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Abstract

The main motivation of my work has been to study the stabdrgracteristics of spa-
tially developing flows. Transition is triggered by instédyiof the base state and under-
standing the stability characteristics has great impbeetin flow control.

Most of the earlier work on flow stability use the local appioawherein, the sta-
bility characteristics are determined based on the locllovty profile. Many of these
studies aim at finding the critical Reynolds numb&e...;;) above which the flow will
become unstable. This appproach is valid when the base flofilgpdoes not vary much
between locations or does not vary at all. Common exampéeBaw through a straight
channel, flat plate boundary layer at higla, which are a parallel flow and a weakly
non-parallel flow respectively. In most real life flow sitioats the non-parallelism is
not weak, i.e., the profiles and flow vary drastically in theamwise direction. While
the former type of flows can be studied using a local approteh Jatter need to be
studied using a global approach. The first step in the pregerk is to develop a soft-
ware to perform global stability on many complex flow geonsstr With this, we study
three non-parallel flows and report new instability chagastics. Many flows have been
studied using a global stability approach. In boundaryi&yee flows these studies find
stability behavior that is very similar qualitatively to whlocal studies already foretold.
In very complex geometries they obtain global modes thatateally localized to cer-
tain portions of the geometry which bear no resemblancedawve-like disturbances
of local studies.

The objective of most of the global studies has usually beedesign the most ef-
fective control strategy. Our focus is quite different.dt® understand some basic ways
in which non-parallel flows differ from parallel. The first flostudied is that through an
infinitely diverging channel, namely Jeffery-Hamel flow.i3s chosen as it is the sim-
plest non-parallel flow. The Reynolds number of this flow iagtant downstream and
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the profile is self-similar. While it is well known that theitical Reynolds number of
this flow is dramatically sensitive to wall divergence, tlaeise of this sensitivity is not
explained in the literature. We begin by asking why this hleyspand propose a scaling
argument, which gives a good approximation for variatioth@Re...;; with wall diver-
gence. The estimation die.. uses only results from the straight channel. We show that
even in this simplest non-parallel flow, the global insti#pinmodes recovered are very
different from what one would obtain by making a weakly nargllel assumption. We
also show using a wavelet transform of the global modes tpateeived ‘wavenumber’
of a global mode can change with streamwise and wall-norimattibns, a result not re-
ported before to our knowledge. Most importantly, the maatesnot wave-like, whereas
stability studies so far have made this assumption. Thisteures the validity of Robin
boundary conditions commonly used in global stability gsil, which impose a wave-
like boundary condition on the disturbances. We also rgpatta few global modes can
propagate upstream, in contrast to the local modes which &positive phase velocity.
Since a Jeffery-Hamel flow is not realizable in experiments,study a more realistic
geometry, where the divergence is confined to a short redi@enstraight channel and
find no qualitative difference in the stability charactgds. The base flow for this ge-
ometry is obtained by direct numerical simulations of theidaStokes equations using
a full multi-grid technique.

Next, we study the flow through a channel with a series of deet and convergent
sections, but whose average width is constant. Onemativér such a geometry is to
achieve low Reynolds number instability. We study chanmetl large wall waviness
amplitudes, in contrast to most previous studies whichyssudall waviness amplitudes.
This is because our ultimate aim is to achieve good mixindn@sé channels whereas
previous studies aim at studying the effect of surface roegh. In contrast to all pre-
vious work, we introduce fore-aft asymmetry in the chanmaeld get significant differ-
ences from previous studies. We also show that the periamliadary conditions used
in all the previous studies of these flows is not valid, as tbw fxhibits a new type of
spatial growth, which we term as an instability ratchet.sTihstability ratchet is defined
as the sequential spatial growth in the energy of the diatwrbs over successive peri-
odic units. Modes exhibiting a spatial ratchet are intengsbecause they can enhance
both transient growth and nonlinearities downstream. W iimfact that these flows
exhibit localized pockets of large transient growth. Hetiemtransient growth charac-
teristics of these flows need to be determined on a local lbasisiot in the traditional
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integrated way. In addition, we get exponential instapiit the global modes ake as
low as 50, by introducing large wall waviness amplitudes. By perforgha numerical
Floquet analysis, we find that several manifestations a&bikty are possible and show
that the instability contained in a mode may be demonstiatéiche or space. We find
that increase in one type of instability leads to a decreas¢her one and this interplay
is enhanced by the introduction of the fore-aft asymmetmhechannel walls. We also
show that the growth behaviour of these global modes carmaelcribed by a single
Floquent exponent and it is space and scale dependent. fDbhilem has a large number
of parameters involved and we study a wide range of parasiaienake comparisons.

We finally study the stability characteristics of a fully eédvped wall jet, which
obeys self-similarity at largé&e. A local stability study on this flow predicts a neutral
curve in which there is a small stable region within the ublgtaegime. This was at-
tributed to the presence of two types of instability modesdannot be explained on
physical grounds. No researchers to our knowledge havenptésl to understand what
happens behind this stable bubble, and we study this regianlocal basis using the
Orr-Sommerfeld equation. We also perform global stabititynputations on a longer
domain and obtain global modes. The critical Reynolds nurabtained from a global
approach coincides with that predicted by a local appro&atkhe case of wall jets, the
global modes obtained exhibit a small amount of non-waketiehaviour. However the
differences between the local and global stability resattsmuch smaller in this flow
than in the previous two.
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CHAPTER 1

INTRODUCTION

1.1 Stability Analysis of Fluid Flows

Most shear flows are spatially developing, i.e., their viyogrofile evolves as the flow
proceeds downstream. Typically, as the Reynolds numbegases, the laminar shear
flow undergoes a linear instability, followed by an often @ditated, and not completely
understood, route to turbulence. Oftentimes, the flow migittundergo the different
stages of instability, but directly becomes turbulentptigh a process called bypass
transition. The route which a flow chooses to become turlbldgriepends upon many
parameters like goemetry, free stream disturbances, etavith any work on flow sta-
bility and transition, this thesis also starts by referrtonghe work of Osborne Reynolds
in 1883, which was the first systematic study on the stabditylow through pipes.
The review paper by Jackson & Launder (2007) discusses théntywortant papers by
Reynolds and his interactions with the referees, that hawgreatly influenced the de-
velopment of Engineering Fluid Mechanics over the pastugnt

To perform stability analysis of a flow, the laminar state éstprbed and the evolu-
tion of the disturbances is monitored to see if the distuckamrow or decay. A growing
disturbance indicates an unstable system, while the d@hoes decay in a stable sys-
tem. Itis very important to understand the stability chéggstics of a flow, as it plays a
major role in flow control. In situations where we require flosv to be laminar, the dis-
turbance energy growth has to be curbed whereas in sitisattbere we prefer a turbu-
lent flow, the disturbance energy growth is enhanced. Tippssion or enhancement
of the disturbance energy could be performed in many wals,dlowing and suction,
heating and cooling, vortex generators, etc. The aboveiorerd techniques fall under
active flow control methods. The disturbance energy can ladstuned by passive op-
tions where, for example, the geometry is optimally desiyrie perform flow control,
we need information about what to control, where to contra Aow to control. This
information is obtained from the disturbance and it is aledia-priori by doing a stabil-
ity analysis. Thus, stability analysis is the first step imfloontrol. In addition, stability
analysis gives us information about the underlying physicthe less-understood (in
many cases), transition process. The main aim of the pres@itis to try to understand

1



1.1 Stability Analysis of Fluid Flows 2

the characteristics of flow through non-parallel, but natvemplicated geometries.

In the past it was assumed that stability properties can bermdaned by studying
the local velocity profile. In any non-parallel flow, such asamption need not hold
good. In chapter 2, a discussion about global stabilityyasislis done, along with an
introduction to non-parallel flows. It will be seen that tlagproach is not restricted
by any type of assumption and it can be used to study the isyathiaracteristics of
flow through complicated geometries too. In this work, glogtability approach has
been used to study both bounded and semi-bounded flows, ywahehnel flows and
wall jets. This approach can also be easily extended to urdexlifiows like wakes and
mixing layers, without any violation of assumptions.

Linear stability theory predicts that the flow through a sjré channel becomes un-
stable for Reynolds numbers greater tiham2. But in real life this flow becomes unsta-
ble at much lower Reynolds number and this phenomenon ectallbcritical transition.
Nishiokaet al.(1975) showed that by reducing the free stream disturbaamogby mak-
ing the walls of the channel extremely smooth, this flow camlaentained in a laminar
state well above the critical Reynolds number. This hintsualthe effect of surface
roughness, and in turn the change in geometry, on flow styabitiis well known that
divergence and convergence in a channel have a dramatat effélow stability. It was
shown by Sahu & Govindarajan (2005) that a pipe with any neno-zvall divergence
has a finite critical Reynolds number. Such flows have not Iségdied using a global
approach before, to our knowledge. This motivates us toystivel effect of change in
geometry in channel flows. The first change in geometry weidenss wall divergence
and this is discussed in chapter 3.

Divergence and convergence have opposite stability ctearsiics and it will be
interesting to study the flow through a channel with a serfeslternating convergence
and divergence. Such geometries are known to have smallieatReynolds number
compared to a straight channel and hence are widely useditrekehangers.

Wall jets have many industrial applications especially@atand mass transfer. The
applications depend on the parameters under which it witiai@ laminar or turbulent
and hence it is important to understand its stability charstics. This flow, whose
critical Reynolds number is very small, has been studieaigisical stability approaches.
We study this using a global stability approach, and disdusshapter 5.



CHAPTER 2

GLOBAL STABILITY ANALYSIS

Globe-al Instabmtg !

This chapter introduces the global stability approach dedrteed for such an ap-
proach to study the stability of non-parallel flows. We firgroduce the two commonly
used approximations which result in a problem solvablellp@ one stream-wise lo-
cation. These are the parallel flow assumption and the weakiyparallel assumption.
Some applications of each are described. Then we introdumagty non-parallel flows
and the global stability analysis with a few examples. Thenfdation of the problem
and the numerical discretization schemes used in the pgresehk are discussed next.
This is followed by the method of solving the problem numaltic the techniques used
and the validation.

2.1 Introduction

A flow can be defined completely by the functional dependericaeflow quantities

on the three co-ordindate directions,y, z and timet. Quantities such as the velocity
field, pressure, temperature, density, viscosity, etc.regeired for the complete flow
description. For our purposes, flows can be classified in tagsybased on their de-
pendence on time and space. First, they can be steady oadgsbased on their time

3
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dependence. An unsteady flow varies with time, requires thevhriables expressed at
every time instant for a complete description, and is beythedscope of this thesis. A
steady flow is independent of time. The second type of claasibn is based on the spa-
tial dependence of the flow quantities. Under this clasgiboglows can be parallel or
non-parallel. A parallel flow is one whose flow quantities elegh only on one direction,
usually a cross-flow direction. Common examples are fullyetigped pipe flow and
channel flow. Here, the flow velocity is described as a fumctbthe wall-normal co-
ordinate alone. Most other shear flows however are spatialgloping, where the flow
guantities change from one stream-wise location to the. fexamples of non-parallel
flows are wakes, jets, boundary layers, free shear layevg bihind a backward facing
step, separated flows and flow through complex geometriesstrigtly parallel flows
in real-life situations are very few. Even in the case of aigtit channel or pipe, the
flow is often not fully developed. High Reynolds number flovesda a very long entry
region where the flow quantities vary significantly with diste, and it can be classified
as a non-parallel flow. In fact the entire length of the pipelmnnel may be part of this
‘entry region’. A non-parallel flow depends on more than opat&l co-ordinate and it
can be two-dimensional (2D) or three-dimensional (3D).

Under special circumstances, the variation of the flow gtyawill be mild from sta-
tion to station and these flows will be classified as weakly-parallel flows as the non-
parallel effects are ‘weak’. A flat plate boundary layer agfhReynolds numbers and
flow through diverging channels at small angles of divergesnme common examples of
weakly non-parallel flows. Also many flows whose laminar pesfiobey self-similarity
such as wakes and jets are assumed to exhibit only weak mahgtiam at very high
Reynolds numbers.

The classifications discussed above, based on time and, sppacedependent of
each other. A steady flow can be parallel or non-parallel,rede a non-parallel flow
can be steady or unsteady.

2.2 Linear Stability Theory

An incompressible flow, steady or unsteady, parallel or parallel, can be defined by
the Navier-Stokes equations and continuity equation,rgnedow.

ou ou ou ou —1@ 1 0%°u *u  O*u

oV T e T o TR o T T o)

(2.1)
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ov ov ov dv  —10p 1 0% 0% 0%

— — +v— — =+ —(—=+=—=+=—). 2.2
ot +“ax+”ay+waz p 8y+Re(ax2+ay2+822) (2.2)
ow ow ow ow —10p 1 0w 0w  0*w
— — +v— — =+ — . 2.
ot +u8x+vﬁy+w82 p@z+Re(8w2+8y2+822) (2:3)
ou Ov Ow
%+a—y+$_0. (2.4)

Herex,y, z are the stream-wise, cross-stream and span-wise dirsabiotine flow
respectivelyu, v, w are the respective velocity components in those directipisthe
pressurep is the density is the time andRe is the Reynolds number. This set of equa-
tions coupled with suitable boundary conditions needs tgdieed to define the flow
field for a given situation. Dropping the time derivatives way obtain steady solu-
tions satisfying the above equation, and certain classéswidary conditions. These
solutions are termed as ‘base flow’. We distinguish the tdsasé flow’ from ‘mean
flow’, although the two are often used interchangeably is tuntext. A base flow sat-
isfies the steady Navier-Stokes equations but a mean flow otagince it is merely the
average of many realizations of the unsteady equations.sitmelity characteristics of
the base flow are determined by adding a time and space patiturh) and tracking the
perturbations in time and space to check if they grow or dethg growth and decay of
the perturbation defines the instability and stability & ase state, respectively.

Flows studied in this work are two-dimensional (2D) in natand are defined by
W = 0andd(U,V)/0z. The concepts of stability are best explained using 2D base
flows. Their extension to 3D base flows is straightforwardsdilwe confine ourselves
to the addition of 2D perturbations. 3D perturbations camseaqualitatively different
instabilities and are much richer.

A flow quantity can be expressed, for example, as

u=U+u, v=V+0, p=P+p, (2.5)

where the uppercase letters stand for the base flow and tméitiemwith a hat () indi-
cate the perturbations. Substituting equation 2.5 in egusiR.1, 2.2 and 2.4, neglecting
non-linear terms in the perturbation, and subtracting batiiase flow equation, we get
the evolution equations for the perturbations as,

ou ou ou du oU —-19p 1 o?u 0%

FU— + i+ V—+

i _—top L oru o o,
ot ox ox oy Uay P 6x+Re(0x2+0y2) (2.6)
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This widely used approach is referred to linear stabilityaty (LST). As the transition
to turbulence is characterized by instability followed lpid non-linearization in many
shear flows, researchers criticize the use of LST, see fanpl@aWaleffe (1995), as it
would at best be able to give information only about the ahgtages of transition. How-
ever an LST study is crucial in many flow situations and givesmynmportant pointers
about the initial stages of transition, signatures of whach often clearly visible even
in fully developed turbulence. Besides this, linearly sdtow can undergo large tran-
sient growth and reach a completely different state. Al&uely, nonlinear instability

could be the first to occur, creating a ‘bypass’ route to titaorsto turbulence. A re-

markable success of LST is the accurate prediction of theariRayleigh number of

1708 for a Rayleigh-Benard flow. Its failure to match with expeeintal data for a plane
Poiseuille flow has been explained using non-modal stglifi¢ory, see for example
Schmid (2007).

We are specifically interested in understanding the irstiagjes of transition in flows
where LST is among the most significant phenomena takingaha@wards turbulence.
In fact, a major portion of this thesis is devoted to chanrmlfiwhere a change in ge-
ometry changes the dominant transition mechanism from btrammsient growth to one
of exponential and, a non-exponential, but still modal tighgrowth. Our question is,
what triggers instability and what are the parameters wve@? Henningson (1996) has
showed that the nonlinear terms of the disturbance equat®onservative and if the
energy of the disturbance has to grow, it has to be througimeat process only’, thus
supporting LST. Note that this observation is strictly tfaea parallel flow only, since
an assumption is made about the spatial periodicity of thance. It is nevertheless
instructive about the importance of linear terms. To quate, HThe disturbance energy
produced by linear mechanisms is the only disturbance greargilable and in partic-
ular that this implies that the disturbance energy produmettansient mechanisms in
subcritical transition cause the total increase of E (eyjatgring the transition process.”
This can be understood by considering the evolution equébiothe kinetic disturbance
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energy, see for example Schmid & Henningson (2001),

ou; oU; 1 Ou; Ou; 0 1 1 1 Ouy
Ui = —uiuja—xj " Redw, o, o, _§Uiul'Uj_§Uiu7;uj'_u7;p§ij+@ul'a—% :

(2.9)

This equation is obtained by substituting equation 2.5 ma¢igns 2.1-2.3 and express-
ing them in the Einstein notation, multiplying them with Now, the left hand side is
the rate of change of the kinetic energy of the disturbanc&dmember that the non-
linear terms are retained. We now assume that the distuelsaare localized or spatially
periodic. This assumption many not hold true for a non-palrlow. Integrating the
equation over a control volume V, and using Gauss’s theohendérivative terms drop

out, gving. dE oU 1 [ 0w 0
d—tV = —/uiuja—xjdv “ %) oz on, v, (2.10)
This equation is called as the Reynolds-Orr equation. Wesearhere that the terms re-
maining in the right hand side are obtained from the lineangeof the original equation

and the terms obtained from the non-linear terms of the waigequation have dropped
out. This equation says that the kinetic energy of the distuce grows purely by the
linear terms and non-linear terms do not contribute to therggngrowth.

2.3 Stability of Parallel Flows

Considering 2D perturbations allows us to express thediatwce in terms of the stream-
function ¢ which automatically satisfies the continuity equation.ntating pressure

between the equations 2.6 and 2.7, we get the equation whielhndines the evolution

of perturbations as,

0 0 *V  9*U| 0 PU  9*V] 0 1 0
v vl v [ 5l 3t o - 5l - w7 o= a7
(2.11)
Here,i andd are replaced with¢ /0y and—0¢ /Ox respectivelyV? = (92 /0z* + 92 /0y?).
This perturbation equation is a partial differential egmat Solving this equation numer-
ically is difficult and time-consuming. A few further simpéations are possible based
on the type of flow considered and this leads to a classificdiezsed on the different

stability approaches, as discussed below.
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As its name suggests this method is applicable for striciialbel flows. Over the
decades non-parallel flows have however often been studiad this approach. When
the stream-wise variation is slow, as in many high Reynoldslver shear flows, the idea
is that the flow may be treated as being locally parallel. Assieady base flow depends
only on the wall-normal directiony) and is independent of the stream-wise direction (
and timet, the disturbance can be Fourier transformed in the indeg@nzb-ordinates
as follows,

O(w,y,t) = ly)e ™. (2.12)

Here, « is the wavenumber i andw is the frequency. Depending on whether we
choose a complex or complexw, we perform a spatial or temporal stability analysis,
respectively. The imaginary part ef andw will give information about the spatial
and temporal growth/decay rate of the disturbance, res@ict Assuming a complex
w and realo in equation 2.12, and substituting it in equation 2.11, weageordinary
differential eigenvalue problem far as,

1

(U =)D~ ) = U] =

[D? — a*%¢. (2.13)

Here, the eigenvalue= w/« is the phase velocity of the disturbanée = 0/0y and the
prime denotes differentiation with respectifo In a temporal framework, the equation
is solved for the eigenvalueby supplying a reatv and Re. In general, the eigenvalue
obtained is complex, and a plot of the frequengyversus the growth rate; is called
the frequency spectrum. A sample spectrum obtained for mepRoiseuille flow at a
Reynolds number 03770 anda=1.02 is shown in figure 2.1. As we can see from the
figure, this flow is stable for thia as all the eigenvalues have a negative decaywate
meaning the disturbances decay exponentially in time. Atge that this flow is near-
neutral at this Reynolds number. A small increase in Reyaltmber, t6>772.3 will
push this mode towards the unstable half plane to exhibibesptial instability with a
growth rate ofu;.

The equation discussed above is the famous Orr-Sommeideilatien, derived in-
dependently in the beginning of tf®" century by the Irish mathematician William
McFadden Orr and the German theoretical physicist Arnoliadoes Wilhelm Som-
merfeld. Soon thereafter, many people developed methadapjoroximate solutions
of this equation using expansion methods, a discussion afhwh given in Drazin &
Reid (1981). Tollmien (1929) first solved the Orr-Sommaetfequation for the Blasius
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Figure 2.1: Spectrum obtained by solving Orr-Sommerfeldagipn atRe = 5770 with
a = 1.02 for a plane Poiseuille flow. As can be seen, this flow is neatrakin that
one eigenvalue, shown in the box, is on the verge of movirgtime unstable half plane

(wi > O)

boundary layer and obtained a neutral curve. Most of theesditerature on hydrody-
namic stability considers very simple flow configuratiorkelplane Poiseuille flow and
plane Couette flow. The reason for this is that stability Esisheed information on the
base flow state and it is possible to get the base state inflemanalytically for these
flows. Even though this method is restricted to strictly galdlows, many researchers
have applied this approach to study flows which evolve sladdwnstream and were
often able to get reasonable agreement with experiments.it Bas to be noted that
this agreement is case dependent and does not hold good &vietyvof flow geome-
tries. Hence, a different approach was evolved to studyttizlgy of flows which vary
downstream, as discussed below.

2.4 Stability of Weakly Non-parallel Flows

As mentioned before, the Orr-Sommerfeld equation neglbetstream-wise variation
of the base flow as well as of the eigenfunction, and solvesi#iflow locally. This
initially was thought to be the reason for mismatch betwdwoty and experiments.
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Hence many researchers were involved in developing thewardech would incorporate
non-parallel effects. They attacked it as a perturbatiablem of the Orr-Sommerfeld
equation or the resulting solutions, for example see Bottaral. (2003) in which the
authors studied the stability of plane Couette flow with divaliations in the base flow
and found that this flow is destabilized even though the uodsed flow is linearly stable
for all Reynolds numbers. Gaster (2000) studied the effeaba-parallel terms in the
stability of boundary layers and did not find drastic difieces from the parallel flow
results. The main difference between parallel and weakiyparallel (WNP) theory is
that parallel theory neglects all variationsainwhereas WNP retains terms upto order
Re~! in both mean and perturbations, and neglects higher ordées disturbance thus
takes the form,

B, y,t) = la, y)e'tS e, (2.14)

Here, the wavenumber accounts for the fast variations in and¢(x) is assumed to
vary slowly withz, i.e. 9/0x ~ 1/Re andd?*¢/dz* ~ 0. The Parabolized Stability
Equations developed by Bertolott al. (1992) and Herbert (1997) and the Minimal
Composite Theory developed by Govindarajan & Narasimh®&%),9Govindarajan &
Narasimha (1997) are examples of the WNP approach. Thi®appthas been widely
used in many flows like boundary layers - Gaster (1974), Bettic& Herbert (1991),
Bertolotti et al. (1992), mixing layers - Monkewitet al. (1993), Bhattacharyat al.
(2006) and diverging pipes - Sahu & Govindarajan (2005). c&ihoth parallel and
weakly non-parallel approaches use the local velocity lesfiand other local quanti-
ties to determine the stability characteristics at a givieeasn-wise location, they are
called local approaches.

2.5 Global Stability Analysis

The applications of the local approaches are limited tolfg@nd weakly non-parallel
flows. A global approach is necessary when the stream-wiaegghof the flow is not
negligible. More significantly, as will be shown later in ttleesis, even in apparently
weakly non-parallel flows which obey self-similarity, a gbd approach reveals results
which are inaccessible to the local approaches. Even a floweles two parallel plates
might exhibit non-parallelism in the region very close ttetrwhere the flow is not fully
developed. In such flows, the disturbance is not Fouriestaamable inz and is left as
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an arbitrary function of andy as,

oz, y,t) = oz, y)e ", (2.15)

Substitution of 2.15 in equation 2.11 results in a partiffedential eigenvalue problem
inw as,

o 91, [V Ule [oU PVie 1, -
WVl T (amy | e+ Loy ) 3y e =
(2.16)

The only difference between equations 2.11 and 2.16 is itirthe derivative. This ap-
proach gives a global picture of the disturbance in termb®tigenfunction as against a
local approach. This approach can be termed as biglobarghab@l based on whether
the base flow considered is 2D or 3D, following Theofilis (2D0Bhe present work, as
mentioned before, is restricted to 2D flows. Extension to 3Bebflows is straightfor-
ward but computationally very costly, as we will see later.

The first global study in the present context dates back tavitrlx by Pierrehum-
bert (1986), where he studied two-dimensional disturbameenviscid vortices. First
calculations on viscous flows were reported by Jackson (19870 studied the flow
past variously shaped bodies and Zebib (1987), who studidifast a circular cylin-
der. This approach slowly became popular with researcinetfsel study of free surface
flows - Christodolou & Scriven (1988), rectangular ducts elet al. (1989), Tatsumi
& Yoshimura (1990) and boundary layers - Lin & Malik (1996)nL& Malik (1997).
But applying this method to large domains and at high Reynldgnbers was hindered
by the large computational costs involved in solving thebglostability equation. This

is because the matrices emerging from the discretizationgss are large, dense and
non-symmetric. All the above mentioned researchers (éxCepstodolou & Scriven
(1988)) have used the traditional QR algorithm to solve #saiiting matrix. The short-
coming, and sometimes the strength, of this algorithm i$ itheust compute all the
eigenvalues. Since the instability in many shear flows ggered by very few ‘danger-
ous’ modes, it would be computationally far more economioatalculate only those
dangerous eigenvalues. Hence, many researchers wergadvol developing efficient
methods to attack the global stability problem by solvindgydior those eigenvalues
which are physically relevant. Many algorithms like the Mmal Residual algorithm
and the Conjugate Gradient method were tried. Since theffeoaiewere restricted to
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symmetric, sparse matrices, researchers were involvedtanding these methods to
handle the non-symmetric generalized matrix systemswisut of the global stability
approach, for example see Saad & Schultz (1986) and Chalstod Scriven (1988).
Iterative techniques like the Arnoldi iteration togetheithw/shift-invert strategy’ and
Lanczos iteration are explained in Saad (1980) and Nayar i&dar(1993). Other ex-
amples are the low-dimensional Galerkin methods (see irchetal. (1993), Noack
& Eckelmann (1994)) and Simultaneous (Subspace) Iteragohnique used in Dijk-
straet al. (1995). The techniques developed were used for a varietyiaf dlynamical
problems, like Rayleigh-Benard flow by Dijksted al. (1995), channel flow over riblets
by Ehrenstein (1996), attachment-line boundary layer bgofitis (1997), and the flow
around a circular cylinder by Morzynskt al. (1999), where Krylov subspace methods
were used to compute only a part of the physically relevaggrialues.

Since the beginning of thl*' century, this global stability approach has been used
to study a wider variety of complex flow geometries. Theo#lisl. (2000) studied 2D
steady laminar separation bubble using WNP and DNS and gexegilent matching
of the stability characteristics for both 2D and 3D. But byfpaming a global stability
study, they show the existence of new instability modes whre inaccessible to either
of the approaches. They propose that flow control studiegshwiormally consider the
T-S waves and DNS frequencies, should consider the globdenfr@quencies to get
better control. Barklet al. (2002) performed a bi-global stability study on a backward
facing step and found that the critical eigenmode is loedlin the recirculation regions
behind the step. Schmid & Henningson (2002) performed aajlstability analysis on
a falling liquid curtain. They show that while a single glblbaode cannot match the
experimental results, an optimal superposition of manyglonodes was able to get
very good agreement with the experimentally observed &aqies.

Theofiliset al.(2003) studied a swept attachment-line boundary layer flEnwgboth
DNS and global stability study and showed that the tempardispatial solution of this
problem can be obtained by a three-dimensional extensi@odfer-Hammerlin model
at a lower computational cost. A very detailed review abdabgl stability analysis is
given in Theofilis (2003). In Theofilist al. (2004), the authors studied the stability char-
acteristics of four flow types using a global stability studire global eigenvalue spec-
trum of a rectangular duct has been obtained and comparédhat a plane Poiseuille
flow. It was shown that the flow through a rectangular ductibzas in the limit of the
geometry going towards a square duct. They also calculaeglbbal spectrum of a
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bounded Couette flow and found only stable modes. A lid droeanty was also stud-
ied and critical Reynolds numbers obtained. This study vide t achieve excellent
agreement with experimental results and was able to exgit@rerror in the stability
prediction of wall-bounded Couette flows based on the img@leelocity. In Theofilis
et al. (2005), the authors studied the global stability of segaratrofiles in three differ-
ent flow configurations. In these flows, they show that the @og# of the global modes
is less in the separated region than in the wake region om sager region, depend-
ing on the problem under consideration. They also hint abmihecessity to consider
information from the global modes for flow control studies.

Mittal & Kumar (2003) studied the flow past a rotating cylinded gave critical val-
ues for the occurrence of instability. Mittal & Singh (20@&®ed a finite element method
to study vortex shedding behind cylinders at subcriticalriéds numbers. They found
that vortex shedding is possible at very low Reynolds nusibed were able to obtain
a very good match between global stability results and nigalesimulations. Ehren-
stein & Gallaire (2005) studied the global stability chaegistics of a flat plate boundary
layer, which had hitherto been studied on a local basis. Bygmmal superposition of
the temporal global modes, the authors were able to simthateonvective nature of
instability of the boundary layer. Chedevergeteal. (2006) studied solid rocket motors
with fluid injection and found that the global eigen-spentris discrete for this case.
The obtained global mode frequencies compare very well @ifyerimental results and
the authors propose that these global modes give insighit @be thrust oscillations in
solid rocket motors.

Gonzalezet al. (2007), for the first time, developed a finite element methaith w
unstructured meshes for biglobal stability applicatiohittal & Kumar (2007) have
developed a new approach for global stability in which thaaggpns are written in a
moving frame of reference, which travels with the distuteanThis approach thus de-
termines the global convective instability of the modes padicular instant, as against
the large volume of temporal global instability studies.isTimethod was used to study
flow past a circular cylinder and excellent agreement waaiobt with the direct nu-
merical simulations. Alizard & Robinet (2007) performediglbbal stability analysis
on a flat plat boundary layer and obtained a very good match thi¢ global stability
results and the weakly non-parallel results. These autivers also able to show the
convective nature of instability of the boundary layer gsthese global modes. They
also study the transient amplifying behavior of the globaldes and discuss them in
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detail. Akerviket al.(2008) perform a global stability study on the flat plate bdany
layer and calculate the maximum energy growth possible thigse global modes using
a reduced order model. They show that even with global mattespptimal energy
growth is not obtained with just a few least stable modess €Rplains the need to con-
sider few stable global modes also to capture the distuddgnamics, which is very
crucial in flow control, as we will see below.

In the later part of the last decade global modes have beelomieantly used in
flow control. To achieve better control, the disturbance awdonsidered should have
good observability and good controllability. The best alsable modes need not always
be the best controllable modes. A balance should be achievedns of observability
and controllability while selecting the modes for flow carbtrin active flow control, the
disturbance energy is sensed at one stream-wise locatbaamappropriate response
is actuated at another stream-wise location, generallypstream location. In a local
stability analysis, the modes at the sensor location anchtheator location are not
connected to each other. Whereas, while using global medgsh extend throughout
the domain including the sensor and actuator locationsjrtfeemation is contained
well within the global mode and hence these modes work muttierbe designing the
desired control compared to local modes. The observalititycontrollability of global
modes are determined by the maximum amplitude of the diretia) mode and the
adjoint global mode, respectively. An adjoint global mosli¢he global mode obtained
by solving the adjoint global stability equation. A diredblgal mode is obtained by
solving directly the global stability equation, which haseh just referred to as a ‘global
mode’ in the previous discussions.

While using global modes for control, the sensor is placati@tocation where the
direct global modes have their maximum amplitude and theadeots are placed where
the adjoint global modes have their maximum amplitude. SkenAk et al. (2007)
for a control study of a separated boundary layer in a caviyngi global modes. In
Henningson & Akervik (2008), the authors have developediced order models from
the global modes, to perform flow control on three flow confagians, namely, a falling
liquid sheet, Blasius boundary layer and a boundary layer 8tmng a shallow cavity.
A reduced-order model does not consider all the global mdugsxtracts the essential
information from the global modes, converts them in a reduimem, and uses it to
perform the flow control. Proper Orthogonal Decomposito®[f is an example of a
reduced order model, see Barbagadtaal. (2009) for example. This paper discusses in
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detail about using global modes, POD modes and balanced P&@sor the control
of a separated boundary layer. POD modes are best conteolidiereas balanced POD
modes are both observable and controllable. Margtiat. (2009) studied a smoothed
backward facing step using global modes and identified thenwmality associated
with the governing equations in two forms - a lift-up non-madity resulting from the
transport of the base flow by the perturbation and a convecibn-normality resulting
from the transport of the perturbations by the base flow. Bypoting the adjoint global
modes, the authors were able to identify the optimal locadidhe sensors and actuators,
in terms of both controllability and observability, for ghilow.

In the previous sections, the term ‘global stability anedyisas been used to refer to
the partial differential eigenvalue problem where morentbae direction is taken as the
eigen-direction. In the weakly non-parallel frameworkstterm has often been used in
a slightly different context, like in Monkewitet al.(1993), Martinet al. (2006). Primar-
ily to clarify the terminology, we briefly discuss the contepf convective and absolute
instability in order to understand the definition of globttslity used here. These con-
cepts were first developed in the early 1950's in the field agpla physics; see Sturrock
(1958), Bers (1983) for elaborate reviews. In contrast éogpatial or temporal analysis
where we consider a complexor w respectively, a convective-absolute stability analy-
sis considers both andw to be complex. This approach is a spatio-temporal analysis,
giving information about the disturbance evolution in bsfface and time and hence
this approach was widely called as the global stability ysial Like the WNP, this ap-
proach too uses the (Wentzel-Kramers-Brillouin-JeffjéydKBJ approximation, details
of which along with an elaborate review about the absolote/ective and local/global
instabilities are available in Huerre & Monkewitz (1990).

In a convectively unstable but absolutely stable flow, audsince introduced at a
localized region grows in time, but gets convected dowastrethus leaving the base
flow at that location free of disturbance at a later time. BlRoiseuille flow - Deissler
(1987), circular jets and flat plate boundary layers - Gagt®68), Gaster (1975), and
mixing layers (for co-flow or small counter flow) - Huerre & Mkewitz (1985) are ex-
amples of convectively unstable flows. Convectively unistébws are called ‘globally
stable’ flows as the flow becomes free of the disturbance asst@pnvected away and
the flow eventually becomes stable.

In an absolutely unstable flow, a disturbance introducedgaten stream-wise sta-
tion grows at that station, propagating both upstream amehdtseam, sometimes con-
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taminating the entire flow field. Examples are bluff body wakeBetchov & Crimi-
nale (1966), Pier (2008), mixing layers (for large countewfl - Huerre & Monkewitz
(1985), boundary layer on a rotating disk - Lingwood (19%5&r (2007). Itis important
to remember that the presence of absolute instability doesecessarily imply a global
instability. It has been shown in Monkewigz al. (1993) that a region of absolute insta-
bility is a necessary, but not sufficient condition for glbimstability. This is because, if
a flow has a ‘pocket’ or finite region of absolute instabilltge a bluff body wake, then
the flow can sustain temporally growing modes only insidé tegion. Elsewhere, the
flow may only be convectively unstable. The review paper, & Monkewitz (1990)
contains an appendix which lists the various convective amgblute stability studies
done in wall bounded shear flows, jets, wakes and mixing fayer

Even though global stability studies as undertaken in tlesgmt work have been in
existence since the 1980’s, the term ‘global stability’ waed to represent this spatio-
temporal absolute/convective approach till the early 2éstury. The present definition
of ‘global stability’ considering the stream-wise diremtialso as an eigen-direction (bi-
global or tri-global) has gradually gained currency in trestpdecade. The first sym-
posium exclusively on the global stability approach wasdemted in 2001, with the
increase in the number of researchers using this methodctpwhen | was a week-old
student in INC in 2005, my advisor attended one of these gixelgymposia on global
stability, in Crete, Greece and that laid the foundatiomstimr my thesis!

2.6  Numerical Discretization

The art of expressing a continuous quantity defining a flovd f&ldiscrete points in the
domain is called discretization. This is necessary bec#usequation governing the
flow cannot be solved numerically at ‘every point’ in the deamdut can be solved at
‘many points’ in the domain. Different types of discretipat methods exist, e.g. Finite
Difference (FD), Finite Element method (FEM), Finite Volammethod (FVM), Spectral
method (SP). One of the commonly used spectral methods Bailmeer method which
has trigonometric functions as the basis functions and aorential convergence rate.
But the drawback is that it can be used only for periodic fiomg. Chebyshev method
uses Chebyshev polynomials as the basis functions. Legerdt other polynomials
may also be used in spectral methods but they are not distbsse. The discretization
scheme used in this work is Chebyshev-spectral collocatinnivasanet al. (1994)
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has a very ‘easy to understand’ introduction to Chebyshectsapl method and how
to use it to solve fluid dynamical problems. | learnt to usectijpé methods from this
paper and would recommend this reference for anyone new wissiRetization. When
a differential equation is discretized, we get a discretigguation in matrix form. The
discretization is explained first for an ODE which governsfldwv and then for a PDE
which governs a 2D flow.

2.6.1 1D discretization

Let u be the flow parameter of a 1D flow, governed by the equatior au = 0. Here
a prime denotes differentiation with respecttoLet us discretize this equation with
grid points, with the value of at each point expressed @&s us, ..., U, _1, u,,. Now the
equation has to be solved at each grid point and thus:fgrid points, we will haven
equations as,

If we define a differentiation matrix D to represent the détized form ofd/dy and D?
for d/dy?, the above set of equations can be written in matrix form as,

Uy a 0 0 0 O Uy

Us 0O o 0 0 O Us
D? =10 0 a 0 0
0 00 a0

U, 0 0 0 0 «& U,

The coefficients of the differentiation matrix depend on the type of discretization
used. FD methods are derived from Taylor's expansion anacitsracy depends upon
the number of terms retained in the Taylor's expansion. Kan®le, by considering
upto the third term of the Taylor's expansion, we may derigeeond order accurate FD
formula as,

To improve the accuracy, one would retain more and more tamrtiee Taylor’'s ex-
pansion and get information from more grid points. Givemumber of points, the best
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Figure 2.2: Schematic representation showing the depeedsrihe derivative at a point
on the other grid points. As can be seen, SP methods havenafiom from all the grid
points, which gives high accuracy

one could do is to consider all the points, and that is what SP method does. SP meth-
ods are known to exhibit higher levels of accuracy compaoceBD methods. This is
shown schematically in figure 2.2. But the price to pay fotiggthigher accuracy with
SP methods is that the resulting matrix is dense. A sarmhpieatrix from FD and SP
discretizations will look like,

dy  diy 0 0 0 diu  diz di di dip
di-r di  digr O 0 do1  dyp da dy day
0 div di diya O dy do d. d. dp
0 0 di-y di dipa di do d. d. dn
0 0 0 dp1 dn A1 dmo dp dpy, dym

We can note that for a discretization with* grid points, the D matrix is of size
m x m. In FD method, the D matrix is sparskediagonal for a scheme which is usually
accurate upto the ordét — 1)/2). Occasionally higher-order accuracy can be obtained
by clever algebraic manipulations for a given number of mers elements. For a given
m this requires less memory for matrix storage and less coatijpuial time to operate
on. On the contrary, the SP method gives a matrix where aklg@ents are non-zero,
requiring large memory and computational time. But aca&irasults are obtained with
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Figure 2.3: Nomenclature used for the grids locations in al@Bain

less number of grid points in SP than would be required tolgeesaime level of accuracy
using FD.

In Chebyshev spectral discretization, the grid points ateequally spaced but are
defined by a cosine function given as,

y; = cos, j=1,2,...,m—1,m.
m

This defines the value of between+1 and—1. A transformation can be enforced to
makey vary between physically relevant values based on the pmabl&his will be
explained in section 2.6.4. For> y > —1, the D matrix is defined as follows:

_1 k+j
Dk, j) = & U L<kj<mk+) (2.18)
cj (Yr — vj)
Yk
Dk k)= ———"— 2<k<m-1 2.19
2m? +1
D(0,0) = —D(m,m) = mé* (2.20)
with
1 = ¢y = 2, c;=1for2<j<m-1

Higher derivatives are calculated by operating the D matrito itself, likeD? = D x D
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2.6.2 2D discretization - y

Now, let us consider the flow variablein a 2D domain and choose a rectangular geom-
etry in thex — y plane for simplicity. Let us discretize this domain withpoints inz
andm points iny, as shown in figure 2.3. The valuewft each grid station is indicated
asu;;, where: corresponds to the grid number ang corresponds to the grid number,

as shown in figure 2.3. Here, the total number of grid point$ lv@ nxm=nm. For
demonstration, let us discretize the following equation,

ou 0u_

— 4+ —=0. 2.21
8w+8y 0 ( )

As before, the value of at all thenm grid locations can be written as a column vector
with the firstm values corresponding to the firgtlocation, the nexin values for the
nextz location and so on, like,

U11

U12

Urm
U21

U922

Uom,

Un1

Un2
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Here, eachr location is indicated with a different color for ease of viag. The dis-
cretization matrix iny (dy) can be defined using the formula 2.20 for eadbcation of
sizem x m and hence th&, matrix for the 2D domain will take the form,

dyi1 dyi2 dyi. dyim U1y
dy21 dyaz2 dya. dyam u12
dy .1 dy .2 dy.. dy.m
dy .1 dy .2 dy.. dy.m
dym1 dym2 dym,. dYymm Ulm
dyi1 dyi2 dy. Ayim U2y
dy21 dy22 dya. dyom u22
dy.1 dy .2 dy.. dy.m
dy.1 dy .2 dy.. dy.m
dymi  dym2  dym. dymm U2m
dyi1 dyi2 dyi. dyim U1
dy21 dy22 dya. dyam Up2
dy .1 dy .2 dy.. dy.m
dy .1 dy .o dy.. dy.m .
dym1 dym2 dym,. dYmm Unm

2.6.3 2D discretization - x

The differentiation matrix inz (dx) can be defined using equation 2.20 fodefined
betweenl and—1. Since the column vector is arranged in a particular marthergif-
ferentiation matrixD,, of the 2D domain will take the form:

deyy 0 0o o 0 da o 0 ) 0 dz1m 0 0o o 0 i
0 dey; 00 0 0 dzis 0 0 0 0 dzim O O 0 w12
0 0 .0 o 0 0 .0 o 0 0 .0 0
0 o o . 0 0 o o . 0 0 0 o . 0
0 0 0 0 dryy 0 0 0 0 dris 0 0 0 0 drim “im

dzor 0 ) 0 dzas o 0o 0 o dzom 0 ) 0 e
0 dzay 0 0 0 0 dzas 0 O 0 0 dzom 0 0 0 22
0 0 ) 0 0 .0 o 0 0 ) 0
0 o o . 0 0 o o . 0 0 0 o . 0
0 0 0 0 droy 0 0 0 0 dros 0 0 0 0 drom 2m
0 . 0 0 o0 0 . 0o 0o o 0 . 0o o 0
0 0 ) 0 0 .0 o 0 0 ) 0
0 o o . 0 0 o o . 0 0 0 o . 0
0 0o 0 o0 . 0 0o 0 o . 0 0 0o o .

dani 0 0o o 0 dapo 0 ) 0 dZnm 0 0o o 0 Unt
0 deni 0 0O 0 0 dzns 0 0 0 0 dznm O O 0 Un2
0 0 .0 o 0 0 .0 o 0 0 .0 0
0 o o . 0 0 o o . 0 0 0 o . 0
0 0 0 0 dep 0 0 0 0 dzne 0 0 0 0 denm Unm

As discussed before, calculation of higher order deriesilg straightforward once
we have the basi®, andD, matrices.

As mentioned before, extension to a 3D basic flow is straoghrd but it will
become too large a matrix. In addition to the above perfordiscretization, if we have
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p points in the third direction, then the leading dimensiothef differentiation matrices
in all the three directiond),, D,,, D, will be n x m x p.

2.6.4 Co-ordinate Transformation and Grid Stretching

To be remembered is the fact that these matrices are derred £ » > —1 and
1 >y > —1 (Note that x(1)=1 and x(n)=-1; y(1)=1 and y(m)=-1). To apilis method
to any real world application, saygoing from0 to some length., we do the following
transformation: Letr be the set of spectral collocation points extending betweamnd
—1 andz,.,; be the realk: co-ordinate in the physical system. Then,

Trear = (X % (—0.5) +0.5) * L. (2.22)

Then, the derivative matrix in the physical space can beliobtsby the transform,

Dityew = Dz /(—0.5)/L. (2.23)

Here, ﬁ is called the Jacobian of transformation. Similar transfation can
be done in they co-ordinate also from the spectral space to the real spateg the
appropriate Jacobian of transformation.

It is worth mentioning here about yet another Jacobian witichld arise in the
derivative matrices, namely the Jacobian of stretchinge ddllocation points obtained
from Chebyshev method are not uniformly spaced but areiloiged according to the
cosine function. This clusters the grid points close to tae sind end of the co-ordinate
direction. In bounded flows like a channel flow or pipe flowsttyipe of grid clustering
close the wall in they direction is very advantageous, as the gradients of the flew a
very close to the wall and a clustered grid in this region isassary to capture these
steep gradients. Whereas in unbounded or semi-bounded figeé jets, wakes and
boundary layers, clustering of the grid points in this fashis not desirable. In boundary
layers it is desirable to have the clustering close to the wegion, whereas for wakes
and jets we need more clustering around the center regiomla8ly, in thex direction,
Chebyshev discretization clusters the grid close to thet Brid exit of the domain, which
is not desirable. Depending on the flow configuration, we @osk a suitable stretching
to cluster the grids at a given region. We use the followimgtshing function, (see in
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Govindarajan (2004)),

r; = m&inh ((z. — xo)b) + sinh (bzy)], (2.24)
eP —
Ty = 0—b5 log ((11 j: ((e'b — 11))2)] , (2.25)

Here, z. is the collocation pointg is thex location around which clustering, relative
to the collocation points, is required, ahds the degree of clustering. The valuesaof
andb can be fixed depending upon the flow configuration and the atrafuwtustering
required. This can be used in both the directions to achielesaed grid clustering. On
account of this stretching function, there will be a Jacobi@atrix multiplying the Dx
and Dy matrices to account for the stretching. The valueb®ftretching coefficients,
a andb, used for the different flow configurations are given in thprapriate sections.

2.6.5 Domain transformation

Many researchers follow the idea of domain transformatiowlich a complicated ge-
ometry is mapped onto a rectangular geometry for ease of atatpn and for the easy
application of boundary conditions, Cebetial. (2005). An example of one of the do-
mains studied in the present work is shown in figure 2.4, whteggrids on the physical
and computational domain are shown. This transformatiomfthe physicat — y plane
to the computationa] — n plane is achieved using the following formulae,

¢ = dz, (2.26)
oy
1=y (2.27)

where,h(x) is the local semi-height of the physical domain. For thiagfarmation, we
get the differentiation matrices in the physieal- y domain as,

o 0 [(—nh\ 0
%_8C+( , )877 (2.28)
o 10

— 2.2
dy hon (2.29)
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Figure 2.4: Grids on the physical domain and the computatidamain

It can be noted that even thoudgh, and D matrices thus constructed are sparse, higher
derivatives of these matrices are dense. A schematic reieson of the density these
matrices is shown in figure 2.5, where a blue dot representdl @lement and a red star
represents a non-zero element. The density of the colounrie figure is directly pro-
portional to the density of the matrix. As can be seen,theD, andD,, matrices are
sparse, whereas the,, andD,, matrices are dense. Thus, using spectral discretization
in both the directions with co-ordinate transformation o above kind will lead to the
final A and B matrices being dense. This density of the magnad restrict the type of
solution method, as we will see in section 2.9.

2.7 Base flow calculation

Having discussed the various derivative terms in the glstability equation 2.16 and
the ways to calculate them, we are left with the base flow tamtke equation. One
important reason why global stability analysis did not cante existence much earlier
than it actually did is the necessity to know the base flow etely. It is well known that

small errors in the base flow can produce huge errors in thetror decay rates. We
will see in later chapters how sensitive the stability isiwa#l changes in the base flow.
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Figure 2.5: Schematic representation showing the densitheomatrices (a)D, (b)
D, (c) D,, (d) D,, (e) D,,. The blue dots represent zero entry and red stars represent
non-zero elements.
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Figure 2.6: Typical geometries handled by the base flow codled present work. Top:
A finite diverging channel. Bottom: A converging-divergingannel. The stream-wise
boundary conditions differ in the two cases.

The base flow, especially in a complex geometry, is often tratghtforward to obtain
and we need huge computational resources to calculateen i&va weakly non-parallel
flow, and even with a very efficient numerical technique, itegarkable that obtaining
the base flow can be the slowest step in the proceedings. STtieeiof the shortcomings
of the global stability analysis, where studying really gex flow geometries becomes
problematic. In the present work, the base flow profiles atainbd from a self-similar
solution, if it exists, or by solving the Navier-Stokes etjoias directly, using a code
developed by Sahu (2003). | thank him for sharing this codé ws, which has been
used here both for a channel with a finite diverging regioscdssed in chapter 3, and a
converging-diverging channel, discussed in chapter 4.tldiake base flow calculations
for the diverging channel flow for the required parametees rmade by him. A few
modifications to the converging-diverging channel flow cademade by him to suit the
different parametric requirements. A comparison of the tyyes of geometries handled
by this code is given in figure 2.6. The details of the numénwoathod are given below.
The steady two-dimensional Navier-Stokes equations dwedo the streamfunction-
vorticity formulation. This can become very time consumisag a full multigrid tech-
nique is used to accelerate the convergence, and a fastepaaler is incorporated,
details of which are available in Venkateshal. (2006). The governing dimensionless
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equations are

o)

- 1
— V)Q =
at+(UV)

V20 Q=-V?
ReV V3,

wherel is the velocity vectort is time, and2 and« are the mean vorticity and stream-
function respectively. The solution is facilitated by anséormation of coordinate, de-
fined byd( = dz/H(z), andn = y/H (z), whereH is the local half-width (for both
diverging channel and converging-diverging channel, asvshin figure 2.6). Since the
geometries considered are top-down symmetric, the equetice solved only for half
the domain. Symmetry boundary conditiohs= 2 = V = 90U /dy = 0 are used at the
centerline; no-slip and impermeability boundary condisg/ = V' = 0, are imposed
at the wall. There is also a set of boundaries studied whiemat top-down symmetric,
and the flow here is solved for over the entire domain. The Hagnconditions for that
case will be no-slip and no-penetration at both the wallse $tieam-wise boundary
conditions for the channel with a finite diverging region isixnann at the inlet and exit.
A parabolic flow is prescribed at the inlet. For the conveggtliverging channel with
periodic units in series, the equations are solved for jasteriodic unit, with periodic
boundary conditions at the inlet and the exit.

Except for the boundary conditions and the domain boundagysolution procedure
is the same for both the cases. We begin with a guess soluisorlly a parabolic veloc-
ity profile at every stream-wise location, and march in psuythe until a steady-state
solution is obtained. The vorticity distribution at eachwieme step is calculated adopt-
ing first-order accurate forward differencing in time and@@ed-order accurate central
differencing in space. This vorticity distribution is ustxisolve the Poisson equation
for the streamfunction by a Jacobi iterative scheme. Nurakacceleration is achieved
by a six level full-multigrid technique. The procedure ipeated until the cumulative
change in vorticity reduces to beloM—®. The grid sizes required for each case depend
on the parameters under consideration and they are givée iretevant chapters.

The base flow is obtained on equally-spaced grid points whéestability analysis
is performed on a spectral-spectral grid. Hence, the basedliained is interpolated
onto the spectral-spectral grid using a cubic spline irdkxgon. This code, in addition
to fitting a cubic spline between the given points, has a spéeature of minimizing
the length of the spline being fit, thus avoiding spuriousladmons of the curve. While
cubic spline interpolation is performed at the interiordgpioints, linear interpolation is



2.8 Boundary conditions 28

used at the boundaries of the domain. The base flow thus ebtaiiter interpolation is
checked for spurious values and compared with the origieglitdistant) data, before
proceeding further.

2.8 Boundary conditions

The global stability equation 2.16 is a generalized eigkere/problem of the formdx =
ABz. So far, we have seen the techniques involved in calculétieg\ and B matrices.
Before solving this eigenvalue problem, we need to enfdneebbundary conditions in
these matrices, as discussed below.

In addition to the above mentioned necessity to know the fhiaseaccurately, there
is yet another hurdle for the global stability approach, of knowing the stream-wise
boundary conditions for the disturbance. There are a fewlajunes for the implemen-
tation of these boundary conditions, based on the flow corgtgn. In the wall-normal
direction, no-slip and no-penetration boundary condgiane used in solid walls (like
in channel flow); decaying boundary conditions are givenainfield boundaries (like
in wakes and boundary layers). In the stream-wise directlomnmost commonly used
are the periodic boundary conditions. The justificationtfegir use is often not clear. It
has been assumed that they are valid, particularly in pergeometries. We shall see
however, that a periodicity in geometry is not reason forestimg the same periodicity
in the perturbations. In localized flows such as a separatitbles and cavity flows, ho-
mogeneous Dirichlet boundary conditions are used bec#eséisturbance is expected
to be localized within the flow and that it is therefore valdassume the incoming and
outgoing flow to be free of disturbance. Inhomogeneous Nexmaad Dirichlet bound-
ary conditions are applied when some property of the distuebk is known before hand,
like the frequency of the mode. A special type of Neumann bam condition is the
Robin boundary condition, in which the derivative of thetdibance is specified based
on the wavenumber of the disturbance. This is expressed as

Ou = ijau, (2.30)
ox

wherea is the wavenumber. This boundary condition has its rootiserparallel stability
approach, see equation 2.12. Equation 2.30 is just a restatef equation 2.12. In fact,

due to its nature, this boundary condition has played a nmajerin the validation of the
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global stability code developed during my PhD, details ofchhare given in section
2.12. We shall find the limitations as well of this boundamdiions.

When the stream-wise dependence of the disturbance is ootrka priori, use of
any of the above mentioned boundary conditions are not.vélinogeneous Neumann
boundary conditions are used in such situations, which doeallow for any change in
the stream-wise direction of the disturbance at the inletet. Few researchers also
propose to use the homogeneous second derivative corgldiotme boundary, which
would mean that the slope of the disturbance does not vary But, we consider this
also as a restrictive boundary condition, and use ‘Extragol Boundary Condition’
(EBC), see Theofilis (2003), as it is the least intrusive lataup condition. According to
this, all disturbance quantities at the boundary are piesdrto be linear extrapolations
of their values in the interior of the domain. For example, fllow quantity: at the inlet,
say(1), is written as a linear function of the values at the next twid fpcations(2, 3)
as,

ul[x;», — 1'2] — UQ[I?, — ZEl] + Ug[ZEQ — ZEl] = 0. (231)

Similarly, the value at the exit can be written as a lineaxirapolated function of the
values prior to the exit. For most of the results presenteithismthesis, EBC are used.
For the sake of comparison, periodic and Robin boundaryitiond are also used and
this is mentioned then and there.

Once the boundary conditions are decided, they can be ingritad by replacing a
few rows of the operator matrices (A and B matrices). Thisasywlearly explained
in Srinivasaret al. (1994). If the boundary conditions are homogeneous Deiglthen
a common practice is to ignore (remove) the rows correspanth this boundary con-
ditions and solve for the remaining matrix. This will redube size of the matrix and
hence the computational cost, to a certain extent.

2.9 Numerical Method

The numerical discretization using spectral method in bothnd y along with the
co-ordinate transformation results in generalized eigkres problem with dense non-
symmetric matrices. But the final form of the matrices olgdidepend on the type
of discretization and transformation used, if any. For egkenusing FVM or FD in
x and spectral iny will give a sparse matrix. In such cases, iterative solversdive
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for only part of the eigenspectrum is very successful. Ongefcommonly used itera-
tive solver is ARPACK (since 1996), which uses the iterafiveoldi algorithm. There
are also other eigenvalue solvers like LAPACK, SCALAPACKSEACK, LINPACK,
UMFPACK, BiCGStab. The choice of the solver depends on the tf the matrix we
get which again depends on the discretization scheme we use.

In the present work, we started working with the package LEBRAwhich is a di-
rect solver solving all the eigenvalues using QZ algorittsmce this was a very time
consuming process, we resorted to the iterative solver ABEAvhich solves only for
few eigenvalues. In this, we used the ‘shift-invert strgteghere the eigenvalues are
solved in the vicinity of the ‘shift’ supplied. But for largeatrices of the order used in
this work, ARPACK was taking more time than LAPACK, againgt expectation. This
is because the iterative process is carried out throughiessefr matrix-vector multipli-
cations. For a sparse matrix this operation is fast, givasidr convergence. But for a
dense matrix, this matrix-vector multiplication is not yéast and ARPACK takes much
longer than LAPACK, to calculate just a few eigenvalues. g hithe use of ARPACK
is not helpful for our work. A comparison of the spectra ob& using LAPACK and
ARPACK for few eigenvalues with a ‘shift’ mentioned is showrfigure 2.7. Also, this
being the first global stability study in the problems coesadl, the choice of shift and
the number of eigenvalues to ask for is not straight-forward

The use of LAPACK which is a direct solver to solve all the eiggdues could be
speeded up using the parallelized version of LAPACK, caB&ALAPACK. But, this
software does not have an inbuilt subroutine for non-symmetatrices of the kind we
get. Hence we resort to the longer, time consuming, comiputty costlier way of
solving the equation, using LAPACK.

One more point to note about the global stability equatio@@Ris that it employs
complex variables. A complex system will have twice the mgmrequirement and a
corresponding increase in the computational cost comgaradeal system. We convert
this complex system of equations into a real system by tmsfoamation mentioned in
Theofilis (2003). This is simply done by defining= iw, thus making A and B matrices
real and solving for complex. This real system is solved using the inbuilt subroutine
of LAPACK called dggev (formerly dgegv).
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Figure 2.7: Comparison of the spectra obtained for a typioalsymmetric generalized
dense matrix system, using LAPACK (entire spectrum) and AR (for 20 eigenval-
ues in the vicinity of the shift provided). The values of tinéftsare given in the inset.

2.10 Issues with Global Stability Theory

With great increases in processor speed, RAM, processomomeglobal stability anal-
ysis is being widely adopted to solve complex fluid dynamprablems. Even though
this analysis is very good in solving complex problems, & adew issues when it comes
to implementation. They are listed as follows:

¢ A global stability study can be conducted on any complex 2Bfield, provided
the base flow is known exactly. Obtaining the base flow for mammplex flows
is often not straight forward, and even when it is, requirést@f computational
effort.

e As mentioned before, the boundary conditions depend on the physics govern-
ing the flow. For localized flows, the boundary conditions are fairly straight-
forward whereas for many convectively unstable flows likeflat plate boundary
layer, and other flow configurations the boundary conditamesstill not very clear.
Many researchers agree that if a sufficiently long enoughaioms considered in
the stream-wise direction, then the effect of the boundandaions will not be
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‘felt’ in the interior of the domain. In such a case, a homagmis Dirichlet or
Neumann boundary condition would be considered safe. Bainhag consider
a very long domain, we need to consider many grid points, imcturn will
increase the computational cost. Thus, the issue bbundary conditions in a
‘finite’ domain is still very unclear for a majority of flows.

e Even though many iterative techniques which solve for very physically rel-
evant eigenvalues exist for global stability studies, esafysuch techniques are
restricted to a class of flows which do not require a co-orgitinsformation. In
addition, if we use FD method in one direction to achieve aspaatrix, then
more number of points need to be considered to achieve gandauny. A dense
matrix is not a good candidate for the iterative algorithrius global stability
study in general requires high computational resources.

e The modes obtained from parallel analysis are limited by &iole semi-circle
theorem which states that the disturbance cannot move thste or slower than
the base flow velocity. This theorem has been used as a gwedelieliminate
physically irrelevant modes in a system. This theorem isveaessarily valid for
non-parallel flows. Hence it is difficult to pin down the phyaly relevant distur-
bance modes and eliminate the spurious modes. Even if wenasthat the dis-
turbances cannot propagate faster/slower than the maximimmum base flow
speed respectively, there is no ‘direct’ method to estintla¢edisturbance wave
speed. Time evolution of the mode (in a movie form) can givejuantitative
information, but that is not easy to implement on all the nsociculated numer-
ically.

2.11 Grid Sensitivity

As mentioned before, the size of the matrices obtained graril hence the computa-
tional cost is huge. This limits the maximum grid size stdd@d hence might affect
accuracy. A sample grid size used by many researchers stydiobal stability of dif-
ferent flows is given below. The grid sizes give a represergatumber and has to be
fixed for each problem depending upon the domain and the flanackeristics.
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Author Flow Method Size
Ehrensteiret al. Separated boundary layer Chebyshev x Chebyshev 350x65
Ehrensteiret al Boundary layer Chebyshev x Chebyshev 180x45
Casaliset al. Solid rocket motor Chebyshev x Chebyshev 120x120
Theofiliset al Duct, Couette flow Chebyshev x Chebyshev 72x40

Theofiliset al Square lid driven cavity =~ Chebyshev x Chebyshev 48x48

In the present work, care has been taken to ensure grid itisépsn each of the
results presented. The grid size required and the grid hé@tsresults are presented in
each chapter, in the relevant subsections.

2.12 Validation

This is the section which took the longest duration of thé&rembde development phase.
The code is written in Fortran language with a feature calligdamic memory alloca-
tion’ which helps to handle really large memory requirenseemcountered with large
size matrices. The idea is to allocate the required amoumisohory for a variable until
the values dependent on it are calculated. After the depevdéues are calculated, the
memory is freed so that it can be used for some other varidMgith this, a large mem-
ory requirement program can be run efficiently with the aalalé less computer memory.

For the purpose of validation, we consider one of the benckpr@blems in hydro-
dynamic stability, the stability of a plane Poiseuille flolhe fully developed parabolic
flow through a straight channel becomes linearly unstabéeReynolds number (based
on the channel half-width and centerline velocity»a72 for a disturbance of wavenum-
bera = 1.02, see Orszag (1971). Since the present global stabilitydtation does not
have a wavenumber in it, to compare with the parallel apgr@c-Sommerfeld results,
we need to force a wavelike nature of the disturbance. It iglwooting that replac-
ing ¢(z) ~ ¢ in the global stability equation and forciig = 0 anddU /dx = 0
(corresponding to a parallel flow), we get the Orr-Sommaerietuation. For valida-
tion, we consider a 2D rectangular domain correspondinditate domain of the plane
Poiseuille flow. The base flow is given as the fully developathpolic profile of the
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plane Poiseuille flowl{ = 1 — 4%,V = 0). No-slip and no-penetration boundary con-
ditions are forced at the top and bottom walls of the domaime Boundary conditions
in the stream-wise direction are chosen as follows: to f@agavelike nature of the
disturbance, we fix the non-dimensional length of the doraqunal to the wavelength of
the wave under consideratio?w(/ «) and force periodic boundary conditions at inlet and
exit. But the results obtained were not as expected. Thesesaaething more we need
to do. One of the underlying assumptions of parallel apgraache wave-like nature
of the disturbance with a wavenumber, sayEven though a wave is periodic over one
period of its wavelength, the boundary condition we had gl allow for any shape
of the eigenfunction which is periodic over the prescribexdgth. We will thus not be
restricted to Orr-Sommerfeld like modes. The only way to fie disturbance with a
single wavenumber is to encourage this behavior at theamétexit by applying Robin
boundary conditions, stated d8/dx = ia¢. It can thus be seen that this boundary
condition has its roots from the parallel approach (sea@eet8).

As mentioned in later part of section 2.9, the global stgbéguation is made ‘real’
by solving foriw. But enforcing Robin boundary conditions will make the ensys-
tem of equations complex again. To avoid this, we supply aifieaidform of the Robin

4
boundary condition asj—2 —a’¢pand— 49 = a'¢. Since the global stability equation
T

ZE
is fourth order inx, we need to give four boundary conditionsin The four boundary
conditions used in this validation are,

(|) gzb |s perlodlc ey = ¢,

0429251

(i) 2¢" — o,
i,

() T2 — ot

With this, we are able to reproduce the parallel results aiz@g (1971) on a plane
channel flow. A sample spectrum obtained at a Reynolds nuafld&f72 with o = 1.02
is shown in figure 2.8. Here also, we don’t get an exact matth thie entire spectrum
of the Orr-Sommerfeld results, because the Robin boundamgitons will allow for
higher harmonics ofr over the same wavelength whereas the Orr-Sommerfeld sesult
hold good for a singlex. This is the reason we see some additional eigenvalues in
the global approach. Nevertheless, we are able to get a gatchrfor the least stable
eigenmode. The structure of the eigenfunction is also neatevith very good accuracy,
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Figure 2.8: Comparison of spectra obtained using the Omi8erfeld equation and
the global stability equation for a plane Poiseuille flow &eynolds number 05772,
a = 1.02. Thex boundary conditions in global approach are Robin + periodic

as shown in figure 2.9. We also get a value of critical Reynoldsber Re...;) of 5772
for ana of 1.02, as shown in figure 2.10. Plotted here is the grow#h (a) of the least
stable mode versus the Reynolds number.

In addition to the above checks, the following checks wese alone. Since each
chapter deals with a different geometry, stretching florcand co-ordinate transforma-
tion, the final differentiation matrices obtained are clesths follows: A known function
of z or y is defined and the derivatives of the function are checket thi¢ analytical
values. For example, the fourth derivative of a functionmiediag)* is checked to be4.
Similar checks were done far derivative too. In the cases where a similarity solution
does not exist, the derivatives of the base flow obtained nigaily and that obtained by
the operation of the derivative matrices on the base flow mrgsechecked.

This validates the code and the approach to the extent pessib addition, we
have also made sure that the results obtained are insenwitihe compiler used (f77,
fa5, gfortran, ifort) and the processor configuration (Ijkecision, accuracy, processor
speed, RAM, etc).

The reader will find certain sections of this thesis contagra lot of detail, for ex-
ample the section on numerics. The objective is that a nedestunay use this thesis

as an aid.
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Figure 2.9: Comparison of the least stable eigenfunctimwshin figure 2.8. Plotted
here is the eigenfunction versus the wall-normal co-ortginal’he global equation is
solved for full channel and parallel equation is solved faiffthannel. Each curve
represents different locations spanning over a wavelength of the wave.
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Figure 2.10: Graph of Reynolds number versu$or plane Channel flow obtained from
the global stability code with Robin boundary conditions.= 1.02. Only the least

stable mode is shown, which is seen to cross the imaginasyat»a Reynolds number
of 5772. The results obtained from the Orr-Sommerfeld equadre also shown for

comparison.



CHAPTER 3

DIVERGING CHANNELS

L & & A

w

3.1 Introduction

In the previous chapter we saw that a plane Poiseuille flounmsaltly stable upto a
Reynolds number 05772. But in a real life situation this flow becomes transitional a
a Reynolds much lower than the critical Reynolds number.s Thicalled subcritical
transition. Many shear flows exhibit subcritical instalyilclassical examples being the
Poiseuille flow through a circular pipe and plane Couette .flolese flows are linearly
stable for all Reynolds numbers. The discrepancy betweeatitheory and experiments
was attributed to the failure of LST, and several attempexqaain this discrepancy us-
ing non-linearity were made, see Stuart (1971) for a reviewan-linear stability theory.
In an attempt to reduce nonlinear effects, experiments amohls and pipes were con-
ducted in cleaner (reduced disturbance) environmentsasttiven possible to maintain
the flow in a laminar state for very high Reynolds numbers efdhder of10* in chan-
nels, Nishiokaet al. (1975) and10® in pipes, see Hoét al. (2004). This ability was
enhanced further by making the walls of the channel/pipexth®&s. This shows the sen-
sitivity of these flows to free-stream disturbances and thitase roughness at the wall.
Hof et al. (2003) have shown experimentally that the amplitude oludisince required
to trigger transition in a pipe flow scales inversely with Reynolds number. There is
also a huge volume of work dedicated to study the effect dasarroughness in pipes
and channels, see for example Heneigal. (2008), an dG J Kunkel & Smits (2008).
Subcritical transition in channels was also explained @nliasis of the non-normality

38
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of the operator, see Criminadg al. (1997). There has been a lot of debate about the rea-
son for subcritical transition in many shear flows, as to nomality or non-linearity,
see for example Reddy & Henningson (1993), Reddy & Hennind4894), Waleffe
(1995), Henningson (1996), Reddyal. (1998). The balance is now tipped in favor of
non-normality occurring first, and enabling linear distamioes to become large enough
to go non-linear. Moreover, Henningson (1996) showed timatesthe non-linear terms
are energy conserving, energy growth of the disturbancesdiae enhanced by a linear
mechanism and thus explains the subcritical transitiorhahoels using non-normality.
Note however that this argument for energy growth requiegtyobation to be spatially
localized or periodic, and this is not necessarily true fon4parallel flows.

A large amount of work has been done to study the effect of nadimgr parameters
like wall porosity, wall heating, viscosity variations, ivliexibility, etc on the stability
of channel and pipe flows. Given below is a very limited, repreative survey related
to channels (except the first reference which relates to @)tuBhankar & Kumuran
(2000) in a series of studies have shown that flow through #feekube is destabilized
at higher Reynolds numbers as against its rigid wall copwater Govindarajaret al.
(2001), Govindarajart al. (2003) have shown that a channel flow can be stabilized
by having small viscosity variations near the critical lay€ilton & Cortelezzi (2006),
Tilton & Cortelezzi (2008) studied flow through channelswitne or two porous walls
and found that even very small amounts of wall permeabikigrdase the stability of the
flow. Govindarajan (2004) studied the effects of miscipibf two fluids in a channel
flow. The effect of wall heating in a channel flow is studied bglW& Wilson (1996),
Sameen & Govindarajan (2007) discuss the separate effeetsoosity, buoyancy and
heat diffusivity. Sahuwet al. (2008) show that wall slip, which hugely stabilizes flow
through a straight channel, actually has a minor destafgieffect in a divergent chan-
nel. The transient growth obtained by a parallel stabilttydy is unaffected by either
slip or divergence. Sahet al. (2007) studied the stability characteristics of a two-faye
fluid in a channel, with one layer as non-Newtonian fluid. Afam all the above men-
tioned parameters affecting the stability of flow throughharnel, wall divergence has
a large effect. This alone is studied here and is discusseeitail below.
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x/H(x)=1/tan@):

Figure 3.1: Schematic of Jeffery-Hamel flow originatingrfr@a point source at the ori-
gin. 6 is the semi-divergence angle in degree and the streamwise co-ordinate. Note
that the axes are non-orthogonal. For global stability catajons, the inlet of the two-
dimensional domain is fixed at a distance pfan(#), as the length-scale of the problem
is the inlet half-width. The two-dimensional domain overngithe global stability com-
putations are made is shown by the rectangular box.

Y.
L=200

x=9.37 o1

Figure 3.2: Schematic of the channel with the finite divetgattion, referred to here
as SDS for straight-divergent-straight. The exit straigigiion is kept sufficiently long
to achieve parabolic velocity profile at the exit.

3.2 Diverging channel

The steady laminar two-dimensional flow of incompressihliglflvithin an infinite wedge
driven by a line source/ sink situated at the intersectiothefrigid planes that form the
wedge (figure 3.1) was first described by Jeffery (1915) anthélg1916) (see e.g.
Schlichting (2000)). Such a flow is called Jeffery-Hamel (dteafter) flow. Stabil-
ity of JH flows was first studied by Eagles (1966) who showed tinzergence has a
destabilizing effect. He calculated the critical Reynatdsnber, Re...;;, as a function
of the divergence angle using the Orr-Sommerfeld equatiihshowed thake,..;; falls
rapidly with wall divergence.

The stability of JH flows was also studied by many other redesas. Nakaya &
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Hasegawa (1970) studied the flow through diverging platearalytic expansions and
found critical values for the onset of instability. The bdkesv considered here is not
the JH solution, but derived analytically as a function of thverging angle. Eagles
& Weissman (1975) studied the flow through straight wallecedjing channels using
WKB method. The base flow considered here is the JH profileleBa& Smith (1980)
studied the flow through a channel with a finite diverging earwall region confined
between straight regions using the WKB method. The base ftovgidered here is
solved numerically. Allmen & Eagles (1984) solved the abmentioned two problems
numerically and obtained a very good match with the earlredjgtions. Georgiou &
Eagles (1985) studied the stability of flow through curvediecachannels using WKB
method. The base flow for this is calculated as a perturbdtothe JH flows. The
parameters governing the stability characteristics oholeés with straight walls, curved
walls, and walls changing the angle of divergence are dssmlignd compared in this
paper. Bankst al. (1988) studied linear and weakly non-linear perturbatitmshe
JH solutions and obtained critical angles necessary foudliance growth. Hamadiche
et al. (1994) showed that the critical Reynolds numbers for JH flbased on both
the volume flux and the axial velocity decrease rapidly witreying angle €), and a
guantity defined as a product of these Reynolds numbers @ittdy constant or scale
linearly with (¢). Uribe et al. (1997) studied the stability of JH flows using finite el-
ement method and obtained critical parameters for thelgyabf uni-directional and
bi-directional flows. Denni®t al. (1997) studied numerically the flow in a diverging
channel enclosed between two arcs and found that the intebatbet conditions have
a very strong influence on the non-linear development of . flDrazin (1999) has
a brief review on the instability of flow through divergingarimels. To mention a re-
lated work, Sahu & Govindarajan (2005) studied the stabditflow through a slowly
diverging pipe and showed the destabilizing effect of dyeeice too. This result is very
special because according to linear stability theory, flomugh a pipe is linearly sta-
ble for all Reynolds number. The fact that even a small amaofilivergence in the
pipe makes the critical Reynolds number ‘finite is very iat¢ing. Bank®t al. (1988)
and McAlpine & Drazin (1998) showed that while divergencediically destabilizes
the flow, convergence causes a huge stabilization. Putka&@d/orobieff (2006) stud-
ied JH flows experimentally and demonstrated that a symmetridirectional outflow
JH solution, if it exists, is always stable. This seems totraalict the results of Uribe
et al. (1997). Kerswellet al. (2004) studied, using a theoretical model, the non-linear
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evolution of two-dimensional spatial waves in JH flows. lhadlthe numerical work
mentioned above, the researchers have made the assumidboalty parallel flow and

the dramatic dependence B¢..;; on wall divergence angle has been captured to a great
extent. The papers are all, however, silent on why the desrereshould be so dramatic.
We provide a mathematical explanation in section 3.5.

In the theoretical JH flow, the velocity profile is self-siarland the velocity scales
inversely with distance, while the channel width scales linearly witras shown in fig-
ure 3.1, see Schlichting (2000). Hence the Reynolds nurdbéned based on the cen-
terline velocity and half channel width, does not vary doingem. One would therefore
expect a disturbance of constant dimensionless wavelgogtibined with a self-similar
amplitude functionp(y), to satisfy the stability equations. Given the large amaint
work on the stability of JH flows using local stability appob@&s, why do we need to
study this geometry as a global stability problem? We stubgiie to show how a global
analysis can reveal fundamental characteristics of thaldigy which are not acces-
sible to the parallel or WNP approaches. In fact none of tiobdal instability modes
resemble parallel or WNP modes. The point is that if the geom#he pressure, or
other relevant parameters were varying in a complicateldidaswith =, one would not
be surprised that global stability studies give resulty dgfferent from the parallel. The
fact that global modes can look qualitatively different imst perhaps the simplest of
non-parallel flows one could construct, is more interestifigis finding in JH flows
may be contrasted with recent studies on boundary layersEhgenstein & Gallaire
(2005). There it is seen that global stability results ddedifrom WNP quantitatively
by a small percentage, but a given mode is still describedldmsac WKB structure, of a
wave with a slowly changing wavelength streamwise. We lgiithere only a few im-
portant aspects of the effect of two-dimensionality on tiestudbance eigenfunction. In
addition to the JH, we consider a more realistic geometnjhasva in figure 3.2, where
the mean flow is obtained numerically. This flow is referrecasoSDS hereatfter, for
a channel with 8aight-Diverging-Sraight geometry. Similar geometries were studied
before by Eagles & Smith (1980), Nakayama (see in Drazin@)Q9Jutty (1996). The
reasons for choosing such a geometry is two-fold: (1) It slgaealizable in real-life
and hence experimental validation is possible (2) Strem@mWwoundary conditions will
become straightforward; Neumann boundary conditions ppfiGable at the inlet and
exit straight regions.

Many shear flows are spatially developing, where, as we pebeeth the flow inz,
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there are changes in the local Reynolds number as well as¢hEflow profile. JH flows
are unique in this aspect as they evolve spatially but (iJabal Reynolds number does
not change withr and (ii) the mean flow is self-similar. This feature of JH flomakes

it a good candidate for a global stability study as it wouldeginformation about the
effect of spatial development alone and not of streamwis@agés in Reynolds number.
One reason for the global approach displaying a much ricagety of modes than the
parallel is that the disturbance eigenfunction obtainethfsolving the Orr-Sommerfeld
equation can be multiplied by an arbitrary functiomuadind still satisfy the equation. In
the case of global stability, the prefactor functionrat well defined and it is expressed
in the eigenfunction solution.

3.3 Base flow

As mentioned before, we consider both the infinitely diveggdH flow and the finite
diverging SDS flow. The base flow considered for both thesescase explained sepa-
rately below. The JH base flow is self-similar while the base/flor SDS is obtained
numerically.

3.3.1 JH base flow

The steady laminar two-dimensional flow of incompressihigflvithin an infinite wedge
driven by a line source/ sink situated at the intersectiothefrigid planes that form the
wedge (figure 3.1) was first described by Jeffery (1915) anthélg1916) (see e.g.
Schlichting (2000)), by the similarity equation

U" + 280U +46°U" = 0, (3.1)

U(+1) = U(-1) = 0;U(0) = 1. HereU is the mean velocity in the similarity co-
ordinaten = y/H (z), 0 is the semi-divergence angle as shown in figure B 1s the
channel half-width, the primes stand for differentiatiothwrespect to), S = 0 Re, x IS
the streamwise co-ordinate apds the wall-normal co-ordinate. As mentioned before,
the Reynolds number (defined Bs = U.(z) H (z) /v, where the subscript* stands for
the channel centerline amndor kinematic viscosity), is constant downstream, in castr
to most other developing shear flows. The flow displays a s¢paregion forS greater
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Figure 3.3: The self-similar JH equation 3.1, plotted fdfedent values o5 = 0 Re. As
can be seen clearly from the inset, this flow becomes sepbf@ateralues ofS greater
than10.3.

than10.3. A plot of U obtained for different values & is shown in figure 3.3.

The domain over which global stability computations arefqrened is shown in
figure 3.1. As the half-channel width at the inlgt is the length scale, the starting
point in thex direction of this domain obeys the relation,,,./H; = 1/tan(f). The
domain extends up t0.,,; = T4+ + L, WhereL is kept sufficiently long. The velocity
profile at the inlet is obtained by solving equation 3.1 usarfgurth order Runge-Kutta
method with10000 grid points. Velocity profiles at other locations are obtained using
the similarity scaling relatiod ~ 2!, which is given explicitly as,

Uali).o) = 0at) @2)
Uatin =S a(1) (33
U"(ati).) = (1) (34
Vet = 0 (i - o) + DRI g

where the wall-normal velocity is obtained from continuitidere z(1) is the firstx
location andx (i) corresponds to any location with1 < i < n, wheren is the number
of grids inx. As per the scaling relation given in equation 3/2Jecreases with distance.
This is schematically shown in figure 3.4. Typical plotdafV and the streamfunction
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Figure 3.4: Local streamwise velocity profiles of JH flowrat=100, 6=5. The velocity
variation is given in equation 3.2.

1

05 1
Figure 3.5: (Left) Plots of streamfunction, streamwiseoeél and wall-normal velocity
of JH flow for Re=100, 6=5. (Right) Same as the left figure, but fBe=150. The flow at

this Reynolds number is separated. Note that the valuesaledswith their maximum
value for ease of viewing.

1 of JH flow at a particular streamwise station are shown in &§ub, for an unseparated
case (left) and a separated case (right). Contouts ahdV for a Reynolds number of
100 and semi-divergence angle= 5 are shown in figure 3.6.

3.3.2 SDS base flow

The mean velocity profile for the channel with the finite dgemt section (SDS, figure
3.2) is obtained by a numerical solution of the streamfuamctrorticity formulation of
the two-dimensional Navier-Stokes equation oflax32 grid. The numerical method
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Figure 3.6: Contours of streamwise (U) and wall-normal (\éJocity of JH flow at
Re=100, #=5. This flow hasS = 8.72 and is not separated.

is explained in section 2.7. At eadke and¥d, it is ensured that the final straight sec-
tion is long enough for the flow to attain a parabolic profileivieefore the exit. This
requirement has to be met in order to apply Neumann boundarglitons at the exit.
The length of this exit straight section increases appraxaty linearly with increasing
Reynolds number. In the present computations, the divesystarts atr = 9.37 and
ends atz = 91, as shown in figure 3.2. This flow is solved at the same paramnetr
settings as that of JH flow, detailed comparison given in Begtion.

3.4 Comparison of base flow - JH and SDS

The computations are conducted at many Reynolds numbemditi@nt angles of di-
vergence. To give a representative comparison of the bag®fldH and SDS flows, we
consider the flow for a half-angle of divergencesalegrees, and a Reynolds number of
100. The base flow profiles obtained for the JH flow from the sintyagquation (3.1)
and the SDS channel numerically are compared in figure 3ottdél here is the stream-
wise velocityU versus the non-dimensional co-ordinateT he lines shown in the figure
are obtained for SDS at three differentocations and the symbols are the solutions of
equation (3.1) folS = Ref = 8.72. We note that the JH profile is not separated at $his
value, whereas the SDS profile is separated downstream dwgnterline acceleration,
caused by the divergent section being finite. A domain lenfth = 200 is found to be
sufficient to get a parabolic flow at the exit. The local vetpgirofiles obtained for SDS
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Figure 3.7: Comparison of the mean velocity profiles of JH flgwown in figure 3.1)
with those of SDS flow (figure 3.2) at a few streamwise locatiofhe symbols are for a
similarity solution withS = 8.72 (Re=100,0 = 5°). The lines are for the SDS channel
at differentx locations. It can be seen that the JH profile matches with timeenical
profile for the SDS channel at= 21.

channel in the exit straight region is shown in figure 3.8.alh be seen that the profile
matches well with parabolic profile at the exit of the domafontours of the mean
streamwise velocity distribution are shown in figure 3.9. eyion of weak separated
flow extending over most of the divergent portion can be disee in the SDS.

3.5 Sensitivity of the critical Reynolds number to di-

vergence

While it is well known that the critical Reynolds number ofghlow is dramatically
sensitive to wall divergence, the cause of this sensitisityot explained in the literature.
We begin by asking why this happens and propose a scalingnam,l which gives a
good approximation for variation in thRe., with wall divergence. To explain this, we
expand the mean flow at small divergence as a perturbatidred?oiseuille solution. At
S << 1, we may write the solution to equation 3.1 as a small pertiobdo the plane
Poiseuille flow solution as,

U=1-y"+S(ay’ +by* + ey’ + dy* + ey + f), (3.6)
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Figure 3.8: Mean velocity profiles of SDS flow (figure 3.2) ata/fstreamwise locations
in the exit straight region of the domain. As can be seen, #hecity profile at the exit
of the domain is almost parabolic, corresponding to the/fdéveloped straight channel

profile.

0 50 100 150

Figure 3.9: Comparison of mean streamwise velocity costairJH (top) and SDS
(bottom) flows, for the case shown in figure 3.7, with = 100, § = 5°. Note the long
region of weak separation in the SDS case.
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whereS is a small parameter. Substituting the above in equationvdXget,
U=1—y*+S(—y%/30 +y*/6 + 2/15%). (3.7)

The full non-parallel stability equation is given in Govardjan & Narasimha (1995)
as,
Ra¢ = 1/ Re(viscous terms including all non-parallel teris (3.8)

Here, Ra is the Rayleigh operator. If we write the above equation fdHaflow and
that for a plane Poiseuille flow and subtract them, and usasifiem Govindarajan &
Narasimha (1997), we can show that the important terms are,

Rapo + 1/ Re..(¢" + higher order terms+ ia AU" 6. (3.9)

Here Rap stands for the Rayleigh operator for Poiseuille flow. The ant@nt term
in this equation is the change ', expressed adU”. To realize the importance of
this term, we refer here to two theorems which talk about theessary conditions for
inviscid instability, see Schmid & Henningson (2001). Thetfis Rayleigh’s inflection
point theorem, which says that an inflectional profile is gisvaaviscidly unstable. An
inflectional profile is one in which the slope changes sigm hence has the second
derivativeU"” as zero somewhere. The second is Fjortoft’s criterion, tvlgiges a more
stringent condition on the stability of inflectional proSlelt states that the vorticity has
to reach a maximum at the point of inflection, not minimum, iforiscid instability.
Even though these theorems are derived based on inviscidiples for parallel flows,
they are used as general guidelines for the stability ofotisaaon-parallel flows too.

For a plane channel flow, the second derivatiVeis —2 at every wall-normal loca-
tion, and one associates such a large negative value witbased stability. A channel
with small divergence or convergence has, from equation 3.7

U" = —2+S(—y4+2y2+1i"5). (3.10)

The departure from plane channel flow is given as,

4
AU" = S(—y* + 2y* + E)‘ (3.11)

Figure 3.10 shows this departure ©@f from —2 for different values ofS. The values
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Figure 3.10: Plots ot/”, equation 3.10, for different. The values ofS are indicated
close to each curve, towards the top of the figure. A positivakes the curve more
towards zero, and a negatigeakes the curve away from zero, making the flow close to
inflectional or further away from inflectional, respectiyel

of S are indicated close to each curve, towards the top of thedideor positive values
of S, i.e. diverging channels, the plot 6f" moves towards zero and for a value $f

betweenl and2 the flow becomes inflectional close to the walls. For negatalaes

of S, i.e. converging channels, the plot moves farther from z#dmas making the flow
more stable.

To understand the departure in the stability charactessif converging/diverging
channels caused by thiSU” term, consider the critical values for a straight channel,
Reynolds numbes772 and wavenumber.02. Assuming that the least stable wavenum-
ber and its eigenfunction do not change for a very small ceamghe angle, and substi-
tuting the above values into the non-parallel operator é&qgun 3.8), we get an approxi-
mate equation for th&e,,. as a function of the divergence angleas

1 1
Re,> 5T72Re,

=3 x10710. (3.12)

The constant factor on the right hand side comes from solianthe parallel flow with

6 = 0, at Re = 5772, using equation 3.11, and integrating across the channglrd-

3.11 shows the comparison of the above equation which isegntbtained from the
Poiseuille flow solution, against the Orr-Sommerfeld eppratesults for a JH flow. We
can see that this equation does reasonably well in exptainhy the critical Reynolds
number rises at low angles of convergence (negdt)jvend drops steeply with diver-
gence (positive). The reason, as explained above, is th€” term, which explains
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Figure 3.11: Sensitivity ofRe., to the divergence anglé at very smalld. Equation
3.12 (black line) obtained from perturbing about the Paig=golution is reasonable
at predicting the sensitivity oRe.. with change ind. Positived is for divergence and
negativel is for convergence.

the ‘departure from inflectionality’ associated with thefille. Also, it is important to
remember that even smallest changes inlfHevalues, associated with the smallest an-
gles of convergence/divergence, can cause a huge charige stability characteristics
of these flows. We can see here the drastic change in critegh®&ds number caused
by a very small change in the angle. The action of viscosigy sisgular perturbation in
the stability operator gives rise to the large effect.

3.6 Global stability analysis

The length of the JH domain is fixed equalior, unless otherwise specified, and of
the SDS domain i200 as shown in figure 3.2. The results presented are supportad wi
various sensitivity tests conducted, given in sectionZ3.6he global stability equation
is discretized with, andm points in ther andy directions, respectively. As mentioned
before, Chebyshev spectral collocation is used in botlctiors. This clusters the grid
points close to the walls in the wall-normal direction (whnis desirable), and close to
the inlet and exit of the domain (which is not desirable). etethe grids are stretched in
x to give a more or less uniform distribution of points in theeamwise direction using
the stretching function specified in section 2.6.4. Afteresal trials for better accuracy,
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the values ofi andb are fixed to ber = 0.5, = 3.0.

3.6.1 Boundary conditions

No-slip and no-penetration boundary conditions on bothwhbs are prescribed. The
correct streamwise boundary conditions to apply are notaasy and moreover, can
have a strong spurious influence on the results. We aim tameeithis influence. This
is one important reason for including a study on an SDS cHaimehich the region of
disturbance growth may be expected to be localized arownditlergent portion, and the
flow far upstream and downstream to be stable at the low Rdgmalmbers considered
in this work. In an SDS channel therefore, especially oné&itong straight section
at the exit, we have at least two options for streamwise bagndonditions, namely
Neumann and extrapolated boundary conditions (EBC), émxetl in section 2.31), at
both the inlet and the exit. In several global stability s&#gdRobin boundary conditions
are used, see Ehrenstein & Gallaire (2005), where wavebigtevior is prescribed, if
necessary with different wavelengths fixed at the inlet dedexit. We note however
that since the global mode is not necessarily wave-likeRblein boundary conditions
would be inappropriate (except for the purpose of comparisidh local stability ap-
proaches, as done in the validation section 2.12). We use, BB@e see it as being
the least prejudicial, both for JH and SDS. It is found that gufficiently long domain
is considered, the precise form of the boundary conditiavesschot affect the results.
Unless otherwise specified, the above mentioned extragablaundary conditions are
used for all the results presented.

Computations in this geometry with extrapolated boundandiions showed a class
of modes which propagated upstream. A time evolution of teas, in the form of a
movie, revealed this. Howard's semi-circle theorem dodsadonit disturbances with
negative phase speeds for this flow at this parametric gettiven though the global
modes from the present non-parallel approach need not dlieyhteorem, we do not
have a physical interpretation for these upstream propagatodes. It is possible that
reflections from the outer boundary could cause such upstgrapagation. Hence to
make sure that these modes are not an artifact of the boudaditions, a sponge is
applied at the exit of the domain. A sponged region in a flowlmsaaReynolds number
region introduced artificially just before the boundary ismooth manner, such that any
spurious reflection from the boundary gets killed in thatsaglue to the low values of
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Figure 3.12: (Left) Sponging applied artificially by redngithe local Reynolds number
without conserving mass (black circles) and with conseyvwimass (red squares) for JH
flow at Re = 100, # = 5. (Right) Zoomed in portion of a part of the spectrum. The
basic structure of the spectrum in terms of the distinct binas is unaffected. Also, the
gualitative structure of the modes obtained are similaherespective branches.

Reynolds number. In the present work, the local Reynoldshasrim the exit region is
reduced using the smooth hyperbolic tangent function. Teege this, the local velocity
U is reduced andl” is calculated accordingly. Since this was done by redudiegiiean
velocity, this region does not conserve mass flux. Compurtatare also repeated in
which mass is conserved in the sponged region. This is doneeliger reducing/
nor V, but by expressing the Reynolds number in the stability #goas a reducing
function ofz. No qualitative difference was found in the results obtdingth the above
mentioned two types of sponging, see figure 3.12. The formethod was opted for.
Even after application of large levels of sponging, the rgasth propagating modes do
not disappear. The importance or physical relevance ofetimesdes is discussed in
section 3.7.

Sponging strength is defined as the ratio of the decreaseeifRéynolds number
between the flow and the exit, to the Reynolds number of the f&pwnging strengths
of between 50% to 90% have been used. The sponged lengtHiat¢hen of the domain
over which the sponging is applied. For the SDS case, it isrexdsthat the sponging is
applied only in a portion of the exit straight region, withosiged lengths ranging from
20% to 40%. Within this range of strengths and lengths, ieenghat the results remain
insensitive as discussed below in the section on sengifitudies, 3.6.3.
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3.6.2 Validation

For the purpose of preliminary comparisons of the globabistg approach with the
parallel or WNP stability, and also to contrast with morelisg& computations made
later, we begin with a JH flow on a domain whose streamwisetleigyfixed as the
wavelength of the least stable mode in the parallel or WNBilgtaresults. Further, a
wave-like nature of the disturbance is forced at the inlet @xit of the channel by using
Robin boundary conditions. (see sections 2.8 and 2.12 faildd discussions). At the
inlet we use(D,,¢); = —a?¢, for all y locations, whereD,,. is the discretized form
of 92 /0x*. The subscriptl corresponds to the inlet. Similarly we prescribe the fourth
derivative in the streamfunction at the inlet, as well asséeond and fourth derivatives
at the outlet. Even-order derivatives are chosen so as tairemthe real plane and thus
speed up computations, as explained in section 2.12. Theechba at each boundary
is not obvious, and we have made this choice in two ways, agited below.

In the parallel and WNP approaches, the definition of cHit@ynolds number is a
local one. Since the Reynolds number is constant everywhdtes flow, the dimen-
sionless wavenumber and frequency (based on local lengtivelocity scales) of the
least stable mode obtained by the parallel or WNP are congian This means that
thedimensionalvavenumber and frequency depend on the streamwise locdtimre-
fore in a global study, we may match the wavenumbeat the entry with the parallel or
WNP «. At the exit, we may either match the dimensional wavenurfroer the parallel
or WNP, or prescribe a wavenumber corresponding to the samendional frequency
as at the inlet, but cannot match both. The first is done by majay; with the par-
allel result, and setting.,, /a; equal to the ratio of the exit and entry half-widths. This
amounts to forcing the same dimensional wavenumber at theand exit. Since the
streamwise extent of this domain is limited, grid insensitiesults are obtained in this
case with onlyn = 51 andm = 41. Computations with this set of boundary conditions
are performed for various angles of divergence, with the @omize matched each time
to the wavelength of the least stable parallel mode spedigte inlet. TheRe,, of
the global stability computations thus obtained compaasaaably well with parallel
results, as seen in the red circles of figure 3.13.

The other option for the choice of inlet and exit wavenumbersRobin boundary
conditions is exercised by setting to the critical WNP value. To findy, at the exit
corresponding to the santBmensionalfrequency as at the inlet, we iterate the WNP
computation at the exit i until we converge on a least-stablewhose frequency
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Figure 3.13: Variation of critical Reynolds number with éigence angle in JH flow.

The red circles stand for the global analysis results witlbiRdoundary conditions

holding the dimensional wavenumber the same at both inkkeait. The domain size

and inlet wavenumber are matched with parallel results et eagle. The blue squares
are obtained by matching inlet conditions and domain sizb WINP, and holding the

exit wavenumber at the WNP value corresponding to the samerdiional frequency as
the inlet.

is equal tow,4(1)(z,/z1)?. This expression is derived by equating the dimensional
frequencyw, at the inlet and exit, as follows:

aD) = 1) 8 = () = ana) 1

wna(n) wnd(l)%%

Since U~z ? and H o~z
Wna(n) = wna(1) (i—?)

where subscriptd stands for non-dimensionaly,;(1) is the critical WNP frequency
corresponding tav,(1). This fixation of the exit wavenumber is seen to predict a
smallerRe,.,. at largerd, as seen by the blue squares of figure 3.13.

The restriction of the domain size and the prescription ofaaevike nature of the
perturbations at the entry and exit, that too of a fixed wawgtle, mean that the critical
Reynolds numbers predicted by the global computations ardikely to be realistic,
so the main purpose of this exercise is to validate the glstaddility approach against
simpler approaches as best we can. Later in the resultoseete have performed
realistic global stability analysis by using the extrapethboundary conditions.



3.6 Global stability analysis 56

3.6.3 Sensitivity study

It should be noted that studying a JH flow using the similadyation as the base flow
is, strictly speaking, not realistic. A typical spectrumtaibed for JH flow is shown in
figure, 3.14. The spectrum has distinct branches and thayaaned B1 to B4, as shown
in the figure. The results obtained might be dependent onehgth of the domain
chosen, the type of boundary condition given, the amouneateht of sponging given,
etc. A similarity solution by itself, is obtainable at farwlostream distances where
information about the origin are forgotten. Also, JH flowgadns are obtained for a
flow between two infinitely-diverging plates. Hence to siatela self-similar solution
by a finite domain in global stability computations is proaeapture some non-realistic
modes in the computation. The selection of the domain lergyth crucial factor in
determining the stability characteristics. To avoid angite domain size’ effects, it has
to be ensured that a sufficiently long domain is considereatious sensitivity studies
are done both for JH and SDS flows in terms of the sponging gtinerlength over
which the sponging is applied, grid size, etc. and it is eeduhat results insensitive to
these parameters are discussed. A few modes are found toéiéveeto one of these
parameters and they are eliminated as spurious modes bl \@gamination. Those
spurious modes are not discussed in the thesis. Sensaivities given here are done
for both JH and SDS flows and are given starting from figure 8llifigure 3.22. They
are discussed in detail in the captions of the figures. It elpful to remember the
definitions of sponging strength and sponging length givdater part of section 3.6.1,
as they are often referred to in the captions. For ease ofinggevhe figures for JH flow
are given in red-black combination, and for SDS flow are giwewstly in blue-black
combination. Also, in these figures, if the letters followed by a number, likd. 200, it
denotes length of the domain under consideration. If it i¥eed by a number with a
percentage, liké.30%, it means the sponging length. We can see that the majotsteuc
of the spectrum obtained is insensitive to the change impaters, in both JH and SDS
cases.

3.6.4 Comparison of JH and SDS spectra

We now compare the spectra obtained for the infinitely diveygself-similar) JH flows
and the SDS flows, using the extrapolated boundary conditiondifferent combina-
tions of Reynolds number&e = 50, 100, 200 and divergence angle® = 0.001°, 2°, 5°.
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Figure 3.14: A typical spectrum obtained for JH flow. As cansken, the spectrum

has distinct branches and they are named B1 to B4 as indicatezlbranches will be
discussed later in detail.
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Figure 3.15: Spectra for JH flow &e = 100, # = 5° with a sponging strength of 90%
over two different lengths of the domain20% indicates that the flow in th20% of the
domain closer to the exit is sponged. Note that branches Bbnto B4 are insensitive to
sponging length. The inset shows the variation with streamwise distance. The spectra
shown here and in the figures to follow contain a few isolaigdme/alues, which move

significantly with changes in these parameters. Their spoading eigenfunctions were
found to be spurious by visual examination.



3.6 Global stability analysis 58

)

Re=1006=5" [— 67% spong
121x41 L30%— 90% spong
T

)

P ooO°°°° |

B e S Rp000000°

0K
o ]

8 °ooe

% 100
0.0 Re 1

e 50
! % 100 200

-0 19856 !
0% 05 1

Figure 3.16: Spectra for JH flow dte = 100, 6 = 5° with two different sponging
strengths over the same length of the domain. The inset stte&e variation with
streamwise distance for the two sponge strengths. Notéthathes from B1 to B4 are
relatively insensitive to sponging strength.
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Figure 3.17: Spectra for JH flow d&e = 100, # = 5°, 90% sponge over 20% length
of the domain, with extrapolated boundary condition (EB@Y &eumann boundary
condition.

Results presented henceforth use a grizgbdf< 41. The domain length for JH 5 ~ 157

and for SDS is 100, 200 and 400 for Reynolds numbers 50, 10@@ddrespectively.
Longer domains are used in SDS for larger Reynolds numbéreatenhgth of the exit
straight region required to attain parabolic velocity deoéit the exit scales linearly with
Reynolds number. The sponged lengths and sponging steeagthmentioned where
appropriate. Comparisons of the spectra obtained for JrS&lflows are shown in fig-
ures 3.23 and 3.24, respectively. Increaseéas seen in figure 3.23, pushes the spectrum
towards instability as expected. Increase in the Reynaldsher, figure 3.24, increases
the frequency of the most unstable modes, i.e. the diffdyeriches are stretched in the
x axis. The level of instability at thigis not too sensitive to the Reynolds number within
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Figure 3.18: (Left) Spectra for JH flow &t = 100, # = 5° with two different grid sizes
in y. It can be seen thatl points iny is sufficient to get reasonably grid-insensitive
results. (Right) A zoomed portion of the figure close to thesaghowing the relative
insensitivity of the branches B1 - B4.
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Figure 3.19: Spectra for SDS flow & = 50, § = 5° with three different grid sizes in
x. The sponge strength is 50%, applied over 15% of the domagthe
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Figure 3.20: Spectra for SDS flow Bt = 50, § = 5° with two different domain lengths.
Note that there is significant sensitivity to domain length.
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Figure 3.21: Spectra for SDS flow &e = 100, # = 5° with two different sponge
strengths applied over 30% of the domain length. Brancloes 81 to B4 are relatively
insensitive to sponging strengths.
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Figure 3.22: Spectra for SDS flow & = 100, § = 5° with the same sponge strength
applied over two different domain lengths. Branches fromt8B4 are relatively in-
sensitive to sponging length. The two different spongdrsgstare shown in the inset,
which shows the local Reynolds number variation with

this range. This subsection is devoted just for the comparié the spectra obtained for
JH and SDS flows. A detailed discussion of the two cases aendiglow separately.

3.6.5 JH results

We have studied JH flows at many Reynolds numbers and andgiegehbare interested
in understanding the qualitative behavior of these flowsiddewe consider the JH flow
at Re = 100 and# = 5 degree as a representative case, and discuss this corahimati
detail. According to WNP, th&e,.. for this divergence angle is 99.88, and a near-neutral
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Figure 3.23: Spectra for JH &e = 100 for differentd. There is an overall destabiliza-
tion with increase in divergence. It is seen that with insee@d, branches which tended
to point downwards at high frequency begin to point upwastsat higher divergence,
it is the higher frequency modes which are less stable.

Re=50 Re=100 Re=200

Figure 3.24: Spectra for SDS at= 5 for different Reynolds numbers. Again some
distinct branches can be discerned. The frequencies ofendivanch increase with
Reynolds number.
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Figure 3.25: Spectrum for JH flow é+5 degreeRe = 100, L = 157, grid size221 x 41,
with 90% sponge strength, applied over 20% of the domain.riibees in branches B1
to B4 each have characteristic features, as will be seenREgaolds number is shown
in the inset as a function of the streamwise distance, itidigahe sponging applied.
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Figure 3.26: Contours of streamwise velocity of typical resedn branches Bl (left
column) and B2 (right column) for JH flow dte = 100, =5° shown in figure 3.25.
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Figure 3.27: Contours of streamwise velocity of typical rasdn branches B3 (left
column) and B4 (right column) for JH flow &e = 100, /=5° shown in figure 3.25. The
modes in branch B3 often display multiple positive peaksuiccession followed by an
equivalent number of negative peaks (like the left bottoostplot), emphasizing that
they are not wave-like.

situation is a good candidate for study. The results preskeintthis section are qualita-

tively applicable to other parameters studied in the JH.célse spectrum obtained with

a sponged length ¢f0% and a sponging strength 66%, is shown in figure 3.25. The

two near-neutral discrete modes seen are spurious, asdetbefore, and they are not
obtained with other grid resolutions. As mentioned beftive spectrum contains several
distinct branches, and four of these, marked as B1 to B4 tavean for further consider-

ation. The modes in each of these branches have a charactgirigcture unique to that

branch. Typical modes from each branch are shown in figug&ahd 3.27. We empha-

size that in the range that we are operating within, the eigleles and eigenfunctions of
these branches remain reasonably insensitive to grid sE#)ging and the exact form

of boundary condition, as discussed in section 3.6.3. lemabse of the sponging that
has been applied that the global modes are damped towardsgithed the domain. As
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Figure 3.28: Typical ‘global modes’ obtained for JH flow witte = 100, 6 = 2°,
by enforcing Robin boundary condition over a domain whosgftle is the same as the
wavelength of the wave under consideration. Plotted heréhar contours of streamwise
velocity. These can be contrasted with the variety of globadles obtained from a longer
domain with EBC, shown in figures 3.26 and 3.27.

can be seen, all the global modes have very weak amplitudieeisgonged region. This
effect of sponge is not very clear in branches B1, B2, B4 agibd@es themselves are lo-
calized inz, but is very evident in the set of modes from the B3 branchy&@u27. The
nature of all these modes reveals that the employment ofrRodindary conditions,
resulting in forcing a wave-like solution, as we did earfier comparison with parallel
studies, and as often adopted in studies of spatially dpwreddiows, is inappropriate.
Typical modes obtained from our global study with Robin baany conditions over a
chosen wavelength are shown in figure 3.28. These, when gechpath the global
modes shown in figures 3.26 and 3.27, immediately demogstthe richer variety of
possible modes which can be revealed by a global stabilaiyais.

As mentioned before, the production layer of the modes in B B2 are localized
in streamwise extent. But modes in B3 have a different cliara€ontours of stream-
function, streamwise and wall-normal velocities of a tgbimode from B3 are shown in
figure 3.29. It can be seen that the amplitude of these modesdsall over the domain
and are dominant close to the centerline. Following trerabiserved as we move from
high frequency modes towards low frequency modes: the maxiramplitude of the
mode shifts upstream in, as can be seen from top to bottom of column 1 in figure 3.27.
Also, it can be seen that the amplitude of the modes from lrdnare dominant near
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Figure 3.29: Contours of streamfunction (top), streamwmslecity (middle) and wall-
normal velocity (bottom) of a typical global mode from brari of figure 3.25.
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Figure 3.30: Contours of streamfunction (top), streamwistcity (middle), wall-
normal velocity (bottom) of a typical global mode from brantof figure 3.25.

the wall. Contours of a typical mode are shown in figure 3.30.

Wavelet Transform

To understand a non-parallel flow, we believe that wavetgidforms are far more ef-
fective than a Fourier transform. The dominant wavelengthvary in the downstream
direction for such flows, even if the mode is otherwise wake:I A spatial Fourier
transform would merely show a diffused region consisting chnge of scales, whereas
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a wavelet transform would provide much more informationwasshall see.

The wavelet transform of a streamwise varying signal givésrmation about the
dominant lengthscale associated with the signal, at eaehrstvise station. Wavelets
form the basis functions for a wavelet transform and theealéferent types of wavelets,
like Morl wavelet, Haar wavelet, etc. In this work, waveletrisform is performed using
the inbuilt MATLAB function cwt. The results obtained from a wavelet transform are
checked to be relatively insensitive to the type of waveksdufor the transformation.
The brightest spot on a wavelet transform corresponds tadn@nant wavenumber at
that particularz location. The wavelet code written is first validated by dypm a
known function inz and recovering the wavenumber out of it, as shown in figur&.3.3
Here, two known functions of, namelycos(2x) andcos(4x) are supplied and wavelet
transform is performed to extract their wavenumbers. ltistomary to neglect the two
ends of the wavelet transform while reading the wavenumber articular mode, as
they are blurred due to lack of adequate information fronhisades. Also to note is the
fact that ther axis of a wavelet transform is the grid number and notile®-ordinate
of the signal. For example, in figure 3.31, the signal spars auength o830, and the
information is contained in80 equally-spaced points. Thus the relation betweencthe
axes of the signal and the wavelet transformds/30 ~ 6 . In this, we considered a
signal with a single wavenumber. Now consider a signal, wheavenumber gradually
decreases with, as shown in the top plot of figure 3.32. Its wavelet transf@ishown
to reflect this trend. This figure is characteristic of the alav transform one would
get if we solved the problem locally by a WNP or a parallel @g@h. This figure may
therefore be contrasted with the wavelet transforms weshitiw later of global modes.
Note that each wavelet transform picture we show correspom@ raw eigenfunction
supplied as a function af, with ¢y held constant. For a WNP result, the wavelet transform
at any %’ would be identical to that at any othgr Also note that the vertical axis of
a wavelet transform does not comply with the convention#inan of increasing value
upwards.

It is worth comparing a wavelet transform and Fourier transf at this point. Con-
sider a signal similar to the one shown in figure 3.32, whoseswamber decreases with
x. This signal along its Fourier transform is shown in figurd3.We can see that the
Fourier transform peaks in the region corresponding to tmaidant frequencies of the
signal. Now we have two methods, namely a wavelet transfordreaFourier transform
to find the dominant lengthscales of a given mode. We choosséaa wavelet trans-
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Figure 3.31: From top: Plot 1 - An input wave defined day(2x). Plot 2 - Wavelet
transform of the input signal. The brightest spot of the Wev&ansform (shown in
red) corresponds to the dominant wavenumber at a partieulacation. The value of
wavenumber can be read from theaxis. We can see that at all thdocations of this
figure, the dominant wavenumber2sindicating that the input signal is a wave of single
wavenumber. Plot 3 - input signal defined day(4x). Plot 4 - wavelet transform of plot
3, indicating a wavenumber df
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Figure 3.32: Top: A signal whose wavenumber changes witBottom: Wavelet trans-
form of this signal, indicating gradual decrease in wavebanof the signal. Such a
picture is characteristic of a WNP mode in a weakly non-pekdlow. The picture
would be identical for any monitoring location wall-normactationn.
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Figure 3.33: Top: A signal defined with varying wavenumbaénilar to figure 3.32.
Bottom: Fourier transform of this signal. As can be seen thatFourier transform
peaks around a set of frequencies indicating the dominaquéncies present in the
signal. The Fourier transform does not give informatiomalthe signal, but gives the
dominant frequencies of the entire signal.

form for the following reason: while both the methods give tfominant frequencies
of a given signal, only a wavelet transform can give quatwganformation ‘along the
signal’. In other words, a Fourier transform just gives mfiation about the dominant
frequencies of the entire signal whereas a wavelet tramsfiives information about the
dominant frequency at every point in the signal. For exangse figure 3.32 which tells
that the wavenumber/frequency of the signal changes frauara2.66 at the inlet to
around1 at the exit. From a wavelet transform, we can extract infaromaabout the
local lengthscale/frequency of the signal, whereas it igossible from a Fourier trans-
form. Since we are interested in getting quantitative infation about the ‘change in
the local wavenumber’ of the global modes, we use wavelestoams henceforth.

To support the fact that Robin boundary conditions forcivgeae-like nature to the
disturbances are not appropriate in a global study, we neegdantify ‘how wave-like
are the global modes’. A wavelet transform is carried outgbggantitative information.
At a given wall-normal location, a perturbation quantitgkas the streamwise velocity,
is a function ofr. Wavelet transform is performed on the streamwise veladigyribu-
tion of two modes indicated by the red squares in figure 3.2baaa discussed below,
with the one from B4 shown in figure 3.34 and the one from B3 showfigure 3.35.

The B4 mode shown in figure 3.34 has an appearance very simitarfellow modes
from the same branch seen in the right side of figure 3.27. dtgelet transform shows
that the structure of the mode is a strong function of bot#indy. Close to the wall,
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(plots 2 and 3) there is a region where the perturbation maynsiecally wave-like,
with a linear increase in wavelength as would be anticipdtgch WNP type study.
However, this expectation is belied by the wavelet tramafof the perturbation closer to
the centerline (plot 4). The action at thiss closer to the inlet, with no discernible wave-
like pattern. In fact, the wavenumber close to wall decreasth z, and the wavenumber
at the centerline is seen to increase with

Next, let us discuss the wavelet transform of modes fromdir@8. As mentioned in
the caption of figure 3.27, as we move from large frequencyeaddwards smaller fre-
guencies in the B3 branch, the modes often display multipégtipe peaks in succession
followed by an equal number of negative peaks, indicatirgrtbn-wave-like behavior
of these modes. Hence a wavelet transform of the small fre;yu@odes would display
rich non-wave-like behavior. But we would like to concei¢ran the least stable mode
of this branch, (shown in the left top-most plot in figure 3,2¢hich looks practically
wave-like and its wavelet transform is given in figure 3.35.1#as been discerned by vi-
sual examination, the wavelet transform of this mode apgbarsame at twglocations
(plots 2 and 3). Hence, we might be tempted to conclude tieatrtbde is similar to the
mode one would obtain from a WNP approach, with slowly vagywravelength. But the
resemblance to a WNP wave is merely superficial. First, erdikWVNP mode, the dom-
inant length scale does not vary too much with streamwisatioe. This statement can
be supported by comparing the wavenumber values given iwéwvelet transforms in
figures 3.34 and 3.35. In the former, the change in scale mdaie rapid than in the lat-
ter, and neither of these corresponds to the increase ithscgje in the geometry. This
shows that global restructuring is taking place. Secondlevetll the modes in the other
branches evolve in time by moving downstream, the modesandir B3 move upstream
in time. This upstream propagation persists without chawga with the application of
extreme levels of sponging. This will be further discussesdaction 3.7.

3.6.6 SDS results

We now examine a global spectrum of the SDS channel at the Baymolds number
and divergence angle considered for the JH chankel-€ 100, # = 5). The sponging
strength i80% and sponging is applied ove5% of the domain length. A comparison of
the spectra of JH and SDS is shown in figure 3.36. The dominatdbility is decided
by the divergent portion. The length of the divergent partio the JH flow without
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Figure 3.34: From top: Plot 1 - Streamwise velocity contoafrthe mode shown by
the red square in branch B4 in figure 3.25, with= (0.241297, —0.0258524). Plots 2
to 4 - Wavelet transforms of the mode shown on top at the thieemnvermal locations
indicated by the blue-dashed lines, close to and away fremvdill. Please note, figures

discussing wavelet transform are not to scale.
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Figure 3.35: From top: Plot 1 - Streamwise velocity contafrhe mode shown by the
red square in branch B3 in figure 3.25, with= (0.90640, —0.0014952). Plots 2 and 3 -
Wavelet transforms of the mode shown on top at the two waitrablocations indicated

by the blue-dashed lines.
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SDS JH

Figure 3.36: Spectra of SDS and JH flowsiat = 100 andf# = 5. Modes in the
corresponding branches marked as B1, B2, etc., have simiae structure, but with
higher frequency in the SDS case.

sponging is about25, while in SDS it is abous0. We know from parallel and WNP
studies that the frequency of the least stable mode dep#oagly on divergence. The
straight portion therefore will have a significant effect thie overall frequency of the
modes. We may thus expect, and find, a spectrum whose fregsaiiffer significantly
from that of a JH flow. However the mode structure remains itptalely the same.
Also, it is seen that this SDS channel is more stabilized thanJH in the sense that
the growth rates of corresponding branches/modes are lioviee SDS case. This may
be attributed to the presence of a straight region at the Exi#en though the SDS flow
contains a region of separation, we see that the overaltatslizing effect of the weak
separation region is smaller than the stabilizing effe¢hefstraight region.

The mode structure of the distinct branches of the SDS flowgaaditatively similar
to the JH flows. A typical mode from each branch of SDS flow isvahdn figure
3.37. We see a striking resemblance with the JH modes. Thes ffnoth branch B3
has multiple positive and negative amplitudes in successixhibiting a non-wave-like
behavior, similar to its fellow-mode in JH flow. Wavelet tshorm of these modes are
similar to JH modes. The wavelet transform of two modes spwading to branches B3
and B4 and indicated by blue squares in figure 3.36 are plottedures 3.38 and 3.39.
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Figure 3.37: Typical modes from branches B1 to B4 of SDS flowkat= 100 and
0 = 5°. The spectrum obtained is shown to the left of figure 3.36.s€&hmaodes look
very similar to the JH flow modes, shown in figures 3.26 and .3.27
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Figure 3.38: From top: Plot 1 - Streamwise velocity contaithe SDS mode shown by
the blue square in branch B3 of figure 3.36, with= (1.524556, —1.059208 K — 002).
Plots 2 and 3 - Wavelet transforms of the mode shown on topeatwtb wall-normal
locations indicated by the blue-dashed lines.
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Figure 3.39: From top: Plot 1 - Streamwise velocity contafrthe SDS mode shown
by the blue square in branch B4 of figure 3.36, with(0.7217860,-3.150661E-002).
Plots 2 and 3 - Wavelet transforms of the mode shown on topeatwtb wall-normal
locations indicated by the blue-dashed lines.

The wavelet transform of the above two modes also show gitngads as in the JH case.
However note that in both B3 and B4, in addition to one domihemgth scale, there is
energy contribution at several other sub-dominant lengéles at a single streamwise
station. A wavelet study has made it possible to arrive atfihding. In SDS flow also,
we see that the modes in the branch B3 are upstream propggdtile modes in other
branches are downstream propagating.

It has been shown that corresponding modes in JH and SDS nsbdes similar
characteristics and mode structure. With this, we can catecthat the instability char-
acteristics are the similar for both JH and SDS channels laaidie instability is deter-
mined by the diverging portion, finite or infinite.

3.7 Upstream propagation

The source and relevance of the upstream propagating med## unclear to us. Ini-
tially we thought that use of a self-similar profile in a findze domain is the source of
these reflections from boundaries and these upstream @bpggnodes are spurious.
That was the reason to incorporate sponging at the doméitoedampen the reflections.
Since the upstream modes did not disappear even with heawyrdmof sponging, we be-
lieved that these modes need not be spurious artifacts ettefhs from the boundaries.
We have very recently become aware of the perfectly matcinger (PML) approach of
Hein et al. (2004), who show how reflections from the boundary can beditbdown
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to extremely low levels. While we believe that sponging dtidwave an effect similar to
PML, we have not been able to put this to test. One purposeaudf/stg flow through
SDS channel is to make sure that these modes are not a regalhgfa self-similar pro-
file as the base flow. Since we get upstream modes in the SDSI8owaere the outlet
flow is parabolic and thus very stable, the argument of spsri@flections becomes
weaker.

Upstream propagating modes are usually talked about indhtekt of absolute in-
stability, where a disturbance introduced at a streamwistos might grow upstream
and downstream, under suitable conditions. There is no iha® connection because
an absolute instability talks about a ‘wave packet’ propageupstream and not about
a single mode having negative phase velocity. What we seeifier single mode with
negative phase speed, propagating upstream. No authary tonowledge, talks about
upstream propagating global modes.

Most of the global stability studies, as mentioned befose, Robin boundary condi-
tions in the inlet and exit of the domain. We checked the motisined from our global
study with Robin boundary conditions. None of the modesiobthexhibited upstream
propagation. This could raise doubts about the extrapbladeindary conditions used
in the present work, and also on the numerical procedurdyeocode itself, as possibly
containing mistakes. | have made every attempt to rule sustakes out, by a variety
of checks. Further, the same code has been used for flow thicaryerging-diverging
channels and wall jets (to be discussed in the chaptersltwipland no global modes
in those flows are found to propagate upstream. This confortistextent possible that
the upstream propagating modes in this geometry are not meathartifacts.

A relevant work on this is that of Eagles (1966), who first stddthe stability of
self-similar JH flows. He found disturbance modes with neggbhase velocities for
profiles which have a reverse flow. This result is not surpgsas this follows Howard’s
semi-circle theorem. This theorem states that the dishadaelocity is limited by the
maximum and minimum velocities of the base flow. Accordinghis result then, the
upstream propagating modes found in the SDS channel aretexhas this flow shows
small regions of separation before the exit straight regiBat the JH flow discussed
here, at a parametric setting 8¢ = 100 andfd = 5°, which corresponds t§ = 8.72
is not separated. Given that Howards semicircle theoreroripérallel and inviscid
flows, the upstream propagating modes in this flow are sumgridut not completely
unbelievable. Probably because of the global approach wealsle to see upstream



3.8 Summary 75

propagation at a smaller divergence than Eagles did withsSommerfeld solution.

Moreover upstream movement in the B3 branch is seen at alh&éy numbers
considered in this work, fof = 5° andd = 2°. They are however absent for very small
degrees of divergence. This shows that the upstream propggaodes appear beyond
a critical parameter. We did a representative study in JHd|dafind the origin of these
upstream propagating modes. For a very very small anglevefgience]0~'2 degrees,
the flow is almost equal to that of a plane Poiseuille flow. g tase, all the modes
in the global spectrum are downstream propagating. We fiatlghadually increasing
the divergence angle will lead to the formation of a new bharvehich has all modes
upstream propagating. For a Reynolds number(pfthis new branch of the spectrum
which has upstream propagating modes is seen to arise aeseéince angle of.5
degree. This study can be extended for different Reynoldsoeus and the parameters
corresponding to the origin of the upstream propagatingditacan be determined. The
comparison of the spectra obtained for increasing angletiveirgence at a Reynolds
number of10 is shown in figure 3.40. The spectra obtained for very smatlesof
divergence are not shown in this figure as they are too stalilisaReynolds number
(of 10). The new branch mentioned above is indicated with arroviisarfigure and they
can be seen clearly in the zoomed portion in the inset.

3.8 Summary

Global stability analysis is conducted on the simplestiappideveloping flow one can
construct, namely a channel of constant divergence, to shatthe disturbances are not
wave-like in the streamwise direction even in this simtlafiow of constant Reynolds
number. Given earlier global stability studies on boundasers, where there is no
gualitative difference between global modes and paral&/dlP modes, this result is
unexpected. In fact, although many global studies existpatially developing flows,
spatially extended but non-wave-like modes are not comynss®n. Not only therefore
is a WKB-type approach inadequate to study such flows, thicapipn of Robin bound-
ary conditions, as is common in studies of this type, is inappate. More remarkable
than the variation in streamwise length scale, which is sogéxpected from classical
approaches, is the fact that energy-carrying scales arecidn of the wall-normal di-
rection, and that there can be several relevant lengthsedlene streamwise location.
We hope that this work motivates studies aimed at a theatatizderstanding of such
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Figure 3.40: Global stability spectrum for increasing &sgbf divergence for JH flow
at a Reynolds number df). The value of semi-diverging angles in degrees is given in
the legend. A new branch consisting of the upstream propagatodes (indicated by
arrows), is seen to appear for angles of divergence grdaar(or equal to) 0.5 degrees.
This can be seen clearly in the inset.

behavior, and also experiments which check these predgtio



CHAPTER 4

CONVERGING-DIVERGING CHANNELS

4.1 Introduction

In the previous chapter, we studied the effect of divergeaiare in a channel flow. In
contrast to the destabilizing effect of divergence, a cageece in a channel is known
to stabilize flow through it. As seen in the last chapter tlabisization achieved is far
greater than the destabilization of an equivalent divecgeisee Banksgt al. (1988),
McAlpine & Drazin (1998). In this chapter, we study the effe€ divergence and con-
vergence acting simultaneously in a channel, and this mihkas interesting flow to
study for two reasonsg)the net effect of their opposite stability characterisiE not a-
priori obvious and ;) a channel that is straight on an average with repeatingrgoge
diverging units is easy to construct for an experiment, carag to one that diverges
over a long length scale. Such a series of alternating cgewees and divergences,
maintaining the average width of the channel a constantasvk to decrease the criti-
cal Reynolds numbeRe...;;, significantly compared to a straight channel. These type of
channels are studied extensively by many researchersharstbpe is two-fold. Works
of the first category study small convergence and divergangaitudes, with the aim of
simulating the surface roughness of channel walls. Thistabse the wall of a channel,
when zoomed down to sufficiently small scales, will typigdde rough. The level of
roughness will depend on the machining precision, and thighiness can be simulated
realistically by an irregular series of local convergennd divergence. (Any man-made
channelis rough, if seen from an appropriate scale). A sais@hown in figure 4.1. The
second category of studies are on channels with relatiee@el angles of convergence
and divergence with large amplitudes of wall waviness, Whisually find large levels of

77
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Figure 4.1: A sample real-world channel wall scaled suffitieto show the surface
roughness of the channel, which is determined by the magiewsion.

destabilization. Such a situation is desirable when we waptoved mixing - heat and
mass transfer - e.g. in heat exchangers, chemical reactonmgustors, etc. The present
work falls under this category. But the method developed @fneralized results), are
not restricted to any range of wall-waviness amplitude. #es¢ is no assumption in the
basic derivation and the numerics applied, the presenbapgprcan easily be extended to
study surface roughness effects. In fact, the results pteden this chapter, if extended
to small amplitude converging-diverging channels, wilpkin in a better way the role
played by the roughness of the channel walls in triggeriagdition. (Any man-made
channel is rough, if seen from an appropriate scale).

As mentioned before, channels of constant average widtn mvadulated wall ge-
ometry have a destabilizing effect. The geometry of chawadl can be modulated in
many ways and there are many parameters involved. For exammghsider the walls
of two channels modulated using cosine waves, with phasereiifces of0° and 90°
between the top and bottom walls. These channels are callgols and varicose chan-
nels respectively, and are depicted in figure 4.2. Thoughdpeand bottom walls of
these channels have the same wavenumber, the two geonhetreebeen shown to have
different stability characteristis, see Blancletral. (1994), Cheet al. (1998). Thus for
the same wavenumber and amplitude, the stability charattsrof a channel can be
modulated by the phase difference between the top and botiie. In addition to
the wavenumber of the wall geometry, there is one more inaporparameter, which
is the wall waviness amplitude, This is defined here as the difference between the



4.1 Introduction 79

~_— >~ >~
\//\/\/

Figure 4.2: Comparison of a sinuous (top) and varicose ¢botchannel.

maximum and minumum half-widths of the channel, scaled bymimimum half-width
of the channel. Floryan (2003) has shown, using a Floquelysthat the stability of
varicose, fore-aft symmetric channels can be describedingyust the two above men-
tioned parameters. Such a channel has both top-bottom am@fiosymmetry. Fore-aft
symmetry implies that the diverging region is an exact niimeage of the converging
region. In the present work, we introduce fore-aft asymgnetrvaricose channels and
study its effect. The effect of fore-aft asymmetry in the Mgalemetry was first studied,
to our knowledge, by Sahu (2004). That study was on a pipgusweakly non-parallel
approach. It was shown that flow in one direction through sugeometry is more stable
than flow in the reverse direction. Other studies on non-sgmmchannels are those
where arbitrarily shaped wall roughness is considered) agdn the significant body of
work by Floryan and co-workers, discussed below. We study tiee effect of fore-aft
asymmetry in varicose channel flows using a global stabéligroach. One reason to
choose a varicose channel is that, the base flow for such aehesn be obtained faster
by exploiting the top-down symmetry. Details of the base feakculation are given in
section 4.2.

A brief overview of the previous work in converging-divemgi channels is given be-
low. The enormous body of work on surface roughness on chawalés are spared,
with few a exceptions. In an experimental studyat 2.3, Nishimuraet al. (1984)
reported a transition Reynolds number2d. From a linear stability analysis using
spectral-Galerkin method, Blanchetral. (1994), found that the wavelength of the most
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unstable mode in a channel ef= 2 is the same as that of the geometry. They also
studied the effect of a phase-difference between the upmkloaver walls and showed
that the critical Reynolds numbeéite...;; is smaller than that with no phase difference. A
large reduction inRke...;; with wall waviness was also demonstrated in both varicose an
sinuous channels by Ctet al. (1998). For two-dimensional disturbances, the finding is
in accordance with that of Blanchet al, i.e., theRe,,; for a varicose channel is found
to besmallerthan that in a sinuous channel. The reverse is true for thireergsional
disturbances. Selvarajast al. (1999) showed that th&e,..;; reduces with increasing
waviness amplitude, and also that laminar-turbulent transition can be deldyeduit-
able excitation of the wall. The existence of both travelimaye instability in the form
of Tollmien-Schlichting waves, and centrifugal instatyiin the form of streamwise vor-
tices has been recognised by many authors, e.g., @ala&l(2002), Choet al. (1998),
Floryan (2003). Which of the two dominates is found to depend. In the limit of
e tending to zero, i.e., as the geometry approaches a streligimnel, traveling waves
are the most unstable, consistent with Squire’s theoremyoilek a critical waviness
amplitude ofe ~ 0.1, instability is dominated by three-dimensional osciltgtnodes,
especially streamwise vortices, which are driven by ctrgal effects induced by the
concavity of the wall. Critical parameters for such insliéiles are discussed in detail by
Floryan (2003). Ax is increased further, beyond~ 0.3, two-dimensional traveling
waves are the most dominant again. Nishimefral. (2003) studied expermentally the
flow through an axisymmetric wavy-walled varicose pipe arablencomparisons with
that of a channel. They find that turbulent state occurs alyrupa pipe and the heat and
mass transfer characteristics are enhanced in a wavydhaile compared to a channel.
It is shown by Floryan (2005) that a very good estimate of ihe,;; for two-
dimensional instabilities may be obtained on a channel digtributed roughness on
one wall, by representing the roughness geometry by itsrigdéburier mode alone. He
also shows that any shape of the wall roughness gives a sievia of destabilization,
as long as the amplitude of waviness is maintained the samtéth extended this work
to three-dimensional instabilities, Floryan (2007), amelsented the critical conditions
for the occurence of both traveling wave instability andteriinstability. One important
aspect to note about the above mentioned two works of Fldsydnat he has considered
different shapes of corrugations. Here, the wall surfacghmess is indicated as a sum
of many Fourier modes, not necessarily a ‘symmetric’ goeynedince his study was
interested in the effect of surface roughness, the wall mess amplitude considered by
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him is very small. He shows that the critical conditions aedlwaptured by consider-
ing just one leading Fourier mode. A comparison of the @ltfgarameters defining the
onset of (2D) traveling wave instabilities and (3D) vortastabilities for channels with
both side wall corrugation, for smad] is given recently by Floryan & Floryan (2010). In
the above we have not covered work whose emphasis has beaabartd mass trans-
fer characteristics. Out of the huge body of work on surfamgghness, we have only
mentioned a few as being the most relevant.

A concise representation of the earlier work discussedagiven in table 4.1. In
the rows corresponding to Floquet theory, the periodi@tygith of the channel is indi-
cated by a parameter. This is the wavenumber of the channel wall geometry comsdle
in the Floquet studies. The length of one periodic unit (LYl aaviness the amplitude
(e) are scaled with the minimum half-width of the correspoigdohannels. The aspect
ratio (AR) is defined as the ratio of the length of the chanaghe maximum width of
the channel.

The present work departs from earlier work in the followirgpacts. First, as al-
ready discussed, we allow for fore-aft asymmetry, this asgtny will be seen to have a
significant effect on the results. Second, in earlier stidige same periodicity has been
assumed for the disturbance as for the geometry. Even inttites which found the
disturbance wavenumber to be different from the periogiasiavenumber, the Floquet
exponent is assumed to be real. These studies could thusngorenation about the
temporal instability behaviour only and they were not ablestveal spatial growth char-
acteristics. There is no apriori justification for a periodssumption on the disturbance
and we therefore do not make it. Thirdly, earlier work, witlesv exceptions, was on
small values ok, highlighting the effects of surface roughness on chanoeldl We
look at large wall waviness, of up to= 2.3, with the aim of achieving improved mixing
at low Reynolds numbers. Finally, earlier work was eithealgcal stability analysis, a
Floguet analysis, or numerical simulations. The appeaimdjcomputationally efficient
approach of Floryan comes closest to a global stabilityystddhat work however is at
low ¢, and the emphasis is on the progression within one geometiic For this pur-
pose, it was sufficient to take the Floquet exponent to be Téw global stability study
conducted here reveals features of the flow not easily aitdess the other approaches
including that of Floryan, as we shall see. Due to these deyes, we are able to reveal
some interesting instability characteristics, and alsiaioltemporal global instability at
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Table 4.1: Consolidated list of selected literature on eogwng-diverging channels
N - Number of periodic units.
L - Length of one periodic unit.

AR - Aspect Ratio.
DNS - Direct Numerical Simulations.

Author Year Geometry | Method N L € AR

Symmetric

Nishimura| 1984 Varicose Experiments 9 9.33 | 2.3 1.4

et al. channel

Blancher | 1994 Sinuous DNS 2 8 2 1.33

et al. channel

Choetal. | 1998 Varicose, | DNS 1,2 3to4]0.27 to|04 to
Sinuous 2.34 1.57

Selvarajan| 1999 Varicose Floquet 1 a =|0tol5 | 6.28 to

et al. channel 0.2 15

Floryan 2003 Varicose Floquet 1 a=1|0t00.04| 0.25 to
channel to12 3.14

Nishimura| 2003 Varicose Experiments 13 9.33 |23 1.4

et al. pipe

Blancher | 2004 Developing| DNS 6 to|9.33 |23 1.4

& Creff flow - 16
Varicose
channel

Floryanet| 2010 Varicose Floquet 1 a=1|0.02 0.3t03

al. channel to 10

Non-

symmetric

Floryan 1997 Rough Floquet 1 - 0.002 to| -
walled 0.02
channel

Cabal et| 2002 Rough Floquet 1 a=1|0t00.06/ 0.5 to

al. walled to 6 3.14
channel

Sahu 2004 Varicose WNP 1 50 0.5 16.6
pipe

Floryan 2005 One side| Floguet 1 a=1|0t00.02] 0.3 to
rough wall to 10 3.14
channel

Floryan 2007 One side| Floguet 1 a=1|0 to| 0.2 to
rough wall to16 | 0.016 3.14
channel

Present Varicose Global 1,23 5,10 |[0to2.3 |0.75 to
channel 1.5
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Figure 4.3: Variation of the critical Reynolds numbge...;; with the wall waviness
amplitudee in selected previous studies. Although different studegehused different
aspect ratios and different wall shapes, a trend is obseiMaelpresent result shown by
the solid square is discussed in section 4.4.

a lower Reynolds number, of abobi, as compared to the smallest critical Reynolds
number of85, based on present scales, quoted by earlier studies.

Before discussing present results, it is useful to compierte...;; obtained by var-
ious studies. The available values are shown in figure 4.3 fasicion of the wall
waviness amplitude. A consistent trend is visible among the results, althounghge-
ometries differ quite significantly in detail. In particuldne aspect ratio, i.e. the length
of a given periodic unit as compared to the average width efctiannel, ranges from
about 0.6 to 600. Different shapes of the walls have also beehed, like a sinusoidal
wall, triangular grooved wall, evenly spaced bumps on thi w&c. A trend is visible,
where theRe,..;; decreases with increase in the waviness amplitude. Themressult
is indicated but will be discussed later.

To mention a study on a related geometry, Ghaddaal. (1986) performed direct
numerical simulations on flow through channels with pegagliooves on one side, and
showed that the least stable modes resemble Tollmienehting waves. These are
forced by the shear layer formed between the central flow hadséparated region in
the grooves. Blancher & Creff (2004) showed through nuna¢rsemulations of the
entry region of a symmetric wavy channel that beyond a aerfkai..;; of about100 for
ane of 2.3, the flow becomes spatially convectively unstable. Ourystiadlifferent in
that we study a fully developed periodic base flow and not ldgweg profiles. Several
studies have also been done on straight channels with adpeaoay of cylinders to
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Figure 4.4: One of the non-symmetric channels under studyerBence angle°,
convergence angle =25.6°. Ratio of diverging length to converging length is 4:6.
Flow in this geometry from left to right is referred to as VYeard’, as explained in figure
4.5.

achieve enhanced mixing at Reynolds numbers of the orddi(pfe.g. by Karniadakis
et al. (1922), Schatet al. (1995) and Takaokat al. (2009). In these flows, instability
is triggered due to the cylinders acting as eddy-genera&her than by changing the
geometry of the wall.

In a parallel flow, two-dimensional perturbations would be iost unstable, in ac-
cordance with Squire’s theorem. This theorem is not validafmon-parallel flow, but
going by Choet al. (1998) which shows that two-dimensional disturbances ara-d
inant beyond: = 0.3, we restrict ourselves to two-dimensional disturbancebkre@-
dimensional disturbances, a subject of present investiggt may well prove to be
faster growing, both exponentially and algebraically, et proof of principle is already
achieved with two-dimenionsional disturbances.

Even in flows where there is an exponential growth of pertiloipg, transient alge-
braic growth can sometimes be rapid enough to trigger nealities and therefore to
dictate dynamics. Szumbarski & Floryan (2006) studied taedient growth associated
with channels with wall corrugations and calculated the imaxn growth and optimal
perturbations for different corrugations. Perturbatievigch are optimal for a smooth
channel are found to be the most amplified by the wall coriogaEven at a Reynolds
number of10, we show that random combinations of two-dimensional eigzstes can
give rise to spatially localised pockets of large transgmoivth, even though the kinetic
energy when integrated over the entire domain is monottiyidacaying. Since such
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pockets of large disturbance growth are sufficient to chahgedynamics, it is argued
that transient growth in such flows needs to be charactedseadlocal basis rather than
by an integrated quantity such as the commonly usgg. .

4.2 Base Flow

4.2.1 Parameters

As mentioned before, we study both symmetric and fore-afinmsetric varicose chan-
nels. The mean flow is calculated numerically for each cake.Walls of the symmetric
channels are defined by cosine functions. One of the asynmogi@nnels studied is
shown in figure 4.4, where we see two identical divergingveoging units in series.
Each unit consists of a straight diverging portion followsda straight converging por-
tion, with different lengths for the converging and divergiregions. For the case men-
tioned above, the ratio of the diverging and convergingtieads [4 : 6]. To avoid sharp
corners, the two are connected on either side by smooth @adynomials over short
regions. Unless otherwise specified, the length of eachateygeunit of the channel is
L = 9.9585, which is about times the minimum width of the channel. Besides these
choices of length-to-width and divergence-length to cogeece-length ratios, we need
to make a choice on the amplitude of the wall wavines#s shown in the figure 4.4,
is the difference in the maximum and minimum half-widthdeddy the minimum half-
width of the channel. We study a rangeepiarying betweei.01 and2.3. The largest
waviness among these is termed our ‘standard’ geometrghwie study in some detall
(figure 4.4 withe 2.3). For contrast, we also study a channel with a more accesduat
asymmetry, where the ratio of diverging length to conveggength is [3.4 : 6.6]. In
addition, we study channels whose aspect ratio is halved tihe same waviness shape
and amplitude as in the standard case is prescribed oveahleafreamwise extent, mak-
ing each unit blunter. Finally we study a channel in which¢bguagation is present in
only one of the walls, while the other is straight. We prdseiiReynolds numbers in the
range ofl - 100. For comparison, we study channels with one, two and thresemuitive
converging-diverging units in series, but lay greater eaghon the two-unit case.

In a non-symmetric channel, the dynamics could depend ofidivedirection. The
terminology we employ is shown in figure 4.5. When the diveggsection is shorter
we term it ‘forward’ flow, and flow in the other direction is taed ‘reverse’ flow. Thus



4.2 Base Flow 86

—> Symmetric
— T

M
—> Reverse

5 10 15 20

Figure 4.5: The asymmetric and symmetric geometries studibe diverging length is
different from the converging length for an asymmetric amelnwhereas the symmetric
channel is defined by a cosine function. The flow directiomdidated by the arrow.

for the standard geometry discussed above, the ratio ofgihg length to converging
length is 4:6 in the forward unit and 6:4 in the reverse unit.

4.2.2 Numerical Scheme

The base flow is computed for a single diverging-convergimg and repeated over each
unit. The steady two-dimensional Navier-Stokes equatoasolved in the streamfunction-
vorticity formulation. This can become very time consumisag a full multigrid tech-
nique is used to accelerate the convergence, and a fastepa@ier is incorporated,
details of which are available in Venkateshal. (2006). The governing dimensionless
equations are

o0

- 1
— V)Q =
6t+(UV)

— V30 QO =-V?
Toe Y,

wherel is the velocity vectort is time, and2 and« are the mean vorticity and stream-
function respectively. The Reynolds numldér is based on the minimum half-width of
the channel, and the centerline velocity at the minimum-wadith. The solution is fa-
cilitated by a transformation of coordinate, definedly= dz/H (z), andn = y/H (z),
where H is the local half-width. Symmetry boundary conditions= Q = V =
oU/dy = 0 are used at the centerline; no-slip and impermeability baw condi-
tions,U = V = 0, are imposed at the wall; and periodic boundary conditidrntea
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Figure 4.6: Contours of streamwise (top) and wall-normattgm) velocities of the base
flow obtained from numerical simulations, for the paramstgting shown in figure 4.4,
at a Reynolds number of 10.

inlet and the exit. We begin with a guess solution: a parabalocity profile at every
axial location, and march in psuedo-time until a steadtestalution is obtained. The
vorticity distribution at each new time step is calculatetbgting first-order accurate
forward differencing in time and second-order accuratere¢differencing in space, on
a66 x 514 grid. This vorticity distribution is used to solve the Paasequation for the
streamfunction by a Jacobi iterative scheme. Numericadlacation is achieved by a six
level full-multigrid technique. The procedure is repeatdil the cumulative change in
vorticity reduces to belowt0~®. A typical contour of the streamwise and wallnormal
velocities of the flow through the domain shown in figure 4.4 &eynolds number of
10, is given in figure 4.6. As can be discerned, the flow in thi®eaglose to separation
at the turn from diverging to converging. The base flow fostparticular parametric
setting shows regions of separation for Reynolds numbeter thari0. The contours
of the streamwise and wall-normal velocities for a Reynaoldsiber of50 are shown in
figure 4.7. The local velocity profiles at fewlocations are shown in figure 4.8, which
clearly shows the regions of separation near the maximumretiavidth.

4.3 Global Stability Analysis

Since the wall boundary of this geometry is non-uniform, éassy satisfaction of the
boundary conditions, the global stability equation (eqb62.is expressed in the-n
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Figure 4.7: Contours of streamwise (top) and wall-normailigdm) velocities for flow

through the standard geometry at a Reynolds numbéf.ofAs can be seen, this flow
shows a separated region near the maximum channel widtbrredihe separation is
weak as can be seen from the very low negative valués shown in the colour-bar of

ol oo 3=

Figure 4.8: Local velocity profiles of the base flow for therstard geometry at a
Reynolds number 050, same as figure 4.7. The weak separation of the profiles can
be discerned. Figure not to scale.

o

- 10

plane. The equation is discretized with Chebyshev spectiédcation points in both
spatial directions, with points in ther direction andn points in they direction. Since
this clusters the grid points close to the inlet and exit efdbmain, which is undesirable,
a suitable stretching function is used in which is explained in section 2.6.4. The
values of the stretching constans are fixed ta:be 0.5,b6 = 3.0. In the wall-normal
direction, it is desirable to have clustering close to thd,vaad this comes out naturally
using Chebyshev spectral discretization. A typical gridamnasymmetric geometry is
shown in figure 4.9. The maximum grid size studied23 x 161. No-slip and no-
penetration boundary conditions are used in the wall-nbuiraction. Extrapolated
boundary conditions are used in the streamwise directiop. al&o study a few cases
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Figure 4.9: A typical grid used for the global stability syidrid size is 119x65.

with periodic boundary conditions in streamwise directifum the sake of comparison.

4.4 Results

As mentioned before, a variety of parameters are studiechasahsolidated list of the

different cases studied is given in Table 4.2. Each case é&s dtomputed using differ-
ent grid sizes and in each case it is ensured that a reasogiahinsensitive result is

obtained. A reliable grid size is indicated in the table.Ha ftollowing three subsections,
we discuss results from the asymmetric forward case, asyromeverse case and the
symmetric case individually and then in the fourth subsectie make a comparison of
the three cases.

4.4.1 The ‘standard’ geometry

Given the number of parameters, it is useful to define ondqodeit geometry as our
standard, and make all comparisons with reference to this.s@ndard case, as men-
tioned above, is a non-symmetric geometry, of divergenceotovergence ratid : 6,

e = 2.3 and aspect ratio close t@), with forward flow. We start with a single stan-
dard converging-diverging unit and obtain global modegidée boundary conditions
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Table 4.2: Consolidated list of the various parametersistud

The short form Fwd stands for Forward, Rev for Reverse andrdyor Symmetric.
The cases described as ‘neutral’, are in a near-neutrat®ty with the growth rate
of the least stable eigenmode negative, but within® of zero. Also, in columr,
unitlengths indicated al$) and5 respectively are actually of length9)585 and4.97925.

. Unit No of Ratio of Div:Conv o
Corrugation Length | Units € [Fwd/Rev/Symm] Re | Grid Size | Results
Fwd[4:6] 10 101x65 | Stable
1 2.3 Rev[6:4] 10 101x65 | Stable
Symm[5:5] 10 101x65 | Stable
1 119x65 Stable
10 119x65 | Stable
20 161x61 | Stable
Fwd[4:6] 30 | 121x141| Stable
50 121x161 | Neutral
23 100 | 121x161 | Unstable
10 ' 10 281x61 | Stable
5 30 91x171 | Stable
Rev[6:4] 50 111x121 | Neutral
Both Sides 80 121x121 | Unstable
100 | 121x121 | Unstable
10 119x65 | Stable
Symm([5:5] 30 119x85 | Stable
50 119x101 | Stable
Fwd[3.4:6.6] 10 221x65 | Stable
0.5 Fwd[4.6:5.4] 10 119x65 | Stable
10 115x65 | Stable
0.2 | Fwd[4:6] 50 | 221x45 | Stable
0, Symm|[5:5] 10 many Stable
0.01,
0.1,
0.2,
2.0
Fwd[4:6] 10 181x65 | Stable
3 2.3 Rev[6:4] 10 181x65 | Stable
Symm[5:5] 10 181x65 | Stable
10 61x51 Stable
. , 0.1 Symm|[25:25] ig gixgi gtag:e
X table
0.5 Symm[2.5:2.5] 0 BIxE1 Stable
30 119x75 | Stable
Fwd[4:6] 50 101x91 | Stable
One side 10 2 2.3 80 81x101 Stable
30 119x65 | Stable
Rev[6:4] 50 111x75 | Stable
80 111x95 Unstable
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Figure 4.10: Spectra obtained for our standard geometityaingle unit, at a Reynolds
number of10. Hollow symbols - with periodic boundary conditions, fillsgmbols -
with extrapolated boundary conditions.

(PBC) in the streamwise direction are applied in the first potation, since many ear-
lier numerical simulations have done the same. We next apxtiapolated boundary
conditions (EBC) in the streamwise direction. A comparisbthe spectra obtained in
each case at a Reynolds numbet ©fs given in figure 4.10. It is immediately apparent
that the spectrum has several distinct branches. We terompiber two as branches | and
[I. Contours of two corresponding modes within a box indéchlby the arrow are shown
in figure 4.11. Plotted here are the contours of the streamdisturbance velocity. We
see that with either set of streamwise boundary condititihvesspectra are qualitatively
the same, with the main branches showing similar eigensire.c

Based on the periodicity of the geometry, one might inteifivexpect the same
eigenstructure to repeat itself in each unit if we had manyeaqying-diverging units
in series. Instead, if we do not make this assumption, andwtma global stability
study spanning several units, there is a qualitative chamgjee results. In particular,
we find that instability ratchets are possible, where a givele becomes sequentially
stronger or weaker in every subsequent periodic unit. Asoffone in recent times, the
term ratchet is used here in analogy with a mechanical ratth@ mechanical ratchet,
for example in a hand pump, a periodic motion of the arm resnlsequential increase in
the water level. Similarly in our flow, a periodic geometrguds in sequential increase
in the amplitude of the disturbance energy. Note that théiapgrowth is displayed
by a single global eigenmode. This is not a transient groviénpmenon. Going by
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Figure 4.11: Contours of streamwise disturbance veloditytgpical mode chosen from
Branch | (shown with an arrow in figure 4.10). Top - periodicubdary condition;
bottom - extrapolated boundary condition.

parallel stability results, a given convergence is far nstadilizing than a divergence of
the same angle. So a progressive decrease in amplitudewm@assive units is not sur-
prising, whereas a sequential growth is non-intuitive. Aglained above, we term this
progressive growth an instability ratchet. To obtain modisplaying such behaviour,
we use periodic boundary conditions no further and use dr@dyBBC hereafter. While
the EBC may not be completely faithful to reality, they arelgably the least likely to
bring in extraneous physics. This statement is supportdajbye 4.12, where the entire
spectrum obtained for the PBC and EBC cases shown in figuéeadelshown. We can
see that the imposition of PBC gives rise to many modes whiglspurious artifacts of
an unphysically stringent boundary condition. On the otteerd, the spectrum obtained
with EBC looks very clean.

In a few of the figures to follow, the regions immediately @ds the inlet and exit
of the domain are not shown. This is because the disturbampditade is extremely
high at these locations, probably an artefact of the EBC.nBuee that these boundary
conditions do not in fact colour the results, ideally one lddike to use a geometry in
which a large number of repeating units are connected ieSdsut due to computational
time and memory constraints, we consider only two or threeaéing geometrical units.
Multiple units play a more crucial role in this study than elgrchecking the goodness
of the boundary conditions: we need to use more than one i sve are interested
in obtaining sequential spatial growth. A comparison of #pectra of the standard
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Figure 4.12: Eigenspectrum obtained for the cases showgurefi4.10; left: with EBC
and right: with periodic boundary conditions. We can se¢ tihe@ main structure of the
spectrum is identical with periodic boundary conditionsowgver, the PBC produces
many spurious modes in addition.

geometry using one, two and three units is shown in figure.4Th& main branches of
eigenvalues are insensitive to the number of units employéalvever, an interesting
pattern is seen, for example in branch I, as shown in the zdgrogion of the spectrum
in the inset of figure 4.13. Each eigenvalue in the single case is replaced by two
and three eigenvalues in the two and three unit cases reésggcEach set shown thus
contains six modes. This trend is seen in all the branchdsedpectrum.

We choose two sets of modes, one each from branches | anddisduoss further.
For reference, the modes are numbered 1-6 within each séguire 4.14 we examine
the streamwise velocity structure of a set of modes from &ndnThe structure within
one unit appears similar qualitatively in all modes of thig aed its notable feature is the
spatial variation in amplitude within it. A traditional $t@ity analysis assuming the flow
to be locally parallel, or weakly non-parallel predictsttiaile the diverging region is
destabilising, the converging region stabilises the digtoces to a far greater degree, so
the maximum in amplitude would be close to the widest portidhe global stability
makes a different prediction. Figure 4.14 shows that theliginae of this set of modes
peaks within the converging region. There also exist modesse maximum energy
is either in the minimum width region or in the diverging regi(shown later in figure
4.23). This is one example of the physics revealed by gldhallgy studies.

We now discuss the variation between units. If we were torektbe parallel or
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Figure 4.13: Eigenspectra of flow through the standard gégyraéa Reynolds number
of 10, with one, two and three periodic units. The inset zooms i @art of branch I,
revealing that each mode in the single unit case is replagetldnd 3 modes in the 2
and 3 units cases, respectively.
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Figure 4.14: (Left) Contours of streamwise velocity of a semodes from branch I,
shown in figure 4.13. (Right) Energy of the modes. The numbsitisin each figure
indicate the temporal decay rate;) of the mode.
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Figure 4.15: (Left) Contours of streamwise velocity of a getnodes from branch I,
shown in figure 4.13. (Right) Energy of the modes.
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weakly non-parallel analysis over multiple units, the fd@t convergence is far more
stabilising under that assumption than divergence is téisiag, means that at the exit
of one periodic unit of the geometry, all disturbances wadwdde decayed relative to
their amplitude at the entrance of that unit. Thus over ss&ige units all disturbances
would die out. This is the case for a variety of shapes of caEnfSahu, private com-
munication) for much higher Reynolds numbers than constiléere. Revealed by the
global analysis, however, are several disturbance modeshvalne stronger in each unit
than in the previous one. There are several possibilitipaiemt for spatial development.
Broadly, each mode from the single unit case is replacedyamtultiple unit cases, by
modes displaying sequential spatial decay (modes 2 angd&)akgrowth (modes 3 and
6), or even nonmonotonic behaviour (mode 4). The spatiaivtir@r decay of these
modes is quantified by plotting the energy of these modesyisho the right of figure
4.14. Each of the energy plots is scaled by its inlet energgd®4 3 and 6 are seen to
exhibit an instability ratchet in space. We can see thattiteaswise velocity contours
give a good idea of the growing or decaying trend of the kinetiergy of the modes.
Noticing that the spatial growth is rather accentuated @ttitee unit case as compared
to the two-unit, we surmise that geometries with many unitsaries hold the possibility
of large spatial growth. Another example of such spatialetgiis evident in figure 4.15
which shows a set of sample modes from Branch Il (left) and #eergy (right). In
all our computations, modes in the lower branches have a riinehstructure than in
the higher ones. One consequence of this comparison is thatalise that qualitative
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stability characteristics are reasonably well captureguisytwo units in series.

4.4.2 The instability ratchet

In this subsection, we discuss the instability ratchet itaidleThe first question which
arises is, why did previous studies not report the existefaestability ratchets in these
channels? The answer is two-fold) many works were limited to just one periodic unit
and hence were not able to capture this growth ‘across urii9’ the Floquet analysis
conducted by Floryan and other workers prescribed the bguyponent to be a real
qguantity. This in effect ensured that the disturbance wdageriodic over successive
units. and hence assumed. If the Floquet exponent is contplex the imaginary part
of it contains the ratchet growth/decay (as has been exgdaim the next paragraph).
Floquet theory is generally used for time-periodic flows. rédeve use it to study the
space-periodic base flow.
Consider the advective terms of the global stability of a eiddD flow,
(9U ou
v +U £ (4.1)
These terms represent the interaction of the perturbatiotisthe base flow. Let the
space-periodic base flow be assumed to have a periodicifyasf U = Re{be?*}. If
the disturbance is wave-like, it can be representedias, Re{ae'**}. Re means real
part,a andb are complex magnitude functions,is real, andx is assumed complex, so
that «; gives the spatial growth/decay rate of the disturbance.elfpwta = ng, then
equation 4.1 becomes,
glx] U% =" {(n+ 1)if[abe! DBz _ g preintbbz]
(n — 1)iBab*e i(n—1)Bz a*bei(—n+1),6’a:]_

[&bez(nJrl )Bx +a *h*e —i(n+1)Bz + ab*e i(n—1)Bx +a be n+1)ﬁx]} )

Integrating over an integer multiple lengthf /3, we get a contribution foa; as,

C
= =1 4.2
@ ealx[ *b_|_ab*] n ( )

—0  n#l (4.3)
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Figure 4.16: (Left) Variation of centerline velocity (stliine on top) for a symmetric
geometry (shown below) at a Reynolds numb@rEven though the geometry is defined
by a cosine wave, the base velocity variation is not a simpleaw (Right) Same as the
left figure, but for the standard geometry. Note that thesadig are not to scale.

Here C includes all the terms of the stability equation othan the terms in equation 4.1.
Equations 4.2 and 4.3 state that there can be either grovdihoary over successive units,
if the disturbance wavenumber matches with the base flomtseemamber (n=1). The
variation of the centerline velocity at a Reynolds numbet@®@fboth for symmetric and
asymmetric channels are shown in figure 4.16. The boundaiid® geometry are also
shown for comparison. In the symmetric geometry studiednegtough the geometry
is defined by a cosine function, the base flow (computed fromarical simulations) is
not a pure sinusoid, as seen in the left of figure 4.16. Butesinis periodic, it can be
written as a combination of many Fourier modes. Thus, adegrid equation 4.2, if the
wavenumber of the disturbance mode is equal to any one of thegrier modes, there
is a possibility for ratchet growth or decay. The same holdsdgfor the asymmetric
channels also, shown on the right of figure 4.16.

The ratchet mechanism must be interpreted with caution.dstiwf the modes, when
integrated over the entire domain there is no, or only nggaéinergy input from the ba-
sic flow to the disturbance. In fact a given mode can be made-appear as another
one with a greater temporal decay compensated by a greatalsgrowth. This aspect
is just discussed above. However, the spatial growth issggihificant, from the point of
view of the higher possibility of triggering nonlinearisién the downstream units com-
pared to upstream ones, and also the increased transievthgrossible downstream.
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4.4.3 Spatio-temporal interplay

The global approach allows for a rich range of apportionnoéigrowth and decay into
the spatial and the temporal. By the term spatial growth, &ferrhere to the growth
from one unit as a whole to the next. A given mode can manitsstfiin many ways,
since a decrease in temporal growth rate, for example, casobgensated by an in-
crease in spatial growth rate. By increasing the number oipzdational repeating units
from 1 to 3, we obtain three manifestations of a given modééngdlace of 1. This can
be verified from figure 4.14, where corresponding temporabgl@ates are also given.
It can be seen that temporally less stable modes exhibiesgi@ldecay and temporally
more stable modes exhibit sequential growth. Another neatation of the possibilities
in spatio-temporal apportionment is evident in figure 4\dfere the spectra obtained
for different Reynolds numbers of our standard geometrynwito repeating units are
shown. For clarity, only the outer-most branch is shownait be noticed that the branch
bifurcates into two sub-branches near the imaginary axig this division is more pro-
nounced for higher Reynolds numbers. Of the two sub-bras)dhe higher one, being
of less negative;, decays more slowly temporally compared to the lower oné tlBir
spatial stability characteristics are interchanged, shahthe upper sub-branch modes
are spatially decaying and the lower sub-branch modes at&a#p growing. Two typ-
ical pairs of modes from the upper and lower sub-branches feeynolds number of
10 which display this interchange are shown in figure 4.18. Arointeresting feature:
in contrast to straight channel flows, where usually an inldial mode becomes more
unstable with increase in Reynolds number, in convergingrding channel flows, we
see an entire branch of the spectrum becoming flatter andrdoseutrality. This could
provide scope for high transient growth, as discussed. later

4.4.4 Numerical Floquet study and its limitations

Since the base flow has the same periodicity as that of one ejgoranit, a simpler
model study has been be conducted where the spatial growtevad in each unit is
expressed by a Floquet multiplier. The wavelet analysiswelill demonstrate why
this description is only a simplified model, since the reaktalbance growth or decay
is far from completely described by one scalar multipliea cbnfirm that there is an
interplay between the temporal and spatial stability cttaréstics of the global modes,
we perform the following computation on the standard geoyneith one geometric
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Figure 4.17: Spectra obtained at different Reynolds nusfmerthe standard geometry
with two periodic units. Many modes become near-neutrahwitrease in Reynolds
number, which could lead to interesting transient growthawsour. For clarity, only the
least stable branch of the spectrum is shown.
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Figure 4.18: Energies of two typical pairs of modes from lsfahwhich splits into two
sub-branches. The modes from the upper sub-branch are teltypoore unstable but
spatially more stable than those from the lower sub-branch.
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Figure 4.19: Spectra with boundary conditions simulatirdgaired Floquet multiplier,
in a single unit standard geometry at a Reynolds numb#p.of he exit boundary values
are specified as a constant multiple of the inlet values, a@ddlues of the constant are
given in the inset. A constant less than, greater than andl@qwne implies a spatial
decay, spatial growth and periodic boundary conditiorspeetively.

unit. We enforce a desired Floguet exponent by specifyimgetkit values as a given
multiple of the inlet values, and see the change;inFor a sequential spatial growth, the
Floguet exponent must be greater tHamand vice-versa. A value dfimplies periodic
boundary conditions. The comparison of the spectra obdaioedifferent exponents

at a Reynolds number df) are shown in figure 4.19. Here again, only the least stable
branches of the spectra are shown for ease of viewing. Iteaeén that when the modes
are forced to exhibit a spatial decay, they become tempdesdb stable than when there
is forced spatial growth. This is more evident in the inseivah in the figure, which
shows the change in the temporal growth ratg ¢f the modes for a given frequency.

In local stability studies, the mode is always assumed ttasua wave-like struc-
ture in the streamwise direction. We now ask the questiow,\wave-like are the global
modes? A visual examination seems to suggest a wave-liketgte in some regions,
but with an effective wavenumber that seems to vary in botastwise and normal di-
rections. A quantitative estimate of the local length scale be obtained by performing
a wavelet transform of the amplitude of a mode plotted alopgeacribed path. Wavelet
transform has been performed on the global modes of divgiannels in the previous
chapter and they are explained in detail in section 3.6.:apter 3. Here we choose to
study thez-variation of a mode at a given fraction of the channel widthe amplitude
of the wavelet transform indicates the contribution to elgctyth scale of a mode at a
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Figure 4.20: Top: Streamwise velocity contours of a typamlde; Bottom: Wavelet
transform at the wall-normal location indicated by the btleshed line. As visible, the
modes have larger lengthscales near the converging refibe channel.
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Figure 4.21: Similar to figure 4.20, but the wavelet transfas presented at two different
wall-normal locations. The middle figure shows that closeh® wall, the dominant
lengthscale changes weakly from unit to unit. The bottonr&glnows that closer to the
centerline, at a given streamwise station, in additionéckbminant lengthscale, we may
have sub-sominant lengthscales. The dominant scales twihigures are different.
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given location within the channel, so that the brightest sppa given streamwise station
indicates the dominant ‘wavenumber’ at that location. En¢bntext of wavelets, we use
the term wavenumber to indicate the inverse of the domireargth scale. Morl wavelet
has been used in the results presented here, but the anseeist gensitive to the spe-
cific choice. A wavelet transform of a typical mode is showtigure 4.20. The reader
is reminded that in all plots of wavelets, it is useful to fe@ur attention on the central
part of the figure, since a small region at each side of a watr@lesform plot is known
not to be accurate. Plotted at the top are the contours @mtmese velocity of a typical
mode of our standard geometry. Below this is plotted the Vedvmnsform of the mode
along the blue-dashed line. Even by visual examination, avesay that the mode dis-
plays larger lengthscales towards the converging regibe.cbrresponding region in the
wavelet transform thus shows a smaller wavenumber. Thigstioat the wavenumber
of a mode changes with streamwise distance. Next, we penfcavelet transform of
a typical mode from the three-unit case at two different waalimal locations, shown
in figure 4.21. Here, wavelet transform is performed at twitedent wall-normal loca-
tions, indicated by the blue-dashed lines. It can be seen fhe middle plot that the
wavenumber changes weakly from unit to unit. From the bofpdon, it is evident that
closer to the centerline, there can exist more than one damhiengthscale at a given
streamwise station. By examining the spatial behavioun@sé plots, we may conclude
that the wavelength is a function of bathandy. Such behaviour is also seen in wall
jets to a limited extent and in divergeing channels. Moreanehe present flow, the
growth behaviour too can differ for different wall normakthations, and even at a given
wall normal location, can differ for different length scaleThis shows that a simplified
treatment by Floquet theory would not afford a complete dpson of the physics. In
effect, the Floquet multiplier can be a functionygfand also be different for the different
dominant scales even at a givgnTl hus the kinetic energy, integrated across the channel,
can vary in interesting ways from one unit to another and motléscribed by a single
Floguet exponent.

The interchange of the spatial and temporal stability attarastics of these global
modes reminds us of Gaster (1962)'s transformation betwexaporal and spatial growth.
But the spatio-temporal interplay cannot be explainedgi§aster’s transformation be-
cause of the following two reasons: First, as just explajtieel spatial growth behaviour
of these modes cannot be described by a single Floquet empofed hence the spa-
tial stability characteristics cannot be transformed ietoporal stability characteristics.
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Second, the spatial growth that we discuss here is not tla $patial growth but the
growth of the modes ‘across units’. A Gaster’s transfororattan explain the inter-
change of local spatial growth behaviour with the tempoedddyiour.

4.4.5 Reverse geometry

The computations done above for the asymmetric forward gégnare repeated for
the same geometry, but with the direction of the flow reversgus flow is termed as
‘reverse’ flow, as shown in figure 4.5. Similar to the forwa@bke, each eigenvalue of
the one unit case is replaced by two and three eigenvaluabdawo and three unit
cases, respectively, see figure 4.22. The comparison altthghve energy of a set of
modes from Branch | is shown in figure 4.23. All the modes o garticular set exhibit
spatial instability. For example, the energy of mode 4 hasvgrto 100 times its value
at the inlet. Also, it can be noted that the maximum amplitaiéhese modes is in
the diverging region of the channel, in line with the preintof parallel studies. This
set of modes is chosen from the high frequency part of Branethich is relatively
more stable than the low frequency near-neutral modes. Blodar the imaginary axis
have spatially decaying eigenfunctions, whereas modéofarthe imaginary axis show
spatially growing eigenfunctions, a trend as reportedHierforward flow case. Thus as
we move towards high frequencies, there is a gradual shifbftemporal to spatial
growth. The bifurcation into sub-branches is again morarpnent at high Reynolds
numbers, figure 4.24, but less so than in the forward case.inAtha upper branch
modes have less spatial growth than the lower.

4.4.6 Symmetric Geometry

Flow through a symmetric geometry with the same wavinesditudp as our standard
geometry ¢ = 2.3) is studied at different Reynolds numbers with one, two dndd

units in series. The trends reported so far in the non-symegéometries are seen
in the symmetric geometry as well, with the notable diffeenhat the branches do
not split up into sub-branches in the range of parametediediu A comparison of the
spectra obtained at different Reynolds numbers is showrmgindi4.25. Here too, the
branches become flatter with increase in Reynolds numbeso A$ before, there are
one, two and three eigenvalues for flow through one, two argkthnits connected in
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Figure 4.22: Spectra obtained for the standard geometryerse case, at a Reynolds
number of10, for one, two and three periodic units connected in seriegnil& to
the forward case, each eigenvalue of the one unit case isceglwith two and three

eigenvalues for the two and three unit cases, respectively.

Figure 4.23: (Left) Contours of streamwise velocity of a gemodes from branch I,

for reverse case (from figure 4.22). The maximum energy age¢hmodes peak in the
diverging region of the channel. (Right) Energy of the modeshis set all the modes
exhibit instability ratchet. To note is that the mode 4 graypso 100 times the energy at

the inlet.
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Figure 4.24: Spectra obtained at different Reynolds nusifmerthe standard geometry
in the reverse case. The trend is similar to that seen in tiveafol case. But the split up
of the branch into two sub-branches is less pronounced tiefotward case.
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Figure 4.25: Spectra obtained at different Reynolds numfmera symmetric geometry
with ¢ = 2.3. The trend is similar to that seen in the non-symmetric geoase(both
forward and reverse). However, there is no splitting of trenlsh into two sub-branches.
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Figure 4.26: Comparison of spectra for the three geometf@svard, reverse and sym-
metric, at Re=50 and = 2.3. The three distinct branches of the spectrum are seen in all
the cases. Again, only the top two branches are shown heuotsiaty.
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Figure 4.27: The least stable modes of the three cases dexturs figure 4.26. The
reverse and forward cases are less stable than the symetac

series. In the following subsection, we make comparisohsden the forward, reverse
and symmetric cases.

4.4.7 Comparison of forward, reverse and symmetric geometries

We first discuss the temporal instability characteristitghe three goemetries studied
so far, followed by spatial instability characteristicglahen disucss their relative roles.
We start by comparing the spectra obtained at a Reynolds euailb0 for e = 2.3 of
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the forward, symmetric and reverse geometries, shown imdigi26. Here too, only the
top two branches of the spectra are shown for clarity. Faspared to the instability
critical Reynolds number 03772 for a straight channel, this flow, which is on an av-
erage a straight channel, is already near-neutral at tlaswely low Reynolds number.
This trend is consistent with other studies on convergargrdent channels, but more
pronounced because of the highand because of the global approach. To compare the
temporal instability characteristics, we zoom figure 4.2&nmthe axis and plot it in fig-
ure 4.27. We can see that both the forward and reverse gaemate temporally more
unstable than the symmetric geometry. This finding can kbdusupported by the com-
parison of the spectra obtained for two forward geometriesRReynolds number dfo),

but with different ratios of divergence and convergencewshin figure 4.28. The two
geometries compared here have a divergence to convergaincefr[4:6] and [3.4:6.6].
Here we can see that the more accentuated the asymmetrg isyaire temporally un-
stable it is. Also, the branch split-up is more pronouncedlie steeper geometry. This
tells us that for the same value gfwe can make the flow temporally less stable by in-
creasing the asymmetry of the geometry. The spatial bebathowever, is the reverse,
as discussed below.

Also, we can see that the split-up of the branch is strong#rerforward case, less
for the reverse case and is zero for the symmetric case. Hsidben seen for all the
Reynolds numbers studied. The bifurcation, where it exesteends over a large range
of frequencies at higher Reynolds numbers.

The spatial stability characteristics of flow through fordiareverse and symmetric
goemetries show the following trend: low frequency modes tranch (close to the
imaginary axis) are spatially decaying, while the high treqcy modes of the branch
are spatially growing. In between these two regions is agrimédiate region in which
the modes split up into a pair of spatially decaying and sfigtgrowing modes. To
estimate the relative amounts of spatial and temporalligtain the forward, reverse
and symmetric geometries at the same Reynolds number arelesara choose a rep-
resentative case of Reynolds3& ande = 2.3 with two periodic units. The comparison
of the spectra obtained are shown in figure 4.29, to the le&.ctAbose a pair of modes
in the region where the split up exists and make a comparistimeg respective ener-
gies, shown to the right. The chosen modes are shown in tleé afishe spectra. The
energies of the modes indicated by the left ellipse in thetiase shown in the middle
part of the figure. In this set of modes, the forward mode ispirally less stable than
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Figure 4.28: Comparison of spectra obtained for the forvggaimetry, with two units in
series, at a Reynolds numberldf, e = 2.3, for two ratios of divergence to convergence.
The steeper the asymmetry, the more temporally unstabliéothes.

the symmetric mode, whereas spatially it is more stable. @ncontrary, the reverse
mode is temporally more stable than the symmetric mode, thatgpatially less sta-
ble. A similar trend can be seen in the modes indicated byigfin ellipse of the inset.
This comparison emphasizes the fact that the net instabdititained in a mode remains
constant for a given parameter setting, and increase inygeedf instability decreases
the instability of the other form. Thus, by making the geam@iore asymmetric, the
modes become temporally more unstable, but spatially ntaldes Thus, the apportion-
ment between temporal and spatial growth is not arbitranyelmerges as a consistent
pattern based on geometry, Reynolds number, etc. In a gitation, we may tailor
the geometry to increase one relative to the other. We engehteat the introduction of
fore-aft asymmetry has increased the range of possilsilitie

4.4.8 Effect of amplitude of wall waviness

A comparison of the spectra obtained for increasingplues for the same Reynolds
number of a symmetric geometry is shown in figure 4.30. We eartisat the branches
in the spectrum become narrower and the low-frequency moedasthe axis get more
destabilized at highet This trend is seen in both symmetric and asymmetric geoasetr
Comparing figures 4.17 and 4.30, we see that with increaseym&tds number the
branches become broader and with increasetive branches become narrower. But the
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Figure 4.29: Terminology as in Table 4.2. Left: Comparisdspectra of the forward,
reverse and symmetric cases at a Reynolds numisrwith ¢ = 2.3, with two periodic
units. Two sets of modes shown in the inset are chosen fronmteemediate region
where the branch shows a split. Middle and right: energigb®imodes shown in the
left and right ellipses of the inset, respectively.

low frequency modes are destabilized in both the casesigyivie intuitive result that
increasinge and/or Reynolds number would be destabilizing. Furthernoyeasing,
one can reduce the participation of high frequencies, wbatlid be a useful feature as
a passive control option.

We have seen that the temporal decay or growth dictated bgigfemvalue is expo-
nential, while the spatial growth obtained by the ratchetinamism need not be. More-
over, the classical definition of critical Reynolds numbecdmes blurred in this case.
This is because a mode that is temporally globally unstalalg Inave a decay in space
that overcomes this temporal growth. We also have sevemgbdeally decaying but
near-neutral modes, especially fBe > 50, in which the spatial instability is stronger
than the temporal decay.

4.4.9 Eigenvalue Sensitivity and Pockets of Transient Growth

In this subsection, we discuss the sensitivity of the eigkres to (i) the grid size -
which gives an indication of the discrete/ continuous forithe spectrum and (ii) the
addition of small perturbations to the operator matrix - @fhgives some indication of
the associated non-normality of the operator. Viscous fiovessemi-infinite or infinite
domain will generally have a discrete and a continuous spec{Schmid & Henningson
(2001)). The continuous spectrum arises because of theundledness in the domain.
For bounded parallel flows, however it was shown by Lin (196&e Drazin & Reid
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Figure 4.30: Spectra obtained for differerdt a Reynolds number af) for the symmet-
ric geometry. It can be seen that the low frequency modesrbecoore unstable with
increase ire. The branches tend to become narrower with increase in

(2004) that the viscous eigen spectrum has to be discreten though the present do-
main is bounded iy, Lin’s proof might not hold good here as the flow is non-patall
and there is unboundedness in the streamwise direction h@ckowhether the eigen-
value spectrum is discrete, the spectra obtained for timelatd geometry at a Reynolds
number of10 for different grid sizes is shown in figure 4.31. We can see with in-
creasing grid sizes, branch I of the spectrum does not bedéalee but converges to a
discrete set of modes. This can be seen clearly in the inget though other branches
of the spectrum are sensitive to the grid size, the numbeigengalues does not in-
crease. This is the signature of a discrete spectrum. Wemd@efrom figure 4.13 that
the number of eigenvalues increases with the number of oaitsected in series. For
a very long channel of converging-diverging units in sertee branches would become
fuller.

Next, we investigate the sensitivity of spectra to the addiof very small ampli-
tude random perturbations to the operator matrices. Tivissga measure of the non-
normality associated with the matrices. More the sengjtivi the eigenvalues, more is
the non-normality associated with the matrices and hightra transient growth associ-
ated with their eigenfunctions, see Schmid & Henningso®{20A detailed discussion
about transient growth and its characteristics can be geé&marrell (1988), Farrell &
loannou (1993), Butler & Farrell (1992), Reddy & Henninggd893) and references
therein, and it is briefly explained here for the sake of catgrless. Two or more ex-
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ponentially decaying ‘non-orthogonal’ eigenfunctions axhibit energy growth over
short times if they are superposed with suitable initialdibans. This growth is only
transient and both eigenfunctions will decay at large tinfedbe system remains linear.
This transient growth could be substantial, increasing &mynorders of magnitude of
the initial energy of the disturbance. This could triggenfdimear effects, which could
then dominate. The non-normality of the operator, and tsalteg non-orthogonality
of the eigenfunctions is a necessary (but not sufficientptmm for transient growth.
We perform a sensitivity analysis by adding random pertiiona of maximum ampli-
tude10~° to the operator matrices. The spectra obtained with theserpations are too
different from the unperturbed spectrum to plot in the samgeré. For ease of viewing,
we reduce the maximum amplitude of the perturbatiotitd® and find that the eigenval-
ues are extremely sensitive to very small perturbationfefassociated matrices. The
spectra obtained for ten different random combinationsasfysbations are superposed
over the spectra obtained with no perturbation at all, amdvshin figure 4.32. We may
estimate that modes in branch Il (indicated as B3) of thespm are likely to partici-
pate very little in transient growth. But modes close to timaginary axis and those in
branch Il (indicated as B2) show a lot of sensitivity and havet of potential to exhibit
transient growth, if given suitable initial conditions. k&amportantly, for a perturbation
of the order ofl0~%, the near-axis stable modes are pushed into the unstalbiplhaé.
Also, for higher Reynolds numbers, several modes have vesjllslecay rate, which
would allow them to interact with each other over a longeretirto lead to interesting
transient growth characteristics.

Transient growth in a flow is usually characterized by a quyadt,,..., defined as the
maximum possible disturbace energy growth at a given tingimized over all initial
conditions. This energy growth is scaled with the initiaksgy of the disturbance (at
time t=0) and it is generally integrated over the entire dommgiving a single number.
Rather than computing,,..., we show hitherto undisclosed opportunities for nonlinear
ities to pick up, from localised pockets of very large traméigrowth. To demonstrate
this, we merely add two temporally stable modes with randaitral amplitudes (whose
magnitude lies between +0.5 and -0.5). For such random cwatibns of two modes,
the energy integrated over the two-dimensional domainllysdacays monotonically,
or may display a small transient growth. This is because we Im@ither chosen the
optimal perturbations nor given them the optimal initiahddion. Moreover we are
superimposing only two modes at a time. Hence there is naisarthat these modes
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Figure 4.31: Spectrum of the standard geometry obtaindddifiterent grid resolutions,
at a Reynolds number afd. The inset indicates that this branch of the spectrum is

discrete.

Figure 4.32: Sample pseudospectra obtained by adding mapaoturbations of max-
imum amplitude10~® to the matrix elements. The spectra obtained for ten diffiere
random combinations are superposed. The big hollow ciidesate the spectra ob-
tained with no perturbation to the matrices. The three bras@are indicated as B1, B2
and B3.
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Figure 4.33: Contours of the maximum energy growth obtdeédr random combi-
nation of two modes with a random initial condition, showreaery grid station. The
energy has grown transiently only in some regions.

with this set of random initial conditions do not show any @letransient growth at
all. But, for the same pair of modes with the same initial dbads, if we plot the local
disturbance kinetic energy everywhere in the two-dimemsiodomain, we find pockets
of transient growth, as large as 1000 times the initial epexgn at a Reynolds number
of 10. A three-dimensional contour of the maximum energy of twohssets of modes,
added up with random initial conditions, are shown in figute3 and 4.34. The modes
presented are chosen from the forward case at a Reynoldsamnafil). The maximum
energy for a given initial amplitude of another pair of deicgymodes is shown in figure
4.34. We see a localized transient growth of energy. Sucloatgrof energy could
not be captured by the traditional ‘integral energy’ apjpgio#o transient growth. One
thing to remember is that they are obtained for random irgtaditions and are not the
optimal growth. With three-dimensional perturbations,exgect the growth to be much
more, given the streamwise streaks of Butler & Farrell ()28 other studies, and this
aspect is being studied.

4.4.10 Other parameters

As seen, this problem is rich in parameters. We make a few roase studies to get
a qualitative idea of the response to some of them, theseréomeluded in Table 4.2.
The first case study is to obtain the effect of varying the efsgaio of a periodic unit by
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Figure 4.34. Same as figure 4.33 for a different set of modds rendom initial con-
ditions. The energy often grows by three orders of magnitfdiae initial energy, at

localized regions.
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Figure 4.35: Spectra obtained for= 0.1, Re=10, for symmetric geometry with length
of the channel. ~ 5 (hollow circles) andl. ~ 10 (filled squares). It can be seen that a
shorter unit is slightly more stable than a longer unit fas tombination of parameters.
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Figure 4.36: Spectra obtained for= 0.1, Re=10, for the standard geometry with wall
waviness present on one side (filled circless) and both ¢ia#low squares).

varying L/H, keeping everything else constant. For the spatametric settings, halving
the length of the geometric unit stabilizes the flow. A conmaar is shown in figure 4.35
where the spectra of two symmetric channels with two difiefengths for the same
and Reynolds number are plotted. The divergence and caewveegangles are larger for
the shorter channel, but the length available for destaditn is less. Secondly, every
pair of eigenmodes in the long channel is replaced by a seigenmode. On examining
the eigenfunctions, it is seen that the pair in the long ckhare of similar structure but
opposite phase.

We then study a channel with a one-sided wall corrugation fardithat this ge-
ometry is more stable than one with both walls corrugatedveltbeless, it exhibits
low Reynolds number instability. The eigenfunctions anel $pectra obtained display
rich characteristics similar to the two-side corrugatesecal he branches in the spectra
split-up into pairs of spatially decaying and spatiallywnog eigenfunctions. Also the
spectra become flatter with increase in Reynolds numbeegnal tsimilar to that seen in
both-sided corrugated channels. The results could havediezssed beforehand, but the
purpose of computing on this geometry is that it is easieabuitate for an experiment.
This experiment is underway.

Thus, under suitable parametric settings of these convgqdiverging channels, we
have three equally potential mechanisms operating towasdability, namely, the ex-
ponential instability, ratchet growth in space and loaitarge transient growth in time.
This offers us a passive control mechanism to enhance miritggv Reynolds number
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channels.

4.5 Summary

Stability of flow through channels with a series of alterngtconvergent and divergent
sections of significant amplitude has been studied usinglzagktability approach. No-

tably, the entire eigenvalue spectrum is obtained for tleengetry, for the first time to

our knowledge, and the distinct branches of the spectruntiaeissed in detail. We
show that neither the disturbance amplitude nor the modetsire need obey the peri-
odicity of the base flow, even in a symmetric converging-jugy channel, in contrast
to what has often been assumed. An instability ratchet, sajuential amplitude growth
over every periodic converging-diverging unit is demoatsd.

Asymmetric geometries are shown to display a richer rangemporal-spatial in-
terplay than the symmetric. This is manifested as a splitfapeodistinct branches in the
spectra into two sub-branches, one of which has higher temhgoowth and lower spa-
tial growth than the other. These geometries have not beelest earlier to our knowl-
edge, except by Sahu (2005) in pipes with a weakly non-arafiproach, which did
not and could not, yield a ratchet. Temporal instabilitydrees larger with increasing
asymmetry, with globally unstable modes at a Reynolds numbabout50. The max-
imum amplitude of the disturbances need not necessarilpbined to the neck of the
channel. The wavelength of a mode can change significanthimone geometric unit
and can be different in different units. Moreover at a giveaamwise location, a single
mode can sustain different dominant length scales at diftawall-normal positions, and
sometimes even multiple length scales at a single locafiba.spatial evolution of each
scale can be different, thus a spatial Floquet analysisdvoat be able to describe the
dynamics completely.

As expected from previous wisdom, the presence of convesggand divergence
reduces the critical Reynolds number. The critical Reysaldmber obtained with th
global approach is somewhat lower than the earlier preafisti However, it is to be
remembered that the very definition of critical Reynolds bemis nebulous given the
spatial-temporal interplay. Also, an increase in the walVimess amplitude destabilizes
the flow. Flow through a channel with one wall straight anddtieer wavy is more stable
than the when both walls are wavy. In this study we have faligsss on quantitative
effects of these parameters and much more on new instataiityres that are revealed
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by this global approach.

The presence of many near-neutral modes shows potentiabfmsient growth. An
elementary transient growth study is carried out here, hwee resultant disturbance en-
ergy from two randomly chosen modes with randomly chosemairamplitudes shows
localized pockets of large transient growth. Most ofterg tbtal energy in these ran-
domly chosen cases is monotonically decreasing. Our shetefore suggests that esti-
mating transient growth locally rather than intergratingeiospace, can reveal new pos-
sibilities for nonlinearities to take over. A complete urstanding of transient growth,
especially with three-dimensional disturbances, wouldgest itself as future work.
These distinct instability characteristics of flow througgnverging-diverging channels,
namely the exponential growth in time, ratchet growth incgpand large amounts of lo-
calized transient growth, can be used as passive contrdianéms to encourage mixing
at low Reynolds numbers. The asymmetry can be tuned to eatmixing further.
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WALL JETS
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5.1 Introduction

A wall jetis produced when fluid is blown tangentially acradtat surface. A radial wall
jet occurs when a jet of fluid hits a wall perpendicularly apdesds radially outwards.
Wall jets were first studied by Glauert (1956), who derivegl shmilarity solution which
is valid far downstream the jet impingement, both for thenpleand radial cases. The jet
of fluid can be of the same velocity as the surrounding fluidfa different velocity, as
mentioned in Glauert (1956). If the fluid in the jet is diffatérom the surrounding fluid,
then the equations of motion will have to take into accouatierface between the two
fluids, and such a flow under certain circumstances can foryaellic jump. Thus, we
can say that hydraulic jumps occur in a special subclass fjeta with an interface.
Wall jets are used for efficient heat transfer like in turbblades, heat exchangers, etc.
More than its applications, there is a special property ol et which has motivated
many hydrodynamists to study this interesting flow, as dised below.

Two common hydrodynamic flows are boundary layers and slagard. Wall jets
are special as they can be seen (roughly) as a combinatidresé two distinct type of
flows, a boundary layer very close to the wall and a free shegaarlfar away from the
wall. The stability characteristics of a boundary layer arsthear layer are independently
studied extensively. Important to note are the differemediseir stability characteristics.
A boundary layer profile on a flat plate is inviscidly stable®ese there is no inflection
point, and instability is caused by the viscous modes. Arsth@a is inviscidly unstable
as it is inflectional. A wall jet will have dual stability belar as its velocity profile is

118
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inflectional and it has strong viscous effects close to thié Whis twin-characteristic of
wall jets has been recognized by many researchers. The stioatieffects have been
possible to glean even by making a parallel flow approxinmatib will be interesting
to study these characteristics using a global stability@ggh. We believe (and have
shown in the chapters on non-parallel channels, chapte43 Byat a global stability
study can reveal many important physical characteristibghvare not accessible to
parallel approaches. Hence we undertake this global stodyadl jets.

The first stability calculations on wall jet were done by Ch&urSchwarz (1967),
who studied the fully-developed similarity profile far dostream under the parallel
flow approximation using the Orr-Sommerfeld equation. Thein results argi) the
presence of an additional instability mode together with lgrast stable modgi) the
presence of two critical layergii) the dominance of the outer region in instability as
disturbance production is maximum there. Experimentagstigations by Bajura &
Szewczyk (1970), Bajura & Catalano (1975) confirmed thegmes of the similarity
solution predicted by Glauert (1956) and proved the dongrasf the outer region in
both natural and forced transitions. It was Meleal. (1986) who confirmed the pres-
ence of two distinct type of instability modes, an inflecabmode peaking in the outer
region and a visous mode which peaks near the wall, whilertfiectional mode dom-
inates in the transition process. The co-existence of tlemwdes was experimentally
confirmed by Cohen & Amitay (1992). They also show that thatre¢ roles of the
inflectional (outer) and viscous (inner) modes can be cdettdy blowing or suction.
Scibilia (2003) studied experimentally the effect of hegtiroughness and forcing on
the transition characteristics of wall jet. Seidel & Fas)(1) showed numerically that
heat transfer due to a wall jet is increased by forcing. Ctoses origin, a wall jet may
often be approximated by the combination of an inviscid tamisvelocity layer and a
Blasius boundary layer. Leviet al. (2005) studied the stability of this developing wall
jet using the Parabolized Stability Equations (PSE), inclwhihe non-parallel effects are
considered upt®(1/Re). The present work aims at studying the fully developed wall
jets using a global stability study. The ultimate aim is tadst the stabiltiy characteris-
tics of developing wall jets close to the origin, where seffiilarity is not yet achieved.
In future it will also be interesting to study the heat tramstharacteristics of wall jets
using a global study.
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5.2 Base Flow

As mentioned before, the similarity equation govering al yelflow was first given by
Glauert (1956). The equation is given as,

f/// 4 ff// 4 2f/2 —0 (5.1)
f(0)=f(0)=0,f(c0) =0 (5.2)

Here, f is the streamfunction. The primes are with respeacf,tawhere the wall-normal
dimensionless co-ordinate is definedas= y/d(x). The lengthscale in the problem

is the wall jet thicknes$(z), defined as the farthest distance from the wall at which
the velocity is half the maximum velocity. A wall jet profils inflectional away from
the wall and has two locations at which the velocity is ha#f thaximum velocity. The
velocity scale i9/,,.., the maximum streamwise velocity. Thus the Reynolds number
will be defined as,

Re = Upasd /v (5.3)

The following relations hold fot,,,.., and with the streamwise coordinate see
Schlichting (2000) or Kundu & Cohen (2004),

Uppaz ~ x~1/2 5~ g/t (5.4)

From above, we derive a relation between the dimensiontesarswise distance/o
andRe as

1
U=a (5) 2 (5.5)
v
1
33\ 7
5:5(55;)4 (5.6)
1
Re Fx\ 4
r Re

wherea = 0.498 andb = 3.23, F' is the wall jet constant introduced by Glauert. See
Schlichting (2000) for the definition of' and equations 5.5 and 5.6. Equation 5.8 gives
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Figure 5.1: Sensitivity of base flow to the height at which dler boundary is placed.
Glauert’s profile calculated for different domain heightsPlotted here are the stream-
wise velocityU versugy. It can be noted that for domains longer thas 20, the profiles
coincide and the wall jet thicknesgslies aty = 2.5. In terms of the non-dimensional
co-ordinaten = y/J, domains longer thafd (20/2.5 = 8) give practically identical
results.

the relation between the non-dimensionahnd Re, which fixes ther co-ordinate at
which a particulatRe is obtained. The mean flow is calculated by discretizing aaiom

of length ofy/§ = 8, into 2000 equi-distant points and solved using the fourtteo
Runge-Kutta method. Since one of the boundary conditionsgaired to be satisfied

at oo, a sufficiently large domain height has to be considered. msisgity study was
conducted to find the minimum height at which the far-streaomiolary condition can be
imposed without losing accuracy and it was concluded thatghit of8) and above gives
results independent of the domain size, figure 5.1. For allctmputations presented
henceforth, a height o8¢ is considered to be long enough to apply the free-stream
boundary conditions.

This work is done in collaboration with Dr. A Sameen, IIT Mady India and Dr.
Tamer Zaki, Imperial College, London. | first thank Dr. Saméer proposing such an
interesting problem. | also thank Dr. Tamer Zaki for poigtwut the mistake in the base
flow calculation. The base flow calculated from the similagtjuation is validated with
the direct numerical simulations of Dr. Tamer Zaki.
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Figure 5.2: Critical Reynolds number obtained from Orr-Soenfeld equation. This
matches with the results of Chun & Schwarz (196%).stands for stable region and
U stands for unstable region. It can be seen that within théablesregion behind the
black curve, a small stable region exists (shown by the reeeguvhich extends between
Re = 378 and Re = 785, indicated by the two vertical dashed lines.

5.3 Local Stability Analysis of Wall Jets

Researchers Chun & Schwarz (1967), Meteal. (1986) have earlier used the parallel
flow assumption on the Glauert’s profile far downstream, whbe non-parallel effects
are negligible. We re-computed the the neutral curve regolly Chun & Schwarz
(1967) using the Orr-Sommerfeld equation, as shown in figu2e In this figure,S
refers to a stable regiofy, refers to an unstable region. As can be seen, this flow becomes
unstable at a Reynolds numberief. 7 for an« of 1.16. Note that theéze,.,;; predicted
is very small, i.e. instability occurs close to the origint tAis low z, it is unlikely that
a similarity profile is attained as yet, which questions thédity of using the Glauert
profile in the stability computations at this Also, according to figure 5.2, there is a
small stable region starting &e = 378 inside the unstable region of the neutral curve
(shown in red) and this extends tilte = 785. This stable bubble is confined within
wavenumberd and1.3. This sudden stabilization of the flow for a particular set of
wavenumbers is not easy to explain on physical grounds. éngkinstability mode was
considered to be the reason for this by many researchers.sdd@en appearance of
the second mode in the neutral curve was explained by Tuminz&talin (1997) using
a spatio-temporal analysis. They mention that behind taklestoubble, two unstable
modes co-exist and there are two neutral boundaries inelgadm.

Let us discuss this stable bubble in detalil. In figure 5.2¢tlage two neutral bound-
aries, one shown in black and the other in red. A neutral bagn defined as the
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border between an unstable region and a stable region. Lebnsder a disturbance
mode with a particular wavenumber, say= 1.2, at different Reynolds numbers. This
is indicated by the horizontal green dashed line in figure B.&an be seen from this fig-
ure that this mode becomes unstable at a Reynolds numbe&fafC'1), as it crosses the
first neutral boundary (in black). It remains unstable foaage of Reynolds numbers,
until it becomes stable again at a Reynolds numbe&78f(at C2). As we proceed fur-
ther downstream, this mode crosses the neutral boundarg trgain (at'3&C'4), from

an unstable region. This means that the region beyohtas to be stable and hence the
red curve has to form a closed loop somewhere down so thahthie becomes unstable
again for large Reynolds numbers. We repeated the compnsati this region to check
if this loop closes behind and computations did not find tleesd neutral curve closing.
We used an alternative approach to understand this reglomd@cay/growth rate of the
mode (v;) is plotted against the wavenumber) for a given Reynolds number and it is
repeated for a range of Reynolds number in the region undesideration. The value
of w; (positive or negative) tells whether the region in the naluturve is stable or un-
stable. The results are shown in figure 5.4, which shows this pdr Reynolds numbers
ranging from100 to 1000 and they are shown in two separate figures for clarity. It Gan b
seen very clearly that the disturbances of wavenumber drb@rbecome unstable for a
particular range of Reynolds numbers, and this exactlyades with the region defined
by the stable bubble 378 to 785 (shown in red in figure 5.2). This can be seen very
clearly in right side of figure 5.4, where only the plots cepending to this transition
region are shown. The computations were done for Reynoldsheu uptol1 7000 and
stable regions (positive;) were not found for very large Reynolds numbers, see figure
5.5. The small unstable region of the large wavenumbers staivthe top left of this
figure is due to the crossing of the first neutral curve, whieswshown in black in figure
5.2. It can also be seen that the small wavenumber modesearedst destabilized for
large Reynolds numbers. Since the modes are not changirgjahidity characteristics
while crossing the ‘tail’ portion of the stable bubble, itnist clear whether to define this
tail portion of the stable bubble as a neutral boundary. Aensdinstable on either side
of this tail region and hence it is not clear whether this pathe figure is a neutral curve
at all.
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Figure 5.3: Figure 5.2 zoomed to show the stability of a modt@é wavenumberi .2
(shown by the green dashed line) with increasing Reynoldsaus. The vertical black
line to the left of the figure is the first neutral curve, copesding to Reynolds number
57. The crossings of the mode through a neutral boundary areatet! with the letter
C. This mode make$ crossings in this range of Reynolds number.

Figure 5.4: (Left) Plot of wavenumber against the temporal growth rate;J, for a
range of Reynolds numbers considered in figure 5.2. (Rigateas figure 5.4 with
few plots in the vicinity of the vertical dashed lines of figus.2. It can be seen that
a wavenumber of.2 becomes unstable (positive to negatiy¢ at a Reynolds number
of around375 corresponding to the first vertical dashed line; it becomestable again
(negative to positive);) for a Reynolds number ai’5, which corresponds to the second
vertical dashed line of figure 5.2. This shows that the flowai® stable within the
second neutral curve, shown in red in figure 5.2 and unstab&stber side of it.
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Figure 5.5: Same as figure 5.4 for large Reynolds numbersantbe seen that the
wavenumbet .2 does not become stable again for Reynolds numbers greaieT&h.
The instability of the large wavenumbers seen at large Regnmumbers (shown at the
top-left of the figures) corresponds to the crossing of tleeklneutral curve in figure
5.2.

5.4 Global Stability Analysis of Wall Jets

In real life, since the critical Reynolds number is smalg flow might become unstable
before reaching a similarity profile. This is motivation fofuture study on the stability
characteristics of the developing wall jet flow, well befdaneaches the similarity profile.

If the flow is still in the developing region, the non-pard#&ects are not negligible and

it cannot be studied using parallel theory. This developiog was approximated by a
combination of the Blasius boundary layer and a free shgar laway and was studied
using PSE by Leviret al. (2005) as stated before. We study here the fully developed
self-similar wall jet profile. Similar to a global stabiligtudy on self-similar JH flows
(chapter 3), the “finite domain size’ effects are unavoidablthese flows too. Hence, a
detailed sensitivity study has to be undertaken to arrivelable results.

5.4.1 Numerical Method

Chebyshev spectral discretization is used:iandy, similar to the previous chapters.
Since free stream boundary conditions are used in the topdaoy of the domain, a
sufficiently long domain is consideredin Since a lot of activity of the wall jet is close
to the wall, the stretching function defined by equation 2s24sed iny also, to cluster

the grid points close to the wall, for which the stretchingistant values are fixed to
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Figure 5.6: A typical distribution of grid points. The redhst indicate the location of
the local wall jet thickness). The grids are clusted close to the walljrand more or
less uniformly distributed ix. The grid size shown here ¥)1x71.

bea = 0.1, b = 6.0. The stretching constant valuesirremain unchanged from the
previous studies. (Refer to section 2.6.4 for the stregrfunction used and a discussion
on grid stretching). A typical grid is shown in Figure 5.6, evh the red stars indicate
the location ob. The inflection point lies close tg = §.

5.4.2 Validation

To compare with the results of Chun & Schwarz (1967), we syt same self-similar
Glauert profile at every: location, along with V=0 in the global stability equationoté
that this is an artificial flow where the wall-jet thicknessdaherefore the Reynolds
number are not allowed to change downstream. The wavenuatlike inlet and the
exit of the domain are enforced as explained in chapter Ay 2,sing Robin boundary
conditions. The spectra obtained using parallel (Orr-Senfehd equation) and global
stability (with Robin boundary conditions) for a Reynoldsmber of80 and« of 2, are
compared in figure 5.7. A grid sensitivity study is also coctéd, a sample shown in
figure 5.8. The Reynolds number indicatedbd@ss the Reynolds number at the domain
inlet. Since the length of the domain is restrictedrity the wavelength of the wave
under consideration, a relatively small number of gridsrezeded inc. It is seen that
41 points iny are sufficient to capture the most unstable mode. With thielsmmber
of grid points, the critical Reynolds number calculated chas with Chun & Schwarz
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Figure 5.7: Sample spectra obtained from the global appraagposing Robin bound-
ary conditions (in black circles), and the parallel appfodm red squares). The
Reynolds number i80 and the« is 2. It can be noted that the least stable mode is
well captured by the global analysis.
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Figure 5.8: Grid sensitivity study. It can be noted that #esk stable eigenvalue is quite
insensitive to the grid in the range considered.

(1967)’s results, as shown in figure 5.9.
Next, to consider a realistic case, consider the wall-nbwebocity and allow for
Reynolds number antglvariationa across the domain. The wall-normal velocityigg

as,
nU
Vi#) = i [F +3nfil (5.9)
Here, the subscript corresponds to the value at the intelocation ). This appears
because the lengthscale and velocity scale are choseara’,,,., at the inlet.f is the

streamfunction angl is the non-dimensionglco-ordinate. It can be seen from equations
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Figure 5.9: Critical Reynolds number calculated for vaiiola.

5.3 and 5.4 that the Reynolds number increases wéh,
Re ~ z'/*, (5.10)

Consider for example, a case where the inlet Reynolds nummber the domain length
is 10. Then, from equation 5.8, the domain starts at 9.623 and ends at = 19.623.
The exit Reynolds number for this case will be, accordinggoation 5.10,

R62 i) 1/4
— == 511
Rel (l’l) ( )

Rey = 50 + 1.1949 = 59.79 (5.12)

For the range of wavenumbers considered, a typical dishudoaavelength varies from
6 to 60. A ‘critical Reynolds number’ is not a well-defined quantitythis global study.
This is because the Reynolds number varies significantlyssahe domain. A domain
starting from a subcritical Reynolds number and ending apascritical Reynolds num-
ber might not be able to capture the least stable eigenvaluesponding to the inlet
Reynolds number. Secondly the least stable wavenumbee anliégt would be differ-
ent from the one at the exit. Since the change in Reynolds ruand the least stable
wavenumber in the domain is too large, with Robin boundamnddmns we were not
able to converge to a single neutrally stable eigenvaluthi®entire domain.
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Figure 5.10: Spectra obtained/at = 100 for different lengths of the domain. It can be
seen that the qualitative picture of the spectra remainsamged with change in domain
length. In the results shown, it is ensured that the numbgridfpoints considered over
a given length is kept the same. Some quantitative effedtdewrse expected, since the
range of Reynolds numbers over which a common global modamglsought increases
with L.

5.4.3 Sensitivity

We next perform a global stability analysis with extrapethboundary conditions (EBC),
as used in the previous chapters. It is however expectedfthaonsiderably long do-
main is considered, the type of boundary conditions at thet/exit will not affect the
solutions. The results will change quantitatively depagdipon the length of the do-
main considered since the range of Reynolds number ingessie lengthZ, but their
gualitative picture remains the same. This is because tigghscale of the disturbance
captured by this analysis will be restricted by the domamgth. We perform a series
of tests to study the sensitivity of the spectra to the nunabegrids and length of the
domain considered. A few comparisons are given in figure@ m5.12.

As mentioned before, one of the main purposes of the pretgohy & to understand
how different the global modes are from the parallel modes, lzow valid a parallel
assumption is for wall jets. For this, we first compare thebglanodes with parallel
modes. The global stability computations are done for mbfieinlet Reynolds numbers
of 30, 40, 50, 80, 100, and200, for different lengths of the domain. A comparison of the
spectra obtained is given in figure 5.13. As expected, theesage destabilized with
increase in Reynolds number. A portion of this figure neannhaginary axis is shown
in figure 5.14. It can be seen from this figure that the flow bez®globally unstable for
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Figure 5.11: Sensitivity of the spectra to the number of gdhts in thex direction,

for L = 30 and Re = 100. It can be noted that the spectra contain distinct branches
and the second limb of the branches gradually disappearimdtease in the number of
grid points inz. The sensitivity of the second limb of the branch is furthecrgased by
increasing accuracy i, as explained in the next figure.

T+ 161x71
s 181x71
o 201x71

Figure 5.12: In continuation to the previous figure, it cambged that with71 points iny

the second limb of the branch disappears &idpoints inx are sufficient for a length of
30, at a Reynolds number af)0. It can also be noted that the two very unstable modes
which were present with other grid resolutions (in figures05and 5.11 and enclosed
with a rectangle in figure 5.11) have disappeared with irszeam.
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Figure 5.13: Spectra obtained for different Reynolds nusib® a domain length ai0.
We can see that the upper branch becomes more destabilitetharease in Reynolds
number.
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Figure 5.14: Same as figure 5.13, zoomed close to the axianlbe seen that this flow
is globally unstable at a Reynolds numberof

a Reynolds number betweéf and80. It is worth remembering that thRe...;; obtained
from parallel approach for this flow is7.

Now, let us try to understand the characteristics of the gjlobodes. The spectra
obtained for a Reynolds number od0 with domain lengtl80 and a grid size01x71
is given in figure 5.15. Plots of the streamwise velocity gitgl modes from each
branch are shown in figures 5.16 and 5.17. We can see thatrbiamas a set of modes
which are completely different from the modes of the otheangches. Branches 2-4
have similar looking modes. Also, the modes of branches aw lextended regions of
positive and negative velocities, thus giving them an appez of ‘arrow heads’. These
modes shall be contrasted with the modes obtained from &tahbllity analysis, shown
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Figure 5.15: Spectrum obtained for a Reynolds numbei0ofwith domain length30
with a grid size201x71. The spectrum has distinct branches, named as branches 1-4 a
shown.

in figure 5.18. The richer variety of disturbances obtainsohg a global approach is
immediately apparent.

Next, we compare the modes within one branch, say branch & fdllowing trend
is observed: modes with large frequency have differentctine compared to the low
frequency modes, a comparison shown in figure 5.19. We canheve that the peak of
the low frequency mode is very close to the wall whereas tgbk fiequency mode peaks
at abouty = 1 which is close to the inflection point of the velocity profil€hese two
types of modes are called as wall mode (or inner mode) ancttidteal mode (or outer
mode), respectively. These two types of modes have beemteepearlier in literature,
see Meleet al. (1986) for example. A similar trend is seen in other branchiss, a
sample is given in figure 5.21 which shows modes from branch 2.

Another interesting behaviour to be noted about the lowuesgy branch 1 mode
is the non-wave-like behaviour, see top of figure 5.19. Towahe beginning of the
domain, this global mode displays three blobs at each stkésarstation. As we proceed
downstream, we can notice that the top two blobs merge, satlhize end of the domain
we see just two blobs. This is another non-wave like featevealed by a global study
which is inaccessible to local study. This particular feais seen in wall jets, and others
were seen in previous chapters. In addition, the variatidh@maximum amplitude of
this mode is different at different wall-normal locationBhis is shown in figure 5.20,
where the maximum amplitude variation of one of the globatiexxshown in figure 5.19
is shown. The corresponding two wall-normal locations dse ahown in the right side
of the figure. We can see that within a single global mode, theli#gude of the modes



5.4 Global Stability Analysis of Wall Jets 133
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Figure 5.16: Typical set of modes from branch 1 (left colurangl branch 2 (right col-
umn). Plotted here are the contours of streamwise velddigycan see that the branches
exhibit qualitatively different modes. Especially the nesdn branch 1 show different
wavelengths close to and away from wall.
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Figure 5.17: Typical set of modes from branch 3 (left colurangl branch 4 (right col-

umn). Plotted here are the contours of streamwise velodiy.can see that these two
branches have modes looking similar to those in branch 2s& hedes exhibit extended
regions of positive and negative velocities thus givingrittee shape of a ‘arrow head'.
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Figure 5.18: Typical modes obtained from the local stabdmalysis. The local profile
obtained is extended in with the given wavenumber, indicated @sn the figure. The
inflectional modes (the two plots to the left) have their macim amplitude away from
the wall and the wall modes (the two plots to the right) hawertmaximum amplitude
close to the wall.

can vary differently at differeng, similar to what was reported in the previous chapter.

To add to this, we perform a wavelet transform of a typicalbgllomode, shown
in figure 5.22. Similar to the geometries studied in the prasichapters, we see that
the dominant lengthscale of these modes varies with baihdy. For the mode just
discussed, the wavenumber variation is not very significant

An interesting feature about these global modes is thewtjron space. Except
for the low frequency modes of branch 1, (see figures 5.16 ahd) 5ve see that the
other modes exhibit a spatial growth, in which the amplitatithe mode increases with
x. These modes are temporally more stable. This behavioumisas to the situation
discussed in the previous chapter on converging-divergiamnels. The difference is,
the spatial growth discussed in chapter 4 is the growth o\arynperiodic units of the
channel. But the spatial growth we discuss here is localamgabwth in amplitude of
the global modes. Except for the slight downstream changéamnacter of some of the
modes and some small quantitative differences, we may edachat a parallel or WNP
study can capture the important features of a wall jet. Inglbbal” study of Ehrenstein
& Gallaire (2005) on a boundary layer, there was a similarifigdin that the global
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Figure 5.19: Typical low frequency global mode (top) andnhiigegquency global mode
(bottom) from branch 1 of figure 5.15. It can be seen that theftequency mode peaks
closer to the wall, whereas the high frequency mode peadstilifurther from the wall.
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Figure 5.20: The maximum amplitude variation of the globald®a shown in the top of
figure 5.19 at two wall-normal locations. The two wall norn@tations are indicated

by the black solid line in the figure to the right.
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Figure 5.21: Typical low frequency mode (top) and high fregey mode (bottom) from
branch 2 of figure 5.15. It can be seen that the low frequenaya’s@eak is close to the
wall whereas the high frequency mode’s peak is close to tieciion point.
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Figure 5.22: (Top) Contours of streamwise velocity of atgbglobal mode from branch
1 of figure 5.15. (Bottom and center) Wavelet transforms efdlobal mode at the two
wall-normal locations indicated by the red dashed lines.céfesee that the variation of
wavenumber with: is more prominent that the variation of wavenumber with
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study produced only a quantitative rather than a qualgativange. These studies thus
indicate that stability behavior is modified on a global bder enclosed flows through
channels while the structure is local for wall jets and barmgdayers.



CHAPTER 6

SUMMARY

6.1 Introduction

A global stability code has been developed and validategnapgaxisting results in
straight channel and diverging channels with small angfediveergence. The role of
the Robin boundary conditions in validation has been hgytted. A bi-global sta-
bility approach has been conducted on flow through variablengetry channels and
fully-developed wall jets. In all the cases studied, it isrséhat the global stability ap-
proach reveals new types of instability modes which aredessible to local stability
approaches.

The first thing to highlight is the fact that this is the firsbal stability study, to
our knowledge, on all the three cases considered. More itapily, this is the first
global stability study to compute the entire eigenvaluecgpen. It has been seen that
the spectrum obtained for each case has distinct branclietharglobal modes of a
particular branch has a characteristic mode structure.

The highlights of all the three studies undertaken are gedaow separately.

6.2 Diverging Channel Flows

¢ Flow through a diverging channel is studied first as it is tineptest non-parallel
flow to construct. The Reynolds number of this flow remainsstamt down-
stream.

e Flow through infinitely diverging channel (JH case) and aledrwith a finite di-
verging region (SDS case) are studied. Base flow for JH casbt&ned from
similarity equation and that for SDS case is obtained fromeuxical simulations.

e For the same parametric setting 8 = 100 andf = 5°, JH flow does not
show any separation whereas SDS flow shows a region of weakagem. The
instability mechanism is dominated by the effect of diveiggs in the parameter
ranges studied.

138
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6.3

An analytical expression on why the critical Reynolds nungt®uld be so sensi-
tive to geometry is provided. This is explained based on Hange in the second
derivative of the velocity profile, due to divergence.

Even though the JH flow diverges infinitely and the SDS flow héasite diverg-
ing region, the global spectra and the instability modesioled for both the cases
have a striking similarity. The mode structure of both theesahave similar qual-
itative features. The disturbance modes are localizedardiverging region and
the stability characteristics are defined by the divergegon, finite or infinite.

The global modes obtained do not obey the local scalingioglatThis type of
modes cannot be obtained from a local stability analysis.

A wavelet transform of the global modes indicate that theldengthscale of the
global modes vary with the streamwise distancevith a scale usually different
from what one would expect from a local stability analysisaddition, the modes
exhibit different lengthscales at different wall-normatations, which has never
been reported before.

Time evolution of the modes in the form of a movie indicates éxistence of a
new branch in the spectrum, in which all the modes propagas&ream. Modes
in all other branches propagate downstream. This new brexists only beyond
a certain divergence angle. This branch exists even aftglicapion of heavy
amount of sponging at the exit of the domain, to avoid spwi@diections, if any.
This particular set of modes is interesting to study, sitheeHoward’s semicircle
theorem would allow upstream propagating modes only in flaxitk separated
profiles.

Converging-diverging Channel Flows

Flow through a series of converging-diverging units is gddvith extrapolated
boundary conditions. Geometries with fore-aft symmetry asymmetry are stud-
ied using a global approach for the first time. Different wadlviness amplitudes
are considered with special emphasis on large amplitudesftieve low Reynolds
number global instability. We see that these channels beeorstable at Reynolds
numbers as low as0.
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¢ It has been shown that imposing periodic boundary conditias done by previ-
ous workers, over a single periodic unit of flow is too regivie a condition and
produces many spurious modes.

e The first result is that the disturbances do not obey the gwity of the base flow.
In addition, instability ratchets are possible, which ifimled here as the sequential
increase of the disturbance energy over successive petiodis. This instability
ratchet is discussed using Floquet theory with complex b@xponents. It is
re-emphasized that previous Floquet studies on such gees&tere not able
to capture the instability ratchets because of assumirad’ ‘Fdoquet exponents.
This spatial growth, even of a temporally damped mode, isomant as it could
enhance transient growth in the downstream units comparégttupstream units.

e There is an interplay between the temporal and spatiallgyatiharacteristics of
the global modes. Spatial instability here has to be ingtgat in terms of the in-
stability ratchet. For a given parameteric setting, thaltamount of instability
contained in the mode is fixed. Increase in one type of instyabesults in cor-
responding decrease in the other type of instability of tleelen This interplay
is different from that predicted by Gaster’s transformatid his has been shown
using a model Floquet study.

¢ Increasing the number of periodic units connected in sénegases the number
of eigenvalues. More importantly, it increases the speiaporal interplay among
the modes.

e Increase in Reynolds number destabilizes the flow and amedmtanch of the
spectrum becomes near-neutral, in contrast to straightreis, where typically
only one mode gets destabilized with increase in Reynoldsoau.

e The branches of the spectrum split into two sub-branchel thié upper sub-
branch showing spatial decay and the lower one exhibitirgigpgrowth. This
split-up of the branches is more for large Reynolds numbEnss is another man-
ifestation of the spatio-temporal interplay.

e Wavelet transform of the global modes indicate that thellmrathscale of these
modes are functions of both andy. More important than their lengthscale is
their growth behaviour, which is scale dependant and spaperdlant. This has
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6.4

also been shown using a wavelet transform. This indicaisatlsingle Floquet
exponent cannot describe the growth behaviour of the epérsmdic unit and it
has to be studied using a global approach.

Flow through geometries with fore-aft asymmetry are terapjpimore unstable
than those with fore-aft symmetry. More the fore-aft asyrirgnis, more unstable
the flow is, in a temporal sense. We can exploit this featudetagn the geometry
of the channel to obtain the desired stability behaviour.

Increase in wall waviness amplitude of the channel incietis®temporal instabil-
ity. Flow with wall corrugations on both sides are more ubktahan those with
just one side wall corrugation. Flow through a channel isemstable than one
through a channel whose length is doubled, with all otheaipaters fixed.

Mere superposition of two modes show localized pocketsrgéltransient growth.
Such a behaviour would be missed if we were to integrate thetii energy over
the entire domain. Hence, we suggest that the energy of tii@inodes must be
estimated on a local basis in calculation of transient gnastiaracteristics.

Wall Jets

A local stability analysis has been performed first, using @rr-Sommerfeld
equation. This is done to understand the region behind tablesbubble’ within
the unstable region of the neutral curve. It has been see¢rthidaegion behind
this stable bubble remains unstable for a large range of &dgmumbers.

The global spectrum has distinct branches and modes of igydartbranch have
similar mode structure.

The critical Reynolds number predicted by global stab#ibalysis coincides with
the one predicted by the local analysis.

A global stability analysis reveals modes whose amplityszsk close to the wall
region, called as wall modes and those whose amplitudesaétile away from
the wall, called as inflectional modes.

A different facet of non-wave-like behaviour of global mede seen here, with the
mode shape changing downstream. In addition, the growtawhedr of the global
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6.5

modes is also different for different wall-normal locat®onThese are however
minor compared to the effects.

Future Work

The global stability code which has been developed has norggsons and re-
strictions in the usage. Hence, it can be easily extendedutdy she stability

behaviour of any 2D complex flow field, like wakes, mixing legjeseparated re-
gions, etc., to name a few.

The present work deals with the addition of two-dimensiqreturbations to the
base flow. Transient growth obtained with 2D disturbancesush less than what
one would obtain from 3D disturbances. Even with 2D perttidoe, we obtain
transient growth of the order afd00 in the case of converging-diverging chan-
nels. It would be very interesting to study the transientghoobtained from 3D
perturbations in all these flows. Extension of the presededo accomodate 3D
disturbances is underway.

A collaboration has been initiated with Dr. Rajesh GanapdattMS, JNCASR,
for the experimental verification of the instability in carging-diverging chan-
nels at small scales. The idea to work with wall corrugationooly side came
from him as it is easy to construct.

The present work is limited to a fully developed wall jet. Quitimate aim is to
study the stability characteristics of a developing wallyaich occurs close to the
origin and then study the heat and mass transfer chardatend them. This has
a lot of industrial applications.
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