov and Armstrong, 2007). These fusions are frequently encountered in patients who have been 

treated with topoisomerase II inhibitors for the treatment of other cancers, predisposing them to a 

secondary therapy-related leukemia (Rozman et al., 2004). Other oncogenic fusions such as AML1-

ETO t(8;21)(q22;q22), require p300 for the induction of carcinogenic transformations (Wang et al., 

2011).  

CBP and p300 have multiple domains through which they interact with a large repertoire of 

proteins. Through this vast interactome, p300 and CBP can modulate cellular events in normal and 
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pathological conditions. KAT3 proteins can promote tumorigenesis by interacting with oncoproteins 

such as c-Myc, c-Myb, c-Fos, c-Jun, HIF1α, β-catenin and androgen receptor (AR) which are 

associated with malignant transformations (Bannister and Kouzarides, 1995; Bannister et al., 1995; 

Dai et al., 1996; Fu et al., 2000; Hecht et al., 2000; Vervoorts et al., 2003). Interestingly, disruption of 

the interactions between p300 and these oncoproteins has opened novel avenues in epigenetic drug 

development which will be discussed in the following section. 

Taking into account the role of CBP and p300 in oncogenesis, it is expected that the 

expression levels of these proteins will be dysregulated with tumor progression. In HCC, the 

overexpression of p300 strongly correlates with the aggressiveness of the disease. Moreover, high 

expression levels of p300 are predictive of poor prognosis in patients with HCC (Li et al., 2011; 

Yokomizo et al., 2011). p300 levels correlate with the grade and tumor size in prostate cancer, where 

higher grades have higher expression of p300 and it is also observed that higher p300 expression 

increases the risk of recurrence among patients (Debes et al., 2003; Isharwal et al., 2008). p300 

expression is also associated with the aggressiveness of cutaneous squamous cell carcinoma (CSCC) 

and nasopharyngeal carcinoma (Chen et al., 2015; Liao et al., 2012).  In colorectal adenocarcinomas, 

higher expression of p300 predicted poor prognosis while higher CBP expression correlated with 

longer survival in patients (Ishihama et al., 2007).  Higher p300 expression has also been linked to 

recurrence and poor prognosis in breast cancer and non-small cell lung carcinoma and may confer 

doxorubicin-resistance to bladder cancer cells (Hou et al., 2012; Takeuchi et al., 2012; Xiao et al., 

2011).  

PTMs also play an important role in the modulation of KAT3 function. Cyclin-dependent 

kinase 1 (CDK1) and ERK1/2-mediated phosphorylation of p300 on S1038 and S2039 leads to its 

degradation which promotes the progression of lung cancer (Wang et al., 2014). CBP and p300 can 

autoacetylate an unstructured activation loop at the active site leading to their hyperactivation 

(Thompson et al., 2004). Certain factors can regulate the autoacetylation of p300 under different 

cellular scenarios. It has been reported that the histone chaperone nucleophosmin (NPM1) is capable 

of enhancing p300 autoacetylation, leading to hyperactivation of the enzyme. This hyperactive p300-

mediated aberrant histone acetylation and gene expression may play an important role in the 

manifestation of oral cancer (Arif et al., 2010).  

3.2. GNAT family 

PCAF (p300/CBP Associated Factor; KAT2B) and GCN5 (General Control Non-

derepressible5; KAT2A) are the members of the GNAT family of the lysine acetyltransferases. These 

homologous proteins function as transcriptional co-activators in the large multisubunit 2MDa 

complexes such as human STAGA (SPT3-TAF9-GCN5 acetyltransferase), TFTC (TATA binding 
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protein (TBP)–free–TAF complex), PCAF complexes and in the 700-800 kDa ATAC (ADA two a 

containing) complex (Nagy and Tora, 2007). These multiprotein complexes regulate the substrate 

specificity of these enzymes in the cellular context, adding complexity to the functioning of these 

enzymes. They function as chromatin modifying enzymes and are closely linked to DNA repair 

machinery, especially the UV-damage mediated DNA damage response (Brand et al., 2001). PCAF 

mediated acetylation of p53 at K320 is important for p53 mediated cell cycle arrest in response to 

UV-induced DNA damage (Sakaguchi et al., 1998).  Under stress conditions, the role of PCAF is 

critical as a co-activator for p53 mediated p21 expression and cell cycle arrest (Love et al., 2012). 

Moreover, PCAF has also been shown to be a p53 target gene (Watts et al., 2004). Interestingly, 

PCAF can also negatively regulate p53 through its ubiquitin E3 ligase activity, thus regulating the 

levels of p53 following DNA damage response (Linares et al., 2007).  Since GCN5 and PCAF have 

an integral role in the maintenance of genome integrity, the perturbation in their activity may result in 

cancer. PCAF maps to the short arm of chromosome 3 (3p24) which is frequently lost in solid tumors 

such as renal cell carcinoma, lung cancer and esophageal squamous cell carcinoma (ESCC) (Kok et 

al., 1997; Qin et al., 2008; Yamakawa et al., 1991). PCAF locus was identified as a commonly deleted 

region in ESCC which correlated with advanced tumor stage and metastasis. The expression of PCAF 

was also found to be downregulated in primary ESCC tumors and cell lines and this downregulation 

was associated with DNA hypermethylation at the PCAF promoter. Furthermore, PCAF can suppress 

ESCC tumor growth in vitro and in vivo (Zhu et al., 2009). PCAF expression has also been reported to 

be downregulated in HCC, intestinal type gastric cancer (ITGC) and ovarian cancer (Sunde et al., 

2006; Ying et al., 2010; Zheng et al., 2013).   

Conversely, since PCAF is closely associated with DNA damage repair, it is often associated 

with endowing drug resistance to tumor cells in many advanced cancers. In cisplatin and doxorubicin-

resistant cancer cells, the levels of PCAF have been observed to be elevated. Studies have shown that 

PCAF-mediated drug resistance in cancer cells may be through the enhanced expression of E2F1 or in 

a Twist1/Y box binding protein 1 (Yb1)-dependent manner (Hirano et al., 2010; Shiota et al., 2010b). 

Furthermore, elevated levels of KAT2-mediated H3K9 acetylation was observed at the Multidrug 

Resistance protein-1 (MDR1) promoter, while the knockdown of GCN5 and PCAF levels by RNAi 

led to the reduction in MDR1 expression and sensitized cancer cells to drugs (Toth et al., 2012). 

PCAF is also associated with Hedgehog (Hh)-Gli signaling pathway and is required for H3K9 

acetylation at the Hh target genes. Thus, depletion of PCAF in medulloblastoma and glioblastoma 

cells leads to a decrease in Hh target genes which results in retarded cell proliferation and enhanced 

apoptosis (Malatesta et al., 2013). As stated earlier, PCAF and GCN5 exist in multiprotein complexes 

which are important chromatin modifiers and transcription co-activators. It has been reported that the 

oncoprotein c-Myc recruits PCAF/GCN5 complexes to its target gene promoters. Intriguingly, the N-

terminal truncated form of c-Myc protein losses its ability to interact with the STAGA complex and 

hence possess reduced malignant transformation potential (Liu et al., 2003). GCN5 is found to be 
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overexpressed in NSCLC and its levels correlate with tumor size. GCN5 enhances cell proliferation 

and G1/S transition by regulating the expression of cell cycle proteins like cyclin D1, E1 and E2F1 

(Chen et al., 2013).  

KAT1, a cytoplasmic member of the GNAT family was the first KAT to be cloned and 

biochemically characterized (Kleff et al., 1995). It is known to acetylate free, nascent histones which 

are not assembled into chromatin (Parthun et al., 1996).  KAT1 has also been linked to cancers and it 

has been observed that its expression is elevated in primary and metastatic colon cancer (Parthun, 

2007; Seiden-Long et al., 2006). In an RNAi screen, KAT1 had been identified as a potential drug 

target in ESCC and it has been shown to be essential for the proliferation of cancer cells (Xue et al., 

2014). 

3.3. MYST family 

MYST family acetyltransferases are an evolutionarily conserved group of enzymes. These 

proteins share the conserved MYST domain which comprises of a zinc finger domain and an acetyl-

CoA binding domain. These enzymes are present in different protein complexes where they are 

involved in several important cellular responses like gene regulation, DNA damage repair, and 

replication (Avvakumov and Côté, 2007). In patho-physiological conditions like cancer, the levels of 

MYST family acetyltransferases are often seen to be altered. TIP60 (HIV1 TAT interacting 60 kDa 

protein; KAT5) a well studied member of the MYST family is intimately involved in the DNA 

damage response pathways. Tip60 acetylates and thereby activates the ATM kinase, an important 

effector in the double strand break (DSB) repair pathway. Tip60 also acetylates p53 at K120, a crucial 

modification for p53-mediated apoptosis, during prolonged genotoxic stress (Sun et al., 2005; Sykes 

et al., 2006). Tip60 expression is often downregulated in cancers including colorectal, gastric, cervical 

cancer and melanoma, which may suggest a putative tumor suppressive role (Chen et al., 2012; 

Sakuraba et al., 2009; Sakuraba et al., 2011; Subbaiah et al., 2015). Tip60 downregulation in 

colorectal and gastric cancer correlates with tumor size, invasiveness and malignancy (Sakuraba et al., 

2009; Sakuraba et al., 2011). Tip60 levels are significantly reduced in melanomas, while the loss of 

Tip60 expression is correlated with poor disease specific survival (DSS) in primary and metastatic 

melanoma patients. Furthermore, overexpression of Tip60 in melanoma cells caused a remarkable 

reduction in invasiveness and increased chemosensitivity (Chen et al., 2012). Tip60 protein is 

destabilized in the presence of human papilloma virus (HPV) oncogenic E6 protein through the E3 

ligase EDD1, this aids in the HPV-mediated cervical tumor formation (Subbaiah et al., 2015). In 

contrast, Tip60 can also act as a potential oncoprotein, depending on the cellular context and its 

interacting proteins. Tip60 is a transcriptional co-activator for androgen receptor (AR) and is involved 

in prostate cancer progression (Halkidou et al., 2003). Tip60 has also been implicated in the 

development of androgen-independent prostate cancer, by promoting the nuclear localization of AR in 
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advanced stages of prostate cancer. Tip60 knockdown reduced the growth of castration-resistant 

prostate cancer cells (Shiota et al., 2010a). Tip60 is a co-activator for the oncoprotein, c-Myc. c-Myc 

levels are stabilized by Tip60 and GCN5-mediated acetylation (Patel et al., 2004) Tip60/c-Myc 

complex is important for c-Myc-dependent cell transformation in adult T-cell leukemogenesis 

(Awasthi et al., 2005). Since Tip60 is involved in DNA damage response and the expression of DNA 

damage-related proteins, it is not surprising that Tip60 may also play an important role in conferring 

drug resistance to cancer cells. Tip60 is overexpressed in cisplatin-resistant cells, while Tip60 

knockdown leads to cisplatin-sensitivity in lung cancer cell lines (Miyamoto et al., 2008; Van Den 

Broeck et al., 2012). 

hMOF (human Males absent On First; KAT8), a MYST family acetyltransferase,  is 

responsible for the larger part of H4K16 acetylation in human cells and the loss of hMOF leads to a 

dramatic reduction in H4K16 acetylation levels (Taipale et al., 2005). hMOF loss in cancers is a 

common phenomenon. In cancers such as colorectal, gastric, renal cell, ovarian, breast, hepatocellar 

carcinoma and medulloblastoma, loss of hMOF levels may serve as a prognostic marker in these 

cancers (Cao et al., 2014; Liu et al., 2013; Pfister et al., 2008; Wang et al., 2013; Zhang et al., 2014). 

Contrastingly, hMOF has also been observed to be upregulated in a few cancers as well. In oral 

tongue squamous cell carcinoma (OTSCC), upregulated hMOF correlates with poor overall and 

disease-free survival in patients (Li et al., 2015b). Moreover, hMOF stimulates the functions of AR 

and NF-κB leading to prostate cancer progression (Jaganathan et al., 2014). hMOF also confers drug-

resistance in NSCLC in a Nrf2-dependent manner. Thus, the overexpression of hMOF in NSCLC 

predicts poor prognosis of the disease (Chen et al., 2014). 

HBO1 (HAT bound to ORC1; KAT7) acetyltransferase is closely involved with replication 

and assists in pre-initiation complex formation and replication initiation (Iizuka et al., 2006).  It is 

negatively regulated by p53 to stall replication during cellular stress (Iizuka et al., 2008). HBO1 has 

been reported to be upregulated in many primary tumors such as bladder, breast, esophagus, testis and 

stomach, in comparison to the normal tissue counterparts. HBO1 is also abundant in cell lines such as 

Saos-2 and MCF7 (Iizuka et al., 2009). HBO1 has been implicated in drug resistance and tumor 

progression. Polo-like kinase 1 (Plk-1)-mediated phosphorylation of HBO1 leads to the upregulation 

in c-Fos expression, which then in turn elevates the expression of MDR1, which is a c-Fos target 

gene. In the presence of high MDR1 levels, pancreatic cancer cells gain drug resistance (Song et al., 

2013). HBO1 is also phosphorylated by Cyclin E/Cdk2 at Y88. The phosphorylated form of HBO1 

plays an important role in enriching cancer stem-like cells in breast cancer (Duong et al., 2013). 

MOZ (Monocytic Leukemia Zinc Finger Protein; KAT6A) was first reported as a chimeric 

protein fused with CBP in leukemia. The GOF fusion protein t(8;16)(p11;p13) formed due to in-frame 

translocation, leads to aberrant acetylation-mediated leukemogenesis (Borrow et al., 1996). The MOZ 
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gene locus is a site for recurrent translocations and MOZ also forms fusion proteins with CBP 

homolog, p300 t(8;22)(p11;q13), and transcription intermediary factor 2 (TIF2) inv(8)(p11q13) 

(Carapeti et al., 1998; Chaffanet et al., 2000; Kitabayashi et al., 2001). These fusion proteins are 

predictive of poor prognosis and resistance to chemo-therapy in AML patients (Borrow et al., 1996). 

The MOZ-TIF2 fusion protein recruits CBP or p300 through its CBP/p300 interacting domain (CID). 

This hyperactivation of the fusion protein leads to mistargeted acetylation. Moreover, the depletion of 

CBP/p300 from PML bodies prevents the activation of p53 signaling cascade. The CID domain has 

been shown to be essential for the MOZ-TIF2 mediated transformation in leukemia. Similarly, the 

highly homologous MORF (MOZ-related Factor; KAT6B) acetyltransferase has also been reported to 

be fused with CBP t(11;16)(q23;p13)  in AML, leading to deregulated acetylation and gene 

expression programs (Champagne et al., 1999; Deguchi et al., 2003; Panagopoulos et al., 2001). 

In a recent report, mutant p53 has been shown to upregulate MLL and MOZ expression 

leading to alteration in global chromatin modification. This may contribute to the GOF of mutant p53. 

This study also reveals the importance of epigenetic-based therapeutics in combating cancers (Zhu et 

al., 2015).  

4. Lysine acetyltransferase: A potential target for therapeutics 

Cancer, being a multifactorial disease, is caused by the interplay of genetic abnormalities and 

epigenetic aberrations. Since the reversal of epigenetic aberration is a comparatively feasible option, 

the development of epigenetic drugs has witnessed immense interest and research in recent years. 

Drugs targeting chromatin modifying enzymes and modifications have brought about the advent of 

‘Epigenetic therapeutics’. Since acetylation is involved in vital cellular functions and is dysregulated 

in diseases, the need for specific small modulators targeting KATs is mounting. In this section, we 

will attempt to highlight the promises, achievements and failures of the small molecule modulators 

targeting KATs (Figure 4, Table 3). 

4.1. Lysine acetyltransferase inhibitors (KATi) 

4.1.1. Bisubstrate Inhibitors 

KAT inhibitors (KATi), in comparison to KDAC inhibitors, have been relatively less 

explored. Most known KATis are designed against the major KAT families, p300/CBP, PCAF/GCN5 

or MYST/Tip60. It was demonstrated as early as 1980 by Cullis et al that a multisubstrate analog (N-

2-spermidine amide) formed by an acetic acid linkage between acetyl CoA and spermidine, had the 

potential to inhibit acetylases isolated from calf thymus (Cullis et al., 1982). But it was only in 2000 

that the first selective KATis were reported; Lys-CoA a specific inhibitor for p300 and H3-CoA-20 
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for PCAF (Lau et al., 2000). These potent (IC50 ≅ 0.5 μM) and highly selective inhibitors are 

synthetic bisubstrate molecules. The rationale behind the peptide acetyl-CoA conjugates is that they 

can effectively mimic the ternary complex formed at the enzyme active site hence exhibiting high 

potency and specificity. Employing similar underlying principle, the bisubstrate inhibitor H4K16CoA 

was synthesized specific for Tip60 and Esa1 (Wu et al., 2009). The major drawback of these 

compounds is that they are cell impermeable, thus greatly restricting their utility. To overcome this 

hurdle, a cell permeabilizing ‘tat’ peptide was linked to Lys-CoA and H3-CoA-20 to make them cell 

permeable (Zheng et al., 2005). Utilizing the approach described by Cullis et al, spermidine was 

linked, via a thioglycolic acid bond, to the S-terminus of Co-enzymeA forming Spd-CoA, which 

proved to be a non-toxic, histone acetylation inhibitor. Spd-CoA blocked DNA damage repair 

pathways and thereby sensitized cells to chemotherapeutic drugs and UV-radiation (Bandyopadhyay 

et al., 2009).  

4.1.2. Natural inhibitors and derivatives 

The first naturally occurring KATi, anacardic acid (6-pentadecylsalicylic acid, AA), was 

isolated from Anacardium occidentale (cashewnut) shell liquid (Balasubramanyam et al., 2003). 

Although it could non-specifically inhibit p300, PCAF as well as Tip60, it proved to be a novel 

scaffold for the synthesis of series of potent KATis. AA has been shown to inhibit the NF-κB pathway 

by inhibiting the acetylation and nuclear localization of the RelA subunit of the NF-κB complex, 

hence acting as an anti-inflammatory agent. Consequently, AA was observed to induce apoptosis 

which correlated with the downregulation of proliferation, pro-survival and angiogenic factors 

(Hemshekhar et al., 2011). AA can also inhibit Tip60-mediated DNA damage response to cytotoxic 

agents and radiation, thus it can sensitize tumors to radiation therapy (Sun et al., 2006). 

Utilizing molecular modeling to optimize the binding of AA to PCAF active site, a series of 

PCAF-specific KATis were derivatized by replacing the 6-alkyl chain of anacardic acid with different 

moieties. The salicylate derivative 6d exhibited histone acetylation inhibition in HepG2 cells 

(Ghizzoni et al., 2010). A benzamide derivative, related to AA, 4-cyano-3-

trifluoromethylphenylbenzamides, has shown KAT3 inhibition similar to that of AA (Souto et al., 

2008).  

The specific p300/CBP KATi, curcumin, was isolated from the dietary spice, Curcuma longa 

(turmeric) rhizome (Balasubramanyam et al., 2004b). This polyphenol has been observed to be 

minimally toxic and a strong anti-inflammatory, anti-proliferative and anti-cancer agent (Palve and 

Nayak, 2012). The major limitation that prevents the application of curcumin is its poor 

bioavailability. It is sparsely soluble and is physio-chemically unstable. Derivatization of curcumin 

has led to the synthesis of hydrazinobenzoyl curcumin (HBC). HBC, a p300/PCAF inhibitor, is a 
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potent inhibitor of androgen receptor and can effectively reduce the growth of castration-resistant 

prostate cancer xenografts in nude mice (Wu et al., 2015). Moreover, the water-soluble salt of HBC, 

CTK7A has also been shown to prevent the growth of xenografted oral tumors in immuno-

compromised mice (Arif et al., 2010). This potent activity in xenograft models is attributed to the 

ability of CTK7A to inhibit p300 activity in oral cancer cells.  

Epigallocatechin-3-gallate (EGCG), present in green tea, is yet another naturally occurring 

polyphenol belonging to the domain of KATis. It is non-specific and can act as an anti-inflammatory 

agent by preventing p300-mediated RelA acetylation (Choi et al., 2009a).  

Another phytochemical, garcinol, isolated from Garcinia indica or kokam fruit, is a potent 

non-specific KATi (IC50≅ 5 µM for p300 and 7 µm for PCAF) (Balasubramanyam et al., 2004a). 

Treatment of MCF-7 cells (breast cancer) with garcinol revealed that the chemo-preventive 

characteristic of garcinol depends on its modulation of p53 pathway and the expression of chromatin 

modifying enzymes (Collins et al., 2013). Garcinol has shown promising results in HCC cells and 

HCC xenograft models as an anti-proliferative, pro-apoptotic agent. At the molecular level, it has 

been observed that garcinol can prevent the activation, dimerization and acetylation of STAT3, which 

is essential for its oncogenic signaling cascades (Sethi et al., 2014). The anti-tumor effect of garcinol 

through the suppression of pro-inflammatory pathways has also been studied extensively in HNSCC 

cells and xenograft mice models (Li et al., 2013).  To further improve the pharmacokinetic properties 

of garcinol, derivatization on the garcinol parent scaffold has led to many compound series with less 

toxicity, better potency and specificity. Intramolecular cyclization of garcinol resulted in isogarcinol 

(IG), the starting molecule for a structure-function-based design of novel specific KATis. Mono-

substitution at the 14
th
 position of IG yielded 14-isopropoxy IG (LTK-13) and 14-methoxy IG (LTK-

14), while di-substitution at the 13
th
 and 14

th
 position yielded 13, 14 disulfoxy IG (LTK-19). These 

derivatives are selective p300 inhibitors with no activity against PCAF (Mantelingu et al., 2007b). 

Molecular pruning and optimization of garcinol have led to another series of garcinol analogs, of 

which EML425 is characterized to be a cell permeable, reversible, potent p300-specific KATi in vitro 

as well as in cells (Milite et al., 2015).  

Plumabagin, a hydroxynaphthoquinone, another natural p300-specific KATi is isolated from 

the roots of Plumbago rosea, a medicinal herb (Ravindra et al., 2009). Though it too possesses anti-

cancer properties, it is highly toxic, which limits its use as a therapeutic agent. To overcome this 

drawback, PTK1 was synthesized, a 1,4-naphthoquinone derivative, which harbors a methyl 

substitution on the 3
rd

 position of plumbagin. Remarkably, this monosubstituted derivative still 

retained its inhibitory characteristic whilst being near non-toxic to cells (Vasudevarao et al., 2014).  
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The DNA intercalator sanguinarine, isolated from the root of Sanguinaria canadensis and 

Argemone mexicana is a known anti-tumor and anti-inflammatory agent (Slaninová et al., 2013). 

Interestingly, it can also inhibit epigenetic enzymes including KAT3, G9a and CARM1, thus 

modulating the global epigenetic landscape and the underlying gene expression networks, in treated 

cells (Selvi B et al., 2009).   

Delphinidin, isolated from pomegranate (Punica granatum), has been shown to be a p300-

specific antagonist, without affecting the activity of other epigenetic enzymes such as KDACs and 

methyltransferases. At the molecular level, delphinidin leads to the hypoacetylation of RelA (NF-κB) 

resulting the cytoplasmic accumulation of NF-κB and the suppression of inflammatory signals (Seong 

et al., 2011).  Gallic acid, a chemical identified in Rosa rugosa, a p300-specific KATi, also employs a 

similar mechanism to inhibit p300-dependent NF-κB signaling (Choi et al., 2009b). 

Another phytochemical, procyanidin B3, is a p300-specific KATi. It is also effective in the 

inhibition of p300-mediated AR gene expression and hence resulting in reduction in cell proliferation 

and increase cell death in prostate cancer cells (Choi et al., 2011). 

Embelin (hydroxybenzoquinone) is a cell permeable, anti-inflammatory, pro-apoptotic,  XIAP 

and PCAF inhibitor, which has been shown to down regulate genes involved in proliferation and 

metastasis (Huang et al., 2014; Modak et al., 2013; Poojari, 2014). Recently, PCAF-regulated 

molecular pathways were deciphered using embelin, which specifically inhibits PCAF-mediated 

acetylation of H3K9 and MyoD during muscle differentiation (Modak et al., 2013).  

4.1.3. Synthetic inhibitors 

Even though natural compounds hold great value as KATis, their utilization is restricted due 

to their pleiotropic effects (a few listed in Table 3), limited cell permeability and poor bioavailability. 

In recent years, efforts are on to optimize these molecules, with the renewed understanding of 

enzyme-inhibitor binding and structure-function relationship. Nevertheless, the search for potent and 

novel scaffolds is still a necessity to identify molecules which can effectively overcome the 

drawbacks of the current line of naturally occurring KATis. 

Beil et al, were the first group to report the synthesis of a cell permeable, small molecule 

inhibitor of the KAT GCN5. Based on structure-activity relationship they derivatized γ-butyrolactone 

to indentify MB-3 (α-methylene- γ-butyrolactone) as a GCN5-selective KATi (Biel et al., 2004). 

High throughput screening through chemical libraries has led to the discovery of many 

potential KATis. C646, a potent p300 inhibitor with an IC50 value in the nanomolar range was 

identified by in silico docking of commercial small molecule library to the crystal structure of p300 

HAT domain (Bowers et al., 2010).  This potent molecule has been effective against p300 in vitro and 
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in vivo. C646 treatment can lead to cell cycle arrest and early induction of senescence. C646 can 

sensitize NSCLC cells to radiotherapy (Oike et al., 2014) and can promote chemo-responsiveness in 

melanoma cells (Yan et al., 2013).  

L002, a p300 specific KATi, with an IC50 value of 1.98 μmol/L in vitro, was identified by 

high throughput screening of a 622,079-compound chemical library (Yang et al., 2013). Toxicity 

assays, biochemical assays and docking studies were done to validate the screened compounds. 

Utilizing high throughput compound library screening, isothiazolone-based KAT inhibitors, 

CCT077791 and CCT077792, were identified as antagonist of both p300 and PCAF (Stimson et al., 

2005). Among isothiozolone-based inhibitors, 5-chloroisothiazolone was identified as a PCAF-

specific KATi (Ghizzoni et al., 2009). The thiazole-based synthetic compound, BF1 (1-(4-(4-

chlorophenyl) thiazol-2-yl)-2-(propan-2-ylidene) hydrazine) can inhibit p300 and GCN5 in vitro. 

Neuroblastoma and glioblastoma cell lines show a reduction in histone acetylation levels, when 

treated with BF1 (Secci et al., 2014). In another high throughput screen, 100,000 compounds were 

screened for activity against p300, of which 4-acetyl-2-methyl-N-morpholino-3,4-dihydro-2H-

benzo(b)(1,4)thiazine-7-sulfonamide was observed to possess p300 inhibitory activity in the 

micromolar range (Zeng et al., 2013). PU139, a pan-inhibitor of p300, CBP, PCAF and GCN5, and 

PU141, a KAT3 selective KATi, were observed to be effective in retarding the growth of 

xenograpfted neuroblastoma tumors in mice. Moreover PU139 synergistically enhanced doxorubicin 

activity in vivo (Gajer et al., 2015).  

Virtual ligand screening of a chemical library, for inhibition potential against Tip60 was done 

utilizing the knowledge of the crystal structure of Esa1 (the yeast homolog of Tip60). Novel candidate 

molecules were discovered possessing inhibitory activity in the micromolar level (Wu et al., 2011). A 

similar high throughput screen has led to the identification of a Tip60-selective isothiazole-based 

KATi, NU9056, which is effective against prostate cancer cells (Coffey et al., 2012). Utilizing 

computational tools to design drugs based on the binding pocket of Tip60, has led to the identification 

of TH1834, which can inhibit Tip60 in vitro and can sensitize breast cancer cells to ionizing radiation 

(Gao et al., 2014).   

Though there are many KATis known, few have shown effective results in clinical trials. 

Recent efforts of identifying KATis through high throughput screening of chemical libraries by in 

silico and biochemical approaches hold promise of newer inhibitors, with improved efficacy and 

better toxicity profiles. 

4.2. Lysine acetyltransferase activators (KATa) 

Activation of lysine acetyltransferases is a new frontier for epigenetic therapeutics which is 

relatively unexplored in the context of anti-cancer therapy. N-(4-chloro-3-trifluoromethyl-phenyl)-2-
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ethoxy-6-pentadecyl-benzamide (CTPB), an anacardic acid derivative, is the first KAT activator 

(KATa) which specifically activates KAT3 proteins (Balasubramanyam et al., 2003). Since this 

molecule is cell impermeable, a carbon nanoshere (CSP) was used as a carrier. Analysis have shown 

that CTPB is also capable of inducing KAT3 autoacetylation and thereby its activity (Selvi et al., 

2008). Further derivatization of CTPB, has led to the synthesis of TTK21 (N-(4-chloro-3-

trifluoromethyl-phenyl)-2-N-propoxy-benzamide), a potent KAT3 activator in vitro and in vivo. 

TTK21, when conjugated to CSP, could effectively extend memory duration in adult mice (Chatterjee 

et al., 2013).  Another derivative, CTB, which lacks the pentadecyl hydrocarbon chain of CTPB could 

also activate p300 in vitro (Mantelingu et al., 2007a). To confer selectivity to the CTB, Han et al 

conjugated it to a synthetic DNA binding pyrrole–imidazole polyamides (CTB-I). As expected CTB-I 

could enhance the expression of a substantial number of genes, through the activation of KAT3 

acetyltransferase activity. As the hyperacetylation could also be achieved by treating the cells with the 

KDACi, SAHA, it was observed that the SAHA conjugated artificial DNA binding domain (DBD) 

could also enhance the expression of a similar set of genes (Han et al., 2015). Results of these studies 

implicate that the proper targeting of KATa by using artificial DBD could also be exploited for 

therapeutic purposes instead of KDACi.  The   Another p300 activator, nemorosone, a polycyclic 

polyisoprenylated benzophenone, is cell permeable and can modulate histone acetylation (Dal Piaz et 

al., 2010). Interestingly, nemorosone has been shown to possess anti-cancer activities, but it is not 

clear whether these effects are mediated through its ability to activate p300 (Wolf et al., 2013).  

Pentadecylidenemalonate 1b or SPV106 is another anacardic acid derivative that can activate 

PCAF acetyltransferase activity. Interestingly, this molecule is the first reported mixed-modulator of 

KAT activity; it can activate PCAF function and inhibit p300 activity (Sbardella et al., 2008). 

Moreover, this molecule can activate PCAF in mice leading to enhanced fear extinction (Wei et al., 

2012). SPV106 can also reverse the cell proliferation defects observed in cardiac-

mesenchymal cells of type II diabetic patients, where GCN5 and PCAF are downregulated (Vecellio 

et al., 2014). 

Although, the efficacy of KATa have not been tested as an anti-neoplastic therapeutic, they 

may hold potential in development of a new line of epigenetic therapeutics to combat cancers in 

which KAT proteins are downregulated,  deactivated or in cases where KDACs are overexpressed. 

But while using this approach, it should be kept in mind that the fine balance of acetylation is not 

perturbed.    

4.3. Disrupting the Interaction between KATs and oncoproteins 

Disruption of the interaction between KATs and oncogenic effector proteins has served as a 

novel and effective strategy in developing anti-cancer therapeutics. Since KATs play an extensive role 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

26 | P a g e  
 

in cancer signaling pathways, targeting a specific module in this system can inhibit tumor progression 

without grossly affecting other pathways in cells.  

Survival through hypoxia is a hallmark of cancerous cells in solid tumors. This adaptation is 

mediated through HIF1α, which accumulates under hypoxic conditions, culminating in altered 

metabolism, increased angiogenesis and enhanced tumor growth. p300 is a co-activator for HIF1α-

target genes and the interaction between HIF1α-p300 could serve as a potential target for therapeutics. 

The interaction is through the C-terminal activation domain (CTAD) of HIF1α and the cysteine-

histidine rich (CH1) domain of KAT3 proteins. The aminocoumarin antibiotic, novobiocin, can 

directly block the interaction between HIF1α and p300, thereby inhibiting proliferation and colony 

formation in MCF7 cells (Wu et al., 2013). A natural compound-based screen revealed indandione 

and benzoquinone as potent inhibitors of HIF1α/p300 interaction (Jayatunga et al., 2015). A marine 

alkaloid, eudistidine A, can inhibit CH1/CTAD binding of p300/HIF1α with an IC50 of 75 μM (Chan 

et al., 2015). Natural compounds belonging to the epidithiodiketopiperazine (ETP) family such as 

gliotoxin, chaetocin, and chetomin, have been shown to disrupt the HIF1α/p300 complex (Reece et 

al., 2014). Chetomin can synergistically enhance the inhibitory effect of enzalutamide (AR antagonist) 

on metastatic castrate-resistant prostate cancer (Fernandez et al., 2015). ETP treatment in cells have 

resulted in a downregulation of HIF1α-target genes such as VEGF, ENO1 and LDHA, leading to 

subsequent reduction in angiogenesis and tumor growth in prostate tumor xenografts (Reece et al., 

2014). A synthetic ETP derivative, dimeric epidithiodiketopiperazine (ETP2) selectively blocks 

HIF1α-p300 interaction and treatment with ETP2 in a breast cancer model results in the regression of 

tumor growth (Dubey et al., 2013).  

Wnt/β-catenin pathway regulates signaling cascades which decides cell fate either towards 

maintenance of pluripotency or towards differentiation. In cancers the Wnt/β-catenin pathway is often 

deregulated which leads to tumor progression. Since CBP is involved in the maintenance of an 

undifferentiated state, disrupting the Wnt/β-catenin/CBP axis may prove to be an invaluable resource 

to counter tumorigenic transformations. The small-molecule antagonist, ICG-001, specifically inhibits 

the CBP/ β-catenin interaction without affecting the p300/β-catenin interaction and it was observed 

that it could induce apoptosis in colon carcinoma cells while not affecting normal colon cells (Figure 

3)(Emami et al., 2004). It is also reported that CBP/β-catenin interaction is important for the 

expression of MDR1, thereby conferring drug-resistance to cancer cells (Xia et al., 2015). Thus, 

inhibition of this interaction can also sensitize cancer cells to chemo-therapeutics. ICG-001 has also 

been reported to suppress pancreatic ductal adenocarcinoma (PDAC) and prevent EMT in HCC 

(Arensman et al., 2014; Kuang et al., 2015). ICG-001 has also been reported to reverse drug-

resistance in ovarian carcinoma and leukemia cells (Gang et al., 2014; Nagaraj et al., 2015).  
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c-Myb, is a key transcription factor in hematopoiesis and an important regulator of self-

renewal in hematopoietic stem cells. The deregulation of c-Myb leads to leukemia and certain solid 

tumors (Ramsay and Gonda, 2008). The interaction of c-Myb and p300 is essential for the 

maintenance of hematopoietic stem cells and also the induction of c-Myb-mediated leukemia 

(Pattabiraman et al., 2014; Sandberg et al., 2005). Naphthol AS-E phosphate, is a small molecule 

inhibitor of interaction between c-Myb and the KIX domain of p300.  This antagonist inhibits c-Myb 

mediated gene expression and induces myeloid differentiation (Uttarkar et al., 2015).  

Among the protein-protein interaction inhibitors known, inhibitors targeting BrDs in KATs 

have proved to be potent, highly selective, druggable options over the difficult to drug 

acetyltransferase activity (Vidler et al., 2012). Ischemin was discovered as a CBP BrD-specific 

inhibitor which could inhibit apoptosis in cardiomyocytes. But this is a rather weak inhibitor with a 

dissociation constant KD =21 µM (Borah et al., 2011). Recently, more KAT3-specific BrDis have 

been discovered with affinities in the nanomolar range. CBP30 is a potent BrDi exhibiting selectivity 

towards CBP (KD =26 nM) and p300 (KD =32 nM) over BRD4 (KD =885 nM). CBP30 has been shown 

to inhibit KAT3-driven pathways such as human Th17 responses (Hammitzsch et al., 2015; Hay et al., 

2014). Another KAT3 BrDi, I-CBP112 (KD = 151 ± 6 nmol/L for CBP and KD = 167 ± 8 nmol/L for 

p300) reduced the self-renewal property of leukemic cells and could synergistically inhibit leukemia-

initiating cells along with doxorubicin, providing opportunities for the development of combinatorial 

therapeutics (Picaud et al., 2015).       

5. Conclusion and Perspectives 

The reversible lysine acetylation has undoubtedly emerged as a key modification that 

maintains cellular equilibrium. The dysregulation of KATs, KDACs or readers that integrate 

the ‘acetylation-centric’ cellular programs, can often lead to major abnormalities, often 

culminating in cancer. The involvement of lysine acetylation in disease progression has led to 

the generation of therapeutics targeting this modification. KDACis have shown efficacy in cancer 

treatment. Vorinostat (suberanilohydroxamic acid or SAHA), romidepsin, belinostat, and panobinostat 

are FDA approved drugs in use against hematological malignancies. Vorinostat, romidepsin, 

panobinostat, valproic acid and other KDACis are also being extensively studied in clinical trials for 

treatments of different solid cancers such as breast cancer, pancreatic cancer and NSCLC (Falkenberg 

and Johnstone, 2014).  Several pan-BrD inhibitors (BrDis) and subtype specific inhibitors have also 

shown promising results against cancers in preclinical studies, few of which have proceeded to 

clinical trials against hematological malignancies. Triazolobenzodiazepine I-BET762, an acetyl-lysine 

mimic inhibitor of BET BrDs has entered clinical trials against NUT Midline carcinoma (NMC). 

Clinical studies against hematological malignancies have been initiated using the 
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triozolothienodiazepine OTX015 and CPI-0610 (Filippakopoulos and Knapp, 2014). Unfortunately, 

not many KATis have reached clinical trials. The non-specificity, pleiotropic effects, toxicity profiles 

and IC50 values in the micromolar range have been major road blocks in the field of KAT inhibitor 

advancement. Curcumin is the only KAT inhibitor to be tested in clinical trials against cancer. There 

are currently numerous studies involving curcumin alone or with conventional drugs being tested in 

breast, prostate, colorectal and other solid cancers.  

In the recent past the druggablity of KATi molecules have shown little promise but KATi-

scaffolds have the potential to be further tweaked to yield more specific inhibitors, with fewer 

pleiotropic effects and greater efficacy. Current KATis are being designed through rational and 

systematic approaches, thus we can project that better KATis will be available for clinical use. 

Moreover, modulating KAT function has emerged as a promising option over inhibiting KAT activity. 

Several small molecules targeting other conversed domains like BrD and KIX domains have immense 

therapeutic potential. PRI-724 (ICG-001 derivative), a small molecule antagonist of CBP/β-catenin 

interaction is currently in Phase I/Phase II of clinical trials for the treatment of advanced cancers 

including myeloid malignancies (NCT01606579), metastatic colorectal cancer (NCT02413853) and 

pancreatic adenocarcinomas (NCT01764477) (https://clinicaltrials.gov/).  

Several pre-clinical studies have highlighted the synergistic effects of epigenetic therapies 

with other conventional anti-cancer therapeutics. The state of the epigenetic landscape has direct 

consequences on functional outcomes in diseases such as cancer. There are many studies directly 

implicating dysregulation of epigenetic machinery and drug-resistance in cancers. Drug-resistance has 

been a major impediment in the field of chemo-therapeutics, thus it is of growing importance to 

understand the causal molecular events and to utilize this knowledge in the administration of 

combinatorial therapy to eliminate drug-resistance. Currently, pre-clinical and clinical studies have 

shown that the administration of DNA methyltransferase inhibitors (DNMTis) could sensitize 

advanced tumors to cisplatin and doxorubicin (Ahuja et al., 2014; Clozel et al., 2013; Fu et al., 2011). 

Moreover, the use of KDACis along-side DNMTis have increase the effectiveness of the treatment 

and has greatly reduced the drug-dose, thus preventing cytotoxicity and off-target effects (Cameron et 

al., 1999).  It has also been shown that the combination of KDACis with imanitib has better efficacy 

towards targeting quiescent CML stem cells over imanitib alone (Zhang et al., 2010). Pre-clinical 

studies have also demonstrated that the inhibition of KATs can also potentiate the effect of 

conventional drugs. Garcinol has been shown to enhance the effect of anti-cancer agents like 

doxorubicin and paclitaxel (mitotic inhibitor) in an HCC xenograft model (Sethi et al., 2014). 

Garcinol has also been shown to sensitize HNSCC xenograft tumors to cisplatin (Li et al., 2015a). The 

potent p300-specific KATi, C646, has shown promising effects in sensitizing resistant tumor cells to 

radiotherapy and cisplatin in pre-clinical studies (Oike et al., 2014; Yan et al., 2013). The disruption 

of CBP/β-catenin interaction by ICG-001 has been shown to reverse drug-resistance to cisplatin 
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(Nagaraj et al., 2015). The current interest in the field of anti-cancer therapeutics is the effective 

targeting of tumor-initiating cells. KATs have been implicated in the maintenance of CSCs. 

Moreover, RNAi screens have exhibited the importance of KAT genes in conferring pro-survival 

properties to cancer cells. hMOF has been shown to be important for the survival of lung cancer cells 

(Zhang et al., 2013) and KAT1 was identified as a target for ESCC (Xue et al., 2014). Other 

epigenetic proteins are also being investigated as targets for potential anti-cancer therapy. Notably, 

several inhibitors targeting the protein methylation have entered clinical trials such as DOT1L 

inhibitor EPZ-5676 (NCT01684150 and NCT02141828 at https://clinicaltrials.gov/), Enhancer of 

Zeste Homolog 2 (EZH2) inhibitors (NCT01897571 (Drug: EPZ-6438), NCT02082977 (Drug: 

GSK2816126) and NCT02395601 (Drug: CPI-1205) at  https://clinicaltrials.gov/), Lysine-specific 

demethylase 1 (LSD1) inhibitors (NCT02177812 (Drug: GSK2879552) and NCT02261779 (Drug: 

Tranylcypromine) at  https://clinicaltrials.gov/) (reviewed in (Cai et al., 2015)). KDACi in 

combination with lysine methylation inhibitors have shown promise in targeting AML. Therefore, it is 

fairly apparent that modulating epigenetic language is essential for anti-neoplastic therapeutics along 

with the existing chemo- and radio- therapies. In this direction, the regulation of lysine acetylation 

either by KDACi, KATi, BrDi or KATa, in conjunction with other therapeutics, has opened 

opportunities in the development of anti-cancer therapeutics.   
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Fig. 4 

Figure 1: Acetylation dynamics in chromatin: A brief overview of histone acetylation. The upper 

panel represents the multiple histone modifications that coexist in chromatin (represented here are 

acetylation, methylation and phosphorylation). The lower panel zooms-in on one nucleosome where 

writers (KATs adding acetylation marks), erasers (HDACs removing acetylation marks) and readers 

(Bromodomain (BrD)) containing proteins are depicted. 

Figure 2: The role of acetylation in inflammation and cancer: Upon inflammatory signals, IκB 

kinase (IKKα, ΙΚΚβ, regulated by ΙΚΚγ/ΝΕΜΟ) gets activated, this phosphorylates the IκBα protein 

leading to its proteosomal degradation rendering NF-κB active. RelA phosphorylation by kinases 

leads to its acetylation by KAT3, increasing its DNA binding and recruitment of co-activators. p50 

acetylation by KAT3 also enhances transcriptional activation of pro-inflammatory genes.  IKKα can 

translocate to the nucleus and activate pro-inflammatory genes. Similarly, upon stimulation through 

upstream signaling, STAT3 gets modified. STAT3 acetylation increases DNA binding and 

transcriptional activation. NEMO and IκBα can also translocate to the nucleus, but act to repress pro-
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inflammatory genes. Stimulation of TLRs induces the expression of MKP1 which when acetylated, 

dephosphorylates p38MAPK and c-Jun N-terminal kinase (JNK) resulting in attenuated production of 

pro-inflammatory cytokines. 

Figure 3: The distinct roles of CBP and p300 in the Wnt/β-catenin pathway; Therapeutic 

interventions leading to differential cellular responses.  

Upon stabilization of β-catenin, through the upstream Wnt-signaling cascade, β-catenin interacts with 

co-activators and gets recruited to Wnt-responsive genes. Upon interaction with CBP, β-catenin 

induces the expression of pluripotency-related genes, whereas if it interacts with p300, it activates 

differentiation-related gene expression. Since these pathways are important in cancer, small molecule 

inhibitors will be useful as therapeutics. ICG-001(Emami et al., 2004) specifically inhibits interaction 

with CBP, whereas YH249/250 (Higuchi et al., 2015) are antagonists of p300-β-catenin interaction, 

allowing for specific modulation of this pathways. 

Figure 4: Therapeutic intervention to target lysine acetylation in cancer: 1, the link between 

histone acetylation and cancer. Histone acetylation is a reversible process, regulated by KATs and 

HDACs. The acetylation mark is read by proteins containing recognition motifs such as 

bromodomain-containing proteins (BrD), which relay downstream effects by recruiting other co-

activators. 2, the link between histone deacetylation and cancer; deacetylation of histones is a signal 

for recruitment of co-repressor complexes. 3, the link between non-histone protein 

acetylation/deacetylation and cancer. KATs and HDACs also mediate acetylation dynamics of non-

histone proteins, which are important in various processes in the cell. In such an acetylation mediated 

network, many steps can be targeted for therapeutic intervention; these are represented as red boxes 

with wands pointing at their respective site of modulation. 

 

Table 1: Histone acetylation Dynamics in Cancers 

 
Altered Histone 

Acetylation Marks 
Enzymes Cancer Type References 

U
p

re
g

u
la

te
d

 

H2AK5 CBP/p300 Oral cancer (Arif et al., 2010) 
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H3K9 Gcn5/PCAF, MOZ, SRC1 
Oral cancer, NSCLC, 

Glioma, HCC 

(Arif et al., 2010; 

Barlési et al., 2007; 

Fullgrabe et al., 2011; 

Zhu et al., 2015) 

H3K14 Gcn5/PCAF, CBP/p300 Oral cancer (Arif et al., 2010) 

H3K18 CBP/p300 
Glioma, esophageal 

carcinoma 

(Liu et al., 2010; Tzao 

et al., 2009) 

H3K56 CBP/p300, Gcn5 
Oral, breast, lung, 

thyroid, skin cancer 

(Arif et al., 2010; Das 

et al., 2009) 

D
o
w

n
re

g
u

la
te

d
 

H2AK5 CBP/p300 NSCLC (Barlesi et al., 2007) 

H3K9 Gcn5/PCAF, MOZ, SRC1 Prostate, ovarian cancer 
(Fullgrabe et al., 2011; 

Seligson et al., 2005) 

H3K18 CBP/p300 

Prostate, pancreatic, 

breast, lung, kidney 

cancer 

(Fullgrabe et al., 2011; 

Seligson et al., 2005) 

H4K12 Tip60, CBP/p300 
Prostate cancer, 

NSCLC 

(Barlesi et al., 2007; 

Seligson et al., 2005) 

H4K16 MOF 

Breast, gastric and lung 

carcinoma, 

medulloblastoma, renal, 

ovarian cancer 

(Cao et al., 2014; Chen 

et al., 2014; Fraga et al., 

2005; Liu et al., 2013; 

Pfister et al., 2008; 

Seligson et al., 2005; 

Wang et al., 2013) 

 

 

Table 2: Non-histone acetylation and its consequence in cancer 

Protein 
Lysine Residues 

acetylated 

Enzymes 

Involved 
Consequence/ Function References 

Regulation of DNA binding and transcription 
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RelA 
 

K218, K221, K310 
p300/CBP, 

SIRT1 
Increased DNA binding and recruitment of co-

activators. 
(Chen et al., 2002; Huang et 

al., 2009) 

K122, K123 p300/CBP 
Decreased DNA binding, Increased IκB 

binding 
(Kiernan et al., 2003) 

p50 K431, K440, K441 p300/CBP Enhanced transcriptional activation. (Deng and Wu, 2003) 

STAT3 K685 p300/CBP 
Increased DNA binding, transcriptional 

activation. 

(Wang et al., 2005; Yuan et 

al., 2005; Zhuang, 2013) 

WNT/β-catenin K354 p300, SirT1 
Transcriptional activation of WNT target 

genes. 

(García-Jiménez et al., 2014; 

Levy et al., 2004)  

c-MYC 

 

K143, K157, K275, 

K317, K323, and 
K371 

p300 

Reduced Transcriptional activity; Negative 

regulation of MYC induced transformation in 
cancer. 

(Wasylishen et al., 2014; 

Zhang et al., 2005) 

p53 

K120 
Tip60 and 

hMOF 
Mediates expression of genes involved in 

DNA damage induced apoptosis. 
(Sykes et al., 2006; Tang et 

al., 2006) 

K320 PCAF 
Increases p53’s ability to bind to its cognate 

DNA site. 
(Liu et al., 1999) 

C-Terminal p300 Increased  DNA binding and transcription (Gu and Roeder, 1997) 

K117, K161, K162 p300 
Essential for p53 to mediate cell cycle arrest, 

apoptosis and senescence. 
(Li et al., 2012) 

ERα 
K229, K299, K302 

and K303 
p300 

Induces aberrant expression and proliferation 

of breast cancer cells. 
(Wang et al., 2001) 

AR K630, K632, K633 p300, PCAF 
Enhanced transcriptional activation, promotes 

cancer cell growth 

(Fu et al., 2003; Fu et al., 

2000) 

RFPL3 - CBP 
Upregulates hTERT activity and promotes 

cancer growth 
(Qin et al., 2015) 

Ku80 - CBP 
Promotes COX-2 expression and tumor 

growth. 
(Xiao et al., 2015) 

PTEN K125, K128 
PCAF, 

SIRT1 

Control of growth factor signaling and gene 

expression. 
(Okumura et al., 2006) 

Notch-1 
K2019,2039,2044, 

2068 
Tip60 Suppression of Notch-1 signaling. (Kim et al., 2007) 

Smad2 K19, K20, K39 p300/CBP Modulates TGF-β and Activin responses. (Tu and Luo, 2007) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

57 | P a g e  
 

Smad3 K378 p300/CBP 
Positively regulates Smad3 mediated 

transcription. 
(Inoue et al., 2007) 

E2F1 K117,K120, K125 
PCAF, 

HDAC1 

Increased DNA-binding ability, activation 
potential and protein half-life. Leads to 

Increased cell proliferation. 

(Martinez-Balbas et al., 

2000) (Marzio et al., 2000) 

p73a K321,327,331 p300 
Gets recruited to pro-apoptotic promoters and 

induces apoptosis. 
(Costanzo et al., 2002) 

FoxO1 K242,K245,K262 

p300/CBP, 

PCAF, 

SIRT1 

Diminishes DNA binding, reduces activity. (Calnan and Brunet, 2008) 

RUNX1 K24, K43 p300 Increases DNA binding ability. (Wang et al., 2009) 

NPM1 

K212, K215,K229, 

K230, K257, K267 
and K292 

p300, SIRT1 
Delocalizes to nucleoplasm, activates NPM1 

mediated transcription. 
(Shandilya et al., 2009) 

HMGA1 K65, K71 CBP, PCAF 
Modulates transcription of IFN-β upon viral 

infection. 
(Munshi et al., 2001) 
(Munshi et al., 1998) 

HMGB1 K2, K11, CBP 
Acetylated upon LPS activation in monocytes 

and macrophages, triggers inflammation. 

(Pasheva et al., 2004) 

(Sterner et al., 1979) 

YY1 K261-233 HDAC1 Suppresses DNA binding. (Yao et al., 2001) 

Regulation of Protein Stability 

c-MYC 

K149,K323, K417 
PCAF/GCN5

, TIP60 
Increased stability. (Patel et al., 2004) 

C-terminal domain CBP Increased stability. (Vervoorts et al., 2003) 

MATIIα K81 
p300, 

HDAC3 

Destabilizes protein, leads to repression of cell 

growth. 
(Yang et al., 2015) 

DNMT-1 - 
Tip60, 

HDAC1 
Destabilization of DNMT1. (Du et al., 2010) 

MPP-8 K439 
PCAF, 

SIRT1 
Destabilizes MPP-8, inhibits EMT. (Sun et al., 2015a) 
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Smad7 K64, K70 p300 Increases protein stability. 
(Grönroos et al., 2002) 

(Simonsson et al., 2005) 

HIF-1α K709 
p300, 

HDAC1 

Stabilizes protein, sensitizes cells to hypoxia-

induced growth arrest. 
(Geng et al., 2012) 

E2F1 K117,K120, K125 
PCAF, 

HDAC1 

Increased DNA-binding ability, activation 

potential and protein half-life. Leads to 

Increased cell proliferation. 

(Martinez-Balbas et al., 
2000) (Marzio et al., 2000) 

Influencing Protein-Protein Interactions 

RAS K104 - 
Negative regulation of RAS oncogenecity.( 

 destabilization of the interactions with 

guanine nucleotide exchange factors ) 

(Yang et al., 2012) 

p53 K382 CBP 

Increases p53 affinity to CBP bromodomain 

and interaction with tandem bromodomains of 
TAF1. 

(Li et al., 2007; Mujtaba et 

al., 2004) 

PTEN K402 CBP, SIRT1 
Modulates PTEN interaction with PDZ 

domain-containing proteins. 
(Ikenoue et al., 2008) 

pRB K873, K874 p300, PCAF 
Increased affinity to MDM2 , hinders 

phosphorylation and cell cycle progression. 
(Chan et al., 2001; Nguyen et 

al., 2004) 

E2F1 K117,K120, K125 
PCAF, 

HDAC1 

Increased DNA-binding ability, activation 

potential and protein half-life. Leads to 

Increased cell proliferation. 

(Martinez-Balbas et al., 

2000) (Marzio et al., 2000) 

Enzyme activity Modulation 

PTEN 

 
K163 HDAC6 Activates protein and causes tumour inhibition. (Meng et al., 2015) 

HDAC1 
K218, 220, 432, 438, 

439, and 441 
p300, SIRT1 

Ac-HDAC1 shows reduced deacetylation 
function. Loses ability to deacetylate p53, 

stabilizing p53 during heat stress. 

(Qiu et al., 2006; Yang et al., 

2015) 

Changing Sub cellular Localization 
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NPM1 K212, K215,K229, 

K230, K257, K267 

and K292 

p300, SIRT1 Delocalizes to nucleoplasm, activates NPM1 

mediated transcription. 
(Shandilya et al., 2009) 

Others 

Beclin-1 K430, K437 p300, SIRT1 Inhibits autophagosome maturation (Sun et al., 2015b) 

Snail K146,K187 CBP 
Switches Snail from being a repressor to an 

activator. 
(Hsu et al., 2014) 

Tubulin K40 
HDAC6, 

SIRT2 

Modulates organization of microtubule 

network. 

(Hubbert et al., 2002) 

(Matsuyama et al., 2002) 

(North et al., 2003) 

 

 

Table 3 

Types of 

KAT3 

modulators 

Compounds 

Source/Parent 

Compound/ 

Scaffold 

Consequences Off-targets Reference 

K
A

T
i:

 N
a
tu

ra
l 

co
m

p
o
u

n
d

s 

Anacardic acid 

Anacardium 

occidentale 

(cashewnut) shell 

liquid 

Anti-inflammatory, 

anti-angiogenic, 

sensitizes tumors to 

radiotherapy 

PCAF, Tip60, 

Xanthine 

oxidase,tyrosinase, 

urease, LOX15 

inhibition and 

Aurora kinase A 

activation 

(Balasubramanyam 

et al., 2003; 

Hemshekhar et al., 

2012) 

Curcumin 
Curcuma longa 

(turmeric) rhizome 

Anti-inflammatory, 

anti-proliferative 

IĸK, c-Jun N-

terminal kinase, 

protein tyrosine 

kinases, 

serine/threonine 

kinases 

(Balasubramanyam 

et al., 2004b; Yogesh 

Panditrao Palve and 

Nayak, 2012) 

Plumbagin Plumbago rosea 

proapoptotic, anti-

angiogenic and anti-

metastatic 

topoisomerase-II 

inhibitor 

(Ravindra et al., 

2009) 

Garcinol 
Garcinia indica 

(kokam fruit) 

anti-oxidative, anti-

inflammatory, anti-

proliferative and 

anti-angiogenic 

PCAF, NF-ĸB, 

STAT3 

(Balasubramanyam 

et al., 2004a; Liu et 

al., 2015) 

Gallic acid Rosa rugosa 

Inhibits cancer 

growth, angiogenesis 

and metastasis 

COX, ribonucleotide 

reductase, GSH, 

UDP-glucose 

(Choi et al., 2009; 

Verma et al., 2013) 
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dehydrogenase, NF-

ĸB inhibition and 

ATM kinase 

activation 

Sanguinarine 

Sanguinaria 

canadensis and 

Argemone mexicana 

anti-tumor and anti-

inflammatory 

DNA intercalator, 

AT1 receptor 

blockers,COX1/2, 

G9a, CARM1 

(Mackraj et al., 2008; 

Selvi B et al., 2009) 

Delphinidin Punica granatum 
Anti-inflammatory 

and anti-oxidant 

Activates superoxide 

dismutase, 

NAD(P)H- quinone 

oxidoreductase, 

glutathione S-

transferases 

(Dayoub et al., 2013; 

Seong et al., 2011) 

Procyanidin B3 Grape seeds 
Inhibition of prostate 

cancer cell growth 
- (Choi et al., 2011) 

K
A

T
i:

 N
a
tu

ra
l 

co
m

p
o
u

n
d

 d
er

iv
a
ti

v
es

 

4-cyano-3-

trifluoromethylpheny

lbenzamides 

Anacardic acid 
Inhibits KAT3 

activity 
- (Souto et al., 2008) 

hydrazinobenzoyl 

curcumin (HBC), 

CTK7A 

Curcumin 

Retards tumor 

growth in colorectal, 

prostate and oral 

cancer 

Calmodulin (Wu et al., 2015) 

LTK13, LTK14, 

LTK19 

Garcinol 

(isogarcinol) 

Inhibits global 

histone acetylation 

and HIV replication 

- 
(Mantelingu et al., 

2007) 

PTK1 Plumbagin 
Non-toxic histone 

acetylation inhibitor 
- 

(Vasudevarao et al., 

2014) 

EML425 Garcinol 

Inhibits histone 

acetylation, cell 

cycle arrest in G0/G1 

phase 

- (Milite et al., 2015) 

K
A

T
i:

 S
y

n
th

et
ic

 

co
m

p
o

u
n

d
 Lys-CoA Bi-substrate analog 

Specifically inhibits 

KAT3 activity in 

vitro 

- (Lau et al., 2000) 

C646 Pyrazolone-based 

Cell cycle arrest, 

senescence,  tumor 

cell migration 

- (Bowers et al., 2010) 
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L002 Synthetic 

Suppressed tumor 

growth in MDA-

MB-468 xenografts 

GCN5, PCAF, 

angiotensin II 

receptor-like1
1
  

(Yang et al., 2013) 

CCT077791, 

CCT077792 
Isothiazolone-based 

Inhibition of KAT 

activity in vitro 
PCAF (Stimson et al., 2005) 

BF1 Thiazole-based 

Reduction in histone 

acetylation in 

neuroblastoma and 

glioblastoma cell 

lines 

GCN5 (Secci et al., 2014) 

PU139 pyridoisothiazolone 

Inhibition of tumor 

growth, synergize 

doxorubicin effect 

GCN5, PCAF 

(Gajer et al., 2015) 

PU141 Pyridoisothiazolone 

Inhibition of tumor 

growth in 

neuroblastoma 

xenografts 

- 

K
A

T
 a

ct
iv

a
to

rs
 

CTPB, CTB Anacardic acid Histone acetylation, 

Long term memory 

formation 

- 
(Balasubramanyam 

et al., 2003) 

TTK21 
Anacardic acid 

(CTPB) 
- 

(Chatterjee et al., 

2012) 

Nemorosone Clusia rosea 
Reduced tumor 

growth 

Estrogen Receptor, 

Mitotoxic 

(Dal Piaz et al., 

2010; Wolf et al., 

2013) 

In
te

ra
ct

io
n

 i
n

h
ib

it
o
rs

: 
B

rd
 

Ischemin 
diazobenzene 

analogs 

Inhibition of 

apoptosis in 

cardiomyocytes 

- (Borah et al., 2011) 

CBP30 
5-isoxazolyl-

benzimidazoles 

Inhibition of KAT3-

dependent human 

Th17 responses 

- 

(Hammitzsch et al., 

2015; Hay et al., 

2014) 

I-CBP112 
benzo-oxazepine 

core structure 

Inhibition of 

leukemia-initiating 

cells 

- (Picaud et al., 2015) 

In
te

ra
ct

io
n

 

in
h

ib
it

o
rs

: 
C

H
1

 

d
o

m
a
in

 

Novobiocin Aminocoumarin 
Inhibition of 

angiogenesis and 

tumor growth, 

radiosensitizes tumor 

cells 

Anti-bacterial 

(bacterial DNA 

gyrase) 

(Wu et al., 2013) 

Gliotoxin 

Fungal toxin/ 

epipolythiodioxopipe

razine (ETP) 

farnesyl transferase, 

20S proteasome 
(Reece et al., 2014) 
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Chaetocin Fungal toxin/ETP 
Lysine 

methyltransferases 

Chetomin 
Chaetomium 

cochliodes/ETP 
- 

ETP2 
Synthetic dimeric 

ETP 
- (Dubey et al., 2013) 

Indandione and 

benzoquinone 
quinone derivatives 

induce Zn(II) 

ejection from 

enzyme active site 

Lysine Demethylase-

4A (KDM4A) 

(Jayatunga et al., 

2015) 

In
te

ra
ct

io
n

 i
n

h
ib

it
o
rs

: 

K
IX

 d
o
m

a
in

 

Naphthol AS-E 

phosphate 
Synthetic 

Increased myeloid 

differentiation and 

apoptosis 

- 
(Uttarkar et al., 

2015) 

ICG-001 (CBP-

specific) 
Synthetic 

Inhibits EMT, 

reduces tumor 

growth, sensitizes 

drug-resistant cancer 

cells 

- (Emami et al., 2004) 

1
 National Center for Biotechnology Information. PubChem BioAssay Database; AID=488811, 

https://pubchem.ncbi.nlm.nih.gov/bioassay/488811 (accessed Dec 22, 2015). 




