

[View Article Online](http://dx.doi.org/10.1039/c5dt04822b) [View Journal](http://pubs.rsc.org/en/journals/journal/DT)

Dalton Transactions

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Dey, B. S. Naidu and C. N. R. Rao*, Dalton Trans.*, 2016, DOI: 10.1039/C5DT04822B.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Journal Name

COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO³ (A=Al, Ga, Sc) on the thermochemical generation of CO and H² from CO² and H2O

Sunita Dey,^a B. S. Naidu^a and C. N. R. Rao^{a,*}

The effect of substitution of Al^{3+} , Ga^{3+} and Sc^{3+} ions in the Mn³⁺ site **of La0.5Sr0.5MnO³ on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO³ and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO³ or the parent La0.5Sr0.5MnO³ . Substitution of even 5% Sc3+ (x=0.5) results in a remarkable improvement on performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 µmol/g of O² and 545 µmol/g of CO respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO³ . This manganite also generates H² satisfactorily by the thermochemical splitting of H2O.**

Solar-thermochemical splitting of H_2O and CO_2 to generate H_2 and CO has excellent scope for improving solar- to-fuel conversion efficiency and is a potential alternative to satisfy the present day energy and environmental needs. $^{1-3}$ Thermochemical splitting of $CO₂$ and $H₂O$ involving a two-step process using metal oxides (MO_n) is of special interest in this context. The basic reactions are as follows,

Endothermal Step: $MO_n \to MO_{n-\delta} + \frac{\delta}{2}O_2 - - - - - - (1)$ Exothermal step: $MO_{n-\delta}$ + δCO_2 \rightarrow MO_n + δCO $MO_{n-\delta} + \delta H_2O \rightarrow MO_n + \delta H_2 - - - - (2)$

Ideally, oxides which lose oxygen on heating (reduction, step 1) and reoxidize reversibly on interaction with H_2O or CO_2 (oxidation, step 2) can best serve the purpose. Nonstoichiometric oxides such as ferrites, $4-6$ CeO₂^{7, 8} and doped $\text{CeO}_2^{\,9\text{-}11}$ have been examined for the purpose. Doping CeO₂ with isovalent Zr⁴⁺and Hf⁴⁺ has given some promising results in fuel production.¹⁰⁻¹³ Perovskite oxides, La_{1-x}Sr_xMnO₃ (LSM) involving Mn^{3+} / Mn⁴⁺ redox active ions have recently

emerged to be superior candidates to split $CO₂$ and H₂O.¹⁴

 $La_{0.5}Sr_{0.5}MnO₃$ (LSM50) substituted with different proportions of Al^{3+} , Ga³⁺ and Sc³⁺. La_{0.5}Sr_{0.5}Mn_{1-x}A_xO₃ (A=Al, Ga and Sc) were prepared by the sol-gel method starting with metal nitrates. The gels were heated upto 1400°C to obtain the oxides with particle sizes in the micrometer regime (details of synthesis condition and characterization techniques are in ESI, section S-A and Table S1). We have prepared the Al^{3+} substituted LSMs upto x=0.5, while in the case of Ga³⁺ and Sc^{3+} , the compositions were limited upto x=0.35 (secondary phases precipitates for

^a Chemistry and Physics of Materials Unit, New Chemistry Unit, Sheikh Saqr Laboratory, International Centre for Materials Science (ICMS), and CSIR Centre of

Excellence in Chemistry. Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR). Jakkur P.O., Bangalore- 560 064, India

^{*} E-mail: cnrrao@jncasr.ac.in experimental details, pxrd and tga plots and tables]. See DOI: 10.1039/x0xx00000x

Journal Name COMMUNICATION

x>0.35) and x=0.1 (Sc₂O₃ segregates 37 for x>0.1) respectively (Fig. S1 and Fig. S2). All the perovskite oxides crystallize in the R-3c space group, as observed by the PXRD patterns in Figs. S3- S5 (Table S2, ESI). The tolerance factor of the perovskite increases with x in the Al^{3+} and Ga³⁺ derivatives but decreases with x in the case of Sc³⁺ derivatives, as the size of Sc³⁺ is larger $\sqrt{2}$ than Mn³⁺ (Table S2, Eqn. S6 in section S-C, ESI). FESEM images $\frac{1}{5}$ and energy dispersive X-ray (EDX) mapping reveal that the as- $\frac{2}{5}$ ^{99.2} synthesized oxides comprise of micron-sized particles and confirms the homogenous distribution of metal cations as shown in Figs. S6 and S7. The BET surface area is of around 1-2 m^2/g . Reduction of the oxide and splitting of CO₂ accompanied by the formation of CO was studied by thermogravimetric analysis (TGA). Splitting of $H₂O$ was studied by using a locally fabricated set-up incorporating a gas chromatograph-TCD (see section S-A-3, ESI). 15 The reduction and oxidation temperatures in CO₂ (or H₂O) splitting studies were 1400°C and 1100°C respectively. **Drawing Control on 12/01** and 2011 and 2013 and 2014 and 2013 and 2014 and 2013 and 2014 and 2013 and 2014 and 2014 and 2014 and 2014 and 2014 and 2

In Fig. 1, we show representative TGA curves of $La_{0.5}Sr_{0.5}Mn_{1-x}Al_xO₃$ along with the histogram of thermochemical splitting of $CO₂$ for x=0.25-0.5. The amount of O_2 and CO produced increases with Al^{3+} content giving the highest values of O_2 and CO produced when x=0.5. Thus, the quantities of O_2 and CO produced by the x=0.5 composition are 322 and 388 μ mol/g respectively. La_{0.5}Sr_{0.5}Mn_{0.5}Al_{0.5}O₃ was also subjected to multiple cycling (Fig. S8) in the temperature range of 1400-1100°C, and 370 µmol/g of CO on average was obtained during three successive cycles without significant deviation in activity. The structures and compositions of the oxides remained the same after multiple cycling (Fig. S9, Table S3).

Fig. 1. (a) Representative TGA and (b) corresponding histogram of thermochemical CO₂ splitting of $La_{0.5}Sr_{0.5}Mn_{1-x}Al_xO_3$ (x= 0.25, 0.35 and 0.5). Reduction and oxidation temperatures are 1400 °C and 1100°C respectively.

La_{0.5}Sr_{0.5}Mn_{1-x}Ga_xO₃ behaves somewhat similar to the Al³⁺ substituted perovskites. The amount of $O₂$ evolved increases with x (Fig. 2). For, x=0.35, O₂ evolved 323 μmol/g (δ=0.2; % X_{red} =57), higher than x=0.25 (δ=0.18; % X_{red} =54) (Fig. S10; Eqn. S1-S5 in section S-B, ESI). In earlier reports, doping of $Ga³⁺$ in the B site of La-Sr-Fe perovskite has been reported to decrease the Fe-O bond covalency and increase in oxygen nonstoichiometry. $32-34$, 38 , 39 Ga^{3+} substitution is reported to decrease the enthalpy and increase the entropy of oxygen

vacancy formation in $La_{0.3}Sr_{0.7}FeO_3$ and also induce Q_{Q} and Q_{Q} in the more netries 33 inhomogeneties.³³

Fig. 2. (a) Representative TGA and (b) corresponding histogram of thermochemical CO₂ splitting of La_{0.5}Sr_{0.5}Mn_{1-x}Ga_xO₃ (x= 0.25, 0.35). Reduction and oxidation temperatures are 1400 °C and 1100°C respectively.

We have investigated the thermochemical splitting of $CO₂$ by $La_{0.5}Sr_{0.5}Mn_{1-x}Ga_xO_3$ (x=0.25, 0.35) by injecting CO₂ (Fig. 2) at 1100°C. Ga³⁺ substituted perovskites yield a much higher quantity of CO (447 µmol/g) even for x=0.35 as shown in Fig. 2. The quantity of CO obtained with x=0.25 is higher (480 μ mol/g). The reoxidation yield (% α) of x=0.25 is 42%, higher than x=0.35 (40%) (Fig. S10).

We could substitute Sc^{3+} in the B site of LSM only upto x=0.1 (Fig. S2).³⁷ However, even with x=0.05, the yield of O_2 and subsequently CO are both high, the values being 417 μmol/g (δ=0.21; % X_{red}=72) and 545 μmol/g respectively (Figs. 3 and S11). Increasing the Sc^{3+} content to x=0.1 does not improve O_2 production (426 µmol/g, δ =0.21; % X_{red}=73%) as well as CO production (491 µmol/g). The reoxidation yields are 65% and 58% respectively for x=0.05 and x=0.1 in the Sc³⁺ derivatives (Fig. S11).

Fig. 3. (a) Representative TGA and (b) corresponding histogram of thermochemical CO₂ splitting of (a) $La_{0.5}Sr_{0.5}Mn_{1-x}Sc_xO₃$ (x= 0.05, 0.1). Reduction and oxidation temperatures are 1400 °C and 1100°C respectively.

 $Sc³⁺$ doping (5-10%) is reported to enhance the performance of $La_{0.8}Sr_{0.2}MnO₃$ (LSM20) as a SOFC cathode and in methane oxidation. ^{35, 37} This is because of the higher oxygen vacancy ratio and enhanced oxygen mobility related to the bigger size of Sc³⁺. $35-37, 40, 41$ Over doping of Sc³⁺ (>10%) in LSM20 acts as an anion vacancy trapping centre through the association of Sc^{3+} with oxygen vacancy and is reported to deteriorate the oxygen conductivity in SOFC cathodes. This may be the reason why no further increment in $O₂$ evolution occurs beyond $x=0.05.^{36, 37}$

Fig. 4. Comparative study of (a) O_2 (T_{red}=1400°C) and (b) CO (T_{oxd}=1100°C) evolution with amount of Mn site substituent of $La_{0.5}Sr_{0.5}Mn_{1-x}A_xO₃$ perovskites (A=Al, Ga, Sc; 100x= % of substituent)

In Fig. 4 we compare the relative performance of the Al^{3+} , Ga^{3+} and Sc^{3+} substituted LSMs. All these derivatives show better performance than the parent LSM. Clearly the effect of the valent ions varies as Sc>Ga>Al. For the same proportions of the trivalent ion (25%), yield of O_2 is 1.4 times higher in the Ga derivative compared to the Al derivative. Increase in $O₂$ yield is more remarkable in Sc derivative where the x=0.05 composition produces 1.9 times and 1.3 times $O₂$ compared to the x=0.25 and x=0.5 composite with Al (Fig. 4a). CO yield of Ga derivative is of 1.5 times higher than Al derivative for similar proportions of x=0.25 (Fig. 4b). The increase in CO yield due to 5% Sc substitution is 1.7 times and 1.4 times of x=0.25 and x=0.5 composite with Al respectively (Fig. 4b). Notably, the CO production of x=0.25 Ga substitution and x=0.05 Sc substitution is of 1.5 times and 1.7 times of parent LSMs respectively.

We have examined the fuel production by the Ga (25%) and Sc (5%) substituted LSMs over three cycles in the 1400˚C-1100˚C temperature range (Figs. S12 and S13). The yields of $O₂$ and CO are affected marginally, the decrease after the third cycle less than 15-20%. The amount of CO produced by La_{0.5}Sr_{0.5}Mn_{0.75}Ga_{0.25}O₃ during the 1st, 2nd and 3rd cycles are 515, 437 and 429 µmol/g respectively while the CO produced by La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O₃ during the 1st, 2nd and 3rd cycles are 547, 496 and 476 µmol/g respectively. Decrease in fuel yield during multiple cycling is observed for most of the perovskites due to the sluggish kinetics or sintering.^{17, 18, 23} Nonetheless, the CO produced in both Ga (25%) and Sc (5%) substituted perovskites even after the third cycle is higher than that found with parent LSM (316 µmol/g) or with x=0.5 substitution of Al (366 µmol/g). The structures and compositions of perovskites remain unaltered after TGA cycling as observed in PXRD (Fig. S14) and EDS analysis (Figs. S15-S16, Tables S4 and S5) although sintering of the particles is revealed by FESEM images (Fig. S15). **Ballon state in the state of 10.1** (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c

The increase in the weight of the nonstoichiometric oxide on passing $CO₂$ could partly arise from carbonate formation instead of oxidation alone. 42 Substitution of Al in LSM lattice has shown to diminish the carbonate formation by Galvez et aI^{42} However, the carbonates are decomposes well below 1000 $^{\circ}$ C, while the CO₂ decomposition temperature is 1100 $^{\circ}$ C in all our experiments. We also ensured no further gain in weight

occurs at high temperature due to carbonate for[mation as well](http://dx.doi.org/10.1039/c5dt04822b) by performing separate TG experiments 10dn39Ga5Dand82ge substituted perovskites (experimental details at section S-A-3(ii), ESI).⁴² La_{0.5}Sr_{0.5}Mn_{0.75}Ga_{0.25}O₃ shows no weight loss corresponding to low temp decomposition (~940°C) of carbonate, while expose to $CO₂$ (Fig. S17a). No extra weight gain is obtained during the oxidation under 850°C in compare to regular oxidation of 1100°C (Fig. S17b), further reconfirms the weight gain is due to the $CO₂$ splitting. Similar conclusion has been obtained with $La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O₃$ (Fig. S18). The slow rate of oxidation can be due to kinetic barriers, as the oxidation is performed at a significantly lower temperature (700°C/850°C). The onset of mass loss remains the same during reduction under Ar as shown by the vertical lines in Figs. S17b and S18b. Interestingly, few earlier reports suggested that Sc^{3+} doping on LSMs suppress the SrO segregation, which actually promotes carbonate formation by $CO₂$ adsorption.^{35, 36} It further strengthens our observation and highlighted the advantages of Sc^{3+} and Ga³⁺ doping.

Fig. 5. (a) O_2 and (b) H_2 evolution profile of $La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O_3$. Reduction and H_2O splitting temperatures are 1400 °C and 1100°C respectively.

 $La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O₃$ gave superior performance with high CO productivity even during multiple cycling; we have employed it for water splitting (see section S-A-3(iii), ESI). Production of O_2 and H_2 was detected by gas chromatograph, shown in Fig. 5. The $O₂$ production starts at 900°C and completes within 40 mins after reaching 1400°C. The total amount of $O₂$ produced is 390 μ mol/g, close to the yield during TG measurements. H_2 is detected immediately after the entrance of H₂O in the gas stream (T_{oxd}=1100°C), and the quantities reaches a maximum and decreases thereafter (Fig. 5b). The amount of H_2 produced in a span of 100 mins is approximately 250 μ mol/g. H₂ evolution has not been completed even after 100 mins. The kinetic behaviour of H_2O splitting of $La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O_3$ is comparable to that of CO_2 splitting (Fig. S19 and Table S6). H_2 is produced in the initial 100mins of the reaction in the fast kinetic regime (yellow region, step 1, Fig. S19), followed by a slower kinetic regime (grey region, step 2, Fig. S19).

Conclusions

In conclusion, Ga and Sc substituted LSM based perovskites have been exploited for the first time for thermochemical $CO₂$ and H_2O splitting and these oxides show superior performance

Journal Name COMMUNICATION

in comparison with Al substituted LSMs or the parent LSM. It is noteworthy that the oxidation state of Ga and Sc remain +3 throughout and the effect of the trivalent cations varies in the order, Sc>Ga>Al. For the same proportion of the trivalent ion (25%), the yields of $O₂$ and CO are 1.4 and 1.5 times higher in the Ga derivative compared to the Al derivative. The performance obtained with substitution of 5% $Sc³⁺$ $(La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O₃)$ is remarkable with O₂ and CO yields of almost 2 and 1.7 times more than the parent LSM. Carbonate formation has not observed to contribute in weight gain during oxidation. Furthermore, 250 μ mol/g of H₂ is produced with $La_{0.5}Sr_{0.5}Mn_{0.95}Sc_{0.05}O_3$ at 1100°C. Incorporation of Ga³⁺ and $Sc³⁺$ in the LSM50 perovskite is beneficial in the two-step fuel production process and can be employed for high temperature syngas production and other applications. **Propositions Conservations and the matrix 19.15 Accepted on 12/01/2016 20:02:22. Wields and the matrix Published on 12/01/2016 20:02. Accepted by New Mexico State University of the matrix Published on 12/01/2016 20:02. U**

Acknowledgements

SD thanks CSIR for fellowship.

References

1 T. Kodama and N. Gokon, *Chem. Rev.*, 2007, **107**, 4048-4077.

2 J. E. Miller, A. Ambrosini, E. N. Coker, M. D. Allendorf and A. H. McDaniel, *Energy Procedia*, 2014, **49**, 2019-2026.

3 M. Roeb, M. Neises, N. Monnerie, F. Call, H. Simon, C. Sattler, M. Schmucker and R. Pitz-Paal, *Materials*, 2012, **5**, 2015- 2054.

4 Y. Tamaura, A. Steinfeld, P. Kuhn and K. Ehrensberger, *Energy*, 1995, **20**, 325-330.

5 F. He and F. Li, *Energy Environ. Sci.*, 2015, **8**, 535-539.

6 C. L. Muhich, B. D. Ehrhart, V. A. Witte, S. L. Miller, E. N. Coker, C. B. Musgrave and A. W. Weimer, *Energy Environ. Sci.*, 2015, **8**, 3687-3699.

7 S. Abanades and G. Flamant, *Sol. Energy*, 2006, **80**, 1611- 1623.

8 W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile and A. Steinfeld, *Science*, 2010, **330**, 1797-1801.

9 A. Le Gal and S. Abanades, *J. Phys. Chem. C*, 2012, **116**, 13516-13523.

10 J. R. Scheffe, R. Jacot, G. R. Patzke and A. Steinfeld, *J. Phys. Chem. C* 2013, **117**, 24104-24114.

11 Y. Hao, C.-K. Yang and S. M. Haile, *Chem. Mater.*, 2014, **26**, 6073-6082.

12 M. Kang, J. Zhang, C. Wang, F. Wang, N. Zhao, F. Xiao, W. Wei and Y. Sun, *RSC Adv.*, 2013, **3**, 18878-18885.

13 E. V. Ramos-Fernandez, N. R. Shiju and G. Rothenberg, *RSC Adv.*, 2014, **4**, 16456-16463.

14 J. R. Scheffe, D. Weibel and A. Steinfeld, *Energy Fuels*, 2013, **27**, 4250-4257.

15 S. Dey, B. S. Naidu, A. Govindaraj and C. N. R. Rao, *Phys. Chem. Chem. Phys.*, 2015, **17**, 122-125.

16 S. Dey, B. S. Naidu and C. N. R. Rao, *Chem. Eur. J.*, 2015, **21**, 7077-7081.

17 A. H. McDaniel, E. C. Miller, D. Arifin, A. Ambrosini, E. N. Coker, R. O'Hayre, W. C. Chueh and J. Tong, *Energy Environ. Sci.*, 2013, **6**, 2424-2428.

18 A. Demont and S. Abanades, *J. Mater. Chem*_{Vie}, 2015, **13, 2016**
2536-2546 DOL: 10.1039/C5DT04822B 3536-3546.

19 A. Demont and S. Abanades, *RSC Adv.*, 2014, **4**, 54885-54891. 20 A. H. Bork, M. Kubicek, M. Struzik and J. L. M. Rupp, *J. Mater. Chem. A*, 2015, **3**, 15546-15557.

21 C.-K. Yang, Y. Yamazaki, A. Aydin and S. M. Haile, *J. Mater. Chem. A*, 2014, **2**, 13612-13623.

22 Q. Jiang, J. Tong, G. Zhou, Z. Jiang, Z. Li and C. Li, *Sol. Energy*, 2014, **103**, 425-437.

23 A. Demont, S. Abanades and E. Beche, *J. Phys. Chem. C*, 2014, **118**, 12682-12692.

24 L. Nalbandian, A. Evdou and V. Zaspalis, *Int. J. Hydrogen Energy*, 2009, **34**, 7162-7172.

25 A. A. Leontiou, A. K. Ladavos, A. E. Giannakas, T. V. Bakas and P. J. Pomonis, *J. Catal.*, 2007, **251**, 103-112.

26 A. A. Leontiou, A. K. Ladavos, T. V. Bakas, T. C. Vaimakis and P. J. Pomonis, *Appl. Catal. A: Gen.*, 2003, **241**, 143-154.

27 T. Cooper, J. R. Scheffe, M. E. Galvez, R. Jacot, G. Patzke and A. Steinfeld, *Energy Technology*, 2015, **3**, 1130-1142.

28 M. Takacs, M. Hoes, M. Caduff, T. Cooper, J. R. Scheffe and A. Steinfeld, *Acta Materialia*, 2016, **103**, 700-710.

29 A. M. Deml, V. Stevanovic, A. M. Holder, M. Sanders, R. O'Hayre and C. B. Musgrave, *Chem. Mater.*, 2014, **26**, 6595- 6602.

30 S. J. Skinner and J. A. Kilner, *Materials Today*, 2003, **6**, 30-37. 31 F. Chen and M. Liu, *J. Solid State Electrochem.*, 1998, **3**, 7-14.

32 V. V. Kharton, M. V. Patrakeev, J. C. Waerenborgh, V. A. Sobyanin, S. A. Veniaminov, A. A. Yaremchenko, P. Gaczynski, V. D. Belyaev, G. L. Semin and J. R. Frade, *Solid State Sciences*, 2005, **7**, 1344-1352.

33 M. V. Patrakeev, E. B. Mitberg, A. A. Lakhtin, I. A. Leonidov, V. L. Kozhevnikov, V. V. Kharton, M. Avdeev and F. M. B. Marques, *J. Solid State Chem,*, 2002, **167**, 203-213.

34 E. N. Naumovich, M. V. Patrakeev, V. V. Kharton, M. S. Islam, A. A. Yaremchenko, J. R. Frade and F. M. B. Marques, *Solid State Ionics*, 2006, **177**, 457-470.

35 C. Zhang, Y. Zheng, Y. Lin, R. Ran, Z. Shao and D. Farrusseng, *J. Power Sources*, 2009, **191**, 225-232.

36 H. Gu, Y. Zheng, R. Ran, Z. Shao, W. Jin, N. Xu and J. Ahn, *J. Power Sources*, 2008, **183**, 471-478.

37 X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong and M. Cheng, *J. Power Sources*, 2008, **185**, 691-697.

38 V. V. Kharton, E. V. Tsipis, A. A. Yaremchenko, I. P. Marozau, A. P. Viskup, J. R. Frade and E. N. Naumovich, *Materials Science and Engineering: B*, 2006, **134**, 80-88.

39 M. V. Patrakeev, V. V. Kharton, Y. A. Bakhteeva, A. L. Shaula, I. A. Leonidov, V. L. Kozhevnikov, E. N. Naumovich, A. A. Yaremchenko and F. M. B. Marques, *Solid State Sciences*, 2006, **8**, 476-487.

40 D. Lybye, F. W. Poulsen and M. Mogensen, *Solid State Ionics*, 2000, **128**, 91-103.

41 H. Ullmann and N. Trofimenko, *Solid State Ionics*, 1999, **119**, 1-8.

42 M. E. Galvez, R. Jacot, J. Scheffe, T. Cooper, G. Patzke and A. Steinfeld, *Phys. Chem. Chem. Phys.*, 2015, **17**, 6629-6634.