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Minimum energy shapes of one-side-pinned static drops on inclined surfaces
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The shape that a liquid drop will assume when resting statically on a solid surface inclined to the horizontal
is studied here in two dimensions. Earlier experimental and numerical studies yield multiple solutions primarily
because of inherent differences in surface characteristics. On a solid surface capable of sustaining any amount of
hysteresis, we obtain the global, and hence unique, minimum energy shape as a function of equilibrium contact
angle, drop volume, and plate inclination. It is shown, in the energy minimization procedure, how the potential
energy of this system is dependent on the basis chosen to measure it from, and two realistic bases, front-pinned
and back-pinned, are chosen for consideration. This is at variance with previous numerical investigations where
both ends of the contact line are pinned. It is found that the free end always assumes Young’s equilibrium angle.
Using this, simple equations that describe the angles and the maximum volume are then derived. The range of
parameters where static drops are possible is presented. We introduce a detailed force balance for this problem
and study the role of the wall in supporting the drop. We show that a portion of the wall reaction can oppose
gravity while the other portion aids it. This determines the maximum drop volume that can be supported at a given
plate inclination. This maximum volume is the least for a vertical wall, and is higher for all other wall inclinations.
This study can be extended to three-dimensional drops in a straightforward manner and, even without this, lends
itself to experimental verification of several of its predictions.
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I. INTRODUCTION

Understanding how liquid drops remain static on inclined
surfaces, despite the action of gravity, is a classical problem. It
is not too straightforward to predict the shape attained by such
a drop, since a given volume can assume an infinite number
of static shapes. Depending on the minute details of the solid
surface on which the drop is supported, the contact line adjusts
itself so that, microscopically, Young’s equation

σ cos θe + σsl = σsg (1)

is satisfied, thus balancing surface tension forces at the contact
line. Here σ, σsl , and σsg are the liquid-gas, solid-liquid,
and solid-gas interfacial tensions, respectively, and θe is the
equilibrium contact angle. This microscopic force balance is
unaffected by external body forces. However, the observed
macroscopic, or apparent, contact angle is often different from
θe at both the front (θf ) and the rear (θb) of the drop (Fig. 1). The
possibility that the microscopic contact angle may be different
from the macroscopic is called contact angle hysteresis. A drop
on an inhomogeneous solid surface is capable of exhibiting
contact angle hysteresis. This phenomenon has been well
known experimentally for a very long time, and there are many
theoretical studies as well (for example, see Ref. [1]). For a
drop on an inclined surface the difference in the apparent
contact angles results in a net surface force that balances the
gravitational force [2,3]:

Vρg sin α = kλσ (cos θb − cos θf ), (2)

where V , ρ, g, and α are the volume, density of the
fluid, acceleration due to gravity, and the plate inclination
with respect to the horizontal, respectively, and λ is some
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characteristic width of the drop. This equation is exact in two
dimensions with k = 1. However, in three-dimensional drops
the value of k is not unique because of the complex shape that a
drop may adopt on an inclined surface. Variations in the force
related to contact area shape and size, and drop shape, are
clubbed together into the factor k in these nonaxisymmetric
drops [4,5]. Detailed geometry investigations have been done
both experimentally [5,6] and numerically [7,8].

Solids that can support any amount of hysteresis are referred
to here as infinitely hysteretic surfaces. Here the small-scale
roughness or chemical heterogeneities make it possible for a
contact line to shift imperceptibly, in order to microscopically
satisfy Young’s angle. We distinguish this general property of
the surface from that displayed by special locations on the
surface where forward motion is prevented; i.e., the contact
line is pinned. These are associated with a sharp heterogeneity
providing a resistive force too large to be overcome by thermal
fluctuations.

In all the numerical investigations we have come across,
the shape of the drop is obtained by making some restrictive
assumptions such as (1) pinning the contact line to a prespec-
ified shape such as a circle [8] or an elliplse [9], (2) defining
a small spherical region somewhere on the interface [7],
(3) prescribing apparent contact angles [10], or (4) spherical
cap and small hysteresis approximation [11]. Such prescrip-
tions are not unreasonable in certain practical situations, but
in the general context they are not valid [12], especially at
critical conditions, beyond which surface forces are not able
to counter gravity to provide a static shape [13]. Second,
some previous studies derived the static shape assuming that
it would form the asymptotic static limit of the shape of a
moving drop [14–16]. In these studies various experimental
observations needed to be made use of, e.g., in Ref. [6]
where parallel sided sliding drops were observed, and this
was prescribed. Also, a drop on a given surface may display
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FIG. 1. A static drop on an inclined surface. The weight of the
drop is supported by the difference in surface tension forces at the
front and rear of the drop.

a particular pair of advancing (θa) and receding (θr ) contact
angles in the limit of zero velocity. These, however, need not be
the same as the front (θf ) and back (θb) angles it would adopt
in its minimum energy configuration [17]. Though some of the
results enjoy experimental verification [18], it may be noted
that experiments too will not yield unique energy minimum
shapes, unless specifically designed to do so. In general there
exist a multitude of metastable solutions depending upon the
solid characteristics, and a given experiment would lead to
only a subset among them.

The idea of considering the resisting force of the solid
surface as a gradient of a potential was introduced in Ref. [19];
however, this was not pursued further, since this potential does
not have a simple functional form. With the development of
new experimental and computational techniques, this problem
continues to draw the attention of researchers. An energy
minimization procedure for nonaxisymmetric drops based
on the principle of virtual displacement has been developed
in Refs. [20,21] and a particle-based simulation method in
Ref. [22]. While the former introduces resistive forces and
hypothesizes a form for it to obtain static shapes, the latter
obtains them without explicit use of contact angle hysteresis.
A detailed numerical study of the drop geometry leading
to an analysis of Eq. (2) is still lacking in the literature.
Meanwhile there has been some progress in experimental
investigations of various aspects relating shape and surface
properties [5,11,12,23,24]. In summary, though some issues
have been addressed theoretically [25,26], further studies in
theory and numerical simulations are obviously required for a
better understanding. We describe here a method to determine
the shape, based on minimizing the total energy of the static
drop, which does not require experimental input.

There are several situations in which one may ask what is
the maximum volume of a drop that can be supported on a solid
surface inclined at a certain angle to the horizontal. This ques-
tion is relevant in various situations, e.g., when insecticides
or pesticides are sprayed on plant leaves, in spray and paint
industries, or in applications using dropwise condensation heat

exchangers. General answers to these questions require a large
set of experimental investigations. Our objective here is to
make predictions using simple analysis, assuming that the
surface is infinitely hysteretic.

Our approach, based on a procedure of minimization of total
energy to determine the shape of a static drop, is described in
Sec. II. This fundamental approach has been used in several
studies [3,10,16,20,21]. The procedure contains one ambigu-
ity, namely, what is the correct base with respect to which the
potential energy should be defined. This question has not been
addressed explicitly to our knowledge, but different studies
get around it by choosing a base and making computations
with respect to it. For example, the author of Ref. [3] uses the
center of a drop as the base (besides using linearized equations
and θf + θb = 2θe), those of Refs. [10,16] fix the contact
line, while the author of Ref. [21] introduces an artificial
resistive force in the procedure for virtual displacements with
arbitrary parameters. Each of these choices will give rise to
different answers for the minimum-energy shape, and we
discuss what would be a good measure under a given situation.
Note that the choice of potential energy basis corresponds
to a pinning of the drop at a particular point. We deal with
one-side pinned situations and hence obtain a more general
set of solutions than available in the literature. In fact, a drop
pinned on one of its sides and free to choose a minimum
energy shape by moving its other end is not uncommon in
experiments. The partial pinning of the contact line is a result
of variations in solid surface inhomogenities. Experimental
investigations in Ref. [27] showed some front-pinned and some
rear-pinned drops on inclined surfaces. Rear-pinned drops
are generally observed in rain drops on windowpanes; the
authors of Ref. [25] investigated this problem experimentally
and discussed the partial pinning of the contact line on various
surfaces with different affinities. Moreover the phenomenon of
hysteresis should be necessarily represented in a correct way
to model these drops. But this phenomenon itself is associated
with uncertainty, and hence a consistent approach is required.
This too has not been discussed to our knowledge and is
therefore taken up in Sec. III. Since our approach does not
make use of θa and θr , macroscopic behavior of drops on
inclined surfaces such as the the variation of front and rear
angles with respect to plate inclination, maximum volume that
can be supported on a solid surface at a given inclination, etc.,
may be addressed consistently.

For simplicity and clarity we analyze two-dimensional
drops here, but the method described is general and can be
extended to three-dimensional nonaxisymmetric drops. The
conclusions of Sec. IV remain valid qualitatively there too. The
shapes obtained here may be used as the starting point to study
drop dynamics, and to perform stability analyses. Finally, in
Sec. V we discuss the future directions and conclude.

II. ENERGY MINIMIZATION

We begin by constructing the force balance on a two-
dimensional drop under the action of gravity. We treat the drop
as being made up of a liquid (l), in a fluid medium referred to
as a gas (g), and supported by a solid surface (s). Since we deal
with two-dimensional drops, the term “volume” stands for the
cross-sectional area with a unit width in the third (spanwise)
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FIG. 2. A sessile drop.

direction. The term “contact area” similarly implies the length
of corresponding surfaces times a unit spanwise width.

The hydrostatic pressure variation inside a drop is balanced
by a suitable curvature adopted by the flexible liquid-gas
interface. For force balance along the vertical (Z) direction,
therefore, we must have

σ

R
+ zρg = σ

{
d2z/dx2

[1 + (dz/dx)2]3/2

}
, (3)

where x is the horizontal coordinate at which z is the vertical
location of the interface. The term in the fences on the
right-hand side is the inverse of the radius of curvature at z,
whereas R is the radius of curvature at z = 0 (tip of the drop).
It is easy to first analyze the two limits, namely, zero plate
inclination for a sessile drop and a 180◦ plate inclination for
a pendant drop. Consider a sessile drop, illustrated in Fig. 2,
of height h, contact area 2w with the solid, and liquid-gas
interfacial tension σ , subjected to gravity g. At the contact
line, a horizontal force balance yields nothing but Young’s
equation (1) with the equilibrium contact angle θe. The weight
of the drop and the vertical component 2σ sin θe of the forces
due to surface tension are balanced by the reaction from the
rigid solid surface [28]. The reaction to the pressure forces
is distributed along the contact area, while that to the tension
along the interface is a point force at the triple contact point.
Thus, an overall vertical force balance for a sessile drop (Fig. 2)
can be written [18] as

Vρg = 2w

(
σ

R
+ ρgh

)
− 2σ sin θe. (4)

This expression may also be obtained from the integration of
Eq. (3) [29]. Note that surface tension manifests itself both as
a point load and a distributed load.

On inverting the plate, we have a pendant drop as shown in
Fig. 3, and an overall vertical force balance can be written as

Vρg = −2w

(
σ

R
− ρgh

)
+ 2σ sin θe. (5)

The reversal of the direction of the surface forces results in the
shape of pendant drops being different from sessile ones. For a
sessile drop, the solid surface can support any weight, but for
pendant drops a part of the distributed reaction force acts in the
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FIG. 3. A pendant drop.
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FIG. 4. Forces acting on an elemental volume of drop resting on
an inclined surface. The gravitational force is shown acting at the
center of gravity of the element; pressure and normal reaction are
shown as distributed forces acting over a length while the liquid-gas
interfacial tension acts as point force at the two corners.

direction of gravity, and the remainder must support both this
and the weight of the drop. Thus drops of volume larger than a
particular maximum cannot be “hung” from a solid surface. A
detailed discussion specific to pendant drop shapes and their
stability can be found in Ref. [30]. We now construct a force
balance of a drop sitting on an inclined surface.

The force balance parallel to the solid surface is straight-
forward. However, the balance in the direction normal to the
surface needs some care. A discussion of the normal force
balance is not available in the literature to our knowledge,
except Refs. [31,32], which discuss the normal reaction force
at the contact line alone. Such a discussion is therefore included
below. In fact, even for horizontal surfaces, the role of the
surface reaction is an important issue drawing recent attention
(see, e.g., Refs. [32,33]).

Consider a small element of volume dV shown in Fig. 4
of the drop discussed in Fig. 1. The forces acting on this
element are (1) gravitational force dVρg acting downward,
(2) surface tension forces σ acting at the corners of the liquid-
gas interface along the interface, (3) pressure forces Px acting
on the upper and lower surfaces of the element, and (4) the
reaction force FNdw from the solid surface. Subscripts 1 and 2
denote the lower and upper faces of this element, respectively.
A horizontal force balance of this differential element is given
by (

σ

R
− ρgz

)
dw sin α = σ (cos θ1 − cos θ2), (6)

where R is the radius of curvature at a point on the interface
from where the height z is measured. A vertical force balance
is written as[(

σ

R
− ρgz1

)
x1 −

(
σ

R
− ρgz2

)
x2

]

+ σ (sin θ2 − sin θ1) +
(

σ

R
− ρgz

)
dw cos α = dVρg.

(7)

It may be seen that, unlike in sessile and pendant drops,
the variation of reaction force along the solid surface is not
intuitively obvious. For example, the nontrivial geometry (say,
x1 �= x2) gives rise to several contributions. Integrating the
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FIG. 5. Distribution of forces acting on the drop along the plate, resolved into vertical (b) and horizontal (c) components for the shape
shown in (a). z = 0 on the abscissa corresponds to the front end of the drop. Forces are normalized on the ordinate. In (a) and in subsequent
figures, the center of mass is shown by a point.

horizontal and vertical force balances on such elements for
the entire drop volume, and resolving the total force in a
direction parallel to the plate, Eq. (2) may be recovered.
Correspondingly the total force balance in a direction normal
to the plate is

Vρg cos α + σ (sin θf + sin θb)

= 1

sin α

{
σ

R
(hr − ha) − ρg

2

[
h2

r − h2
a)

]}
, (8)

where hr and ha denote the height to the locations of rear and
front contact points from where R is defined. This expression
reduces to Eqs. (4) and (5), respectively, when plate inclination
goes to 0◦ and 180◦.

To understand the relative distribution of these forces, we
plot them in Fig. 5. We consider a typical shape as shown
in Fig. 5(a). The force contributions along the vertical and
horizontal directions are shown in the Figs. 5(b) and 5(c),
respectively. In fact, the reaction force changes direction at a
particular height. Thus the bottom part of the drop is supported
by the solid while the top is not. It is obvious that the solid wall
should provide the necessary local moment reaction as well,
since the lines of action of the various forces do not coincide.
Therefore the drop cannot be thought of as pivoted at a single
point on the plate, unlike a solid object hanging from a point.

III. NUMERICAL METHOD OF DETERMINING
THE SHAPE

The procedure used is an extension to inclined surfaces
of that described in Ref. [30] for pendant drops. Beginning
with a specified value of R, Eq. (3) is integrated to determine
a possible equilibrium shape of the meniscus. Note that this
equation is independent of the positioning of the solid plate.
Using this freedom, the solid plate at a specified inclination
is used to cut this curve when the volume of the closed shape
corresponds to the desired volume V . For this fixed volume,
the result corresponds to a unique force-balanced shape for
the specified bottom-most radius of curvature R. Figure 6
illustrates shapes so obtained, of a given volume on a particular
plate inclination for two different values of R. In principle, an

infinite number of such shapes can exist in nature for a given
volume.

Given an infinitely hysteretic solid, the shape that will
actually be displayed will be the minimum energy one for the
given combination of solid surface and fluid. Our objective is to
find that unique shape at which the drop attains the least energy
it possibly can, on all possible surfaces of a given surface
tension. The total surface energy (Es) may be calculated as

Es = σLlg + (σsl − σsg)Lsl, (9)

where Llg and Lsl are the liquid-gas and solid-liquid interfacial
lengths. The quantity that needs care in defining is the total
potential energy (Ep), which may be written as

Ep = Vρg(hcg − href), (10)

where hcg is the height of the center of gravity of the drop.
There is an arbitrariness in choosing the reference height href,
and evidently the results depend crucially on this choice. For
example, one may take href as the point on the plate vertically
below the center of gravity. The rear or front contact line
locations, and also the midpoint on the contact length, present

θ
a
=163, θ

r
=84

θ
a
=95, θ

r
=16

FIG. 6. Illustrating two different shapes for the same volume and
plate inclination, corresponding to two different values of R. Both
shapes are possible to achieve in experiments by choosing solid
surfaces of appropriate characteristics.
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other natural choices. The physical basis for a particular choice
is open to question. This problem of determining the right base
for the calculation of potential energy is not very common in
mechanics. It is usual that the choice of basis changes the
potential energy only by a constant value in all cases, which
does not matter in any comparisons. Here we have a peculiar
situation in which a deformable body with free end points is
allowed to slide on an inclined surface. In theory the drop as
a whole may be translated to lower and lower positions on the
solid surface, and its total energy would keep decreasing. In
the case of a solid object hanging from a wall, there would be
a well-defined pivot point of suspension from the wall. There
is no such unique point for a liquid drop as we have discussed.
The reason the drop attains an equilibrium position in reality
is because of pinning of some kind at one or more contact
locations. The most reasonable choices for href are thus either
the advancing or the receding fronts of the drop, and we study
both. We also do cross-comparisons between these choices. As
discussed in Sec. I, the more restrictive situation where both
ends are pinned is well studied in the literature. That case,
however, involves an arbitrary choice of contact line length. In
reality when a drop slides on an inclined surface, its movement
is restricted typically by the pinning of just one of its ends.

Not all boundary conditions are known a priori in this
free boundary value problem and are to be determined along
with the full solution. Such a procedure is straightforward
for droplets on a horizontal surface, where Young’s equation
arises naturally from the energy minimization process. One
may apply a similar procedure for drops on inclined surfaces.
In this case, the energy minimization procedure not only
arrives at Eq. (2) as the boundary condition, but picks a
unique combination of θf and θb. It is thus more powerful
than earlier procedures, which needed to provide an additional
prescription, e.g., of contact angle or contact area. More
important, we have the global minimum energy shape rather
than innumerable metastable solutions. A drop on an inclined
surface would remain in motion until it encounters a pinning
location. At the pinning location, the surface provides a
restraining force, which is far stronger than the thermal
fluctuations can overcome. This strong force could come from
a sharp chemical heterogeneity, for example. It is reasonable
to assume that such pinning is likely to occur at one end
of the drop [25,27], and that both ends are unlikely to be
pinned simultaneously. A choice of pinning location fixes
the basis for potential energy calculations. At the free end,
thermal fluctuations allow the contact line to relocate itself
at small scales to minimize energy. We emphasize again our
assumption that the solid surface is capable of exhibiting the
full range of front and back contact angles, and that enough
thermal energy is available to the drop to take up the most stable
shape at the free end. This concept is pictorially represented in
Fig. 7. The left portion of the figure shows a case where there
is no minimum energy static shape, so the drop will continue
to move downward on the incline. This would happen when
the drop is larger than the maximum permissible static volume,
for example. On the right we have a possible energy minimum
shape. We also need an appropriately placed pinning location,
as discussed. This pinning on one side gives a general set of
solutions unlike the solutions obtained in the literature with
the entire contact area pinned.
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 εkT ~
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Realε E
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rg

y

Shape parameter

 ε

ε

Statically stable shape

Minimum energy
kT ~

No energy minimum
No static shapes

FIG. 7. Example schematics of energy landscapes. The total
energy for an ideal (dashed lines) and real (solid lines) solid surface
is shown as a function of some continuous variation in drop shape
characteristics. Local heterogeneities produce local minima of depth
O(ε), and kT is the thermal energy available to the system. Our
procedure essentially looks for a global energy minimum of the type
illustrated in the right schematic. The location of pinning provides
an additional strong restraining force that is too strong for thermal
fluctuations to overcome. In a landscape of the form shown on the
left, our procedure will not yield a static shape.

The total energy may be written as the sum of potential
and surface energies, Et = Ep + Es . Substituting Eq. (9) and
(10) and nondimensionalizing length scales by capillary length
Lc = √

σ/(ρg) and energy by σLc we have the expression for
total energy Et = B(hcg − href) + Llg − cos θeLsl . Here B =
Vρg/σ is the Bond number describing the relative importance
of two competing forces. We note that other forces which may
become relevant in a given situation may be incorporated into
the present procedure. It should be mentioned that energy
contributions from small unevennesses in the surface are
neglected in these calculations, as are other molecular forces.

IV. RESULTS AND DISCUSSION

A. Shape variations

The change in the minimum-energy shape of a drop of a
given volume, when the solid surface is tilted in stages from
α = 0◦ to 180◦, is illustrated in Fig. 8. It is seen that the shapes
corresponding to front-pinned and rear-pinned drops can be
dramatically different, highlighting the important role of solid
surface heterogeneities. There is no such ambiguity, of course,
for sessile or pendant drops. There is a continuous variation

α = 0

α = 30

α = 60

α = 90

α = 150

α = 120

α = 180

FIG. 8. Illustration of change of global minimum energy shape
as a function of plate inclination. Here θe = 60◦ and V = 0.5.
Continuous and dashed lines are for shapes obtained by pinning the
front and rear of the drop, respectively. It may be noticed that the free
end always reaches the equilibrium contact angle.
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FIG. 9. Front and rear contact angles of minimum energy shapes are shown as functions plate tilt angle in (a), (b), and (c) for different
volumes of the drop. Three different equilibrium contact angles, θe = 30◦, 90◦, and 150◦ are considered for each volume. Always θf > θr .
The computational results are shown with symbols. Solid lines and dashed lines are the theoretical predictions of Eq. (11) for front-pinned and
back-pinned drop shapes, respectively. When the front is pinned, the front and back contact angles are represented by ◦ and �, respectively.
In the case of back pinned, they are, respectively, represented by ♦ and ∗. For a range of inclinations, solutions may not exist, and this is
accentuated at larger volumes as in (b) and (c). In (d) a portion of Fig. 9(c) is expanded, to show the existence of different types of solution
when α → 180◦ for both front-pinned and rear-pinned cases. The symbols for this plot are defined in the legend.

in the contact angle as a function of the tilt angle, with a
reversal in behavior at the vertical position of the plate. This
is illustrated in Fig. 9.

Figure 9(a) shows the variation in front and rear contact
angle as a function of tilt for a nondimensional volume of V =
0.5. The plots are done for three different equilibrium contact
angles θe = 30◦, 90◦, and 150◦. It is seen that the variation in
θf and θb is not symmetric and depends on which side of the
drop is pinned. First, consider the case of θe = 90◦. For a drop
pinned at its front, θf increases with tilt for α < 90◦, while
the rear adjusts itself to attain θb = θe. The opposite happens
when the receding side is pinned, in which case the advancing
front takes up the most favored contact angle, i.e., θe, while the
rear angle is forced to reduce. The maximum difference in the
two contact angles is seen at the vertical position of the plate,
with a monotonic and symmetric variation on either side, to θe

at the sessile and pendant limits.
For θe = 30◦, when the front is pinned, the variation is

similar to what is observed in the case of θe = 90◦. But when
the back is pinned, there is a sharp decrease in the contact

angle, reaching a value of 0◦ at an α = 15.5◦, with no solutions
beyond, up to α = 164.5◦. Conversely for θe = 150◦, when the
back is pinned, solutions exist for all inclinations, while there is
a large range of α where no solution exists when the advancing
front is pinned. There is thus a cross symmetry in the solutions
of θe = β◦ and θe = (180 − β)◦, seen for a range of β.

The important observation is that the contact angle at the
free end remains at the equilibrium value except for a class of
solutions discussed later. For a front-pinned drop, then, θb = θe

and θf > θb, while θf = θe and θb < θf for a drop pinned on
receding side. A use of this information reduces an unknown
in Eq. (2), making it solvable. The angle at the pinned end can
then be described by

cos θf/b = cos θe ∓ V sin α. (11)

Solutions of this equation are plotted as lines in Fig. 9 and are
identical to the numerical solutions over most of the range. In
experiment, depending on the surface properties, the free end
may exhibit an angle lying between θr and θa , but different
from θe. Nevertheless, this angle will remain constant for the
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given surface irrespective of the inclination and volume. This
feature of minimum energy shapes has been seen, but not
commented upon, in experiments [2].

The discussion above was for a case when a drop is
pinned at one of its ends. Consider now a drop that is
effectively pinned elsewhere or has a more complicated
distribution of pinning. Many experimental observations show
a simultaneous variation in the front and rear angles [23],
which is characteristic of such pinning. In our simulations,
with the drop pinned elsewhere we observed such a variation
of θf and θb. We also found that for this situation we obtained
equal deviations in front and back angles from the Young
angle, i.e., θf = θe + ε and θb = θe − ε. For small ε, the force
balance parallel to the plate Eq. (2) then provides

V
sin α

sin θe

= ε. (12)

With an increase in the volume, as illustrated in Figs. 9(b)
for V = 2.0 and 9(c) for V = 3.5, there is a wider range of tilt
angles at which no solution is possible. The symmetry about
α = 90◦ is seen here too. Equation (11) predicts drop shapes
over a larger range than that in which numerical shapes are
found, especially for higher Young angle and higher α. This is
because certain shapes have intersecting menisci and cannot
be considered as physical solutions. This was pointed out in
Ref. [30] for pendant drops. Since Eq. (11) does not care about
this intersection of menisci, it predicts solutions in this range.

There is a crowding of solutions near θe = 30◦ in Fig. 9(c)
when α is close to 180◦. This region is expanded in Fig. 9(d)
for both front pinned and rear pinned drops. This crowding
is related to a subtle point described in detail in Ref. [30].
For a pendant drop, there exists a maximum volume beyond
which solutions respecting Young’s contact angle do not exist
[29]. However, certain solutions, with contact angle smaller
than θe, may be found beyond this maximum volume, up to
V ≈ 5.2, which is the maximum volume for a fully wetting
pendant drop. These solutions are characterized by a local
minimum in contact area (MCA). This is seen in Fig. 9(c)
with larger volumes exhibiting small contact angles when α =
180◦. Remnants of these solutions may be found for surfaces
inclined at α close to 180◦ too, and we call them “MCA-like”
solutions. These shapes will need further investigation for a
full understanding, as discussed in Ref. [30], and we do not
pursue that here.

B. Maximum volume

The previous observations lead to Fig. 10 where the
maximum volume that can be supported by a plate is plotted
against the plate inclination. Again a prediction for maximum
volume may be made from Eq. (11), rewritten as

Vmax = cos θe ∓ cos θf/b

sin α
, (13)

where θf = 180◦ for a front-pinned drop and θb = 0◦ for a
rear-pinned drop. This is shown as a dashed line in the same
figure. Note that by substituting Eq. (2) into the expression
of Ref. [15] for maximum volume [Eq. (5.3) in that paper]
results in this critical volume becoming independent of plate
inclination and dependent only on θa . Equation (13) would
thus provide a more reliable estimate for inclined geometries.

0 30 60 90 120 150 180
Plate inclination, α

0

2

4

6

8

M
ax

im
um

 V
ol

um
e,

 V
m

ax

Geometric
30,  back pinned
60,   "  "
90,   "  "
120, "  "
150, "  "
30, front pinned
60,   "  "
90,   "  "
120, "  "
150, "  "

FIG. 10. Maximum volume of a two-dimensional drop that can
be sustained on an inclined plate, as a function of inclination. There is
a geometrical constraint shown by the dark continuous line. Different
dashed lines are predictions of Eq. (13), and symbols are obtained
from the numerical calculations for various equilibrium contact
angles. A similarity between θe of front-pinned and 180◦ − θe and
back-pinned is evident.

In fact, a special form of Eq. (13) for hydrophilic surfaces when
the receding side forms a thin film, but for three-dimensional
drops, has been reported in Ref. [25] and experimentally
verified. This particular case corresponds to a drop pinned at
the back, with θb ∼ 0◦, and hence Eq. (13) conforms to Eq. (6)
of Ref. [25]. Second, we recall that the maximum volume at
a given inclination for a particular θe when advancing front is
pinned coincides with solution for 180◦ − θe when receding
side is pinned and vice versa. This may be seen to be a
consequence of Eq. (13).

There is another, geometrical, measure of maximum vol-
ume. This corresponds to a static drop shape but need not be a
minimum energy shape, and is obtained merely by fixing the
front angle to 180◦ and/or the rear angle to 0◦. (It may not be
possible always to satisfy both due to geometrical reasons.)
This is shown by a continuous line. This geometrically
achievable maximum need not in general correspond to a
minimum in energy, so the true maximum would often be
smaller, as seen. Since volume goes to infinity for sessile drops
it was difficult to get accurate answers numerically for small
plate inclinations.

There are some features to be noticed. Unlike the contact
angles, the maximum volume is not symmetric with respect
to the vertical position of the plate. The behavior seen is
in qualitative agreement with experimental observations of
Ref. [18] and theoretical predications of Refs. [14,15] for
three-dimensional nonaxisymmetric drops. The asymmetry is
to be expected because, as discussed, the plate cannot support
an infinite volume in the pendant configuration, but it can
in the sessile one, since the plate reaction is finite in the
pendant case. At some critical value αcr of the inclination,
the normal reaction becomes the limiting factor for maximum
volume that can be supported, and Eq. (13) is no longer the
decisive equation. In other words, Eq. (9) is the determining
condition when α → 180◦. This equation is not completely
predictive unlike the force balance parallel to the plate due to
several unknowns and the interface shape has to be solved to
use this equation. This transition of dominant force balance
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FIG. 11. Critical inclination, beyond Eq. (13) is no longer the
decisive condition, as a function of equilibrium contact angle when
the front end is pinned.

is important in practical cases because it is not possible to
achieve a static shape beyond this critical volume by adjusting
fluid or solid properties. The critical inclination of transition,
beyond which Eq. (13) is not the decisive condition, is found
to vary linearly with equilibrium contact angle as shown in
Fig. 11.

Similar to Eq. (13), the expression for maximum volume
for a three-dimensional drop can be written as

Vmax = kλ
cos θe ∓ cos θf/b

sin α
, (14)

where θf = 180◦ for a front pinned drop and θb = 0◦ for rear-
pinned drop.

In brief, a solid-philic drop has maximum volume when
it is front pinned, and a solid-phobic drop has maximum
volume when it is back pinned. Our observations tell us how to
manipulate solid and fluid properties to support a large volume
on a solid surface. For example, by making θa − θe larger one
may be able to pin the drop at the front more easily to hold a
large volume without falling off. In contrast it may be desirable
to keep θe − θr large to hold a solid-phobic drop on an inclined
plate.

V. SUMMARY AND OUTLOOK

Static two-dimensional drops on inclined surfaces are stud-
ied using a one-dimensional energy minimization procedure,

which determines the unique, global energy minimum shapes
for a given volume and plate inclination. The contact line
length and contact angles of this static drop shape emerge out
of the solution procedure and are not fixed a priori unlike in
earlier studies.

The solution depends on the basis chosen for potential
energy. This is discussed, and pinning at the front end and the
back end of the drop are chosen as two most realistic measures
for freely sitting drops on inclined surfaces. The free end of the
drop then attains Young’s contact angle, while the angle at the
pinned end adjusts itself to minimize the total energy. For any
other choice of basis for potential energy calculation, both front
and rear angles change simultaneously in equal magnitudes but
in opposite sense. The angles subtended at the two ends for
minimum energy are thus unrelated to the zero-velocity limit
of the advancing and receding contact angles on a surface.
The range of parameters over which solutions are possible are
delineated.

A detailed force balance is carried out for the first time
to our knowledge. It emerges that the reaction force of the
solid surface can be of opposite signs over different portions
of the contact area, and the plate can thus aid and oppose
gravity over different portions. This determines the maximum
volume that the plate can support at a given inclination. It is
seen that this maximum volume is the least when the plate
is held vertical. Below a critical inclination αcr for a given
θe, the maximum volume varies symmetrically with respect
to plate inclination about the vertical, and may be described
by Eq. (13). Inclinations α larger than this angle, however
can support only a smaller drop volume than inclinations of
180◦ − α.

This study may now be extended in several directions,
the obvious one being to three dimensional nonaxisymmetric
drops. Many of these observations may be verified through
experiments on a surface which permits large hysteresis.
Another interesting experimental possibility is to obtain
both the distributed load and the point forces on the sur-
face, for example, by using a soft material with measur-
able deformation, and compare against the force balance
study here. Apart from this, these minimum energy two-
dimensional shapes may be subjected to stability analyses.
Though there exist a large literature on the stability of
sessile and pendant drops, such studies on inclined drops are
fewer.
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