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Abstract

This thesis proposes novel wing designs with lower drag for propeller/rotor driven

aircraft in tractor configuration with particular emphasis on a method of designing wings

with lower induced drag by exploiting the propeller slipstream.

With the increasing dynamism in short-haul regional air traffic, which tends to be

inherently more expensive compared to inter-continental flights on larger aircraft on a

passenger-km basis, it becomes necessary to explore new designs that may cut down fuel

burn. In this scenario a turboprop is a particularly attractive option, as a propeller is

an inherently more efficient producer of thrust than a turbojet or even turbofan. Begin-

ning in the early 1990’s there was a decline in the usage of turboprops in civil aviation

because of the availability of cheap oil, and jets have been preferred as they became af-

fordable, faster and quieter, there is now a revival of interest in turboprops owing to

climate change concerns and connectivity demands. Turboprops continue to be favoured

for large cargo transport aircraft, military or civil, and for unmanned air vehicles requiring

long endurance. There is therefore a need to explore new technologies associated with

turboprops and other rotor-driven aircraft and optimize them for better performance. In

particular, technologies associated with current propeller-driven aircraft do not take ade-

quate account of the potential to exploit the effects of the propeller slipstream to design

better wings; more generally the benefits of taking an integrated view of propeller and air

frame together have not been fully realized.

The aerodynamic interaction between the propeller slipstream and the wing is of great

significance, in particular when the propeller(s) is/are situated in front of the wing, as

for example in a turboprop aircraft in tractor configuration. During operation propellers

not only produce thrust but also accelerate and impart a swirl to the flow downstream.

Due to the swirl there is an additional change in the local angle of attack of the wing.

Consequently there is a corresponding deformation of the lift distribution on the wing, as

a result of which the induced drag of the wing is affected.

This thesis addresses the question of exploiting the propeller slipstream for designing

more efficient wings. The first step is an extension of lifting line theory to include pro-

peller effects, and coupling it to an optimizer. For this purpose a software package that it

xiii



will be called PROWING has been developed as part of this thesis. The classical lifting

line theory is modified by treating the local approach velocity, at the leading edge of the

wing, as a function of the spanwise coordinate because of the presence of the slipstream.

The propeller slipstream is obtained using a validated blade element module coupled to

an Euler solver through a software package called PROP-EULER. Following the classical

lifting line theory approach, the load distribution is expanded in Fourier series. Because of

the spanwise variation of the approach velocity the number of Fourier coefficients and col-

location points required to represent the load distribution accurately is much higher than

usual. In the present case satisfactory results were obtained with 48 Fourier coefficients

and 320 collocation points after a convergence study. During the optimization, the influ-

ence of the wing on the propeller is neglected. To generate smooth shapes and/or curves,

chord and twist distributions are parameterized using Bézier curves. With a MATLAB

optimizer, PROWING generates novel wing planforms which offer better aerodynamic

performance such as lower drag by optimizing the chord and/or twist distributions, sub-

ject to whatever other constraints (in particular wing area and aspect ratio, but in some

cases structural parameters as well) may be prescribed.

A total of 10 optimal wing planform shapes so obtained are reported in this thesis,

including one in which a modest change in the planform of a wing of aspect ratio 12 is

found to reduce induced drag by 9.15%. Other examples include (i) a wing in which wing

thickness at two prescribed chordwise stations varies linearly in y, to accommodate spars

with linearly varying depth along the span, (ii) an optimized wing with special aerofoil

sections designed to ensure that no concavities occur on the upper surface of the wing,

and (iii) a wing whose trailing edge is a series of straight segments. In general, all these

planforms have straight leading edges and shaped trailing edges.

Amongst earlier works, those of Kroo (1986) and Veldhuis (2005) are the most rele-

vant for the present study. Both of them suggest the inclusion of propellers in the wing

design process. Kroo presents an optimization model to reduce the wing induced drag,

and comments that certain changes in the propeller can also lead to better performance.

His optimization model does not explore local optima en route to the global optimum

which he obtains by a variational method, and does not present any specific results on

wing planform. Veldhuis proposes a different optimization model using which he con-

cludes that changing wing planform results in unrealistic optimized shapes. It is shown

here that these ‘unrealistic planforms’ are due to certain errors in problem formulation,

handling certain integrals, and in the optimization strategy adopted.

The approach followed in this thesis explores local optima in obtaining realistic wing

planforms and assesses them in part by their closeness to the global optimum.



In order to assess the accuracy of the various assumptions made in PROWING lift-

ing line solutions, the PROP-EULER code with a propeller module has been used. In

this model, an Euler solution for the wing-propeller system is obtained by replacing the

propeller by a rotating actuator disc in the Euler field. The Euler code uses the KFVS

(Kinetic Flux Vector Splitting) scheme for the non linear term, LU-SGS (Lower Upper

Symmetric Gauss Siedel) for implicitisation for faster convergence, and is parallelised

using domain decomposition. The source distributions across the actuator disc are eval-

uated by blade element theory, for which a separate subroutine has been written and

validated. This constitutes the PROP-EULER software package that has been used to

obtain independent estimates of the drag of PROWING designed optimum planforms. For

the wing mentioned above the induced drag reduction predicted by the PROP-EULER

code is 7.9% with a mesh size of 30 × 106, which was shown to be adequate through a

convergence study. This result is satisfactorily close to the value (9.15%) obtained using

PROWING, demonstrating that PROWING solutions are very useful as a quick prelimi-

nary design tool.

To obtain an appreciation of viscous effects and parasite drag, RANS simulations using

Fluent were also carried out. The blade element module in PROP-EULER was coupled

to Fluent to model the propeller using user defined functions. The total drag reduction

obtained using Fluent was 10.9 drag counts (1 drag count being 10−4 in CD) whereas

PROWING predicted 9.35 drag counts. (Because of the uncertainity in the prediction of

absolute drag values by RANS codes, results are quoted in differential counts.)

Finally, a short wind tunnel test programme was carried out in collaboration with

C-CAD (Centre for Civil Aircraft Design and Development), NAL (National Aerospace

Laboratories), Bangalore, to provide proof-of-concept. The tests were conducted in the

Open Circuit Wind Tunnel at IISc (Indian Institute of Science). A 1/10th scaled model of

Saras, a multipurpose civilian aircraft in the Light Transport Aircraft category designed

by NAL, was used for testing. By design Saras is a pusher aircraft but, using additional

mounts, it was converted into a tractor configuration. Saras has a wing span of 14.7 m,

aspect ratio 8, taper ratio 0.3481 and uses Hartzell propellers. The slipstream for the

Hartzell propeller was computed using the PROP-EULER code. With the original Saras

wing as control, optimum planforms were designed using PROWING. The tests were con-

ducted at a Reynolds number of 0.5 × 106 based on mean aerodynamic chord. The drag

data at lift coefficients CL = 0 and CL = 0.4 were analysed. A rather surprising result was

that the total drag on the aircraft with optimal wing was lower by 15%, appreciably better

than the PROWING predicted reduction of 6.61%. Although the reasons for higher drag

reduction are not entirely clear at this stage, preliminary analysis indicates two plausible



candidates: (i) the new wing has appreciably lower profile drag (by 4% or more), perhaps

due to transition effects at the relatively low Reynolds numbers at which the tests were

conducted, and (ii) there is constructive interference from the fuselage. The tests however

leave no doubt that the optimal wing design proposed here has an improved aerodynamic

performance. Investigations to explain the higher drag reduction obtained in the wind

tunnel tests are being planned.

The present results thus confirm that optimum designs for turboprop wings that ex-

ploit the slipstream effect can result in significant benefits on drag, and that the mathe-

matical model embedded in PROWING is an effective tool for preliminary design of novel,

aerodynamically more efficient wing planforms.
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Chapter 1

Introduction

The first powered flight way back in 1903 by the Wright Brothers used a propeller to

provide thrust for the airplane. The Wright brothers realised that a propeller is essen-

tially the same as a wing which is rotating, and used data from their earlier wind tunnel

experiments on airfoils and wings for designing their propeller. They also found that twist

was necessary along the propeller blade as the relative angle of attack varied along the

length of the blade. The Wright Brothers used certain theoretical methods such as the

blade element theory (a theory describing a mathematical model of an ideal propeller)

developed in the second half of the 19th century by W. J. M. Rankine, A. G. Greenhill and

R. E. Froude, to compute propulsive efficiencies for the speed regimes considered by them.

Propellers became an important topic of research during the first half of the 20th century.

After the invention and development of the aircraft gas turbine in the 1940s, the first

transport aircraft (turboprops) were driven by propellers powered by gas turbines. Later

from the mid-1950s to the mid-1970s turbojet and turbofan propulsion systems became

a huge success. This caused a decline in the usage of turboprops as turbojets/fans were

faster, quieter and provided a more comfortable ride. Though the propulsive efficiency of

turbojets/fans was lower than that of turboprops, low fuel prices and the relative discom-

fort of travelling at lower altitudes in turboprops made turbojets/fans more popular.

Following the energy crisis NASA funded six projects in the 1970s to improve fuel

consumption on aircraft, of which one was on “advanced turboprops”. Under this project,

what came out was a “propfan” (today commonly known as an open-rotor), which is a

small diameter, highly loaded propeller having swept blade tips with thin aerofoil sections.

This concept was developed to deliver better fuel efficiency than contemporary turbofans.

Propfans could reach higher speeds as they could spin fast enough and yet keep the speed

of the blade tips below the transonic regimes, which could not be achieved in conventional

propellers because of their larger diameters. Open rotors are now making a come-back,

and the forecast is that the next generation of Airbus and Boeing single-aisle aircraft, due

to enter service around 2019/2020, will fly with open rotor engines (Butterworth-Hayes

2010).

There is however renewed interest in turboprops because of climate change concerns,

and unstable oil prices. There is also a pressing need to connect smaller towns and cities

for sustained economic growth in India (Kota & Satish 2009) and many other developing

economies, especially in Asia. Here turboprops have a natural advantage because of

1
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their inherently higher fuel efficiency on short-haul routes. Boeing company’s SUGAR

(Subsonic Ultra Green Aircraft Research) entries in the NASA’s ERA (Environmentally

Responsible Aviation) project include a turboprop as one candidate (see figure 1.1).

Figure 1.1: The Boeing Volt design concept for the Subsonic Ultra Green Aircraft Re-
search, or SUGAR, project (source: http://www.nasa.gov/)

An article from Aviation Week and Space Technology (Robert 2011) reports that the

European Commission’s newly declared “Flight path 2050” directive emphasises cleaner,

quieter and more punctual flying. The target for cleaner flying is to cut down CO2 and

NOx emissions by 75% and 90% respectively. Once again, turboprops may make a come-

back because of their inherently higher fuel efficiency. Fuel consumption for turborprops is

about 60% lower per passenger kilometre than that of jets (Pierre 2008) on route lengths

of 500 km, meaning CO2 emission is also lower by 60%.

Turboprops flying today have generally been designed with technologies that were

available two to three decades ago. Therefore, by using modern technologies it should be

possible to further improve the fuel efficiency. This idea is demonstrated in this thesis

through one example in the field of aerodynamics. Turboprop wings have often been

designed by treating propeller and the wing as two virtually independent units. We show

that by including the propeller in the wing design process appreciable improvements in

aerodynamic performance can be obtained. These can contribute to lower fuel consump-

tion and hence lower emissions.

Mutual aerodynamic influence of propeller and wing has been a subject of study for a

long time, starting from early 1900s (Prandtl 1921). Various methods and strategies have

been adopted to study the problem of interaction. Among these the most notable efforts

are due to Kroo (1986) and Veldhuis (2005), who have suggested the inclusion of propellers

in the wing design process. By doing so, Kroo (1986) suggests, appreciable improvements

in aerodynamic performance can be obtained. He also presents an optimization model

to reduce the wing induced drag, and comments that certain changes in the propeller

can also lead to better peformance. However, he does not present any specific proposals

for new wings. Veldhuis (2005) proposes a different optimization model using which he
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concludes that changing wing planform results in unrealistic optimized shapes. We find

that the ‘unrealistic’ planforms obtained by Veldhuis are due to certain errors in problem

formulation, handling certain integrals, and in the optimization strategy adopted.

In this thesis we present new, realistic wing shapes for turboprops in tractor config-

uration, designed by including propeller slipstream effects. The proposed wings have a

better performance compared to the existing wings currently used in turborprops. First,

we modify lifting-line theory to include propeller effects, and study the influence of the

propeller slipstream on wing characteristics. We find that the slipstream can reduce the

induced drag at a given lift (detailed explanations are given in subsequent chapters). The

induced drag can be further reduced by shaping the wing planform, or incorporating a

twist, or both. All this is demonstrated through the developement of an optimization pro-

gram called PROWING, which is based on the extended lifting-line theory and the use of

Bézier polynomials (Farin 2002) to represent the wing planform. PROWING optimizes

the weights of the Bézier polynomials used to define the novel wing designs proposed here.

The input to PROWING comprises certain overall geometric parameters of wing and pro-

peller, wing aerofoil characteristics, and the velocity field in the slipstream downstream

of the propeller. The required velocity field is computed using an Euler code (PROP-

EULER) that mimics the effect of a rotating propeller. For this purpose a blade-element

theory module for the propeller (Rajagopalan 1989; Lötstedt 1995) is used to provide

source distributions of momentum and energy across an actuator disc that represents

the propeller in PROP-EULER. A wide variety of optimal wing planform shapes can be

generated using these programs, including one in which a modest change in planform in

a wing of aspect ratio 12 showed an induced drag reduction of about 9.15%. This par-

ticular wing planform was analysed using the PROP-EULER code and the induced drag

reduction predicted was about 7.9%, which is satisfactorily close to the results obtained

using PROWING.

Therefore, we have a validated method by which wing planforms for turboprops in

tractor configuration can be designed by exploiting the slipstream of the propeller, and

so help obtain greater benefits in terms of drag and fuel consumption.

The thesis is organised as follows:

• Chapter 2: We review relevant earlier work. We briefly describe each work and

highlight the differences between the current and earlier work.

• Chapter 3: The formulation of the optimization problem (PROWING) using ex-

tended lifting-line theory is presented. Modifications made to the classical lifting-

line theory are also presented. Veldhuis’s and Kroo’s work is reviewed in detail and

the source of the unrealistic chord distribution obtained by Veldhuis is identified.

• Chapter 4: The validation of PROWING described in chapter 3 is presented and op-

timal wing designs for various constraints and cost functions, using the optimization
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formulation, are presented.

• Chapter 5: Optimal wing designs presented in chapter 4 are validated using high-

fidelity CFD simulations. Results from Euler and RANS simulations on optimal

and control wing designs are presented. For Euler simulations, an Euler code with

propeller handling capability (PROP-EULER) was developed. The details and the

code and its validation are presented first, and later the drag reductions obtained

from it are presented. Results from RANS simulations are also presented.

• Chapter 6: Results from proof-of-concept wind tunnel tests for optimal wing design

are presented in chapter 4. Consistency checks and analyis of the results are made.

Some flow pictures/visualizations are also presented.

• Chapter 7: We summarize and conclude. Possible future work is discussed.

• Appendix A: A brief discussion on Bézier curves is presented.



Chapter 2

Review of Earlier Work

This thesis is about wing optimization for turboprops, more generally propeller-driven

aircraft in tractor configuration. Earlier work relevant to that reported in this thesis is

reviewed in this chapter.

Propeller-wing interaction was first studied by Prandtl (1921). Later researchers stud-

ied this problem with different objectives, like proposing a theoretical frame work for

wing-propeller interaction, improving the theoretical framework for studying propeller

flows, modeling of propellers as actuator disks, obtaining the slipstream through CFD,

experimental investigations etc. More recent work relevant to the current study is then

reviewed and presented here. None of them, except for Kroo (1986) and Veldhuis (2005),

studied the problem of wing optimization of propeller-driven aircraft. Kroo (1986) follows

a variational calculus approach for optimization but does not present any optimal wing

designs for wing-propeller systems. Veldhuis (2005) follows a different approach (detailed

review presented in chapter 3), and it is shown that because of certain errors in his work

is led to a wrong conclusion.

Prandtl (1921)

Prandtl carried out wind tunnel experiments to investigate wing-propeller interference and

commented that “In judging the results, it is well to distinguish two kinds of influences,

one due to variations in velocity, and the other due to variations in directions of the air

current. The propeller is affected mainly by variations in the inflow velocity due to the

wing. The wing is also subjected to slight changes in the direction of the air flow, which

noticeably affect the drag”. He carried out experiments with propeller upstream as well

as downstream of the wing.

Comments

For the tractor configuration, Prandtl observed a drag increase when the axis of the

propeller is below the wing and a drag decrease if the axis lies above the wing. No physical

explanation of the observations was offered. Furthermore, the issue of optimization of wing

planform considering the effect of the propeller slipstream was not addressed.

5
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Koning (1935)

In 1935, during the active life of the Guggenheim Fund for the Promotion of Aeronautics,

a series of monographs were published on the general subject of Aerodynamic Theory,

one of which was on propeller-wing aerodynamics (Koning 1935). Koning addressed the

problem analytically by modifying the lifting-line theory to account for propeller effects.

He used perturbation theory to arrive at a set of equations that represented the wing-

propeller system. In this theory the ratio of the increment in the streamwise velocity in

the slipstream to the free stream velocity was used as the small parameter. He did not

consider the swirling motion in the slipstream while deriving the governing equations for

the wing-propeller system.

Comments

• Swirling motion of the slipstream was not considered.

• Since the small parameter was defined as the ratio of increment in the streamwise

velocity in the slipstream to the free stream velocity, the theory could only be applied

to lightly loaded propellers.

• Optimization of wing planform considering the effect of propeller slipstream was not

addressed.

Karman & Tsien (1945) and Fejer (1945)

Karman & Tsien (1945) commented that it is inappropriate to modify Prandtl’s lifting-

line theory for nonuniform flows, and developed a new theory starting from the inviscid

momentum equations using the fundamental assumptions in Prandtl’s lifting-line theory.

Furthermore, they consider only a lightly loaded lifting-line. This method was subse-

quently used by Fejer (1945) for studying a flow where the free stream velocity U∞ varied

linearly in the spanwise direction.

Comments

• In the works of both Karman & Tsien (1945) and Fejer (1945), the slipstream rota-

tion was ignored and the theory was limited to lightly loaded wings.

• If the aspect ratio is large and if the variation of velocities in the spanwise direction is

small compared to the variation along the chord, the lifting-line theory, as modified

to account for the nonuniformity, is a good approximation and lends itself as a tool

to study the effects of propeller slipstream on the wing. This fact is demonstrated

in chapters 5 and 6.
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• Optimization of wing planform considering the effect of propeller slipstream was not

addressed.

Rethorst (1958) and Jameson (1969)

Rethorst (1958) and Jameson (1969) comment that the use of lifting line theory is inap-

propriate for nonuniform flows. They treated the problem of a wing with several propellers

by considering the wing immersed in a jet (no swirl), and used lifting surface theory for

the analysis.

Comments

• Slipstream rotation was ignored.

• The authors’ general conclusion that lifting line theory is inappropriate for non-

uniform flows is not supported in this thesis when the aspect ratio is large and the

variation of velocities in the spanwise direction is small compared to the variation

along the chord. As demonstrated in chapters 5 and 6, lifting line theory appropri-

ately modified to account for the nonuniformity is a good approximation, and lends

itself as a tool to study the effects of the propeller slipstream on the wing.

• Optimization of wing planform considering the effect of propeller slipstream was not

addressed.

Whitfield & Jameson (1983)

Whitfield & Jameson (1983) studied the problem of wing-propeller interaction in tran-

sonic flow. They used Euler equations with source terms for momentum and energy to

simulate propeller slipstream. Viscous effects on the wing surface were computed by

coupling 3D Euler equations with 2D compressible turbulent inverse-integral boundary

layer equations. The source term for the thrust was imposed by specifying a jump in

total pressure which was taken from experiment, and the force components in the plane

perpendicular to the thrust were adjusted to obtain measured swirl velocities.

Comments

• A method of handling propellers was demonstrated

• Optimization of wing planform considering the effect of propeller slipstream was not

addressed.
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Kroo (1986)

Kroo (1986) modified the lifting line theory to account for the propeller, and addressed

the problem of wing optimization in the presence of a propeller in tractor configuration.

For obtaining the global minimum for the induced drag, he used variational calculus to

derive closed form expressions for the Fourier coefficients that appear in the expansion of

the spanwise circulation distribution.

Comments

• He does not present any optimal wing planform shapes.

• We find that, instead of finding load distributions that give global minimum induced

drag, novel but realistic wing designs can be obtained not at the global optimum

but at slightly sub-optimal levels. These wing designs cannot be obtained using

Kroo’s methodology.

Witkowski et al. (1989)

Witkowski et al. (1989) have studied aerodynamic interaction between propellers and

wings. They carried out both experimental and computational investigations. For the

computational study, they used the vortex lattice method. To account for viscosity in

the computational study, viscous drag was added using empirical models. In both com-

putational and experimental studies, they observed a reduction in induced drag in a

wing-propeller system compared to the wing-alone system. However, they mention that

the empirical methods used in total drag prediction in vortex lattice methods overpredict

the drag reduction by 10-30%.

Comments

• Optimization of wing planform considering the effect of propeller slipstream was not

addressed.

Rajagopalan (1989) and Lötstedt (1995)

Rajagopalan (1989)and Lötstedt (1995) followed an approach similar to that of Whitfield & Jameson

(1983), but instead of using experimental data for the pressure jump and the swirl velocity,

a combined momentum blade-element theory was used to compute the source distribution

from the geometric characteristics of the propeller blades and the aerodynamic character-

istics of the aerofoil sections of the blade.
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Comments

• A method of incorporating the effect of propeller into a CFD algorithm based on

blade aerofoil characteristics was demonstrated

• Optimization of wing planform considering the effect of the propeller slipstream was

not addressed.

Conway (1995)

Conway (1995) modified the classical actuator disk theory to account for non-uniform

radial loading which was not considered in the original theory developed by Rankine and

Froude. Hough & Ordway (1965) gave an analytical solution for velocity fields induced

by an actuator disk with unform radial loading. Conway derived analytical solutions

for the entire flow field induced by a linearized actuator disk with arbitrary radial load

distribution.

Comments

• Focus of the work was on constructing a rigorous theory to handle propellers by not

making the assumption of Rankine and Froude regarding uniform load distribution.

Also, Conway developed analytical solutions for the flow field induced by actuator

disk.

• Design of wing planform considering the effect of propeller slipstream was not ad-

dressed.

Veldhuis & Heyma (1998), Veldhuis & Heyma (2000)

and Veldhuis (2005)

Veldhuis & Heyma (1998), Veldhuis & Heyma (2000) and Veldhuis (2005) have addressed

the problem of wing-propeller interference. They modified lifting-line theory to study the

propeller slipstream effects on the wing. The influence of swirl was also considered. They

carried out an optimization of wing twist to arrive at designs for lower total drag. They

conclude that the optimal chord distribution obtained using their optimization process

was unrealistic. Veldhuis (2005) found that the optimal chord distribution obtained by

his method shoots upto about 6 times root chord. We shall show in chapter 3 the reasons

for the unrealistic chord distributions obtained by this method.



10 Chapter 2. Review of Earlier Work

Comments

• Veldhuis & Heyma (1998), Veldhuis & Heyma (2000) and Veldhuis (2005) have re-

ported that the optimal chord distribution is unrealistic. Therefore their optimiza-

tion process does not consider chord as a design variable.

• We shall analyse in chapter 3 the reasons for his unrealistic conclusions.

Roosenboom et al. (2010)

Roosenboom et al. (2010) solved the unsteady RANS equation in the whole domain, an

approach which is closer to reality but computationally expensive. They also carried out

wind tunnel experiments and the velocities in the slipstream were measured and compared

with CFD.

Comments

• Focus of the work was on validation and verification of CFD solutions.

• Design of wing planform considering the effect of propeller slipstream was not ad-

dressed.

Summary

To summarize, many workers in the past have looked at wing-propeller interaction. Only

Kroo (1986) and Veldhuis (2005) have looked at optimization of wing shape for tractor-

propeller configurations. Kroo (1986) derives analytical expressions for globally optimal

load distributions but does not present any specific optimal wing shapes. Veldhuis (2005)

generates optimal wing designs by giving twist distributions and dismisses the chord dis-

tribution as an option after obtaining unrealistic results. From the earlier work reviewed

in this chapter, the more significant contributions are listed in Table 2.1 for quick ref-

erence. The table indicates in brief what the authors did and what is reported in this

thesis. Here we extend the lifting-line theory to account for propeller effects and, most

importantly, the extended theory is coupled to an optimizer, using which we can generate

novel realistic wing designs of lower drag, with both chord and twist distributions.
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Koning
(1934)

Kroo
(1986)

Lötstedt
(1995)

Veldhuis
(2005)

Current
work

Current
work

Equation lifting-
line

lifting-
line

Euler lifting-line lifting-
line

Euler

Assumption Small
pertur-
bations

- Blade
element
theory
+ mo-
mentum,
energy
sources
at disk

- - Blade
element
theory
+ Esti-
mated
sources
at ac-
tuator
disk

Optimization - Fourier
coeffi-
cients of
circula-
tion for
global
mini-
mum
induced
drag

- Fourier co-
efficients
of globally
optimal
circulation
(different
from Kroo’s
expression)

Planform
opti-
mization
using
Bëzier
polyno-
mials

-

Planform re-
sult

- - - Unrealistically
long chords
in slipstream

Novel
plan-
forms
proposed

Proposed
novel
plan-
forms
validated

Table 2.1: Tabular representation of relevant earlier work for quick reference





Chapter 3

Formulation of the Optimization

Problem

We consider in this chapter the methods by which aircraft powered by propellers or other

rotors can exploit the propeller slipstream for designing more aerodynamically efficient

wings. To make use of the propeller slipstream in the wing design process, we begin with

a simple theory for propeller-wing interaction, and formulate an appropriate optimization

problem and implement it. For this purpose a model based on lifting-line theory that

represents a wing-propeller system is developed. For this model, the time averaged axial

and circumferential velocities induced by the propeller along the lifting line that represents

the wing are considered. The part of the wing that is immersed in the propeller slipstream

experiences an increase in the axial velocity and an up-wash and downwash field (which

together we shall call ‘propwash’) due to the rotation of the propeller. Lifting-line theory

is modified to account for the change in axial velocity and the propwash field. This model

forms an important element in the optimization process. In this chapter the details of

the aerodynamic model and the formulation of the optimization problem are described

in detail. Furthermore the works of Kroo (1986) and Veldhuis (2005), reviewed briefly in

chapter 2, are also discussed in detail.

3.1 Problem Formulation

The present modelling of a wing-propeller system using lifting-line theory is similar to

what was followed by Kroo (1986). Figure 3.1 shows a schematic of a wing in a tractor-

propeller configuration. The wing has a semispan s and chord distribution c(y) where y is

the spanwise coordinate. Within the propeller slipstream there is an increase in the axial

velocity V (y) and an additional downwash wp(y) (which may be positive or negative) over

and above the downwash ww(y) due to the trailing vortices of the wing. The effect of

wing on propeller is ignored.

Figures 3.2 and 3.3 show the time averaged variation of axial velocity and downwash

in the propeller slipstream computed numerically using the PROP-EULER code (to be

described in chapter 5). The propeller is assumed to be located at x/D = 1.0 (x measured

from the wing leading edge) where D denotes the diameter of the propeller. The coordi-

nate y runs along the span of the wing across the diameter of the slipstream. In order to

13
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Figure 3.1: Schematic representation of a wing in tractor-propeller configuration

Figure 3.2: plot of time averaged axial velocity in the propeller slipstream
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Figure 3.3: plot of time averaged downwash field in the propeller slipstream

account for the propeller slipstream effects, an extended lifting line theory is developed.

The mathematical formulation of the theory is as follows:

Given: V (y) ≡ V0 + Vp(y) and wp(y), where Vp(y) and wp(y) are the time-averaged

axial velocity and downwash respectively due to the propeller and V0 is the free stream

velocity. It is assumed here, for simplicity, that the propeller slipstream is in the direction

of the free stream at infinity. This assumption should be reasonable at cruising flight.

However, inclined slipstreams can be accounted for. The total downwash w(y) is the sum

of the downwash due to the wing and the propeller. If Γ is the circulation at y′ then the

total downwash is given by

w(y) = ww(y) + wp(y) (3.1)

=
1

4π

∫ +s

−s

1

y − y′
dΓ

dy′
dy′ + wp(y) (3.2)

The first term on the right hand side of eq. 3.2 is obtained using the Biot-Savart

relation as used in classical lifting line theory for calculating the induced velocity due to

all the trailing vortices of the wing at any spanwise location. For detailed derivation, see

chapter 10 in Glauert (1926). The effective angle of attack αe (see fig. 3.4 for graphical

representation) that the aerofoil section at y sees is then given by

αe = α−
ww(y) + wp(y)

V (y)
(3.3)

where α(y) = αg − αt(y), αg is the geometric angle of attack and αt(y) is the twist along

the span;αe is considered positive in the counter clockwise direction measured from the

chord line.

The lift L and induced drag Di are given respectively by



16 Chapter 3. Formulation of the Optimization Problem

Figure 3.4: Definition of effective angle of attack including the propeller swirl

L = ρ

∫ +s

−s

V (y)Γ(y) dy (3.4)

Di = ρ

∫ +s

−s

w(y)Γ(y) dy (3.5)

The profile drag Dp for the wing is obtained by integrating the local profile drag,

Dp = ρ

∫ +s

−s

0.5 V (y)2cd(y)c(y) dy (3.6)

For a specific chosen aerofoil cd for a given cl is read from the drag polar, obtained

either from wind tunnel tests or CFD simulations. The total drag D is then obtained by

summing induced and profile drag (D = Di +Dp).

Transforming the coordinate system from y to θ by putting

y = −s cos θ (3.7)

and expanding Γ in a Fourier series with Ak as the Fourier coefficients, we write

Γ = 4sV0

∞
∑

k=1

Ak sin kθ (3.8)

Using eq. 3.8, eq. 3.2 gets transformed to

w(y) = V0

∑∞

k=1 kAk sin kθ

sin θ
+ wp(y) (3.9)

The sectional load l is given by

l = ρ V Γ =
1

2
ρ V 2 c cl (3.10)

where c is the chord at any location y along the span and cl is the lift coefficient of the

aerofoil section at the same location,
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cl = a0 (α−
ww(y) + wp(y)

V (y)
) (3.11)

where a0 is the lift-curve slope of the aerofoil section and α is measured with respect to

the zero-lift angle of the aerofoil section.

Using equations 3.8 - 3.11 we obtain the fundamental equation to determine the Fourier

coefficients as

(
∞
∑

k=1

Ak sin kθ)(kµ+ sin θ) = µ
V (θ)

V0

(α−
wp(θ)

V (θ)
) sin θ (3.12)

where µ = a0c/8s.

Using eq. 3.8 eq. 3.4 will transform into

L = 4ρV0s
2

∫ π

0

V (θ) sin θ

∞
∑

k=1

sin kθ dθ (3.13)

Using eqs. 3.8 and 3.9 eq. 3.5 will transform into

Di = 2πs2ρV 2
0

∞
∑

k=1

kA2
k +Bk (3.14a)

where

Bk =
2

π

∫ π

0

wp(y)

V0

sin kθ sin θ dθ (3.14b)

3.2 Method of Solution

The extended lifting-line equation (eq. 3.12) is solved to determine the Fourier coefficients

using the least squares technique. Let nc and nf (< nc) be the number of collocation

points along the span and number of Fourier coefficients respectively (number of points

and modes are chosen after performing a convergence study which is described in chapter

4), then the least squares formulation of eq. 3.12 will be as follows:

Defining LL using 3.12 as

LL(θi, A1, A2, ..., Anf
) = (

∞
∑

k=1

Ak sin kθi)(kµ+ sin θi)− µ
V (θi)

V0

sin θi(α−
wp(θi)

V (θi)
) (3.15)

where i = 1...nc, the least squares formulation is obtained by equating to zero the partial

derivatives of LL with respect to the Fourier coefficients A1...An.

∂

∂Aj

nc
∑

i=1

LL(θi, A1, A2, ..., Anf) = 0 ; j = 1...nf (3.16)
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Validation and results from the code using this method are presented in chapter 4.

3.3 Optimization

Since the main goal here is to optimize wing planforms for lower total/parasite/induced

drag, an optimization problem is formulated.

The drag (induced (Di), profile (Dp), or total (Di+Dp)) that needs to be minimised is

chosen as the cost function. The optimization process is carried out under any prescribed

aerodynamic, geometric and structural constraints. Aerodynamic constraints include the

wing lift coefficient, pitching moment and the extended lifting-line equation (eq. 3.12).

The geometric constraints considered here include tip chord, root chord, wing area, bounds

on chord and twist etc., and the structural constraints include root bending moment etc.

The constraints are not restricted to the ones mentioned above. The chord and twist are

taken as the variables in the present study.

When it is required to have a smooth wing trailing edge, the chord and twist are

parameterized using Bézier curves (Farin 2002) as shown in eqs. 3.17a and 3.17b; see

appendix A for a brief discussion of Bézier curves),

c(y) =

ndc
∑

i=0

Bn
i (y)wci (3.17a)

αt(y) =

ndt
∑

i=0

Bn
i (y)wti (3.17b)

where ndc and ndt are the degrees of the Bézier curve used for chord and twist parame-

terization respectively, wc and wt are the Bézier modes associated with chord and twist

respectively and Bn
i is the ith Bernstein polynomial of degree n defined as

Bn
i = (ni )(1− y)n−iyi, y ∈ [0 1] (3.18)

Mathematically the problem can be stated as follows:

minimize Di(c, αt) +Dp(c, αt)

subject to LL = 0

Sopt = Sref

Lopt = Ldes

copt > 0

(3.19)

where LL is the lifting line equation (eq. 3.15), Di and Dp are induced and profile drag

forces respectively, c, αt are chord and twist respectively which are the design variables,

Sopt and Sref are the optimal and reference planform areas respectively, Lopt and Ldes are
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the optimal and design wing lift forces.

A software called PROWING was written in MATLAB (2007), to perform constrained

optimization using an inbuilt function of MATLAB called fmincon (detailed documenta-

tion of fmincon can be obtained in http://www.mathworks.co.uk/help/optim/ug/fmincon.html

(.)) which solves the Karush-Kuhn-Tucker (KKT) equations which are the necessary con-

ditions for optimality for a constrained optimization problem. The operation of PROW-

ING is described in the flow chart shown in figure 3.5.

The input to PROWING comprises

• geometric details of wing: wing area, root chord, tip chord, washout etc.,

• aerodynamic parameters: e.g. design lift coefficient (CL),

• aerofoil data: cl(α), cd(α),

• numerics: number of collocation points nc, number of Fourier modes nf , number of

modes to be used in Bézier parameterization,

• propeller details: diameter, location of propeller along the span, time-averaged slip-

stream velocities obtained either through wind tunnel tests or CFD simulations;

• cost function: CDi, CDp, CD ...

• constraints: bounds on twist and chord, tip chord and root chord, wing area etc.

Once the input is specified, the software then parameterizes the chord and twist dis-

tibution using the ‘shape parameterization’ module, and starts iterating to approach the

optimal by minimizing the cost function computed using the module ‘FUN’, by making

sure that the constraints are obeyed using the module ‘NONLCON’. Optimal wing shapes

are generated once the optimum is reached.

3.4 Comparison with other works in the literature

As mentioned in the chapter 2, Kroo (1986) and Veldhuis (2005) have addressed the

problem of wing optimization of turboprop aircraft and these are the two earlier works

that are very close to the subject of this thesis. Kroo’s work is presented first and a

critical review of Veldhuis’s work is made later in this section.

3.4.1 Kroo (1986)

Kroo analysed the problem of wing-propeller interaction by modifying the lifting-line

theory to account for propeller effects. Kroo’s expressions for the lift and drag with

propeller effects included are the same when compared to what we have obtained above.
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Figure 3.5: Flowchart describing the operation of PROWING
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However, the optimization strategy adopted by Kroo was different. He made use of

the classical variational calculus approach to carry out the optimization. He derived

a closed form expression for the optimal Fourier coefficients. Using Kroo’s method for

optimization, only those designs that are globally optimal can be obtained. On the other

hand the optimization strategy (described in section 3.3) formulated here shows how

locally optimal designs can be obtained. This is the key difference between Kroo’s work

and the present approach. Highlights of his work are presented in this section.

Modified equations for the lift L∗ and drag D forces are given by

L =
4

πb

∑

n

AnIun (3.20)

[Kroo (1986):562(10)]† where

Iun =

∫ b/2

−b/2

U(y) sinnθdy, (3.21)

and

D =
1

qπb2

∑

n

A2
n +

4

πb

∑

n

AnIwn (3.22)

[Kroo (1986):562(11)], where

Iwn =

∫ b/2

−b/2

wp(y) sinnθdy. (3.23)

Kroo makes use of the classical variational calculus approach to carry out the opti-

mization, i.e. putting
∂Obj

∂An

= 0 n = 1, 2, 3, ...,∞, (3.24)

where

Obj = D + λ(L−
4

πb

∑

n

AnIUn) (3.25)

[Kroo (1986):563(12)], where λ is the Lagrange multiplier, the lift force (L) is a constraint

and the contributions of all Fourier coefficients An are taken into account.

Kroo’s expression for optimal Fourier coefficients [Kroo (1986):563(13)] is

An =
ρU∞b

n
[(

πL

4ρU2
∞

+
∑

j

IUjIwj

j
)(IUn/

∑

j

I2Uj

j
)− Iwn]. (3.26)

Kroo however does not present any result showing optimal planforms using the method-

∗All symbols in section 3.4.1 are the same as the ones used by Kroo. Table 3.1 shows the relation between
symbols used by Kroo and the corresponding symbols used in this thesis.

†This notation refers to equation 10 appearing in p.562 of Kroo (1986)
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Kroo (1986) PROWING

An/2πs
2ρV 2

0 Ak

L L
D Di

b/2 s
u Vp

U∞ V0

Table 3.1: Comparison of symbols used in Kroo (1986) and PROWING

ology described by him, although he mentions that changes in chord, twist, camber and

thickness distributions can have significant benefits on wing performance. He also men-

tions that the wing could be designed for recovering the loss associated with slipstream

swirl.

3.4.2 Veldhuis (2005)

Veldhuis has considered optimal designs for wings of aircraft driven by wing-mounted trac-

tor propellers. The optimization is carried out on twist, camber and chord distributions

along the wing span. We focus on chord distributions, for which Veldhuis’s solution yields

a very long chord in the portion of the wing behind downward-moving propeller blades

and a short chord on the other side of the slipstream. This is correctly characterized as

‘unrealistic’ by the author himself. This ‘unrealistic’ chord distribution obtained by Veld-

huis may be traced to three factors: (i) error in basic formulation, (ii) error in evaluation

of certain integrals and (iii) inappropriate search space used in the optimization process.

Each of these is described in subsequent sections.

3.4.2.1 Error in basic formulation

To explain the error in the basic formulation, highlights of a (presumed) derivation of the

equation for induced drag coefficient 3.27 are presented here since the detailed derivation

is not given either in Veldhuis’s publications (Veldhuis & Heyma 1998, 2000) or in the

thesis (Veldhuis 2005).

The expression used by Veldhuis for the induced drag coefficient, CDi
‡ (Veldhuis

(2005):266(7.12)) is

CDi = 2AR

∞
∑

n

∞
∑

k

nAnAk

∫ π

0

sin(nθ) sin(kθ)(1 + a(θ))dθ

+2AR
∞
∑

n

An

∫ π

0

αip(θ) sin(nθ) sin(θ)(1 + a(θ))dθ,

(3.27)

‡All symbols in section 3.4.2 are the same as the ones used by Veldhuis and are listed in figures 3.13,
3.14. Table 3.2 shows the relation between symbols used by Veldhuis and the corresponding symbols
used in this thesis
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Veldhuis
(2005)

PROWING

An/ Ak

L L
Di Di

b/2 s
Vax Vp

U∞ V0

Γ Γ
ρ ρ
θ θ
AR A

Table 3.2: Comparison of symbols used in Veldhuis (2005) and PROWING

where AR is the aspect ratio, θ is the angular variable obtained by transforming the

physical coordinate y using θ = cos−1(−2y/b) (same as eq. 3.7), a(θ) is the increment in

the streamwise velocity behind the propellers normalised with by freestream velocity U∞,

Ak are the Fourier coefficients in the expansion of Γ (see eq. 3.33, same as eq. 3.8) and

αip(θ) is the downwash angle due to the propeller.

Veldhuis defines the integral [Veldhuis (2005):267(7.15)]

Ink =

∫ π

0

sin(nθ) sin(kθ)(1 + a(θ))dθ (3.28)

and in the first line on p.268 in Veldhuis (2005), it is mentioned that Ink = 0 when n 6= k.

Using eq. 3.28 and the above assumption made for Ink by Veldhuis, eq. 3.27 can be

written as

CDi = AR
∞
∑

n

∞
∑

k

nA2
n

∫ π

0

sin2(nθ)(1 + a(θ))dθ

+2AR

∞
∑

n

An

∫ π

0

αip(θ) sin(nθ) sin(θ)(1 + a(θ))dθ,

(3.29)

The derivation of eq. 3.29 (simplified version of eq. 3.27) is now presented.

The induced drag force Di [Veldhuis (2005):265(7.5)] is taken as

Di = ρU∞

∫ b
2

− b
2

αi(y)Γ(y)dy (3.30)

In the last line on p.265 Veldhuis mentions that the expression for induced drag with

the propeller slipstream effects included could be obtained by following the procedure in

deriving an expression for lift with propeller slipstream effects included. For the lift ex-

pression, Veldhuis multiplies the propeller induced axial velocity factor a(θ) = Vax(θ)/U∞
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Figure 3.6: Reference velocity used to obtain local angle of attack: (a) Veldhuis - increment
in axial velocity is neglected. (b) Present work and Kroo - increment in axial velocity
because of propeller as a function of span is considered.

to the lift expression for the wing alone case [Veldhuis (2005):265(7.9)],

L = ρU2
∞b

∑

An
b

2

∫ π

0

sinnθ(1 + a(θ)) sin θdθ. (3.31)

Therefore, on multiplying eq. 3.30 by the propeller induced axial velocity factor a(y) =

Vax(y)/U∞ to incorporate the effects of propeller slipstream we get

Di = ρU∞

∫ b
2

− b
2

αi(y)Γ(y)(1 + a(y))dy (3.32)

Using the expression for Γ [Veldhuis (2005):265(7.6)]

Γ = 2U∞b
N
∑

n=1

An sin(nθ). (3.33)

and replacing the physical coordinate y by the angular variable eq. 3.32 becomes

Di = ρU2
∞b2

∫ π

0

αi(θ)(1 + a(θ))
∞
∑

n

An sin(nθ) sin(θ)dθ (3.34)

where

αi = αiw + αip (3.35)

[Veldhuis (2005):264(7.2)], αi being the total induced angle of attack, αiw the induced

angle of attack due to the wing and αip that due to the propeller.

The angle αiw is defined by Veldhuis as [Veldhuis (2005):264(7.3)]

αiw(y0) =
−1

4πU∞

∫ b/2

−b/2

dΓ(y)/dy

y0 − y
dy (3.36)

In this definition the free stream velocity U∞ is erroneously used by Veldhuis to estimate

the induced angle of attack due to wing. This is shown pictorially in fig. 3.6.

Using eq. 3.33 , substituting eqs. 3.35 and 3.36 in eq. 3.34, using the assumption made
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for Ink and nondimensionalising using U∞, freestream density(ρ∞), and wing planform

area(S), eq. 3.34 becomes

CDi = AR

∞
∑

n

∞
∑

k

nA2
n

∫ π

0

sin2(nθ)(1 + a(θ))dθ

+2AR

∞
∑

n

An

∫ π

0

αip(θ) sin(nθ) sin(θ)(1 + a(θ))dθ,

(3.37)

which is the same as eq. 3.29. We have shown above that eq. 3.29 is obtained by

Veldhuis assuming that the free stream velocity U∞ is to be used to calculate the local

angles of attack at any section y along the span (see fig. 3.6a). But it is physically

incorrect to measure the local angle of attack with respect to the freestream velocity U∞

in the slipstream of a propeller. The reason is that the wing sections behind the propeller

experience an angle of attack determined by the velocity U(y) at the station y within the

propeller slipstream, which is not taken into consideration by Veldhuis (fig. 3.6a).

We now show how the expression for CDi changes when the error is corrected by the

use of the local approach velocity, U(y). The local angle of attack (see fig. 3.6 (b)) should

be estimated with respect to the ‘local’ free stream velocity seen by the wing, namely

U∞ + Vax(y) as indicated earlier by Kroo (1986) and adopted here, then eq. 3.36 would

be replaced by

αiw(y0) =
−1

4π(U∞ + Vax(y0))

∫ b/2

−b/2

dΓ(y)/dy

y0 − y
dy (3.38)

Again using eq. 3.33, transforming the physical coordinate y to angular coordinate θ ,

substituting eqs. 3.35 and 3.38 in eq. 3.34 and nondimensionalising it, we get the correct

expression for CDi (same as our eq. 3.14a written in Veldhuis’s notation) as

CDi = AR

∞
∑

n

∞
∑

k

nA2
n

∫ π

0

sin2(nθ)dθ

+2AR

∞
∑

n

An

∫ π

0

αip(θ) sin(nθ) sin(θ)(1 + a(θ))dθ,

(3.39)

It can be seen that the first term on the right hand side of eq. 3.39 does not contain

the 1+a(θ) term when compared to the corresponding term in eq. 3.37, the result derived

by Veldhuis.

Therefore, we infer that Veldhuis has incorrectly neglected the influence of the increase

in axial velocity because of the propeller.
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n k Ink

1 1 1.6091
1 3 -0.0253
1 5 0.0045
1 7 0.016
1 9 -0.0285
1 11 -0.0297

Table 3.3: Cases chosen for evaluation of Ink

3.4.2.2 Error in evaluation of certain integrals

In the process of evaluating eq. 3.27 Veldhuis defines the integral [Veldhuis (2005):267(7

.15)]

Ink =

∫ π

0

sin nθ sin kθ(1 + a(θ))dθ (3.40)

As we have already mentioned, Veldhuis (2005) (first line on p.268) takes Ink = 0 when

n 6= k. However the above integral, when n 6= k, is not zero. To illustrate this, we analyse

the six listed cases table 3.3.

To evaluate the integrals slipstream data is needed. Since the data used by Veldhuis

is not available in the public domain, typical values for a(θ) were taken from the CFD

simulation carried out for this thesis (details of CFD simulations are described in chapter

5) for the propeller tested by Hartman & Biermann (1938). This particular propeller was

chosen because the entire information needed to carry out the numerical simulation is

available in the public domain, and this propeller is typical of the kind used in turbo-

props. The spanwise variation of a so obtained is shown in fig. 3.7. For each case the

corresponding value of the integral Ink is shown in table 3.3. The integrals were computed

using 320 points along the θ axis.To ensure that the step size used for integration is suf-

ficiently small, integration with 640 points was performed, and the value of the integral

changed only by 0.12%. It can be seen that all the Ink except I11 is either two or three

orders of magnitude smaller compared to I11. However they are not zeroes. Though the

values of the Ink except I11 are small (compared to I11), the assumption that Ink = 0

when n 6= k is incorrect.

Veldhuis further defines the integral [Veldhuis (2005):267(7.16)]

Jn =

∫ π

0

αip(θ) sin(nθ) sin(θ)(1 + a(θ))dθ (3.41)

If we assume Jn = 0 when n = 2, 3, 4... (following Veldhuis’s assumption on Ink) we

reproduce the optimal wing chord distribution of the kind that Veldhuis arrived at (see

fig. 3.8a). Since the propeller slipstream velocities used by Veldhuis are not known, only

a qualitative comparison between the results obtained by us and Veldhuis is possible. The
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Figure 3.7: Typical variation of propeller induced axial velocity increase factor a along
the semispan

integral Jn for n = 2, ...,∞ is in fact not zero; for certain values of n the value of Jn is

orders of magnitude larger than J1 (see fig. 3.9). (The values of αip used to compute

Jn are taken from the numerical simulation carried out here for the reason mentioned in

section 3.4.2.2; for the present variation of αip(y) with y see fig. 3.10). On rectifying

the error in the evaluation of the integral Jn, one obtains a chord distribution (shown

in fig. 3.11) that is drastically different when compared to the one obtained here using

Veldhuis’s methodology (shown in fig. 3.8a).

Though the integral Ink 6= 0 for n 6= k, its value is about two orders of magnitude

smaller compared to the value of Ink when n = k (for numerical values of Ink refer

to previous section). On rectifying the errors described in section 1, in evaluating Ink

but not in evaluating Jn, the chord distribution would still look the same as shown in

fig. 3.8a. But on rectifying the assumption made for Jn we would get a get a chord

distribution as shown in fig. 3.11. This shows that Jn has the bigger influence on the

chord distribution. However, even in the chord distribution shown in fig.3.11, longer

chords (though not spiked) can still be seen in the region of propeller slipstream. This

particular characteristic of chord distribution is explained in section 3.4.2.3.

We therefore conclude that it is not justifiable to assume the integral Jn = 0 when

n = 2, ...,∞.
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(a) Chord distribution obtained using a
code written by the authors by Veldhuis’s
methodology. This was obtained by consid-
ering J1 only

(b) Chord distribution for optimum loading obtained by
Veldhuis (figure taken from Veldhuis & Heyma (1998)
p.10)

Figure 3.8

Figure 3.9: Integral Jn computed for n = 1, ..., 48
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Figure 3.10: Typical variation of αip along the semispan
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Figure 3.11: Chord distribution obtained using Veldhuis’s methodology after including
Jn; n = 2...∞
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3.4.2.3 Search space used in optimization

In this section the occurrence of longer chords in Veldhuis’s solution in the region of the

propeller slipstream is explained.

In order to find the optimal load distribution for a given lift coefficient (CL), Veldhuis

first differentiates eq. 3.37 partially with respect to the Fourier coefficients (An) as given

by Veldhuis (2005) (p.267(7.14), i.e. he puts

∂CDi

∂An

= 0 n = 2, 3, ...,∞ (3.42)

Using eq. 3.42 the optimal Fourier coefficients are obtained as [Veldhuis (2005):268(7.17)]

An =
−Jn

2nInn
n = 2, 3, ...,∞ (3.43)

Thus, the optimal Fourier coefficients depend only on the integrals Inn and Jn. Based

on our inference about Veldhuis assuming Jn = 0 for n = 2...∞, the Fourier coefficients

A2 ,...,A∞ in eq. 3.43 are all zero.

Veldhuis proceeds further to calculate either the chord distribution for a given twist

distribution or vice versa, using [Veldhuis (2005):270(7.28)],

cl(θ)
c(θ)

b
= 4

∞
∑

n=1

An sin(nθ)(1 + a(θ)) (3.44)

where

cl = clααe(θ) (3.45)

αe(θ) = αg(θ)− (αip(θ) + αiw(θ)) (3.46)

for the optimal load distribution as obtained using eq. 3.43. The twist distribution appears

to be taken from a typical configuration like Fokker 50 [Veldhuis (2005):291]. By keeping

the twist fixed, the search space is characterised by the values of only one parameter

(namely the chord) at any stage. Using the expression 3.45, the local lift coefficient cl

may be calculated, and is shown in fig. 3.12. It is seen that cl touches the very small

value of 0.038 at y/s ≃ 0.3. Since the twist is not varied in the optimization exercise,

the chord has to increase to provide the higher lift force necessary for the optimal load

distribution. Therefore, a one dimensional search space is also a contributor for higher

chords behind the propeller.

3.4.3 Conclusion

The source of the unrealistic chord distribution obtained by Veldhuis is traced here to

errors in his formulation. Since it is not clear either from the publications or the thesis
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Figure 3.12: Spanwise variation of local lift coefficient computed using Veldhuis’s formu-
lation.

of Veldhuis precisely what steps were followed by him to arrive at the chord distribution

shown in fig.3.8b, we have attempted to infer the reasons here for the unrealistic chord

distribution obtained by him, substantiating it with sufficient reasoning and providing

plots wherever necessary. The conclusion we draw is consistent with the reasoning pre-

sented. Our approach is consistent with the aerodynamic formulation of Kroo. However

our optimization strategy is different from that of either Kroo or Veldhuis, and this leads

to the novel planforms that are the subject of this thesis.
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Figure 3.13: Nomenclature of all symbols used in section 3.4.2
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Figure 3.14: Nomenclature of all symbols used in section 3.4.2





Chapter 4

Optimal Wings for Least Drag with

Selected Constraints

In chapter 3, a method to analyze a wing-propeller system and a method of optimization

to design wing planform shapes with least drag, subject to a variety of cost functions and

constraints, was described. To analyze a wing-propeller system, eq. 3.12 has to be solved.

The optimization problem described in fig. 3.5 has to be carried out to obtain optimal

wing designs. In this chapter, the validation of the numerics used to solve eq. 3.12 for

the wing-propeller system and a set of novel wing planform shapes so obtained for various

cost functions and constraints are presented.

4.1 Validation and Convergence Study of the algo-

rithm

The PROWING code, described in chapter 3, was validated against the results available

in Glauert (1926). Glauert considered a tapered wing in which the chord varies linearly

with span. Using his technique of expanding circulation Γ in Fourier series in eq. 3.12

two monoplane coefficients τ and δ were evaluated. Glauert defined the two coefficients

(henceforth called Glauert coefficients) as

τ =
α

A1

−
πA
2a0

− 1 (4.1)

δ =

∑nf

k=2 kA
2
k

A2
1

− 1 (4.2)

where Ak; k = 1...nf are the Fourier coefficients used to represent circulation Γ (eq. 3.8),

nf is the number of Fourier coefficients, a0 is the lift curve slope of the aerofoil section

andA is the aspect ratio of the wing.

Fig. 4.1 shows the comparison of the coefficients τ and δ computed using PROWING

code with those obtained by Glauert. The coefficients were computed for a wing, to be

called the control wing, of aspect ratio 12 and taper ratio 0.5, at a cruise CL = 0.4. The

wing uses NACA 63-615 aerofoil section. This particular wing geometry was chosen as it

represented the current state of the art. The details of wing geometry were obtained from

the design office at National Aerospace Laboratories (NAL) (Narayan (2009), personal

35
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communication). It can be seen in Fig. 4.1 that there is very close agreement between

Glauert’s values and those computed using PROWING.

The Glauert coefficients could be computed accurately using 16 collocation points (nc)

and 8 Fourier modes (nf). These numbers were obtained after performing a convergence

study as shown in fig. 4.2 (method of solution is described in chapter 3). The values of

the Fourier modes with increase in number of collocation points are seen to plot on top

of each other (see fig. 4.2).

Figure 4.1: plot of variation of Glauert coefficiens with taper ratio = tip chord / central
chord. Continuous lines represent the values obtained by Glauert and the circles represent
the values obtained by solving eq. 3.12 numerically for a wing-alone case.

For a wing-propeller system, the number of collocation points and Fourier modes are

usually larger than in the wing-alone case. This is due to the non-uniformity in the

approach velocity. A convergence study was carried out to determine the number of

collocation points and Fourier modes which can adequately represent a wing-propeller

system.

From fig. 4.3 it can be seen that an adequate number for collocation points and

Fourier modes required to represent a wing-propeller system is 160 and 32 respectively.

The maximum absolute value of any Fourier mode between 32nd and the 48th has a value of

1.9863× 10−5 and does not change with increase in number of collocation points beyond

160. Since the computing requirements were not heavy, 320 collocation points and 48

Fourier modes were chosen for the study.

Validation of the optimization part in PROWING was carried out by reproducing the
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Figure 4.2: Convergence behaviour of Fourier modes with number of Collocation points
for wing-alone case. Circles represent Galuert’s result which used 4 Fourier modes and 4
collocation points, plusses and crosses indicate results obtained from PROWING for 16
and 32 collocation points respectively with number of Fourier modes equal to 8 in both
the cases.

elliptic load distribution for the wing-alone case which is the well-known optimum load

distribution for minimum induced drag on a simple wing (Prandtl 1918). Figure 4.4 shows

the load distribution for both control and optimal wings.

4.2 Optimal Wing Designs

We now present results of wing optimization in the presence of a propeller for various cost

functions and constraints. For easy and quick reference, all the cases that were solved are

listed in table 4.1. For all the optimization exercises, the control wing used was of aspect

ratio 12, had a taper ratio of 0.5 and a linear washout of 3◦. The wing was optimized

for a cruise condition at CL = 0.4. Chord and twist were chosen as design variables

and were parameterized using Bézier curves. Aerodynamic constraints were the extended

lifting-line equation and the cruise lift coefficient. Geometric constraints were wing area,

root chord, tip chord and bounds on twist. In addition to these constraints, certain other

constraints including structural parameters were also implemented. Those conditions, in

addition to the ones mentioned, that were implemented in certain optimization cases are

listed in table 4.1. The slipstream velocity needed for optimization was generated using

the PROP-EULER code (described in detail in chapter 5). The propeller chosen for wing
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Figure 4.3: Convergence behaviour of Fourier modes with number of collocation points
for wing-propeller system
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Figure 4.4: Load distribution for both optimal and control wings. Elliptic load distribution
for the optimal wing without the propeller checks the optimization routine in PROWING

optimization studies was that mentioned in Hartman & Biermann (1938), except for case

10 for which the propeller used was Hartzell and the geometric details were obtained from

C-CAD, NAL, Bangalore.

Numerical values of the constrained variable are

• wing area/ semispan2 = 0.166

• root chord / semispan = 0.222

• tip chord / semispan = 0.111

• bounds on twist = −5◦ to +5◦

4.2.1 Case 1 - Lowest Induced Drag

Optimal wing design for Case 1 is shown in fig. 4.5. In the initial stages, optimization was

carried out with the slipstream velocities obtained from Josy (2009), but for all the cases

listed in table 4.1 PROP-EULER was used. It is seen that the optimal wing has shorter

chords behind each propeller and longer chords on either side of the slipstream. The

optimal wing has 8.31% lower induced drag compared to the control wing. Normalised

circulation and twist distributions for both control and optimal wings are also shown in

the figure. From the plot of normalised ciculation distribution it can be seen that the

optimal distribution is not elliptic, which is also plotted for comparison. This is because of

the non-uniformity in the approach velocity. It can be seen that the normalised circulation

distribution in the propeller-slipstream for the optimal-wing has the same shape as on the

control-wing but is lower.
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Case No. Cost function Additional Constraints*

1 Induced Drag -
2 Total Drag -
3 Total Drag Linear variation of thickness along span be-

tween root and tip joined by straight lines at
x/c = 0.2, 0.6

4 Total Drag Straight trailing edges
5 Total Drag Straight trailing edges with linear variation

of thickness along span between root and tip
joined by straight lines at x/c = 0.2, 0.6

6 80% Total Drag +
20% Wing root bend-
ing moment

-

7 Total Drag Root bending moment
8 Total Drag Twist at root and tip chords were relaxed
9 Total Drag Linear washout of 5◦

10 Total Drag AR = 8, Linear washout = 2◦

Table 4.1: Table indicating the optimization cases solved using PROWING. *Standard
constraints (always imposed unless otherwise stated)

An interesting outcome of this circulation distribution is that the induced drag of

the control-wing-propeller system was lower than the wing-alone case by 12.2%. This

phenomenon was reported first by Kroo (1986) and later by Witkowski et al. (1989).

Kroo explained it by pointing out that, for a given lift force, the required circulation goes

down because of the increased streamwise velocities in the propeller slipstream; hence the

induced drag, which depends on the circulation, is also reduced. The optimization process

reduces the induced drag further.

The circulation distribution in fig. 4.5 is lower in the region of the propeller slipstream

and inboard towards wing root for the optimal wing compared to the control wing, and

higher outboard towards the wing tip. This is achieved by having a lower chord in the

region behind the propeller and higher chord in the region outboard of the propeller

towards the wing tip.

As the number of Bézier modes used to parameterize the chord and twist is increased,

the induced drag reduction also increases, but it saturates at around 12.75% as shown in

fig. 4.6. The global maximum reduction in induced drag for a given lift force has been

computed using the closed form expression given by Kroo (1986). In general the planform

gets more wiggly as the number of Bézier modes increases. The incremental saving in

drag however becomes marginal beyond about 16 modes as shown in fig. 4.6. Thus

substantial gains in drag are already realized with relatively few modes. Fig. 4.7 shows

the circulation distribution obtained by both Kroo’s closed form expression (eq.3.26) and

PROWING. It can be seen that the load distribution obtained from Kroo’s expression for

global optimum is very close to that obtained from PROWING.
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Figure 4.6: Convergence of induced drag reduction, for Case 1, with increase in number of
Bézier modes used for shape parameterization. The black horizontal solid line indicating
Kroo is the value of the maximum induced drag reduction that can be obtained. This
value is computed using Kroo’s methodology
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4.2.2 Case 2 - Lowest Total Drag

Here we present optimal wing shapes which have lower total drag. The cost function J

minimized comprised induced drag Di and parasite drag Dp,

J = Di +Dp (4.3)

Here the parasite drag Dp is defined as

Dp =

∫ +s

−s

0.5 ρ V (y)2 cdp c(y) dy (4.4)

where cdp is the profile drag coefficient of the aerofoil section.

In order to compute the total drag we take the profile drag coeffecient (cdp) for the

aerofoil section and then evaluate the integral (eq. 4.4 to compute the profile drag (Dp),

and then add it to the induced drag (Di).

The optimal wing shape for this case is shown in fig. 4.8. It has an induced drag re-

duction of 8.31% and a total drag reduction of 3.37%. The reductions are not significantly

different when compared to reductions in case 1. The twist and circulation distributions

in fig. 4.8 are qualitatively similar to case 1 results. Since the area is a constraint in the

optimization exercise, the parasite drag does not change significantly between optimal

and control wing shapes.
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Figure 4.9: Thickness analysis of optimal wing obtained in case 2. Thickness behind the
propeller is lower and increases outboard towards wing tip and inboard towards fuselage.

4.2.3 Case 3 - Wing planforms with linear spanwise

variation of thickness at x/c = 0.2 and 0.6

Optimal wing shapes presented in cases 1 and 2 had shorter chords behind the propeller

and longer ones in both outboard and inboard regions. If the aerofoil (including its thick-

ness to chord ratio) is kept the same from wing root to tip, the thickness will no longer

then have a linear spanwise variation. Instead the variation will be as shown by the

contour plot in fig. 4.9. From the figure it can be seen that the thickness goes down

in regions behind the propeller and increases in the regions both inboard and outboard,

creating a saddle-like surface behind the propeller. This type of thickness distribution

leads to surface undulations and poses structural and manufacturing problems, in par-

ticular because inserting spars with depth varying linearly along the span (the preferred

fabricating option) will be a challenge.

In order to mitigate this problem we identified two typical x/c locations, 0.2 and 0.6,

at wing root and tip as typical of spar locations. These stations were joined by straight

lines.Along these lines a linear variation of thickness was prescribed and the optimization

exercise was repeated.

Figure 4.10 shows the optimal wing shape for this case. The induced drag reduction

obtained is 8.39% and total drag reduction obtained is 4.62%. Comparing the results

with cases 1 and 2 it can be observed that the induced drag reduction is not affected

by changes in the thickness distribution, which is not unexpected since the wing is of

high aspect ratio and thickness effects are of higher order. However total drag reduction

obtained is higher by 1.25% when compared to results from case 2.
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Figure 4.10: Optimal wing design with curved trailing edge and a linear variation of
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= 4. The wing has ∆CDi =
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Figure 4.11: Optimal wing design with straight trailing edge using nwc
= 6 and nwt

= 4.
The wing has ∆CDi = 7.91%,∆CD = 3.23% at CL = 0.4

4.2.4 Case 4 - Wing planforms with straight trailing

edges

Optimal wing shapes presented so far have curved trailing edges. With certain manufac-

turing techniques, a straight trailing edge may be preferred. It can also help in attaching

flaps and ailerons. This case is worked out and presented here.

Figure 4.11 shows the planform, twist variation and the load distribution on both the

control and optimal wings. The reduction in induced drag obtained is 7.91% and in total

drag 3.23%.
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Figure 4.12: Optimal wing design with straight trailing edges and linear variation of spar
thickness along the span using nwc

= 6 and nwt
= 4. The wing has ∆CDi = 6.16%,∆CD =

4.18% at CL = 0.4

4.2.5 Case 5 - Straight Trailing edges with linear

spanwise variation of spar thickness at x/c =

0.2 and 0.6

Combining cases 3 and 4, a new optimization was carried out by specifying both straight

trailing edges and linear spanwise variation of thickness at x/c = 0.2 and 0.6.

Figure 4.12 shows the optimal wing shape, twist variation and circulation distribution

on both the control and optimal wings. The induced drag reduction obtained is 6.61%

and total drag 4.18%. The total drag reduction obtained is lower than that obtained in

case 3 and higher than that in case 4.
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4.2.6 Cases 6, 7: Wing root bending moment

For both control and optimal wings mentioned in case 3 the wing root bending moment

(eq. 4.5) was evaluated by integrating over the span the moment due to each section. For

the optimal wing the root bending moment turned out to be 0.01223, 10% higher than

the control wing (0.0111).

WRBM =

∫ s

0

l y dy (4.5)

where l is the lift force per unit span of the aerofoil located at the spanwise station y.

We then carried out an optimization exercise (case 6) which had a weighted cost

function so as to minimize both total drag and wing root bending moment WRBM. We

gave 80% weight to total drag and 20% weight to wing root bending moment. Figure

4.13 shows the new optimal wing shape. Total drag reduction which was 3.3% in case 3

is now 2.9%. The root bending moment for the optimal wing was now 0.01166 which is

higher by 5.09% compared to the control wing-propeller system. So, depending on how

crucial the wing root bending moment is in the design process, different weights for the

cost function and constraints can be used and wing optimization carried out.

The interaction between wing root bending moment and induced drag has been a

subject of study for a long period. Many works on this subject have been published

(Jones 1950; Wakayama & Kroo 1995; Iglesias & Mason 2001). All of them carry out an

aerodynamic optimization exercise involving constraints from other disciplines. However,

the aerodynamic formulation is for turbojet/fan configurations. None of them have con-

sidered turboprops. Iglesias & Mason (2001) work out correlations between structural

weight and drag reductions for a Boeing-777, which is powered by turbofan engines. For

a truboprop similar correlations must be worked out in detail for different missions, with

suitable modifications made to the aerodynamic model that include the slipstream effect.

We also evaluated case 7 in which we applied root bending moment of the control

wing as an additional constraint. Fig.4.14 shows the optimal wing planform which has an

induced drag reduction of 5.73% and a total drag reduction of 3.24%. The optimization

was carried out with total number of Bézier modes equal to 64, 32 for chord and 32

for twist, for parameterization. The planform looks unrealistic and manufacturing costs

associated with it will increase considerably. In such cases the benefit in total drag would

have to be traded carefully with manufacturing costs.

4.2.7 Effect on pitching moment

For the optimal wing obtained for case 3, the effect on pitching moment was computed.

The pitching moment, about the point at unit distance upstream to the wing leading

edge, was computed by integrating the local lift at each section multiplied by the moment

arm. Here the load is assumed to be acting on the wing leading edge. Figure 4.15 shows
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Figure 4.15: Variation of pitching moment coefficient with lift coeffecient for wing plan-
form obtained for case 3

the variation of pitching moment coefficient with the lift coefficient. It can be seen that

the slope dCM/dCL for the optimal wing is also negative with a smaller intercept when

compared with the control wing, showing that the trim drag is lower.

4.2.8 Cases 8, 9 , 10 - Wing planforms for CFD and

Wind tunnel studies

To check the predictions made by PROWING, high fidelity CFD simulations and wind

tunnel tests were carried out (to be described in chapters 5 and 6 respectively). In order to

ensure that any differences in drag may be reliably determined, it was decided to generate

wing planforms with higher drag reductions. Therefore, optimization was carried out for

three cases 8, 9 and 10 respectively.

Optimal wing planform for case 8, shown in fig. 4.16, had an induced drag reduction

of 9.35%. This case was chosen for the PROP-EULER simulations as the induced drag

reduction obtained was higher than in other candidate cases, and the wing planform did

not have sharp changes in the chord distribution.

Optimal wing planform for case 9, shown in fig. 4.17, had a total drag reduction of

11.69% at CL = 0.3. This case was chosen for the RANS simulations using Fluent.

Fig. 4.18 shows four optimal wing planforms with different total drag reductions for a

series of proof-of-concept wind tunnel experiments. In order to make the drag reduction

sufficiently large so that the reductions can be accurately measured, the optimal wing

planform 10a was chosen as it had the highest total drag reduction among the candidates.
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Figure 4.16: Optimal wing design having lowest total drag, designed for CL = 0.4 using
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= 4 and nwt
= 4, having ∆CDi = 9.35%,∆CD = 3.82%
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Figure 4.18: Candidate wing shapes generated by PROWING for wind tunnel testing.
All of them are of A 8.





Chapter 5

High Fidelity CFD Validations

Using an extended lifting-line theory coupled to an optimizer (PROWING, described in

chapter 3), novel wing planform shapes have been generated and reported in chapter 4.

These planforms were optimized for drag with different constraints, mostly at a cruise lift

coeffecient of 0.4. To check the accuracy of predictions made using PROWING, which

is a relatively low fidelity model for wing-propeller systems, a set of high fidelity CFD

simulations were performed.

Since the extended lifting line theory used in PROWING is inviscid, a natural choice

to check the reductions in induced drag was an Euler (inviscid) code. As Euler codes in-

cluding propellers are not easily available, one (PROP-EULER) was specially developed

for the purpose. The propeller is modelled by a Blade Element Theory (henceforth called

BET) module, also developed for the purpose. This module is used to provide source

distributions of momentum and energy on an infinitesimally thin actuator disk that rep-

resents the propeller in the PROP-EULER code. The details of the PROP-EULER code

and results of simulations using it are presented in subsequent sections.

Simulations using PROP-EULER account only for 3D effects and not viscosity. In

reality there is viscosity and the flow is mostly turbulent for the Reynolds numbers en-

countered in flight. Therefore, to assess the performance of optimal wing designs taking

into account the boundary layer in addition to 3D effects, a RANS code (Fluent in this

case) was used. Since Fluent did not have a simple method to handle propellers, the BET

module developed for PROP-EULER code was coupled employing the User Defined Func-

tions (UDF) available on Fluent. The use of Fluent is not intended to be a replacement of

the Euler codes as results from RANS simulations are dependent on the turbulence model

adopted. Use of Fluent along with UDFs to assess the total drag reductions predicted by

PROWING eliminated the need to develop a RANS code and helped in getting results

early. Results from Fluent simulations are reported in subsequent sections.

5.1 PROP-EULER Code

The PROP-EULER code comprises two parts, namely the Euler code and the Blade

Element Theory module. First, details on the structure of the code and its validation are

presented, and then the results.

55
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5.1.1 The Euler code

The Euler code developed for the purpose uses an unstructured-mesh, finite-volume based

code that solves the 3D invisicid momentum equations

∂U

∂t
+

∂

∂x
(Gx) +

∂

∂y
(Gy) +

∂

∂z
(Gz) = 0 (5.1)

where U is the vector of conserved variables and Gx, Gy and Gz are the flux vectors along

the coordinate directions x, y and z respectively, given by
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(5.2)

Here, ρ is density, ux, uy, uz are the components of fluid velocity along x, y, z directions

respectively, p is pressure and e is the total energy per unit mass, given by

e =
p

ρ (γ − 1)
+

1

2

(

u2
x + u2

y + u2
z

)

(5.3)

Eq. 5.1 is solved numerically using a second order positivity-preserving KFVS (Kinetic

Flux Vector Splitting) scheme (Ghosh et al. 1998), which employs reconstruction of the

entropy variables called q-variables (Deshpande 1986). It has been shown that the use of q-

variables gives a computationally efficient code that yields smooth solutions (Ghosh et al.

1998). The KFVS scheme was chosen because of the considerable experience with the

technique in the JNC group (Anil 2008).

Many workers in the past have developed Euler codes to study different aspects of

KFVS schemes, but they have all been tied to specific problems. Modifying them to

use it for our application was not an easy task. Therefore, an Euler code was developed

from scratch. Unstructured grids were used to discretize the domain, and were generated

using GAMBIT (GAMBIT 2004). Implicit time stepping based on LUSGS (Lower Upper

Symmetric Gauss Siedel) was used for faster convergence (Jameson & Yoon 1986). The

code has been parallelized using domain decomposition. METIS (Karypis & Kumar 1998)

was used for decomposing the mesh into domains.

5.1.2 Validation

Transonic flow past the Onera M6 wing was chosen as the test case for validation of

the Euler code. This case has often been chosen to assess the performance of numerical

schemes (Praveen 2004; Anil 2008). For the present study, this case was chosen to check
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the correctness of the code. Even at other mach numbers, the scheme has performed well

(Anil 2008).

The free stream was at a mach number of 0.8395 at an angle of attack of 3.06◦. The flow

results in a λ-shock structure on the suction surface of the wing (seen in experiments)

which can also be seen by plotting pressure contours obtained from the Euler code as

shown in fig. 5.1. The coordinate system of the wing is shown on the top right of fig. 5.1:

x is along the chord, z is along the span and z is normal to xy plane. The freestream is

in the positive x-direction.

Quantitative surface pressure comparisons at 20%, 44%, 65% and 90% of semi-span

are shown in figs. 5.2 to 5.5. Cp distribution at 20% semispan, shown in fig. 5.2, has a

much stronger shock when compared to the experimental data. This is because, in the

CFD simulation, the wing root is attached to a symmetry plane, whereas in experiments,

it is attached to the wind tunnel wall. The effects at the wing root in the wind tunnel are

not captured in numerical simulation because of the symmetry boundary condition used

at the wing root. This is also observed in Anil (2008). However, at other locations the Cp

distribution is in good agreement with experimental values of Schmitt & Charpin (1979).

5.2 Propeller Modeling

5.2.1 Theory

Here the propeller is modeled as an infinitesimally thin rotating actuator disk which not

only produces a pressure jump across it and accelerates the flow along the axis of the

propeller, but also imparts a swirl to the flow (hence the word “rotating”) (Rajagopalan

1989; Lötstedt 1995). This is accomplished by considering the forces that the propeller

imparts to the fluid as source terms along all the three directions in the momentum

equations and the energy equation. If x is along the propeller axis, then the sources in

y and z directions impart an angular and radial momentum to the fluid passing through

the disk. The source terms are zero everywhere except in the region where the actuator

disk is present. To estimate the source strengths, a distribution of force densities on its

surface in all the three directions is required, which when integrated over the surface area

of the finite volume abutting the disk, gives the average force acting on that particular

element of area. These forces, converted to force densities (force per unit area), act as

source terms in eq. 5.4.

By coupling the whole-field solver and the rotating actuator disk, the slipstream is

captured as a part of the overall flow solution. The forces are estimated using blade

element theory and scaled to an equivalent disk.

The Euler equations including source the terms that represent the propeller effects are
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Figure 5.1: Pressure contours on the surface of Onera M6 wing obtained using PROP-
EULER code. λ-shock structure is seen on the suction side of the wing.
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Figure 5.2: Surface pressure coefficient at 20% semi-span
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Figure 5.3: Surface pressure coefficient at 44% semi-span
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Figure 5.4: Surface pressure coefficient at 65% semi-span
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Figure 5.5: Surface pressure coefficient at 80% semi-span
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Figure 5.6: Velocity diagram for an aerofoil section of a propeller blade (figure taken from
Clancy (1975))
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where the vector of source terms is given by
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The first entry represents the mass source (zero strength), Sx, Sy, Sz are the momentum

sources in x, y and z directions respectively and Se is the energy source given by

Se = uxSx + uySy + uzSz (5.6)

5.2.2 Coupling of Blade Element module to the flow

solver

A brief description of blade element theory (Clancy 1975) is presented in this subsection,

following which a method of calculating the strengths of the source terms is described in

detail.

Fig. 5.6 shows the force vector diagram for an aerofoil section at a certain radius r of a

propeller blade. Referring to fig. 5.6 the forces normal and perpendicular to the resultant

velocity VR, represented by δL and δD respectively on the element δr, are given by

δL = 0.5 cl ρ V
2
R c δr (5.7)

δD = 0.5 cd ρ V
2
R c δr (5.8)
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where cl and cd are the lift and drag coefficients of the aerofoil section of the propeller

blade at radius r, VR is the relative velocity of air at the aerofoil section defined as the

vector sum of V (1 + a) and rΩ(1− a′) with Ω representing the angular velocity, a and a′

representing the axial and rotational inflow factors respectively, and V is the flight speed.

If φ is the angle between this relative velocity VR and the plane of the propeller

rotation, we have

tanφ =
V (1 + a)

rΩ(1− a′)
(5.9)

If N and R represent the total number of blades and the radius of the propeller

respectively, then the total thrust T and the total torque Q are given respectively by

T =

∫ R

0

N 0.5 ρ V 2
R c (cl cos φ− cd sin φ)dr (5.10)

Q =

∫ R

0

N 0.5 ρ V 2
R c r (cl cos φ− cd sinφ)dr (5.11)

If we consider the disk approach to model the propeller, then the total thrust on the

disk is given by

T =

∫ R

0

∫ 2π

0

σ(r) r dθ dr =

∫ R

0

σ(r) 2πr dr (5.12)

where σ is the thrust density.

Equating eqs. 5.12 and 5.10 we get an expression for thrust density given by

σ(r) =
N 0.5 ρ V 2

R c (cl cos φ− cd sinφ)

2πr
(5.13)

Similarly we get the torque density τ as

τ(r) =
N 0.5 ρ V 2

R c r (cl sinφ+ cd cos φ)

2πr
(5.14)

Therefore, at any given radius, torque and thrust densities can be calculated using eqs.

5.13 and 5.14, which is then integrated over the area of the surface of the finite volume

abutting the disk to obtain the surface force.

A schematic representation of the rotating actuator disk implementation is shown in

fig. 5.7. During the operation of the code, if a face of a finite volume element is encoun-

tered on the actuator disk (bounded by black lines), then using its centroid values the

radius and the angular location, are computed. The veocities ux, uy, uz from the upstream

cell are then read (bounded by saffron lines) and are passed onto the blade element mod-

ule, along with the computed values of radius and angular location to compute the source

strengths (Sx, Sy, Sz) . These source strengths are then added to the downstream cell
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Figure 5.7: Schematic description of propeller handling in PROP-EULER

(bounded by blue lines) as source terms to the momentum and energy equations.

While carrying out the numerical simulation,

• cl and cd values for aerofoil sections at prescribed radii are computed for a range of

angles of attack by prescribing the local flow conditions (i.e. sum of flight speed (V )

and tangential velocity (rΩ)) and given as an input to the blade element module

(these coefficients are computed here using the XFOIL code (Drela & Giles 1987));

• aerodynamic coefficients for an aerofoil at any radius in between two discrete stations

(considered in the previous step) are computed using the coefficients of adjacent

stations by linear interpolation;

• aerodynamic coefficients for an aerofoil at any angle of attack in between the two

angles of attack considered in step 1 are computed using the coefficients of adjacent

angles of attack by spline interpolation;

• thrust and torque densities at any radius are then computed using the aerodynamic

coefficients and the velocities at the cell centres (located half cell width away from

the actuator disk).

5.2.3 Validation

Experimental results from Hartman & Biermann (1938) on propeller with R. A. F. 6

aerofoil blade sections were used for validating the propeller module. This particular case
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Figure 5.8: Description of propeller blade geometry used for validation of blade element
module (figure taken from Hartman & Biermann (1938))

was chosen because all the geometric details needed to model the propeller as an actuator

disk in the Euler code were available in the report.

Details of the propeller are as follows:

• Diameter: 10 ft

• Number of blades: 4

• Blade aerofoil section: R. A. F. 6

• Propeller blade geometry as shown in fig. 5.8. Pitch setting of 25◦ at 75% radius

was considered.

• Propeller speed: 1000 rpm

Using the chord, pitch and aerofoil thickness variation along the radius of the propeller

given in fig. 5.8, aerofoils were constructed and their corresponding drag polars were

computed using XFOIL. These act as an input to the propeller module.

CFD simulations were carried out for advance ratios 1, 1.1, 1.2 and 1.3 and for each

case the thrust coefficient was computed. Fig. 5.9 shows the variation of thrust co-

efficient with advance ratio. The continuous line represents experimental results from

Hartman & Biermann (1938) drawn through the points obtained after digitizing fig. 5.10
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Figure 5.9: Plot of thrust coefficient versus advance ratio showing the validation of Prop-
Euler code

in their report. The circles in fig. 5.9 represent the data obtained from the present Prop-

Euler code. It can be seen that there is close agreement between the numerical simulations

and experimental data.For advance ratios below 1, the free stream mach numbers were

becoming very low (< 0.1), which posed difficulties in running the compressible code.

Therefore simulations for advance ratios greater than or equal to 1 were carried out.

Figure 5.11 shows the flow chart of the PROP-EULER code.

5.3 Use of Prop-Euler code on optimal wing design

The validated Prop-Euler code is used to compute the flow past both control and optimal

wing-propeller systems. Case 8, described in chapter 3, was chosen for the validation

exercise. The optimal wing for case 8 had an induced drag reduction of 9.35%.

Simulations were carried out for both control and optimal wings in the presence of the

propeller, and the induced drag was computed by integrating the surface pressure.

Figs. 5.12 and 5.13 show the density residue, defined as logarithm of the L2 norm

of density normalised with the L2 norm of density in the 1st iteration, with number of

iterations for mesh sizes of 10× 106 and 30× 106.

For a simulation carried out with 5× 106 mesh volumes for both control and optimal

wing-propeller system, span efficiency η defined as

η =
C2

L

πACDi
, (5.15)

predicted by PROP-EULER code was 0.558 and 0.608 respectively. The span efficiency
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Figure 5.10: Plot of thrust coefficient versus advance ratio for different blade settings,
taken from Hartman & Biermann (1938)

Figure 5.11: Block diagram of PROP-EULER code
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of the optimal wing-propeller system was higher by 8.92% compared to the control wing-

propeller system.

To ensure grid independence of results, simulations with 10 × 106 and 30× 106 mesh

volumes were carried out.

With 10×106 mesh volumes for both control and optimal wing-propeller system, span

efficiency predicted by PROP-EULER code was 0.5856 and 0.6334 respectively. The span

efficiency of the optimal wing-propeller system was higher by 8.16% compared to the

control wing-propeller system.

For the mesh size of 30×106 mesh volumes for both control and optimal wing-propeller

system, span efficiency predicted by PROP-EULER code for control wing-propeller system

was 0.637 and for optimal wing-propeller system was 0.687. The span efficiency of the

optimal wing-propeller system was higher by 7.84%, close to the value for the 10 × 106

mesh results compared to control wing-propeller system. This establishes satisfactory grid

independence of results.

Figs. 5.14 and 5.15 show the convergence behaviour of lift coefficient for mesh sizes of

10× 106 and 30× 106 respectively.

Figs. 5.16 and 5.17 show the convergence behaviour of induced drag coefficient for

mesh sizes of 10× 106 and 30× 106 respectively.

From the results mentioned above it can be seen that the reductions in induced drag

predicted by high fidelity CFD simulations using PROP-EULER code are very close to

the value predicted by the low fidelity PROWING tool, which is 9.35%.

Contour plot of the pressure coefficient on both optimal and control wings for the

mesh size of 30× 106 mesh volumes are shown in figures 5.18 and 5.19. It is seen that the

pressure gradients are smoother on the optimal wing (fig. 5.19) compared to those on the

control wing (fig. 5.18), especially in the region covered by the propeller slipstream.

5.4 Use of Fluent along with UDF for validation of

optimal wing design

UDF is a function that enables user programs to be loaded to Fluent to enhance certain

capabilities. For example, one may impose a certain type of boundary condtion by writing

a small program. One can also define sources in an elemental mesh volume. UDFs are

written in C programming language. There are many predefined macros in Fluent which

can be used to build UDFs.

We have used a particular macro called as DEFINE SOURCE (FLUENT 2003). This

particular macro helps in adding a mass, momentum and energy source to elemental mesh

volumes. The strength of the sources can have a variation over the actuator disk depending

on the user’s requirement. In the present study, there is no mass source and the blade
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Figure 5.12: Density residue variation with number of iterations for control and optimal
wing-propeller system for mesh size of 10× 106
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Figure 5.13: Density residue variation with number of iterations for control and optimal
wing-propeller system for mesh size of 30× 106



5.4 Use of Fluent along with UDF for validation of optimal wing design 69

0 10000 20000 30000 40000 50000 60000
Iterations (n)

-0.2

0

0.2

0.4

0.6
C

L

Control wing-propeller system
Optimal wing-propeller system

Figure 5.14: Convergence of lift coefficient for control and optimal wing-propeller system
for a mesh size of 10× 106
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Figure 5.15: Convergence of lift coefficient for control and optimal wing-propeller system
for a mesh size of 30× 106
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Figure 5.16: Convergence of induced drag coefficient for control and optimal wing-
propeller system for a mesh size of 10 × 106. Inset shows the zoomed view of the tail
of the convergence history.
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Figure 5.17: Convergence of induced drag coefficient for control and optimal wing-
propeller system for a mesh size of 30 × 106. Inset shows the zoomed view of the tail
of the convergence history.

element module developed here is used to estimate the strength of the momentum and

energy sources.

The optimal wing for case 9 described in chapter 3, which has a total drag lesser by

9.35 drag counts, was chosen to validate the theory and optimization in PROWING. To

eliminate the uncertainities in predicting absolute drag values with RANS codes, we focus

on the reduction in drag indicated in counts and not in percentages.

For solving the RANS equations, the Spalart-Allmaras turbulence model was used. A

mesh size of 107 mesh volumes was used. The final solution had the first mesh point at

y+ < 1 where y+ is defined as

y+ =
u∗y

ν
(5.16)

where u∗ is the friction velocity at the nearest wall, y is the distance to the nearest wall

and ν the kinematic viscosity of the fluid.

From the simulation it was found that the total drag coefficient of the optimal wing

was lower by 10.04 counts compared to the control wing. This reduction is very close to

the value of 9.35 counts predicted by PROWING.

These results show that the assumptions made in the model underlying PROWING

provide a good approximation for wing-propeller systems. Due to lack of computational
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Figure 5.18: Surface contours of pressure coeffecient on control wing.
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Figure 5.19: Surface contours of pressure coeffecient on optimal wing.
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resources, finer meshes could not be used but wind tunnel tests were carried out, and

these are described in chapter 6.

5.5 Conclusion

High fidelity CFD simulations, on both control and optimal wings, have shown that the

optimal wing has indeed lower drag compared to the control wing. Use of the present

PROP-EULER code confirms that the reduction in induced drag as predicted by PROW-

ING is a good estimate, and use of RANS code (FLUENT) along with User Defined

Functions confirms the reduction in total drag. This shows that the theory and opti-

mizer in PROWING offer a good approximation and representation of the wing-propeller

system.



Chapter 6

Wind Tunnel Tests

In addition to CFD simulations described in chapter 5, a short proof-of-concept wind

tunnel study was carried out in collaboration with C-CADD (Centre for Civil Aircraft

Design and Development), NAL, Bangalore. A more complete test programme was not

possible because of constraints on time and resources, but it is being currently planned.

Details and results of the tests, taken in part from Panda et al. (2012), are described in

subsequent sections. In addition to the details and results, an analysis carried out by us to

(i) check for consistency in experiments and (ii) understand the results, is also presented.

6.1 Experimental setup

The wind tunnel studies were carried out on a 1/10th scale model of the NAL Saras aircraft.

Saras is a 14-19 seat turboprop with propellers mounted in a pusher configuration (fig.

6.1), and was chosen because a wind tunnel model was readily available at C-CADD, NAL.

Since Saras was by design a pusher, and as our study was on a tractor configuration,

the model was converted into a tractor by using additional mounts. Saras in tractor

configuration, to be called as Saras-C, was used as the control model. The experiments

were carried out at the IISc 9ft × 14ft open circuit wind tunnel.

A 1/10th scale Hartzell propeller was used for the study. Slipstream velocities required

for the design of optimal wings using PROWING were generated using the PROP-EULER

code. For this purpose the aerodynamic coefficients of the Hartzell propeller blade sections

were needed and were computed using XFOIL (Drela & Giles 1987) for a chord based

Reynolds and Mach number, corresponding to a wind speed of 35m/s. Variation of chord

and pitch of the Hartzell propeller blade along the radius is shown in fig. 6.2. Variation

of Reynolds and Mach numbers along the radius of the propeller is shown in figs. 6.3 and

6.4. Aerodynamic coefficients computed using XFOIL for sections of the propeller blade

were then given as the input to the PROP-EULER code to generate slipstream velocities.

Using these slipstream velocities, wing optimization was carried out using PROWING.

The optimal wing had the same aerofoil section as the Saras wing namely modified GAW-

2. Four optimal wing designs were generated as reported under case 10 in chapter 4, all

at CL = 0.4, the cruise lift coefficient of Saras.

The four candidate designs 10a, 10b, 10c, 10d are optimal planforms generated using

different number of design variables mentioned under each planform under case 10 in

75
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Figure 6.1: Saras aircraft with propellers mounted in pusher configuration
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Figure 6.2: Variation of chord and pitch along the radius of 1/10th scale of hartzell
propeller blade
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Figure 6.3: Variation of Reynolds number along the radius of 1/10th scale of hartzell
propeller blade
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Figure 6.4: Variation of Mach number along the radius of 1/10th scale of hartzell propeller
blade
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Figure 6.5: Control configuration - Saras-c used for wind tunnel testing

chapter 4. Out of the four candidates design 10a was chosen for the wind tunnel experi-

ments, as it had the highest total drag reduction compared to the other designs namely,

6.61%.

A CAD model of design 10a was prepared and handed over for fabrication at NAL.

The optimal wing model as fabricated at C-CAD, NAL used fiber reinforced plastic, with

two aluminium spars of 9mm diameter located at 17mm and 35mm from the leading edge

of the wing and 2mm above the wing root aerofoil chord line. The model with the optimal

wing attached to the fuselage of Saras-C is called Saras-O.Final models of Saras-C and

Saras-O used for wind tunnel testing are shown in figures 6.5 and 6.6 respectively.
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Figure 6.6: Optimal configuration - Saras-o used for wind tunnel testing
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6.2 Test Procedure

The tests were conducted at a tunnel wind speed of 35m/s. To have a significant effect

of the propeller slipstream on the wings and measurable drag differentials, the propellers

were run at an advance ratio of 0.89. The rotational sense of the propellers was up-

inboard. Tests were conducted with and without boundary layer trips, herein referred to

as BLT. Forces in all the three directions were measured and drag polars and pitching

moment were computed. The range of angles of attack covered was from −4◦ to +10◦.

Table 6.1 gives the geometric and aerodynamic details of propeller and wing used to

generate optimal wing design for wind tunnel testing.

Parameter Value

Wing span 1.3m
Exposed wing area 0.214m2

Aspect ratio 7.89
Taper ratio 0.3481

Cruise lift coefficient 0.4
Propeller diameter 0.216m

Propeller blade angle at 75% radius 29◦

Tunnel speed 35m/s
Advance ratio 0.89

Table 6.1: Geometric and aerodynamic details used to generate optimal wing design

Saras-C and Saras-O mounted in the wind tunnel for testing are shown in figs. 6.7 -

6.9. Figure 6.10 shows the propeller mounted in tractor configuration. Fig. 6.11 shows

the trip used on the wing surface.

The tests were divided into the following runs:

• Basic run: This test was on a model configuration including fuselage (F), wing, ver-

tical tail (VT), horizontal tail (HT) and ventral fins (VF). The model was mounted

on a strut in the wind tunnel.

• Power off: This test includes all the components of basic run along with motor struts

(MS) and nacelles (N) but without the propeller as it would windmill and hence

alter the flow-field across the wing. This test is essential to find out the aerodynamic

effects of the components added after the basic run.

• Power ON: This test includes all the components of basic run along with motor

mounts, nacelles and propellers. The motors are supplied with the power to rotate

the propellers at the predetermined speed to achieve the required advance ratio,

thereby developing the required flow-field. The test was conducted with and without

boundary layer trips (BLT). Two types of BLTs, namely BLT 1 which has dense
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Figure 6.7: Saras wing, as seen from front and below, mounted to the fuselage

Figure 6.8: Optimal wing, as seen from front and below, mounted to the fuselage
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Figure 6.9: Optimal wing, as seen from behind the aircraft

Figure 6.10: 1/10th scale model of Hartzell propeller
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Figure 6.11: Boundary layer trip used for testing

particles, and BLT 2 which has fine particles, were used. After preliminary tests

with BLT 1, it was decided that the tests with BLT would be performed with BLT

2 as the particle size in BLT 1 was too thick.

Table 6.2 indicates the test schedule.

Run No. Components involved

1 F + Saras-C + VT + HT + VF Basic Run
2 F + Saras-O + VT + HT + VF Basic Run
3 F + Saras-C + VT + HT + VF + MS + N + BLT2 + Power OFF
4 F + Saras-O + VT + HT + VF + MS + N + BLT2 + Power OFF
5 F + Saras-C + VT + HT + VF + MS + N + BLT 2 + Power ON
6 F + Saras-O + VT + HT + VF + MS + N + BLT 2 + Power ON
7 F + Saras-C + VT + HT + VF + MS + N + Power ON (no trip)
8 F + Saras-O + VT + HT + VF + MS + N + Power ON (no trip)

Table 6.2: Test schedule

6.3 Results

Results of wind tunnel tests for the schedule mentioned in table 6.2 are described in this

section.

Figures 6.12, 6.13 show a comparison of drag polar and CM − CL variation between

runs 1 and 2. From fig. 6.12 it can be seen that the Saras-O configuration even without the

propeller has a lower drag, by 8.33% at CL = 0.4. It also has a lower drag upto about CL =



84 Chapter 6. Wind Tunnel Tests

Figure 6.12: Comparison of drag polar between runs 1 and 2

0.6. Thus, even in the absence of the slipstream, the new planform is aerodynamically

more efficient. From fig. 6.13 it can be seen that the stability characteristics of both

Saras-C and Saras-O configurations are almost the same till about a CL = 0.45, and that

for CL > 0.45 Saras-O is stabler than Saras-C.

Figures 6.14, 6.15 show a comparison of drag polar and CM − CL variation between

runs 3 and 4. Similar observations as made for runs 1 and 2 can be made. From fig. 6.14

it can be seen that Saras-O wing even without the propeller has a lower drag upto about

CL = 0.55. The boundary layer trip has moved the cross over point in the drag polar to a

lower CL value compared to the drag polar of runs 1 and 2. From fig. 6.15 it can be seen

that Saras-O is stabler compared to the Saras-C in the presence of a boundary layer trip.

Figures 6.16, 6.17 show a comparison of drag polar and CM − CL variation between

runs 5 and 6 (power on). It can be seen from figure 6.16 that the drag of Saras-O at

CL = 0.4 is lower by about 15% compared to Saras-C. CD continues to be lower upto

CL ≈ 0.78, increasing thereafter. One point that needs to be emphasised is that the

optimal wing was designed for cruise at CL = 0.4. The drag of Saras-O being lower

than Saras-C at other CL’s is a by-product. It was found that the CL for Saras-C during

take-off is around 0.76-0.78. Therefore, it can be concluded that Saras-O is doing neither

any better nor any worse during take-off. Depending on the duration of the cruise phase

during flight, the benefits of lower drag are available.

The precise reason for the higher drag reduction obtained in wind tunnel tests is not

clear at the present stage, however the following explanations are plausible: (i) accuracy of

propeller data supplied as input to Prop-Euler code which was used to generate slipstream
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Figure 6.13: Comparison of pitching moment variation with CL curves between runs 1
and 2

Figure 6.14: Comparison of drag polar between runs 3 and 4
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Figure 6.15: Comparison of pitching moment variation with CL curves between runs 3
and 4

velocities, (ii) local Reynolds number based on larger wing chords are higher in outboard

regions of the wing because of large chords and could lead to lower skin friction drag,

(iii) lower parasite drag of optimal wing as evidenced by fig. 6.12 even at CL = 0 on the

basic configuration, possibly related to trasitional flow at low tunnel Reynolds numbers

and (iv) constructive interference between fuselage and wing. Investigations to explain

higher CD reductions than predicted for the wing alone are currently in progress.

But one fact that gets established in the light of this study is that the theory and

optimization process embedded in PROWING is technically robust.

From 6.17 it can be seen that the longitudinal stability behaviour of both Saras-O and

Saras-C are not very different.

Figures 6.18, 6.20 show a comparison of drag polar and CM − CL variation between

runs 7 and 8 (power on, no BLT). It can be seen from figure 6.18 that the drag of

Saras-O at CL = 0.4 is lower by about 20% compared to the Saras-C; it remains lower

upto CL ≈ 0.68, and becomes higher thereafter. From fig. 6.20 it can be seen that

the longitudinal stability behaviour of both Saras-O and Saras-C are the same till about

CL = 0.6.

Another way of data analysis that helps to check for consistency and seek better

understanding of the results is now presented. We consider the drag coefficient CD at

CL = 0.4 and the contribution of a boundary layer trip to the drag.

Fig. 6.21 first displays values of CD at CL = 0.4 for two Saras configurations: one
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Figure 6.16: Comparison of drag polar between runs 5 and 6

Figure 6.17: Comparison of pitching moment variation with CL curves between runs 5
and 6
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Figure 6.18: Comparison of drag polar between runs 7 and 8

Figure 6.19: Comparison of cl-alpha curves between runs 7 and 8
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Figure 6.20: Comparison of pitching moment variation with CL curves between runs 7
and 8

optimized wing (Saras-O) and the other with Saras wing (Saras-C). The figures for values

of CD are taken from the graphs already presented (figs. 6.12, 6.14, 6.16 and 6.18).

There are four columns in fig. 6.21, respectively for four test conditions: (i) Basic (ii)

no boundary layer trip, power on, (iii) boundary layer trip, power on (iv) boundary layer

trip, power off. Differences in entries in each column show the differences between the

optimal and control configurations at each test condition, wehreas the differences in the

rows indicate the effects of test conditions on drag.

Looking at column 1 (basic), CD for Saras-O is lower than for Saras-C by 5 units

(1unit = 10−3), i.e. even without the slipstream the new wing is performing better.

When power is turned on, still without a boundary layer trip (column 2), the value of CD

for the optimal wing goes down by 2 units whereas that for Saras-C goes up by 3 units.

This suggests that the normal increase in drag that might be expected with power on is

absent in the optimal wing. In column 3, with the boundary layer trip and power on,

the drag of Saras-O goes up by 11 units and that for Saras-C by 9 units. This must be

attributed to the effect of the trip: it is gratifying that the overall effect in either case

is very nearly the same. In other words the trip increases the drag by about 10 units

in either configuration. It also suggests that the flow is largely laminar without the trip

as the test Reynolds number is only 5 × 105 based on mean chord. Reading downwards

in column 3 we see that the Saras-O has a lower drag than Saras-C by 9 units. This

differential is not too different from the value of 10 units without a trip. Thus it would

appear that with or without a trip Saras-O saves about 9.5 units in CD. It is seen that

the figures are largely consistent among themselves.

It is now interesting to look at the zero lift drag (fig. 6.22). The analysis in this case
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Figure 6.21: CD values for CL = 0.4

is vitiated by an outlier at nearly zero lift conditions (fig. 6.18). This appears to be an

experimental error of some kind although the cause for it has not been found. In the

analysis two values of CD at CL = 0 are used for Saras-O, namely 0.043 (the outlier) and

0.036 (value interpolated between test results on either side). This correspondingly leads

to two values for differentials involving no-trip power-on CD. It is remarkable however,

looking at column 3, Saras-O once again has a lower drag than Saras-C, and the tripped

power-on drag of Saras-O is lower than that of Saras-C by 11 units, very close once again

to the values at CL = 0.4. This incidentally suggests that the optimal wing has an

appreciably lower drag, even at nearly zero lift conditions, and that the contributions to

the large drag reductions noticed in the tests are due in part to reductions in parasite drag.

It is possible that, at the low test Reynolds numbers, transition effects are significant. A

plausible explanantion would be the following. At CL = 0.4 the trip is effective, and flow

is turbulent all along the chord. At CL = 0, when the pressure gradients are milder, the

boundary layer over the shorter chords (where the Reynolds number is only 2.5× 105 the

boundary layer is not fully turbulent, so drag is lower. To check this explanation, further

experimental studies on the wing and aircraft are necessary.

6.4 Flow visualization

Flow visualization using tufts was carried out for the Saras-O configuration. Figures 6.23

to 6.35 show flow visualiztion pictures over angles of attack ranging from −4◦ to 10◦. From
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Figure 6.22: CD values for CL = 0. Boxed values correspond to the outlier point near
CL = 0 in fig. 6.18

figure 6.29 it can be seen that a mild separation has occured inboard of the propeller close

to the wing root at an angle of attack of 8◦. Comparing the drag polar between runs

7 and 8 shown in fig. 6.18 (runs 7 and 8 are chosen since, the boundary layer trip was

removed in the flow visualization runs). The drag of Saras-O, compared to Saras-C, is

higher beyond CL = 0.78, which corresponds to an angle of attack of 8◦ from fig.6.19.

This flow separation may be prevented by one of the following methods:

• recomputing an optimum wing design having a weighted cost function, one repre-

senting cruise and the other representing take-off/landing,

• by locally modifying the wing design by better wing body blending / selecting other

aerofoil sections

Investigations along these directions are currently in progress.

6.5 Conclusion

Wind tunnel studies have shown that the optimal wing has substantially lower drag at the

design CL of 0.4. The drag is lower drag upto CL ≈ 0.78 for the case without boundary

layer trip and upto CL ≈ 0.6 for the case with boundary layer trip. Flow visualization

with tufts suggests that the cause for higher drag at higher CL values (CL > 0.6 and

CL > 0.78 with and without boundary layer trip respectively) may be separation. Studies

to prevent flow separation are currently in progress but are beyond the scope of the present
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Figure 6.23: Flow visualization for SARAS-O at −4◦

thesis. These results, along with CFD simulations, confirm that the theory and optimizer

embedded in PROWING is technically robust and should be useful for preliminary design.
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Figure 6.24: Flow visualization for SARAS-O at −2◦

Figure 6.25: Flow visualization for SARAS-O at 0◦
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Figure 6.26: Flow visualization for SARAS-O at 2◦
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Figure 6.27: Flow visualization for SARAS-O at 4◦

Figure 6.28: Flow visualization for SARAS-O at 6◦
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Figure 6.29: Flow visualization for SARAS-O at 8◦

Figure 6.30: Flow visualization for SARAS-O at 10◦
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Figure 6.31: Flow visualization for SARAS-O at 10◦ (zoomed view)

Figure 6.32: Flow visualization for SARAS-O at 12◦
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Figure 6.33: Flow visualization for SARAS-O at 12◦ (zoomed view)

Figure 6.34: Flow visualization for SARAS-O at 14◦
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Figure 6.35: Flow visualization for SARAS-O at 14◦ (zoomed view)





Chapter 7

Conclusion

This thesis has focussed on designing optimal wings for aircraft driven by propellers/rotors

in tractor configuration, by modifying the classical lifting-line theory and coupling it to

an optimiser. Detailed conclusions have already been provided at the end of each chapter.

Herein a summary is provided with suggestions for possible future work.

The optimization problem was formulated in chapter 3. The classical lifting-line theory

was modified to account for time averaged propeller slipstream velocities (axial, tangen-

tial). An in-house code, PROWING, was developed which coupled the modified lifting-

line theory to a constrained optimiser, fmincon, available in MATLAB. To obtain smooth

wing shapes, the chord and twist distribution of the wing were parameterised using Bézier

curves, and the Bézier modes were used as the control variables in the optimization pro-

cess. The algorithmic implementation was checked using standard test cases. Optimal

wing shapes for various cost functions and constraints were generated and are reported

in chapter 4.

To check for the scientific robustness of the optimiser, CFD simulations were per-

formed and the results are reported in chapter 5. An in-house Euler code with propeller

handling capabilities (PROP-EULER) was developed for the purpose. The propeller was

modelled as a rotating actuator disc with distributed sources of axial and angular mo-

mentum. The corresponding source densities were estimated using blade-element theory,

based on the aerodynamic and geometric characteristics of the propeller blades. The

code was validated using standard test cases and was used to solve for the flow over se-

lected optimal wings computed in chapter 4. The results obtained using PROP-EULER

and PROWING differed by around 1-2% in induced drag. Thus the high fidelity CFD

simulations have confirmed the scientific robustnes of the model embedded in PROWING.

Proof-of-concept wind tunnel tests were performed at the IISc 9ft × 14ft open cir-

cuit wind tunnel in collaboration with C-CADD (Centre for Civil Aircraft Design and

Development), NAL, Bangalore and the results are reported in chapter 6. Based on the

propeller and the aircraft model available at NAL for the wind tunnel tests, optimal wings

were generated using PROWING. These wings were then fabricated and both the control

and optimal wings were tested. The tests were conducted at chord based Reynolds num-
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ber of 0.5 × 106. The drag data at lift coefficients CL = 0 and CL = 0.4 were analysed.

The total drag on the aircraft with optimal wing was lower by 15% at CL = 0.4, which

is appreciably better than the PROWING predicted reduction of 6.61%. Although the

reasons for higher drag reduction are not entirely clear at this stage, preliminary anal-

ysis indicates two plausible candidates: (i) the new wing has appreciably lower profile

drag, perhaps due to transition effects, and (ii) there is constructive interference from the

fuselage. The tests leave no doubt that the optimal wing design proposed here has an

improved aerodynamic performance. Investigations to explain the higher drag reduction

obtained in the wind tunnel tests are being planned.

Now that the mathematical correctness of PROWING is established, many optimal

wing shapes with a variety of constraints can be generated. To make this wings into reality

much more detailed engineering studies have to be carried out and the aerodynamic ben-

efits of the wing shapes must be carefully assessed from a multi-disciplinary view point,

including in particular structural parameters and manufacturing technology. The wings

with curved trailing edges proposed here should be easier to manufacture with composite

materials. Such studies are being carried out currently. An intriguing question concern

the fact that drag reduction measured in the wind tunnel tests is higher than predicted.

Further numerical and wind tunnel tests are being planned to identify the cause.

An international search report (Restrick 2011) on a draft patent (Narasimha et al.

2010) based on the findings of this thesis declared that a wing design having shorter chords

in the propeller slipstream and longer chords on either side, as described in this thesis, is

the first of its kind as determined from a search carried out in the scientific literature and

patent prior art. An Indian patent was filed on 3rd July 2009, and international patents

filed on 5th July 2010.
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Bézier Curves

A brief discussion on Bézier curves is presented in this appendix (http://www.tsplines.com

.). These curves are named after Pierre Bézier, working at Renault car company, who

invented the curves in the 1960’s for design of automobile bodies and surfaces.

To appreciate the special characteristics of Bézier curves, we consider 4 points Pi,

i = 0...3 as shown in fig. A.1. Each point i has an associated weight wi, i = 0...3. The

centre of mass P of these four points is given by

P =

∑3

i=0wipi
∑3

i=0wi

(A.1)

Now suppose the individual weights are assumed to vary as some function of a pa-

rameter t, for example by the Bernstein polynomials, w0 = 1 − t3, w1 = 3t(1 − t2),

w2 = 3t2(1 − t) and w3 = t3. The variation of these weights for a variation of t between

0 and 1 is shown in fig. A.2. The curve swept by the centre of mass P , shown in fig.

A.3, as t varies between 0 to 1, is known as a Bézier curve. When t = 0, w0 = 1 and

w1 = w2 = w3 = 0. This forces the curve to pass through P0. Also, when t = 1, w3 = 1

and w0 = w1 = w2 = 0. This forces the curve to pass through P3. Furthermore, the curve

is tangent to the line joining P0-P1 and P2-P3 and does not pass through all the points.

These interesting properties help in getting smooth shapes. This curve is cubic as the

weights are cubic polynomials in t. The weights are known as blending functions. In the

case of Bézier curves these blending functions are taken as the Bernstein polynomials.

A degree n Bézier curve will have n + 1 control points whose blending functions are

the Bernstein polynomials as Bn
i (t), given by

Figure A.1: Four points distributed in a parameter t space with a centre of mass P .
Source:(http://www.tsplines.com .)
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Figure A.2: Variation of masses with t, 0 ≤ t ≤ 1. Source:(http://www.tsplines.com .)

Figure A.3: Cubic Bézier curve. Source:(http://www.tsplines.com .)

Bn
i (t) =

(

n

i

)

(1− t)n−iti, i = 0...n (A.2)

The equation for a Bézier curve can now be written as

P (t) =

n
∑

i=0

Bn
i (t)Pi (A.3)

Fig. A.4 shows a sample of Bézier curves with degrees 1 to 4.

Let us now consider a rectangular wing of aspect ratio A, span b and chord c. If we

Figure A.4: Bézier curves of degrees 1 - 4. Source:(http://www.tsplines.com .)
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take n Bézier modes (in the current work, the masses are called Bézier modes) at equally

spaced stations along the span, then the chord at any station y along the span is given by

c(y) =
n

∑

i=0

Bn
i (y)wi (A.4)

where wi is the Bézier mode.

One special property of a Bézier curve is what is called ‘variation-diminishing’; i.e. a

line drawn through a Bézier curve will intersect it at number of points that is less than or

at most equal to the number of intersections with the control polygon. This property is

of importance in the present work, and is responsible for the ‘smoothness’ of the trailing

edges in optimal wing designs.
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