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Abstract

The Navier-Stokes equations are the fundamental equations governing the dynamics of Newto-

nian fluids, if one neglects theirs derivation from the Boltzmann equation of molecular dynamics.

The inviscid Navier-Stokes equations are known as the Euler equations. The Reynolds number

of the flow, which is the ratio of inertial to frictional forces in the fluid, is infinite for an inviscid

fluid. For very low Reynolds number flows it is possible to obtain some exact and approximate

solutions of the Navier-Stokes equations.

Modelling turbulent flows is a difficult problem in fluid dynamics. The Navier-Stokes equa-

tions are not amenable to mathematical analysis, and they cannot be used to predict detailed

consequences or the emergence of randomness at high Reynolds number. The theory of Richard-

son and Kolmogorov views turbulence as a cascade of eddies or coherent structures. However,

most of these studies are statistical and are not likely to answer the lack of universality. The

theory of chaos in fluid flows, originated by Lorenz, views turbulence as a sensitive dependence

on initial conditions. Simple nonlinear equations with analytical solutions and prescribed initial

conditions were found to exhibit chaotic and apparently random behaviour. Turbulent scales

have a fractal like distribution. However, the randomness generated by the Navier-Stokes equa-

tions may be due to (hidden) intrinsic reasons. This framework cannot be used to predict global

variables in a turbulent flow, for example the Reynolds number dependence of the resistance

coefficient, in a pipe of given radius and pressure gradient.

The advent of high-speed digital computing has made it possible to resolve intractable theo-

retical problems in turbulence (at modest to moderate Reynolds number). Today many results

on turbulent flows depend critically on computer results - there is no other way to do it. The di-

rect numerical simulation of simple physical problems is a useful tool in turbulence research. For

homogeneous turbulence with periodic boundaries the maximum spatial resolution achieved was

40963 performed by the Earth Simulator supercomputer in 2003. It has been exceeded since.

Unfortunately engineering simulations at high Reynolds number or with complex boundaries

cannot be solved by DNS on the current generation of computers. There are various ad-hoc

turbulence models to account for the wide range of scales generated at high Reynolds number.

Another interesting way to handle such problems is through Lattice Boltzmann simulations.

We study the time evolution of a temporal free shear layer, modelled by an inviscid vortex

sheet with periodic boundaries. A wide range of practically important and naturally occurring

turbulent flows are generated by shear. Jets, wakes and mixing layers are examples of shear

flows. These flows have been found to contain large scale coherent structures amidst chaos. The

experiments of Brown and Roshko (1974) showed that a turbulent free shear layer is dominated

by large spanwise vortices. The framework of homogeneous isotropic turbulence is therefore not

appropriate for studying these type of turbulent flows. For two dimensional turbulent shear flows

modelling with point vortices or a vortex sheet mimics the growth of coherent structures. These

models are strictly two dimensional. It has been shown by Wygnanski and Brownand (1979)

that the coherent structures in a free shear layer are quasi-two dimensional, and independent of

Reynolds number at sufficiently high Reynolds number.

A free flat inviscid vortex sheet is unstable to infinitesimal disturbances. Linear perturbation

analysis shows that a disturbance with wavenumber k grows exponentially at a rate proportional
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to k. The vortex sheet is ill-posed and gives rise to a finite time singularity. Since this linear

theory cannot be extended much beyond the initial time, a nonlinear analysis is required to make

this conclusion. An estimate of the singular time (critical time) was first given by Moore (1980)

using asymptotic analysis. He further showed that the coefficients of Fourier modes of the sheet

decay like k−5/2 for wavenumber k. The vortex sheet loses analyticity, and the singularity is

known as the Moore singularity. At the critical time there is a cusp in vortex sheet circulation

density and a blow-up in curvature of the vortex sheet.

It is well-known that inviscid vortex sheet computations cannot proceed past the Moore sin-

gularity. The singularity formation is not restricted to two dimensions as shown by Ishihara and

Kaneda (1995). There have been extensive studies on an inviscid vortex sheet, most of them by

point vortex approximations, with or without desingularization. The spontaneous appearance of

singularity is a consequence of mathematical modelling, since a real fluid with viscosity, however

small, will never develop any singular properties. The reason for desingularization is to obtain a

smooth roll-up of a vortex sheet. Some remarkable smoothing techniques were given by Krasny

(1986), Holms, Nitsche and Putkaradze (2006) and Hou, Lowengrub and Shelley (1997). A weak

solution to the Euler equations is recovered in the limit of vanishing smoothing parameter. A

fundamental weak point of desingularization is that it introduces a smoothing parameter that

does not have physical meaning like viscosity or surface tension. It also leads to suppression or

delay of chaos in a system of point vortices, see Suryanarayanan and Narasimha (2014). Since

a turbulent free shear layer is inherently chaotic, desingularization makes it extremely difficult

to simulate a limiting solution which represents a turbulent free shear layer.

The discrete approximation to vortex sheets has low computational efficiency for a given

degree of convergence on moments when compared to continuous approximation to vortex sheets,

for example the vortex panel method of Basu, Narasimha and Prabhu (1995). On the other

hand, point vortex system codes are easily parallelized. The vortex panel method was used

to simulate a spatial free shear layer with appropriate inflow and outflow boundaries. The

boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The roll-

up of the sheet was smoother compared to point vortex models and the well known invariants

of vortex dynamics were conserved. The mean streamwise velocity profile, the growth rate, and

the values of stress and moments are in close agreement to experiments. However, the vortex

panel method suffered from self intersection of panels due to low resolution power of computers.

Thus, continuous models are effective in simulating a free shear layer and the convergence of

computed variables is faster than discrete models.

In the present vortex sheet model for a temporal free shear layer the velocity fields gener-

ated are computed from the kinematic Biot-Savart equation. The adaptive split of panels or

vortex sheet segments used in the vortex panel method is used to maintain resolution. The

previous technique appears in the work of Basu, Narasimha and Prabhu (1995). There is no

self-intersection of vortex sheet segments in this case. The problem of singularity formation

prevents the roll-up of the vortex sheet. The introduction of small amount of physical viscosity

in a vortex sheet problem does not lead to a smooth roll-up. This vortex sheet is harder to

compute than an inviscid vortex sheet. The limited computations of Tryggvasson, Dahm and

Sbeih (1991) showed that the Navier-Stokes solution in the limit ν goes to zero is similar to
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desingularized point vortex solution in the limit δ goes to zero. Another type of physical re-

gurlarization is provided by surface tension as in Pullin (1982). Surface tension tends to reduce

the interface thus smoothing out very fine-scale structures. However, these physical effects are

weak and the close approach of singularities in the complex plane to the real axis induces high

sensitivity, and breakdown in computations.

Tangential diffusion of vorticity is added to the vortex sheet equations at points where Moore

singularity appears, which enables us to take computations past the critical time. This is an

adaptive procedure and the regularization is switched on only when gradients along the vortex

sheet are above a cut-off or threshold. We shall call this (method) as the viscosity switch. The

cusp in circulation density is not removed entirely, but the peak is analytic. Importantly, there

is no finite-time blow up as the peak circulation is controlled at each time step. The viscosity

switch is not an arbitrary parameter inserted to supress the singularity. This is a restricted form

of viscous diffusion. In real fluids, viscosity and surface tension are responsible for regularizing

the vortex sheet equations. In the limit of zero vortex sheet layer thickness, the diffusing vortex

sheet has properties that are different from the inviscid vortex sheet.

The viscosity switch method gives a smooth roll-up of the vortex sheet starting with random

initial conditions. This is the main result of the thesis. The rest are applications and conclusions.

The vortex sheet rolls-up and forms coherent structures. These structures are long lived and of

different sizes. They are either absorbed by a bigger structure or they merge with each other at

different times. The periodic boundaries limit the growth of coherent structures. The accuracy

of computation is checked by verifying the conservation of mass, momentum and energy. Since

there is some form of diffusion, the invariance is approximate: there is loss of energy. The growth

rate of the free shear layer is obtained from an ensemble of simulations. The enumeration of

singular regions is required to identify coherent structures. The singular regions occur in clusters

giving rise to superstructures.

In Chapter 1, we review the point vortex model and associated desingularization techniques.

This provides the basis for extension into more complicated systems like the vortex sheet element

model. In Chapter 2, the vortex sheet element model is built with periodic boundaries and no

viscosity or smoothing of any type. The numerical method for the model is outlined in Chapter 3.

There is also a brief study about the nature of singularity that prevents the vortex sheet element

model from being able to simulate a vortex sheet roll-up. The viscosity switch solution of the

vortex sheet solution is presented in Chapter 4. The method of variable viscosity smoothing

(viscosity switch) is introduced in this chapter. The tools developed in Chapters 2 and 4, enable

us to simulate a temporal free shear layer. The results are summarized in Chapter 5. It also

contains an ensemble study for the growth of a temporal free shear layer. Chapter 6 contains

discussion and conclusions.
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Chapter 0

Introduction to Free Shear Layers

The governing equations for an incompressible viscous fluid, also known as the incompressible

Navier-Stokes equations, are a set of nonlinear partial differential equations:

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u

advection
= − ρ−1∇p+ ν∇2u

diffusion
+ ρ−1f

body force
(2)

These equations are mathematical formulation of the conservation of mass and momentum

respectively. The velocity field is expressed as u, the density of the fluid ρ is a constant and the

kinematic viscosity is ν. The external body force f is imposed on the fluid. Since there is no

external force in this thesis we set f = 0 identically. The pressure p is not a thermodynamic

quantity, as it cannot be related to temperature and density of an incompressible fluid. From

equation (1) and (2) we get,

∇2p = −ρ∂ui
∂xj

∂uj
∂xi

The pressure term is a solution of the Poisson equation and is determined upto a constant.

The material or convective derivative is denoted as d
dt . The material derivative is defined as

d
dt = ∂

∂t + u · ∇. Using this notation, equation (2) can be written as

du

dt
= −ρ−1∇p+ ν∇2u (3)

If the viscosity ν of fluid is zero, then equation (2) becomes

du

dt
= −ρ−1∇p (4)

Equation (4) is of the hyperbolic type, whereas the addition of viscosity as in equation (3) makes

it parabolic. The inviscid version of the Navier-Stokes equations are also known as the Euler

equations.

The Navier-Stokes equations are often written in dimensionless form by rescaling the length,

time, velocity and pressure variables. The system parameters are then all subsumed in a single

dimensionless parameter called the Reynolds number

Re =
UL

ν
(5)
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where U is a charecteristic velocity scale and L a charecteristic length scale. The non-dimensional

momentum equation is then
du

dt
= −∇p+

1

Re
∇2u (6)

The Reynolds number is interpreted as the ratio of inertial forces to viscous forces. High

Reynolds number flows are usually turbulent, while low Reynolds number flows are usually

laminar. The Euler equations are the Navier-Stokes equations without the viscous term, limit

of Re going to infinity in equation (6).

0.1 Free Shear Layers

A (spatially developing) free shear layer is usually obtained in the laboratory by letting two

initially separated streams of different velocities, U1 above and U2 below a semi-infinite length

splitter plate, come in contact at the trailing edge of the plate. The term ’free’ is used to indicate

that the shear layer is not attached to any solid boundary. Sometimes the term ’plane’ is added

to ’free shear layer’ to imply that its mean velocity is two-dimensional. Mixing layers are type of

free shear layers, although the converse is not true. However, the distinction between ’mixing’

free shear layers and ’non-mixing’ free shear layers is often not enforced. Figure 1 illustrates a

two-dimensional free shear layer.

Figure 1: A schematic diagram of a spatial shear layer at high Reynolds number. Top: the interface between the top and

the bottom fluids is marked in a colour contour. Bottom: upstream and downstream time averaged velocity profile. The

thickness of the free shear layer is δ. The extent of the layer is the region where the y-derivative of the mean velocity profile

is non-zero. The boundary layer on either sides of the splitter plate is not shown.

Free shear layers belong to the general class of inhomogeneous flows known as free shear

flows. Apart from free shear layers, other examples of free shear flows are jets and wakes

(behind bodies). A free shear flow can be either laminar or turbulent. However, most free shear

flows that occur naturally are turbulent1. Their importance lies in the fact that they are highly
1Another type of turbulent flow considered widely in texts is the statistically homogenous isotropic turbulence. This may not be a a

very simple example as opposed to a free shear layer. Further details on homogenous isotropic turbulence can be found in the textbooks by

Batchelor (1953) and Davidson (2004).
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instructive from a theoretical point of view. Jets, wakes and free shear layers can be realized in

the laboratory without difficulty. They are also important in technology because they dissipate

energy, cause mixing of fluids, lead to entrainment and are a source of drag or thrust. Most of

the ideas on free shear layers can be extended, with suitable modifications, to jets and wakes,

and vice-versa. For more on jets and wakes refer to Carazzo, Kaminski and Tait (2006) and

Narasimha and Prabhu (1972).

We shall work with a free shear layer with initial conditions U2 = −U1 and periodic boundaries

in the streamwise direction. This is known as the temporal free shear layer. Note that in Figure

2 the interface between the two streams (marked in red) have a slight perturbation. The other

assumptions are:

1. The flow is two-dimensional. It is the same as assuming that the flow is homogeneous in

the third dimension.

2. The fluid is incompressible and has uniform density.

3. The Reynolds number is sufficiently large, so that the flow is turbulent and the dynamics

of ’large scales’ is independent of viscosity.

4. There are no solid boundaries.

5. External forces including gravity are absent.

The temporal free shear layer resembles a spatial free shear layer in a moving frame of ref-

erence. The spatial shear layer and the temporal shear layer can be related by a Galilean

transformation under certain limiting conditions that are given in Corcos and Sherman (1984).

In the canonical scenario presented here, the temporal shear layer involves a single parameter:

the velocity difference across the layer. The flow is also inviscid due to the lack of viscosity in

the model. Laboratory experiments and theoretical studies have shown that a free shear layer

is not stable. Any infinitesimal disturbance causes the interface to roll-up and give rise to com-

plicated vortex structures. This is known as the Kelvin-Helmholtz instability or K-H instability.

Analytical details related to Kelvin-Helmholtz instability are given in Section 3.2. In general

for spatially developing non-parallel flows, a growing layer is stable for Re less than about 30,

and is only weakly dependent on the free stream velocity ratio, but not including cases with

counterflow, see Bhattacharya et al. (2006).

0.2 Large-scale Structures in Free Shear Layers

Given the chaotic and disordered nature of turbulence, it was at first strange that free shear

layers contain large-scale structures. The key observation was made by Brown and Roshko

(1974), and further validations have been obtained in later experiments. They found that the

interface between the two streams consists of large, quasi-two-dimensional ’coherent’ structures

and they span the whole width of the layer. These large eddies play an important role in the

entrainment process, by which momentum and energy are extracted from the free-stream region

and fed into the turbulent ’mixing’ region.
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Figure 2: A quiver plot depicting a temporal free shear layer generated by a free flat vortex sheet with x-periodic boundaries.

There is a slight perturbation on the interface at time t = 0. The period length in x is 1. There is no periodicity in the

y-direction. The flow shown here can be either laminar or turbulent. For a turbulent flow the velocities are time-averaged.

This is remarkably similar to what we obtain if we approximate a free shear layer with a vortex

sheet2. The infinite flat vortex sheet generates a flow profile of the type ±U , which is a temporal

free shear layer. This may be superimposed with other background flows to generate spatial free

shear layers. A schematic temporal free shear layer with periodic boundaries is shown in Figure

0.2. The Reynolds number of the flow is infinite since viscosity is zero. The flat vortex sheet

is an unstable configuration due to K-H instability. It rolls up to generate structures whose

scales, shape and internal organization mimic the ’coherent’ structures of a free shear layer at

high Reynolds number.

Figure 3: An example of spatial free shear layer at high Reynolds number between two different streams of gases - nitrogen

and helium (Brown and Roshko 1974). The fast stream is labelled A and the slow stream is labelled B.

This is fundamentally different from homogeneous isotropic turbulence where there is no large

scale ’coherent’ structure in the flow. The homogeneous isotropic turbulence is an idealized
2Vortex sheets are formally introduced in Section 0.3. A vortex sheet is amenable to detailed mathematical treatment. It is used to model

velocity jumps across an interface, provided the thickness of the jump is small compared to the streamwise scale.
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example of turbulence, but most real turbulent flows are neither homogeneous nor isotropic.

This makes free shear flows a better and more relevant example in technology and geophysical

studies. The free shear layer therefore provides a good starting point for the understanding of

a turbulent shear flow problem.

0.3 Vortex Sheets

A vortex sheet (in a two dimensional flow) is a discontinuity of tangential velocity across a curve

in the plane of the flow. The vorticity distribution is singular: it is infinite on the curve and zero

elsewhere. In a viscous flow the vorticity field becomes automatically free from singularities, but

in the Euler limit the vorticity is confined to the sheet at all times as a Dirac delta function in

the coordinate normal to the sheet. A corollary of Kelvin’s circulation theorem the vortex sheet

separates regions of fluid in irrotational motion.

The formulation of the problem is given in terms of a complex coordinate z = x + ıy. The

vortex sheet is described parametrically by z(s, t) where s is the arc length between coordinate z

and any reference material point, and t is the time. Let γ(s, t) denote the strength of the sheet,

that is, the jump in the tangential discontinuity. Then the velocity field induced by the sheet is

∂z∗

∂t
= − ı

2π

∞∫
−∞

γ(s′, t)ds′

z(s, t)− z(s′, t)
(7)

The integral in (7) is a Cauchy principal value integral. Greater details on vortex sheets and

vorticity dynamics can be found in the textbook by Saffman (1977).

We now define Γ as the integrated sheet strength or circulation between a point with arc

length s and the reference material point s = 0 in the sheet:

Γ (s, t) =

s∫
0

γ(s′, t)ds′ and
dΓ

ds
= γ(s, t) (8)

As a consequence of Kelvin’s circulation theorem, in the absence of external forces on the sheet,

the circulation between any two material points in the sheet remains conserved, so

dΓ

dt
= 0 (9)

The equation of the sheet can be rewritten in terms of Γ and t by a change of variable. The

parameter s is replaced by Γ . That is,

z(s, t) = z(Γ, t)

is the locus of the sheet and γ = |∂z/∂Γ |−1. Also γ ds = dΓ and (7) can be expressed as

∂z∗

∂t
= − ı

2π

∞∫
−∞

dΓ ′

z(Γ, t)− z(Γ ′, t)
(10)

This nonlinear integro-differential equation is called the Birkoff-Rott equation. It describes the

evolution of the sheet given its initial shape and strength. It is an elegant formulation, but is

not necessarily the most suitable for numerical computation of sheet evolution.
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When initial conditions are given, the solution to equation (10) can be obtained by integration.

At t = 0, the undisturbed vortex sheet extends from −∞ to +∞ with uniform velocity on either

side given by

u(x, y) =

{
U y > 0

−U y < 0
(11)

which in circulation coordinate representation becomes

z(Γ, 0) = Γ (12)

A slight perturbation is given to the vortex sheet at time t = 0. Specifically, we impose a

sinusoidal disturbance of amplitude ε and wavelength λ = L.

z(Γ, 0) = Γ + iε sin
2πΓ

L
(13)

Note that boundary conditions are periodic. It is advantageous to take L = 1. The admissible

range of solutions are those which have Γ varying monotonically along the sheet. This condition

may be written explicitly as
dΓ

ds
≥ 0 (14)

The present vortex sheet problem is ill-posed and a singularity known as Moore’s singularity

occurs in finite time. Further discussions on Moore’s singularity and the problem arising in

vortex sheet computation can be found in Section 0.5.

0.4 Compressibility in Free Shear Layers

One of the assumptions we make is that the fluid is not compressible. An incompressible fluid

will not behave like any real fluid, because disturbances in incompressible fluids travel at infinite

speed, like in rigid bodies. Miles (1958) used a vortex sheet model to study the two-dimensional

instabilities of a free shear layer. For an experimental study on compressible free shear layers

refer to Papamoschou and Roshko (1988). The growth rate of compressible free shear layers was

found be lower than those of incompressible free shear layers.

In compressible fluids ρ is also a variable, which adds another equation - the energy conser-

vation equation connecting p, ρ and another variable T being the temperature. The closure is

obtained by the equation of state. The compressible version of inviscid Navier-Stokes equations

are as follows:

Continuity :
∂ρ

∂t
+∇ · (ρu) = 0 (15)

Momentum Equation : ρ
du

dt
= − 1

γM2
∇p (16)

Energy Equation : ρ
dT

dt
=
γ − 1

γ

dp

dt
(17)

Equation of State : p = ρT (18)

where M is the Mach number3 and γ is the ratio of the constant pressure and constant volume

heat capacity. The equation of state given in (18) is for a perfect gas.
3Mach number is the ratio of freestream velocity U∞ and the speed of sound waves c =

√
γRT in the medium. In an incompressible fluid

M = 0. For M < 0.3 density changes in the fluid are minute and can be treated as nearly incompressible.
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The linear stability theory of a compressible free shear layer tends to be complicated. However,

a number of experiments have shown that a compressible free shear layer becomes more stable

with increasing Mach number. The flow variables are decomposed into a base state and a

fluctuating component that oscillates,

u =
[
U(y) + u′(x, y, t), v′(x, y, t)

]
p = P (y) + p′(x, y, t)

ρ = D(y) + ρ′(x, y, t)

T = Θ(y) + θ′(x, y, t)

The base state and perturbed state must satisfy the compressible Navier-Stokes equations. A

normal modes solution is found by substituting

[u′, v′, p′, ρ′, θ′](x, y, t) = [f, g,Π, r, θ](y)eıα(x−ct)

into the linearized disturbance equations. In the above relation, α is identified as the wavenum-

ber in x-direction, c is identified as the wave velocity4. For a free shear layer with uniform

temperature Θ = 1, the stability of normal modes is governed by the equation

Πyy −
2Uy
U − c

Πy − α2[1−M2(U − c)2]Π = 0 (19)

and the boundary conditions Π(y) = 0 as y → ±∞. For more details on equation (19) refer

to Lees and Lin (1946) and Blumen, Billings and Drazin (1975). When M = 0 equation (19)

reduces to the Rayleigh equation.

The stability equation (19) together with its boundary conditions is an eigenvalue problem.

Nontrivial solutions of Π exist only for certain values of the parameters α and c = cR + ıcI .

The solution is called an unstable mode if the corresponding eigenvalue cI is greater than zero.

A flow may have several unstable modes. Unfortunately, for equation (19) no general results

are known and the number of unstable modes is usually determined empirically, by solving the

equations numerically and searching for eigenvalues. However, a few situations are tractable.

For example, in a hyperbolic-tangent velocity profile U(y) = tanh y, a root is given by

c = 0, c =

√
1 +

1

M2
− 1

M2

√
1 + 4M2 = c0 (say)

The above eigenvalues (phase velocities) are exact for α = 0. The solution c0 is imaginary,

zero or real depending on whether M is less than, equal to or more than
√

2 respectively. This

illustrates that the flow becomes more stable as the value of M increases. The physical reasoning

for an increase in stability of a compressible fluid is that a certain amount of work is required

to overcome the elasticity of the medium, before it can initiate instability. Buoyancy due to

gravity shows a similar stabilizing feature.

0.5 Moore’s Singularity

A vortex sheet model for a free shear layer poses interesting mathematical problems concerning

singular integrals, weak limits and nonlinear dynamics. It was conjectured by Birkhoff (1962)
4Note that in temporal stability theory α is real and c is complex.
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that nonlinearity would cause a vortex sheet to form a singularity at a finite time. That is,

variables tend to infinity at a finite time. Infinities do not occur physically, but the behaviour

near the singularity is of interest. An asymptotic analysis by Moore (1979) supported Birkhoff’s

conjecture. Further analysis by Meiron, Baker and Orszag (1983) obtained results consistent

with Moore, by studying the Taylor series expansion of the Birkhoff-Rott integral in time.

Using a point vortex approximation and a Fourier filter to control the growth of round-off error,

Krasny (1986) studied direct simulations of vortex sheet motion. The resulting conclusions

were consistent with Moore’s. It was found that the point vortex approximation converges upto

the vortex sheet’s critical time. The resultant vortex sheet does not depend on any numerical

parameters. For a study on special solutions refer to Caflisch and Orellana (1989).

A vortex sheet becomes singular at a finite time well before the appearance of large scale

roll-up commonly associated with free shear layers. The curvature of the sheet diverges and the

circulation density develops a cusp but remains finite. Moore’s analysis indicated the presence

of a branch singularity of order 3/2. Whether this is true or not cannot be said as theoretical

proof is lacking. But numerical evidence presented by Krasny (1986) supports Moore’s result.

Because of this finite time blow up, the existence and evolution of the vortex sheet beyond the

critical time tc is in question and the solutions are not trivial. Commonly utilized techniques

like regularization are effective in solving ill-posed problems. The initial condition of the vortex

sheet is given in equation (13). The singularity manifests itself as a spike in circulation density

and a jump discontinuity in curvature. While it can be shown that vortex sheets starting from

analytic initial data will develop a finite time singularity (see Moore, 1984), proving that a

singularity appears for any initial data remains an open problem.

Computer solutions of vortex sheets require an additional parameter to be introduced in order

to avoid a finite time singularity. Such a parameter is also known as the regularization parameter.

In Chapter 4 we introduce a regularization parameter which we shall call as viscosity switch.

This parameter has a physical significance resembling but not identical to that of viscosity.

Since the parameter is nonzero at some locations in time and space, and zero otherwise, it is

called a switch. Some analogous numerical problems are shock waves in compressible flows, see

Lax(1973), where introduction of a smoothing parameter produces physically relevant solutions.

0.6 Background: Two Dimensional Euler Solutions

We shall consider two-dimensional motion of a fluid u(x1, x2) = (u1, u2) at high Reynolds number

and periodic boundaries. There are no external force fields. The discussion is not specific to a

temporal free shear layer with periodic boundaries, but valid for any flow in two-dimensions with

periodic boundaries and non-zero viscosity. The velocity and scalar vorticity fields are governed

by

du

dt
= −1

ρ
∇p+ ν∇2u (20)

dω

dt
= ν∇2ω (21)

Equation (21) represents the diffusion of vorticity. This equation includes an additional term

known as vortex stretching in three-dimensions. The presence of vortex stretching in the vorticity

8



0.6. BACKGROUND: TWO DIMENSIONAL EULER SOLUTIONSCHAPTER 0. INTRODUCTION TO FREE SHEAR LAYERS

equation leads to the formation of intense vortex filaments in three-dimensional flows, which is

not possible in two-dimensional flows. This is a fundamental difference between two and three

dimensions. From equations (20) and (21) it is easy to derive the equations for kinetic energy

per unit mass and enstrophy respectively,

d

dt

〈1

2
u2
〉

= −2ν
〈1

2
ω2
〉

(22)

d

dt

〈1

2
ω2
〉

= −ν〈(∇ω)2〉 (23)

The angled brackets mean spatial averaging (which is also equal to the ensemble average if the

system is ergodic). Therefore in an inviscid two-dimensional flow both energy and enstrophy

are conserved.

The point to note is that enstrophy decreases monotonically when ν is nonzero. So 〈12ω
2〉 is

bounded from above by its initial value. In the absence of a vortex stretching mechanism, there

is no way for enstrophy to increase. Therefore in the limit Re →∞ it follows that

lim
ν→0

d

dt

〈1

2
u2
〉

= 0

since 〈12ω
2〉 is always greater than or equal to zero. It implies that energy is conserved to within

a margin of order Re−1. On the other hand, 〈12ω
2〉 is fixed by its initial value and cannot grow

to compensate for small values of ν.

While the dissipation of energy is a prolonged process, dissipation of enstrophy is not bound

to be slow. In equation (21) we see that vorticity is advected and diffused like a passive scalar. In

the limit of large Re, diffusion is small except in the regions of large vorticity gradients. However,

if a blob of vorticity is extended into thin vortex sheets, it can amplify vorticity gradients and

(∇ω)2 will increase with time. Thus even if a two-dimensional flow cannot enhance its enstrophy,

it does have a mechanism to generate fine-scale structures where high vorticity gradients lead

to destruction of enstrophy. In the theory of two-dimensional turbulent flows enstrophy plays

a role similar to that of energy in three dimensions. The enstrophy is passed down from large

to small scales, until viscosity destroys it by diffusion of vorticity when gradients become large

enough. This process is often refered to as the enstrophy cascade, by analogy with the energy

cascade in three dimensions.

Based on the evidence that dynamical systems with large degrees of freedom tend to evolve

to a state which is independent of initial conditions, Batchelor (1969) and Kraichnan (1967)

put forward a non-trivial hypothesis that in fully developed two-dimensional turbulence d
dt〈

1
2ω

2〉
is independent of ν when Re is large. Batchelor (1969) showed from here that the energy

spectrum should have a self-similar form valid at all times other than the initial period. The

energy spectrum function is written as E(k),

d

dt

〈1

2
u2
〉

=

∫ ∞
0

E(k) dk
d

dt

〈1

2
ω2
〉

=

∫ ∞
0

k2E(k) dk (24)

Computer simulations do not support this theory entirely. A detailed discussion can be found

in Davidson (2003) where it is mentioned that strong regions of vorticity survive filamentation

and eventual viscous dissipation. These patches of vorticity behave like a point vortex system

showing cluster formation and local intensification. The time dependence of E(k) follows from

9
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equations (24). Since 〈12u
2〉 is almost conserved and 〈12ω

2〉 decreases at a finite rate, the area

under the curve of E(k) is nearly constant and the integral of k2E(k), which is weighted more

towards large values of k, falls with time. It means that E(k) must grow at small k and deplete

at large k. This is interpreted as the flow of energy from small to large scale structurces.

0.7 Terminilogy

Attractor: A set in the phase space invariant under the dynamics, toward which neighbouring

orbits approach asymptotically. An attractor can be a single point, a curve, a manifold or a

complicated set with fractal structure.

Chaos: A particular behaviour of dynamical systems where two points in phase space, initially

very close, will separate exponentially.

Coherent structures. The best way to describe coherent structures (in free shear layers) is

in a qualitative fashion: as relatively long-lived objects of generally circular topology. It should

be clearly distinguishable from the background within which they evolve.

Compressibility: A measure of relative volume or density change of a fluid as a response to

pressure change. The factor is defined as

β =
1

ρ

dρ

dp

The parameter β for incompressible flows is zero.

Curvature: For a plane curve, it is a local measure of the rate of change of tangential angle

with respect to arclength. The curvature κ of a parametric curve (x(t), y(t)) is given by

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2

(25)

The primes denote derivatives with respect to t.

Ensemble: Also known as probability space in the domain of probability theory. In fluid

mechanics the term is usually interpreted as a set of experiments or realizations with identical

macroscopic conditions, but different microscopic conditions.

Ill-posed problem: Hadamard defines a problem as well-posed if a solution exists, is unique

and depends continuously on initial data. Problems that are not well-posed in the sense of

Hadamard are termed ill-posed.

Regularization: In the context of vortex sheets it is a process of providing additional infor-

mation or parameters that will solve an otherwise ill-posed problem.

Vorticity and Enstrophy: The vorticity field in a fluid flow is given by ω = ∇ × u. It is

interpreted as measure of local rotation of fluid elements. The evolution of vorticity field ω is

derived by taking the the curl of the Navier-Stokes equation:

dω

dt
= (ω · ∇)u+ ν∇2ω (26)

The term (ω · ∇)u is called the vortex stretching and tilting term. Enstrophy is the squared

modulus of vorticity.

Weak solution: A weak solution to a differential equation is one which does not satisfy the

equation in the usual sense (derivatives of the function may not exist), but in some defined
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notion: integrating the left and right hand sides of the equation against any test functions must

give the same number, with all derivatives taken in the weak sense.
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Chapter 1

Point Vortex Systems

It is possible to build a model of the free shear layer, using a finite collection of point vortices.

Rosenhead (1931) approximated the motion of a two-dimensional vortex sheet by the motion of

a system of point vortices. While a vortex sheet approximation of a free shear layer restricts

the vorticity distribution to a curve, the point vortex approximation contracts vorticity even

further into a finite number of points. Studies have shown that a system of point vortices is not

an exact prototype for a free shear layer that occurs in experiments, in the sense that it evolves

into a chaotic cluster of points and the vortex sheet cannot be reconstructed at a later time.

However, despite its simplicity it can give nontrivial insights into quasi two-dimensional flows

and a useful starting point of vortex sheet models. The system also provides a weak solution to

the Euler equations. Modern computers have made it possible to study the (chaotic) evolution

of a large point vortex system over a long time. Regardless of its relevance to free shear layers,

this model has important theoretical implications as it offers the possibility of establishing a

connection between statistical mechanics and ’coherent structures’ of turbulent shear flows, see

Suryanarayanan, Narasimha and Dass (2014).

1.1 Biot-Savart Law

A point vortex is a singular distribution of vorticity given by ω = γδ(x − x0)k, where k is a

unit vector orthogonal to (x − x0). The point vortex is located at x0 and has strength (also

known as circulation) equal to γ. The velocity field generated by this point vortex is obtained

by inverting the definition of vorticity.

u(x, t) =
γ

2π

k × (x− x0)

|x− x0|2
+ uF (x, t) (1.1)

This is known as the Biot-Savart law. It is named after its exact analogue in electrodynamics.

It is a kinematic relation that contains all the dynamical information contained in the Euler

equations for a point vortex. The velocity field u is unique up to a potential component uF ,

that represents the velocity at infinity and the effect of walls or boundaries. The presence of

boundaries needs the addition of an image vortex of opposite strength, satisfying the kinematic

boundary condition of zero normal velocity at the wall.

In two dimensions, vorticity is always perpendicular to the plane of the flow, and therefore it

12
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can be considered a scalar field. Equation (1.1) then takes a simple form

ur(x, t) = 0, uθ(x, t) =
γ

2π|x− x0|
(1.2)

where ur and uθ are the radial and tangential components of the velocity in polar coordinates.

The effect of boundaries is not taken into consideration in the present work as we shall study

problems like temporal free shear layers with no solid boundaries. The Biot-Savart law is used

in Chapter 2 to derive the velocity field equations for a vortex sheet model.

1.2 Point Vortex Systems

A point vortex system consists of N points in a plane with the Cartesian coordinate of the

ith point vortex denoted by xi = (xi, yi). If the ith vortex carries a circulation γi, then the

equations of motion can be written in the form

γi
dxi
dt

=
∂H
∂yi

, γi
dyi
dt

= −∂H
∂xi

(1.3)

where

H = − 1

4π

∑
i 6=j

γiγj log rij , rij = |xi − xj | (1.4)

H is the Hamiltonian or energy function of the unbounded point vortex system. It should be

noted that rij is a non-dimensional quantity as its logarithmic value is taken.

An alternate way to represent a point vortex system is in a complex plane. The vortices are

located at zi = xi + ıyi and have an equal circulation γ. The equations of motion are

dz∗i
dt

= − iγ
2π

N∑
j=1,j 6=i

1

zi − zj
(1.5)

Note that the sum does not include the effect of a vortex on itself. This is a system of 2N ODEs

that can be solved as an initial value problem. They can be easily programmed on a computer

and studied for various sets of initial conditions.

The equations (1.5) are conservative, since they are inviscid, and conserve the linear and

angular momenta of the velocity field, as well as its kinetic energy. Some of these quantities

diverge formally, but they can be regularized by considering the changes in the invariants as

the vortices move around, instead of the invariants themselves. In a point vortex system the

conservation of linear and angular momenta corresponds to the invariance of the centroid and

of the moment of inertia of the vortex system, where each vortex is treated as a point of mass

γ.

LinearMomentum : M = γ

N∑
i=1

zj (1.6)

AngularMomentum : I = γ

N∑
i=1

|zj |2 (1.7)

Energy : E = −γ2
N∑
i 6=j

log |zi − zj |2 (1.8)
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More on the behaviour of point vortex systems are described in Batchelor (1967) and Newton

(2001). The invariance of angular momentum ensures that the points stay confined to an area

comparable to the initial extent of the system, while invariance of energy prevents points from

coming too close to each other1.

An N -point vortex system has 2N − 4 degrees of freedom. Therefore, when N is small the

system is constrained to be simple. When the value of N is four or more, the system behaves

in a very complex way and the generic behaviour starts to get chaotic. Since the influence

of initial conditions get lost quickly, statistics becomes relevant. Observing many realizations

with different initial conditions is equivalent to observing a single realization for a long time

in a statistically steady state. It should also be noted that the behaviour of all the points are

equivalent and it is of little interest to follow one particular vortex in a high-dimension system.

1.3 The Spontaneous Appearance of Large-scale and Long-lived Vortices in Two-

dimensional Flows

The modern explanation of the commonly observed feature of nearly two dimensional flows: the

spontaneous appearance of large-scale and long-lived vortices, was initiated by Onsager (1949).

Like-signed vortices in an ideal two-dimensional flow tend to attract over long time scales. While

the initial ideas of Onsager have now been modified, extended or made rigorous, his primary

contribution of negative temperature states remains unchanged. Most systems have the property

that entropy increases monotonically with energy. The temperature2 of such systems is therefore

always positive. A point vortex system in an enclosed area, however, has the unusual property

that entropy of the system starts to decrease when energy is added after a critical value. When

temperature is positive, the most probable state will be that in which point vortices are well

mixed and disorganized. But when temperature is negative, clustering of like-signed vortices are

favoured and large ‘organized structures’ come into picture. For a recent review refer to Eyink

and Sreenivsan (2006).
1If the strength of the vortices are not same, energy conservation prevents points of same sign from coming too close to each other. However,

pairs can form of vortices of opposite signs, which carry very little momentum and very little energy. Such dipoles form spontaneously and

decouple from rest of the system. They can escape to infinity or come very close to another vortex.
2The temperature of a system is defined as T = ∂E

∂S
, where E is the internal energy and S is the entropy of the system. For usual material

systems temperature is never negative.

14



1.4. ERGODICITY CHAPTER 1. POINT VORTEX SYSTEMS

Figure 1.1: A composite Cassini image of Jupiter. The

large oval shaped vortex south of the equator is known as

the Great Red Spot. The spot is large enough to contain

three Earth-sized planets and has been in existence since

1665. Similar large-scale, long-lived vortices exist in the

atmospheres of the other gas giant planets of our solar

system.

Statistical mechanics of point vortex sys-

tems have been used to study atmospheric

problems, like the Great Red Spot on

Jupiter. But application of such theory to

free shear flows have been limited. Mar-

chioro and Pulvirenti (1994) addressed the

problem imposed by the point vortex ap-

proximation. Lundgren and Pointin (1976)

conducted numerical simulations with ini-

tial state corresponding to several point vor-

tex clusters. The evolution of concentrated

blobs of vorticity in an ideal incompressible

fluid is similar as long as the distance be-

tween the blobs is much greater than their

diameters. The equilibrium theory predicts

that they will finally coalescence into a sin-

gle large supervortex. For a statistical me-

chanics description of a free shear layer and

’vortex gas’ computations refer to Surya-

narayanan, Narasimha and Dass(2014). The

term vortex gas is an alternate for a collec-

tion of large number of point vortices (delta

functions in vorticity) in an inviscid fluid.

1.4 Ergodicity

The essential ingredient of all statistical treatments of a point vortex system is ergodicity, which

theorizes that long-time averages are equal to ensemble averages. The ideas presented here can

be extended to a vortex sheet. The approximation of a vortex sheet by a system of panels or

linear segments is given in Chapter 2.

Let us consider a probability space (Ω,Σ, p) and a transformation T : Ω → Ω. It will suffice

to note that p is defined on Borel sets of Ω known as the Σ algebra or simply Σ. We assume that

the map T is one-one and invertible. The map T will be used to characterize the time evolution

of the system. Consider the orbit of the map ω, Tω, T 2ω, . . . and the image of each iterate

f(ω), f(Tω), f(T 2ω), . . . corresponding to a measurable function. The long-time or temporal

average is defined as

f̄(x) = lim
N→∞

1

N

N−1∑
k=0

f(T kx) (1.9)

The ensemble average of f is defined as

〈f〉(ω) =

∫
Ω
fdp (1.10)

Depending upon the nature of a particular experiment, it is often difficult to compute both the

averages together. However, this is not an impossible task. In numerical simulations estimates
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of both these averages can be obtained without difficulty.

For our purpose the flow equations (1.3) define a flow map T (x) : R2n → R2n. The flow map

is volume preserving i.e. the determinant of the Jacobian

J =
∂T (x)

∂x

is unity. For brevity of notation we shall denote T (x) as w. Taking the determinant of J and

differentiating w.r.t time t gives us

d|J |
dt

=
d etr log J

dt

= etr log Jtr

(
J−1 dJ

dt

)
= |J | tr

(
∂x

∂w

∂ẇ

∂x

)
(J−1 is obtained by inverse function)

= |J | ∂ẇj

∂wj
= |J | ∇w · ẇ = 0

since the system of equations (1.3) is Hamiltonian. Since the initial condition of the differential

equation is J(0) = 1, we can say J(t) = 1. From this it follows that T preserves measure p in

the sense that p(TB) = p(B) where B is a Borel subset of R2n.

It seems that for any measure preserving transformation T , the long-time average and ensem-

ble average of any measurable function f are equal. Unfortunately this conclusion is not true.

It is also necessary to assume that the orbit of T fills out the phase space densely and uniformly.

Such transforms T are known as ergodic transforms. For more details on ergodic transforms

interested readers are asked to look in Petersen (1983).

1.5 The Point Vortex Approximation

Early attempts to model a free shear layer used a finite number of point vortices and periodic

boundaries. Rosenhead (1931) used 10 vortices and a first order Euler method with time step

0.05. In the 1950s computations were performed using a larger number of points and a more

accurate time integration scheme. Contrary to expectation, the later computations resulted in

chaotic and irregular motion, see Birkhoff and Fischer (1959), and Hama and Burke (1960).

Other methods to get a convergent and smooth solution had limited success. No matter how

good the order of accuracy of the numerical method, noise introduced by round-off error is

amplified, that scatters the points to form a ’cloud’, see Higdon and Pozrikidis (1985) and

Shelley (1992). Aref and Siggia (1980) used 4096 points and a cloud-in-cell method for a point

vortex approximation to a free shear layer3. The computed solution showed a smooth roll-up

initially. But the method also introduces some numerical viscosity into the system. The general

conclusion is that the point vortex approximation degenerates into chaotic clusters of points.

A point vortex system with more than 3 vortices always becomes chaotic providing a valid

description of two-dimensional turbulence. However, point vortex systems can reproduce some
3The idea of the ’cloud-in-cell’ method comes from the ’particle-in-cell’ method, which has been used in plasma simulation by Birdsall

and Fuss (1969). It retains the Lagrangian treatment of the vorticity field and solve Poisson equation for the velocity field. This method is

time efficient compared to a direct method when the number of vortices N is large, but have some grid dependent features. Sometimes the

cloud-in-cell method may not reproduce the original flow correctly.
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dominant features of a free shear layer. For example, the formation of ’coherent structures’ and

amalgamation of ’coherent structures’.

The point vortex approximation of a temporal shear layer leads us to a set of ordinary dif-

ferential equations. Note that the boundaries are periodic. There are N points of strength γ

in the main domain. The length of domain is [0,1]. They are initially located along the x-axis

with a slight perturbation. Let the location of the points be zi = xi + ıyi in the complex plane.

dz∗i
dt

= − iγ
2

N∑
j=1,j 6=i

cot π (zi − zj) (1.11)

The sum omits the singular term. The difference in the kernel of equation (1.5) and equation

(1.11) is due to periodicity. Separating the real and imaginary part of equation (1.11) gives a

set of two equations, which seem to have been first mentioned by Friedman and Polubarinova

(1928),

dxi
dt

= −γ
2

N∑
j=1,j 6=i

sinh(2π(yi − yj))
cosh(2π(yi − yj))− cos(2π(xi − xj))

(1.12)

dyi
dt

=
γ

2

N∑
j=1,j 6=i

sin(2π(yi − yj))
cosh(2π(yi − yj))− cos(2π(xi − xj))

(1.13)

This is a system of 2N ODEs that can be solved as an initial value problem. The strength

of each point (γ) is set to be 2U/N so that the induced velocity profile is ±U initially. The

Hamiltonian corresponding to this system is

H = − γ
2

8π

∑
i 6=j

log
cosh 2π(yi − yj)− cos 2π(xi − xj)

2
(1.14)

Evidently, equation (1.14) is a special case of equation (1.4). The logarithmic term of the

Hamiltonian must be non-dimensional. Here, the domain length equal to unity is used as a

lengthscale. Another type of lengthscale often used for the purpose of non-dimensionalizing is

the radius of gyration of the point vortex system,

Rg =

√√√√ 1

N

N∑
1

(x2
i + y2

i )

The Hamiltonian is a conserved quantity in a point vortex system. Hamiltonian conservation

in a point vortex free shear layer simulation was assessed by Delcourt and Brown (1979) using

750 point vortices. The reported drop in value was 10−2 per t∆U/L. Conservation to the order

of 10−5 has been obtained in the computations of Suryanarayanan, Narasimha and Dass (2014)

using 32,000 point vortices.
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Figure 1.2: The position of point vortices in a temporal free shear layer simulation with 800 points by Suryanarayanan and

Narasimha (2014). The vortices were initially placed randomly in the horizontal layer ±10−6. Beyond time t = 4.0 there

is a single structure left in each periodic domain. The current value of t is 8.0.

1.6 Desingularization

It has been mentioned that an increase in the number of vortices makes the system more chaotic.

This happens because Kelvin-Helmholtz instability of a vortex sheet makes the smallest wave-

length grow at the fastest rate. Therefore, as the inter-vortex spacing decreases errors of any

type tend to magnify. For N evenly spaced near-aligned points noise generated from round-off

error will grow at a rate of eNt/2 [Krasny(1986)]. It is important to note that this is a feature

of the underlying system itself as opposed to an instability of the numerical method. For cer-

tain investigations a useful remedy is to introduce a Fourier filter that removes all grid-scale

noise. This method has been implemented by Krasny (1986). A new development by Chorin

and Benard (1973) rectified the problem of irregular motion by introducing desingularized point

vortices. The desingularized point vortices are known as ’vortex blobs’. Krasny (1986) used a

special type of vortex blob to study the growth of a free shear layer.

dxi
dt

= −γ
2

N∑
j=1,j 6=i

sinh(2π(yi − yj))
cosh(2π(yi − yj))− cos(2π(xi − xj)) + δ2

(1.15)

dyi
dt

= −γ
2

N∑
j=1,j 6=i

sin(2π(yi − yj))
cosh(2π(yi − yj))− cos(2π(xi − xj)) + δ2

(1.16)

This is an effective way to damp out high wavenumber instabilities. The quantity δ is known as

the regularization parameter or the smoothing parameter. The smoothing operation prevents

the velocity field from taking arbitrary large values and removes the infinite energy associated

with a point vortex4. There are different regularization schemes for a point vortex system,

for example, stabilizing the instability on the free shear layer by use of surface tension and

approximating the sheet by a thin vortex patch.

A system of desingularized point vortices given in (1.15) and (1.16) cannot conserve the

Hamiltonian function given in 1.14. However,

γ2

8π

∑
i 6=j

log
cosh 2π(yi − yj)− cos 2π(xi − xj) + δ2

2
(1.17)

4A point vortex has infinitely large speeds near at the centre of the vortex. There is also an infinite amount of energy in the vicinity of a

point vortex.
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is conserved. The vortex blob approximation gives a convergent solution: the solution is obtained

by taking a finite value of the regularization parameter δ and taking the limit as δ go to zero.

For a vortex blob approximation of a free shear layer the solution converges to a spiral. The

uniqueness of limiting spiral for different types of regularization is an outstanding problem.

Discussion of different regularization techniques can be found in Holm, Nitsche and Putkaradze

(2006). Potential applications of vortex blob systems include vortex shedding from the trailing

edge of aircraft wings and separation at a sharp edge.

Figure 1.3: Smooth roll-up of point vortices by means of Krasny δ-regularization. The smoothing parameter is δ = 0.25

and 512 points are used in the calculation. Note the convergence to a double branched spiral [Bertozzi and Majda (2002)].

The important step to note here is the order of the limits: δ goes to zero and h goes to zero,

where h is the grid resolution. If N points are placed initially in a domain of size 1, then h is

1/N . For a fixed finite value of δ, we get a smooth spiral solution as h goes to zero. Taking the

limit δ goes to zero after h goes to zero adds more turns to the spiral. The effect of singularity

formation on a point vortex approximation is further discussed in Chapter 3.

1.7 Adaptive Approximations

The numerical instabilities found in the point vortex approximation are found to be reduced if

the point vortices are spaced equally on a curve. Fink and Soh (1974) readjusted the position and

circulation of the point vortices so that the new equispaced vortices give a good representation

of the vorticity distribution. Evidently, this method cannot be applied at the centre of the

vortex spiral. Furthermore, the redistribution involves many interpolations, which leads to

accumulation of errors.

Bromilow and Clements (1982) amalgamated clusters of vortices into a single equivalent vor-

tex. They also used an extension of the rediscretization method to prevent points getting too

close or too distant. Recent studies by Sohn (2005,2010) vary the number of points and the

strength in an adaptive fashion in order to achieve better resolution.
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Chapter 2

The Vortex Sheet Approximation

Discrete approximation of a vortex sheet by point vortices has been a success in many physical

and engineering applications, but growing randomness in the location of points makes interpola-

tion difficult after a stage. That is, we cannot join the point vortices at a later time in the same

sequence as in the initial state. The resultant curve would cross itself and can no longer represent

a vortex sheet. The onset of chaos can be delayed significantly by using desingularized point

vortices, see Suryanarayanan, Narasimha and Dass (2014), but it does prevent the vortex sheet

from getting entangled eventually. However, a turbulent flow is inherently chaotic and therefore

a chaotic cloud of point vortices can represent a free shear layer. Even an intersecting vortex

sheet can be made to free shear layer as the studies of Basu, Prabhu and Narasimha (1995) have

shown. In the current simulations, however, the vortex sheet does not get entangled. The vortex

sheet approximation for a spatial free shear layer is revisited in 2.2. The objective is to modify

it so that it can represent a temporal shear layer with periodic boundaries. The modification is

not a simple procedure as it requires a large number of changes.

In a vortex sheet representation, the motion is determined from the discretization of the

Birkhoff-Rott intergral,

∂z∗

∂t
= − i

2π

∞∫
−∞

γ(s′, t)ds′

z(s, t)− z(s′, t)
(2.1)

introduced in Section 0.3. This is an integro-differential equation. The operator ∂
∂t denotes a

usual partial-derivative, while d
dt denotes material derivative. The two derivatives are usually

not the same. The advantage of this formulation is that it is a purely kinematical equation.

This method is termed as ’vortex sheet element’ in order to distinguish it from point vortex

methods described in Chapter 1. A vortex sheet element model can be used to generate shear

flows. It is an expensive procedure compared to modelling with point vortices. However, with

the development of powerful computers, computational cost becomes a less serious factor. A

major motivation for continuous approximations is that the outcome of the method would not

depend on factors like inter-vortex spacing.

2.1 Birkhoff-Rott Integral

The background mathematical theory of equation (7) or equation (2.1) is summarized in this

section. The velocity field is denoted by u and the vorticity field is denoted by ω. In a two-
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dimensional flow it is more economical to describe the motion in terms of vorticity field than

in terms of the velocity field. The velocity field in an incompressible fluid is solenoidal, that is,

∇ · u = 0 and its Helmholtz decomposition is given by

u = ∇×A+∇Φ

The scalar potential Φ satisfies ∇2Φ = 0 and Φ = 0 on the boundary of the domain. If there

are no boundary surfaces, Φ = 0 everywhere. To guarantee uniqueness of the vector potential

A, it is required to have ∇ ·A = 0. Then A satisfies the Poisson equation,

∇2A = −ω (2.2)

Thus, the decomposition of the velocity field produces a solenoidal field and a potential field.

The proof of this theorem is available in the textbook by Aris (1962). Equation 2.2 is known as

the Poisson equation.

In two dimensions the Poisson equation has a fundamental solution which satisfies the follow-

ing inhomogeneous equation,

∇2

(
− 1

2π
log

(
1

r

))
= δ(r)

The solution of A can be found by the principle of superposition using a Green’s function. There

are various iterative methods for numerical solution. Since ω(r) =
∫
ω(ξ)δ(r − ξ)dξ, it follows

that

ω(r) = − 1

2π

∫
ω(ξ)∇2 log

(
1

|r − ξ|

)
dξ

= ∇2

[
− 1

2π

∫
ω(ξ) log

(
1

|r − ξ|

)
dξ

]
Therefore,

A(r) =
1

2π

∫
ω(ξ) log

(
1

|r − ξ|

)
dξ (2.3)

It can be verified that the solution of A given in equation (2.3) is solenoidal. The velocity

field u can be determined by taking the curl of A. The contribution from the potential field Φ

is not considered here, as there are no solid boundaries in a temporal free shear layer.

u(r) = ∇×A

=
1

2π

∫
∇ log

(
1

|r − ξ|

)
× ω(ξ)dξ

= − 1

2π

∫
r − ξ
|r − ξ|2

× ω(ξ)dξ

=
1

2π

∫
ω(ξ)× (r − ξ)

|r − ξ|2
dξ (2.4)

A vortex sheet in two dimensions is a singular distribution of ω on a parametric curve ξ(s).

Formally vorticity can be expressed as

ω = γ(s)δ(n) (2.5)

where γ · n = 0, γ = |γ|, n is distance along the sheet normal n and s is distance along the

sheet. γ(s) is called the sheet strength and has the same direction as ω. Substituting (2.5) into
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(2.4), and using dξ = dsdn we obtain

u(r) =
1

2π

∫
s

∫
n

δ(n)
γ(s)× (r − ξ)

|r − ξ|2
dnds

=
1

2π

∫
s

γ(s)× (r − ξ(s))

|r − ξ(s)|2
ds

The velocity obtained above is finite when the point r is off the sheet ξ(s). If the position vector

is on the sheet, the velocity at that point is taken as a principal value integral

u(s) =
1

2π
−
∫
s′

γ(s′)× (ξ(s)− ξ(s′))

|ξ(s)− ξ(s′)|2
ds′ (2.6)

Thus the velocity produced by a vortex sheet is finite but has a simple jump in tangential

component on the sheet, the normal component being continuous. The jump in tangential

component is

[u] = γ × n

A complex variable representation of equation (2.6) follows from the next change of variables,

ξ(s) 7→ z(s).

∂z(s)

∂t
=

1

2π
−
∫
s

iγ(s′)(z(s)− z(s′))
|z(s)− z(s′)|2

ds′

or,

∂z∗(s)

∂t
= − i

2π
−
∫
s

γ(s′)

z(s)− z(s′)
ds′ (2.7)

This kinematical equation determines the self-induced motion of the vortex sheet. The material

derivative of z is identical to the partial derivative1. Therefore, the left hand side of equation

(2.7) can be equated to dz∗(s)
dt . This is true for an inviscid vortex sheet model. For vortex sheet

models with viscous smoothing, the material derivative differs from the partial derivative. See

Chapter 4 for a continuation of this topic.

2.2 Vortex Sheet Approximation for a Spatial Free Shear Layer

The basic reference for this work is the vortex panel or sheet element model for a spatial free

shear layer by Basu, Prabhu and Narasimha (1992). This model splits the vortex sheet into a

finite number of linear segments called vortex sheet elements or vortex panels. Earlier studies on

continuous models include Fink and Soh (1978) that introduces a vortex sheet element method,

and Higdon and Pozrikidis (1985) for implementation of higher order discretization of a vortex

sheet. The concept of dynamic update of sheet elements by Basu, Prabhu and Narasimha (1992)

is reused in this thesis.

A plane canonical mixing layer is a mixing layer in the limit of infinite Reynolds number that

forms downstream of a semi-infinite splitter plate and extends to infinity far downstream. The

flow is assumed incompressible and two dimensional with no body forces. In the limit considered
1This is due to the fact that there is no dissipation in the equation. In the presence of dissipation the two derivatives are different. See

Section 4.2 for the derivation.
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(Reynolds number infinity), the only role of viscosity is to generate vorticity; thereafter it does

not affect the flow.

Figure 2.1: A vortex sheet model of a spatial mixing layer with appropriate inflow and outflow boundaries. This schematic

diagram is taken from the works of Basu, Prabhu and Narasimha (1992).

Figure 2.1 shows the vortex sheet model of a canonical mixing layer. The flow field is divided

into four parts: upstream of the trailing edge of the splitter plate, the main computational

domain, a buffer space and downstream far field region. The model simulates a spatial free shear

layer with appropriate inflow and outflow boundaries. At each time step the circulation density

gets readjusted and the vortex sheet segment splits into two equal parts if it gets stretched beyond

a certain prescribed amount. Note that this scheme is different than the methods mentioned

in Section 1.7. Some features of a spatial free shear layer simulation which will be lacking in a

temporal case, are the semi-infinite downstream sheets, the doublet sheet and the buffer vortex.

A doublet is necessary to ensure the physically realistic zero normal velocity at the splitter plate.

The downstream buffer vortex was added to conserve global circulation.
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Figure 2.2: Various stages of evolution of the vortex sheet inside the main computational domain. Reproduced from the

works of Basu, Prabhu and Narasimha (1994). Shedding of coherent structures from the trailing edge of the splitter plate

is seen.

The vortex sheet element method was found to be better than the point vortex method,

see Figure 2.2. The vortex sheet crosses itself at places. This is a violation of the principles

of vortex dynamics. The situation does not improve if we use smaller time steps or shorter

elements. However, the picture obtained is still meaningful. This method was found to be half

as fast the point vortex scheme, while computed stresses and moments converged twice as fast.

The moments are also closer to values obtained experimentally.

The main difficulty with this model developed in the 1990s was the lack of computational

power. The vortex sheet is extremely sensitive to small numerical errors, which leads to spurious

intersections. There is an additional problem of singularity formation that did not appear here

due to the finite size of vortex panels. We shall attempt to rectify both issues in the following

sections and chapters.
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2.3 Vortex Sheet Approximation for a Temporal Free Shear Layer

The vortex sheet approximation consists of approximating the temporal free shear layer by a

vortex sheet. The sheet is periodic in the x-direction. An introduction to vortex sheets was given

in Section 0.3. The objective of what follows in this section is to find a closed form function that

will give the induced velocity (due to the temporal vortex sheet) at any point in the domain.

The infinite span of the vortex sheet must be accounted for mathematically. It is not advisable

to take a numerical approach as the vortex sheet is extremely sensitive to computer round-off

errors. If the sheet was of a finite size none of this would be required. In Section 2.2 where

a spatial free shear layer is studied, the effects of the semi-infinite downstream region is taken

care of by downstream sheets and a buffer vortex.

The vortex sheet is broken into linear segments or panels. This technique is borrowed from

vortex sheet model for a spatial free shear layer in Section 2.2. As a first approximation we divide

the sheet into equal (or almost equal) parts. There is no constraint on the number of segments.

Division into equal parts is problematic when the vortex sheet has regions of high curvature.

This leads to loss of resolution. But, at the start i.e. t = 0 the vortex sheet is almost flat,

and therefore can be approximated by panels of equal size. The vortex sheet element method

decomposes a vortex sheet into a system of panels. It is not necessary to have nonlinear panels.

In Figure 2.3 we show a portion of a schematic vortex sheet and its segmentation. The variables

marked in the inset are for the particular vortex panel k.

Figure 2.3: A vortex sheet model for a temporal mixing layer. The vortex sheet has rolled up due to self-induced motion.

The start and end of the segments or panels are marked by grey dots. A typical segment is highlighted in black. (Inset)

Shows the variables needed to describe the marked segment.

Since the domain is periodic, it is sufficient to analyze the strip [0, 1) × (−∞,+∞). The

strip is unbounded in the ± y-directions. The vortex sheet within this domain is split into N

segments. The segments of the vortex sheet are marked 1 to N , where N is finite. The vortex

segments should approximate the vortex sheet sufficiently well, otherwise it leads to a distortion.

The kth vortex segment has length `k, tilt θk with respect to the x-direction, circuation density

γk, starting at zk and ending at zk+1 in a complex plane. The complex plane representation

zk = xk + ıyk simplifies the writing of the equations that appear towards the end of this section.
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We assume that the circulation density is uniform over a segment. Note that the variable γ is

used here to denote circulation density and not circulation. The variable for circulation is Γ .

This gives a complete description of the vortex sheet segmentation.

Each segment generates a velocity field and the velocity field induced by the vortex sheet will

be the vector sum of the components induced by each segment. The segments themselves will

be advected by the resultant velocity field, but self-induction cannot take place as it leads to an

infinite velocity. Consider the subset of vortex segments whose length is ` and inclination is θ,

across the entire domain (−∞,+∞)× (−∞,+∞). The strength of each segment in the subset

is γ. We assume that each segment in [0, 1) × (−∞,+∞) is unique, so that no two of them

can have exactly equal length and inclination. But it is possible for them to have an indentical

circulation density.

If the starting point of a vortex segment is at (x1, y1) and an arbitrary point in the plane is

at (x, y) or (x′, y′) in the reference frame of the segment, then the relation between (x, y) and

(x′, y′) is given by

x′ = (x− x1) cos θ + (y − y1) sin θ (2.8a)

y′ = −(x− x1) sin θ + (y − y1) cos θ (2.8b)

where θ is the angle between the unprimed and primed frames of reference. See Figure 2.4,

which shows the respective positions of the two frames of reference. The reason for considering

a frame of reference attached to a panel is that computation of induced velocities is easier in

this frame. To get back to induced velocities in the unprimed frame of reference, we apply the

reverse transformation.

Figure 2.4: The primed and the unprimed frames of reference. xy is the normal laboratory frame. x′y′ is the frame attached

to the vortex segment.

The induced velocities u′ and v′ in the reference frame of the segment are computed by using

the Biot-Savart formula. The detailed derivation can be found in Basu, Prabhu and Narasimha

(1990), and the final forms of u′ and v′ are written down directly,

u′ =
γ

2π

[
arctan

(
x′

y′

)
− arctan

(
x′ − `
y′

)]
(2.9a)

v′ = − γ

4π

[
log

x′2 + y′2

(x′ − `)2 + y′2

]
(2.9b)
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The induced velocities u and v in the laboratory frame are then obtained by another coordinate

transformation.

u = u′ cos θ − v′ sin θ (2.10a)

v = u′ sin θ + v′ cos θ (2.10b)

We now return to the subset of all vortex segments whose length is ` and inclination is θ.

Let the segment in the domain [n, n+ 1) be labelled as the nth segment. If the coordinates of a

point wrt the 0th segment is (x′, y′), then its coordinates wrt the nth segment will be

x′n = x′ − n cos θ (2.11a)

y′n = y′ + n sin θ (2.11b)

Note that x′ and y′ is the same as x′0 and y′0 respectively. The schematic diagram shown in

Figure 2.5 depicts the periodic repetition of vortex segments.

Figure 2.5: Representation of the nth segment with respect to the 0th segment. They have identical length, tilt and

circulation density.

The velocities induced at a point in the reference frame of the nth segment are obtained

directly from (2.9).

u′n =
γ

2π

[
arctan

(
x′n
y′n

)
− arctan

(
x′n − `
y′n

)]
(2.12a)

v′n = − γ

4π

[
log

x′2n + y′2n
(x′n − `)2 + y′2n

]
(2.12b)

The unprimed induced velocities will be

un = u′n cos θ − v′n sin θ (2.13a)

vn = u′n sin θ + v′n cos θ (2.13b)

and the unprimed velocities induced by the entire infinite row of segments will be

u =
∞∑

n=−∞
u′n cos θ −

∞∑
n=−∞

v′n sin θ (2.14a)

v =
∞∑

n=−∞
u′n sin θ +

∞∑
n=−∞

v′n cos θ (2.14b)
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Therefore we need to evaluate the following quantities:

u′ =
∞∑

n=−∞
u′n and v′ =

∞∑
n=−∞

v′n

Since u′ and v′ are infinite sums they cannot be manipulated as ordinary expressions unless we

can show they are convergent quantities. The convergence of u′ and v′ are established in Lemma

1 and 2 respectively.

Lemma 1. u′ =
∞∑

n=−∞
u′n is a convergent quantity.

Proof. The expansion of u′ in terms of x′n and y′n is given in equation (2.12). Let us express x′n
y′n

as numbers in a complex plane.

arctan
x′n
y′n

=
1

2i
log

i− x′n
y′n

i+ x′n
y′n

=
1

2i
log

iy′n − x′n
iy′n + x′n

=
1

2i
log

z∗n
zn

(2.15)

where zn = iy′n + x′n. Similarly

arctan
x′n − `
y′n

=
1

2i
log

w∗n
wn

(2.16)

where wn = iy′n + (x′n − `). Therefore

∞∑
n=−∞

u′n =
γ

2π

∞∑
n=−∞

[
1

2i
log

z∗n
zn
− 1

2i
log

w∗n
wn

]

=
γ

4πi

∞∑
n=−∞

[
log

(
zn
wn

)∗
− log

(
zn
wn

)]
(2.17)

In the expression for u′ the real part of log
(
zn
wn

)
cancels out with the real part of log

(
zn
wn

)∗
.

Thus u′ turns out to be real as expected.

zn = iy′n + xn = i(y′ + n sin θ) + (x′ − n cos θ) = i(y′ + x′)− ne−iθ

= z − ne−iθ (2.18)

wn = iy′n + (xn − `) = i(y′ + n sin θ) + (x′ − `− n cos θ) = i(y′ + x′ − `)− ne−iθ

= w − ne−iθ (2.19)

It is sufficient to show that

∞∑
n=−∞

log
zn
wn

is convergent.

∞∑
n=−∞

log
zn
wn

= log
z

w
+

∞∑
n=1

[
log

zn
wn

+ log
z−n
w−n

]

= log
z

w
+
∞∑
n=1

[
log

(
1 +

`

w − ne−iθ

)
+ log

(
1 +

`

w + ne−iθ

)]

= log
z

w
+

∞∑
n=1

[
`

w − ne−iθ
+

`

w + ne−iθ
+O

(
1

n2

)]

= log
z

w
+
∞∑
n=1

[
2`w

w2 − n2e−iθ
+O

(
1

n2

)]
(2.20)

The above series is convergent.
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It must be noted that
∞∑

n=−∞
u′n is conditionally convergent. Therefore we adopt the convention

of using a principal value:
∞∑

n=−∞
u′n = lim

m→∞

m∑
n=−m

u′n (2.21)

Lemma 2. v′ =

∞∑
n=−∞

v′n is a convergent quantity.

Proof. The argument given here is similar to that given in Lemma 1. The expansion of v′ in

terms of x′n and y′n is taken from equation (2.12).

∞∑
n=−∞

v′n = − γ

4π

∞∑
n=−∞

[
log

x′n
2 + y′n

2

(x′n − `)
2 + y′n

2

]
(2.22)

Since

log
x′n

2 + y′n
2

(x′n − `)
2 + y′n

2
= log

(iy′n + x′n)(−iy′n + x′n)

(iy′n + x′n − `)(−iy′n + x′n − `)
= log

zn
∗zn

wn∗wn
(2.23)

zn and wn are defined in equations (2.18) and (2.19) respectively. Therefore,

∞∑
n=−∞

v′n = − γ

4π

∞∑
n=−∞

log
zn
∗zn

wn∗wn
= − γ

4π

∞∑
n=−∞

[
log

(
zn
wn

)∗
+ log

zn
wn

]
(2.24)

Here the imaginary part of log
(
zn
wn

)
cancels out with the imaginary part of log

(
zn
wn

)∗
. The

convergence of log
(
zn
wn

)
has already been proved in Lemma 1. Therefore

∞∑
n=−∞

v′n has a finite

limit.

So far, we have proved the general requirement that u′ and v′ are well defined. Clearly,

this is not enough as there is no way to obtain the values of u′ and v′ yet. The remainder of

this section formulates a way to obtain explicit equations for the infinite sums u′ =

∞∑
n=−∞

u′n

and v′ =

∞∑
n=−∞

v′n. Another approach would be to sum the series numerically. Due to the

alternating nature of the series, the convergence is painfully slow. In principle, a computer can

find the summation values to any degree of accuracy. The number of terms required to attain a

precision of 6 significant digits is of the order of 1 million or higher. This is a complete waste of

computer resources. Numerical summation converges very fast for a few trivial configurations:

the flat vortex sheet. Other approximations are not reliable, given that numerical errors might

have catastrophic effects later. We shall use the following closed form expressions for u′ and v′

respectively,

u′ =

∞∑
n=−∞

u′n =
γ

2π
Im

[
log

sin π(z′ − `)eiθ

sin πz′eiθ

]
(2.25a)

v′ =

∞∑
n=−∞

v′n =
γ

2π
Re

[
log

sin π(z′ − `)eiθ

sin πz′eiθ

]
(2.25b)
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These values can be otained from a computer quite easily. The proof of equation (2.25a) uses

the same approach as was used in Lemma 1. The proof of equation (2.25b) will be identical and

therefore not given. We begin by writing u′ from equation (2.17),

u′ =
γ

4πi

∞∑
n=−∞

[
log

(
zn
wn

)∗
− log

(
zn
wn

)]
Let us consider the series

∞∑
n=−∞

log

(
zn
wn

)
The infinite sum is transformed into an infinite product and two functions f and g are defined

for ease of manipulation.

∞∑
n=−∞

log

(
zn
wn

)
= log

∞∏
n=−∞

(
zn
wn

)
= log

∞∏
n=−∞

(
z − ne−iθ

z − `− ne−iθ

)
= log

∞∏
n=−∞

fn(z) (2.26)

and

g(z) = log
∞∏

n=−∞
fn(z) (2.27)

Taking the logarithm of the above expression and then differentiating we get

g′(z)

g(z)
=

∞∑
n=−∞

f ′(z)

f(z)
(2.28)

We evaluate the functions fn(z) and f ′n(z), and substitute their values in (2.28).

fn(z) =
z − ne−iθ

z − `− ne−iθ
= 1 +

`

z − `− ne−iθ

f ′n(z) =
−`

(z − `− ne−iθ)2

Therefore,

f ′(z)

f(z)
=

−`
(z−`−ne−iθ)2

z−ne−iθ

z−`−ne−iθ

=
−`

(z − ne−iθ)(z − `− ne−iθ)
=

1

z − ne−iθ
− 1

z − `− ne−iθ

and

g′(z)

g(z)
=

∞∑
n=−∞

1

z − ne−iθ
−

∞∑
n=−∞

1

z − `− ne−iθ

=
1

z
+

∞∑
n=1

[
1

z − ne−iθ
+

1

z + ne−iθ

]
− 1

z − `
−
∞∑
n=1

[
1

z − `− ne−iθ
+

1

z − `+ ne−iθ

]

=
1

z
+
∞∑
n=1

2z

z2 − (ne−iθ)2
− 1

z − `
−
∞∑
n=1

2(z − `)
(z − `)2 − (ne−iθ)2

=
1

z
+ eiθ

∞∑
n=1

2zeiθ

(zeiθ)
2 − n2

− 1

z − `
− eiθ

∞∑
n=1

2(z − `)eiθ

((z − `)eiθ)2 − n2

= eiθ

[
1

zeiθ
+
∞∑
n=1

2zeiθ

(zeiθ)
2 − n2

]
− eiθ

[
1

(z − `)eiθ
+
∞∑
n=1

2(z − `)eiθ

((z − `)eiθ)2 − n2

]
= eiθπ cot(πzeiθ)− eiθπ cot(π(z − `)eiθ)
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The last step is an identity: Euler’s partial fraction expansion of the cotangent. The solution of

function g is obtained by integration.

log g(z) = log sin(πzeiθ)− log sin(π(z − `)eiθ)

Therefore,
∞∑

n=−∞
log

(
zn
wn

)
= log g(z) = log

sin(πzeiθ)

sin(π(z − `)eiθ)
(2.29)

which implies

u′ =
∞∑

n=−∞
u′n =

γ

4πi

[
−2i Im

[
log

sin(πzeiθ)

sin(π(z − `)eiθ)

]]
=

γ

2π
Im

[
log

sin(π(z − `)eiθ)
sin(πzeiθ)

]
This completes the proof of equation (2.25a). Once we have obtained u′, it is easy to put v′ in

a similar form, as given in equation (2.25b). We recall a relation from Lemma 2:

v′ = − γ

4π

∞∑
n=−∞

[
log

(
zn
wn

)∗
+ log

(
zn
wn

)]
[see(2.24)]

Since
∞∑

n=−∞
log

(
zn
wn

)
= log

sin πz′eiθ

sin π(z′ − `)eiθ

it follows that

v′ =
∞∑

n=−∞
v′n = − γ

4π

[
2 Re

[
log

sin πz′eiθ

sin π(z′ − `)eiθ

]]
=

γ

2π
Re

[
log

sin π(z′ − `)eiθ

sin πz′eiθ

]
(2.30)

Once we know the exact functional values of u′ and v′, it becomes straight forward to find

out the induced velocity due to an infinite row of vortex panels. There are N sets of such rows

(of panels) that make up the vortex sheet. Let u′k and v′k be the velocities induced due to the

kth row of segments where k = 1, 2, . . . , N . It must be noted that u′k and v′k differs from the

previously used quantities u′n and v′n and should not be confused.

u =
N∑
k=1

uk =
N∑
k=1

(u′k cos θk − v′k sin θk) (2.31a)

v =

N∑
k=1

vk =

N∑
k=1

(u′k sin θk + v′k cos θk) (2.31b)

Subscript k denotes the contribution from the kth row of segments. Let zk = xk + iyk be the

origin of the 0th segment of the kth row. For self induced motion of the vortex sheet, we need

to find the complex velocity only at specific locations. These points are the origin or starting
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coordinates of each vortex panel. We are now in a position to obtain
dz∗j
dt .

dz∗j
dt

= u− iv =
N∑
k=1

′ (u′k(cos θk − i sin θk)− iv′k(cos θk − i sin θk)
)

=
N∑
k=1

′(u′k − iv′k)(cos θk − i sin θk)

=

N∑
k=1

′(u′k − iv′k)e−iθk

=
N∑
k=1

′
[
γk
2π

Im

[
log

sin π(z′k − `k)eiθk
sin πz′ke

iθk

]
− iγk

2π
Re

[
log

sin π(z′k − `k)eiθk
sin πz′ke

iθk

]]
e−iθk

= −
N∑
k=1

′ iγk
2π

[
iIm

[
log

sin π(z′k − `k)eiθk
sin πz′ke

iθk

]
+ Re

[
log

sin π(z′k − `k)eiθk
sin πz′ke

iθk

]]
e−iθk

= −
N∑
k=1

′ iγk
2π

[
log

sin π(z′k − `k)eiθk
sin πz′ke

iθk

]
e−iθk (2.32)

z′k is the relative position of the jth segment wrt the origin of the 0th segment of the kth row.

It is related to zj as

zj = zk + z′ke
iθk (2.33)

Substituting the value of z′k from equation (2.33) in equation (2.32) we obtain

dz∗j
dt

= −
N∑
k=1

′ iγk
2π

[
log

sin π(zj − zk − `keiθk)

sin π(zj − zk)

]
e−iθk j = 1, 2, . . . , N (2.34)

This is a closed form expression that gives the complex velocity field as a function of the state

variables of the vortex sheet: z, `, θ and γ. Since this is a finite sum no approximations are

required. For self-induced motion of the vortex sheet it is necessary to eliminate the singular

term in the summation. However, if the point at which the complex velocity is evaluated is not

located on the vortex sheet, then equation (2.34) simply becomes

dz∗p
dt

= −
N∑
k=1

iγk
2π

[
log

sin π(zp − zk − `keiθk)

sin π(zp − zk)

]
e−iθk (2.35)

In Chapter (3) we use equations (2.34) and 2.35 to simulate a vortex sheet motion. The equa-

tions are first-order ordinary differential, that can be solved by standard methods of integration.

This approach, however, leads to a finite time singularity in curvature and circulation density.

A mathematical interpretation of this phenomenon is: neglect of physically important effects

like viscosity and surface tension leads to highly unrealistic solutions, see Chapter 4 for more

details.
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Chapter 3

Finite-time Singularities

The problem of the finite time singularity in vortex sheets with analytic initial data was discussed

briefly in Section 0.5. Asymptotic analysis and numerical studies of the Birkhoff-Rott equation

by Meiron, Baker and Orszag (1982) have shown that a vortex sheet loses analyticity in finite

time. A first-order estimate of the time tc <∞ (known as the critical time) at which the vortex

sheet solution becomes singular is given by

1 + πtc + log 2πtc = log

(
4

2πε

)
(3.1)

where ε is the amplitude of the periodic displacement on the vortex sheet. This equation

appears in the paper by Moore (1979). It is assumed that the magnitude of ε is small compared

to the size of the domain. The ratio of amplitude ε to wavelength of the disturbance should be

small, preferably less than 0.05 for small ε analysis to be valid. Equation (3.1) may be solved by

Newton’s method to obtain values of tc. It should be noted that equation (3.1) gives an estimate

of tc and not an exact solution. However, it is certain that the vortex sheet becomes singular at

tc, or at some time prior to tc [Moore(1979)].

The roll-up of a temporal vortex sheet before the time of singularity is investigated in Section

3.2. The vortex sheet evolution is slow at first, then rapid afterward. In qualitative terms, the

sheet takes a considerable time for the spiral to appear compared to the expansion of the spiral

(refer to Section 3.2 and Section 3.5 for a quantitative treatment). No smoothing parameter, like

the desingularization parameter of point vortex systems mentioned in Section 1.6, is inserted

before the vortex sheet becomes singular: since the numerical vortex sheet solution developed in

this chapter (without regularization) is a smooth and well-defined curve before tc. Only when

the vortex sheet does becomes nearly singular, does it become necessary to take smoothing

operations into consideration. See Chapter 4 for ’viscosity switch’ smoothing of vortex sheets.

Numerical computation of the vortex sheet beyond critical time is practically quite difficult,

since direct integration methods blow up in finite time and desingularized methods generate

’solutions’ that are dependent on extraneous parameters. It is also not possible to choose a path

in the complex-time plane and obtain a smooth spiral solution by analytic continuation. This is

due to the distribution of complex singularities, and their limiting behaviour near tc is given in

Sakajo (2003). It is conjectured that the solution beyond tc is a double branched spiral with an

infinite number of turns. While it is not possible to get an infinite number of turns in numerics,

it means that the number of turns in the spiral increases without bound as the parameter used to
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regularize the vortex sheet vanishes. The problem of vortex sheet solution after tc is considered

in Chapter 4 and Chapter 5.

3.1 Numerical Procedure

The analysis of Section 2.3 provides an efficient method for evaluating induced velocities on

the vortex sheet. Since we know the induced velocities, the displacement of the vortex sheet

with time can be programed on a computer. The outline of the program is enlisted at the end

of this paragraph. The code starts with N = 100 vortex segments or panels. We can choose

a higher or lower number of segments at the start, but it makes no difference in the end and

therefore modifications are unwarranted. The RESEGMENT subroutine in the code adds vortex

segments when required to maintain smoothness of the vortex sheet. The adjustment is an one

step procedure and the value of N relaxes to the minimum number needed. However, if N is

too low to resolve the initial vortex sheet1, then that one step error before resegmentation will

affect the vortex sheet. Another ad-hoc parameter is the time integration step size ∆t (written

as dt in the code). It will be necessary to specify a reasonable starting value. The start values

used are 0.05 or 0.04: based on multiple runs of the code. It is not mandatory to start with

these values. Subsequent values of ∆t are generated by the code itself, and further specifications

are not necessary.

Pseudocode for vortex sheet motion

1. input N, dt, zj , γj ∀j
2. for j = 1, 2, . . . , N

`j = |zj+1 − zj |; θj = atan2(zj+1 − zj);
end

3. TIMESCALE FUNCTION

4. for j = 1, 2, . . . , N

mj = (zj + zj+1)/2;

dmj =
N∑

k=1,k 6=j

iγk
2π

[
log

sin π(zj−zk−`keiθk )
sin π(zj−zk)

]
e−iθkdt

mj = mj + dmj

INTERPOLATE FUNCTION

end

5. for j = 1, 2, . . . , N

γj = γj`j/(zj+1 − zj);
φj = atan2(zj+1 − zj);

end

6. for j = 1, 2, . . . , N

if (zj+1 − zj) > 2`j |max(|φj−1 − φj|, |φj+1 − φj|) < π/9

RESEGMENT FUNCTION
1A minimum of 5 panels are necessary to represent the initially flat vortex sheet. If one takes N = 2, the representation becomes so stiff

that the computed induced velocities are wrong.
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end

end

7. output N, zj , γj ∀j;

The above algorithm is implemented in MATLAB2. The input variables are N , ∆t and the

initial configuration of the vortex sheet. The lengths and inclination of each vortex segment are

obtained in step 2. The TIMESCALE subroutine in step 3 adjusts time steps automatically

and removes the chance of vortex segments intersecting each other. In actual running of the

program, some intersections do occur due to faulty initialization of N and ∆t, and one would

need to retract and correct the panel number and step size. The TIMESCALE function is

presented in Section 3.5. The time integration in step 4 is performed by using fourth order

Runge Kutta. Self-induction is eliminated. The velocities are calculated at the mid-point of

each segment. The INTERPOLATE subroutine interpolates the velocities at the end points of

a segment. In two dimensions, in the absence of viscosity, vorticity is transported along with

material points. The vortex segments therefore transport vorticity. The length of the segments

will change after time integration. The strength of each segment is then readjusted in step

5, so that total circulation of each segment is conserved. The circulation of the vortex sheet

also remains constant. Step 6 involves the RESEGMENT subroutine. If a segment is stretched

too much (the cut-off value used is 1.5 times the initial length for nearly flat sections), it is

divided into two equal halves. If the angle between two segments is too big, both the arms are

divided into two equal halves. The ’if’ condition displayed in the algorithm is not rigid. In

another instance, the conditions can be changed, as the geometry of a vortex sheet can be very

complicated. It is not effective to use one universal condition.

The output of this code gives the state of the vortex sheet after a small time interval ∆t. For

long time intervals, the code is iterated. Note that since the boundaries of the computational

domain are periodic, we substitute zN+1 = z1, zN+2 = z2 and so on, whenever required. There

is no subroutine for merging of vortex segments in this code. The merging operation is difficult

to control, and is rarely used in numerical simulation. However, if the number of segments

becomes prohibitively large, the merging operation can be utilized. Merging of segments will be

explicitly mentioned whenever such an operation takes place.

3.2 The Roll-up of a Periodic Vortex Sheet

In this section we consider a periodic vortex sheet, set into motion by a small ε amplitude dis-

turbance, and investigate its singular properties. Our calculation starts with N = 100 segments.

The segments have uniform and identical circulation density. The length of each segment is

approximately equal to 0.01. The order of variation of the length of a segment is 1 part 100. It

is not necessary to start with exactly equal segments. The sheet is highly unstable, as mentioned

earlier in Section 0.2. In fact, the periodic vortex sheet is so unstable that it is an ill-posed prob-

lem (Kelvin-Helmholtz instability) i.e. an initially smooth vortex sheet loses all differentiable
2MATLAB stores all numbers in the long format of the floating point representation. This means that real numbers have a finite precision

of roughly sixteen significant digits, and a range of definition roughly varying between 10−308 and 10+308 in absolute value. All computations

are performed in double precision.
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properties at a finite time. Because the problem is not well-posed, the numerical procedure given

in Section 3.1 needs to modified, by the addition of some suitable parameter like viscosity. For a

short period of time, the shape of the vortex sheet can be predicted by a linearized theory. The

vortex sheet z(Γ, t) = Γ is a stationary solution of equation (10) as it is valid for all t, where Γ

is the proxy for arclength s along the sheet:

Γ =

∫ s

0
γ(s′)ds′ (3.2)

As long as z(Γ, t) remains an analytic function of Γ , it will have a Fourier series expansion.

Adding a disturbance to the stationary solution gives

z(Γ, t) = Γ +
∞∑

n=−∞
An(t)eı2nπΓ (3.3)

where the An(t) are time-dependent Fourier coefficients. The growth of An is obtained from the

equation:
d2An
dt2

= π2n2An (3.4)

via a series expansion solution. Some steps leading to equation (3.4) are given in the text box

below.

Substituting the Fourier expansion of z(Γ, t) given in equation (3.3) into equation (10), we

have

∞∑
n=−∞

A∗n(t)e−in2πΓ = − i

2π

∞∫
−∞

dΓ ′

(Γ − Γ ′) +
∑∞

n=−∞An(t) (ein2πΓ − ein2πΓ ′)

put φ = Γ ′ − Γ

= − i

2π

∞∫
−∞

dφ

−φ+
∑∞

n=−∞Anein2πΓ (1− ein2πφ)

=
i

2π

∞∫
−∞

dφ/φ

1−
∑∞

n=−∞Anein2πΓ
(

1−ein2πφ

φ

)
=

i

2π

∞∫
−∞

dφ

φ

(
1 +

∞∑
n=−∞

Anein2πΓ

(
1− ein2πφ

φ

)
+O(A2

n)

)

The principal value integral refers to both φ = 0 and φ = ∞, so
∞∫
−∞

dφ
φ = 0. Further,

∞∫
−∞

(
1−ein2πφ

φ2

)
dφ = 2π2|n|. Hence to the first order in the amplitude of the disturbance,

∞∑
n=−∞

dA∗n
dt

e−in2πΓ =
i

2π

∞∑
n=−∞

2π2|n|Anein2πΓ

Equating the coefficients of e−in2πΓ , we have

dAn
∗

dt
= iπ|n|A−n n = 0,±1,±2, . . . (3.5)
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Taking complex conjugate of equation (3.5) and differentiating wrt time, we obtain

d2An
dt2

= π2n2An

This is a straightforward derivation but it is useful, and a similar application in Section 4.2

helps us to extend formally to a vortex sheet with viscosity switch.

The Fourier coefficient An(t) at t = 0 is obtained directly from equation (13) and equation

(3.3).

A1(0) = ε/2, A−1(0) = −ε/2, An(0) = 0 ∀n 6= ±1

Starting from the above initial state, the Fourier coefficients, A1 and A−1, therefore grow like

A1(t) =
ε

4
(1 + i)eπt +

ε

4
(1− i)e−πt, A−1(t) =

ε

4
(−1− i)eπt +

ε

4
(−1 + i)e−πt

Higher order Fourier coefficients remain at zero according to this linearized theory. But initial

conditions may differ from equation (13), and then a positive growth rate is obtained for all

Fourier modes:

An(t) =
An(0)− iA−n(0)∗

2
eπnt +

An(0) + iA−n(0)∗

2
e−πnt

The above expression shows that the growth of An(t) is exponential with time t. Furthermore,

the higher the wavenumber of a Fourier mode, the faster is grows. If the Fourier coefficients of

the vortex sheet do not decay exponentially with increasing wavenumber, then the sheet can no

longer be analytic. This led Birkhoff (1962) to speculate that a finite time singularity occurs in

vortex sheet.

However, a linear theory cannot be extended much beyond the initial state, since the assump-

tions we make are no longer valid. If the nonlinear interactions are also taken into account,

loss of analyticity can no longer be guaranteed. In Section 3.4 we briefly mention the analytical

reasoning for the appearance of singularity at a finite time. Asymptotic analysis shows that for

a finite value of t, the vortex sheet Fourier modes will have coefficients decaying at an algebraic

rate with increasing wavenumber. The sheet can, therefore, no longer be analytic at this time.

The appearance of a finite-time singularity in a periodic vortex sheet terminates (unregularized)

numerical simulations presented in this section.

At the start of numerical simulation the profile of the vortex sheet is a sine wave. The sheet

takes a considerable amount of time (compared to later stages) to change its shape initially (See

Figure 3.6. The vortex sheet does not undergo any rapid change until t = 0.6). Eventually it

rolls over the centre point and a spiral structure begins to emerge. The process accelerates as

it proceeds. The centre of the sheet rotates and decreases in size. Because of rapid decrease of

timescale and lengthscale, only the centre portion of the sheet undergoes change. Outside the

centre the vortex sheet remains unchanged. For example, the shape of the sheet at t = 0.67715

is same as the shape of the sheet at t = 0.67732, if we are unable to see the extremely small

details at the centre. In other words, we can superimpose one on another perfectly after rotation

and affine transformation.

The shape of the vortex sheet at the centre is that of an exponential spiral of the form r ∼ e−aθ

where r and θ are the polar coordinates, and a is a constant. This can be seen in Figure 3.2.

The spiral has two branches. Therefore the plot of log r versus θ should be a straight line. The
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pattern is remarkably self-similar: it is a characteristic of an exponential spiral. In other words,

the shape of the vortex sheet is identical at any magnification.

Figure 3.1: The centre of the vortex sheet at magnification level 10−6 and 10−8 respectively. The double-branched spirals

can be superimposed on one another after rotation and scaling transform.

The functional form of the double-branched exponential spiral is given in Figure 3.2. This

is calculated on the basis of a fully developed spiral structure at tc = 0.67732+. If the spiral

structure is not complete, as at earlier times, the black squares would move away from the

dashed line in Figure 3.2, at the centre of the vortex sheet.

Figure 3.2: Plot of log r versus θ. The dashed line log r = −0.3747θ − 2.1585 is fitted to the actual datapoints marked as

black squares. The deviations are numerical errors due to improper resolution.

The onset of singularity is marked by a blow up in the curvature of the vortex sheet while

the tangent to the sheet remains continuous. The circulation density also peaks at this instant.
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Between t = 0.66855 and tc = 0.67732+ extremely fine scale structures appear at the centre

of the vortex sheet. This has been shown in Figure 3.1. A fully developed exponential spiral

emerges within this short duration of time. Ideally, a fully developed spiral should have an

infinite number of turns and infinite curvature, but a numerically generated vortex sheet will

be finite. The rate at which the spiral emerges gives us an estimate of the critical time. This

is measured by the blow up of the maximum curvature or the decay of minimum the radius of

curvature.

Figure 3.3: Semilog plot of 1/κmax versus t. κmax is the maximum curvature of the vortex sheet, which occurs at the centre

of the spiral; t is the non-dimensional time. Notice how fast the vortex sheet spirals down as the singularity is approached.

The tangent to the vortex sheet, however, remains continuous.

To determine if and when the maximum curvature becomes infinitely large, we plot the inverse

of the maximum curvature with time in Figure 3.3. It is clear that this quantity approaches

zero at a finite critical time, which is estimated as t = 0.67732+ approximately. This value is

obtained by extrapolation of the graph in Figure 3.3. At this time the vortex sheet will have an

infinite number of turns and the radius of curvature goes to zero. Similarly, circulation density

peaks at the same time, while its derivative blows up. Since the two estimates are independent

and they match, it can be concluded that the critical time is tc = 0.67732+.
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Figure 3.4: The time at which this peak appears is tc = 0.67732. The circulation density (y-axis) is plotted as a function

of arclength (x-axis). This value of critical time is almost the same as the value of tc obtained in Figure 3.3. Notice the

density of vortex panels at the centre of the spiral.

The peak of the circulation density that occurs at the centre of the vortex sheet is shown

in Figure 3.4. Since circulation is a conserved quantity, compression of segments leads to an

increase of circulation density, while expansion of segments leads to a decrease of circulation

density. It can be inferred that the centre of the vortex sheet is a region of high compression. In

Figure 3.4 notice that the number of segments is 40 times as large as at the centre of the spiral:

there are 3474 segments in the centre region and 88 in the arms. The simultaneous appearance

of singularities in curvature and in circulation density can be viewed as a consequence of the

rapidly diminishing length and timescales to be further discussed in Section 3.5.

3.3 Effects of Amplitude

All numerical simulations presented in Section 3.2 have used ε = 0.01. This was not mentioned

explicitly, since we do not alter it anywhere other than to find the effects of amplitude. With

smaller values of ε the critical time is larger, as the vortex sheet motion is reduced initially.

For larger or finite initial amplitudes, the singularity formation occurs at two distinct points.

Since equation (3.1) is derived for small values of ε, a theoretical estimate cannot be given here.

Numerical solutions do not indicate any singular behaviour at Γ = 0.5 for large values of ε. By

large values of epsilon we mean ε greater than 0.09. This is nine times the value of perturbation

amplitude we normally use.
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Figure 3.5: Plot of critical time tc versus log of perturbation amplitude ε. Shows the delayed appearance of singularity

at smaller values of ε. The numerical values (blue) consistently over-estimate the theoretical values (red). The numerical

values are obtained by extrapolation, so they are always slight over-estimates.

Figure 3.5 shows the plot of tc versus amplitude ε. The asymptotic predictions are marked in

red squares. The numerical values are marked in blue squares. The results are broadly consistent.

Assuming that the asymptotic predictions estimate the growth rate of higher wavenumbers more

accurately than a numerical simulation, the over-estimation is not more than 18% in any case.

The average over-estimation rate is 10%. Note that all comparisons are made for very small

values of ε. There is no effect of discretization i.e., the initial number of vortex segments and

the initial time step do not affect the final state as the numerical simulations are adaptive.

3.4 The Critical Time

At the initial time, A±1(t) is of O(ε) and An(t) = 0 if n 6= ±1. But nonlinear interactions quickly

give rise to nonzero values of An(t), n 6= ±1. It can be verified that the Fourier coefficients satisfy

the symmetry conditions A0(t) = 0 and A−n(t) = −An(t). The proof is omitted. In Section 3.2

we did not consider any interaction or nonlinear term. If nonlinear terms are also taken into

account, the vortex sheet becomes singular at a finite time. The following is the generalized

equation:

dA∗−n
dt

=
i

2π

[
2π2|n|An +

∑
m1+m2=n

I(m1,m2)Am1Am2

+
∑

m1+m2+m3=n

I(m1,m2,m3)Am1Am2Am3 + . . .

]
(3.6)

where I(m1,m2) and I(m1,m2,m3) are the following principal value integrals:

I(m1,m2) = −
∫
R

1

φ

(
1− eim12πφ

φ

)(
1− eim22πφ

φ

)
dφ
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I(m1,m2,m3) = −
∫
R

1

φ

(
1− eim12πφ

φ

)(
1− eim22πφ

φ

)(
1− eim32πφ

φ

)
dφ

When t is small, the dominant term in the RHS of (3.6) is proportional to An1 , and therefore

An is O(ε|n|). This dependence of An on ε cannot be generalized, since for large values of t

values of An are no longer negligible compared to A1. However, if we assume that An is O(ε|n|)

then no term in (3.6) can be larger than O(ε|n|). Therefore, it possible to write An in the form

An(t) = ε|n|An0(t) + ε|n+2|An2(t) + ε|n+4|An4(t) + . . . (3.7)

for a small amplitude ε. The sums
∑

m1+m2=n,
∑

m1+m2+m3=n etc in equation (3.6) is over all

positive and negative integers so that each term has an infinite number of contributions.

Order analysis following Moore (1980) and Meiron, Baker and Orszag (1982) shows that the

evolution equation of An0 contains only terms like Ak0 where k ≤ n. For a large value of n, the

asymptotic equation of An0 is given by

εnAn0(t) ≈ (2π)−
3
2 (1 + i)n−

5
2 (2πt)−1en[log( εt4 )+1+πt+2 log(2π)]

If the vortex sheet is well described by this lead order behaviour, then An(t) = εnAn0(t). The

coefficient An(t) has exponential decay with increasing wavenumber when log
(
εt
4

)
+ 1 + πt +

2 log(2π) < 0. But, at the critical time tc given by

1 + πtc + log 2πtc = log

(
4

2πε

)
(3.8)

the decay is algebraic as n−5/2. This is when the sheet is expected to lose analyticity. With

initial condition ε = 0.01, L = 1 and U = ±1, the vortex sheet stops being analytic at the

critical time tc = 0.5879, due to the formation of singularity at Γ = 0.5 (the point z = 0.5).

If more higher order corrections are made, the general form of An(t) for sufficiently large n is

assumed to be

An(t) = C(t) n−β(t)e−nα(t) (3.9)

The above equation cannot be proved mathematically, but Meiron, Baker and Orszag (1982)

obtained an empirical value of β(t) = 2.7±0.2, which Moore (1980) reported as β = 2.5 indepen-

dent of time. The current numerical simulations could not obtain a value of β(t) independent

of time or not being affected by the amplitude ε.

3.5 Length and Time Scales

It was mentioned in Section 3.2 that the appearance of singularity in a vortex sheet leads to

rapidly diminishing length and time scales at the centre of the spiral. A computer program for

vortex sheet motion exhibits a similar nature. The step size and length of vortex panels are

set by the user at t = 0. But after that, there is no user control on these parameters. The

automatic selection of timescale was introduced in the numerical procedure in Section 3.1. The

TIMESCALE subroutine forces the following selection:

∆t(n) = ∆t(1) ×
minj

[
`
(n)
j /γ

(n)
j

]
minj

[
`
(1)
j /γ

(1)
j

] j = 2, 3, . . . N (3.10)
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The nth timestep is, therefore, derived from the latest vortex sheet profile. This prevents incon-

sistency in numerical solutions like self-intersection of vortex segments. This is a type of error

which incidentally prevents a singularity from appearing in the vortex sheet.

The number of segments N increases drastically if there is a singularity in the simulation.

From a starting value of 100, it reaches 3562 near critical time. Significantly, it rises from 1096

to 3652 in a span of 7.5 × 10−9 units of non-dimensional time. On the other hand, there is no

significant rise of the arc length of the vortex sheet in Figrure 3.6. The decay of lengthscale

affects the time steps. Exact values of ∆t are listed in the columns below:

0.040000000000000

0.039460419315483

0.038844285358096

0.038224000133990

0.037590787263112

0.036936142792155

0.036251674911217

0.035528939184565

0.034759256423979

0.033933494707117

0.033041787303005

0.032073141069967

0.031014858623355

0.029851638623877

0.028564102858880

0.027126262467626

0.025500937225262

0.023631089126948

0.021423038185782

0.018716007877975

0.015251421290615

0.010829862815207

0.006371003826707

0.001490536989196

0.000512946603711

0.000222664340045

0.000093165380337

0.000040919469298

0.000017644929679

0.000007705882238

0.000003340626058

0.000001455206425

0.000000632168133

0.000000275068742

0.000000119575657

0.000000052010715

and so on. This is decrease by a factor of ∼ 10−6. The rise of arclength is shown in Figure

3.6. The arclength appears to diverge near the singularity. In fact, the arclength is bounded

above. The jump in arclength is due to the first turnover of the vortex sheet. Thereafter, the

increments are small. Since, the arclength of an exponential spiral is bounded, the arclength of

the vortex sheet also remains finite.
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Figure 3.6: The plot of arclength of the vortex sheet versus time. There is no significant rise: the initial value is close to

1 and the final value is slightly more than 1.05. But most of the increase takes place near the singular time.

The combination of very small lengthscales and high curvature at the centre of the vortex

sheet gives rise to a point vortex like object. As the time steps decay away to zero, the numerical

solution of the vortex sheet does not go beyond the critical time. One artificial technique to

overcome this problem would be to fix a minimum lengthscale in the code. However, this is

only an ad hoc solution as opposed to a regularization. A minimum lengthscale selection acts

as an inefficient local smoothing operation. The centre of the vortex spiral rotates like a rigid

object once its dimension becomes comparable to the minimum lengthscale. But, it is unable

to prevent vortex segments from intersecting. Despite this shortcoming, it might still be useful

when used together with a regularization procedure.
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Chapter 4

Viscous Regularization

The Birkhoff-Rott equation and, by extension equation (2.34), can be used for computation

before critical time tc is reached. For computing the vortex sheet past the critical time, a

desingularization is needed. A natural procedure, motivated by other numerical methods, is

to smooth the equations of motion of an ill-posed vortex sheet by means of some extraneous

parameter, and thence to construct a sequence of smooth solutions. The convergence of this

sequence of solutions is verified mathematically, but it would also be necessary for the limit

solution to satisfy certain physical conditions: in this case the equation of motion of an ideal

fluid. Because of singularity formation there is no smooth or differentiable solution to this

problem. The hope or objective in mind is that in the limit of vanishing regularization, the limit

solution will be a weak solution to the Euler equation. A weak solution differs from a strong

solution in the sense that it satisfies the equation in an integral formulation. A formal notion of

weak solutions to second order partial differential equations is given in the review by Grandall,

Ishii and Lions (1992) and Beale, Kato and Majda (1984).

4.1 Viscosity as a Regularization Parameter

The regularization used by Krasny (1986) for computing the vortex sheet beyond tc used a

’radial’ or ’length’ parameter δ to smooth the equations. This is numerically convenient, but

difficult to interpret as a physical process. Empirically its effect is similar to spreading a singular

point vortex over a finite region. The true physical regularization in fluids is due to viscosity.

Computation of a vortex sheet with a small amount of viscosity is equivalent to solving the

Navier-Stokes equations at high Reynolds number. Such a solution is not attempted, as a

limited setup makes the problem computationally intractable. It should be noted that for

Reynolds numbers encountered in most industrial applications, the computational resources

required by a DNS would exceed the capacity of the most powerful computers currently available.

Approximate solutions may, however, be obtained, exhibiting a roll-up, similar to that of Krasny

(1986). It is known that for viscous regularization, in the limit of zero viscosity, a weak solution

to the Euler equation is obtained, provided the initial vorticity is of one sign. The proof of this

statement is given in Delort (1991), and also in the textbook by Majda and Bertozzi (2002).

However, it is not known whether this weak solution is unique or whether it depends on the

regularization.
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Viscosity dissipation has been used in the past to capture shock wave discontinuities. A shock

wave is not a true physical discontinuity, but a very narrow transition zone whose thickness is on

the order of a few molecular mean-free paths. Numerical solutions to shock waves are observed to

develop oscillations behind the discontinuity. The artificial viscosity technique introduces a very

large value of viscosity around the discontinuity (but negligible otherwise) to damp out unwanted

oscillations. Physically, the effect of artificial viscosity is like viscous dissipation. Artificial

viscosity is different from numerical viscosity, which is an artefact of certain types of numerical

approximations. Numerical viscosity arises from discrete approximations to the momentum

advection terms in the Euler equations. Computer simulations seek to reduce numerical viscosity

to maximize fidelity of solutions. Numerical diffusion does not behave like true viscous diffusion

because it depends on the choice of computational grid and does not possess the correct stress-

versus-strain-rate dependency.

In the case of point vortex approximation to a vortex sheet, irregular motion can be suppressed

by introduction of an ’artificial viscosity’. This irregular motion is not an undesired effect as it

may be a manifestation of two-dimensional turbulence. In real fluids, the velocity field is weak

compared to that of an ideal fluid. By ’weak’ we mean that the velocity gradients do not change

very fast and the absolute velocities are bounded. The introduction of artificial viscosity in

point vortex systems reduces irregular motion and suppresses the associated singularity. But, it

also reduces circulation and dissipates kinetic energy. However, if the reduction in circulation is

negligible and the loss of kinetic energy is not great, then the introduction of artificial viscosity

may prove useful to study such systems.

4.2 Viscosity Switch

A smoothing parameter like viscosity may be used intermittently in a vortex sheet evolution. In

real fluids with viscosity, the ’ill-posedness’ of the vortex sheet problem is automatically taken

care of by viscous forces. Viscosity also acts to thicken the vortex sheet into a vortex layer.

However, if vorticity is allowed to diffuse tangentially only, following the standard diffusion

model
dγ

dt
= ν

∂2γ

∂s2
(4.1)

then its effect is to smoothen the vortex sheet equation without actually thickening the vortex

sheet. The parameter ν represents viscous smoothing, s is arcwise distance and γ is the circu-

lation density. The typical values of ν are small, otherwise vorticity gradients will be destroyed

completely affecting the dynamics of the vortex sheet. This is mentioned in Section 4.3 where

the optimal values of ν are given. Diffusion is a slow process compared to advection, therefore

transport of vorticity would still dominate the dynamics of the vortex sheet, except in regions of

high curvature where smoothing occurs due to the viscosity switch. The term viscosity switch

is used to indicate that the viscosity parameter ν is set to zero unless the vorticity gradient

crosses a high cut-off value. As mentioned in Chapter 3, a rising vorticity gradient is indicative

of impending singularity formation. The effect of viscosity switch is therefore entirely localized

in the sense that it affects only a small portion of the vortex sheet directly. This is the feature

which makes computer coding of the model straightforward and concise. The indirect effect is
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however widespread, as the vortex sheet would never roll-up in its absence. We introduced the

circulation coordinate

Γ =

∫ s

0
γ(s′)ds′ (4.2)

in Section 0.3. Then z(Γ, t) is the position on the vortex sheet which has net vorticity Γ between

it and an arbitrary but specified origin.

When no viscous forces are present, the circulation parameter along the sheet is conserved

i.e. dΓ/dt = 0. The circulation of a vortex segment therefore remains constant with time.

For viscous fluids with tangential diffusion only, Γ does not transport intact along with vortex

segments. The change in circulation of a vortex segment can be updated as follows:

dΓi = ν
2βΓi+1 − 2β(1 + β)Γi + 2β2Γi−1

β(1 + β)hi−1
2 dt (4.3)

where γi is the strength of the ith segment, `i is the length of the ith segment, hi = `i+`i+1

2 and

β = hi
hi−1

. This follows from a derived form of equation (4.3) or (4.1)

dΓ

dt
= ν

∂2Γ

∂s2
(4.4)

Because of viscosity, the dynamics of the sheet is altered by the addition of a viscous term. The

viscosity parameter ν is local: it is non-zero only in singular regions. The motion of the vortex

sheet is obtained as follows:

dz

dt
=
∂z

∂t
+
∂z

∂Γ

dΓ

dt
(4.5)

The first term on the right in equation (4.5) can be substituted from equation (7) directly. The

second term in equation (4.5) can be written as

∂z

∂Γ
ν
∂2Γ

∂s2
(4.6)

due to the tangential diffusion given in equation (4.4). Furthermore, we convert ∂2Γ
∂s2

into circu-

lation coordinates

∂2Γ

∂s2
=

∂

∂s

(
∂Γ

∂s

)
(4.7)

=
∂γ

∂s
(4.8)

= γ
∂γ

∂Γ
(4.9)

In the last step, we have used the change of variable relation ∂
∂s = γ ∂

∂Γ . Therefore, the adjusted

form of equation (4.5) is

dz∗

dt
= − i

2π

∞∫
−∞

dΓ ′

z(Γ, t)− z(Γ ′, t)
+ νγ

∂γ

∂Γ

∂z∗

∂Γ
(4.10)

This is a type of advection-diffusion equation. When ν = 0 we recover the un-modified vortex

sheet equation given in (2.1). The flat vortex sheet is unstable to perturbations: let the sheet

be disturbed to assume the instantaneous shape:

z(Γ, t) = Γ +
∞∑

n=−∞
An(t)eı2πnΓ (4.11)

47



4.3. THE EFFECT OF VARIABLE VISCOSITY CHAPTER 4. VISCOUS REGULARIZATION

On replacing z(Γ, t) in equation (4.10) by the Fourier expansion in equation (4.11), the coeffi-

cients of the Fourier modes can be equated to give

dA∗n
dt

= ıπnA−n + 2ıπνn(An +A−n) (4.12)

This shows that the Fourier coefficient An has an exponential growth with rate

−4π2νn2 +
√

16π4ν2n4 + 4π2n2

2
(4.13)

The growth rate converges to a factor of ν−1 as n tends to infinity. The smoothened vortex

sheet is therefore linearly well-posed with analytic initial data. Note that for vanishing ν the

growth rate for the Fourier modes is unbounded as in the case of an unsmoothed vortex sheet.

4.3 The Effect of Variable Viscosity

The viscosity parameter introduced in Section 4.2 is written as ν, like the kinematic viscosity.

However, this is not a physical property of the medium. The value of ν is non-zero at some

space subsets and also time varying. It is zero when there is no singularity formation. There

can only be a countable number of singularities on the vortex sheet, as a singular point leads to

a jump in cumulative circulation and the total circulation must remain conserved. This follows

from the fact, that any monotonic right or left continuous function can have only a countable

number of discontinuities1. Usually, this theorem is presented in literature without a name, but

a variant appears for the first time in the thesis of Froda (1929). If there were an uncountable

number of singularities, the theoretical setup of vortex sheet computation would breakdown.

Therefore, the following statement is an important property:

There can only be a countable number of singularities on a vortex sheet. The measure of the

set of singularities is zero.

So ν is zero almost everywhere. Where it is not zero, a constant value of ν would delay the

singular time, but will not eliminate the effects of singularity or singularities, as shown in the

following sections of this chapter. The growth rate obtained for high wavenumbers is a factor of

ν−1, which does not decay to 0 as n tends to ∞. This will lead to a finite but large growth rate

of short wave disturbances in numerical computations. The only ’advantage’ is that the vortex

sheet is more evolved when the singularity appears. Theoretically an infinitely large value of ν

will cause this instability to get damped, but this leads to the destruction of vorticity gradients

and such a vortex sheet is degenerate. The Reynolds number is defined as

Re =
1

ν
(4.14)

This is not the standard definition for Reynolds number, as ν is not the kinematic viscosity. It is

to be used exclusively in the context of vortex sheet regularization. The Re represents the degree

of ’roughness’ in the model. The objective is to run the model at different levels of roughness.

The development of a singularity in a vortex sheet with Re = 800 at Γ = 0.5 is shown in Figure
1The projection of discontinuities onto the y-axis forms a set of non-intersecting intervals. Each interval contains a rational number. The

set of rational numbers is countable.
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4.1. The formation of a singularity is delayed due to viscous diffusion and the evolution of the

vortex sheet is slowed down. This is not the solution to the problem we are looking for, since

the growth of the vortex sheet is obstructed and a singularity appears by extrapolation. When

Re = 400, we obtain similar profiles for circulation density but at later times. Compare the

times t in Figure 4.1 and Figure 4.2.

Figure 4.1: The distribution of circulation density γ at Re = 800 for a vortex sheet at times t = 0.20, 0.40, 0.60 and 0.80

respectively. The colour codes change from dark to light gray respectively. The peak is not as high as in the inviscid vortex

sheet due to viscous diffusion.

The comparison of Figure 3.4 with Figure 4.1 shows that the gradient of γ differs in quality.

The steep rise (almost like a delta function) is absent in the latter. The peak circulation near

critical time is 50 times as large as the initial value if there is no viscosity. In the presence of

viscosity the peak is 5 times as large at approximately the same time2.

There is indication that the circulation in the outer arms of the vortex sheet continues to drop

with time. The growth of peak γ is accelerated with time. Concentration of vorticity occurs in

the central ’core’ region. This is evident at t = 0.8 in Figure 4.1 where depletion of γ from 0 to

0.4 and 0.6 to 1 has added density to 0.4 to 0.6. The singularity would form at Γ = 0.5 if the

parameter ν is taken off. On the other hand, dynamically decreasing the value of ν can prevent

the vortex sheet from becoming singular before a pre-fixed time without obstructing the vortex

sheet roll-up.
2The curvature of a viscous vortex sheet is also less sharp than that of an inviscid vortex sheet.
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Figure 4.2: The distribution of circulation density γ at Re = 400 for a vortex sheet at times t = 0.43, 0.71, 0.89 and 0.99

respectively. The growth of the singularity makes significant progess after an initial delay. The depicted times t have been

chosen to match the qualitative nature of Figure 4.1 approximately.

It is observed that the circulation density of the vortex sheet tends to have a high peak, like

in the inviscid case, but the ’peakiness’ is smaller for lower Re at a given time. The amplitudes

of the Fourier modes of the periodic vortex sheet show growth at high modes with time. This

is not very evident in the beginning, but at later times the higher modes are clearly present.

Consider the Γ -periodic function

f(Γ, t) = z(Γ, t)− Γ (4.15)

The exponential Fourier series decomposition of f is given by

f(Γ, t) =

∞∑
k=−∞

Fk(t)e
ı2πkΓ (4.16)

where the Fk(t) are the Fourier coefficients. Since ei2πkΓ , k = 0, 1, 2, . . . are a basis of orthogonal

functions,

Fk(t) =

∫
Γ=[0,1)

e−ı2πkΓ f(Γ, t) dΓ (4.17)

The discrete analogue of the integral in equation (4.17) is required for numerical computation

of Fk(t). Let us sample the vortex sheet in [0, 1) at n points. The number of samples n should

be at least twice as large as the maximum frequency k we need to capture without error i.e.

|k| ≤ n/2 by the Nyquist frequency criterion.

Fk(t) =
1

N

n∑
j=1

f(Γj , t)e
−ı2πkΓj (4.18)

The Fourier coefficients can be obtained by fast Fourier transform. We take n = 400 as the

number of equally spaced sampling points. The plot of twice the Fourier amplitudes |Fk(t)|, k =
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1, 2, . . . 200 for Re = 800 is shown in Figure 4.3. Note that F0(t) = 0 identically from equation

(4.18).

Figure 4.3: Plot of adjusted Fourier amplitudes |Fk(t)|, k = 1, 2, . . . 200 at Re = 800 truncated at k = 200 and at times

t = 0.60, 0.70, 0.80, 0.90 and 0.99 respectively. The linear decrease in the figure indicates exponential decay. There are,

however, anomalies in the graphs of t = 0.60 and t = 0.80 that creeps in due to improper spatial resolution.

The growth of Fourier amplitudes at high modes is also seen in the inviscid vortex sheet.

Note that twice the absolute magnitude of the Fourier amplitudes are shown in Figure 4.3.

The modes are truncated at k = 200. The decay of Fourier amplitudes is exponential until

the graphs hit machine precision. After that, the amplitude obtained for a particular mode is

spurious. There are isolated jitters on the graphs of t = 0.60 and t = 0.80. This occurs due to

improper subdivision of vortex sheet panels during the run of the code. The effect is however

only transient. Such anomalies should not occur when the split of vortex panels is perfect.

A single non-zero value of ν is unable to solve the vortex sheet problem. The computations

in this section show that vortex sheet roll-up (increase in winding number) is largely dependent

on the spontaneous appearance of singularity, but the growth of the vortex layer is stunted by

singularity formation. Addition of a smoothing parameter contributes to a faster growth of

the vortex layer, but the vortex sheet roll-up is slowed down. This leads us to the conclusion

that partial preservation of the singularity is essential, along with dynamic smoothing of the

vortex sheet circulation density by using a non-zero value of ν. The general idea is to allow the

singularity to develop to a point by using high Re and then restrict the ’peak’ of circulation

density by lowering Re. This would allow the vortex sheet to wind up and increase in layer

thickness simultaneously.

4.4 The Roll-up of a Periodic Vortex Sheet

The numerical simulation of a vortex sheet uses the following initial conditions: N = 100,

U = ±1, ε = 0.01 and λ = 1. This type of simulation incorporates the added effects of ν-

smoothing. Since we know the location and time of appearance of the singularity, a large value
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of Re is used in the beginning. This allows the viscous vortex sheet to begin the roll-up like

an inviscid vortex sheet. Once the winding number has increased we reduce Re at the centre

to suppress further rise of the singularity. The variation of Re at the centre of the spiral with

time t is shown ib Figure 4.4. The trajectories shown are the envelopes which give successful

roll-ups of a vortex sheet. Any variation or < which lies within these limits can be used. The

vortex sheet evolves into a double branched spiral. A vortex core is formed by regular windings

of the vortex sheet and irrotational fluid in between the layers. Using a larger value of N would

not change the shape of the vortex sheet. Markers in the fluid show that fluid particles follow a

concentric circular trajectory similar to that of an irrotational vortex. The motion is shown in

Figure 4.5.

Figure 4.4: The envelopes of Reynolds number Re variation as a function of time t. The ν-smoothing is applied only at

the centre of the spiral. Even though it acts locally, the effect is global due to viscous diffusion.

Figure 4.5: Formation of a vortex and the motion of fluid markers p = 0.1(�), p = 0.2(◦), p = 0.3(×) and p = 0.4(·). Also

shown in dotted line is the vortex sheet at t = 0.
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For a given smooth velocity field u(x, t) the material trajectories X(α, t) satisfy

dX

dt
= u(X, t), X(α, 0) = α (4.19)

The parameter α ∈ R2 marks the position of the fluid particle at t = 0. Since the vortex sheet

is flat, all markers on it can be parameterized by a scalar coordinate.

The centre of the vortex sheet becomes vertical at t = 0.81. Note that this is well beyond the

critical time of the vortex sheet. After this, it is no longer possible to parameterize the vortex

sheet as a single valued function of x. For t > 2 the inner region or core consists of multiple

turns, and the winding number count increases with time. The outer region does not change

significantly until boundary effects distorts it. Since, the core is a region of high curvature,

majority of the vortex segments lie here.

Figure 4.6: The roll-up of a periodic vortex sheet into a double-branched spiral. The end of a segment is a black dot. The

number of segments are 100, 100, 206 and 284 respectively. Note that there is no intersection of segments, although the in

the above diagram there is spatial overlap of vortex sheets at different times. This can be remedied by allotting more space

during computation.

In Figure 4.6 the end of the vortex segments are marked with black circles. The development

of the vortex is shown. It is evident that even with regularization, the majority of the vortex

segments (roughly four-fifth) lie at the centre, but the vortex sheet never becomes singular. The

present simulation is stopped at t = 1.45. The vortex sheet will continue to evolve beyond this

time without difficulty. It is expected that domain effects will become important at later times,

and this issue is presented in section 4.7.

Various statistical quantities like the growth rate and mean velocity profiles are also computed

along with the evolution of the vortex sheet. The growth of vortex layer is discussed in the
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following Section 4.5. A measure of dissipation due to regularization is given by relative loss

of Hamiltonian. The drop in Hamiltonian during the simulation is 0.0184 of the initial value.

The effect of regularization, therefore, leads to minor losses at this stage. The viscosity switch

affects only one spot at the centre of the vortex sheet and the rest of the sheet is not altered in

any way. The conservation of other integrals is discussed in Appendix A.

4.5 Growth of Vortex Layer Thickness

The growth of a mixing layer is due to entrainment of free-stream fluid and amalgamation of

vortices. A vortex layer generated by a periodic vortex sheet presents a different image, as true

mixing is not possible nor is actual vortex merger observed as time progresses (see Brown and

Roshko, 1974, 2012). However, it will be seen that a simple vortex sheet model preserves some

major features of a mixing layer and the growth rate is close to that observed in experiments.

A widely used measure of mixing layer growth is increase in momentum thickness. The

momentum thickness has the dimension of length and is defined as

θ =

∞∫
y=−∞

(
1

4
−
(
〈u〉
2U

)2
)

dy (4.20)

where 〈u〉 = 1
L

∫ L
0 u(x, y, t)dx. The non-dimensional momentum thickness is θND = θ/L.

Although, a periodic vortex sheet cannot lead to any true mixing of the top and bottom layers of

fluid, the above definition can be used without any change. Another type of measure is (simply)

the diameter or vertical extent of the vortex sheet, denoted by δ. In a mixing layer there is

no sharp boundary between the mixing region and the free-stream region. Usually the mixing

region or diameter is defined as the stretch where the x-averaged velocity profile deviates by more

than 5% from the free-stream velocity. For a vortex sheet the x-averaged velocity profile has a

sharp jump from the free-stream value within the ’mixing’ region and therefore the delineation is

automatic. Computer simulations suggest that the vortex layer growth is not linear with time3.

It is convex during the initial phase and concave during the later phase. However, there is a

point of inflection in the non-dimensional vortex diameter versus non-dimensional time curve.

The second derivative (curvature) is momentarily zero at this time. The growth rate is defined

as

r1 =
dδND
dtND

=
d
(
δ
L

)
d
(
t2U
L

) =
dδ/dt

2U
(4.21)

where δND = δ/L is called the non-dimensional vortex diameter and tND = t2U/L is called the

non-dimensional time. The value of r1 at inflection point is 0.2285. This value is remarkably

close to the rate at which a free shear layer grows as we shall see in Chapter 5.
3The vortex layer growth is approximately linear over short distances, but this property holds for all smooth curves. Growth rates for

vortex sheets with unpredictable perturbations are given in Chapter 5
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Figure 4.7: Vortex layer growth with ε = 0.01 and L = 1. The slope r1 at inflection point is 0.2285. Inset figure shows the

decay in growth rate.

The finite size a periodic domain puts a restriction on the continued growth of a vortex sheet.

When the size of the vortex spiral becomes comparable to the domain size, the gradient of the

growth curve starts declining. Beyond tND = 3.25 the rate of increase is negligible. As will be

seen in Chapter 5, a temporal shear layer stops expanding at approximately tND = 3.15 on an

average. But, this does not imply that the vortex sheet motion has stopped. The vortex sheet

continues to evolve in x-direction. The integration can be performed much longer. We, however,

do not continue the integration here and long time integration is performed in the next Chapter.

The growth rate defined with vortex diameter as a measure can be extended to momentum

thickness. The thickening rate r2, based on momentum thickness, is similar to r1 and is defined

as

r2 =
dθ/dt

2U
(4.22)

In this experiment r2 has a minimum of 0.011 and a maximum of 0.029 in the range 1.3 < tND <

2.3. In free shear layer experiments, the growth in the initial phase is dominated by initial

conditions and towards the end by boundary conditions. Between these two regimes is a short

regime in which it is expected that the momentum thickness θ grows linearly with time and the

thickening rate r2 should be a universal number. Reported values of r2 in computer simulations

range from 0.014 (Roger and Moser, 1994) to 0.0194 (Suryanarayanan and Narasimha, 2014).

In the past a number of experiments have been performed on a spatial mixing layer. Let U1 and

U2 be the free stream velocities on two sides of the spatial mixing layer. The transcription from

temporal to spatial downstream evolution gives

dθ

dx
= 2r2Λ (4.23)

for the thickening rate, where Λ = U1−U2
U1+U2

is the non-dimensional velocity difference. Growth

rate from experimental shear layers show that equation (4.23) is approximately satisfied. An

estimate of r2 based on various sources is 0.018. The self-similar behaviour in spatial shear

layers is typically achieved at some distance from the splitter plate.

The universality of r2 is based on dimensional analysis, which shows that the mean velocity
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must be of the form
〈u〉
2U

= f
(y
x
,Λ
)

(4.24)

and then there must be a constant c such that

dθ

dx
= cΛ (4.25)

This is true only if Λ tends to zero and we assume that a spatial shear layer evolves asymptotically

to a state independent of the any detailed initial conditions. Since viscosity is neglected, the

flow has no lengthscale except for distance from the origin.

4.6 Effects of Amplitude ε

Unless mentioned explicitly, the vortex sheet is given a perturbation displacement amplitude

ε = 0.01, which is 1/100 times the domain size. This is a large value, considering that the actual

disturbances that offset a shear layer are much smaller in magnitude. However, the effects of

’largeness’ or ’smallness’ of the perturbation amplitude is not an important factor, once the

vortex sheet motion begins. The usefulness of using a value of ε close to 0.01 is that we enter the

evolution phase with little delay. However, if the value of ε is so large that it is no longer small

compared to the domain size, then the qualitative properties of the vortex sheet roll-up change

entirely. For example, with ε = 0.1 there is no singularity formation at the centre of the vortex

sheet, but two singularities appear symmetrically at some distance from it. The vortex sheet

also does not roll-up into a single structure. Instead, it rolls-up into two identical asymmetrical

vortices. This is very different from what we expect in a free shear layer.

Figure 4.8: The growth of a vortex layer based on vortex diameter for different initial amplitudes: a. ε = 10−2 b. ε = 10−3

c. ε = 10−4 d. ε = 10−5. It is observed that for small amplitudes, the vortex sheet takes time to destabilize from its initial

state.

On the other hand, the qualitative behaviour of the vortex sheet roll-up is not affected by

variation of ε as long as its value is less than 0.05. Some of the values of ε chosen to study the roll-

up of a vortex sheet are 10−3, 10−4 and 10−5. The growth curves for different initial conditions

are shown in Figure 4.8. The values of ε are chosen somewhat arbitrarily, and the general

conclusion is that the vortex sheet spends large amounts of time in the initial configuration

state, if the value of ε is small. The difference is quite significant, considering that with ε = 0.01

we achieve a complete roll-up at tND = 2, but with ε = 0.0001 the vortex sheet is still flat at

tND = 2. The vortex sheet is eventually destabilized, and once the roll-up occurs, the growth
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is observed to be steady and the slope of growth is roughly the same across different initial

conditions. The average growth rate based on vortex diameter lies in the interval [0.2056, 0.2340]

in all cases. This is before the size of the vortex becomes so large that its growth rate begins to

slow down de to domain size effect. The smallest ε that was considered was 10−7.

4.7 Asymptotic State

The growth of a vortex in the y-direction stops after some time, but evolution continues in

the x-direction. The outer regions of the vortex sheet become elongated. If the scales of the

axes are equal, the vortex is elliptical in shape and the ellipse’s major axes develop a slight tilt

(anticlockwise rotation) for tND > 2.9 and stretched in the free stream direction. The outer

turns of the vortex sheet are advected by the freestream velocity into the adjacent domains.

We restart the simulation of a periodic vortex sheet with a wavenumber equal to 4 and

amplitude ε = 0.01. This allows us to get four vortices in a domain. The growth curve flattens

for tND ≥ 0.8. Compare this value with the time to flatten in Figure 4.5.

Figure 4.9: Snapshots of a vortex sheet at tND = 0.060933, 0.46715, 0.86225, 1.2, 1.5002 and 1.8 respectively. The later

timesteps have been inflated by manual intervention. This modification increases the chance of self-intersection of vortex

segments, but allows us to progress quickly. The simulation is stopped when self-intersection occurs. The corresponding

number of vortex segments are 120, 560, 1240, 2112, 3192 and 5040.

The ’long’ time evolution of this periodic vortex sheet shows a tendency to cross over into

the adjacent domains. This process is irreversible: once a portion of the sheet moves into

the adjacent domains, it never returns. The circular or elliptical topology of the vortices gets

distorted, although the cores are somewhat protected from the effect of neighbouring vortices

by the outer layers. It may be conjectured that the inner turns successively cross the initial

period’s boundary at later times and that the sheet becomes highly elongated as t→∞.
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Chapter 5

The Temporal Free Shear Layer

Much attention has been given to the temporal evolution of a vortex sheet where the initial

perturbation is a small amplitude sine wave. The next generalization involves using an initial

perturbation that is composed of several sine waves. In theory, we can decompose any continuous

periodic function into sines and cosines. We shall however consider perturbations which are

continuous in the first derivative. The evolution of a vortex sheet due to a non-sine wave

perturbation displays features in experiments that have not been observed until now. Instead

of a single vortex or multiple identical vortices, the vortex sheet rolls-up into multiple non-

identical vortices that are rarely of circular or elliptical topology. At each inflection point, the

sheet generates a vortex, which then morph into complex structures. The number of vortices

or coherent structures decreases with time as some of them are absorbed or amalgamated with

their neighbours. The size of the largest structure also increases with time. This is observed in

the two-dimensional flows we consider in this Chapter.

5.1 The Temporal Free Shear Layer

The initial condition of the vortex sheet is chosen to be a combination of twenty sine waves with

random intial amplitude. The wavelengths should not be integer multiples of one another, so

that they do not have the same fixed points. The general form of the disturbance is

y =
20∑
k=1

εk sin

(
λkx

2π

)
(5.1)

where λk is the wavelength of the kth component and εk is the amplitude of the kth component.

All of the εs must be small in magnitude: they follow a uniform random distribution between

0 and 0.01. Any attempt to get an inviscid roll-up, as mentioned in Chapter 3, fails due to

the lack of regularization. Since there are multiple vortices in the computational domain, the

ν-smoothing used in Chapter 4 to smooth the centre of the spiral is needed now at several

locations.
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Figure 5.1: Binary tree type merger of vortex structures in a temporal shear layer after t = 1.00. This is a large computer

simulation compared to the prototype models considered in Chapter 4. The number of panels in a structure is marked as

n at each node. The total number of panels after t = 1.00 exceeds 100,000.

In Figure 5.3 a schematic diagram of the formation of vortices is shown. Then number of

panels forming each cluster is marked. However, the clusters are ’soft’ in the sense that their

boundaries are subject to interpretation. In our analysis inflection points are taken as the end

points. In Figure 5.3 merger of vortex structures are shown on the scale of time. However, it

may not be evident from Figure 5.3 if it is a merger or an amalgamation. Usually, when two

vortices with an unequal number of panels merge, the weaker vortex is annihilated completely.

The identity of the weaker vortex is lost completely by elongation and filamentation.

Figure 5.2: Interaction between two vortex structures in a temporal shear layer. Only a portion of the layer is visible.

Vortex structures are not identical in a temporal shear layer. This leads to an unpredictable time-evolution. The x and y

axes are not to the same scale.
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Since the temporal shear layer gives rise to vortices of different shapes and sizes, a wide

variety of phenomena is observable during its evolution. All vortex structures have a singular

core. In Figure 5.2 we see one of the vortices being distorted by a neighbouring vortex. The

singularities are located at approximately (0.27,-0.24) and (0.3,-0.38). The identification of

coherent structures may be a nontrivial problem in some instances. The proper method to

decompose the flow field into its components is given in Section 5.4. Otherwise, it suffices to

track the singular spots that are associated with vortex structures. The number of panels in

the above vortices is 1060 and 984 respectively. Since they are connected structures, the panel

count will be affected by the changing boundary during evolution. Both of these points are at

the centre of the vortex structure.

The exact shape of the vortex sheet in a temporal free shear layer will be dependent upon

the initial conditions. As an alternate to a combination of small amplitude waves, one can also

start with a completely randomized perturbation. This type of perturbation is generated by

displacing the flat vortex sheet by a small random amount on a uniform grid. The displacement

can follow a distribution like Gaussian with mean 0 and standard deviation 0.003. The important

thing to note is that the sheet must be ’smooth’ after being perturbed. The perturbed vortex

sheet is constructed by a cubic spline interpolation. If the standard deviation of the Gaussian

distribution is 0.001 or less a simple linear interpolation is done. The corresponding computer

simulation is shown in Figure 5.3. The snapshots are taken at t = 0.024, 0.036, 0.072, 0.9 and

0.108 respsectively. The number of panels are 102, 256, 736, 2010 and 3060 respectively. This is

an early phase for the temporal free shear layer where vortices are yet to merge, but singularities

start to appear at t = 0.04. Once the vortices merge the memory of the initial condition gets

lost in time. Integration for longer time periods are performed in Section 5.3. An approximate

estimate of the number of panels at t = 1 would be 100,000. To reduce the computational cost

for such large systems it may be useful to fix a lower bound for the length of a vortex panel.

This will lead to the loss of microscopic details, but the macroscopic structures are not affected.

We shall learn more about the mid and late stages of development of a temporal shear layer in

Sections 5.2 and 5.3.
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Figure 5.3: The vortex sheet with random Gaussian perturbations. The snapshots are taken at t = 0.024, 0.036, 0.072, 0.9

and 0.108 respectively. The y-axis is exaggerated for clarity. The temporal shear shear is still in the early phase where

initial conditions play a dominant role. The number of vortices in the flow will depend on the type of perturbation given.

5.2 Coherent Structures

The use of randomized initial conditions in a temporal free shear layer gives rise to coherent

structures. They are formed due to Kelvin–Helmholtz instabilities. We do not give a formal

definition for coherent structures, but they can roughly described as long-lived objects in the

vorticity field with a strong correlation pattern. A coherent structure can contain several sub-

structures. There are also transient eddies in a temporal free shear layer. The boundary of a

coherent structure is identified by the limits of coherent vorticity. Details can be found in the

book by Monin and Yaglom (1965).

The merger of vortices leads to an asymptotic state where much of the shear layer, except the

microscopic details, become free from the initial perturbation. In this regime the growth rate

of the shear layer is statistically a constant number. More on this topic is given in Section 5.3.

The number of singularities grows with time, but the number of coherent structures rises and

then falls with time. In Figure 5.4 we can track the merger of vortices. This is a continuation of

the vortex sheet evolution shown in Figure 5.3. The vortex sheet gets convoluted as a result of

roll-up. Transient vortices would often arise in the shear layer, but then they disappear without

61



5.2. COHERENT STRUCTURES CHAPTER 5. THE TEMPORAL FREE SHEAR LAYER

a trace. Non-transient vortices can still be identified after being absorbed into another vortex.

Compare for example Figures 5.3 and 5.4 where we see smaller number of vortices at a larger

time.

Figure 5.4: The temporal free shear layer at time t = 2.1. The layer consists of four major coherent structures. The

billowing pattern is a typical feature of a temporal free shear layer.

The chaotic nature of a vortex sheet roll-up can be seen in Figure 5.5. The outer layer of

the main vortex suffers from Kelvin-Helmholtz instabilities at several locations, giving rise to

many smaller vortices. This is what is likely to happen in a physical simulation where the

exact nature of disturbance cannot be given. The secondary vortices in turn suffer from more

instability giving rise to tertiary vortices. The location where these vortices pop up are random

in the sense that even the slightest change in initial condition would move the vortices to a new

and different set.

Figure 5.5: The breakdown of a vortex due to a randomized high wavenumber disturbance. There are several smaller

vortices that appear within the larger vortex. Although they do not grow much due to the lack of space, they resemble the

original vortex in shape.

In the initial phase no distinction is made between a vortex and a coherent structure. The

identification and count of coherent structures is not a straight-forward problem. The difficulty
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lies in the fact that the outer layer of two vortices may merge, while their cores remain separated.

The method of identification of coherent structures from the vorticity field is given in Section

5.4. The distribution of turbulent kinetic energy is not appropriate to count vortices, as shown

in Figure 5.6.

Figure 5.6: The turbulent kinetic energy distribution generated by a single vortex or a coherent structure. The red regions

indicate higher concentration of energy compared to the blue regions. The fragmented high energy region actually lies

within a single structure.

The distribution of the kinetic energy is fragmented even though it is confined to a single

vortex.

5.3 Shear Layer Growth Curves

There have been numerous studies on the growth of a spatially evolving shear layer in the

laboratory. A temporal shear layer is difficult to get in the laboratory, but easy to study on

a computer. The growth of a temporal shear layer has been studied by Delcourt and Brown

(1979), Aref and Siggia (1980) and Suryanarayanan and Narasimha (2013) by modelling the

shear layer with point vortices. The vortex sheet model was used to study the growth of a

spatial shear layer by Basu and Narasimha (1992).

Except for the initial phase, the growth of a shear layer is driven by the formation of coherent

structures. For point vortices a coherent structure may be thought of as an agglomeration or

cluster of points. A vortex sheet, however, rolls up to form distinctive coherent structures.

Since a vortex sheet is a non-intersecting continuous curve the limits of a coherent structure are

noticeable even if surrounded by many neighbours. It is observed that coherent structures grow

by wrapping the vortex sheet and absorption of vortices weaker than themselves.

A natural measure for shear layer thickness is the maximum extent of the vortex sheet in

the vertical direction or the region where y-velocity deviates significantly from the free stream

velocity. This would give us an approximate measure of the shear layer thickness. This is however
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difficult to evaluate on a computer, with the output not guaranteed to be symmetric about the

horizontal y = 0 centerline. This would require us to measure both upside and downside. The

measure for shear layer thickness used here is the momentum thickness. For the definition of

momentum thickness refer to Section 4.5. Apart from momentum thickness, another possible

measure of shear layer thickness can be vorticity thickness.

It is found that the growth of momentum thickness θ(t) with time t for a single realization is

arbitrary apart from its generally increasing trend. No other substantial information is obtained.

The growth curves are not monotonic and they vary widely from experiment to experiment i.e.

when the initial conditions are changed. There is a general lack of stationary behaviour. The

effect of shocks (random displacements) linger until boundary conditions are reached. However,

the average growth curve obtained from an ensemble of vortex sheet experiments displays lesser

variations and greater monotonicity. This is expected to occur and is of prime importance in

the field of free shear flows.

Computer simulation of a vortex sheet model requires greater number of operations and mem-

ory than a point vortex model1, but is less involved than solving the momentum and continuity

equations2. Since the velocities are obtained from a summation operation, parallelization of this

operation can reduce the computation time. For an ensemble of vortex sheets the realizations

can be computed independently of one another. If there are N vortex segments in the sheet the

cost of computation is O(N2). However, if the sheet is symmetric with repect to the streamwise

axis computation on one-half of the sheet suffices3

1Additional operations include resegmentation to maintain resolution of the vortex sheet at every time step. There is a growth of in the

number of computational panels with time in a standard vortex sheet model. The desingularization function, storage of circulation density

and curvature requires additional memory.
2A direct global solution of Navier-Stokes equations often requires solving the Poisson equation for pressure.
3 The following shows that vortex sheet model is not computationally intensive and a good resolution can be obtained to get desired

output in reasonable time:

Ensemble Size t=0.1 t=0.5 t=1.0 t=2.0 t=3.0 t=4.0

40 65 min 143 min 306 min 829 min 2008 min 3783 min

80 120 min 277 min 585 min 1600 min 3778 min not performed

160 203 min 540 min 1165 min 3128 min not performed not performed

where usual Intel Xeon microprocessors (8 physical cores and 16 logical cores) and 4 GB memory per core are used on one single machine.
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Figure 5.7: The effect of random shocks on the growth of a temporal free shear layer. The shock appears at tND = 0.2.

The effect of the shock is permanent indicating a lack of stationary behaviour.

Figure 5.8: The effect of random shocks on a shear layer growth. There is no stationary behaviour as the growth curves

gets displaced permanently. The average rate of growth of the shear layer is however not changed.

The shear layer stops growth saturates between t = 3.5 and t = 4.0, due to the effects of

periodic boundaries. In the regime between t = 0.1 and t = 3.0, the growth rate is expected to

be linear, but this has to be verified analytically. There is strong experimental evidence that the

growth of shear layer is linear for a considerable period of time, after initial effects decay and

before boundary effects grow. The details of growth are shown in Figure 5.7 and Figure 5.9.
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Figure 5.9: The black line is the growth of average momentum thickness of 120 realizations versus time, from t = 0.1

to t = 4.0. A transition occurs somewhat abruptly at t = 3.15. The black line levels-off due to the effect of boundary

conditions.

Figure 5.10: A vortex sheet where growth of momentum thickness is being slowed due to collision of vortices (regime III of

vortex gas). The sheet cannot expand in the y-direction, but continues to expand in the x-direction. This, however, does

not contribute to the growth of momentum thickness.

It is evident that the effect of periodic boundaries causes the growth to decay. But until that

time is reached, it is expected that the average growth rate of a free shear layer is linear and
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a universal number. This regime of growth has been studied in experiments, and growth rates

ranging from 0.014 to 0.022 have been reported [Suryanarayanan and Narasimha (2013)]. Initial

conditions may also affect the growth rate at the beginning, but such variations are transient in

nature. If we assume that the growth rate becomes approximately linear, and independent of

initial conditions when the ensemble size is large, then a linear fit can be used to find the average

growth rate. For an ensemble of size 40 the average growth rate is 0.02234 and for an ensemble

of size 120 the average growth rate is 0.02232. The later value is more stable i.e. fluctuations

are less than 0.00002 in absolute magnitude if we repeat the numerical experiment again with a

different set of initial configurations.

A generalized approach to find what a shear layer grows like would be to take a functional

equation of the form

θ = f(t) (5.2)

where f is an unspecified smooth function. If f is linear or close to being linear, then there

should be low curvature on the graph of f and hence the second derivative of the function should

be low throughout its range.

We need not assume any adhoc parametric form of the function f , as we split it into a set

of basis functions. Polynomial bases are not convenient because of the presence of higher order

terms. A cubic spline basis is chosen and the knot selection problem is avoided by coinciding

knots with datapoints. The complexity of the fit is controlled by regularization. One finds the

penalized residual sum of squares

(y − f(x))T (y − f(x)) + λ

∫ xn

x1

f ′′(x)dt, (5.3)

where λ is a smoothing parameter. If λ = 0 then f can be any function that interpolates the

datapoints. If λ = ∞, then no second derivative can be tolerated and the fit is a straight line.

The intermediate values of λ index an interesting class of functions in between. For a general

overview of such methods refer to Boyd (2001) and MacKay (2003).

It is possible to choose a maximal set of knots: at each unique value of t. This can make

the model seem over-parametrized. However, the penalty coefficient λ translates to a penalty

on the spline coefficients, which are shrunk some of the way to a linear fit. Remarkably it can

be shown that there is an explicit, finite dimensional minimizer for f in (5.5) which is a natural

cubic spline with knots at the unique values of time.

Since the solution is a natural spline, we can write it as

f(x) =

n∑
j=1

ajNj(x) (5.4)

where the functions Nj(x) are an n dimensional set of basis splines. The criterion thus reduces

to

(y −Nt)T (y −Nt) + λtTΩt, (5.5)

where Nij = Nj(ti) and Ωjk =
∫
N ′′j (t)N ′′k (t)dt. The solution is easily seen to be

t̂ = (NTN + λΩ)−1NT t (5.6)
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The operator NTN + λΩ is known as the smoother matrix and is denoted by Sλ. The rank

of Sλ is n. We shall define the effective dimension of the fit as the sum of the diagonal elements

of the smoother matrix. An effective dimension value close to 1 implies that the fit is almost

linear.

We have yet not discussed how the value of λ is chosen. The trace of Sλ is monotone in

lambda and therefore it is possible to invert the relationship and specify λ by fixing the effective

dimensions. In practice this can be achieved by simple numerical methods. Here we shall adopt

the more traditional method of specifying the amount of smoothing instead of trying to optimize

the fit by choosing λ based on GCV or AIC.

68



5.3. SHEAR LAYER GROWTH CURVES CHAPTER 5. THE TEMPORAL FREE SHEAR LAYER

t theta

0.02 0.001151267

0.04 0.001475856

0.06 0.002024048

0.08 0.002561791

0.1 0.002994422

0.12 0.003605196

0.14 0.004142852

0.16 0.004598748

0.18 0.004982338

0.2 0.005548533

0.22 0.006166292

0.24 0.006774561

0.26 0.007269074

0.28 0.007775658

0.3 0.008199794

0.32 0.008694752

0.34 0.009140405

0.36 0.009601541

0.38 0.009998445

0.4 0.010499068

0.42 0.010951167

0.44 0.011475339

0.46 0.011960887

0.48 0.012386766

0.5 0.012727656

0.52 0.013087302

0.54 0.013459252

0.56 0.013848761

0.58 0.014272964

0.6 0.014655818

0.62 0.015121867

0.64 0.015567459

0.66 0.016065476

0.68 0.016486445

0.7 0.016970981

0.72 0.017543459

0.74 0.017977911

0.76 0.018335016

0.78 0.01869477

0.8 0.019052178

0.82 0.019430947

0.84 0.019762517

0.86 0.020129428

0.88 0.020556847

There are 44 datapoints of time versus momentum thickness in the

column to the left. We prefix the number of knots at 3 spread

uniformly and use cubic splines as bases. They are penalized by

integrated square second derivative cubic spline penalty. Assuming

that the error distribution is Gaussian, and the growth depends

continuously on time, we obtain a nonlinear fit with effective degrees

of freedom 1.99 and a parametric intercept of 0.0126. However, the

deviation from linearity is not systematic and the fit can be easily

approximated by a straight line. See Figure 5.12 for a detailed

analysis.

Figure 5.11: Spline interpolation of shear layer growth curve with 3 knots. The edf of

the curve is 1.99, approximated to 2 in the above diagram.

Note that in the Figure 5.11 shown above, the datapoints are cen-

tered, so that there is no intercept term in the nonlinear part of the

fit. Presence of a constant coefficient in the nonlinear function and

an intercept outside will lead to collinearity.
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Figure 5.12: Top left: deviance versus theoritical quantiles. Top right: residuals versus linear predictor. Bottom left:

distribution of errors. Bottom right: response versus fitted values.

We may conclude that the growth curve is strongly linear and that any nonlinear variations

are entirely local. The largest size of the ensemble considered here consists of 160 realizations.

On the restricted range between t = 0 and t = 1 the growth rate observed was 0.02120, which

is a 5.01% decrease compared to the average growth rate of 0.02232. The former number can

be considered as more stable as it is based on a larger number of realizations. Before we end

this discussion, it must be noted that the growth rate becomes strongly linear even when there

are only 40 realizations in the ensemble. However, the slope undergo slight variations with the

size of an ensemble, and convergence is only observed when the simulation is run 120 to 160

times. The reason for running larger ensembles on a restricted range is due to limitations on

computational resources.
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5.4 Identification of Coherent Structures

In the later stages, identification of coherent structures may require some background analysis.

We decompose a random field, preferably the vorticity field, into a mean and a time varying

part:

ω(x, t) = µ(x) + ε(x, t) (5.7)

We get a number of snapshots at time t = t1, t2, . . ., tN . We find a basis function φ(x) that

maximizes the average inner products between εt(x) and φ(x):

N∑
k=1

(∫
Ω
εk(x)φ(x)dx

)2

(5.8)

where εk(x) is equal to ε(x, tk) and Ω is the space [0, 1]× (−∞,+∞). We search for maximizers

among the class of functions
∫

Ω φ
2(x)dx = 1. This is equivalent to maximizing the functional:

L(φ) = 〈εkφ〉2 + λ(〈φφ〉 − 1) (5.9)

with respect to φ. For brevity, we have used the notation 〈·〉 for inner product, and dropped

the summation in equation (5.9). The maximizer must satisfy the Euler-Lagrange equation i.e.
∂L
∂φ = 0 which gives us ∫

Ω

N∑
k=1

εk(x)εk(x
′)φ(x′)dx′ = λφ(x) (5.10)

This is a Fredholm equation of the second kind, the kernel of which is an autocorrelation func-

tion. The optimizer is not unique, but there are an infinity of solutions. For greater details

refer to Berkooz, Holmes and Lumley (1993). The sequence of solutions φn are orthogonal

eigenfunctions and we denote the corresponding eigenvalues as λn. The eigenvalues are positive

and the eigenfunctions form a basis set. We index the eigenvectors such that the corresponding

eigenvalues are in decreasing order. Every member of the ensemble εk can be reproduced by a

linear combination of the eigenfunctions:

εk(x, t) =
∞∑
n=0

an(t)φn(x) (5.11)

The first eigenvector φ1 which has the largest eigenvalue, is the best to characterize the ensemble

of ε. The second eigenvector φ2 which has the second largest eigenvalue, is the best among all

eigenvectors orthogonal to the first, and so on. Much of the flow field information, including the

geometries of coherent structures, can be retrieved from the leading eigenfunctions.

Coherent structures identified by the preceding pattern recognition technique can further be

collapsed into fewer groups by means of iterative descent clustering algorithms. The region of

highest vorticity concentration within a coherent structure is taken as the location marker for

the structure. Given the set of centres x1,x2, . . .xn we partition the n centres into k sets, such

that the within-cluster sum of squares is minimized. The dissimilarity measure is taken as the

squared Euclidean distance. The steps of the algorithm are:

1. For a given group C find the observation in the group minimizing total distance to other

points in that group:

i` = argmin
i:C(i)=`

∑
C(j)=`

d (xi,xj) (5.12)
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where d is the dissimilarity measure. Then m` = xi` , ` = 1, 2, . . . , k are the current

estimates of the group centres.

2. Given a current set of group centers m1,m2, . . .mk, minimize the total error by assigning

each structure centre to the closest (current) group centre:

C(i) = argmin
1≤`≤k

d(xi,m`) (5.13)

3. Iterate steps 1 and 2 until the groupings do not change.

Figure 5.13: Schematic diagram for the identification of coherent structures in a free shear layer: marked by black boxes.

The figure shows the occurrence of vortices inside a coherent structure.

This is a method may not give us the best groupings 4. Each of steps 1 and 2 reduces the

value of variance criterion, so that convergence is assured. However, the result may present a

suboptimal local minimum. For this reason, we need to start the algorithm with many different

initial conditions, and choose the solution with the smaller objective function. In step 1 or in

equation (5.12), a k-means method would require an amount of computation proportional to the

group size n`, whereas here we would require O(n2
` ) computations. The second step or equation

(5.13) requires computation proportional to kn. A method that gives the global minimum is not

attempted here, because of slow convergence. But for a very small number of structure centres,

finding the global optimum may be practical.

5.5 Notes

In a previous section (see Section 5.3) we have described how a temporal free shear layer expands

with time. An experimental free shear layer can be related closely to the output of a computer

simulation by the rate at which the shear layer grows with time. However, the average growth

curve is an integral quantity and there are interior details that are not captured.

The initial conditions cannot be completely random. If the magnitude of the initial distur-

bance may be taken as small, then the vortex sheet remains static. Controlling factors in the

initial period are amplitude and distribution of the initial perturbation. The magnitude of initial

disturbance is the amplitude if the disturbance is a sine wave. If the disturbance is some non-

standard function, then the magnitude of the disturbance is the rms value of the function. The
4The two stage process followed here is an instance of greedy algorithm. However, we need a solution in reasonable time, even if the solution

is sub-optimal.
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functional form of the disturbance is deterministic if it is a sine wave. For a non-deterministic

function we take a mesh of Gaussian or uniform modes. The locations of the modes are uni-

formly distributed. A natural cubic spline is fitted. For obtaining discrete values, the range

[0,1] is sampled at 100 points 5. These points are spaced equally. The magnitude of disturbance

should be less than or approximately 0.01 times the size of the domain.

In many figures the segments of the vortex sheet are marked with a line, and dots denote the

start/end points. Since the core is a region of high curvature, the number of segments residing

in core is always large. There can no discontinuities or self intersection of the vortex sheet.

The problem of discontinuity can arise if the periodic boundary conditions are not enforced.

The problem of self intersection in vortex sheets has been addressed in Basu and Narasimha

(1992). While self intersection is a phenomenon which should not be seen, its effect is local and

macroscopic predictions are not too out of line. It is possible to rectify self-intersection of vortex

sheets by using more computer resources: to create a higher resolution.

It is possible to generate any number of vortices in [0,1] by adjusting the wavenumber of a

deterministic sine wave perturbation. There is, however, no additional insight to be obtained.

The generated vortices are smaller in magnitude when the wavenumber of the perturbation

is larger, their geometries are self similar and they stop growing when they collide with their

neighbours. The growth of the vortex layer can be measured by calculating the momentum

thickness or by finding the vertical diameter of the vortex structures. Note that the average

vorticity is zero anywhere outside the diameter.

5We take 100 sample points as a standard at the starting point of each simulation. One can as well take 200 sample points. Taking more

sample points does not lead to different results as the density of segments increases. On the other hand, taking very few points, like less than

5, at the beginning of the simulation will lead to failure.
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Chapter 6

Conclusion

6.1 Summary

The major focus of this work has been to get past the finite time singularity in a vortex sheet.

An inviscid vortex sheet is unable to break the critical time limit. In the past, desingularization

techniques have been applied to point vortex systems, and the vortex panel or sheet model

(without desingularization) has been able to mimic major features of a spatially evolving free

shear layer. These are powerful techniques with a scope for further research and development.

The desingularized vortex sheet model has not been used in the past to study a free shear layer

or otherwise. The equation of motion of a self induced temporal vortex sheet with periodic

boundaries is derived from the basic kinematical principles and the Biot-Savart law. This equa-

tion has a singular solution. The circulation density and curvature blow up at a finite critical

time. This is a consequence of unrealistic assumptions like the fluid has zero viscous diffusion

and no surface tension. The method of viscosity switch proposed here shows that the vortex

sheet solution exists beyond the critical time. For the first time it enables us to integrate past

the Moore’s singularity. The tangential smoothing of the circulation density can be interpreted

physically, and therefore its inclusion does not alter framework of the Navier-Stokes equations.

The smoothing by viscosity happens only in regions of high vorticity gradients. The smoothened

equation converges to the Birkhoff-Rott equation in the limit of zero tangential viscous diffusion.

The limiting solution, starting with a simple small amplitude single frequency perturbation, is a

spiral with infinite number of turns. The rise of large scale coherent structures from smaller vor-

tices is seen in the vortex sheet simulations. The coherent structures are stable and long-lived.

The flow inside the free shear layer is chaotic in the sense that trajectories of fluid particles

initially very close to each other in the phase space separate exponentially. The checks on the

conservation of momentum and energy are provided in Appendix A.

6.2 Remarks

The vortex sheet model for a temporal free shear layer is more involved than a point vortex

model (because of finite time singularity) but easier to compute than a direct Navier-Stokes

solution at high Reynolds number. This makes it a compromise between the two methods.

A major task is to interpret the output of the vortex sheet model obtained from a computer.

This thesis covers the mathematical formulation, computer simulation and physical redundancy
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checks.

1. Coherent structures in a free shear layer are long-lived. They sometimes continue to exist

even when absorbed by other bigger coherent structures. However, for a computer to detect

it requires a significant amount of programing effort. Principal order decomposition is one

method to detect the presence of structures within structures.

2. Numerical errors in computation cannot be treated as random perturbations as they are

systematic and lead to the non-conservation of Hamiltonian in the inviscid vortex sheet.

Accumulation of numerical errors also leads to self-intersection of a vortex sheet.

3. A numerical integration scheme that is faster than the present one is one way to increase

computational efficiency. The conservation of the Hamiltonian function is a rigorous check

on the accuracy of integration. The other way to the increase computational efficiency is

by using more powerful computers.

4. We are yet to comment on the applications and usefulness of the vortex sheet element

model. While the model is important from a theoretical perspective, it is also of interest

to find practical utility. It can be used to simulate free shear layers occurring in nature

or in engineering. It reduces the flow to a mathematical problem that can be solved with

the aid of computers. It is less complex than the solution of Navier-Stokes equations by

DNS: the computations can be performed on a desktop computer. The model is however

two-dimensional and cannot be used in three dimensions.

5. The role of surface tension has been ignored in this thesis. In free shear layers surface tension

minimizes or reduces the interface between the fast and slow streams. This prevents the layer

from developing extremely fine scale structures. Surface tension can provide a regularization

to the equation of motion of a self-induced vortex sheet, only if the medium is liquid. For

gases there is no surface tension.

THE END
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Appendix A

Evolution of the Flow Field u, v and p, and

Conservation of Invariants

The vortex sheet model does not require explicit input of the velocity field u = (u, v) and the

pressure field p to march forward in time. The velocity field can be obtained from the vortex

sheet equation (2.35). All information of the velocity field is contained in the vortex sheet itself.

However, in direct solution methods of the incompressible Navier-Stokes equations the velocity

field is required as an input. Further, the momentum equation links velocity with pressure.

The role of pressure in incompressible Navier-Stokes equations is not as a thermodynamic

variable related to density and temperature. It is a property of the flow which can be solved

from the velocity field

∇2p = −∇ · (u · ∇)u (A.1)

This is known as the pressure Poisson equation, and needs to solved in both implicit and explicit

solutions of the Navier-Stokes equations. For a vortex sheet model, finding pressure is not

required for time evolution, but the sheet itself does not formulate pressure unlike velocity. One

needs to solve (A.1) along with appropriate bounary conditions. The general form of the the

Poisson equation is ∇2p = f in a volume V with surface S. f is called the source term. If p is

known on the surface S (Dirichlet boundary conditions) then the solution to p in V is unique.

In two dimensions the source term of equation (A.1) reduces to

f = −(uxux + vxuy + uyvx + vyvy) (A.2)

Equation (A.1) can be solved by a finite difference scheme. Assume a uniform spatial discretiza-

tion on a m× n grid:

(∇2p)ij =
pi+1,j + pi−1,j − 2pij

h2
+
pi,j+1 + pi,j−1 − 2pij

h2
(A.3)

=
pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pij

h2
(A.4)

for all 1 < i < m and 1 < j < n. The boundary values are zero and therefore need not be

included in the equation. Here we have assumed Dirichlet boundary conditions. The momentum

equation requires only derivatives of pressure, so its absolute magnitude can include constant

terms. We solve for a (m − 2) × (n − 2) linear system of equations. The derivatives of the u

and v are also obtained by central differencing on a staggered grid with repect to the grid for p.
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Note that solution obtained for p may be weakly singular (no singularity in p or its first or its

second derivtaives) because of the presence of corners in the boundary.

The solution of the pressure field is used to update the velocity field in time in a direct solution

of the Navier-Stokes equations. The updated velocity field is not divergence free in implicit or

semi-implicit methods. The velocity and pressure fields are then iterated to obtain the correct

values. The vortex sheet, however, is derived from kinematics and solution of Poisson equation

is unnecessary other than to visualize the flow field.

Figure A.1: Velocity field obtained from model equations before and after the formation of vortex with centre at (0.5,0)

respectively.

Figure A.2: Pressure field obtained from velocity before and after the formation of vortex with centre at (0.5,0) respectively.

The vortex core is a low pressure zone. The absolute values of the pressure are not important, since only gradients of pressure

enter the momentum equation.

The physical variables: mass and momentum should be conserved in the flow generated by the

vortex sheet. The Navier-Stokes equations automatically ensure the conservation of mass and

momentum. Kinetic energy is also conserved in the absence of viscosity. For a temporal mixing

layer associated with a periodic vortex sheet, the absolute magnitudes of all three variables are
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infinite. However, the variation of these quantities from their respective initial values at t = 0

must be zero. All changes are to be measured in the domain [0, 1)× (−∞,+∞). The averaged

quantity

〈ui〉 (y, t) =
1

L

L∫
0

ui(x, y, t)dx (A.5)

is denoted as Ui. Note that L = 1 here, but the symbol is retained for nevertheless. The function

〈ui〉 gives a velocity profile depending on t. One important consequence of the above definition

is that 〈
∂ui
∂x

〉
=

1

L

L∫
0

∂ui
∂x

dx =
1

L
ui(x, y, t)

∣∣L
x=0

= 0 (A.6)

This is a consequence of the periodic nature of ui in x.

The conservation law for mass is reduced to the continuity equation, and in the absence of

density term follows:
∂ui
∂xi

= 0 (A.7)

The momentum equation in the absence of viscous term reduces to

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
(A.8)

Note this is not a single equation, but a set of two equations. Multiplying both sides of (A.8)

by ui we get

ui
∂ui
∂t

+ uiuj
∂ui
∂xj

=
∂

∂t

(
1

2
uiui

)
+ uj

∂

∂xj

(
1

2
uiui

)
= −ui

∂p

∂xi
(A.9)

Let K(x, y, t) = 1
2uiui be the kinetic energy per unit mass of the fluid. The kinetic energy

therefore follows the conservation equation

∂K

∂t
+ uj

∂K

∂xj
= − ∂

∂xi
(pui) (A.10)

A Reynolds type decomposition separates the flow variable ui into the mean component and the

fluctuating component.

ui = 〈ui〉+ u′i = Ui + u′i (A.11)

The mean value of the fluctuating component is zero. This follows from the previous equation.〈
u′i
〉

= 0 (A.12)

The pressure p is also divided as a mean pressure plus a fluctuating component.

p = 〈p〉+ p′ = P + p′ (A.13)

The mean value of the pressure fluctuation is also zero.〈
p′
〉

= 0 (A.14)

Then taking the mean of the continuity equation (A.7) we get〈
∂ui
∂xi

〉
=

〈
∂u1

∂x1

〉
+

〈
∂u2

∂x2

〉
= 0 +

∂ 〈u2〉
∂x2

=
∂ (U2 + 〈u′2〉)

∂x2
=
∂U2

∂x2
= 0 (A.15)
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Since U1 and U2 are not functions of x1, the following derivatives are also zero:

∂U1

∂x1
= 0,

∂U2

∂x1
= 0 (A.16)

Derivative of U2 with respect to x2 is zero. It follows that U2 must be a constant function at

each time t. The far field value of U2 is always zero i.e. U2(∞, t) = 0. Therefore

U2 = 0 (A.17)

Equation (A.17) can be verified directly from the flow. The flow variables are computed over a

discrete rectangular grid with spacing 0.001.

Figure A.3: Velocity profiles for U2
2U

at tND = 0, 0.7, 1.1080 and 1.4160 respectively. U = 1 and variations of U2 from zero

is of O(10−4).

There is no vorticity in the fluid except on the vortex sheet. Outside the vortex layer, the

magnitude of U1 is constant and equal to ±U . Therefore

ω =
∂u2

∂x1
− ∂u1

∂x2
= 0 (A.18)
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everywhere on the line joining (0, x2) and (L, x2)1. Consequently the average 〈ω〉 is also zero.〈
∂u2

∂x1

〉
−
〈
∂u1

∂x2

〉
= 0 (A.19)

or,
∂ 〈u1〉
∂x2

=
∂U1

∂x2
= 0 (A.20)

Figure A.4: Velocity profiles for U1
2U

at tND = 0, 0.7, 1.1080 and 1.4160 respectively. The absolute value of U1 = U = 10

outside the vortex region.

Since (A.20) is not true when x2 lies within the vortex region, the profile of U1 is not flat

there. Also, ∂Ui
∂xi

= ∂U1
∂x1

+ ∂U2
∂x2

= 0. Substituting this in the continuity equation gives

∂u′i
∂xi

= 0 (A.21)

The averaged form of the Navier-Stokes equation are obtained as follows:

∂(Ui + u′i)

∂t
+ (Uj + u′j)

∂(Ui + u′i)

∂xj
= −∂(P + p′)

∂xi
(A.22)

1x2 is such that the line does not intersect with the vortex sheet.
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or, 〈
∂(Ui + u′i)

∂t
+ (Uj + u′j)

∂(Ui + u′i)

∂xj

〉
= −

〈
∂(P + p′)

∂xi

〉
(A.23)

or,

∂Ui
∂t

+
∂ 〈u′i〉
∂t

+ Uj
∂Ui
∂xj

+ Uj

〈
∂u′i
∂xj

〉
+
〈
u′i
〉 ∂Ui
∂xj

+

〈
u′j
∂u′i
∂xj

〉
= − ∂P

∂xi
− ∂p′

∂xi
(A.24)

or,
∂Ui
∂t

+ Uj
∂Ui
∂xj

+

〈
∂(u′iu

′
j)

∂xj

〉
= − ∂P

∂xi
(A.25)

We put i = 1 and i = 2 in the above equation respectively.

∂U1

∂t
+

∂

∂x2

〈
u′1u

′
2

〉
= 0 (A.26a)

∂

∂x2

〈
u′2u

′
2

〉
= − ∂P

∂x2
(A.26b)

While equation (A.26a) can be verified directly, equation (A.26b) is needed to compute the

average pressure P . Equation (A.26a) can be further simplified

∂U1

∂t
+

∂

∂x2
〈u1u2〉 = 0 (A.27)

The validity of (A.27) is shown in figure A.
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Figure A.5: Profiles for 〈u1u2〉 in blue and
∫ x2
−∞

∂U1
∂t

dx2 in red at tND = 0.7, 0.888, 1.24 and 1.372 respectively.

The averaged energy equation is obtained by multiplying the Navier-Stokes equation with u′i

and then taking the average.〈
u′i
∂(Ui + u′i)

∂t
+ u′i(Uj + u′j)

∂(Ui + u′i)

∂xj

〉
= −

〈
u′i
∂(P + p′)

∂xi

〉
(A.28)

or,〈
u′i
∂Ui
∂t

+ u′i
∂u′i
∂t

+ u′i

(
Uj
∂Ui
∂xj

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ u′j
∂u′i
∂xj

)〉
= −

〈
u′i
∂P

∂xi
+ u′i

∂p′

∂xi

〉
(A.29)

or, 〈
u′i
〉 ∂Ui
∂t

+
∂

∂t

〈
1

2
u′iu
′
i

〉
+
〈
u′i
〉
Uj
∂Ui
∂xj

+ Uj

〈
∂

∂xj

(
1

2
u′iu
′
i

)〉
+
〈
u′iu
′
j

〉 ∂Ui
∂xj

+

〈
∂

∂xj

(
1

2
u′iu
′
iu
′
j

)〉
= −

〈
u′i
〉 ∂P
∂xi
−
〈
∂(p′u′i)

∂xi

〉
(A.30)

Let u′iu
′
i = q2. This quantity represents the turbulent kinetic energy.

∂

∂t

〈
q2

2

〉
+ Uj

〈
∂

∂xj

(
q2

2

)〉
+
〈
u′iu
′
j

〉 ∂Ui
∂xj

+

〈
∂

∂xj

(
q2

2
u′j

)〉
= −

〈
∂(p′u′i)

∂xi

〉
(A.31)
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Since q2 and p′ are periodic functions of x1, equation (A.31) can be further simplified to

∂

∂t

〈
q2

2

〉
+
〈
u′1u

′
2

〉 ∂U1

∂x2
+

∂

∂x2

〈
q2

2
u′2

〉
= − ∂

∂x2

〈
p′u′2

〉
(A.32)

The vortex sheet equivalent for the conservation of mass and momentum are easier to verify.

This is because the vortex sheet is a one dimensional structure. Various integral quantities

are conserved during the evolution of two-dimensional vorticity distributions in an inviscid and

incompressible fluid of uniform density as a direct consequence of Kelvin’s theorem. Some of

them have already been introduced earlier.

1. The total circulation

Γ =

N∑
i=1

γi`i (A.33)

2. The first order moments

Mx =
N∑
i=1

γi`ixmi, My =
N∑
i=1

γi`iymi (A.34)

where (xmi, ymi) =
(
xi+xi−1

2 , yi+yi−1

2

)
is the midpoint of the ith segment.

3. The second order moment

J =

N∑
i=1

γi`i

[
xmi

2 + ymi
2 +

`2

12

]
(A.35)

The conservation of total circulation is automatically taken care of by the numerical simula-

tion. The first order moments do not exhibit any systematic or significant variation. The initial

values are: Mx0 = 2.38 × 10−16 and My0 = −1.0099. Mx attains a maximum magnitude of

2× 10−12 and My varies by approximately 4.31× 10−7%. The conservation of J fails due to the

dissipative effect of viscosity. The second order moment decreases with time. It is not calculated

or shown here, but the Hamiltonian is given in Appendix B.
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Conservation of the Hamiltonian Function

The point vortex system is a Hamiltonian system for the conjugate variables xjN
− 1

2 and yjN
− 1

2 ;

the Hamiltonian function is given by,

H(t) =

N∑
j=1

N∑
k=1

′ ΓjΓk log (cosh 2π(yj − yk)− cos 2π(xj − xk)) (B.1)

The Hamiltonian is an invariant of motion and its value does not change with t.

The vortex sheet can be cast as a Hamiltonian system, but explicit representation of the

Hamiltonian function H is difficult. The Hamiltonian is like interaction energy of the vortex

sheet system and must depend only on relative locations of the vortex sheet elements, because

H must remain invariant during rotation and translation of the system. Let H be a function of

the form

H =
N∑
j=1

N∑
k=1

′ ΓjΓk f(rjk) where rjk = |zj − zk| (B.2)

The notation
∑′ implies excluding j = k during summation. The Hamiltonian H and the

function f are obtained from the following equation

Γj
dz∗j
dt

= −2i
∂H

∂zj
(B.3)

of which splitting the real and imaginary parts lead to Hamilton’s canonical equations

Γj
dxj
dt

= −∂H
∂yj

(B.4a)

Γj
dyj
dt

=
∂H

∂xj
(B.4b)

Here xjΓ
− 1

2
j is the generalized momentum and yjΓ

− 1
2

j is the generalized coordinate. The time

rate of the Hamiltonian is zero and H is an invariant quantity.

dH

dt
=

∂H

∂xj

dxj
dt

+
∂H

∂yj

dyj
dt

= Γj
dyj
dt

dxj
dt
− Γj

dxj
dt

dyj
dt

= 0 (B.5)

Since the motion equation (2.34) is a function of zj ’s only, equation (B.3) can be solved for H
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in principle.

dz∗j
dt

= −
N∑
k=1

′ iγk
2π

[
log

sin π(zj − zk − `keiθk)

sin π(zj − zk)

]
e−iθk

= −
N∑
k=1

′ iΓk
2π

[
log

sin π(zj − zk − `keiθk)

sin π(zj − zk)

]
`−1
k e−iθk

= −
N∑
k=1

′ iΓk
2π

[
log

sin π(zj − zk+1)

sin π(zj − zk)

]
(zk+1 − zk)−1 (B.6)

Therefore,

∂H

∂zj
= Γj

N∑
k=1

′Γk
4π

[
log

sin π(zj − zk+1)

sin π(zj − zk)

]
(zk+1 − zk)−1 (B.7)

The Hamiltonian is not conserved in general due to the process of desingularization. The final

Hamiltonian is always smaller than the initial Hamiltonian due to dissipation of energy.

Figure B.1: The decrease of Hamiltonian function H due to loss of energy in the desingularization. The initial Hamiltonian

is HI = -472.1077 and the final Hamiltonian is HF = -542.7209.
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