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Abstract

It has been well known for many years that the flow past a turbine blade exhibits a rich variety
of boundary layer phenomena, including all the problems that have been accepted as beyond
the capability of current turbulence models. These problems include, in particular, transition,
relaminarization, and separation; interestingly all three of them may occur simultaneously
on the same blade under certain conditions. It therefore seemed worthwhile to investigate
how many of the flow properties/characteristics of the turbine blade, especially within the
boundary layer, can be captured by DNS.

In this context, the thesis attempts to address the following issues that were found to be
important after an extensive literature survey of the field:

• Numerical Issues

– Accounting for compressibility

– Addressing skewed-grid concerns near the boundary layer

– Grid convergence, spatial and temporal resolution

• Fluid-dynamical Issues

– Effect of high surface curvature on boundary layer flow

– The behaviour of separation bubbles (if there should be any)

– Assessment of current DNS results with prevailing theories

– Characteristics of the turbulent fluctuations in wall shear stress

– Assessment of RANS and LES results with present DNS results

• Technological Issues

– Computation of accurate surface pressure distribution

– Interactions between tripping, transition, relaminarization and retransition

– Analysis of skin friction and heat transfer fluctuations
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The present focus on the boundary layer flow on turbine blades is desirable as it has not
received much attention; instead, flow in the passage between successive blades in a stage
has been of major concern in most earlier studies. To obtain reliable boundary layer data, a
new hybrid grid is used for simulations on the blades, with a fine boundary layer grid on the
wall and a general hexahedral grid for the rest of the passage. To the best knowledge of the
author, this is the first such boundary layer study using a compressible DNS code.

The new DNS code, named ANUROOP (meaning resembling or concordant in Sanskrit,
copyright in progress), has been developed in the thesis specially for the purpose. ANUROOP
solves 3D compressible Navier-Stokes equations in 3D space and time. It is developed in a
finite-volume framework to ensure conservation of relevant quantities as well as compatibility
with computational domains in complicated geometries. Second order central differencing
based on a kinetic-energy preserving scheme is used for the flux calculation, as it is found
to be more robust and has less aliasing error. Boundary conditions based on characteristics
are used at the inflow and outflow boundaries to ensure smooth flow. A relaminarized
buffer layer (also called ’viscous padding’) is used in the vicinity of the outflow from the
computational domain to prevent fluctuations due to physical instabilities of the flow. The
code is parallelised with standard MPI with optimised communication.

The code has been verified and validated extensively against various free-shear as well as
wall-bounded flows, including the Taylor-Green vortex flow, the Sod shock tube problem,
and forced, fully developed supersonic turbulent channel flow.

ANUROOP has then been used to simulate flow past the low pressure turbine (LPT)
blade T106A at Reynolds number Re = 51831 (based on the inlet velocity and axial chord
length) and Mach numberM = 0.1, for which test data are available from Stadtmuller (2002a).
A typical flow passage between two neighbouring blades was taken as the computational
domain, with periodic boundary conditions in the chord-normal and spanwise directions.

The study has yielded the following important insights into LPT blade flow dynamics:

• The grid sensitivity study (with the number of grid elements varying from 25 to 160
million) suggests that streamwise resolution near the high surface curvature region
has a significant effect on the computed flow. For example, even a fundamental bulk
parameter such as the pressure distribution on the blade surface was found be sensitive
to resolution. This suggests a strong coupling between the boundary layer and outer
flows.

• Very close to the leading edge, the curvature is too high for Prandtl’s boundary layer
theory to be applicable. DNS results in this region were then compared against higher
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order boundary layer theory that includes the curvature effect and good agreement was
found.

• The low and medium resolution simulations predict a single mean ‘short’ separation
bubble both near the leading and trailing edges of the suction side. The total velocity
contours for these simulations show multiple transitions on the suction side of the
blade where the flow is relatively much more complex than on the pressure side. The
flow becomes transitional after the leading edge separation, but it never becomes fully
turbulent with the intermittency reaching upto 0.9. The favourable pressure gradient
downstream relaminarizes the flow. In the relaminarization region of the blade, DNS
results compare favourably with the two-layer quasi-laminar theory.

• For the highest resolution simulation, the leading edge separation bubble on the suction
side disappears and the flow remains laminar till it separates near the trailing edge to
form a ‘long’ mean separation bubble.

From an engineering perspective, the peak heat flux for instantaneous flow is found to be
significantly higher than the mean value in the transition region. RANS simulations and LES
were also performed for the same flow using the available commercial code CFD++. The
RANS calculations without the presence of transition models do not at all predict separation
in this current set-up. Simulations with Langtry and Menter’s γ −Reθ model provide better
predictions of the flow but are substantially different from the experiment, particularly on the
suction side where the flow is quite complex. Results with hybrid RANS/LES simulations
however are promising, and such tools can be useful in engineering applications.





The story of a flow journey

This is the story of a remarkable journey
that she embarked on in her life-

Despite coming from a ’rough’ background,
she looked quite polite.

When she started ascent on a blade,
it was low Reynolds number-

She didn’t know what was coming,
but it only made her stronger.

Oh! how hard was the tiresome task
climbing up a curved wall-

But she took all the needed care,
so she doesn’t get a ’stall’.

But before she could go much farther,
her journey reached a difficult stage-
She got thrown away from the wall,

as she crossed the leading edge.

All the eye-witnesses said
It was due to adverse pressure-

But the thing all of them did ignore
Was the presence of high curvature.

Determined to finish her journey
she waited for the ’gradient’ to fall-

And after several failed attempts
she got reattached to the wall.

But I am very sorry to say
she was no longer the same kind

Recent struggles made her perturbed
and she now had a ’turbulent’ mind.



What a ’transition’ that was!
unimaginable was her anger-

The heat flux jumping all of five times,
skin-friction also surging in number.

Thank God for the next stage,
where the pressure ahead got favourable-

And the intermittency went down so,
that she looked now pretty stable.

She had completed most of her journey,
before she began to stumble-

Tripped again by adverse pressure
she fell into another ’bubble’.

And it was the same story once again-
Disturbances, fluctuations, transition-

But she completed her arduous journey,
shining with bravery and aspiration.

That’s the story about her so far,
but the journey is never complete-

She is now a wavy ’wake’,
set to achieve yet another feat.

...

Now if you are sitting in a plane,
and this story is chilling your spine-

Just look outside your window
all of it is happening in your LP turbine.

.......
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Chapter 1

Introduction, Background and
Motivation

The gas turbine is an integral part of the power generation system in most of the aviation
industry. The overall efficiency of an engine depends chiefly on the efficiency of the gas-
turbine, which in turn depends on efficient blade designs. According to a recent report by
Jahanmiri (2011), a 1% improvement in the efficiency of a low pressure turbine (LPT) results
in savings of about USD52,000 per year on a typical airliner.

The turbo-machinery industry strives to increase turbine blade loading in order to reduce
weight and total cost. It has been constantly realized that lack of proper understanding of
the complicated flow over these blades is impeding efforts to improve the aero-dynamic
design of blades. Also the life of a turbine blade is directly related to the fluctuating heat
transfer rates on its surface. Based on a report by Reed (1985), Narasimha (1991) notes that
a 25% difference in heat transfer rates on a turbine blade can mean an order of magnitude
difference to its life. Moreover, one study shows that as much as 70% on the suction side of
a typical turbine blade could be transitional (Narasimha 1991). This phenomenon is directly
related to the instantaneous peak heat transfer rate on a blade, which in turn is related to the
life of the blade and the efficiency of the gas-turbine in general. These observations make
flow past a blade, especially in the harsh and highly disturbed environment characteristic of
turbomachinery, a crucial problem in fluid-dynamics that needs to be understood.

1.1 The Turbine Blade as Fluid-dynamical Zoo

Figure 1.1 (due to J. Coupland, from an untraceable reference), shows the sketch of typical
fluid-dynamical phenomena that may occur in the harsh environment of a turbine blade.
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Fig. 1.1 The Turbine Blade as Fluid-dynamical Zoo

Depending on the shape, camber and curvature of the blade, we see these phenomena
occurring on the blade under different working conditions (Mayle 1991; Hodson & Howell
2005). Of these, separation, transition and relaminarization have been recognized as major
challenges not yet met by current turbulence models (Spalart 2015); all of these may occur
jointly or separately on an LPT blade. We briefly describe each of these phenomena below.

Separation

Boundary layer separation is one of the most striking phenomena on flows in the LPT blades.
A boundary layer may separate in an adverse pressure gradient region if the near wall fluid
does not have sufficient momentum to overcome it.

The mode of separation on a blade depends on whether the upstream flow is laminar
or transitional. Usually in transitional mode separation, reattachment is accelerated due to
vortex-shedding and transitional shear layer. Laminar mode separation may occur in separa-
tion bubbles, classified as ‘short’ or ‘long’ based on its effect on the pressure distribution
(Gaster 1969). As shown in Fig. 1.2, unlike a long bubble, a short bubble has only local
effect and does not alter the rest of the pressure distribution. Short bubbles occur at moderate
Reynolds number (Re) and mild adverse pressure gradients (and hence vortex-shedding is
sufficient to bring reattachment), whereas long bubbles require low Re and strong adverse
pressure gradients.
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2.2.3 Separated Flow Transition 
 
When a laminar boundary layer separates, transition may occur in the shear layer of the 
separated flow as a result of the inviscid instability mechanism.  In this case, due to the 
enhanced mixing caused by the turbulent flow, the shear layer may reattach.  This 
reattachment forms a laminar-separation / turbulent-reattachment bubble on the surface 
(Mayle, 1991).  This type of transition can occur behind boundary layer trip wires and as 
a result of separation due to a strong adverse pressure gradient.   

 
The bubble length depends on the transition process within the shear layer and may 
involve all of the stages listed for natural transition.  Because of this, it is generally 
accepted that the freestream turbulence level plays a large role in determining the length 
of the separation bubble.  Traditionally, separation bubbles have been classified as long 
or short based on their effect on the pressure distribution around an airfoil (Mayle, 1991).  
Short bubbles reattach shortly after separation and only have a local effect on the pressure 
distribution.  Long bubbles can completely alter the pressure distribution around an 
airfoil (see Figure 2.4).  Since long bubbles produce large losses and large deviations in 
exit flow angles, they should be avoided (Mayle, 1991).  Short bubbles on the other hand, 
can be used to trip the boundary layer and thus allow larger adverse pressure gradients 
downstream of the reattachment point.  One of the major challenges lies in determining 
whether or not a separation bubble will be long or short.  This is aggravated by the fact 
that small changes in either Reynolds number or angle of attack of an airfoil can cause a  
 

 
 
Figure 2.4   Separation bubble effects on suction side velocity distribution (reproduced 

from Malkiel and Mayle, 1996). 
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laminar boundary layer. Reattaching flows are typically associated with high levels of loss. 
However, the measurements presented in Figure 21 show that the regions of high shape factor 
in Figure 20, which are indicative of the initial stages of the formation of a separation bubble, 
have laminar levels of dissipation. These findings provide experimental proof of the loss 
reducing mechanism exploited in the design of high lift LP turbine blading. The highly 
dissipative separation bubble formed in the adverse pressure gradient of the steady flow is 
replaced between wake passing events initially by calmed flow and then the initial stages of 
the formation of a separation bubble, both of which are characterised by low levels of 
dissipation. Although the wake-induced turbulent strip has high levels of dissipation, the 
time-averaged losses are reduced by the longer durations of the calmed region and the initial 
stages of separation. 
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Figure 22 Schematic of time-mean laminar separation bubble (exaggerated 
scale) and measured static pressure coefficient from rear half of the T106 

suction surface in a steady flow cascade 

3.2 Separated Flow Transition 

Wake-induced transition is unlikely to occur in the attached flow upstream of the 
separation point as the lift coefficient of an LP turbine blade is increased or the Reynolds 
number is further reduced. Under these circumstances, a different transition mechanism arises 
due to the wakes. 

3.2.1 Steady Flow Separation Bubbles 
The conventional view of the time-averaged structure of a separation bubble is shown in 

Figure 22. The mechanism that causes a flow to separate from a blade surface is well 
understood and will not be explained here. 

There are several classification systems for separation bubbles. One of the most common 
defines two types of separation bubble; a short bubble designated as one that has only a local 

Fig. 1.2 Left: Short and long separation bubbles (reproduced from Malkiel & Mayle (1995)).
Right: Schematic of short separation bubble plotted on measured static pressure coefficient
in aft region of T106 blade suction surface (reproduced from Hodson & Howell (2007))

In an LP turbine, short bubbles are predominantly present. As reported in Hodson &
Howell (2007), for a high lift turbine blade (such as T106), short bubble may occur in the aft
region of the suction side for 105 ≤ Re ≤ 4×105. At lower Re, the blade is susceptible to
long separation.

Some designers prefer a ‘short’ bubble at the LE to make the downstream flow transitional
and hence avoid the greater losses due to possible long laminar separation in the aft region of
the blade. Separation-induced-transition is another area of active research, and is seen as a
challenge for the numerical modelling community working with turbulence and transition
models.

Transition

Laminar-turbulent transition of the boundary layer is an important phenomenon that occurs
on a turbine blade. Narasimha & Dey (1989) have presented schematic diagram of the various
stages of natural transition from laminar to turbulent flow on a flat plate as shown in Fig.
1.3. The first sign of transition to turbulence is 2-D instability (Tollmien-Schlichting waves)
followed by 3-D instability. The 3D instabilities were first discovered by Klebanoff et al.
(1962) in the form of spanwise waviness in the amplitude. The theory for this instability was
proposed by Herbert (1984) who showed that a laminar BL carrying relatively high amplitude
T-S waves, would experience a new instability through the appearance of transverse harmonic
variations of disturbance amplitude. These transverse waves develop into hairpin eddies
(lambda vortices).
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Fig. 1.3 Schematic diagram of transition from laminar to turbulent flow. α and γ respectively
denote spot spread angle and intermittency. For high-turbulence intensity, the instability
stages may get bypassed. (Reproduced from Narasimha & Dey (1989))
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Fig. 1.4 Heat transfer rate on a turbine blade (based on Turner (1971)). From top to bottom:
Blade section; External velocity distribution on blade surface; Local heat transfer coefficient
(in CHU/ f t2h◦C) along chord at turbulence levels q = 0.45,2.2,5.0 and 5.9% (Reproduced
from Narasimha (1985))
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In the later highly non-linear stages of evolution towards turbulence, so called breakdowns
occur in the region of peak amplitude in the lambda vortices. The breakdown appear in the
form of ‘bursts’, which basically have an element of randomness in their structure. These
bursts grow into what Emmons (2012) called turbulent spots, which travel downstream
growing in area along wedges. Eventually the spots overlap each other, leading to a fully
turbulent flow. In this process flow is intermittent, switching every now and then from laminar
to turbulent states. The fraction of time that the flow is turbulent is known as intermittency,
which varies from 0 at transition onset to unity in fully developed turbulent flow. This picture
was confirmed by Schubauer & Klebanoff (1956). The propagation of spots and the number
of spots formed per unit time and spanwise distance at the onset of transition, and their
propagation characteristics, depend on the pressure gradient imposed on the BL.

For a turbine blade, the transition may be natural, bypass or due to separated flow,
depending on the flow conditions such as free-stream turbulent intensity (FSTI) and wake
disturbance from upstream stages. Bypass transition is observed if the disturbance level
is high, in which the early instability stages as explained above may get bypassed. For
separated-flow transitions in laminar separation bubbles, this onset of transition may be
within the bubble.

Transition is particularly important for turbine blade flow studies, because the peak
heat-transfer rate on the blade depends on the location of the onset of transition. Thus, from
the designer’s perspective, data on transition are very useful for efficient blade design.

Narasimha (1985) has presented heat-transfer rates on an internally cooled turbine blade
at different turbulence levels based on a report by Turner (1971). Figure 1.4 shows how
the peak heat-transfer rate on the blade depends on the transition zone, which is strongly
influenced by complex interactions between pressure distribution, curvature, and free-stream
disturbances. The blade profile, shown at the top, has strong favourable pressure gradients on
both sides of the surface. On the convex side, the onset of transition moves rapidly forward
as turbulence level increases and at 5.9%, around 80% of the surface is in the transition zone.
Also the peak heat-transfer rate on the convex side (which occurs at the end of the transition
zone) is significantly higher than it would have been if flow were turbulent from the leading
edge. The heat-transfer rate for the fully turbulent flow was calculated by the methods of
Patankar & Spalding (1968).

Relaminarization

Relaminarization or reverse transition occurs when a turbulent or transitional boundary layer,
reverts to a laminar or quasi-laminar state under the influence of a strong favourable pressure
gradient. Incidently, relaminarization on turbine blades was found very early, and was first
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Fig. 1.5 Relaminarization on a turbine blade (Due to D. Wisler (1993). Reproduced from
LaGraff (2007))

documented by Wilson & Pope (1954) while studying the heat-transfer co-efficients on gas
turbine blades. Relaminarization under strong pressure gradients can be characterized by
two visible aspects: (1) Thinning of the boundary layer and (2) decrease in skin-friction and
heat-transfer co-efficients.

In the relaminarization region, the Reynolds shear stress does not die down completely
as in a perfectly laminar flow, but becomes negligible compared to that of the pressure
gradient (Narasimha & Sreenivasan 1973). Relaminarization may sometimes lead to multiple
transitions on a turbine blade, as the relaminarized flow could experience retransition to
turbulence when the favourable pressure gradient diminishes.

In an experiment by Wisler (LaGraff 2007), relaminarization is clearly observed on
the suction side of the blade (see Fig. 1.5) . The hot film traces show that the flow that
was turbulent near the leading edge (due to tripping) becomes calmer as it goes through
a favourable pressure gradient. The flow again becomes transitional as it encounters a
separation bubble (see Fig. 1.5), which acts like a trip to trigger transition. Multiple
transitions have also been observed on swept wings Mukund et al. (2012).
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1.2 RANS, LES, DNS

Conventional CFD tools like RANS and LES may be satisfactory if the interest is in features
related to the bulk parameters of a turbulent shear flow, however phenomena like transition,
boundary-layer separation, relaminarization etc., which involve large departures from stan-
dard fully-developed turbulent flow, cannot be captured by such models. It was suggested
by Narasimha in Minnowbrook I 1993 Workshop on End-Stage Boundary Layer Transition
(LaGraff 2007) that in such situations it is worth-while to have DNS studies of flow past the
turbine blade. The supporting argument was that, despite the complicated flow on the blade,
the Reynolds number (in the range of 2×104 to 5×105) is manageable enough to do a DNS.
Figure 1.6 shows a snapshot from the presentation made by Narasimha at Minnowbrook II,
LaGraff & Ashpis (1998), where this proposal was revisited.

With the recent boom in computing power and advances in more accurate numerical
schemes (Honein & Moin 2004; Jameson 2008; Shoeybi et al. 2010), the trend is now
slowly changing towards doing DNS to understand complex flows of the kind discussed
above. DNS is being identified as one of the promising tools that can significantly help to
understand the flow over these blades and to draw important conclusions which, in turn,
can help development of improved blade designs. However, due to the complexity of blade
geometry and the wide prevalence of transitions from laminar to turbulent flow as well as
the reverse, most DNS simulations are still limited in general to flow over relatively simple
geometries like flat plates (Wissink & Rodi 2009) or circular cylinders (Venema et al. 2011;
Wissink & Rodi 2011; Wissink & Rodi 2011, 2008), which at best mimic some features of
the flow over turbo-machinery blades. This is perhaps because of lack of adequate numerical
schemes with the desired accuracy, and difficulty in implementation of boundary conditions
in unstructured grids.

A few DNS results (Kehinde 2003; Wissink et al. 2006; Wissink & Rodi 2006; Zaki et al.
2010; Rai 2011) have been reported for flow over turbo-machinery blades (in compressors as
well as turbines); however most of them have been carried out assuming incompressible flow,
and also detailed boundary layer analysis is lacking. Since the beginning of the present work,
two more investigators (Michelassi et al. 2015; Garai et al. 2015) have reported compressible
DNS studies on LP turbine blades. An exhaustive list of DNS on LP turbine blades is given
in section 1.4.

With a few investigators (Stadtmuller 2002a; Liu & Rodi 1994b,a; Stieger et al. 2003;
Stieger & Hodson 2004, 2005; Choi et al. 2004) doing experiments on flow over turbine
blades at relatively low Reynolds numbers of order 105 (suitable for a DNS study), and
providing important data to compare with, a full-fledged DNS should be the preferred
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Fig. 1.6 Proposal for a DNS study of turbine blade flow, Minnowbrook-II. (reproduced from
LaGraff & Ashpis (1998))
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technique to enhance our understanding of such complex flows. Section 1.3 provides details
of a few experimental studies in the open literature for which DNS/LES are attempted.

1.3 Experimental Studies

Table 1.1 lists the experimental studies reported in the literature on fluid-dynamical studies of
LPT blades. The list includes only the experiments at low to moderate Re that are amenable
to a DNS study with currently available computational power, and is therefore not exhaustive.

1.3.1 The T106 Cascade

The T106 high-lift LPT blade represents the mid-section of the Pratt & Whitney PW2037
LPT, and has been the subject of many experimental and computational studies (Tables 1.1 ,
1.2). Stadtmuller (2002a,b) has performed experiments on a cascade at two design conditions
of the 2D blades of T106 at different solidities: The T106A cascade has a pitch-to-chord ratio
p/l = 0.799 and represents design conditions (Stadtmuller 2002a), and T106D-EIZ cascade
has p/l = 1.05 representing off-design conditions (Stadtmuller 2002b). These experiments
have been performed on a 7-blade cascade in the High Speed Cascade Wind Tunnel facility
at Universität der Bundeswehr München, Germany. Tests have been carried out at a relatively
low Re (6×104 based on exit velocity and chord length of the blade) so that experimental
data are suitable for DNS study. Separation is reported near the trailing edge (TE) of the
suction side for experiments with and without upstream-wake impingement on the turbine
blade.

These experiments on the T106A provide the basis for the DNS study reported in this
thesis. Further details on these experiments are given in Chapter 4 with the major parameters
describing the test set-up.

Stieger & Hodson (2004) have performed detailed experiments to understand the transi-
tion mechanism in a highly loaded blade. Incoming wakes interact with the separated shear
layer to form roll-up vortices by the inviscid Kelvin-Helmholtz (K-H) mechanism. These vor-
tices then breakdown into turbulent flow and get advected along the blade. The experiments
are performed at relatively high Re(= 1.6×105) compared to Stadtmuller (2002a).

1.3.2 MTU Cascade

Liu & Rodi (1994a,b) conducted experiments on a linear turbine cascade with incoming
unsteady wakes. The wakes are generated by a set of parallel cylinders mounted on a belt
moving across the free-stream upstream of the blade. Re was kept at 72,000 based on axial
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chord and inlet velocity, and the wake Strouhal number was in the range 0 to 7.36 to help
understand the effect of wake passing frequency on transition. The boundary layer (BL) on
the suction side becomes transitional under wake disturbances, while on the pressure side it
always remains laminar. Increasing wake passing frequency causes the onset of transition to
move upstream and results in significant increase in the heat transfer.

1.3.3 PakB Cascade

Pak-B airfoil shape is designed by Pratt & Whitney, and the cascade geometry is representa-
tive of modern LPT designs. It has been subjected to many experimental and computational
studies (see Volino (2002a) for a partial list till 2002).

Volino (2002a,b) conducted experiments for a range of Re, from 25,000 to 200,000 based
on suction surface length and exit velocity, and two different free-stream turbulence intensity
levels (FSTI = 0.5%, 9%). The onset of transition is near the beginning of BL attachment
following separation at the leading edge, and varies strongly with Re and FSTI. For lowest
Re cases (25,000 and 50,000), separated BL at leading edge did not attach and transition was
not seen for either low or high FSTI.

For higher Re, transition began in the shear layer over the separation bubble, causing BL
to reattach. With increase in Re and FSTI, transition moves upstream.

Öztürk & Schobeiri (2007) have recently performed experiments on Pak-B at Re =

110,000 with different FSTI as well as varying wake-passage frequencies, in particular
to understand the behaviour of separation bubbles under such disturbances. Separation
dynamics is governed by periodic unsteady wake if time-averaged turbulent fluctuations is
below maximum wake fluctuation. Above it, the dynamics is governed by flow turbulence
that causes suppression of the separation bubble.

1.3.4 Others

Choi et al. (2004) have performed experiments at 15,700 ≤ Re ≤ 105,000 to study the effect
of free-stream turbulence on heat-transfer and pressure distribution on a turbine blade. The
blade subjected to study has a chord-length of 22.68 cm, radial span of 25.4 cm and blade
spacing of 17.01 cm. It is reported that flow-separation at leading edge is enhanced as the Re
decreases but gets suppressed with increasing turbulence intensity. Local Nusselt Number
and local heat-transfer coefficient increase with increasing Re and turbulent intensity.

This could also have been a good case for our computational study, but we could not get
access to full details. The request for the data on blade geometry was denied, even though
the paper(Choi et al. 2004) promises availability as follows:
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“The details of the blade geometry are not provided here. But the interested
reader can either contact the corresponding author for the details or digitize
directly from the true geometry shown in Fig. 1.”

1.4 DNS Studies

This section considers the DNS studies performed on different LPT blades by various workers.
The literature is full of RANS studies on different blades and also a few LES, but the current
list is strictly limited to 3D DNS studies that focus on understanding the complex flow on the
blade and implications for engineering parameters. A non-exhaustive list of LES and RANS
simulations is given in chapter 6.

Table 1.2 lists the DNS studies on LP turbine blades along with corresponding blade
and experiment. Important simulation and numerical parameters such as Re, grid size and
resolution in wall-units (∆x+,∆y+,∆z+) are given, where-ever available. Important purpose
and outcome of the studies are briefly mentioned.

These studies can be broadly categorized in four types by the kind of inlet used:

• No inlet disturbance (clean)

• With free-stream turbulence (FSTI)

• With incoming wakes (wake)

• With wakes + free-stream turbulence (wake+FSTI)

The terms given in the parenthesis above are used throughout this thesis to refer to respective
inlets used in DNS studies.

The first DNS study was performed by Wu & Durbin (2001) at Re = 1.48× 105 and
inflow angle β1 = 37.7deg on the T106A blade. The simulation was performed on a moderate
grid of 57 million points with incoming wakes. The main focus of the study was on resolving
the distorted wake in the passage between the blades. Presence of longitudinal vortices
along the pressure side of the blade was reported, and confirmed later by the DNS results of
Wissink (2003) and Wissink et al. (2006).

In the DNS study of Kalitzin et al. (2003), flow past the T106A has been simulated at the
same Re and β1 as in Wu & Durbin (2001), but to understand the influence of grid turbulence
and wakes separately on the flow. Both grid turbulence and wakes lead to by-pass transition
in the adverse pressure gradient region on the suction side, however grid turbulence was not
as effective as wakes in inducing boundary-layer instabilities. Grid turbulence does however
increase turbulent kinetic energy in the passage towards the trailing edge of the pressure side.
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Michelassi et al. (2002); Wissink (2003) have performed a DNS study of flow past
T106A at Re = 51,831 and β1 = 45.50. The set-up used is the same as in the experiments of
Stadtmuller (2002a). Simulations have been performed for clean inlet as well as with wake
but no FSTI, and are compared with the experimental data available. On the pressure side
where flow is relatively simple, the pressure coefficient matches well with the experimental
data. However on the suction side there is a considerable difference in the match (see chapter
5). The reasons reported for this difference are: (a) uncertainties concerning exact inflow
angle in the experiment, and (b) assumption of incompressible flow in the governing DNS
equations. Separation bubbles have been found on the suction side at LE as well as TE. It
is to be noted that in the experiment only one separation near the TE is reported. The LE
separation bubble is short and unstable, and disturbances due to it get damped out downstream
by the favourable pressure gradient. The presence of periodically impinging wakes was
responsible for suppressing the TE separation bubble intermittently. The separated shear
layer near TE rolls up due to K-H instability, and fluctuating kinetic energy gets produced in
these rolls. The parameters used in the present DNS study are the same as in Wissink (2003)
except for the fact that the present simulations are performed using compressible set-up.

Wissink et al. (2006) performed DNS of flow past T106A at the same Re and β1 as
Wissink (2003), but to understand the effect of large and small scale fluctuations in the
incoming wake. Separation is again found both at LE and TE. Impinging wakes trigger
K-H instability in the TE separated shear layer. Transition to turbulence in this shear layer
depends on the presence of small-scale fluctuations. The onset of transition moves upstream
in the presence of the wake, but is chiefly due to the presence of small-scale fluctuations.

Wissink & Rodi (2006) calculated the heat transfer on a heated MTU blade using DNS,
which was set-up to simulate the experiments of Liu & Rodi (1994b,a). The simulations
were performed to study the influence of impinging wakes and background fluctuations on
local heat transfer and boundary layer development. On the suction side, for the case without
free-stream turbulence, the boundary layer remains laminar. However with periodic wakes
and fluctuations, the initial laminar flow becomes transitional in the adverse-pressure gradient
region (downstream along the blade). The heat-transfer also increases significantly in this
region.

Recently Sandberg et al. (2015); Michelassi et al. (2015) and Garai et al. (2015) have
revisited the experiments by Stadtmuller (2002a) to validate their numerical methods devel-
oped for DNS and also to gain fresh insights. They have respectively used compact finite
difference in multiblock structured grids, and Discontinuous-Galerkin (DG) spectral-element
approaches to solve the compressible flow on the T106A blade. They have presented superior
match of pressure with experimental results, as compared to Wissink (2003), though there is
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unanimity on the presence of separation bubble at the LE for the clean (with no inlet distur-
bance) case. This issue is highlighted in chapter 5. A detailed study of inflow disturbances
is presented in Michelassi et al. (2015), where it is shown that the presence of background
turbulence and/or incoming wakes helps reduce the size of the separation bubble or even
suppress it.

The author of this thesis was the first one to perform a compressible DNS of flow past
an LPT blade (Ranjan et al. 2013, 2014), to the best of the author’s knowledge. A study of
the very significant impact that resolution has on the solution was presented at an IUTAM
Symposium (Ranjan et al. 2016). The details of these simulations and the analyses form the
essential contents of this thesis and are described in chapters 4, 5 and 6.

1.5 The present DNS Approach

Our approach in this work is to conduct a systematic and detailed DNS study of flow past
the LPT blade T106A with a well-validated compressible code. A new DNS code, named
ANUROOP has therefore been developed by the author for this purpose. Unlike in previous
works, the focus here is on detailed studies of the boundary layer on the blade, rather than on
flow in the passage between the blades. The grid topology and resolution have been selected
accordingly.

DNS has been performed for a simple set-up of passage between two consecutive blades.
The simulation parameters are chosen according to the experimental details given in Stadt-
muller (2002a). A grid-resolution study is performed and results are compared against
available experimental and computational results. The three aspects described in section
1.1, such as separation, transition and relaminarization, are studied in some detail to broadly
reflect on flow regimes on an LP turbine blade. The effects of curvature are also analysed.
The instantaneous flow is compared with the mean flow for skin-friction co-efficient as well
as the heat-flux.

Finally RANS and LES simulations are performed using commercial code CFD++ to
understand the scope and limitation of such approaches in complex turbine blade flows.

The thesis has been organised in the following way.

• Numerical algorithm employed in development of present DNS code has been de-
scribed in detail in Chapter 2

• Chapter 3 contains validation and verification studies performed on the code

• Numerical and computational aspects of simulations on T106A blade are covered in
Chapter 4



1.5 The present DNS Approach 17

• Chapter 5 describes interesting findings on flow past LPT blade on fluid-dynamical
aspects

• RANS and LES simulations are described in Chapter 6. Engineering parameters such
as skin-friction and heat flux are also given in this chapter

• Final concluding remarks are given in Chapter 7





Chapter 2

Numerical Methodology

A new DNS code has been developed for the present study of flow past turbine blades. This
chapter formulates the governing equations and describes the methodology adopted in the
DNS code along with brief details on its implementation. Specific features of the code, such
as spatial and temporal discretization, boundary conditions, parallelization etc., are also
documented in this chapter.

2.1 The DNS Code ANUROOP

In DNS, the entire set of physical equations governing the flow under consideration are solved
without resorting to any dynamical modeling or approximation. The only approximation
involved is due to numerical implementation, where the partial differential equations (PDEs)
are converted to ordinary differential equations (ODEs) and then solved on the computer
using linear algebra techniques. Since all the scales of the turbulent flow are resolved in a
typical DNS with adequate resolution, the requirement on computational power is generally
very high.

Further, the choice of the grid and the computational scheme depend on the kind of
problem being solved. Spectral methods, because of their accuracy, are historically a
preferred choice for performing DNS. However their ability is generally limited to simple
geometries and to problems where the grid on the computational domain is relatively simple
and structured.

For more practical engineering flows in computational domains with complicated geome-
try, DNS is yet to become an established analysis tool. This is partly because of very high
computational power requirement (Re is generally high) in practical flows. Nevertheless,
unlike RANS and LES, there is not much literature available on the numerical schemes most
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suitable for such DNS studies. Hence the choice of most suitable numerical method for DNS
studies is still a debatable topic.

Flow past gas turbine blades is perhaps one of the more widely studied practical engi-
neering problems because of the moderate computational power requirement (because of
relatively low Re), and the degree of complexity in the flow that puts it beyond the RANS
codes in common studies. In the open literature (see chapter 1), most of these simulations
(except for very recent ones) solve incompressible Navier-Stokes equations (thereby ignoring
compressibility effects), and are performed using the Finite Volume Method (FVM). FVM
has the advantage of being able to work on grids in computational domains with complicated
geometry.

As the compressibility effect is one of the major reasons given in earlier simulations (see
chapter 1) for the poor match in pressure co-efficients on the suction side between the DNS
and experiments, it was decided to write a compressible code for the current study. A new
code named ANUROOP (meaning resembling or concordant in Sanskrit) was thus developed
by the author to solve the 3D compressible Navier-Stokes equations in 3D space and time.
At the time that the present code was developed (Ranjan et al. 2013), there was no published
compressible DNS study in the open literature; however the compressible flow studies have
appeared since then (Sandberg et al. 2015; Michelassi et al. 2015; Garai et al. 2015).

ANUROOP is developed in the FVM framework because of the following advantages:
(1) FVM can be used in domains of complicated geometry. (2) FVM solves the equations in
conservative form and hence becomes a natural choice for solving compressible equations
which demand accurate conservation as an essential requirement. Also the current study
focuses on the boundary layer flow on the turbine blades and not on the passage flow, which
was the major interest in eariler studies. For this purpose, a new hybrid grid is used for
simulations on the blades, with a fine boundary layer grid on the wall and a general hexahedral
grid for the rest of the passage.

2.2 3D Compressible Navier-Stokes Equations

The Navier-Stokes equations are the governing equations in fluid flow in aircraft gas turbines
and express conservation of mass, momentum, and energy. The assumptions commonly
made in deriving these equations are stated and the modeling of various thermodynamic, and
transport properties is briefly described below. The compressible continuity, momentum and
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energy equations in dimensional form are given by:

∂ρ

∂ t
+

∂ (ρu j)

∂x j
= 0 (2.1a)

∂ (ρui)

∂ t
+

∂ (ρuiu j)

∂xi
=− ∂ p

∂xi
+

∂τi j

∂x j
(2.1b)

∂ (ρE)
∂ t

+
∂ (ρu jH)

∂x j
=

∂

∂x j
(uiτi j)−

∂

∂x j
q j (2.1c)

where ρ and ui are density and velocity vector components (i = 1,2,3) respectively; E and
H are total energy and total enthalpy per unit mass respectively, given by:

E = e+K = cvT +
3

∑
i=1

uiui

2

H = E +
p
ρ

where e is the internal energy and K is the kinetic energy of the gas. To close the above set
of equations, they must be supplemented by an equation of state which, for a perfect gas, is:

p = ρRT (2.2)

The viscous stress tensor and the heat flux vector are given respectively by:

τi j = µ

[
∂ui

∂x j
+

∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

]
(2.3)

qi =−k
∂T
∂xi

(2.4)

The co-efficients µ and k are viscosity and thermal conductivity respectively, which vary
with the local temperature T and are assumed to follow Sutherland’s law -

µ

µ0
=

(
T
T0

)1.5(T0 +Sµ

T +Sµ

)
(2.5a)

k
k0

=

(
T
T0

)1.5(T0 +Sk

T +Sk

)
(2.5b)

where µ0 and k0 are reference values of viscosity and thermal conductivity at a given
reference temperature T0, and Sµ and Sk are the Sutherland constants for viscosity and
thermal conductivity respectively. Typical values used for the Sutherland constants for air
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are Sµ = 110.4◦ K and Sk = 194.4◦ K. These correlations are accurate up to 2% in the
temperature range of 160◦ K to 1000◦ K (Sutherland 1893).

2.2.1 Non-dimensionalization

In fluid dynamics simulations, the above equations are often solved in non-dimensional form,
which helps setting up the simulation in terms of the non-dimensional numbers that govern
the physics of the flow, for example the Reynolds number (Re), Prandtl number (Pr) and
Mach number (M). The variables in the equations can be non-dimensionalized with reference
values (represented by subscript re f ) and scales as given below :

xi → L⋆
re f

ui →U⋆
re f ⇒ t →

L⋆
re f

U⋆
re f

ρ → ρ
⋆
re f ⇒ p → ρ

⋆
re fU

⋆
re f

2

T → T ⋆
re f

µ → µ
⋆
re f

This leads to a set of non-dimensional conservation equations given by

∂ρ

∂ t
+

∂ (ρu j)

∂x j
= 0 (2.6a)

∂ (ρui)

∂ t
+

∂ (ρuiu j)

∂xi
=− ∂ p

∂xi
+

1
Re

∂τi j

∂x j
(2.6b)

∂ (ρE)
∂ t

+
∂ (ρu jH)

∂x j
=

1
Re

∂

∂x j
(uiτi j)+

1
(γ −1)M2

re f RePr
∂

∂x j
q j (2.6c)

And the equation of state takes the form

p =
1

γM2
re f

ρT (2.7)

In the above, Re = ρ⋆
re fU

⋆
re f L⋆

re f

/
µ⋆

re f is the Reynolds number and Pr = µre f cp
/

kre f is the

Prandtl number. Reference mach number Mre f is U⋆
re f

/
c⋆re f , where c⋆re f is the speed of

sound based on reference temperature T ⋆
re f and is equal to

√
γRT ⋆

re f , where γ =
cp

cv
is the

ratio of specific heats at constant pressure and at constant volume.
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When the specific flow velocity cannot be defined, for example in a shock-tube, it is
useful to non-dimensionalize the equations with reference speed of sound (c⋆re f ) rather than
reference flow velocity (U⋆

re f ). In that case the energy equation and the equation of state take
the form as given below, respectively:

∂ (ρE)
∂ t

+
∂ (ρu jH)

∂x j
=

1
Re

∂

∂x j
(uiτi j)+

1
(γ −1)RePr

∂

∂x j
q j

p =
1
γ

ρT

Note that Re is here defined based on c⋆re f , i.e. Re = ρ
⋆
re f c⋆re f L⋆

re f
/

µ
⋆
re f .

2.3 The Flow-solver Algorithm

It was decided to solve the underlining governing equations using cell-centered Finite Volume
Method (FVM). FVM is flexible, robust and allows the solution of flow problems in domains
with a complicated geometry. The flux calculations in FVM are local and no separate
formulation is needed for structured and unstructured grids. This is useful for solving wall-
bounded flows past a complicated surface geometry where different grid topologies can be
used for the boundary layer and the external flow. Further, since FVM solves the equations
in conservative form, it is useful for solving compressible flow equations where conservation
of energy is a prime requirement.

1D Finite Volume

The Navier-Stokes in one-dimension can be written as

∂

∂ t
U(x, t)+

∂

∂x
f(x, t) = 0 (2.8)

or,
Ut + fx = 0

where
f = finv + fv
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Fig. 2.1 Schematic of 1D finite volume domain

U =


ρ

ρu

e


, finv =


ρu

ρu2 + p

(e+ p)u


, fv =


0

τxx

τxxu−qx


and,

e =
P

γ −1
+

ρu2

2
, τxx =

4
3

µ
∂u
∂x

, qx =−k
∂T
∂x

Figure 2.1 shows a schematic of a typical grid for a finite volume treatment of a 1D flow
problem. The mid-computational control volume has the cell-center at i and is surrounded by
neighbour cells, which have centers at i−1 and i+1. In a cell-centered finite volume, the
physical variables are stored at the cell-centers and the fluxes are calculated on all the faces
of the cells, e.g. faces i− 1

2 and i+ 1
2 for cell i in a cartesian system. Now, integrating eqn.

2.8 for the volume element i in Fig. 2.1,

∫ x
i+ 1

2

x
i− 1

2

(Ut + fx)dx = 0

=⇒ ∂

∂ t

∫ x
i+ 1

2

x
i− 1

2

Udx+
∫ x

i+ 1
2

x
i− 1

2

fx dx = 0

Defining the cell-averaged value of a quantity U as Ui =
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

U dx, the above

equation becomes

∆xi
∂U
∂ t

|i +(fi+ 1
2
− fi− 1

2
) = 0
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This removes the spatial dependence and the PDE converts to an ODE in time,

dU
dt

|i = −
(fi+ 1

2
− fi− 1

2
)

∆xi

On a computer, this ODE can be solved using an appropriate time-marching scheme for the
entire computational domain. For example, for explicit time-marching (generally preferred
in time-accurate calculations), we take

Un+1
i = Un

i −
∆t
∆xi

(
fn
i+ 1

2
− fn

i− 1
2

)

Appropriate boundary conditions are imposed at the boundaries.

3D Finite Volume

The idea of 1D finite volume can be extended to 3D with few complications. The equation
2.1 can be expanded in 3D as follows:

∂U
∂ t

+
∂ f
∂x

+
∂g
∂y

+
∂h
∂ z

= 0 (2.9)

=⇒ ∂U
∂ t

+
∂ (finv − fv)

∂x
+

∂ (ginv −gv)

∂y
+

∂ (hinv −hv)

∂ z
= 0

where

U =



ρ

ρu

ρv

ρw

e


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finv =



ρu

ρu2 + p

ρuv

ρuw

(e+ p)u


, ginv =



ρv

ρuv

ρv2 + p

ρvw

(e+ p)v


, hinv =



ρw

ρuw

ρvw

ρw2 + p

(e+ p)w


and

fv =



0

τxx

τxy

τxz

τxxu+ τxyv+ τxzw−qx


, gv =



0

τxy

τyy

τyz

τxyu+ τyyv+ τyzw−qy


, hv =



0

τxz

τyz

τzz

τxzu+ τyzv+ τzzw−qz


and

e =
P

γ −1
+

ρ(u2 + v2 +w2)

2

τxx = 2µ
∂u
∂x

− 2
3

µ∇.⃗u, τyy = 2µ
∂v
∂y

− 2
3

µ∇.⃗u, τzz = 2µ
∂w
∂ z

− 2
3

µ∇.⃗u

τxy = µ(
∂u
∂y

+
∂v
∂x

), τyz = µ(
∂v
∂ z

+
∂w
∂y

), τzx = µ(
∂w
∂x

+
∂u
∂ z

)

qx =−k
∂T
∂x

, qy =−k
∂T
∂y

, qz =−k
∂T
∂ z

Now, equations 2.9 can be written as:

∂U
∂ t

+∇.⃗F = 0 (2.10)
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where, F⃗ = ( f g h) is the same as defined in eqn. 2.9.
Integrating for a computational cell volume Ωi,∫

Ωi

(
∂U
∂ t

+∇.⃗F)dΩ = 0

Now using the Gauss divergence theorem,

∂

∂ t

∫
Ωi

U.dΩ+
∮

Si

F⃗.d⃗S = 0

Here S⃗ is the face area normal vector for cell i.
Defining the cell-averaged quantity as Ui =

1
Ωi

∫
Ωi

U.dΩ and denoting integral as the alge-

braic sum over all the faces, we get-

Ωi
dUi

dt
+∑

J
F⊥J∆S⊥J = 0

so,
dUi

dt
= − 1

Ωi
∑
J

F⊥J∆SJ (2.11)

For explicit time-integration,

Un+1
i = Un

i −
∆t
Ωi

∑
J

Fn
⊥J∆SJ (2.12)

Equation 2.11 is often written as

dU
dt

= −R(U) (2.13)

where R(U) =
1

Ωi
∑
J

F⊥J∆S⊥J is called the residual.

Note that the implementation of the finite volume doesn’t depend on the topology of the
grid, but only on the information of the neighbour cells. This makes it a good choice for
computational domains with complicated geometries.
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2.3.1 Spatial Discretization

The calculations of inviscid and viscous fluxes at grid points require numerical schemes
which are not only sufficiently accurate but also stable and robust. Viscous terms generally
add stability to the equations and hence do not require any special treatment, except for a
suitable method to calculate gradients in an unstructured grid setup. Calculation of inviscid
terms however involves solving the Riemann problem and hence requires special treatment.
The following description provides the details of the numerical schemes used in ANUROOP
for invsicid and viscous flux calculations.

Inviscid Flux Calculation

For high fidelity simulations like DNS, we require numerical schemes that are non-dissipative
and have small aliasing errors, and yet stable and robust. Upwind schemes that use biased-
differencing based on directions of characteristic waves are stable and robust, but generally
dissipative and hence not considered a suitable choice for DNS. Central-difference schemes,
on the other hand, are non-dissipative but have been found to be generally unstable because
they do not conserve kinetic energy in the discrete sense. Morinishi et al. (1998) have
shown that for incompressible Navier Stokes a skew-symmetric formulation of the non-
linear advective terms in a central-difference scheme conserves kinetic energy in the discrete
sense. The skew-symmetric formulation is also shown to result in smaller aliasing errors and
would hence be more robust (Blaisdell et al. 1996). For incompressible flows, this idea has
been used to develop kinetic-energy conserving central difference schemes for structured
(Morinishi et al. 1998) and later for unstructured (Mahesh et al. 2004) grids.

Recently this idea was extended to compressible Navier-Stokes to conserve kinetic energy
in the discrete sense by Jameson (2008), and this scheme is implemented in ANUROOP.
This scheme, known as the kinetic energy preserving (KEP) scheme, provides semi-discrete
approximations to compressible Navier-Stokes equations in conservative form in which
kinetic energy is discretely preserved. KEP scheme for compressible flow is well verified
and validated in the literature for various 2D DNS studies, including the shock tube (Jameson
2008; Allaneau & Jameson 2009), plunging airfoils (Allaneau & Jameson 2010), and flow
past circular cylinder (Shoeybi et al. 2010). In ANUROOP, the KEP scheme is implemented
for solving three-dimensional flow past a turbine blade.

Viscous Flux Calculation

In the cell-centered finite-volume scheme, the calculation of the viscous and conduction
terms need gradients of velocity and temperature at the face of the volume element. In a
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Fig. 2.2 Co-volume for calculation of gradients at face-centers

structured grid, these gradients can be calculated easily using values at the cell-centers on
either side of the face - either by using simple finite-differences or taking the average of
the cell gradients. In unstructured grids, however, either a least-squares approach or the
Green-Gauss method is generally used. In ANUROOP, the Green-Gauss (GG) method is
implemented to calculate face gradients. An auxillary volume (called co-volume) is formed
around each face connecting the cell-centroids and the face nodes as shown in Fig. 2.2. At
the bondaries half co-volumes are constructed; faces of this co-volume are called co-faces.
Now using GG, the gradient of a quantity Φ at a face f will be given by

∇Φ f =
ΣΦ jA⃗j

Ω f
(2.14)

where Ω f is the volume of the co-volume encircling face f ; Φ j and A⃗j are the averaged values
of Φ at co-faces and the face-normal areas of the co-faces of the co-volume respectively.

To implement this scheme, values at the nodes (cell-vertices in this case) are needed as
the physical variables are updated and stored at the cell-centers. Typically, area-weighted
average or inverse area-weighted average interpolations are used to get the values at nodes.
A more accurate method for interpolation on unstructured grids is the pseudo-Laplacian
weighted average (see Holmes et al. (1989) for details) as suggested by Rausch et al. (1992)
and Frink (1994). In ANUROOP, the pseudo-Laplacian weighted average is used for cell
to node interpolation except at the boundaries, where the area-weighted average replaces it.
At the boundaries there is not enough connectivity information to accurately calculate the
pseudo-Laplacian weights for averaging .
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2.3.2 Time Discretization

Subbareddy & Candler (2009) have proposed a fully discrete kinetic energy consistent finite-
volume scheme, where an implicit extension of the Crank-Nicholson scheme has been used
to conserve kinetic energy in time. However, this proposal entails substantial increase in the
cost of computing fluxes and of higher storage requirements.

A more economical option is to use a total-variation-diminishing (TVD) scheme that
does not allow kinetic energy to grow rapidly. Runge-Kutta 3 scheme based on Shu & Osher
(1988) is one such scheme that has been used widely because of lower computation and
storage requirements. The scheme also offers large scalability with ease of parallelization
(Allaneau & Jameson 2009) and hence is suitable for DNS studies. In ANUROOP, this
scheme is implemented as given below. For equation 2.13,

dU
dt

+R(U) = 0

it takes

U (1) = U (n)−∆t R(U (n))

U (2) =
3
4

U (n)+
1
4

U (1)− 1
4

∆t R(U (1))

U (n+1) =
1
3

U (n)+
2
3

U (1)− 2
3

∆t R(U (2))

Calculation of Time Step

The time-step in an explicit scheme is restricted by the charcteristics of the underlying
equations and also the grid. For an explicit scheme to be stable, the maximum time-step is
calculated using the Courant-Friedrichs-Lewy (CFL) condition. This condition ensures that
the flow on the stencil of a grid respects the physics. For the 1D Euler equations, the CFL
condition for time step is given by

∆t = σ
∆x
|Λ|

where ∆x/|Λ| is the time needed for information to propagate on a grid of size ∆x with
velocity Λ, and σ is a positive coefficient, known as the CFL number.

For Euler flows, Λ corresponds to the maximum eigen value in the convective flux
Jacobian. For viscous flows, the spectral radius of the viscous flux Jacobian needs to be
included in the calculation of maximum ∆t as the flow in the boundary layer can severely
restrict the maximum allowable time-step.
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In ANUROOP (2D as well as 3D), the computation of maximum allowable time step
follows the method given by Blazek (2005) for unstructured grids,

∆ti = σ
Ωi

(Λinv +C Λv)i
(2.15)

Here Λinv and Λv represent a sum of Euler and viscous spectral radii of all the faces over all
control volumes, and are given by:

(Λinv)i =
NF

∑
J=1

(|⃗vi j .⃗ni j|+ ci j) ∆Si j

(Λv)i =
1

Ωi

NF

∑
J=1

[
max

(
4

3ρi j
,

γi j

ρi j

)(
µ

Pr

)
i j
(∆Si j)

2
]

Here v⃗i j .⃗ni j and ci j are the normal velocity and speed of sound on face J of cell i respectively;
∆Si j and Ωi are geometrical parameters representing area of face F and volume of cell i
containing all such faces.

The constant C that multiplies the viscous spectral radius Λv is taken as 4 (recommended
for central schemes), and the CFL number is kept below 1 for the time-stepping through out
the computation.

2.4 Boundary Conditions

Figure 2.3 shows the computational domain used for flow past turbine blades. The computa-
tional domain for the blade is periodic in pitchwise as well spanwise directions. The blade
surface is taken as an isothermal, no-slip wall.

Inlet, outlet, wall and periodic boundary conditions between the blades are implemented
in ANUROOP. The values of primitive variables at the boundary are updated every time-step
using the boundary conditions. All the boundary conditions are imposed by adding ghost
cells (see Fig. 2.3)). For periodic boundary conditions, the values at the first interior cells of
the first boundary are copied to corresponding ghost cells in the other periodic boundary and
vice versa.

For wall, inlet and outlet, the details of the boundary conditions implemented in ANUROOP
are given below.
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Fig. 2.3 Boundary conditions in computational domain of DNS of flow past a blade. i and g
represent interior and ghost cells respectively. Ghost cells are applied at all the boundaries.
∞ represents values at free-stream.

2.4.1 Wall Boundary Condition

For the wall, a mirror boundary condition has been used, where the variables in the interior
cells next to the boundary are mirrored appropriately to corresponding ghost cells and an
average is taken to get the value at the wall face. For a no-slip stationary isothermal wall, the
ghost values are as follows:

ug = −ui

vg = −vi

wg = −wi

Tg = 2×Tw −Ti

where subscript i, and g stand for interior and ghost cells respectively. Tw is the imposed wall
temperature.

The wall flux is obtained from the values at the wall, which is obtained after averaging
the interior and ghost values as given above. The density is obtained using the continuity
equation.

2.4.2 Inlet/Outlet Boundary Condition

The treatment of flow at the inlet and outlet is critical, since in the simulation an infinite flow
domain is restricted to a finite computational domain. An improper boundary condition may
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lead to unphysical oscillations near the boundary, which with progress in time may either
lead to blow up of the code or give spurious results. It is necessary to avoid the reflection
of the outgoing waves (from the computational domain) to ensure smooth inflow/outflow.
To do this, primitive variables at the boundary can be extrapolated using characteristics
variables (known as Riemann invariants) as given in Hirsch (1988). This implementation
is popularly known as the Characteristics boundary condition or Non-reflecting boundary
condition (NRBC) in the literature.

Since the propagation of waves is associated with hyperbolic equations, the viscous part
in the Navier-Stokes Equations is dropped in calculating the wave characteristics. Poinsot &
Lele (1992) have extended NRBC to include the effect of the viscous part in extrapolation of
characteristic variables to get an altered pde near the boundary (this boundary condition is
called NSCBC - Navier-Stokes Characteristics Boundary Condition). However the imple-
mentation of NSCBC is not straight forward for unstructured grids, as it requires gradients of
primitive variables near the boundary. Also, since the viscous effect is not very prominent
near the inflow/outflow faces, NRBC is commonly used in the literature (Bhaskaran (2010);
von Kaenel (2003)) to get variables in these regions. As the details of NRBC are given in
Hirsch (1988), only the implementation in ANUROOP is summarized here.

The Riemann invariants are calculated based on the values at the interior cells of the
boundaries or the far-field values, depending on whether the characteristics point inwards or
outwards.

For 3D Euler equations there are 5 eigen values (characteristics) of the Jacobian matrix,
given by

λ1 = u⊥+ c (2.16a)

λ2,3,4 = u⊥ (2.16b)

λ5 = u⊥− c (2.16c)

where the subscript ⊥ indicates the velocity normal to the boundary face, given by u⃗ · n⃗. Here
n⃗ is the outward normal.

These eigen values determine whether the wave is entering or leaving the domain. At
the subsonic inlet (−1 ≤ M⊥ < 0; u⊥ < 0,c > 0,u⊥ < c), there is one right-running wave
(u⊥ + c > 0) and two left-running waves (u⊥ < 0, u⊥ − c < 0). At the subsonic outlet
(0≥M⊥ < 1; u⊥ > 0, c> 0, u⊥ < c), there are two right-running waves (u⊥ > 0, u⊥+c> 0)
and one left-running wave (u⊥− c < 0). The invariants corresponding to the right-running
wave are calculated based on the values at the interior cells and those corresponding to the
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left-running wave are calculated based on far-field values, as given below.

Subsonic inflow boundary

ψ1 ≡ ψ1i =
2ci

γ −1
+u⊥i (2.17a)

ψ2 ≡ ψ2∞ =
p∞

ρ
γ
∞

(2.17b)

ψ3 ≡ ψ3∞ =
2c∞

γ −1
−u⊥∞ (2.17c)

Subsonic outflow boundary

ψ1 ≡ ψ1i =
2ci

γ −1
+u⊥i (2.18a)

ψ2 ≡ ψ2i =
pi

ρ
γ

i
(2.18b)

ψ3 ≡ ψ3∞ =
2c∞

γ −1
−u⊥∞ (2.18c)

After the invariants are known, the values at the boundary face are thus extrapolated as

u⊥b f =
ψ1 +ψ3

2

cb f =

(
γ −1

4

)
(ψ1 −ψ3)

ρb f =

( a2
f

γψ2

) 1
γ−1

pb f =
ρ f a2

f

γ

u⊥b f is then again back-transfomed to get all 3 components of velocity at the boundary.

For the simulations with inflow turbulence, the turbulent fluctuations are superimposed
on the mean value of the velocities as obtained from the boundary condition.

2.5 Parallelization

The code has been parallelized using standard Message Passing Interface (MPI). The open-
source package METIS from Karypis Lab (see Karypis & Kumar (1998) for details) is used
for dividing the computational domain into subdomains to run the code in parallel. METIS
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does optimization of load as well as communication-balancing while dividing the grid into
subdomains. Separate grid files are then written for each subdomain using the output by
METIS. To each of the subdomains one processor is assigned. Ghost cells are added in each
subdomain to store the variables passed by communicating subdomains.

In the present simulation for flow past an LPT blade, METIS is used on the 2D grid in the
2D computational domain, and then each subdomain is extruded in the spanwise direction
for a specified number of intervals. A separate pre-processor (ANUROOP-Pre) is written
that takes a 2D grid and returns a 3D grid divided into subdomains, along with ghost-cell
information.

2.6 Concluding Remarks

This section describes the governing equations that are used to solve the flow past a turboma-
chinery blade. The compressible Navier-Stokes equations with proper non-dimensionalization
are solved in a finite volume framework. Choosing this framework allows us to use arbitrary
grids for flow over complicated geometries like turbine or compressor blade shapes. The
numerical treatment of the energy equation respects the preservation of kinetic energy in
space. Runge-Kutta 3 is used for time-stepping, so it makes the overall scheme semi-kinetic
energy preserving. This scheme is found to be stable and robust for various kinds of problems.
Separate codes for 2D and 3D flows have been developed. The code has been parallelized
using standard MPI.





Chapter 3

ANUROOP: Validation and Verification

This chapter describes the verification and validation exercises carried out for ANUROOP.
These exercises test the code for stability, accuracy and robustness of the schemes used.
Validation study has been performed for 1D, 2D and 3D problems, for which separate codes
are developed using same numerical schemes. Validation cases include problems with Mach
number ranging from 0.1 to 1.5.

3.1 Flow past NACA0012 Airfoil

DNS of flow past NACA 0012 airfoil is performed for Re = 105 and angle of attack α = 4◦.
This verification case is the same as that described in Shan et al. (2005). This case study is
to verify whether the code is able to capture the basic features of the boundary layer flow
present at this angle of attack, for example, vortex shedding and Kelvin-Helmholtz (K-H)
instability. This is important as boundary layer separation and transition are commonly found
in engineering flows including in particular flow past turbine blades, and K-H instability is
considered as the primary mechanism for triggering laminar boundary layer separation.

Figure 3.1(a) shows the computational domain as well as the grid used for the simulation.
The upstream boundary is 3 chords away, whereas the downstream boundary is 2 chords
away. The total grid size is 232800 and quadrilateral elements are used to make the grid.
Simulation was initialized with uniform flow and without any external disturbance.

The signs of K-H instability can be seen in the axial-velocity contours of the simulation
in Fig. 3.1(b). It is to be noted that this instability is generated purely because of the shear
layer present, and by a self-excitation mechanism in the absence of any external disturbance
in the simulation. However, the inherent numerical noise always present in a code would
be sufficient to excite the necessary instabilities in the present case. These perturbations
manifest later as vortex shedding behind the airfoil, as shown in the spanwise vorticity
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(a) (b)

Fig. 3.1 DNS of NACA 0012 airfoil. (a) Grid. (b) x-velocity contour. Note the signs of K-H
instability in (b)

Fig. 3.2 Vorticity contours plot on NACA 0012. Vortex shedding can be noticed

contour plot in Fig. 3.2. At this point of time, the boundary layer separation is observed
between x/C = 0.38 to x/C = 0.845.

3.2 The Sod Shock Tube

The Sod shock tube (Sod 1978) is one of the simplest cases to test the stability and accuracy
of a compressible CFD code, and its shock-capturing ability. Figure 3.3 shows the schematic
of the shock tube. Gases in the tube are separated by a diaphragm in the central plane, across
which there is an initial jump in pressure and density. The length of the shock tube has been
taken as 1 (x = 0 to x = 1), so that the initial discontinuity is at x = 0.5. The diaphragm bursts
at t = 0, allowing the formation of the shock, contact discontinuity and expansion waves.

Conditions formulated by Sod (1978) have been used in the present case to solve this
shock tube problem. The conditions on the left and right side of the shock-tube at t = 0 are
given in Table 3.1.
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Fig. 3.3 Schematic of flow in a shocktube: Top: At t = 0, two gases at different pressures are
separated by a diaphragm at the middle of the tube; Bottom: Generation of shock, expansion
waves and contact discontinuity after the diaphragm breaks

For the one-dimensional (1D) shock-tube problem, an analytical solution (for inviscid
flow) is available at any given time. The governing Euler equations are solved using the
method of characteristics and Rankine-Hugoniot conditions. DNS computed solutions can
be compared against analytical solutions to check the accuracy of the scheme.

For the simulations, since the initial velocity on either side of the tube is zero, the
non-dimensionalized velocity in the equations is based on the speed of sound (see chapter
2). The shock tube length and the variables on the left side have been used as scales for
non-dimensionalizing all quantities.

Table 3.1 Initial conditions for Sod shock tube

Variable left right

ρ 1.0 0.125

p 1.0 0.1

u 0.0 0.0
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First 1D simulations have been performed to check the accuracy and stability of the KEP
scheme used in the code. Later 2D simulations were performed to simulate a more complex
set-up that gives more details about the structure of the shock.

3.2.1 1D DNS

1D simulations were performed for Re = 25000 using mesh cells ranging from 128 to 4096.
Figures 3.4 and 3.6 show the variations of state variables at non-dimensional time t = 0.2136,
respectively for coarse (512 cells) and fine (4096 cells) mesh simulations as compared with
exact analytical results. Figures 3.5 shows zoomed view of Fig. 3.4 for better insight.

Results with coarse mesh simulations show oscillatory behavior near the discontinuities.
This is because the physical viscosity (1/Re) near the discontinuity is not sufficient to
stabilize the scheme . Unlike upwind schemes (Roe, VanLeer, KFVS etc.), the KEP scheme
is based on central differencing, and hence at a coarse resolution numerical dissipation is not
enough to damp out the oscillations. The shock has to be resolved with sufficient number of
grid points to get a stable and accurate solution. For example, these oscillations disappear
when the simulation is performed for 4096 mesh cells (see Fig. 3.6). Finally, Fig. 3.7 shows
the comparison between solutions obtained with KEP and KFVS schemes. Being an upwind
scheme, KFVS has enough numerical dissipation to obtain a non-oscillatory solution even
with a very coarse grid (256 cells). However the solutions with KEP are much sharper, as is
particularly visible in the vicinity of the shock. This is expected because KEP is much less
dissipative compared to KFVS.

3.2.2 2D DNS

Two-diemsional (2D) simulations were performed for two Reynolds numbers, namely Re =
2500 and Re = 25000, based on the separation between two parallel walls h. As shown in
Fig. 3.3, the shock-tube has an aspect ratio of αs = h/L = 0.6, where L is the length of the
shock-tube. The set-up is the same as in Allaneau & Jameson (2009)). This is to ensure that
the boundary layer on either side of the tube does not interfere with the flow at the centerline,
so that the computed values at the centerline can be compared against 1D analytical results.

Only half of the domain was simulated and symmetry boundary condition was used at
the centerline. The grid used for both Re simulations is the same, with 1024 cells in the
x-direction and 128 cells in y-direction. The grid is stretched in the y-direction such that
∆ymin = αs/4000. No-slip isothermal wall boundary condition was used at the top, while
symmetry boundary condition was used at the bottom of the computational domain i.e. the
centerline of the shock tube.
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Fig. 3.4 1D Shock tube at t = 0.2136, Re = 25000: Red - Exact inviscid, Black - Computed
using KEP Scheme(coarse mesh): 512 mesh cells

Figures 3.8 and 3.9 show a comparison of 2D shock tube results at the centerline with
the exact inviscid solution at time t = 0.213. The results for Re = 2500 are smooth but results
for Re = 25000 are highly oscillatory especially in the vicinity of the shocks. This suggests
that the grid resolution used is sufficient for numerical stability for the Re = 2500 case (high
viscosity) but not for Re = 25000. As shown in the 1D study in section 3.2.1, this instability
will vanish at sufficiently fine resolution.

Alternative way to get a stable shock solution without oscillations using KEP (but without
fully resolving the shock), is to use a dissipation switch near the discontinuities. Ducros
et al. (1999) have suggested use of a pressure fluctuation sensor to detect the discontinuity,
and then employ an appropriate (preferably 4th order) dissipative flux, to be used at those
points to get a smooth solution. Our main study of the flow past a LPT blade is subsonic
(maximum Mach number 0.4), so the need to use such dissipative flux was not felt.

Figure 3.10 shows the pattern of flow through the shock tube as obtained from Re= 25000
simulations.Though unresolved, these patterns yield insights into boundary layer flow in
the shock tube. These patterns strongly resemble those obtained by Allaneau & Jameson
(2009) with their KEP scheme but with a finer grid. Allaneau & Jameson (2009) have given
plausible physical explanations of these patterns, which we shall briefly outline now.
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Fig. 3.5 Zoomed view of 1D Shock tube at t = 0.2136, Re = 25000: Red - Exact inviscid,
Black - Computed using KEP Scheme(coarse mesh): 512 mesh cells. Note the fluctuations
near the shock due to coarse resolution

The boundary layer on the wall is curved as may be seen in x-velocity (u) contours in Fig.
3.10. Pressure waves develop at the base of expansion and depression waves start at the base
of the shock. These waves start in the boundary layer and are spread in the pseudo-steady
(contact discontinuity) area. The shapes of these waves are clearly visible in the pressure
contours. These structures are rendered visible by the very low numerical dissipation present
in the KEP scheme.

Simulations were also carried out with unstructured triangular-element grids in the
computational domain of the shock tube with aspect ratio of αs = h/L = 0.3 at Re = 25000.
This was done to check the accuracy and stability of the code, as well as the implementation
of schemes particular to unstructured grids (like gradient calculation using Green-Gauss).
A moderate grid of size 0.2 million was used. The results at the centerline are compared
against analytical results and are shown in Fig. 3.11. The kink in the plots near x = 0.55 is
due to waves emanating from boundary layers crossing each other at this point due to low
aspect ratio used in the simulation. The results confirm that the unstructured grid simulations
are reliable.
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Fig. 3.6 1D Shock tube at t = 0.2136, Re = 25000: Red - Exact inviscid, Black - Computed
using KEP Scheme: 4096 mesh cells
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Fig. 3.7 Computed solutions of 1D Shock tube at t = 0.2136, Re = 25000: Red - KFVS
Scheme (256 cells), Black - KEP Scheme (4096 cells). Unlike KEP, KFVS scheme is stable
even for coarse grid. However results with KEP are much sharper near the shock
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Fig. 3.8 2D Shock tube using KEP Scheme: variables plotted at the centerline of the tube
at t = 0.213. Left: Re = 25000, Right: Re = 2500, Red - Exact inviscid, Black - Computed
results
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Fig. 3.9 2D Shock tube using KEP Scheme(Zoomed view): variables plotted at the centerline
of the tube at t = 0.213: Left: Re = 25000, Right: Re = 2500, Red - Exact inviscid, Black -
Computed results. Same grid used for both the simulations. Note the fluctuations near the
discontinuities for Re = 25000. For Re = 2500, the results are smooth.
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Fig. 3.10 Contours of velocity components u, v and pressure p for 2D Shock tube. Re= 25000
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Fig. 3.11 2D Shock tube using KEP Scheme with unstructured grid: variables plotted at the
centerline of the tube at t = 0.213. Red - Exact inviscid, Black - Computed results
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Fig. 3.12 Iso-surfaces of vorticity magnitude at t = 0.5, 2.0 and 13.0

3.3 The Taylor-Green vortex

The Taylor-Green vortex is an unsteady flow problem of a decaying vortex in a box proposed
by G. I. Taylor and George Green. The flow inside a periodic box is initialized by simple
perturbations of sines and cosines with zero-mean representing counter-rotating vortices,
which decay with time at a rate governed by viscosity. An exact closed form solution can be
constructed in 2D in the incompressible limit. The same problem in 2D can be extended to
3-D flows in the weakly compressible limit. Figure 3.12 shows the stages of the flow as time
progresses. The pressure is initialized, as above, at a value corresponding to the solution
of the pressure Poisson equation. The flow first goes transitional and later becomes fully
turbulent, with the generation of small scales. Since there is no energy input, the flow soon
starts decaying as in unforced homogeneous turbulence.

This is a good validation problem for a DNS code with simple initial and boundary
conditions. In the present study, 3D DNS was performed to assess the robustness and
temporal accuracy of the ANUROOP code, particularly the ability of the KEP scheme to
capture the evolution of kinetic energy accurately.

3.3.1 Computational Setup

The Taylor-Green vortex flow is the evolution of a rotational velocity field in a triply-periodic
cube 0 ≤ x,y,z ≤ 2π , from the initial conditions:

u(0;x,y,z) = Uref sinx cosy cosz

v(0;x,y,z) = −Uref cosx siny cosz

w(0;x,y,z) = 0

ρ(0;x,y,z) = ρref

p(0;x,y,z) = p0 +
ρrefU2

ref
16

(cos2x+ cos2y)(cos2z+2)
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Fig. 3.13 Kinetic energy dissipation rate, compared with a 5123 pseudo-spectral simulation
Hillewaert (2012)(dashed lines)

Flow parameters set for the simulation are Re = 1600 based on the box length and the speed
of sound, and M = 0.1. The initial Mach number M gives the value of p0. The grid chosen
for the current simulation is 2563. The flow has been allowed to develop till t = 13.0, where
t is the non-dimensional time based on Lre f /Ure f . This set-up allows comparisons with the
earlier benchmark DNS (Hillewaert 2012) performed using psuedo-spectral method with
5123 grid.

3.3.2 Results and Discussion

Figures 3.12, 3.13, 3.14 present results for the Re = 1600 simulation. Figure 3.12 shows
iso-surfaces of vorticity magnitude (|ω̄|) as the flow evolves in time. It illustrates the cascade
process, in which multiple scales are generated from a single initial large scale into very
small scales due to non-linear interaction of eddies.

The kinetic energy of the system decays due to viscous dissipation. Figure 3.13 shows
the rate of decay of kinetic energy as compared with the benchmark pseudo-spectral DNS
results by Hillewaert (2012) on a 5123 grid. The overall match is good and the maximum
decay rate at t ≈ 9 is captured. The peak on the decay rate predicated in the current simulation
is slightly lower compared to the reference simulation. This may be due to the fact that
the grid size used in current simulation is one-eighth of that used in the pseudo-spectral
simulation. The temporal resolution here is also governed by the grid resolution.
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Fig. 3.14 Contours of non-dimensional vorticity magnitude of 5, 10 and 15 at t = 8.0 on one
of the periodic faces (x = 0), compared with a 5123 pseudo-spectral simulation Hillewaert
(2012)(dashed lines)

Figure 3.14 shows contours of the non-dimensional vorticity magnitude on one of the
periodic faces at t ≈ 9.0 when dissipation is near maximum. The structures obtained in the
current simulation are strikingly similar to those obtained by Hillewaert (2012).

Several other test simulations have been made over a range of Re = 1000−3000 to check
the stability of the present semi kinetic-energy preserving central scheme. The simulations
progressed without any difficulty in all cases, confirming the robustness of the code.

3.4 Supersonic Turbulent Channel Flow

DNS of compressible channnel flow has been performed to test the code against wall-
bounded flows at finite Mach number. Past studies by Coleman et al. (1995) for an isothermal
supersonic channel flow offer a good case for validation of the present code. Two plates
separated by a width of 2H constitute the channel in which the fluid flows as shown in Fig.
3.15. The flow is statistically homogeneous in the streamwise (x) as well as spanwise(z)
directions, and is driven by a body-force that keeps the mass-flux constant. Though this is
just a validation exercise, results are presented in some detail.

3.4.1 Computational Setup

Problem Formulation

The main parameters governing the flow are Mach number and Reynolds number. Of the
various cases described in Coleman et al. (1995), the one chosen here for the validation is
at M = 1.5 and Re = 3000 (based on centerline velocity, viscosity at wall temperature, and
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Fig. 3.15 Computational domain for channel flow

channel half-height H). Pr is kept constant at 0.7 throughout the flow and the viscosity of
the fluid taken to vary according to the power law µ ∝ (T/Tw)

0.7, where Tw is the prescribed
(constant) wall temperature.

Body-force terms have been added as sources in the momentum and energy equations in
eqn. 2.9. The body force is varied with time to keep stream-wise mass-flux constant. Thus,
the change in body-force after every iteration is given by-

∆B =
(
∫

ρudydz)new − (
∫

ρudydz)old∫
ρdydz

(3.1)

Geometry and Grid

Figure 3.15 shows the computational domain used for the channel flow. The sides of the
domain are Lx = 2π,Ly = 2,Lz = 4π/3. There are 100 grid points chosen in each direction
to make the grid. The grid is uniform in streamwise (x) and spanwise (z) directions but
stretching is used along wall-normal direction y to obtain a sufficiently fine grid to capture the
turbulent boundary layer near the wall. The stretching is done using the hyperbolic tangent
function as follows-

y j =
tanh[c(2( j−1)/(ny −1)−1]

tanh(c)
(3.2)

where ny is the total number of grid-points in the y-direction and c is a constant taken as
1.7 (as in Subbareddy & Candler (2009)). The range of y spans −1 to +1 with y = 0 at the
centerline of the channel.
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Fig. 3.16 Mean velocity profile. Symbols are values from Coleman et al. (1995) simulation

The simulation has been initialized with a parabolic laminar velocity profile superimposed
with zero-mean white noise perturbations.

3.4.2 Results and Discussion

Instantaneous quantities have been time- and span-averaged to get the mean values. Favre-
averaging that accounts for density variations is used to obtain the mean as follows:

φ̃ =
⟨ρφ⟩
⟨ρ⟩

Here ‘̃’ and ‘⟨⟩’ denote Favre averaging and Reynolds averaging respectively. The fluctations
around the mean are given by:

φ
′′
= φ − φ̃

Mean streamwise velocity is shown in Fig. 3.16, compared with the spectral simulation
results of Coleman et al. (1995). The figure shows good agreement between the two.

Table 3.2 compares various parameters computed from mean results, against the Coleman
et al. (1995) simulation. The mean centerline velocity is 1.178 which is very close to the
value 1.175 obtained by Coleman et al. (1995). Other variables listed in the table at the
centerline as well as wall also show good match.
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Table 3.2 Comparison of mean quantities with Coleman et al. simulation

Case Current simulation Coleman et al.

⟨uc⟩ 1.178 1.175

⟨ρc⟩ 0.979 0.980

⟨Tc⟩ 1.391 1.378

Mc 1.498 1.502

Rec 2746 2760

⟨ρw⟩ 1.343 1.355

Mτ 0.081 0.082

Reτ 216 222
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Fig. 3.17 Mean streamwise velocity profile in wall variables and the Van Driest transformation
compared with incompressible law of the wall: uwall = y+, ulog =

1
0.41 lny++5.2
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Figure 3.17 shows the mean velocity distribution in wall variables; u normalized by
friction velocity uτ and y with ν/uτ . Present DNS results compare well with Coleman
et al. (1995) results. The results are also compared with incompressible law of the wall for
turbulent flows, which states that in the viscous sublayer region

uwall = y+ (3.3)

and in the log-law region

ulog =
1
k

lny++B (3.4)

In the literature, one will find slightly different values for the constants that appear in
the above equations. The values so quoted would be in the neighbourhood of the following
numbers:
Extent of viscous sublayer

y+ < 5

Extent of log-law region
y+ > 40, y/H < 0.2

Von Kármán constant
k = 0.41

Intercept
B = 5.2

(These numbers are taken from Davidson (2015)).

The region between the viscous sublayer and beginning of the log-law region (5 < y+ < 40)
is known as the buffer layer. This is the transition region where viscosity-dominated flow
changes to turbulence-dominated flow, and none of the laws mentioned above is applicable
in this region. The outer layer begins at y+ > 50, where the effects of viscosity on mean
parameters begin to be negligible and extends to y/H = 1. This region is governed by
velocity-defect law due to Von Kármán (1931), who also proposed the log-law (Eqn. 3.4).
The log-law region however satisfies both the law of the wall and outer defect law (the overlap
region). Coles (1956) after careful study of boundary layer data later proposed a single
universal law for turbulent wall-bounded flows, known as law of the wake, that accounts for
law of the wall, log-law and velocity-defect law in respective regions.

In both ANUROOP and Coleman et al. (1995) simulations, < u >+ agrees well with the
law of the wall in the viscous sublayer, however in the log-law region, both differ from the
log-law significantly. For the high mach number flows, where density variation is very high,



54 ANUROOP: Validation and Verification

−1 −0.5 0 0.5 1

0

0.01

0.02

0.03

y

〈ρ
u

′′ i
u

′′ j
〉/
〈ρ
〉

 

 

u
′ ′
u

′ ′

v
′ ′
v

′ ′

w
′ ′
w

′ ′

Fig. 3.18 Turbulent normal stresses (⟨ρu′u′⟩). Symbols are values from Coleman et al. (1995)
simulation

variables are not expected to follow the incompressible laws. However a density-weighted
transformation of mean velocity, known as the Van Driest transformation, can be used to
enable this comparison. This transformation is given as:

⟨u⟩+VD =
∫ ⟨u⟩+

0

(
⟨ρ⟩
ρw

) 1
2

d⟨u⟩+ (3.5)

This transformed velocity is expected to satisfy the incompressible log law (Bradshaw (1977))

⟨u⟩+VD =
1
k

lny++B (3.6)

The above law is also plotted in Fig. 3.17 and it can be noted that this transforma-
tion brings the profile closer to incompressible log-law, however in the overlap region
(5 < y+ < 10) the agreement becomes worse. Wei & Pollard (2011) argue that a power
law is a slightly better and less dependent on Mach number than the log-law in this region.
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Fig. 3.19 Reynolds stress normalized by the wall-shear stress. Symbols are values from
Coleman et al. (1995) simulation

Higher Order Statistics

Higher order statistics are obtained using the Favre-averaged fluctations. Figure 3.18 com-
pares the mean turbulent normal stresses ⟨ρu′u′⟩ for 3-velocity components with Coleman
et al. (1995). Reynolds stress normalized by wall-shear stress is plotted in Fig. 3.19. Both
these plots show a very good match with Coleman et al. (1995) results. This confirms the
ability of ANUROOP to accurately predict the higher-order statistics for a wall-bounded
turbulent flow.

Finally for the sake of completeness, the two-point correlation in the streamwise and
spanwise directions for density and three velocity components close to the wall are plotted
in Fig. 3.20. As observed in Coleman et al. (1995), the spanwise correlation is roughly
equivalent to the incompressible results (Fig. 2 in Kim et al. (1987)) but greater coherence in
seen in streamwise correlation because near-wall streaks become more aligned as the Mach
number increases. This alignment is again visible in the wall normal vorticity contour very
near to the wall as shown in Fig. 3.21. This picture is strikingly similar to that given in
Coleman et al. (1995) and shows near-wall streaks getting aligned due to high Mach number
effects compared to the meandering in incompressible flows (Kim et al. 1987).
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Fig. 3.20 Two-point correlation for density and three velocity components at a distance of
0.04 from the bottom wall, ; Top: Streamwise; Bottom: Spanwise

Fig. 3.21 Contours of wall normal vorticity on x−z planes a distance of 0.04 from the bottom
wall
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3.5 Concluding Remarks

A rigorous validation of code ANUROOP is performed using several test cases that include a
shock tube, the Taylor Green vortex and fully developed turbulent channel flow. The code
has been found to be robust in all these three studies. The results are compared with the
data available in the literature to ascertain the accuracy of the code for further DNS studies.
Particularly, the verification of the code for the kinetic energy evolution with time (Taylor
Green vortex) and the validation of turbulent statistics for channel flow impart confidence
that the code can be used for a more complex problem like the flow past a turbine blade,
which is the focus of this thesis.





Chapter 4

LPT Simulations: Numerical and
Computational Aspects

This chapter describes the numerical and computational aspects of the simulation of flow
past an LPT blade using ANUROOP. The experiment, on which the present DNS study is
based, is also described in detail.

4.1 Experimental Details of Test Case

The experiments reported by Stadtmuller (2002a) provide the flow parameters used in the
present DNS study. The tests were performed at the High Speed Cascade Wind Tunnel of the
Universität der Bundeswehr, München, Germany. The purpose of this study was to provide
test data at low Re suitable for DNS studies. Relevant geometric data of the T106A blade
used in the cascade (see Fig. 4.1) are given below:

Chord Length l = 100 mm

Axial Chord Length lax = 85.86 mm

Blade Height h = 176 mm

Pitch ratio t/lax = 0.9306

Stagger Angle βs = 59.28◦

Figure 4.1 also shows the set-up used for for the experiment on the T106 blade. The
cascade consists of 7 blades and uses the blade at the center for the main measurements. Static
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Fig. 4.1 Sketch of experiment performed by Stadtmuller on T106A cascade (Reproduced
from Stadtmuller (2002a))

pressure tappings were used on adjacent blades for profile loading measurements. The boxes
in the figure list the geometric and aerodynamic parameters at design point conditions, which
are different from those at the operating point investigated for the reported measurements,
according to Stadtmuller (2002a).

The experiments were performed in a steady upstream flow (no disturbances) as well
as with upstream wakes created by a moving bar wake-generator. However, the present
computational study confines itself to steady-state measurements. The detailed description
of the present test set-up can be found in Stadtmuller (2002a). The parameters from these
experiments are given in Table 4.1. Note that only exit parameters were measured in the
experiments, and the reference Mach and Reynolds numbers at the inlet are calculated using
isentropic relations assuming isentropic expansion between inlet and exit.

The surface pressure measurements and hot-film traces indicate a separation bubble on
the suction side surface close to TE, however it not clear whether the bubble reattaches before
the TE. Also there is considerable uncertainty over the exact inlet angle that must be used for
the computational study. This is because the wake generator ahead of the cascade changes
the geometric inflow angle (βgeo = 37.7◦) considerably. Based on RANS simulations and 3D
hot wire measurements, Stadtmuller (2002a) has estimated the real inlet flow angle as 45.5◦.
The report also mentions the uncertainty in the estimates of the background free-stream
turbulence intensity (FSTI), and once again a RANS study was performed to estimate the
actual turbulence level.
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Table 4.1 Parameters from Stadtmuller (2002a) experiment (Steady-state measurements)

Parameter Exit (2) Inlet (1)

Static pressure (Pa) p 6950 7340

Total pressure (Pa) pt 7770 7770

Total temperature (◦K) Tt 312.9 312.9

Reynolds number Relax 51800 -

Mach Number M 0.404 0.286

Geomteric inlet flow angle (◦) βgeo - 37.7

Accurate information on these two parameters (inflow angle and FSTI) is crucial for
comparisons with any computational results, but unfortunately no other experimental data (at
low enough Re for carrying out DNS) is available to us in the open literature. Fortunately
however, this experiment has been the basis for many DNS studies (though at relatively
lower resolution) listed in chapter 1, and hence enough computational results are available
for comparisons with the present work .

4.2 Simulation Details

In the absence of precise data on experimental conditions, the literature on computational
studies provides some useful estimates for parameters to be adopted in the present simulations.
DNS by Wissink (2003) provides a full set of parameters except for the mach number (which
was not relevant for his work as incompressible flow was assumed). This set is adopted for
the present computational studies. The inlet Mach number was hence decided by iterative
DNS simulations at low resolution at which the outlet Mach number achieved is the same
as in the experiments. The full set of parameters adopted for the computational studies are
given in Table 4.2. Note that Re here is based on inlet flow velocity and axial chord length
of the blade.
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Table 4.2 Parameters used in simulations

Parameter Value

Inlet flow angle (◦) β1 37.7 - 45.5

Inlet Reynolds number Relax 51800

Inlet Mach Number M1 0.15

Inlet temperature T1 300

On the surface of the blade, no-slip isothermal boundary condition has been imposed. For
most of the simulations, the temperature of the blade wall Tw is taken as 1.1 of the incoming
flow temperature T∞.

Apart from using a completely compressible formulation, the present DNS differs from
previous studies in its major focus on the boundary layer on the blade surface than on the
passage between the blades. To achieve this, a different kind of grid topology is essential.
This is described in detail in the next section.

Because of the focus on the boundary layer, it is appropriate to call the present DNS as
"Boundary Layer DNS" as the full Navier-Stokes equations in the whole domain (including
the boundary layer) have been solved. This distinction is useful because of the debate in the
literature about the ’exact’ definition of DNS, and the resolution needed for a simulation to
be called as DNS. As pointed out by Spalart et al. (2011):

“No DNS is exact, and the appropriate resolution depends on the purpose of the
study, including the region of interest, the quantities of interest, and probably
other features.”

4.2.1 Computational Domain

The computational domain, illustrated in Fig. 4.2, covers the flow around a blade with
periodic boundary conditions that simulate the row of blades at top and bottom. All the
dimensions are scaled on the axial chord length (lax) and free-stream velocity (U∞). The
parameters governing the flow and all other quantities are also non-dimensionalised based on
these scales.



4.2 Simulation Details 63

Fig. 4.2 Schematic of the computational domain used for flow past T106A blade

The outflow plane is located at a distance of one axial chord lax downstream of the TE,
and the inflow plane is at a distance of half the axial chord upstream of the LE. The pitch
between the blades is p = 0.9306 lax or 0.799 l, and periodic boundary conditions are applied
everywhere on the boundary in the pitchwise y-direction as well as the spanwise z-direction.
As already mentioned, a no-slip isothermal boundary condition is applied at the blade surface.

The domain shown for the mid-section of the blade is extruded in the spanwise direction
for 0.2lax, which has been found in earlier studies to be sufficient for obtaining the mean 2D
flow at the mid-section. Characteristics-based boundary conditions (see chapter 2) are used
at inflow and outflow. A relaminarizing buffer layer, defined in section 5.6, is used adjacent
to the outflow plane as shown in Fig. 4.2.

Uniform flow hits the inflow plane at the inflow angle β1 given in Table 4.2. Some
of the simulations have been performed with FSTI, the uniform flow being superimposed
with appropriate turbulent fluctuations (which are solutions of pre-computed homogeneous
isotropic turbulence) before they hit the inflow.
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4.2.2 Grid Topology

The elliptic scheme used in earlier work (Wu & Durbin (2001); Kalitzin et al. (2003);
Wissink (2003); Wissink et al. (2006); Michelassi et al. (2002)) offers little control over grid
generation in the interior. Kalitzin et al. (2003) have reported a large number of skewed
elements in the passage near the TE using this scheme, due to strong curvature of the blade
and requirement of periodicity in the pitchwise direction. Their results near the LE also
exhibit the effect of singularity in the mesh due to a forced H-mesh. Wissink (2003) has
reported the effect of streamwise resolution on the accuracy with which the separation
bubbles can be resolved.

Because of these observations and the present emphasis on the boundary layer, more
control and flexibility on the grid near to the wall was sought on the following three aspects:

• Orthogonal mesh without any singularity near the blade wall

• Control on boundary layer grid with respect to the first grid-point near the wall and the
successive ratio (SR) between consecutive grid elements in the wall-normal direction

• Control on streamwise resolution without unduly increasing the overall grid size

It is difficult to meet all these requirements in the elliptic mesh approach, especially because
of the periodicity of the mesh elements in the y-direction. To meet the above requirements,
it is useful to first divide the domain into two regions: ‘near-wall’ and ‘outer’ (Fig. 4.2).
The commercial meshing tool Gambit 2.4.6, the pre-processor of ANSYS® Fluent 6.3.26, is
then used to form a grid in the 2D face, which was then extruded in 3D using an in-house
preprocessor. The co-ordinates of the mid-section of the T106A blade, given in Stadtmuller
(2002a), are imported into Gambit. The edge is created from these vertices using NURBS
(Non-Uniform Rational B-Spline) with degree 3. NURBS gives a high degree of smoothness
in defining a curve such that its second derivative is zero at the endpoints.

The curve is then split into pressure and suction sides, and each side is further split into
3 parts: LE, mid-section and TE. This was done to get control on the distribution of mesh
elements to be assigned near the high curvature regions (LE and TE) and on the rest of the
blade. A geometric distribution is used near the edges and a bi-geometric distribution is used
in the middle with a defined successive ratio between each mesh division (Table 4.3 and
Fig. 4.3). The mesh parameters were chosen to ensure that there is no abrupt jump between
neighbouring segments.

The computational domain is then built around this blade. In the near-wall region, an
orthogonal mesh is built using the boundary layer tool available in Gambit by specifying
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the first grid point away from the wall, the successive ratio and the number of rows. These
parameters are listed in Table 4.3.

Figure 4.4 shows this grid near the LE and TE respectively. Note that this mesh fits nicely
to the body and there is no singularity at either leading or trailing edge.
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Fig. 4.3 Mesh spacing in suction side boundary layer (streamwise)

(a) (b)

Fig. 4.4 Boundary layer grid near (a) leading edge, (b) trailing edge

After the near-wall mesh is ready, the outer region is filled with quadrilateral elements
ensuring proper mesh distribution along the rest of the edges. Periodicity is enforced in
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Table 4.3 Grid used in simulations. Ns: Total no. of elements on 2D section of the blade,
Nnw: No. of rows in the near-wall region, ∆η1: First wall distance, SR: successive ratio,
NWT: Total thickness of near-wall region. ∆s+, ∆η+, ∆z+ are distances in wall units in
streamwise, normal and spanwise directions

Grid N f Nz Size
(M)

Ns Nnw ∆η1
(×104)

SR NWT ∆s+ ∆η+ ∆z+

A 384,164 64 25 1526 15 5.9 1.05 0.0127 4 1.2 6

B 740,088 64 47 3322 120 2.3 1.02 0.113 3.5 0.8 6

B1 740,088 128 95 3322 120 2.3 1.02 0.113 3.5 0.8 3

C 1,257,162 128 161 4140 200 0.93 1.005 0.032 1.1 0.1 2

T 150,764 32 5 950 30 5.8 1.05 0.039 9.5 1.1 12

the pitchwise y-direction, so that elements are exactly copied along the periodic edges. It
requires a few iterations to get the desirable mesh with good mesh quality and no abrupt
jump. More than 50% of the total number of mesh elements are confined in the near-wall
region.

The 2D mesh was then exported to ’Fluent 5/6’ format, which was then imported into an
in-house pre-processor (anuroop-PRE). This pre-processor first extrudes this 2D mesh into 3D
for a given number of intervals, then calls the open-source partitioning tool METIS (Karypis
& Kumar 1998) to divide the mesh into the desired number of subdomains. Finally the data is
written for individual subdomains in ANUROOP format. The ghost cell information needed
for the interface boundaries between subdomains is also written at this stage.

4.2.3 Grid Details

Table 4.3 provides the details of the grids used for the present simulations. The mesh
parameters used to create near-wall grid are also given; ∆s+, ∆η+, ∆z+ indicate distances in
wall units in the streamwise, normal and spanwise directions respectively for simulations with
Re = 51831. Thus ∆η+ is the first grid-point distance in the normal direction, ∆s+ is the
streamwise distance between nearest elements in the mid-chord region of the blade, and ∆z+

is the interval between adjacent elements in the spanwise direction (constant throughout).
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Fig. 4.5 ∆η+ distribution for simulation with grid C. Re = 51831, β1 = 45.5◦

Unlike in other grids, the computational domain of grid A includes the passage between
two successive blades, rather than the flow-region around a single blade. The former has been
the general approach till recently in computations of flow past bodies to describe the same
physical flow in computation. A computational domain around a single blade gives more
flexibility in creating a suitable near-wall mesh and hence has been used in later studies. Grids
B and B1 use the same face mesh and differ only in the number of intervals in the spanwise
direction (64 and 128 respectively). This was used to study the effect of the spanwise mesh.
Simulations show no major difference between 64 and 128 intervals, and only results with B
are reported in this thesis. The 128 intervals in grid C have been used to avoid skewness in
the mesh elements because of the very fine mesh used in the face. Grid T is the test grid used
for preliminary simulations at various inflow angles, different FSTI and Reynolds number.

Grid C is the finest ever grid used to-date for DNS in a turbine blade flow. Figure 4.5
shows the distribution of the first layer distance in wall units for a simulation (at Re = 51831,
β1 = 45.5◦) performed with this grid. The grid refinement in the boundary layer ensures that
the first layer distance in wall units ∆n+ is below 0.1 throughout the blade for this simulation.
The results with this extra-fine grid are somewhat surprising, and also differ significantly
from other grids, as will be described and explained in the next chapter.

It is to be noted that the highest resolution used earlier for simulation, performed with
a 2nd-order accurate numerical method at the present Re, was 17 million (see Table 1.2 in
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chapter 1). As the flow on the suction side is more complex, the streamwise resolutions for
the suction side of the blade for different grids are shown in Fig. 4.3.

4.2.4 Computational Facilities and Runs

Simulations have been performed at the top computational facilities available in India.
The cluster available Nalanda at JNCASR was used for preliminary simulations. Large
simulations were performed at supercomputing facilities available at C-DAC, Pune and CSIR-
4PI, Bangalore. The details of these facilities are given in Appendix A. All the simulations
have been performed using only CPUs without any accelerators.

The time step employed is of the order of 10−5L/U corresponding to CFL ≈ 1.0, where
L and U are the length and velocity scales used in defining Re. With this step-size, one
simulation with grid C takes around 10 days with 1024 Intel Xeon E5-2670 (Sandybridge)
2.6 GHz processors ( 22 peak TFLOPs) for the flow to progress 10 flow-times. Each
processor writes its own results file that includes global cell id and variables ρ,u,v,w,P. A
post-processor can read all these files and generate a single file for full domain or a section
based on the global ids. Post-processing is performed using a workstation with 128 GB RAM
and Nvidia Quadro K40 graphics card. Tecplot® software is used for post-processing most
of the results.

4.3 Computational and Numerical aspects

4.3.1 Relaminarizing Buffer Layer near Outflow

The preliminary simulations that were performed on the blade resulted in blow-up as soon
as the flow hit the outflow boundary. A closer investigation has shown that fluctuations that
were built-up inside the computational domain due to physical instabilities of the flow get
reflected for this problem near the outflow boundary (as the outflow could not be located
much farther downstream in order to avoid excessive grid requirement for DNS), and hence
the simulation crashes. A common remedy is to increase the viscosity so as to damp out the
fluctuations in the vicinity of the outflow. Wissink & Rodi (2006) have used a buffer region
in their DNS of flow in a turbine cascade.

In the present simulations, the viscosity is gradually increased to 10 times the physical
viscosity in the buffer region defined 1.6 ≤ x ≤ 2 (see Fig. 4.2). This increase in viscosity
however restricts the allowable time-step in explicit time-stepping.
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4.3.2 Inflow Turbulence and Wake

While some simulations have been performed with FSTI, the emphasis has been trying to
understand the structure of the solution, in particular its dependence on numerical parameters
such as resolution. The reason for doing this is the questions on the effect of resolution have
to be sorted out before one can obtain a reliable numerical solution of the Navier-Stokes
equations.

We have performed some simulations with FSTI of 2.5%, 5% and 10% on the finest
Grid C. This method of specifying free-stream turbulence (FST) is the same as explained in
Kalitzin et al. (2003) and Wissink & Rodi (2006), except that no wake disturbance is added
at the inlet. The FST is the pre-computed solution of a decaying homogeneous isotropic
turbulence in a box at a given time (Wu & Moin (2009); data provided by Prof. Parviz Moin,
Stanford University, and kindly lent to us by Prof. O. N. Ramesh, Indian Institute of Science).
This solution is first scaled to the desired intensity and then the grid on one of the periodic
faces of the box is matched to the inlet grid of the computational domain by appropriate
stacking. At t = 0, the solution on this face is superimposed on the mainstream flow at the
inlet of the blade domain. These disturbances are added only to the velocity field and not to
pressure and density. At each time-step thereafter, the solution on the blade is advanced by
∆t, and the downstream face of the box is correspondingly moved by a distance ×U∆t. It
may be noted that at each time-step the solution is interpolated inside the box, before being
superimposed on the free-stream. Once n×U∆t (n is the iteration number) becomes greater
than the box side length, the cycle is repeated from the leading face of the box.

As FST is always provided at the inlet, its intensity decays till the flow reaches the
proximity of leading edge. In our exercise, it was noticed that for FST with intensity upto
10% at the inlet, the disturbances near the LE were insufficient to trigger transition in the
boundary layer flow. The mean structure of the solution thus obtained was not very different
from that with the clean inlet. It may thus require a higher intensity of free-stream turbulence
level or a different approach to specify the disturbance levels in such transitional boundary
layer simulations. Describing the appropriate initial conditions in a well-resolved DNS to get
desired solution at transitional Re is a subject of current research.

With regard to wakes, it is well-known that they change the structure of the transition
process. However these disturbances produced by a travelling row of cylinders do not really
strictly mimic the very complex disturbance environment in a real turbine, where the wakes
may come from more than one stage upstream and so will have gone through a complex
process of being chopped by several rows of blades. It would be quite difficult to reproduce
it numerically in DNS. This explains our focus on the basic problem of resolution.
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4.3.3 Averaging of the Flow

Simulations are allowed to progress for a duration that corresponds to a flow that has moved
about 8-10 chord lengths at the inlet velocity. The mean quantities are obtained by averaging
over the samples after the flow has moved about 5 chord lengths, and also by averaging in
the spanwise direction.
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Fig. 4.6 Estimated time in Teraflop and Petaflop days for simulations at different Re using
ANUROOP

4.4 Computing Power Requirement

The compute power requirements for a range of Re are given in Fig. 4.6. The time is
estimated based on the experience gained with the present simulation at Re = 51,831.
Though the Re for a gas turbine may go as low as 20,000 for some specific conditions during
cruise, the demand of compute power for a high-lift condition at which Re can go to the
order of a million is much more demanding. For example using the present code ANUROOP,
it will take around 220 days on a petaflop machine to get fully resolved DNS results at a
Re one-order higher than what we are currently doing. This may seem huge, but can be
well-within reach if the code can be made to exploit the power of hybrid-computing such
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as GPUs and MIC co-processors. A preliminary study suggests that the use of GPUs may
accelerate the code upto 30 times.

Further the present calculation is made using the highest grid resolution of 160 million at
Re = 51831. From the literature available this may seem like overkill, however grid-sensitivity
in DNS is one issue that still needs to be debated in detail. The next chapter provides a
flavour of grid sensitivity issues from the results that we have obtained, and explains why it
is important.

4.5 Concluding Remarks

The experimental and numerical details for flow on the T106A blade are provided in this
chapter. The emphasis of the present work is study of the boundary layer in detail through
DNS, and hence a grid topology is adopted where separate grids are used for the boundary
layer region and rest of the domain. The grid parameters are listed in detail. Mainly three
grids (A, B and C) at very different resolutions are used for the grid sensitivity studies. The
results are presented in the next two chapters.





Chapter 5

LPT Simulations: Fluid-dynamical
aspects

This chapter describes some of the fluid-dynamical aspects of the flow on the LPT blade.
The chapter begins with grid-sensitivity issues which are shown to affect even features of the
mean flow. It is shown how bulk parameters such as the pressure coefficient cp(x) can be
greatly affected by the choice of the grid.

The mean separation bubbles, when present, are characterized by a suitable pressure
gradient parameter. The difference between the mean and instantaneous flows in this context
is also highlighted.

Analyses of the present DNS results have been performed here mainly on four aspects that
seemed quite striking. These analyses throw light on critical aspects of the complex flow that
is particular to a gas turbine blade. The analyses also reveal aspects of the fluid-dynamical
"zoo" shown in chapter 1 , in this particular case the flow past an LPT blade at high incidence.
For two aspects - namely the curvature effects and relaminarization, the present DNS results
have been compared with the existing theories. These comparisons assist in assessing current
ideas, and may be useful to the modelling community in developing better tools.

Some of the aspects considered in this chapter require much more rigorous analysis
demanding both resources and time, and are beyond the scope of the present thesis. They are
presented here to give an overall flavour of the complex flow on the blade; and more detailed
analyses are left to future work.
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5.1 Grid Sensitivity Issues

Mean results obtained with the present simulations are found to be very sensitive, when
the incidence angle is β1 = 45.5◦ (well above the design incidence angle β1 = 37.7◦). For
simulations at the design incidence (β1 = 37.7◦) though, the major features of the mean flow
remain unaffected irrespective of the grid used. As shown in Fig. 5.1, there is no separation
bubble at the LE at this incidence. However a closed bubble is always found near the trailing
edge (discussed below in section 5.3), which is consistent with findings in the literature, e.g.
Sarkar (2007, 2009).

(a) (b)

Fig. 5.1 Streamlines of mean flow for simulations (Grid B). β1 = 37.7◦ (left) and β1 = 45.5◦

(right) at the LE. There is no separation for at the LE for β1 = 37.7◦ for any grid.

At the higher incidence of β1 = 45.5◦, inconsistency was found in the appearance of
LE separation bubbles among different grid results. Before going in to the this issue, it is
worthwhile to revisit the position in the literature on similar studies. Table 5.1 lists the
experimental and computational studies on T106A at this incidence. Though there are LES
and RANS studies as well (see Chapter 6), the list here is limited to DNS studies to highlight
the difficulties in simulating flow at high incidence.

Table 5.1 is converted to a plot in Fig. 5.2 for easy reading. It is obvious from the
plot that the observations, in particular regarding the separation bubble near the LE, are not
consistent among the different investigators.

In the experiments of Stadtmuller (2002a), TE separation is evident from the quasi
wall-shear stress measurement, however it is not clear if the flow reattaches. At the LE, no
separation is reported. The quasi wall-shear stress data (for clean as well as wake inlet) also
does not indicate any sign of separation. Michelassi et al. (2002) however suggest that the LE
separation may be missing because of the relatively long distance between the measurement
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Fig. 5.2 Number of separation bubbles in the mean flow. Open symbol represents incom-
pressible simulation

points. They pointed out the kink in the cp plot of Stadtmuller (2002a) near the LE may be a
sign of possible separation. They also observed that the LE separation might be affected by
the uncertainties in the experimental inlet flow angle.

In the DNS simulations of Michelassi et al. (2002), Wissink (2003) and Wissink et al.
(2006), the LE separation bubble is always seen for clean as well as wake inlet. The URANS
and LES simulations reported by Michelassi et al. (2002) also show separation near the LE.
They have also reported that the separated shear layer rolls up in two separate bubbles due to
a K-H instability, a phenomenon also observed in our relatively coarse resolution (grids A, B,
B1) studies.

The more recent DNS simulations (Michelassi et al. 2015; Garai et al. 2015) are all
compressible with more complex numerical methods. For Michelassi et al. (2015), a small
scale separation bubble is noticed near the LE on the suction side for the clean inlet simulation;
however the bubble disappears when the wake is added. This, they suggest, is because the
wake changes the effective inflow angle. In the case of Garai et al. (2015), this LE separation
bubble, which is present in lower-order simulations, disappears completely at the highest
order (as inferred from the skin-friction distribution).
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In our simulations performed with four different grids (Ranjan et al. 2013, 2014, 2016),
the separation bubble at the LE is present for grids A,B and B1, but disappears in the highest
resolution simulation (grid C). It is to be pointed out here that the resolution of grid C (160
million grid points) is about 5 times higher than the second highest compared to all other
studies at this Re (Table 5.1). Also for our simulations, utmost care was taken in defining
the blade curve from the co-ordinates given in the report by Stadtmuller (2002a), to avoid
any roughness due to the shape.

5.2 Mean Pressure Distribution

In the studies of Michelassi et al. (2002), Wissink (2003) and Wissink et al. (2006), where
LE separation bubble is present, there is a significant deviation in the prediction of pressure
on the suction side compared to experiments. The attributed reasons for this difference in cp

are uncertainty in inflow angle and compressibility effects not included in DNS simulations.
They have also acknowledged the effect of streamwise resolution (Wissink (2003)) but the
results reported are for a resolution (given in Table 5.1) which was claimed to be sufficient
for the study at Re = 51831.

The blade loading (cp) is well-predicted on both sides of the blade in the studies of
Michelassi et al. (2015) and Garai et al. (2015), however they differ in the presence of an LE
separation bubble as mentioned in the last section.

The plot in Fig. 5.3 shows a comparison of mean static pressure coefficients (cp = p − p2
pt1 − p2

,
where pt1 and p2 are total pressure at the inlet and back pressure at the outlet respectively),
as obtained by the present simulation against experimental results (Stadtmuller 2002a). The
data from Wissink (2003) for the clean inlet is also plotted in the figure, since they have
also reported the existence of leading edge separation bubbles. On the pressure side, the
results match very well for all the grids; however on the suction side, where the flow is rather
complex, the results are not in such good agreement except those from the finest grid (C).

The results on the pressure distribution are of great interest because the downstream flow
on the suction side is extremely sensitive to the pressure distribution at the LE (see section
5.3). It has been observed to our surprise that for the grid C, where the cp match is best, the
LE separation bubble disappears, but the TE separation bubble gets longer as well as thicker
(as the flow remains laminar till it hits the bubble). This long separation bubble is normally
identified with higher losses in a turbine blade and hence should be avoided in blade design
considerations.

It is interesting that such a fundamental bulk parameter as pressure distribution can be so
sensitive to resolution. To understand the reason for this difference, cp is plotted against the
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Table 5.2 Distance along the blade varying with axial chord

Pressure Side Suction Side

x/lax s x/lax s

0.1 0.102 0.1 0.162

0.2 0.207 0.2 0.284

0.3 0.308 0.3 0.39

0.4 0.408 0.4 0.49

0.5 0.514 0.5 0.594

0.6 0.628 0.6 0.709

0.7 0.76 0.7 0.85

0.8 0.918 0.8 1.032

0.9 1.15 0.9 1.254

1.0 1.352 1.0 1.56
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Fig. 5.3 Co-efficient of pressure on T106A blade

streamwise co-ordinates along the surface of the blade (see Fig. 5.4). The experimental data
as well as data from Wissink (2003) are only available along the axial chord (x). They are
here interpolated on the streamwise co-ordinates along the surface of the blade and plotted
against our results. The axial co-ordinates (x) and the streamwise co-ordinates along the
blade (s) are interchangeably used throughout this thesis depending on the context. Table
5.2 is hence provided where the relation between x and s is listed at 10 different locations
to help the reader. s = 0 starts on the both sides (suction and pressure) at the leading edge
co-ordinate given in the geometry file of Stadtmuller (2002a). It is to be noted that based
on this definition, the LE stagnation point at incidence β1 = 45.5◦ lies on the pressure side
(s ≃ 0.03).

In Fig. 5.4, the small plateaus that are present near the LE (s ≃ 0.05) for grids A and B
mark the presence of the separation bubble. The absence of this plateau in case of grid C is
internally consistent with the absence of the bubble. Similarly the long flat cp near the TE
for experiment as well as grid C mark a longer separation that is not reattached on the blade,
whereas just small kinks in the cp for other studies (at s ≃ 1.4) suggest short reattaching
bubbles.

It can be quickly noticed that the pressure near the LE on the suction side for all the
simulations in which an LE separation bubble is observed, is consistently below the experi-
mental value. This difference of computed cp value with the experimental value is plotted in
Fig. 5.5. Only in the finest grid C, cp is slightly higher than experimental value near the LE.
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Our RANS/LES results presented in Chapter 6, where no LE separation bubble is noticed,
confirm these observations.

The flow at this incidence (β1 = 45.5◦) has a stagnation point on the pressure side, and
then turns around the nose of the blade trying to overcome the adverse pressure gradient. Flow
reversal usually occurs in the this region of the boundary layer if this gradient is sufficiently
large. From Fig. 5.4, it can be argued that for the separated flow cases the relatively low
pressure (compared to the attached case) in the vicinity of the stagnation point, combined
with the high curvature, imposes a slightly higher adverse gradient which is enough to cause
flow reversal. Once the flow is reversed, the curvature again plays an important role in
hindering the flow from reattaching. Several instabilities and structures in this region are
seen in the instantaneous flow to be described in section 5.3. The LE separation changes
the entire course of the flow and a completely different picture (compared to attached flow)
emerges due to separation-induced transition. The attached flow on the other hand remains
laminar till the aft region of the blade, where it separates. Both flows are internally consistent
and fluid-dynamically interesting, and may represent different scenarios in which a turbine
blade can operate depending on a variety of factors, including free-stream turbulence, wake
impingement, surface roughness, angle of incidence and Reynolds number.

In the context of grid resolutions, it is difficult to provide precise explanation for this
discrepancy in the pressure predictions, given that all three grids seem to be well-resolved in
the boundary layer for standard computations. The complexity of the flow combined with
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Fig. 5.5 Difference in cp between DNS and experimental data on the suction side.

factors such as a highly curved high-lift blade, low transitional Re, and a high incidence, pose
a big challenge to the numerical schemes in resolving the flow satisfactorily. Further, this
flow is sensitive to a variety of disturbances and even a miniscule amount of noise (either
physical or numerical) may trigger instability. It is to be again emphasized here that at the
design incidence β1 = 37.7◦, no major discrepancies were noted in studies with different
resolution; as mentioned above, there is no separation bubble at the LE but there is always
one at the TE. Nevertheless, we may list here the numerics factors that are possible reasons
for the discrepancy at high incidence:

• Curvature of the blade

• Wall-normal resolution

• Numerical noise

We now discuss each of the factors listed above in the context of the present simulations.
It is suspected that at an incidence as high as 45.5◦ the high curvature of the blade near

the LE is playing a major role in deciding the fate of the downstream flow. It should also be
pointed out here that in the experimental report (Stadtmuller (2002a), the entire geometry
of the blade is defined by 199 points, with only 3 points near the LE where separation may
occur. Since the curvature in this region is very high, it is possible that streamwise resolution
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may affect the incoming flow. The effect of curvature is discussed in detail in section 5.4,
where it is shown how high curvature affects the mean flow.

The wall-normal resolution is important because the differences in computed cp may
be due to the interplay between the boundary layer and the external flow. Grid C has very
high wall-normal resolution (∆η+ <= 0.1) for most of the blade (as shown in Fig. 4.5),
which is much higher than resolution in any other study. The streamwise and wall-normal
resolutions for different grids used in our studies is listed in Table 4.3.

Numerical noise in the numerical methods adopted can be one of the reasons for the
discrepancies, but it is difficult to estimate exactly for 3D Navier-Stokes computations. This
aspect is also related to the choice of the computational grid. The presence of upstream
wakes/FSTI only makes this issue even more complicated. Since we have not performed
simulations with wakes, it is difficult to comment here on its effects on the flow.

Before closing the topic, it is worthwhile to present the work of Sundaresan et al. (1998)
where the effect of grid resolution is convincingly presented on the relatively far simpler case
of 2D lid-driven cavity flow at high Reynolds number. Their work shows the need for an
extremely refined boundary layer grid to get accurate results even in the core region of the
cavity. In this context, a theorem due to Shishkin (1997) is worth mentioning. He has proved
mathematically that the solutions of elliptic and parabolic equations in the boundary layer do
not show uniform numerical convergence (which is the property that the difference between
the exact and numerical solutions goes to zero as the mesh size tends to zero). The results of
Sundaresan et al. (1998) have been seen as a demonstration of the validity of the Shishkin
theorem (Fedoseyev 2001).

Shishkin (1997) has suggested that to avoid the grid-dependence of solutions, a special
kind of mesh (known as the Shishkin mesh) should be used in the boundary layer. But
construction of a Shishkin mesh requires knowledge of boundary layer thickness, which is
often not available in advance. The classical computational approaches require extremely
large numbers of grid points to produce satisfactory computed solutions.

Some relevant questions that arise from the present study are: (1) How smooth are real
turbine blades? (2) What is the disturbance level of (acoustic) noise inside a turbine and
how can it be characterized and simulated in an essentially fruitful way on the computer?
Unfortunately there is not much experimental data to answer these questions.

In the absence of more experimental data or convincing computational data to compare
with the present DNS results and hence to address the discrepancy, we examine how best
the solutions can be assessed to study some of the interesting fluid-dynamical aspects.
Internal consistency checks for the simulation results are made wherever possible. Four
fluid-dynamical aspects: curvature effects, separation bubbles, transition and relaminarization
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are discussed separately in the next four sections. It is hoped that these analyses will offer
insights into the complex flow that may involve one or more of the phenomena described
above. The parameters of engineering interest in the flow are discussed in Chapter 6.

5.3 Separation Bubbles

Figure 5.6 gives visual representations of the separation bubbles at LE and TE through
streamline plots for the mean velocity field at the leading and trailing edges of suction side
respectively, as obtained from simulations using Grids A, B and C.

The stagnation point can be seen on the pressure side where the incoming flow at an
incidence of 45.5◦ hits the blade. The flow then has to turn around the leading edge while
trying to overcome the adverse pressure gradient. The separation bubble that thus develops is
noticeable in grid A and B plots. This bubble is missing in grid C for reasons explained in
earlier section.

Another noticeable aspect is the difference in TE separation in the aft region of the
suction side of the blade for grid C. This is not surprising as the flow upstream of the the
separation remains laminar in case of grid C whereas for other grids the flow has undergone a
separation-induced transition at the LE. This large separation for grid C is further confirmed
by the long plateau in the cp plot of the experiment (Fig. 5.3).

The separation regions can also be identified from the boundary layer velocity profiles
plotted in the neighbourhood as shown in Fig. 5.7. The negative velocity near the wall
indicates reversal of the flow in the separation regions. In the profile near the LE, the mean
velocity falls steeply just outside the boundary layer. This is due to effect of strong convex
surface curvature, which is described in detail in section 5.4.

The mean skin friction coefficient (wall shear stress normalized by the far free-stream
quantities, c f =

τw

0.5ρ∞U2
∞

) from the simulations is plotted in Figure 5.8. Once again separa-

tion is clearly marked by the negative values of c f . The pressure side shows no separation
and the results with different grid resolutions show no discrepancy among one another. The
suction side, on the other hand has large discrepancies among different grid results as stated
above. The results from Wissink (2003) are also plotted, where the LE separation can be
seen.

The characteristics of the bubbles obtained with different grid simulations are listed in
Table 5.3. Subscripts 0 and 1 indicate the positions just upstream and downstream of the
bubbles at both LE and TE. Once again there is a good match between grid A and grid B, but
they stand out when compared with grid C.
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Fig. 5.6 Streamlines of mean flow for β1 = 45.5◦. All simulations were performed without
any free-stream turbulence. Top: Grid A, Middle: Grid B, Bottom: Grid C. Left: LE, Right:
TE
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Fig. 5.8 Mean skin-friction on the blade. Left: Pressure side, Right: Suction side. Separation
region is marked by negative skin-friction.

The table also includes the pressure gradient parameter P =
h2

ν

∆u
∆x

suggested by Diwan
et al. (2006) to categorize the bubbles as of the ’long’ or ’short’ type. Here h represents the

maximum thickness of the bubble (also included in Table 5.3) and
∆u
∆x

is the a measure of
velocity slope across the bubble. According to the survey done by Diwan et al. (2006) on
many separating flows, bubbles fall in the category of short if P > −28, else long. Table
5.3 clearly indicates that the LE bubbles are short. However TE bubbles are short only
if the upstream boundary layer is transitional (grid A and B). This is consistent with the
observations on turbine blade separated flows, where bubbles are short in transitional flow
separation. For grid C, where the flow stays laminar, the bubble comes under long category.

The instantaneous pictures of theses bubbles are presented in Fig. 5.9. When compared
with the mean (Fig. 5.10), these instantaneous bubbles look very rich in structure as we
notice a train of separation rolls or (sometimes) bubbles. The rolls are differentiated from the
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Table 5.3 Characteristics of separation bubbles

Leading Edge Trailing Edge

Grid A Grid B Grid C Grid A Grid B Grid C

x0 0.006 0.008 - 0.823 0.845 0.755

x1 0.046 0.071 - 0.964 0.967 1.1

U0 1.95 1.9 - 1.57 1.55 1.89

U1 1.61 1.56 - .143 1.42 -

h 0.006 0.007 - 0.006 0.002 0.07

P -8.2 -10.6 - -1 -0.09 -126

Type short short - short short long

bubbles by the clear presence of separation and reattachment points in the latter. Separation
rolls are structures within a bubble where streamlines are not fully reattached, but a tendency
for reattachment gives rise to instability. Bubbles on the other hand are marked by separate
reattachment points.

Many investigators including Wissink (2003), and Sarkar (2007) have reported multiple
separation rolls observed in their simulations in the context of the effect of incoming wakes.
In their DNS, Michelassi et al. (2002) have observed two instantaneous separation bubbles
near the TE . In our simulations, we notice as many as three instantaneous bubbles near the
TE, as shown in Fig. 5.11.

These instantaneous bubbles break and merge with time, and have a three-dimensional
structure. The three-dimensionality of the bubbles can be noticed from the spanwise-vorticity
ωz contours (Fig. 5.18 given in section 5.5), in which the separation is marked by the positive
vorticity.

Figure 5.12 shows the instantaneous pictures of the LE separation bubble as a function
of time. The location as well as extent of these separation bubbles change with time. The
bubbles break up and merge in time to form a single average bubble.
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Fig. 5.9 Streamlines of instantaneous flow for β1 = 45.5◦. Top: Grid A, Middle: Grid B,
Bottom: Grid C. Left: LE, Right: TE
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Fig. 5.10 Comparison of structures of mean and instantaneous bubbles at the LE. Top: Grid
A, Middle: Grid B, Bottom: Grid C. Left: Mean, Right: Instantaneous

Fig. 5.11 Multiple separation bubbles at the trailing edge (Grid A)

This instantaneous instability within mean separation bubbles can have implications on
the engineering parameters such as skin-friction and heat-transfer, and hence on blade design.
These aspects are covered in Chapter 6.
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Fig. 5.12 Changing structures inside LE separation bubble between t = 7 and t = 8 (Grid A)
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5.4 Curvature Effects

This section describes the the effect of curvature on the boundary layer mean flow, and also
compares the DNS results against high-order boundary layer theory, which retains terms
containing higher order curvature effects in the boundary layer equations.

Streamline curvature and rotation play an important role in deciding the nature of flow on
turbine blades. On the convex side of the blade, the flow gets accelerated due to centrifugal
force and thus the turbulence in the boundary layer gets weakened. On the other hand,
turbulence in the boundary layer gets enhanced on the concave side due to curvature. The
level of turbulence makes a significant impact on the due course of the flow, specially in the
transitional region.

Figure 5.13 shows boundary layer velocity profiles very near the leading edge as obtained
from DNS with the highest resolved grid (C). Similar profiles are also obtained in simulation
with other grids. The ’curved’ boundary layer profiles are due to very high surface curvature.
As we go away from the leading edge, the curvature effect becomes weaker.

The red straight lines on the plots are the fit to the 2nd order boundary layer theory (to be
discussed shortly) where it is assumed that the velocity in the outer layer varies linearly with
curvature and normal distance from the surface, i.e.

U =U0w −κ y

Here κ = κ(s) is the curvature of the blade at location s, and U0w is the velocity at the wall
according to potential flow in the inviscid outer layer, and is close to being a velocity at the
edge of the boundary layer.

The curvature non-dimensionalized with blade-axial length (lax) obtained using 2nd order
boundary layer theory is plotted along the blade chord in Fig. 5.14 (a). Very near the LE
(0 <= s <= 0.03), curvature is an order-of-magnitude higher than further downstream.
This curvature is also compared with local geometric curvature of the surface κgeo. This is
calculated by the formula,

κgeo =
x′y′′− y′x′′

(x′2 + y′2)3/2

where x′ = dx/ds etc.

The gradients above are calculated by fitting arcs over every 3 points using the least-square
method.

The otherwise smooth curve of geometric curvature has two kinks at s = 0.008 and
s = 0.024. This came as a surprise because the smooth blade curve is made by importing
the co-ordinates of Stadtmuller (2002a) using splines. This curvature is then plotted against
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the axial chord along with the blade curve (Fig. 5.14 (b)). The kinks are visible where the
curve changes sign (from concave to convex) and also at a point where the leading edge
separation is suspected (in Grid A, B, B1 simulations).

5.4.1 Application of Higher-order Theory

In the literature, there are very few computational studies (especially RANS and LES) on
turbine blades where the effects of curvature and rotation are accounted for. Recently Rinaldi
et al. (2014) have implemented curvature corrections in γ −Reθ transition model due to
(Langtry & Menter 2009) to simulate flow past turbine blades. With this correction, they
have reported better agreement with experiments in the prediction of transition onset, and
hence improvement in the prediction of heat-transfer and pressure co-efficients on a VKI
turbine blade.

One of the purposes of DNS simulations is to help improve the existing models by
providing new databases and insights. In this spirit, the present DNS results are compared
against the higher-order theory of Narasimha & Ojha (1967).

The classical boundary layer theory of Prandtl does not take account of changes due to
curvature of the surface on the boundary layer. Based on the higher order approximations
in boundary layer theory proposed by Van Dyke (1962), Narasimha & Ojha (1967) have
used the full Navier-Stokes equations in orthogonal curvilinear co-ordinates and expanded in
Prandtl (inner) and Euler (outer) limits. The inner expansion of the variables is:

u =u0 + εu1 + ...(ε =
1√
Re

)

v =εv0 + ε
2v1 + ...

p =p0 + ε p1 + ...

Retaining the zeroth-order quantities gives the well-known Prandtl boundary layer equations,
as:

∂u0

∂x
+

∂v0

∂y
=0 (5.1a)

∂ p0

∂y
=0 (5.1b)

u0
∂u0

∂x
+ v0

∂u0

∂y
=− d p0

dx
+

∂ 2u0

∂y2 (5.1c)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.13 Velocity profiles near the leading edge of the suction side (Grid C). Curvature is
clearly visible in these profiles. Red line shows the fit using the first order theory. For 1st

order boundary layer theory to be applicable, velocity at the edge of the boundary layer (U0s)
should linearly approach free-stream velocity using the relation U =U0s −κy
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Fig. 5.14 Curvature along the blade surface (left) and along the axial chord (right) near the
leading edge of the suction side

Retaining the next order terms gives the 1st order equations that includes curvature as well as
displacement effects

∂u1

∂x
+

∂v1

∂y
=−κ

∂ (u0y)
∂y

(5.2a)

∂ p1

∂y
=κ u2

0 (5.2b)

u0
∂u1

∂x
+ v0

∂u1

∂y
+u1

∂u0

∂x
+ v1

∂u0

∂y
=− ∂ p1

∂x
+

∂ 2u1

∂y2

+κ

{
y
(
u0

∂u0

∂x
+

∂ p0

∂x

)
+

∂u0

∂y
−u0v0

}
(5.2c)

where κ is the local curvature.

This has to be accompanied with appropriate boundary conditions in the asymptotic
limits for both inner and outer equations. Also, since the 1st order equation is linear, the
displacement effect can be separated from the curvature effect. For curvature effects, the
above equation finally leads to the following equations,

∂u1

∂x
+

∂

∂y
(v1 +κ y u0) = 0 (5.3a)
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+
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∂y2 +κ
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∂x
+

∂ p0

∂x
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+
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−u0v0

}
(5.3b)
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with the boundary conditions

u1 = v1 = 0, at y = 0, (5.4a)

and u1 =−κ y U0s, as y → ∞. (5.4b)

where U0s = U0(X ,0) is the surface speed from the outer solution as illustrated in 5.13.

Narasimha & Ojha (1967) have also given a Falkner-Skan like similarity solution for the
1st order equations for certain conditions. If the velocity varies as a power law with distance,

U0s =C sm

where C is an arbitrary constant.

For the above flow, the usual Falkner-Skan solution for the zeroth order equation is

f
′′′
0 + f0 f

′′
0 = β ( f

′2
0 −1) (5.5)

where m ≡ β/(2−β ) and the primes denote differentiation with respect to the transformed
co-ordinate η , and f0 is function of only η .

Similarly it is shown that using appropriate transformations, the similarity solution of 1st

order equations can be obtained provided the curvature varies as

κ = κs

[
C(m+1)

2

] 1
2

s
1
2 (m−1) (5.6)

(5.7)

where κs is a constant.

The equations 5.3 reduce to

f
′′′
1 + f0 f

′′
1 −2 β f

′
0 f

′
1 + f

′′
0 f1 = κs

[
f
′′
0 (η f0 −1)− f0 f

′′
0

−β

{
η( f

′2
0 −1)− 2

1+β
( f

′′
0 + f0 f

′
0 +βη +A)

}]
(5.8)

where

A ≡ lim
η→∞

(η − f0) (5.9)
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The boundary conditions in similarity variables become

f1(0) = 0 = f
′
1(0) (5.10a)

f
′
1(η)≈−κ η as η → ∞ (5.10b)

The solution ( f0) of the non-linear Falkner-Skan equation is needed to solve the 1st order
equation (linear) 5.8 numerically. Narasimha & Ojha (1967) have used already available
Falkner-Skan results to interpolate and then solve 1st order equations using Runge-Kutta
method.

In the present work, both equations were solved simultaneously on the same grid. A
shooting method was used to satisfy the boundary conditions at ∞. The effect of curvature
can be seen in Fig. 5.15 where the velocity profiles with and without curvature effects are
compared for κs = 1.7. Higher-order theory shows a significant departure from the Prandtl
boundary layer theory in this case. The DNS results at the corresponding location (x = 0.04
on the suction side) are also compared with the higher-order theory. The higher-order theory
shows a very good match with the DNS results and hence has a potential to be used in
RANS/LES calculations to account for curvature effects .
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Fig. 5.15 Curvature effects: Prandtl vs Higher Order. κs = 1.7. DNS results are also plotted.
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5.5 The Transition Zone

This discussion here is limited to the flow scenario on a turbine blade where a separation
bubble at the leading edge (as we notice in the simulations with grids A, B and B1) induces
transition and alters the flow downstream. In the results obtained with the finest grid C, the
flow remains laminar on the suction side till the long separation zone in the aft region of the
blade, where separated-flow transition occurs. Since the dynamics of this flow is relatively
simple (compared to flows where LE transition occurs), it is not discussed here.

Further, since all the simulations that predict LE separation present very similar pictures
(see section 5.3), the analysis presented below is performed with the results obtained with
coarsest grid A .

Figure 5.16 shows contours of the total velocity in the boundary layer at t = 7. The levels
at which the contours in Fig. 5.16 are plotted, were such that in the middle of the blade,
where there is no separation ∆η+ ≈ 10, which corresponds to the 5th grid point above the
surface of the blade. It is seen that there is a rapid rise from the low values just downstream
of the bubble at x = 0.046 to higher values in the range 0.03 to 0.2 (also see zoomed view in
Fig. 5.17). Furthermore, over 0.05 < x < 0.2 the velocity field is laterally inhomogeneous,
and shows streamwise patches of higher velocity, losing much of that inhomogeneity beyond
x = 0.2. This suggests an intermittent transition zone. Different regions are marked in
Fig. 5.16 and also compared with the skin-friction co-efficient. The sudden increase of
skin-friction in the instanteous flow (x = 0.1 and x = 0.95) is related to the onset of transition.

To probe the issue further, Figure 5.18 presents contours (at t = 7) of the instantaneous
spanwise vorticity ωz at the wall. It should be noted that this is dominated by ∂u/∂y at the
wall, and is therefore a good indicator of the wall stress τw (note that when ωz is positive,
τw is negative). It is seen that, going downstream, ωz is at first positive (τw < 0) over
0.006 < x < 0.046, indicating that the separation bubble covers this range. Immediately
downstream, however, ωz goes negative (τw > 0), and indeed rises rapidly, indicating the
occurrence of transition onset in the neighbourhood of the last reattachment point in the
separation bubble regime.

The transition zone extends roughly from x ≃ 0.05 to about x ≃ 0.2 and the onset of
transition seems to be within the separation bubble.

Figure 5.19 shows the streamwise variation of τ̄w , the mean wall stress. Also shown are
separate predictions for purely laminar (τ̄wL) and purely turbulent (τ̄wT ) boundary layers, both
subjected to the same pressure gradient. For the laminar boundary layer the initial condition is
taken as the velocity profile at x = 0.05, as given by the present DNS solution. The turbulent
boundary layer is taken to originate at x = xt = 0.04, as in the linear combination model for
the transition zone (Dhawan & Narasimha 1958). The estimate of xt is based on computed
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Fig. 5.16 Total velocity contours (top) and skin-friction on the blade at t = 7.0. Different
regimes are marked. Mean skin-friction is also shown for comparison

values of τ̄w, and is taken to be the streamwise station just upstream of the computed rise in
τ̄w seen in Figure 5.19. Because of the sharpness of the rise and the small streamwise extent
of the whole bubble at the leading edge (0.006 < x < 0.05), the error in estimating xt is very
small.

The linear combination model assumes that

τ̄w = (1− γ)τ̄wL + γτ̄wT (5.11)
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Fig. 5.17 Zoomed view near the leading edge. Left: Total velocity, Right: Spanwise vorticity
(ωz). The onset of transition is upstream of reattachment point

Fig. 5.18 Spanwise vortcity (ωz) contours on the wall (t = 7.0)

based on the hypothesis that the flow is equivalent to that in a fully turbulent boundary layer
for a fraction γ of the time, and to that in a laminar boundary layer for a fraction (1− γ) of
the time, each with its own initial condition as discussed above. This model has been found
to give good estimates of τ̄w in the transition zone.

We can therefore invert eq. 5.11 to estimate γ from the DNS result for τ̄w and from
predictions for τ̄wL and τ̄wT based on the boundary layer equations. The estimates of τ̄wL

and τ̄wT are obtained using laminar and turbulent boundary layer modules (ILBLI and ITBL
respectively) available in Boundary layer code developed at the Department of Aerospace
and Ocean Engineering, Virginia Tech by Devenport & Schetz (1998).

The variation of γ so estimated is shown in Fig. 5.20. It is seen that γ rises sharply from
zero in the neighbourhood of the end of the mean separation bubble, reaches a maximum of
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Fig. 5.19 Mean wall-shear stress as obtained from DNS against those with laminar and
turbulent boundary layer calculations using same pressure profile. Both boundary layer
calculations upstream of the x ≃ 0.05 indicate separation.

0.9 at x = 0.1, and thereafter slowly declines to lower values. This clearly indicates that the
flow never becomes fully turbulent, although transition is nearly complete.

This is followed by a region of favourable pressure gradient, which tends to relaminarize
the boundary layer. Both c f and γ continue to drop. This regime is discussed in Section 5.6.

Further downstream the pressure gradient becomes adverse (Fig. 5.3) at x ≈ 0.6, leading
to the second separation at x ≈ 0.8. The transition due to this separation is incomplete even
as the flow leaves the trailing edge.

Figure 5.21 shows iso-surfaces of Q-variable to detect the vortices. Q is the second scalar
invariant of the velocity derivative tensor and can be expressed as:

Q = 0.5× (Ωi jΩi j −Si jSi j)

where Si j and Ωi j are the symmetric and the antisymmetric part of the velocity derivative
tensor respectively.
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Fig. 5.20 Intermittency γ in the transition zone. Mean wall-shear stress is also plotted.

Once again, the transition zone is visible by the presence of vortical structures near
the leading and trailing edges. These structures disappear in the downstream region of the
relaminarizing zone.

Fig. 5.21 Identification of vortex-structures using the Q-criteria (t = 7.0)
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5.6 Relaminarization

In the flow past T106A blade at incidence angle of β1 = 45.5◦, the pressure gradient is
largely favourable in the first half of the suction side. The incoming turbulent flow (due to
separation-induced transition or free-stream turbulence) may undergo relaminarization in
this region. For example, Wilson & Pope (1954) and Wisler (LaGraff 2007) have reported
experimental observations of relaminarization on a turbine blade boundary layer(see Chapter
1). It is hence worthwhile to revisit the relaminarization model proposed by Narasimha
& Sreenivasan (1973) in the context of the present DNS results, where relaminarization is
distinctly noticed.

5.6.1 The Two-layer Model

Narasimha & Sreenivasan (1973), NS73 have proposed a two-layer model, comprising of a
viscous inner layer and an outer inviscid but rotational layer, to explain the relaminarization
mechanism. This model is briefly explained as follows:

Figure 5.22 (reproduced from NS73) sketches the phases of a typical turbulent flow
going through relaminarization and retransition. Relaminarization under strong favourable
pressure gradient is a continuous process unlike transition. As shown in the figure, fully
turbulent flow in region-I starts relaminarizing after a steep favourable pressure-gradient is
imposed. In region-II, the flow is transitional and in region - III the flow is quasi-laminar.
The flow retransitions to turbulence again in region-IV.

NS73 have argued that under high favourable pressure gradients, the domination of
dynamic pressure on the slowly responding Reynolds stress in the outer layer leads to flow
becoming quasi-laminar. The turbulent structures in the outer layer are distorted due to rapid
flow acceleration. For all practical purposes, this layer can be treated as inviscid due to
Reynolds shear stress being ’frozen’ compared to the steep rise in dynamic pressure.

An inner viscous sub-boundary layer develops subsequently to satisfy the no-slip bound-
ary condition. This layer originates from the decaying upstream turbulence and is maintained
in a stable state by the accelerated flow on top. The dashed line in region-III depicts the
separation between the two layers in this model.

The governing equations for the two layers can be derived from the boundary layer
equation

u
∂u
∂x

+ v
∂u
∂y

= U
dU
dx

+ν
∂ 2u
∂y2 +

∂τ

∂y
(5.12)
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FIGURE 1,  Sketch of the flow situation considered, with a preliminary division into different 
regions. The dashed line separates inner and outer layers in region 111. 

between measurement and prediction are due to relaminarization or to inade- 
quacies in the turbulence model. Second, we find below that the quasi-laminar 
theory is valid almost from xo in the outer layer, so there is no strong need for 
more elaborate methods anyway. Our present purpose will therefore be served 
by illustrative calculations, which we make by the simple method due to Spence 
(1956). In  fact, straightforward interpolation between limiting solutions seems 
to be adequate for a first approximation, and provides a basis for further refine- 
ment if necessary. 

These analyses show that a rational division of the flow during reversion, into 
regions based on the dominating physical mechanisms, calls for considerable 
revision of the boundaries in figure 1; we shall show that there emerges a GO- 

herent overall picture of the phenomenon that largely explains experimental 
observations of both mean and fluctuating quantities. 

2. The quasi-laminar equations 

is governed by the equations 
The development of an incompressible two-dimensional boundary-layer flow 

aupx + avpy = 0, 
au au au a2u a7 

ax ay dx ay2 ay’ 

(2.1) 

(2.2) u-+v- = u-+v-+- 

Fig. 5.22 Top: Different regimes in a relaminarizing flow. Vertical axis indicates boundary
layer thickness. Dashed line in quasi-laminar region separates viscous inner layer from
inviscid outer layer. Bottom: Two-layer theory. (Reproduced from Narasimha & Sreenivasan
(1973))

From the above equation, two separate equations are written for the above-defined inner
and outer layers, which in non-dimensionalized form using proper variables are given by:

Outer: u
∂u
∂x

+ v
∂u
∂y

= U
dU
dx

(5.13a)

Inner: ũ
∂ ũ
∂ x̃

+ ṽ
∂ ũ
∂ ỹ

= U
dU
dx

+ν
∂ 2ũ
∂ ỹ2 (5.13b)

Here the overbar and tilde represent inner and outer variables respectively.
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These equations can be solved using the matched-asymptotic technique as also discussed
in section 5.4. The matching boundary conditions are:

u →U, v = 0 as y → ∞ (5.14a,b)

ũ(x, ỹ → ∞) = u(x,y → 0) = u0(x) (5.14c)

ũ = 0 = ṽ at ỹ = 0 (5.14d)

A new code is written in Matlab to solve these equations directly and also using the
approximate method described in Narasimha & Sreenivasan (1973).

5.6.2 Validation against the Bourassa-Thomas Experiment

The new code written for the two-layer model is first verified against the extreme case of
steep pressure gradient before using the model for the solution obtained on turbine blades.
Bourassa & Thomas (2009) present an experimental investigation of flat-plate turbulent
boundary layer at Reθ = 4590 subjected to steep favourable pressure gradients over a small
distance. The peak value of the pressure-gradient parameter, K = ν

U(x)2
d U(x)

d x thus achieved

is 4.4×10−6, which is much higher than the value 3×10−6 generally taken to be the lowest
value of K at which relaminarization may be observed.

Figure 5.23(a) shows a plot of external velocity as extracted from the plot given in
Bourassa & Thomas (2009). A smoothing spline of 3rd-order available in Matlab is needed
to fit the velocity in the relaminarized region. This fit is used in calculating the smooth
velocity gradients (and hence K) at the grid points in solving the governing equations
numerically. The curve obtained using cubic fit is overlapped on the extracted velocity
profile in 5.23(a). The pressure-gradient parameter K is calculated using the fitted velocity at
every grid point. This is shown in Fig. 5.23(b) along with the experimental points extracted
from the original paper. There is little difference between the fitted curve which is used in
two-layer model and the experimental data. However due to the necessity of using a smooth
and differentiable velocity field in the two-layer model, this difference is unavoidable.

For the region where the flow is turbulent and pressure-gradient is almost zero (between
-2.6 and 0 in Fig. 5.23), the boundary layer is solved using an in-house incompressible
turbulent boundary layer (ITBL) code with eddy-viscosity model, as given in Schetz (1993).

In the steep pressure gradient region (between 0 and 1 in Fig. 5.23), the two-layer model
is used with x0 = 0 as the virtual origin (where quasi-laminar flow starts) . The results thus
obtained are shown in Fig. 5.24. It is noticed that in the fully turbulent region, the predictions
of shape factor (H) as well as skin-friction co-efficients (c f ) are well predicted by ITBL.
However, this model fails to predict these quantities in the strong pressure gradient region.



104 LPT Simulations: Fluid-dynamical aspects

−3 −2 −1 0 1 2
0

10

20

30

40

x

u
e
(m

s−
1 )

 

 

Expt.

Fit

(a)

−3 −2 −1 0 1 20

1

2

3

4

x 10−6

x

K

 

 

Expt.

Fit

(b)

Fig. 5.23 (a) External velocity along the flat plate along with polynomial fit used for two-layer
theory. Points extracted from Bourassa & Thomas (2009). (b) Launder’s pressure-gradient
parameter K: Extracted points and as obtained from velocity fit. Note the little difference
between the experimental points and the polynomial fit

The predictions with the two-layer model in this region are dramatically better. The rapid
increase of shape-factor as well as the the substantial decrease in skin-friction co-efficients
in the quasi-laminar region are well-predicted by this model. The little difference with the
experimental data could be either due to using a fit for the velocity as described above or in
choosing the appropriate virtual origin of quasi-laminar flow. The uncertainty in choosing the
virtual origin which should be used in two-layer theory is due to a lack of proper definition,
as acknowledged in NS73. However it is also shown for a relatively low pressure-gradient
case that the choice of virtual origin does not affect the calculations significantly.

Nevertheless, allowing for with the slight difference, the two-layer model is verified for
the extreme case of high Re high pressure-gradient flow. This model is then used for the
relaminarization region in the T106A blade boundary layer predicted using DNS.

Application to T106A blade

Figure 5.25(a) shows the stretch of the T106A blade as obtained with DNS data (grid A),
where the pressure gradient is favourable. The fit for the velocity is also plotted on the
DNS data. The pressure-gradient parameter using this velocity is plotted in 5.25(b). The
peak pressure-gradient parameter is well beyond the value at which relaminarization is
experimentally observed. But unlike Bourassa & Thomas (2009), here the acceleration is not
very steep and occurs over a relatively longer region.

The two-layer model is then applied on this flow and the results are presented in 5.26.
The thinning of the boundary layer in the relaminarization region is well predicted in this
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Fig. 5.24 Experimental results of Bourassa & Thomas (2009) compared with incompressible
turbulent boundary layer theory (cyan in color) and two-layer model (black in color) in fully
turbulent region and quasi-laminar region respectively. .

region. The prediction of local skin-friction coefficient (wall shear-stress normalized by
local variables c f =

τw

0.5ρeU2
e

, subscript ’e’ represent values at the edge of the boundary

layer) by the two-layer model is also remarkably close to the DNS results downstream of the
relaminarization zone.

The motive of this exercise was to show the applicability of the two-layer model in
predicting the boundary-layer parameters in the relaminarizing flow on a blade. This model
is simple and quick, and does not require any detailed knowledge of turbulent quantities. A

suitable pressure-gradient parameter, such as Λp ≡−d p
dx

δ

τ0
(δ is a measure of total boundary-

layer thickness and τ0 is a characteristic Reynolds stress) as defined in NS73, can be used to
identify the quasi-laminar zone, if any, in flow over a turbine blade. The two-layer model can
then be used to get the quantities of interest very quickly. The underlying basic principle of
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Fig. 5.25 Quasi-laminar region in flow over T106 blade: DNS results. (a) External velocity
(b) Pressure-gradient parameter

this model (frozen Reynolds stress and viscous inner layer) can also be implemented in the
existing transition and turbulence models to predict the flow better.
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Fig. 5.26 DNS Vs Two-layer model. (a) Thinning of boundary layer (b) Decrease in local c f

5.7 Concluding Remarks

In this Chapter, the results obtained with different grids are presented. Four fluid dynamical
aspects, namely curvature effects, separation, transition, and relaminarization, are described
in some detail.

Interestingly previous work shows that the pressure distribution predicted by the usual
methods (and also coarse DNS) shows significant departures from the experimental data.
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Various explanations have also been provided for this observation. The present work shows
however that DNS predictions on a sufficiently fine grid (160 M in the present case) are
needed to provide satisfactory predictions. The fact that high resolution DNS is needed to
get even such a basic design requirement as pressure distribution suggest that the BL flow
and the outer flow are strongly coupled.

The low resolution DNS results (grids A and B) predict short separation bubbles at both
leading and trailing edges. The onset of transition occurs upstream of the reattachment point
of the LE bubble, and leads to a steep rise in the mean skin-friction co-efficient with the
peak at x = 0.1. However the intermittency never crosses 0.9 indicating that the transition is
incomplete. Further downstream the flow encounters high favourable pressure gradients and
undergoes relaminarization with a continuing drop in mean c f and intermittency γ . This is
followed by an adverse pressure gradient and leads eventually to a TE separation bubble and
retransition.

For grid C, the flow remains mostly laminar on both the sides. In the aft region of the
suction side, the flow gets separated due to adverse pressure gradient. The bubble formed
here is long, compared to the short bubbles present in solutions with grids A and B.

Present theories for modelling curvature effects and relaminarization are evaluated against
our DNS results, and they suggest good approximate solutions.





Chapter 6

LPT Blade Simulations: Engineering
Parameters

This chapter considers some engineering aspects of the simulations performed here on the
T106A blade. As RANS and now LES are the engineering methods to get quick results in
industry, this chapter compares the results obtained using these methods against DNS. The
validity, scope and limitations of RANS turbulence models in simulating blade flows are also
discussed.

The widely used commercial CFD code by Metacomp Technologies, CFD++ ® version
15.1, is used for this purpose. RANS simulations were performed with different turbulence
and transition models available in this code. Simulation was also performed using the hybrid
RANS-LES model available in CFD++.

Technological parameters such as skin friction (c f ) and heat-transfer (Nu) are also
discussed in this chapter. It is also emphasized why it is important to account for instantaneous
fluctuations apart from the mean flow for blade design considerations.

6.1 RANS and LES Simulations

6.1.1 Earlier Studies

Several approaches other than DNS, such as RANS, URANS, LES etc., have been used to
study the flow past the T106 blade. Apart from these widely used methods, hybrid methods
are also being currently attempted. These include methods such as LNS (hybrid RANS-LES),
Detached Eddy Simulation (DES), Delayed Detached Eddy Simulations (DDES). Higher
order numerical techniques such as Discontinuous-Galerkin (DG) are also becoming popular.
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Since the flow on the high lift blade T106A has complex physics at low Re, it is one of the
favoured engineering problems for study by different numerical approaches.

This section briefly summarises some of the non-DNS computational studies on the T106
blade and hence augments the list presented in Chapter 1. Table 6.1 lists selected RANS and
LES studies on the T106A blade where the experimental data of Stadtmuller (2002a) is used.
This table is not exhaustive and is given only for reference purposes. Present RANS and LES
studies are also included in the table.

As mentioned in Chapter 5, the report by Stadtmuller (2002a) presents the first RANS
study on their own experiments. This RANS study was performed to get the ’real’ flow
angle that should be used for DNS, as the geometric angle measured in the experiment
was uncertain due to the presence of the upstream wake-generating bars. Simulations were
performed with RANS solver TRACE (developed by the German Aerospace Center (DLR))
for an inflow sweep angle between 42.5◦ and 46.5◦. The angle 45.5◦, which had the best
match of cp with experimental data, was proposed as the likely real flow angle and has
been subsequently used for most of the DNS simulations performed to-date. Further RANS
simulations were also performed to assess the effect of free-stream turbulence levels on the
solution. The turbulence level did not affect the blade loading much but it was noticed that
the TE separation occurs only at low FSTI (0.8%) and did not occur at 2.2%. In our non-DNS
simulations (described in the next section), however, we show that the TE separation bubble
is present even at FSTI of 2.2% when the simulation is performed with the Langtry-Menter
transition model or LES, but was missing when a fully turbulent case (without any transition
model) was simulated. The details of the turbulence model used in Stadtmuller (2002a) are
not given. Stadtmuller (2002a) also reported secondary flow affects on the T106D blade
(which has 30% higher pitch than the T106A), suggesting that the flow is not necessarily
two-dimensional in the mean.

Michelassi et al. (2002) compared 2D compressible URANS results with their incom-
pressible LES and DNS results on the T106A blade at incidence β1 = 45.5◦. The URANS
simulations were performed using the k−ω model along with a transition model proposed
by Mayle (1991). LES was performed with a dynamic SGS model. RANS cp results on the
suction side seem to match with experimental data better than LES or DNS. This has also
been observed in our comparisons with RANS and coarse DNS results. LE separation bubble
is noticed in all three computational studies (URANS, LES, and DNS) of Michelassi et al.
(2002). The LE separation bubble however disappears in the RANS study when simulated
with a lower inflow angle of β1 = 43◦. The dynamic SGS model in the LES is able to predict
the behaviour of the suction side boundary layer and is in good agreement with DNS.
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Sarkar & Voke (2006) and Sarkar (2007, 2008, 2009) have done extensive incompressible
LES studies on this flow, albeit at higher Reynolds numbers (7.8×104 and 1.6×105 based
on inflow velocity) and at a lower inflow angle (37.7◦). A moderate grid of size 2 million is
used for the studies. The focus of these studies is to understand the influence of periodically
passing wakes impinging on the blade. It is no surprise that no separation bubble was found
near the LE, which is consistent with our DNS results at this incidence. The separation at the
TE leads to transition and is found to be influenced by wake turbulence.

Recently Wang et al. (2014) have performed compressible LES simulations on the T106
flow using a self-developed code on a moderate grid of 2.6 million. They also have used a
lower inflow angle (37.7◦) and a slightly higher Reynolds number (1.1×105 based on exit
velocity and axial chord) than in the present work. A reasonable match was found in cp with
the Stadtmuller (2002a) experiments except near the rear half of the suction side. Consistent
with other observations, a separation-induced transition is observed near the TE of the suction
side. The boundary layer reattaches before the TE, where an asymmetric Karman-vortex is
shed. No separation was noticed in the vicinity of the LE. The RANS simulations reported in
Wang et al. (2014) are however unable to get pressure distribution or separation sufficiently
accurately.

6.1.2 Present Simulations

RANS, LES and hybrid simulations have been carried out here with the commercial CFD
code CFD++® version 15.1 by Metacomp Technologies (Chakravarthy 1999) . CFD++ has
over 10 turbulence/transition models implemented along with LES, Hybrid RANS/LES
(LNS), Detached Eddy Simulation (DES) and variations of Delayed DES (DDES).

For the present fully-turbulent RANS study, the following turbulence models available
in CFD++ are used: Spalart-Allmaras (SA), Realizable k− ε , Shear-Stress Transport (SST),
k−ω , Hellsten k−ω with curvature-correction, and k− ε-Rt . Here k and ε are turbulent
kinetic energy and its dissipation rate respectively; ω and Rt represent a turbulent frequency
and the undamped eddy viscosity of the flow. These models exhibit superior performance
in separated flows and therefore have been used for this study. Among transition models,
Langtry-Menter transition model was used as it is well validated for transitional flows and
does not require any prior input about the transition onset.

The detailed description of these models can be easily found in the CFD literature. Below
a brief description of each model is given for the sake of completeness. The implementation
of these models is given in the CFD++ manual.

The SA model described in Spalart & Allmaras (1992) is a one-equation model mainly
developed for aerodynamic flows. It solves a modelled transport equation for the kinematic
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eddy-turbulent viscosity. This model has been shown to give good results for boundary layers
subjected to adverse pressure gradients. The SA model is effectively a low-Reynolds number
model and has often been used in turbomachinery applications.

Realizable k− ε is a two-equation model that solves a modelled transport equation for
k and ε . It differs from the standard k− ε model in the new formulation for the turbulent
viscosity and a new transport equation for the dissipation rate (ε). The realizibility arises from
the ε-equation, which is derived from an exact equation for the transport of the mean-square
vorticity fluctuation. This model exhibits superior performance for flows involving rotation,
boundary layers under strong adverse pressure gradients, and separation and recirculation.
The k− ε −Rt is a three-equation model implemented in CFD++ that also solves for the
undamped eddy viscosity (Rt) besides solving for k, and its dissipation rate ε . The Rt

equation accounts for non-equilibrium conditions and avoids free-stream turbulence decay
under shear-free flow conditions.

Hellsten’s k-ω model has a solver that uses similar transport equations for k and ω as
Menter does, but with explicit algebraic Reynolds stress modelling (EARSM) as a constitutive
model. This model is sensitive to pressure gradients, and model coefficients are calibrated
for flow phenomena relevant to high-lift aerodynamics. Rotation and curvature effects can be
included by using a correction term.

The SST k−ω turbulence model is a two-equation eddy-viscosity model that combines
the best of two models known for their accurate predictions in near-wall and core regions.
The k−ω formulation is used in the inner parts of the boundary layer while a k−ε behaviour
is implemented away from the wall using a blending function. This model is known to give
accurate predictions of the onset and the amount of flow separation under adverse pressure
gradients. Like SA, SST is also a low Re turbulence model recommended for boundary layer
flows.

In the γ −Reθ transition model proposed by Langtry & Menter (2009), SST k−ω models
are coupled with two other transport equations for modelling transition, one for intermittency
(γ) and the other for transition onset criteria in terms of momentum thickness Reynolds
number (Reθ ).

LES simulation was performed using a one-equation LES subgrid scale model. This
model solves a transport equation for the unresolved (subgrid-scale) turbulent kinetic energy.
Following Leonard , the residual stress tensor (τr

i j) in filtered Navier-Stokes equations are
split into Leonard, Reynolds and Clark stress tensors, which represent interactions among
large scales, subgrid scales and cross-scales between the two respectively. The stresses are
modelled using the linear Boussinesq relationship with a subgrid-scale viscosity field that
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depends on local grid size. The details of the implementation are given in CFD++® 15.1
Manual .

Various hybrid LES/RANS models are now gaining acceptance because of their not-so-
stringent grid requirement as in LES. Hence simulation was also performed with one such
LNS model available in CFD++, using the same grid as RANS. In this model, the cubic
k-ε model is used for the RANS calculations except in the regions of uniformly-refined
mesh where it switches to a Smagorinsky model based LES. The Large-Energy STimulation
(LEST) option in LNS, recommended for flows involving attached boundary layers, thin
separation etc., is turned on for the current simulation. This option feeds the statistically-
represented turbulence energy into directly-resolved scales of motion, and hence provides an
automatic unsteady inlet condition for any embedded LES regions.

The flow on the blade is solved using ’Preconditioned Compressible Perfect Gas Navier-
Stokes’ solver as the Mach number of the flow is quite low. The flow is solved in dimensional
form using the values given in Stadtmuller (2002a). At inflow, total pressure and temperature
are specified along with the flow direction. At the outlet, back pressure is imposed using
characteristics-based boundary conditions. Isothermal no-slip boundary conditions are
applied on the blade surface. All the simulations were performed with the free-stream
turbulence level of 2.2%.

The details of the grids used for RANS and LES simulations are listed in Table 6.1. Both
simulations were performed in 3D. The computational domain (shown in Fig. 6.1) used
for these simulations is bigger than that used for DNS studies with ANUROOP (Chapter
4). The dimensions in periodic (pitch-wise) direction are the same, but inflow and outflow
boundaries are now located one lax upstream of the LE and two lax downstream of the TE
respectively. This is to avoid reflection of any spurious waves at these boundaries as no buffer
layer is used in these simulations. The spanwise distance is kept the same as in DNS (0.2lax),
except in LES where it is reduced to 0.15lax. This is done to get a finer mesh for LES in the
spanwise direction without unduly increasing grid size. The spanwise width for the present
LES was chosen based on the data of other investigators for similar flows at same or greater
Re. For example, the number chosen here is same as adopted by Michelassi et al. (2002) for
their LES study. Sarkar (2007) have used a slightly lower width (0.12lax) and states that it

“was found to be sufficient to allow three-dimensional instability and turbulence structure to
develop.”

It is evident from Table 6.1 that the total grid size used here for the LES study is four
times larger than the other studies listed. The face-mesh of the RANS grid is also twice as
fine as used in Michelassi et al. (2002), with a third dimension also added.
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Figure 6.2 shows the distribution of the first-cell distance in wall-units (Y+) on the suction
side of the blade. This value is maintained less than 1 for most of the blade, and hence a
solve-to-wall approach is used in the simulations without invoking any wall-function.

Fig. 6.1 Computational domain used for LNS.

Fig. 6.2 RANS, LNS and LES: Y+ on the suction side of the blade

Figure 6.3 shows the pressure co-effcients (cp )as obtained with different turbulent,
transition models as well as LNS and LES. As expected, the predictions with RANS is good
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on the pressure side, but they consistently fail to predict the separation on the suction side
in the absence of any transition model. The same trend is observed in the isentropic Mach
number (Mis) distribution on the blade (Fig. 6.4). The isentropic Mach number is included in
the experimental report of Stadtmuller (2002a) and is derived assuming isentropic expansion
between inlet and exit as follows:

Mis =

√√√√ 2
γ −1

[(
Pt1

Pre f

) γ−1
γ

−1

]
Here Pt1 is the total pressure at the inlet and Pre f is the back pressure at the outlet.

Fig. 6.3 RANS, LNS and LES: cp on the blade

When SST k−ω is augmented with the Langtry-Menter transition model, separation
is predicted near the trailing edge of the suction side as marked by the small kink in the
pressure distribution, though the predicted separation point is slightly downstream of the
experimental one. This separation is clearly visible in the skin-friction distribution (Fig. 6.5)
and the streamline plot (Fig. 6.6). Figure 6.8 shows the intermittency distribution as obtained
using this model. The onset of transition on the suction side is upstream of the reattachment
point predicted by the model.

A similar view is shared by Marciniak et al. (2010) who have used the updated DLR-
TRACE code to study the effect of turbulence models on predicting separation-induced
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Fig. 6.4 RANS, LNS and LES: Isentropic Mach number distribution on the blade

transition at transition Re of 150,000 - 500,000 on the T106A blade. The fully turbulent
simulation with Wilcox k−ω model fails to predict any separation at these values of Re .
However their simulations with the Langtry-Menter transition model as well as their in-house
multimode transition model predict separation adequately well. They however suggest tuning
of parameters in the Langtry-Menter transition model in the context of LPT flows to predict
the losses well.

The current study is performed with even lower Re and hence provides a stricter validation
case for transition models. In this context, the Langtry-Menter transition model implemented
in CFD++ has the capability to predict separation, however the difference in the pressure
distribution on the suction side (see Fig. 6.3), compared to experiment, suggests further
tuning of the parameters.

LES predicts a huge separation at incidence of 45.5◦ right from the middle of the blade
on the suction side (Fig. 6.6). The flow never shows any sign of reattachment. The pressure
distribution is compared with experiment in Fig. 6.3. It seems that the separation point is
predicted too early, which leads to flow being fully separated. It may be because of lack of
sufficient resolution (in either space or time or both) that is required for the boundary layer
in LES, as the hybrid RANS-LES (also shown in Figure 6.3) predicts the separation much
better.



118 LPT Blade Simulations: Engineering Parameters

Fig. 6.5 RANS, LNS and LES: Skin-friction on the blade. Top: Full suction side, Bottom:
Zoomed near the trailing edge
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(a) (b)

(c)
(d)

Fig. 6.6 TE Separation Bubbles: (a) SST k−ω (b) Langtry-Menter (c) LNS-LeST (d) LES

Hybrid RANS-LES or LNS gives the best possible match with experimental data com-
pared to other RANS and LES simulations. As it can be noticed in Fig. 6.3, there is little
departure from the experimental data at the end of the TE on the suction side, and the separa-
tion point is also accurately predicted. Separation points predicted by the transition model,
LES and LNS are shown clearly in skin-friction plot (see zoomed view in Fig. 6.5). The
same can be seen visually in the streamline plot (Fig. 6.6). LE separation is not observed in
any simulation. Figure 6.7 shows the pressure and Mach contours on the domain as obtained
from the LNS simulation. The separation can be identified in the Mach contours plot by the
low velocity region (blue in colour).
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Fig. 6.7 Results with LNS. Pressure (left) and Mach (right) contours
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Fig. 6.8 Intermittency distribution on the blade as obtained by γ −Reθ transition model

LNS results qualitatively as well as quantitively are closest to the results obtained with
finest grid (C) DNS simulations. This shows a good potential as an industrial tool to study
flow on an LPT blade. However, this model lacks in its present form the capability to
predict some of the fluid-dynamical aspects described in Chapter 5, such as curvature effects,
relaminarization and retransition for a more complex flow. Also sometimes the instantaneous
field is important for a designer as the fluctuations around the mean can be very high, specially
in transitional regions. This aspect is covered in the next section.
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6.2 Importance of the Instantaneous Field

Fluctuations in wall stress and surface heat flux are of considerable technical interest, as
large departures from the mean value can have significant effects on engineering design
parameters. For example, high values of surface heat flux can (even when relatively rare)
affect material properties adversely and reduce blade life.

We first examine the skin friction coefficient c f . Mean skin-friction (c̄ f ) plots for different
grids are shown in Section 5.3 of Chapter 5. Here we analyze the data obtained with grid
A, where the LE separation on the suction side makes the flow complex and hence large
fluctuations around the mean are observed. This section in some sense augments our findings
on transition zone for this flow as described in Section 5.5.

Figure 6.9 shows the distribution of the mean value c f along the chord, marking the peak
towards the end of transition, with a continuing drop thereafter due first to relaminarization
and next to adverse pressure gradient, followed by a separation bubble and an incomplete
retransition. Superposed on the mean skin-friction (c̄ f ) distribution are 6 instantaneous
distributions along the chord sampled at different instants, showing that the fluctuations
are highest at the first transitional peak and at the beginning of the second (re)transition.
Figure 6.10 shows the probability density (PDF) function of the instantaneous c f at x ≃ 0.08
where intermittency γ = 0.85. It is seen that the PDF is unsymmetrical, and a Gaussian-like
distribution around the mean is followed by a relatively fat tail.

Figure 6.11 shows the cumulative distribution (CDF) at 4 different locations: within the
separation bubble (x = 0.03), in the transition zone (x = 0.08), at the middle of the blade in
the relaminarizing zone (x = 0.6), and in the retransition zone (x = 0.97). Near the separation
and transition zones, there is a tail on the positive c f side of the PDF. This is clearer in
Fig. 6.10, where the PDF also shows a longer tail on the positive c f side. From the CDF at
x = 0.08, it is seen that there is a probability of 10% that the c f > 1.5c̄ f ,or < 0.4c̄ f .

Figure 6.12 shows chordwise distribution of the Nusselt number (Nu) on both sides of
the blade. The Nusselt number is defined as:

Nu =
qw

(kTw −T∞)
≡ −1

1−αT

∂T
∂η

where qw is the heat-flux at the wall, k is the thermal conductivity of the fluid and αT is the
ratio of free-stream to wall temperature.

As expected, the mean and instantaneous values of Nu superimpose on each other on the
pressure side, but are very different on the suction side, where phenomena like transition,
relaminarization and retransition change the structure of the flow with time. Figure 6.13
show Nu distributions with 6 superposed samples taken at different instants. The result for
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Fig. 6.9 Scatter plot for the skin-friction on the suction side
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Fig. 6.10 Probability density function plot for the skin-friction at x = 0.08 (just after the LE
separation) on the suction side
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Fig. 6.11 Cumulative distribution function plot for the skin-friction at different locations on
the suction side. Dashed line represents c̄ f

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

x

N
u

 

 

Mean

Inst.

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

x

N
u

 

 

Mean

Inst.

Fig. 6.12 Nusselt number on the blade. Left: Pressure side, Right: Suction side
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Fig. 6.13 Scatter plot for the heat-flux on the suction side

Nu is rather similar to that of c f , except that the fluctuations are larger and the distributions
spikier. Thus, around the first peak in mean Nu at x ≃ 0.1, the highest instantaneous value
is nearly 2.5 times the mean; the second peak, at x ≃ 0.95, is about 8 times higher than the
local mean.

It is interesting that both c f and Nu exhibit significant fluctuations in the relaminarizing
zone, as may be expected from velocity fluctuation data shown in the experiments of Bourassa
& Thomas (2009). However the fluctuations tend to diminish to very low values in the adverse
pressure gradient region, before flaring up again as retransition sets in.

More detailed statistics of wall stress and surface heat flux data are being generated.

6.3 Concluding Remarks

In this chapter, results obtained with RANS, LES, and hybrid RANS/LES (LNS) flow in the
T106A linear turbine cascade are presented. RANS simulations are performed with a variety
of turbulence models which are considered satisfactory for separating flows. But in the
present set-up of flow between row of consecutive blades at low Re and high incidence, these
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models fail to predict any separation. However RANS simulations , when performed with
the Langtry-Menter transition model predict separation at the TE. The pressure distribution
obtained with this simulation however is significantly different compared to experimental
data on the suction side.

LES and LNS both predict separation at the TE. The prediction with LES however is
upstream of the actual separation point in the experiment. This may suggest requirement of
more highly resolved grids as the results with LNS are very close to the experiment. These
models however lack modelling for curvature effects, relaminarization etc.

The engineering parameters of interest, such as skin-friction and Nusselt number, are
analyzed for mean as well as instantaneous flows using the present DNS results. The
peaks of these parameters show significant variation in time suggesting the importance of
time-accurate simulations for design considerations.





Chapter 7

Conclusions and Future Work

The focus of the present thesis is the study of flow past an LPT blade mounted in a linear
cascade at high incidence through boundary layer DNS. Every chapter carries at its end a
summary of the conclusions reached based on the contents of the chapter. Here we offer
a brief overview of the whole thesis, followed by a short list of topics that require further
meticulous investigation.

7.1 Conclusion

The efficiency of a gas turbine depends greatly on managing the complex fluid-dynamical
phenomena that occur on a blade. These phenomena include separation, transition, and
relaminarization. To understand these phenomena, a simplified flow between two consecutive
rows of blades is investigated through DNS studies, as the current turbulence models are still
not considered satisfactory to study this class of flows. The fact that turbine blade Reynolds
numbers are in the range 20,000 to 1 million, and that quite a few turbines operate at Re
of order of 105, make the flow on the turbine blade accessible to DNS studies with the
computing power that is currently available. With the rapid increase in computing power that
we are seeing at present, it would seem that it should be possible to reach Re in the range
105 −106 within the coming decade.

Based on this reasoning, several attempts have recently been made to provide DNS results,
especially on the T106A low-pressure turbine blade on which experimental data is available
at low Reynolds number (Re ≈ 50,000) from experiments carried out at the Universität der
Bundeswehr München, Germany. However most of these simulations are directed towards
flow in the passage between the blades in a row, rather than towards detailed investigation of
the complex phenomena in the boundary layer whose management can lead to more efficient
designs.
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This thesis has the objective of filling this gap by performing a simulation that may
be called ’boundary layer DNS’ for the turbine blade without appealing to any turbulence
model. The main governing parameters chosen for the flow are those that are particularly
rich in fluid-dynamical aspects, and hence beyond the reach of current low-order approaches.
The Reynolds number and incidence angle chosen for the present simulations are, 51,831
and 45.5◦ respectively. The flow at this low Re is suggestive of transitional flow, and the
high incidence (compared to the design incidence of 37.7◦) makes the flow susceptible to
separation. A new code, called ANUROOP, has been developed de novo for this purpose.
This code handles compressible flows and has a flow solver which has been well validated
from Mach 0.1 (Taylor-Green vortex) to Mach 1.5 (compressible channel flow).

The present emphasis on the BL demands the design of special grids that are tailored to
the problems considered, namely the very high resolution required near the wall, with the
first grid point 0.1 wall unit from the surface. Also simulations have been mainly at three
grid resolutions (in terms of the total number of grid points): 25 M (A), 47M/95M (B/B1),
and 160M (C), the last being by far the highest resolution attempted to-date at this Re.

Even with this emphasis on boundary layers, our focus in this thesis is on obtaining a
broad appreciation of the nature of the flow rather than a very detailed analysis of all the
results (which is currently in progress). Furthermore, while two of the simulations on grid
C have free stream turbulence intensity (FSTI) in the range 0-10%, no impinging wake
perturbations are considered. The reason for this is that the current objective is to test the
power of ANUROOP and the dependence of the solution on various numerical parameters
implied in the code and, in particular, the resolution.

The main findings may be briefly summarized as follows:

The first striking result is about the fundamental engineering target of the pressure dis-
tribution on the blade. It turns out that turbulence models in general, and even LES, are
not capable of satisfactorily reproducing the pressure distributions measured on T106A,
especially on the suction side. Even with DNS, the low resolution codes A and B show appre-
ciable discrepancies but the high resolution grid C gives results very close to measurements.
This finding suggests why DNS could become a useful tool in design.

Secondly, near the leading and trailing edges, the effect of surface curvature is visible
from the boundary layer velocity profiles, which show a maximum velocity which would
roughly correspond to the location of the thickness of the BL, dropping linearly with the
normal coordinate at distances beyond the velocity maximum on a convex surface. Within
this region, the curvature is sometimes so high that higher order boundary layer theory has to
be used. A new boundary layer code for solving higher-order theory was therefore written,
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and comparisons with DNS profiles near the leading edge show excellent agreement with the
theory, which departs substantially from the lowest order Prandtl boundary layer theory.

The boundary layer calculations with grids A and B reveal a complex behaviour beginning
with a short separation bubble very near the LE, immediately followed by (or even triggering)
a transition towards turbulent flow. This is confirmed by the steep rise in the skin-friction
coefficient c f in the transition zone. However, an estimate of the intermittency in the transition
zone suggests that it reaches a maximum value of 0.9 at x = 0.15. Somewhat surprisingly
at first, the intermittency keeps dropping downstream from its peak value of 0.9, but this
provides an indication that the boundary layer may be relaminarizing as it encounters a
favourable pressure gradient following peak c f , with a Launder acceleration parameter K
above 3×10−6.

DNS results for a variety of other parameters during relaminarization show reasonable
agreement with a two-layer theory, where there is an outer layer of rotational but inviscid
flow riding over a very thin sub-boundary layer dominated by viscosity and stabilized by
a favourable press gradient. This model gives a satisfactory description of the fall in skin
friction c f in the favourable pressure gradient region on the blade.

Beyond x = 0.6, the pressure gradient changes from favourable to adverse, but c f contin-
ues to fall as may be expected. With the destabilizing effect of the adverse pressure gradient,
the relaminarized BL first exhibits a separation bubble, immediately followed once again by
another incomplete retransition towards turbulence.

The DNS results give very interesting images of the structure of rolls within the bubbles
and with multiple bubbles (upto 3) within a single bubble in the mean flow. These ’mini-
bubbles’ in the instantaneous picture interact among themselves, merging and splitting every
now and then, making the flow structure of the single mean bubble very dynamic.

At the highest resolution C, however, the LE bubble disappears and the flow remains
laminar (with neither transition nor relamarization) all the way up to the TE bubble, which
now qualifies to be categorized as ’long’ and is marked by a correspondingly long region of
nearly constant pressure.

One advantage of the present DNS simulations is that they enable computation of the
probability function governing the fluctuating wall stress, with a short tail at low to negative
wall-stress and a long tail marking large positive stress fluctuations. The heat-flux also shows
similar behaviour, but with much stronger fluctuations from the mean values.

Several RANS, LES and hybrid RANS/LES studies on the T106A blade in a cascade
were also made using the commercial code CFD++. A range of turbulence models were used
for RANS simulations, however they were not successful in predicting the separation on the
suction side of the blade. The SST k−ω turbulence model, when used with γ−Reθ transition
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model by Menter, was able to predict a small separation bubble near the trailing edge, but the
match with the experimental data on the pressure distribution was not satisfactory. Hybrid
RANS/LES simulations have performed much better and show promise as a reliable tool for
engineering applications.

In summary, the present results show how complex phenomena, which are beyond the
reach of current turbulence models, can be described by DNS studies, but a major funda-
mental problem in the results is the dependence on resolution. It is possible that relatively
low-resolution results have enough numerical noise that they will trigger phenomena like sep-
aration bubbles and transitions, in cases where the higher resolution simulation, presumably
with lower numerical noise, would not contain such phenomena. There is a corresponding
need for much more detailed experimental data on BL flows on gas turbine blades over a
range of Reynolds numbers and well-characterized disturbance environments, so that it can
provide benchmarks for DNS calculations.

7.2 Future Work

The present work has opened up several questions that require further investigation. The
major ones among these are

• Dependence of solutions on resolution. Effect of FSTI and wake

• Curvature effects on laminar and turbulent boundary layers

• Detailed comparisons with RANS / LES results, with possible suggestions on aspects
that need further improvement

• A reliable and extensive experimental dataset that can address the above questions
with more confidence
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Appendix A

Platforms used for DNS

• Nalanda Cluster at JNCASR

– 10 Tflops (peak)

– 512 CPU Cores, 32 CPU Nodes

– Each node has-

* Dual Intel Xeon E5-2670 eight core processor at 2.6 GHz

* 128 GB RAM

* 500 GB storage

– 1 GPU Node

• Platform: Param YUVA-II, C-DAC, Pune

– 530 Tflops (peak)

– 3600CPU + 27000 Co-Processors (MIC)

– Each node has-

* Dual octa-core 2.6 GHz Intel Xeon E5-2670 processors with dual 60-core
Intel Xeon Phi 5110P co-processors

* 64 GB RAM

• Platform: Supercomputer CSIR-4PI, Bangalore

– 362 Tflops (peak)

– 17408 CPU Cores, 1088 Nodes

– Each node has-
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* Dual Intel Xeon E5-2670 eight core processor at 2.6 GHz

* 65.5 GB RAM

* 300 GB storage
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In Collection

1. Rajesh Ranjan, S M Deshpande, Roddam Narasimha. “A high-resolution com-
pressible DNS study of flow past a low-pressure gas turbine blade.” Advances in
Computation, Modeling and Control of Transitional and Turbulent Flows. Chapter 28,
Pg. 291-301. doi:10.1142/9789814635165-0028

Conference Proceedings

International

2. Rajesh Ranjan, S M Deshpande, Roddam Narasimha. “Direct Numerical Simulation
of Compressible Flow Past a Low Pressure Turbine Blade at High Incidence.” Pro-
ceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer
Meeting(FEDSM2014). doi:10.1115/FEDSM2014-21773

3. Rajesh Ranjan, S M Deshpande, Roddam Narasimha. “Numerical methodology for
simulating flows over turbine blades.” Proceedings of 14th Asian Congress of Fluid
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Halong, Vietnam
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National
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the Turbulent BoundaryLayer in Flow Past Turbine Blades.” Proceedings of 16th CFD
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Poster Presentations
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