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Abstract

The thesis investigates the first effects of micro-scaldigand stochastic orientation fluctua-
tions on the orientation dynamics of spheroids in shearowd] The first chapter of the thesis
focuses on a single spheroid in a planar linear flow and thg-tone orientation dynamics
of the spheroid set up by weak inertial effects is identifi€le second chapter of the thesis
focuses on estimating the viscosity of a dilute suspensi@ploeroids in a simple shear flow.
It turns out that the inertia sets up a unique steady statatation distribution, and therefore a
unique viscosity, for a dilute suspension of prolate spidsrof all aspect ratios, and of oblate
spheroids with aspect ratios greater than 0.14. A stochas@ntational decorrelation mech-
anism is needed to render the viscosity unique for a diluspension of (oblate) spheroids
with aspect ratios smaller than 0.14. Rotary Brownian nmigcconsidered as a canonical ex-
ample for the decorrelation mechanism. Interestinglystieady state orientation distribution
in the presence of both inertia and rotary Brownian motigrdeitself to a novel thermody-
namic interpretation and leads to the identification of fembling-spinning transition’ in an
anisotropic particle suspension. The ‘Tumbling-spinnir@gnsition’ has striking similarities
to the coil-stretch transition of high molecular weightyakrs in extension-dominated flows.
This interpretation is also explained in the second chapitéinesis. In the third chapter the
long-time orientation dynamics of a spheroid sedimenting simple shear flow is analyzed.
The fourth chapter investigates the effect of inertia ortithne period of rotation of a spheroid
in a simple shear flow, a canonical rheological flow, and aifipeéastance of a planar linear
flow, is also quantified.

The first chapter is concerned with understanding the effenertia on the motion of spheroidal
particles in a planar linear flow. A spheroid can be charasdry its orientation (as specified
by a pair of angles) and its aspect ratig;(with O < k < 1 for an oblate spheroid and> 1

for a prolate spheroid. The planar linear flow can be defingenms of a single parameter
A, with =1 < A <1, and as\ increases from -1, one obtains different flows starting feom
solid-body rotation abh = —1, the elliptic linear flows for-1 < A < 0, a simple shear flow at
A =0, the hyperbolic linear flows for & A < 1, finally terminating in a planar extensional
flow at A = 1. The motion of the spheroid in a planar linear flow is well ersfood in the



Stokes limit, that is, when there is no inertia either in tlagtigle or the fluid phase. In the
Stokes limit, a spheroid rotates indefinitely in any of a &rgarameter family of periodic or-
bits, named Jeffery orbits (after the original discovepeovidedA is less than a critical value
that is a function of the particle aspect ratio, approaclzie® in the limit of extreme aspect
ratios = 0 andw). An investigation is carried out to find the effect of weaktde inertia

at O(St) and weak fluid inertia at &), whereStandReare respectively the Stokes number
and Reynolds number based on the length of the major axiedgheroid. The expressions
for the ORe and the O%t) corrections to the angular velocity in the Stokes limit alpéained

in terms of a volume integral using a reciprocal theorem. Rehanalytical framework based
on a vector spheroidal harmonics formalism is used to oltkearStokes disturbance velocity
fields entering the reciprocal theorem integral, and théuewi@n of the resulting integral in
spheroidal coordinates yields closed-form expressionthéinertial corrections. The motion
of the spheroid is characterized in terms of an inertiak digfined as the change in the orbit
constantC, defined in such a way that it is constant for a particularedgforbit) in a single
Jeffery period. Based on the inertial drift, theandk values for which the final orientation of
the spheroid is uniquely determined by inertial effectsialondependent of initial conditions,
are identified. For thesk andk’s, the final orientation of the spheroid is restricted to e
bits; the tumbling orbit, where the orientation vector tesain the flow-gradient plane and the
spinning orbit, where the orientation vector is alwaysradd to the vorticity axis, regardless
of initial orientation. For thel andk values other than those identified above, inertia does
not stabilize a unique orbit. A repeller orbit exists sepagathe unit hemisphere into two
distinct basins of attraction; with the attractor being timabling orbit for one basin and the
spinning orbit for the other. Thus, depending on the basiwhich the initial orientation of
the spheroid lies, the final orientation can either be thebturg orbit or the spinning orbit.

The second chapter is concerned with estimating the effenedia on the viscosity of a
dilute suspension of spheroids in a simple shear flow. Theesisson viscosity is a function
of the spheroid orientation distribution. It is well knowmat in the Stokes limit there is no
unique steady state orientation distribution and theeetbe viscosity is indeterminate. The
analysis in chapter 1 of the thesis shows that in a simplersloeainertia leads to a unique
steady state orientation distribution for prolate sphas@nd oblate spheroids of aspect ratio
larger than 0.14. In the absence of stochastic orientatiotutions, this distribution is singu-
lar, being localized at either the tumbling or spinning tgbT he viscosity is estimated for this
suspension using this singular distribution. For a suspartd spheroids with aspect ratio less
than 0.14 the steady state viscosity continues to depenleomitial orientation distribution
via the fractions of initial orientations in the basins dfattion of the tumbling and spinning
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orbits. Therefore, an additional stochastic orientatienadrelation mechanism in the form
of rotary Brownian motion, characterized by the Peclet nemmBe ), is included to obtain
the unique steady state orientation distribution. Thenaiton distribution in the presence of
the inertia and the rotary Brownian motion is formulatedhasdolution of a one-dimensional
drift-diffusion equation in the orbital coordinat€)with the combined inertial and Brownian
drift arising as the gradient of a potential. Regarding fatential as an effective free energy,
the steady state orientation distribution lends itself tm@el thermodynamic interpretation in
k — C — RePe space;RePe plays the role of a inverse (non-equilibrium) temperaturbe
minima of the potentials are identified as phases with thdlsthand large-C minima respec-
tively named the spinning and the tumbling phases and a ghageam is constructed in the
Kk —C — RePeg space. The transition between the tumbling and spinninggshaith changing
RePe is regarded as a phase transition with an associated ceeséstegion. Interestingly,
this coexistence region continues to exist for other pldimaar flows withA’s close to O,
although the region rapidly shrinks with increasiAdd. The evolution in the two-phase re-
gion is characterized by a pronounced hysteresis and expeets where the hysteresis may
be observable are proposed. The viscosity is estimated lmasthe steady state distribution
and remarkably, there exists a transition from a sheanthghbehavior to a shear-thickening
behavior for the viscosity with increasing aspect ratiahviie transition leading to a discon-
tinuous jump in viscosity at an aspect ratio of about 0.01liBiéathermal limit RePg — ).

The third chapter is concerned with understanding the effemertia on the orientation
of a spheroid sedimenting(due to gravity) in a simple sheav.flThree canonical situations
with gravity along the flow, gradient and vorticity axes ofimgle shear flow are analyzed.
The attractors and repellers in the orientation space ardifted for these three cases.

The fourth chapter is concerned with understanding theedfieinertia on the time period
of rotation of spheroids in a simple shear flow. A deficiencyhaf OSSR analysis above
is that it does not predict a change in the time period (nedattd the Jeffery value) in the
asymptotically stable orientation states - the tumbling sypinning orbits. On the other hand,
simulations have consistently observed a decrease (s&y@athe time period with increas-
ing particle (fluid) inertia, respectively. To account farg discrepancy, the effect of particle
and fluid inertia to O%f) and ORe¥/2) respectively, is analyzed, again based on a generalized
reciprocal theorem formulation. The particle inertia aS8@) results in a decrease in the par-
ticle time period as well as in the maximum angular velocitg an increase in the minimum
angular velocity; all of these being in agreement with theeientioned simulations. The
fluid inertial calculation is considerably more involvedise the OR€e”/2) correction to the
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Jeffery period arises from the outer region (distances fiteenspheroid greater than the iner-
tial screening length of ®e 1/2)). Since inertia arises in the far field, the spheroid isttda
as a time-dependent force-dipole singularity, and theutation of the period alteration at
O(R€/2) is performed in reciprocal space. The fluid inertia resirtan increase the time
period, again consistent with simulation results.
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Chapter 1
Introduction

Suspensions of anisotropic particles are ubiquitous inregMueller et al. 2011, Caroet al.
2012 as well as in industrial systemkyndell et al. 2011, Amini et al. 2014, with the parti-
cle shape varying between extremes of disk and fiber-shapegohwmlogies¥an Olphen 1963
Muelleret al.201% Lundellet al.2011, Derakhshandeét al.2011 Caroet al.2012). It is im-
portant to understand the orientation dynamics of the swdgmkparticles, subjected to a flow,
in order to estimate the transport characteristics of tspausion. For instance, blood, is a con-
centrated suspension of deformable cells in plasma, amddtdogy is sensitively dependent
on the orientation distribution of the dominant suspendatstituent - red blood cell€@aro
et al.(2012). Red blood cells are shaped like biconcave disks with edtar of about gm,
and to estimate the rheological properties of blood, onet muoderstand the orientation dy-
namics of the disks in a pulsatile flow, the typical flow in tle@diovascular system. Another
example of an anisotropic suspension is magma, which iseg hinase mixture of inorganic
silicate melt, gas bubbles and anisotropic mineral crgstdlhe viscosity of magma deter-
mines the nature of the volcanic eruptidviueller et al. (2011)). While the effect of bubbles
on magma rheology is knowimangaet al. (1998;Llewellin et al. (2002), the importance
of suspended crystals on magma rheology has only been rieedgrecentlyfueller et al.
(2012). In a paper manufacturing process, one needs to unddrgtarorientation dynamics
of cellulose fibres in the pulp suspension, subjected to g floarder to predict and control
the properties of the final produdtyndell et al. 2011). Reflective flakes are often used for
flow visualization purpose3foroddsen & Bauefl1999;Gotoet al. (2011), and to interpret
the scattered intensity patterns that arise from the suigakeftakes, it is crucial that one have
a knowledge of their orientation dynamics in the local simgaflow (Savaq1985;Gauthier
et al.(1998). These flakes have sizes of the order micro meters and lodtemnextreme aspect
ratios. In contrast to suspensions of spheres, anisotpagiacle suspensions exhibit a rich
array of equilibrium and non-equilibrium phases owing te #uditional orientational degree
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of freedom at the microstructural levéloege & Lekkerkerker 1998Brown & Rennie 2001
Michot et al. 2006 Lekkerkerker & Vroege 2012 As shown originally by Onsaget ér-
son(1988), this can lead to non-trivial transitions in orienta@order (isotropic to nematic
phases), in turn leading to abrupt changes in transporeptieg with changes in volume frac-
tion.

As a first step to understand the rheology of, and orientatjoramics in, suspensions of
anisotropic particles, a detailed investigation of theotation dynamics of a spheroid in a
planar linear flow is presented in this thesis. A spheroid ¢a@onical anisotropic particle,
its aspect ratioK) being the microstructural parameter. Although charamterby a single
microstructural parameter, the shape of the spheroid @singm a flat disk to a slender fibre,
as itsk varies from 0 too, with k = 1 being a sphere. Thus, understanding the orientation
dynamics of a spheroid of an arbitrary aspect ratio in a suspge, subjected to a flow, might
bring insights into the behaviour of particles, whose amggy can vary over a large range.
The particles encountered in the physical examples abowenaall in size (order of microns).
So one would expect fluid inertia characterized by ReynoldslverRe), and particle iner-
tia characterized by Stokes numl&tj( to be weak at the length scale of the particle. For a
spheroid with a semi-major axis of lengthi,'one can defin®e= pylL?/u andSt= ppVLZ/u,
wherep andpy, are the fluid and particle densitigsjs the fluid viscosity ang, a measure of
the magnitude of the velocity gradient, characterizes trength of the flow. In accordance
with the small particle sizes encountered in the above egiplins, the thesis explores in detail
the first effects of inertia in the limit of small but finikeandSt. The flow, on the length scale
of the small particle may be approximated as a linear flow,@adar linear flow is the most
general two-dimensional flow. Planar linear flow is chanapgel by a parametex, and de-
pending oM, it can be any of a solid-body rotation, an elliptic lineamfl@ simple shear flow,

a hyperbolic linear flow or a planar extensional flow. The pseterA takes values from-1 to
1,withA = —-1,A =0andA =1, corresponding to a solid body rotation, a simple shear flow
and a planar extensional flow, respectively. The suspensi@assumed to be dilute in order to
eliminate the non-trivial effects of hydrodynamic intetian, and therefore the hydrodynamic
volume fractionnL® << 1, wheren is the number density of the spheroids in the suspension.
The neglect of hydrodynamic interaction, allows one to ®on understanding the orientation
dynamics of a single particle, a spheroid here, in a flowirgpsasion.

A fundamental result of Stokesian hydrodynamics, is thagalated non-Brownian spheroid
in planar linear flow, rotates indefinitely along any of a gragameter family of spherical el-
lipses provided is less than a critical value, sayi; (Hinch & Leal 1973. The parameter



is the orbital coordinat€, which takes values between 0 ard These orbits are originally
derived for a spheroid rotating in a simple shear flow by Jefféeffery 1922, and are epony-
mously called the Jeffery orbits. The indefinite rotatiomaipheroid along a particular Jeffery
orbit, in this limit, makes its orientation distribution ahy time, depend on its initial orien-
tation. As a result, the viscosity of a dilute suspensionpfesoids, which is a function of
the orientation distribution of a single spheroid, becomdsterminate in the infinitely dilute
limit corresponding to Q(L3), nL® being the aforementioned hydrodynamic volume.This is
unlike the case of a dilute suspension of rigid spheres, evtiex orientation is a degenerate
degree of freedom (in not affecting the velocity field); thg@d correction to the viscosity
can determined and is given bypB2, where 5/2 is the well known Einstein coefficierteél
1992. The indeterminacy mentioned above for a spheroid is asmprence of Stokes flow
reversibility which leads to closed streamlines or pa#dim other situations, with profound
implications for the relevant micro-scale transport peses Batchelor & Green 197&b;
Kaoet al. 197; Subramanian & Brady 200&ubramanian & Koch 20@6c, 2007, Krishna-
murthy 2014.

The primary question that this thesis tries to address ibews: Can weak inertial
effects at ORg and OEt) eliminate the indeterminacy associated with the Stokeg?i To
answer this question, one has to understand the orientdyieamics of a spheroid in planar
linear flows (withA<Acit), in the presence of inertia. The corrections to the leadirupr
Jeffrey angular velocity at ®g and OGt), for an arbitrary aspect ratio spheroid, rotating in a
planar linear flow, are derived in chap&1using a generalized reciprocal theorem formulation
(Leal (1979;Subramanian & Kocl{2009;Subramanian & Kocl{200@)). To evaluate the
integral in the generalized reciprocal theorem, one neselStokesian disturbance velocity
field around a spheroid in a planar linear flow. While this eélpfield may be obtained
using earlier results based on the method of singulari@asgng & Wu(1974;Chwang &
Wu (1975), herein the vector spheroidal harmonics formalism dgwedl by Kushch and co-
workers Kushch(1997);Kushch(1998) is used. The formalism is based on expressing the
general solution of the Stokes equations, around an anpitriamber of spheroidal particles,
as a superposition of growing and decaying vector harmaonilcal spheroidal coordinates
defined with respect to a Cartesian system centered at eatitlggaand aligned with the
particle axis of symmetry. This formalism was already usedihderstanding the inertial and
viscoelastic effects on a single sedimenting particle itnerwise quiescent fluilb@bade
et al.2015. Inertia results in a drift across the closed trajectoineStokes flow, and the drift

1 g andnL?® are the physical and hydrodynamic volume fractions, antttieae is no distinction between the
two in the case of spheres.
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is characterized using a multiple time scale analysis. Thisostabilized by the inertial drift
are identified in th@ — k plane. For the majority ofA, k) combinations, the stabilized orbit is
either one confined to the flow-gradient plane of the ambitartgy linear flow (the tumbling
orbit), or one where the spheroid orientation vector isradaywith the vorticity vector of the
ambient flow (the spinning orbit). However, for some k) combinations, depending on the
initial orientation of the spheroid, the orbit stabilizezthde either the spinning or the tumbling
orbit, since both these orbits have non-trivial basins trhation, separated by an unstable
(repeller) limit cycle, on the unit sphere of orientationhefefore, for these combinations,
inertia alone cannot eliminate the dependency on the lioitiantation.

In chapter3 the question that is addressed is finding the viscosity oftdedsuspension of
neutrally buoyant spheroids in simple shear flow. As mewibearlier, in the Stokes limit the
viscosity is indeterminate. The analysis in cha@éndicates that weak inertial effects, in a
simple shear flow, stabilize the tumbling orbit for neutyddloyant prolate spheroidg ¢~ 1)
of any aspect ratio, and the spinning orbit for neutrallyyarnd oblate spheroids(< 1) whose
aspect ratios are larger than 0.137. For these spheroggisitosity is calculated based on the
steady state orientation distribution localized at theabls orbits (as is the case in the ather-
mal non-interacting limit). For neutrally buoyant oblatghsroids whose aspect ratios are
smaller than 0.137, inertia stabilizes either the spinminthe tumbling orbit, depending on
the spheroid’s initial orientation. It is shown that if andéttbnal decorrelation mechanism in
the form of rotary Brownian motion, characterized®Pg(Pg = y/Dy), whereD; is the rotary
Brownian diffusivity, is included, the dependence on thgahorientation is eliminated. The
unique steady state orientation distribution determingthle combined effect of the Brown-
ian motion and inertia is obtained by solving a convectidfusion equation. The steady state
Jeffery-orbit distribution arising from a balance of inaand thermal fluctuations is shown to
be of the Boltzmann equilibrium form, with a potential thapends oi€, particle aspect ratio
(k), and a dimensionless shear raRePe), and therefore lends itself to a novel thermody-
namic interpretation i€ — Kk — RePeg space. In particular, the transition of the potential from
a single to a double-well structure, below a critigalis interpreted as a phase transition, and
the small€ and large€ minima identified with spinning and tumbling phases. Theliling-
spinning phase diagrams are characterized for a range of fioeacketing simple shear flow,
and the tumbling-spinning envelope is found to be maximumxient for simple shear. The
hysteretic dynamics within the two-phase tumbling-spignénvelope renders the rheology
sensitively dependent on the precise shear rate histaysighmature in simple shear flow be-
ing a multi-valued viscosity at a given shear rate. The tumgb$pinning transition identified
here is analogous to the coil-stretch transition in the &y physics literatureDe Gennes



1974 Hinch 1974. It should persist under more general circumstances, aadnhplications
for the suspension stress response in inhomogeneousrghnédaws.

In chapter4, the question that is addressed is the effect of inertia erotientation dy-
namics of a spheroid, sedimenting in simple shear flow. Trexebdf inertia on a spheroid
sedimenting in a quiescent fluid is already analyzeDabadeet al. (2015. The sedimenta-
tion torque at OReeg), WhereReeq= pUsed-/ U, iS the Reynolds number in sedimentation,
with Ugeq being the sedimentation velocity, makes the spheroid smatinm a broadside-on
configuration. In the broadside-on configuration, the geotgoheroid orientation will be per-
pendicular to the translational velocity, and the oblateespid orientation will be aligned to
the translational velocity. The angular velocity of a sgigisedimenting in a simple shear
flow is obtained again using a reciprocal theorem. The stheaofjthe sedimentation to that
due to inertial drift is characterized by the non-dimenalorumberdReq/ReandSt/Re The
orientation dynamics of a spheroid is analyzed in detaiklioee canonical cases, where the
sedimenting force is aligned with any of the gradient, wittiand flow axes of the simple
shear flow .

In chapter5, the question that is addressed is the effect of inertiahertime period of
rotation of a spheroid rotating in the orbits that are stabd by the ORg and OGt) drifts
in simple shear flow. It turns out that in the stabilized apihe ORe and OSt) corrections
to the angular velocity derived in chapt®rdo not alter the time period of rotation from its
leading order Jeffery valudMao & Alexeev(2014) have investigated the effect of inertia on
the time period of rotation of spheroids of different aspatibs using the lattice Boltzmann
method, and concluded that the effect of fluid inertia is wease the time period from its
leading order value, and that of particle inertia is to dasedit; this numerical investigation is,
however, restricted to Re’s of order unity, and the scalfogsmallReandStare unclear. The
O(R€¥/2) and OGB) corrections to the time period of rotation are calculatedhis chapter
for a spheroid of an arbitrary aspect ratio, rotating in @sg-time orbit (either the tumbling
or spinning mode) in simple shear flow. The calculation of @{&t) correction is straight-
forward since it is regular in nature. The time period caimecat ORe”2) has a singular
origin, and arises from fluid inertial effects in the outegiom (distances from the spheroid of
order the inertial screening length of Iﬂi{e*%)) where the leading order Stokes approxima-
tion ceases to be valid. Since the correction comes fromfthete of inertia in the far field,
the rotating spheroid is approximated as a time-dependaent-force-dipole singularity. This
allows for the relevant reciprocal theorem integral to bed@ated in Fourier space. Itis shown
that fluid inertia at OR€”?) leads to an increase in the time period of rotation compsred
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that in the Stokes limit, and particle inertia atSi) leads to a decrease of the same, consistent
with the results of recent numerical simulations.



Chapter 2

The orientation dynamics of a spheroid Iin
planar linear flow

2.1 Introduction

In this chapter we investigate the effect of inertia on therdation dynamics of a spheroid
in planar linear flow. A spheroid is the simplest shape thatlmaused to model anisotropic
particles, and is characterized by its orientatiph dnd aspect ratiok(). As the aspect ratio
of the spheroid increases from O¢aits shape changes from thin disk to slender fiber. Planar
linear flows form a one-parameter family characterized bprmmeterA, and depending on
A, the flow can be any of a solid body rotation, the elliptic &andlows, a simple shear flow,
the hyperbolic linear flows or an extensional flow. The parame can take any value from
—1to 1, and with increasing, the streamlines of the planar linear flow transition frormbe
closed for solid body rotation and the elliptic linear flowsstraight lines for the simple shear
flow, and to open streamlines for the hyperbolic linear artdresional flowsBentley & Leal
1986 Subramanian & Koch 20@. The effect of inertia on the streamline topology plays a
significant role in determining the transport propertiesnainy disperse multiphase systems
(Subramanian & Koch 20@6c, 2007 Krishnamurthy 2013 Planar linear flows can be easily
generated in an experimeB#ntley & Leal 1986 Lee et al. 2007), the device used being a
four roll mill, developed originally by G.I Taylor. The orgation dynamics of a non-Brownian
spheroid in planar linear flow is well known in the Stokes tirthat is, when there is no inertia
in the particle as well as the surrounding fluid. In this lintite spheroid rotates in any of a
one parameter family of closed orbits, whens less than a critical value, say,(Hinch &
Leal 1973, and the orbit in which the spheroid rotates is determinedsoinitial orientation.
The orbits are spherical ellipses, as shownlbffery(1922, and are eponymously known as
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Jeffery orbits. Whem > Aqit, the trajectories are not closed; the open trajectoriea@cira
network of six fixed points on the unit sphere. The first eBegftfluid and particle inertia at
O(R@g and OEt) on the orientation dynamics of the spheroid rotating inapt linear flow is
analyzed in detail in this chapter. HeReis the Reynolds numbeRe= psyL?/u, andStis
the Stokes numbegt= ppVLZ/u, wherep, andps are the particle and the fluid densitigs,
is the shear rate characterizing the ambient planar linear fl is the fluid viscosity andl. is
the the length of the semi-major axis of the spheroid.

Jeffery (1922 himself had hypothesized that in simple shear flow, weaktisdesffects
would eventually move the particle to an orbit of minimumsiigtion. These correspond to
the log-rolling and tumbling orbits for prolate and oblagheroids, respectively. Initial ex-
perimental investigation3éylor (1923, Trevelyan & Mason(1951) were inconclusive. The
earliest analytical investigation which studied the dfffaveak fluid inertia on a nearly spher-
ical particle in simple shear flow was that®éffman(1956, and appeared to confirm Jeffery’s
hypothesis, although no details of the analysis were gilrethe same paper, the author con-
cluded that particle inertia does not lead to any drift. Imtcast,Karnis et al. (1966, in
experiments with disks and rods in Couette flow, observegdéngcles to migrate towards or-
bits of maximum energy dissipation. Latétarper & Chang1968 analyzed the motion of a
dumbbell-shaped particle, in simple shear flow, in the lintien the inter- sphere separation is
much greater than the inertial screening Iengtm{(ﬁRé%), a being the sphere radius). The
torque leading to the drift was regarded as arising fromtialelift forces (Saffman(1965)
acting independently on the each sphere, and as a resuliuthbbell was found to move
towards a tumbling mode. However, as arguedubramanian & Kocl{2005, use of the
Saffman lift-force is inconsistent with the limit consiéerby the authors. There have been
more recent investigations for the inertial drift in simgleear flow, based on a reciprocal
theorem formulation, that are either limited to particladvarge aspect ratioSubramanian
& Koch (2005), with the attendant simplifications arising from viscalender body the-
ory (Batchelor(197@)), or to particles with aspect ratios near unity which allowa regular
perturbation expansion about a sph&elframanian & Kocl{200&)). For nearly spherical
axisymmetric particlesSubramanian & Kocl§2006o) conclude that the effect of fluid inertia
is in accordance with Jeffery’s hypothesis. Particle iaentas found to cause prolate and
oblate near-spheres to drift towards tumbling and spinniiogles, respectively. For slender
fibers,Subramanian & Koclf2005 found a fluid inertial drift towards the tumbling mode, a
decrease in the speed of rotation with increagegand a relatively modest criticReabove
which the particle ceases to rotate. It was also arguedithirat the effects of particle inertia
would be asymptotically small for large aspect ratios. Régethe effect of particle inertia



2.1 Introduction 9

on the orientation of axisymmetric particles of arbitragpact ratios in planar linear flow, to
O(SY, has been examined linarssoret al. (2014. In this work, the OEt) correction to the
leading order Jeffery angular velocity in a general lineawfis presented in an invariant form,
and it concludes that in the particular case of simple sheat firolate and oblate spheroids
drift towards the tumbling and spinning modes, respecgtjansistent with the near-sphere
analysis ofSubramanian & Kocl{2006b). However, they do not do a detailed investigation
of the effect of particle inertia on the orientation of a she in a planar linear flow. II€an-
delieret al. (2015 the effect of fluid inertia on the orientation dynamics ofearly spherical
axisymmetric particle in a planar linear flow is investight@he angular velocity at ®g is
derived for the nearly spherical axisymmetric particleréie However they do not examine
the orientation dynamics of the particle for afk. They focus only on the orientation dynam-
ics in three cases, that is the solid body rotation, simpéasfow and extensional flow. In
the particular case of extensional flow, the inertia doesitiet the location of the fixed points.
However, it alters the rate of approach to or divergence faofixed points.Einarssoret al.
(201%) andEinarssoret al. (201%0) have looked at the effect of both particle and fluid inertia,
respectively, on spheroids of an arbitrary aspect ratiosimgle shear flow, and we comment
on this effort in the conclusions section.

There have been several recent numerical investigati@si#amine the orientation dy-
namics of anisotropic particles for the specific case of nghear flow. These may be
conveniently divided into those that analyze the orieatal motion of neutrally buoyant
spheroidsiRe= Si), over a wide range oRe via (mainly) Lattice Boltzmann simulations
(Aidun et al.(1998;Ding & Aidun (2000;Qi & Luo (2003;Huanget al.(2012;Mao & Alex-
eev(2014) and via the distributed Lagrangian multiplier basedftimtis domain methodvu
et al. (2007), and those that examine the orientation dynamics of masgheroids and tri-
axial ellipsoids in shear flow in the absence of fluid inertiat over a wide range @t via
a numerical integration of the governing ODHEsi0dell & Carlsson2010;Lundell & Carls-
son(2011);Challabotlaet al. (2015). One of the main conclusions of the second group of
investigations is a rather sharp transition, across a warange inSt, from a smallStto a
largeStdynamics. In the former regime, as would be expected, theiaherift leads to a
spiraling trajectory for the orientation vector with eadhrt of the spiral closely resembling a
Jeffery orbit. In the latter regime, the drift is again asyatggally slow but has a very different
character, akin to the classical Euler t@o{dstein(1962) with a superposed secular drift,
that is outside the scope of the current investigation. Tisédroup of investigations above,
culminating in the recent effort dluanget al. (2012, has identified a series of transitions
in the rotation mode as a function Biefor both prolate and oblate spheroids. With increas-
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ing Re the sequence of rotation modes are tumbling, log-rollingjned rolling, precession
and nutation around an inclined axis, and finally, a statipstate at the highe®es (Huang

et al. (2012), for a prolate spheroid. For an oblate spheroid, this sege is simpler, con-
sisting of a lowRe spinning mode followed by an inclined spinning mode, antaticnary
state at the highedReys. The general focus of these simulation efforts has beeam o the
transition in rotations, and less on the dependence of thedef rotation onRe although,

it is clear that, over the lower range Bfes, the period increases monotonically due to the
onset of fluid inertial effects. The work bylao & Alexeev (2014 is an exception in this
regard, and the authors find that the effects of particle and fhertia are, respectively, to
decrease and increase the time period of rotation from #mtiatess Jeffrey value. Note that,
in two dimensions, increasingehad already been shown to eventually arrest rotation of an
elliptic cylinder Ding & Aidun (2000). In three dimensions, for sufficiently slender bodies,
such an arrest has been predicted to occur at a fairly m&sst O(k 1Ink), k being the
large aspect raticubramanian & Kocl2005). As is the case for numerical investigations,
the above efforts for neutrally buoyant spheroids (and, kesaer extent, those for massive
spheroids) are limited in the number of aspect ratios exadhand in terms of analyzing the
detailed dependence of the nature of the final steady or penedic state on the particular
initial orientation. For instance, exceptiidpo & Alexeev(2014), all other efforts only look
at prolate and oblate spheroids with aspect ratios of 2 ahdr@spectively. Further, the nu-
merical simulations of neutrally buoyant spheroids areessarily limited to wall-bounded
domains with periodic boundary conditions in the flow andiedty directions. The effect of
the wall confinement on the aforementioned transitions ismall, and the effects of period-
icity are uncertain. There is also some disagreement, leetwidferent efforts, with regard to
the detailed sequence of transitions, and the precise a&si$nof the associated critidaEs.
This appears partly due to the differing nature of the nucaérnethods, and partly due to
the different initial orientations examined in differentvestigations. The analysis given here
will serve as a very useful point of validation for any nungatieffort. Although restricted to
Re St« 1, the qualitative nature of the orientation dynamics iseeted to conform to predic-
tions even wheiRe St~ O(1). In sharp contrast to the above numerical investigatiodglae
earlier theoretical efforts, we cover the entire range peasratios for both prolate and oblate
spheroids, and show that in simple shear flow, for sufficjetitin oblate spheroids (aspect
ratios smaller than about 0.14 which have not been examimaali of the above simulations),
the long-time orientation dynamics is a function of theialibrientation, with the unit sphere
being divided into distinct basins of attraction corresgiog to the tumbling and spinning
modes. For the dilute regime of relevance here, the deperdaninitial conditions for the
said aspect ratios is expected to be eliminated, over mudelatimes, on account of weak
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thermal or hydrodynamically induced orientation fluctaa. The case of weak Brownian
motion is analyzed here in some detail.

Very recently, there have been a pair of numerical invesitiga of both neutrally and non-
neutrally buoyant prolate spheroids, again using variahthe Lattice Boltzmann method.
Rosenret al. (2014 examined a neutrally buoyant prolate spheroid with asgzict 4 (in con-
trast to the aspect ratio of 2 considered in virtually allref aforementioned numerical efforts)
in simple shear flow with increasirige A sequence of rotational states, similar to that found
earlier byHuanget al. (2012 for a prolate spheroid of aspect ratio 2, was found, althdbg
transition Reynolds numbers differed in magnitude (lovegrthe higher aspect ratio). Impor-
tantly, the authors interpreted the transitions from onational state to the other in terms of
the analogous bifurcations of the fixed points of a model divoensional two-parameter vec-
tor field. This dynamical systems perspective is crucialndarstand the underlying system
symmetries. For instance, the analogy with the model dyoalsystem naturally explains the
presence of two possible inclined log-rolling and preaggsnodes, symmetrically disposed
about the ambient vorticity axis; as to which one is actualigerved in a simulation depends
on the initial orientation. The authors also observed tingiling mode of the spheroid to co-
exist with other rotational states at highee until the tumbling period diverged at a critical
Reynolds number, via a saddle-node bifurcation, in a masinatar to that found earlier by
one of the authors for two-dimensional elliptic cylindedsr{g & Aidun (2000). Rosenet al.
(2015 have extended the study Bbsenret al. (2014 to non-neutrally buoyant spheroids, and
examine in detail the effects of varying particle inertia @spect ratio (prolate spheroids with
aspect ratios ranging from 2 to 6) on the different transitReynolds numbers (tumbling
tumbling/log-rolling, tumbling/log-rolling— tumbling/inclined log-rolling, etc).

The chapter is organized as follows. In secttoB a reciprocal theorem formulatiobdal
(1979;Subramanian & Kocl§2005;Subramanian & Koclj2006)) is used to obtain the ex-
pression for the angular velocity of a spheroid in planagdinflow, accounting for both fluid
and patrticle inertia. The analysis of particle inertia i@y straightforward exercise, involv-
ing a regular expansion of the angular velocity for sn&lvith the leading-order term being
the Jeffery angular velocity. The analysis of even weak finéttia is a difficult exercise in
general, but it is shown that th@(Re) correction has a regular character with its calculation
requiring only a knowledge of the Stokes velocity fields. $hin sectior2.3, we derive an
analytical expression for the disturbance velocity fiele do a freely rotating spheroid in
planar linear flow, aRe= 0, based on a vector spheroidal harmonics formalism degdlop
originally by Kushch and co-workers in the context of elastbmpositesushch & Sangani



12 The orientation dynamics of a spheroid in planar linear flow

(2003;Kushch(1997);Kushch(1998). The general velocity field is expressed in spheroidal
coordinates as a sum of five contributions, each correspgridia simpler canonical linear
flow, the relative amplitudes of these component flows begtgrinined by the instantaneous
orientation of the spheroid. In secti@ the orientation dynamics of spheroid in the Stokes
limit is discussed. Sectioris5and2.6, respectively, analyze the(St) and theO(Re) inertial
drift for prolate and oblate spheroids with a detailed cbimazation of the bifurcation in the
orientation dynamics in @ — k plane. In these sections, we use an analytical approxima-
tion to investigate the orientation dynamics, based on &itabrdrift interpretation, thereby
eliminating the need to numerically integrate the diffél@requations corresponding to the
angular velocities. Sectia?.7 examines the drift, arising from both particle and fluid treer
for neutrally buoyant prolate and oblate spheroids. Them&derivation of the analytical ap-
proximation mentioned above using a multiple time scalédyaigis presented in sectidh8.
Further, we also discuss the limitation of the drift anayfeir extreme aspect ratio particles
(slender fibres and flat disks) in this section. In secBd&hwe summarize the results.

2.2 Formulation for the inertial drift. The generalized re-
ciprocal theorem

The velocity and stress fields in two different problems pgrablem of interest and a test prob-
lem, corresponding to two different flow configurations,tghe same particle can be related
through a generalized reciprocal theorehedl (1979;Subramanian & Kocl{2005;Subra-
manian & Koch(2006)). The two problems are defined based on a dynamical qudhéty
needs to be evaluated, which is an unknown in the problemtefast. The test problem is
usually chosen to be one in which the velocity and stresssfiatd known a priori. In the
present case, the quantity of interest is the correctiomeoangular velocity of a neutrally
buoyant spheroid suspended in a Newtonian fluid undergoipigraar linear flow with the
inertial acceleration, both of the particle and that of thudfl being taken into account. The
disturbance velocity and stress fields in the aforementigmeblem of interest are denoted by
u@ anda’™. The disturbance fields are related to the total velocity stneks fields in the
problem by’ = u® — T .x ando’®¥ = 6@ — g(=) = gV 4 p>I — 2E. Here,l - xis the
ambient planar linear flow in non-dimensional form definethwhe origin at the center of
the spheroid. The transpose of the non-dimensional vgl@aibient) gradient tensor and the
rate-of strain tensor in a space-fixed coordinate sys¥MZ’, with unit vector triplet:l.’L,lg,
and1 ) are given byl = 1) + A1/1} andE = (L1 + 1/1))(A + 1)/2 respectively. The
parameteA characterizes the family of planar linear flows withX){1+A) denoting the rate
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Fig. 2.1 The stream lines in the spaced-fixed coordinatesy#ir (a) solid body rotation (b)
elliptic flow (c) hyperbolic flow (d) extensional flow and (ejrgple shear flow.

of vorticity to extension in the flow. Ad increases from -1, one obtains different flows start-
ing from a solid-body rotation &t = —1, the elliptic linear flows for-1 < A < 0, a simple
shear flow aiA = 0, the hyperbolic linear flows for & A < 1, finally terminating in a planar
extensional flow aA =1. The ambient streamline patterns for these flows are shhowgure
2.1 As A increases from -1 to 1, there is a transition from a closedidg.1(a) and (b)) to
an open streamline pattern (figu2el(c) and (d)) with the streamlines far= 0 alone (figure
2.1(e)) being straight lines. The axes of the space-fixed coatdisystenX’, Y’ andZ’ are
defined such that they coincide with the flow, the gradientthedvorticity directions of the
simple shear flowX = 0), respectively (figur@.2). Above,p” is the pressure field required to
maintain the ambient linear flow for finike The ambient pressur@?) is obtained by equat-
ing its gradient to the inertial acceleration, whence onésfp? = —Rex: I - I - x/2. Note that
p*=0 for simple shear flow. The test problem, with its velocibdastress fields denoted by
u® ando@ respectively, corresponds to the Stokesian rotation oharsid, with the same
instantaneous orientation as that in the problem of inteirean otherwise quiescent ambient.
The reciprocal theorem then yields the following identity:

/u/(1> .o .ndS—/u(Z).a’(l)-ndS: Re/ 0-0'Y.u@ay, (2.1)
S S v

wheren is the unit normal into the fluid domawh andSincludes all bounding surfaces. Here,
Reis a non-dimensional measure of fluid inertia in relationiszgus forces, and is defined as
Re= yL?/v, wherey is the ambient shear ratk,is taken to be the spheroid semi-major axis,
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v = U/ps is the kinematic viscosity of the suspending fluid wittand ps being its viscosity
and density, respectively. The velocity fields” andu® decay sufficiently rapidly for the
surface integrals at infinity to be neglected, and the boumndurfaceSin (2.1) reduces to that
of the spheroid®,). The divergence of the stregk a'Vin (2.1) is equal to the inertial ac-
ceIerationDS{(l), and may be written in terms &fandu’™. The no-slip boundary conditions
in the two problems imply that, of,, U/ = Q; Ax—T -xandu@ = Q, Ax. In this chapter,
we determine; to O(Re), and toO(St), whereSt= pyyL2/u is a dimensionless measure of
particle inertia,pp being the particle density. The relative importance ofiplrtand fluid in-
ertia is determined by the ratit/Re= pp/p¢. Thus, for a gas-solid system we h&e> Re

but for solid-liquid systemSt~ Re for neutrally buoyant particles in particul&t= Re

Accounting for the boundary conditions above, the surfategrals in 2.1) may now be
expressed as:

/u(z)-a’(l)-ndS:QZ-Zl—Qz-/ xx (6°-n)dS (2.2)
Sp S
:StQZ-E(Ip-Ql)—QZ-/ Xx (0%-n)dS (2.3)
dt S
d
:StQZ‘d—(lp-QJ_)-i-Qz-/ (xxn)p~dS (2.4)
t S
/u’(l)-o(z)-ndsz/ n-(QiAx—r-x)-0@ds (2.5)
Sp S
:Ql-zz—r:/ x(a?.n)ds (2.6)
Sp

where we have assumed the absence of any external torque prdblem of interest. As a
result, the hydrodynamic torq£” 1) must equal the angular acceleration, dpdbove is the
moment of inertia tensor of the spheroid. For an inertigbesticle, the torque-free condition
would mean?1 = 0. In (2.6), Z> is the hydrodynamic torque acting on the spheroid in the
test problem. The identity2(1) now takes the form:

d

Ql-.,sfz:r:/ x(a(z)-n)d8+8t{—(lp-(21)} -Qz+Re/EI-a’(1)-u(2)dV
V

S
+Qz-/ (xx n)p*dS (2.7)
S

dt
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The non-dimensional equations of motion and the continetfyation for the problem of in-
terest,(o, u), are given by:

0u(1) 5
Re|—5—+ u®.ou®| = —0p® + 02u®, (2.8)
0-u® =o. (2.9)
with
u =01 Ax for X€ Sp, (2.10)
u —r-x for X — co. (2.11)

In terms of the disturbance field used in the reciprocal t@diormulation above, we have:

/(1)
Re a‘;t +(r-x)-0uY 1w L u®.ouW = —opWpw®, (2.12)
o.u¥ =0 (2.13)
with
Y =0 Ax—T-x for X€Sp, (2.14)
v -0 for X — . (2.15)

The test problem,a®,u@)), in (2.1), is defined by

—0p® + 0?2u® =0, (2.16)
0-u® =0, (2.17)
with
u®=0,Ax for Xe Sy, (2.18)
u® -0 for X — 0. (2.19)

For St= 0, Q, may be chosen orthogonal to the spheroidal symmetry axee ghre axial
rotation of the spheroid does not couple to a change in ientation. An inertialess spheroid,
as it rotates along a Jeffery orbit, spins at a rate commateswith the ambient vorticity vec-
tor projected along its axis. However, with particle ingrtihe presence of gyroscopic forces
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implies that orientation and spin dynamics are coupled,thadest problem must therefore
include both the axial and transverse rotation probleédn®{amanian & Koch 2005.

Using the form of the inertial acceleration i2.12 and the ambient pressure given above
(2.1, (2.7) may be rewritten as:

Ql-.s,ﬂz:r:/x(a@).n>ds+5t[%(|p-nl>]-QZ—ReQZ-/ (x><n)¥(d5
S S
ou'Y & @, @ @
—I—Re/ o +(C-x)- 00V +r. oY +u™Y.0ou'|-u@dv, (2.20)
V

Further, noting that the velocity field in the test problertirigar inQ,, one may writeu® =
U?2.9, £,=L2.Q,anda®@ =53 .Q,, whereU@ andL® are second-order tensors,
and=? is a third-order tensor, only dependent only on the geonadtitye spheroidal particle,
and are known in closed form as a function of the aspect red¥@ $ectio.3; also sedabade
et al.(2019). Accounting forQ, being arbitrary, 2.20) takes the form:

X-M-r-x

Q;-L® :r:/ x(z<2>.n)ds+3t9(|p.nl)—Re/ xxm Xl Xys

U@dy,  (2.21)

ou'V W @ D) er®
+Re/ 3 +(F-x)-0u7 + 7 -0 +d.0d
Vv

valid for arbitraryReand St In section2.3, we obtain expressions for the disturbance fields
that appear in4.21), using a spheroidal harmonics formalism, in a body-fixedrdmate
system aligned with the spheroid symmetry axis. As a regulecomes convenient to eval-
uate the unsteady acceleration involved in the last int@gitae right-hand side of2.21) in

a coordinate system that rotates with the spheroid (XYZ iaré@.2), but with theY axis
constrained to lie in the flow-gradient plane. The constramplies that while the axes of
this coordinate system section rotate with the spheroaréulting spin about the spheroid
axis ) differs from the actual rate of spin. Using the relatiorviostn the time derivatives in
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the two coordinate systems, we have:

(9U/(l) /(1) /(1) du/(l)

1 g -8 (2.22)

/(1)
:(du )—i—Qb/\u/(l)v (2.23)

dt /,

/(1)
:<dl:9t ) +u.ou® + uau™®, (2.24)

r

where Qy, is the angular velocity of the body-fixed coordinate systamd we have used
that the total time derivative in the rotating coordinatsteyn involves calculating the rate
of change for an element that moves with the velocity in thatheg coordinate system, which
is given in terms of the original disturbance fieldui@ =uM —QyAx. Using this relation,
(2.24) takes the form:

/(1) /(1)
r

where the third term arises from the usual rate of changesattating unit vector triad relative
to a space-fixed coordinate system, while the fourth ternotdsrthe rate of change due to the
spatially inhomogeneous disturbance velocity field beings past a space-fixed point with

velocity Q, AX. Using .25 in (2.21), we have the following form for the reciprocal theorem
identity:

Q,.L0 :r:/ x(£? -n)ds+3t9t(|p-nl) —Re/ xxm XXy
S S

d 2
+Re/
v

—(Qb/\x).EIu’(l)} .U@qy, (2.26)

1
< I(;/t( )> +(-x)- 00 1Y u®.ow® ouau™
r

which will be used in conjunction with the expressions fa thsturbance velocity fields de-
rived in sectior2.3,

In order to estimate th®(Re) correction toQj, it is sufficient to use the leading-order
Jeffery approximation fofy in the volume integral in4.26), since the neglected terms of
O(ReS} andO(R€) are asymptotically smaller than those retained. This fegdrder angu-



18 The orientation dynamics of a spheroid in planar linear flow

lar velocity, obtained from neglecting the inertial cobtriions in @.26), is given by:

Qijesr- L2 :I‘:/ x(£? .n)ds (2.27)
S
The components dje ¢ orthogonal top, obtained from 2.27), lead to the well-known Jef-

fery orbit equations for a spheroid which, in non-dimensaioiorm, are given byim &
Karrila (199));Leal & Hinch (1971),Hinch & Leal (1972):

K2—1
K2+

Piett = WAP+ [E-p—p(E: ppP), (2.28)
wherepjetr = Qjett AP, = %E:(I‘ — ™), with I as defined before, is the ambient vorticity
vector andk is the spheroid aspect ratio; ifbe the semi-minor axigx = L/b andb/L for
prolate and oblate spheroids, respectively. Since thergjghspins at a rate commensurate
with the projected ambient vorticity, we ha@®jess - p = %w- p. The angular velocity in
(2.28 may be written in terms of spherical coordinates (with thrgent vorticity direction as
the polar axis) as:

: 1—-A 1+A) k2—1

@ =— (T) + (T) P cos 4p;, (2.29)
: 1+A\ kK2—-1 . .

0j = (T) K2+1S|nZBJ- sin2g;, (2.30)

where 6; is the angle between the symmetry axis of the spheroid andithetion ¢’) of
ambient vorticity andp; is the dihedral angle between the flow-vorticity plaié’) and the
orientation-vorticity plane4Z’) - see figure2.2. As mentioned earlier, for simplifying the cal-
culation, we restrict th& axis of the body-aligned coordinate system to the flow-ggaidi
plane. The unit vectors of the body-aligned coordinateesystY Z can be expressed in
terms of the unit vectors of the space-fixed coordinate sy3te&/’Z’ (see figure2.2) as I

= cosfj cosy; 1, + cosB; singj1y -sinB;1;, 1y = —sing 1, + cosp 1y and 1, = siné; cosg 1}

+ sind; sing; 1, +cosd;1,. Thus,Qy = Qe = —@; SinG; 1+ 6; 1 + ¢ cosb; 1, with ¢ and

0, satisfying the Jeffery equations above; the subsdrimphasizes the difference in the
spin component of), compared td e+ - P.

To determineQ; to O(Re), one may also use the Stokes approximaﬁbﬁ)() for the ve-
locity field u@in (2.26. That this approximation leads to a convergent integrat beaseen
by noting that, for a linear flow &e= 0, we haveu’él) ~ O(1/r?) for r > L, and from .8),

/(1)
it is then seen thas=— ~ O(1/r?) for larger. Sinceu®® ~ O(1/r?) for r > L, the O(Re)
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Fig. 2.2 The body-fixed and space-fixed coordinate systems.

integrand based on the Stokes approximatidd(is/r#) for r > L, implying convergence. As
for the case of sedimentation in a quiescent fllidifadeet al. 2015, this points to the regular
nature of theéD(Re) correction with the dominant contribution to t¢Re) torque arising due
to fluid inertial forces acting within a volume of order theesiof the particle itself. It may be
shown that the next correction to the angular velocitgbiﬁze%), and is singular in character,
arising from the effects of inertia acting on length scaﬁe@(ﬂe—%). The non-uniformity of
the Stokes approximation must be accounted for at this ¢Bldramaniaret al. 2011). As
will be seen later, while th©(Re) correction evaluated here is sufficient to account for an
inertial drift across Jeffery orbits, the effects of inartin the Jeffery period, observed in re-
cent simulations¥lao & Alexeev 2014, where the spheroid rotation in either the tumbling or
spinning mode is observed to slow down with increasRggrequires an analysis of the next
correction aD(Re%), and this is reported in chaptgr

To O(Re), (2.26 may now be written as:

;- L@ —st(1,-Q,) :r:/ x(=? - n)ds— Re/ o Xl Xgg
ou'y W L@ @ @D Loty
+Re/v ot +(F-x)-0ug” +T-ug” +ug -Oug” + Qe AU —

(Qless AX)-DU’S)] U@y, (2.31)
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which is the final form on which subsequent calculations ased on. Note th&tin (2.3 is
still arbitrary. The operator on the left-hand-side, whensidered alone, governs the rotations
of an axisymmetric free body arising from a balance of cérgeal and gyroscopic forces.
These are known from classical mechanics uder top), and correspond to the linfét—

o (Goldstein 1962 Herein, we assum@tto be small, and only consider the effects of weak
particle inertia taD(St) and toO(S¥) in chaptei5. The surface integral on the right-hand-side
must lead to the well-known Jeffery orbitkeffery 1922 in the inertialess limit, while the
second term, is the contribution from the ambient pressamd, the third term, the volume
integral, captures fluid inertial effects @Re). The analysis of the leading-order effects of
fluid inertia therefore requires the Stokes disturbanceorsl field (u’gl)) due to a torque-free
spheroid, of an arbitrary orientation, in an ambient lingazar flow.

2.3 Solutions to the Stokes equation in spheroidal coordi-
nates

The reciprocal theorem formulation in its final forn2.31), requires the Stokes disturbance
velocity field due to a torque-free spheroidal particle inlanpr linear flow ¢/(®) and that
due to a rotating spheroid in a quiescent fluk{). The integral in the reciprocal theorem is
evaluated in a body-aligned coordinate syste¥ Z). The transpose of the ambient velocity
gradient tensofl;, when expressed in the body-aligned coordinate systemnies:

I =(1+A)cos 6 sing; cosg 114+ cosb)(cos ¢ — A sir? @) 1,1y,
+(1+A)sing; cosd; sing; cosg; (11, + 1,15) + cosdj (A cos ¢ — sirf ¢j) 1,1
— (14 ) cosg; sing1y1y +sinB;(A cos ¢ — sir’ ¢j) 11,
+sinBj(cos @ — A sirf @) L1y + (14 A ) sir? 6 sing; cosgj 1,1,. (2.32)

The velocity gradient tensor can be split into a rate-adisttensor and vorticity tensor.
In the Stokes limit, a torque-free spheroid does not geaaalisturbance velocity field in
response to the ambient vorticity. The disturbance fiel@aponse to the flow is driven by the
rate-of-strain tensor (denoted By alone, which is given by :
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E=(1+A) (co§ 6; sing; cos@; 11y + % coshj (cog @ — sir? ) (Ldy + 1y1y)

+sin6; cosh; sing; cosy; (141, + 1,1y) — cosg; sing 1,1y + % sinB;(cos ¢ — sirf @)
(1y1,+ 1,1y) + sir? 6} sing; cosg 1,1,) , (2.33)

in the body-aligned coordinate system. Note #Bdbr a planar linear flow is simplyl+ A)
timesE for the simple shear flowA(= 0). The velocity disturbance field for an arbitrarily
oriented spheroid in response to the ambient rate of seasor can be written as a response
to five canonical component linear flows, whose matrix regmestion is given by:

cog 6 sing; cosy, $cost;(cog ¢ —sirf ) sinB; cos; sing; cosy,
(14+A) | 2cosBj(cog g —sir ¢)) — cosy; sing 1sin6;(cod ¢ —sir’ @)
sing; cosd; singjcosy,  3sinBj(cog @ —sirfy;)  sin* 6] singj cosy,

—1sir? 6; sing; cosg, 0 0
=(142) 0 —1sin? 6 sing; cosg, 0
0 0 Sirt 8; sing; cosg,
lcof6: iNno: .

5(cos 0; + 1) sing; cosg 0 0
+(1+2) 0 —2(cog 6; + 1) sing; cosg; 0
0 0 0
0 3 cosBj(cog ¢ —sirfg) 0
+(14A) | 3cosBj(cog ¢ —sirf @) 0 0
0 0 0
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0 0 singjcosb; sing; cosy,
+(1+4) 0 0 0
sin@j cosdjsing; cosg; 0 0
0 0 0
+(1+A)| 0 0 1sir?6j(cod g —sir @) | - (2.34)
0 3sir?6;(cos ¢ —sir’ @) 0

The five component matrices above correspond, respecttoedyn axisymmetric extensional
flow (uni-axial or bi-axial depending on the sign of gircosg;) along the spheroidal axi)

of symmetry with an amplitude proportional to %9] cosy; sing;; a pair of extensional flows
in the planeXY) transverse to the axis of symmetry, one of them being obteirom the other
via a 4% rotation about the symmetry axis, and with amplitudes priaal to %(cos2 0 +

1) sing;j cosg; and 3 cosb; (cos ¢ — sir? ¢;); and a pair of longitudinal extensional flows in
planes containing the axis of symmetry (tk& andY Z planes) and with amplitudes propor-
tional to sind; cosf sing;j cosg; and 3 sir 6;(cos ¢ — sir? ).

Denoting the disturbance fields corresponding to the fivepmorant linear flows ag;s —
Uss, we haved gl) = Zi5:1 Uis, With ujs corresponding to the axisymmetric extensiag, Uss
corresponding to the two planar extensions, aRduss corresponding to the pair of longitudi-
nal extensions above. While the expressions for these coemp&tokesian velocity fields may
be obtained using earlier results based on the method ofilsirtges Chwang & Wu 1974
1979, herein we use the vector spheroidal harmonics formalsveldped by Kushch and co-
workers Kushch 19971998. The reasons for this choice have been outlinedabadeet al.
(2015, where the formalism was used for a single sedimentinggbaih an otherwise quies-
cent fluid. Since the structure of the formalism, and a comparwith a similar expansion of
the velocity field in terms of spherical harmonics, origipgiven by Lamb [for instance, see
Chapter 4&Kim & Karrila (1991)], has already been explained in some detaDabadeet al.
(2015, we will be brief here. The formalism is based on expressivggeneral solution of
the Stokes equations, around an arbitrary number of splednmarticles, as a superposition of
growing and decaying vector harmonics in local spheroidakdinates defined with respect
to a Cartesian system centered at each particle, and algtiethe particle axis of symmetry.
For a prolate spheroid, the spheroidal coordinafes,(p) are related to Cartesian coordinates
(X, 2) asx—+iy = d& nexp(ip) andz= d&n, with & = \/(E2— 1) andi = \/(1— n2), where
d is the inter focal distance. Here, the const@&surfaces denote a family of con-focal prolate
spheroids with the inter-foci distance being equaldo & denotes the surface of the particle
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and is also equal to the inverse of the eccentricity of thespt. The constanj-surfaces rep-
resent a family of confocal two-sheeted hyperboloids, thike constanp-surfaces are planes
passing through the axis of symmetry. The disturbance fieédtd a single particle in an infi-
nite viscous ambient must involve only decaying spherdidamonics, and may therefore be
written in the form:

=35 3 AVS!(r.q) (2.35)
2,2 2 feds(rd). |

where the decaying (singular) partial vectorial solutiaresgiven by:

sy = eRSy — &R + LR%, (2.36)
1
S n (et + )R T+ et — )RS + 1sF7 (2.37)
S = e {-(x—iy)DoRS — (88— 1)dDIFS+ (t+5—1)(t+5)B_¢ )RS
+ep { (x+1iy)D1R* — (85 — 1)dDoRS — (t —s— 1) (t— ) B )R
+1, (D3RS, — E@dee,Fts—C,(tH)?SFts_ 1, (2.38)
with S¥ — 0 for r — . Here, g = i@ Cts = (t+s+1)(t—s+1)5 with t =

0,1,...; |8 <t;further,e; = (1x+ily) /2, & = (1x—ily)/2, with 1,, as before, being directed
along the axis of symmetry of the spheroidal coordinateesystTheD;’s denote differential
operators withDy = (d/9x—1id/dy), D2 = (d/9x+1id/dy), andD3 = (d/0z). In (2.36-
(2.38), the functionsk® = F3(r,d) are the singular solid spheroidal harmonics of the form
2= Q2(&)Y3(n, @) with Y3(n, @) = B3(n) exp(isp) being the familiar scalar surface harmon-
ics, andP? andQf being the associated Legendre functions of the first andhsddad, respec-
tively (Morse & Feshbach 1953 The analogs of all of the above expressions, for an oblate
spheroid, can be derived from using the transformafica iE_ andd < —id (Dabadeet al.
(2015). The aspect ratio can be expressed in ternf ask = Eo/\/fg -1(= \/Eg —1/&)

for prolate (oblate) spheroid.

Now, theéé) 'S ands(é)’s are harmonic functions, while tfﬁ? 's satisfy the biharmonic
equation, and are therefore the only vectorial solutioss@ated with a non-trivial pressure
field. The index in Sf;) is a measure of the rapidity of decay of the velocity distadesfield
for larger, with lim,_,. u(x) O r~, this arising from the largé- behavior of theQf’s. Since
the ng)’s alone include the fundamental singularities of the Stokguations, in light of the
large+ behavior indicated above, one expectsﬁﬂ?s to be relevant to the translation prob-
lem whereu(x) O 1/r; and theSéi) 's to come into play for both transverse rotations and the
disturbance fields in an ambient linear flow, for all of whigfx) 0 1/r? - see 2.39-(2.47)
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and @.59-(2.61 below. Note that axial rotation is an exception in that iesmot generate

a pressure field and the velocity disturbance in this casarnsbnic, being proportional to
%%) (see R.68). The second index in all these cases denotes the variation of the velocity
field as a function of the azimuthal angle in the plane trarssvé the symmetry axis, with

s = 0 corresponding to an axisymmetric exterior field; for ins&® the disturbance velocity
field in an ambient axisymmetric extensional flow must ined%).

For a prolate spheroid, use of the surface boundary condiig = &y leads to the fol-
lowing expressions, in terms of tldg’)’s, for the disturbance velocity and pressure fields
corresponding to the five canonical linear flows above:

e (Q%(_fjf_o—(é;g()fo)) (Sir? 01516} 0056)) 5. (239
Pie= (Q%?éc;ff(;)g;(ico)) (ir? 6y sing, cosgy DaF (249
Pos = — <3Q;?§’(_1; 3%) (25771519 oS (1-+c08 )] (DSFE 4 D). (242)
R e e =4
P e a0lE) 0% oI OFE D) &4

as = éﬁiiﬁgj\ i) (sin6 cosd) sing; cosgy) (S, ~ S, ), (2.45)
Pas = é‘é‘gi&g _Ai) (sin6; cosb; sing; cosg) (DaF{ — DaF; 1), (2.46)
Uss = — (;;(2‘;‘22% A )1) sing; (cog @ —sirf ¢))(S) + 7 ), (2.47)
e = 210%0%0(1+2) [sin6; (co ¢ — sir? @))](DaFi + DsF{ ). (2.48)

Qi(&0) (282 1)
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On substitution of the expressions for tﬁg‘)’s and R®'s, given in .38, the disturbance
velocity fields take the following forms:

d&o(1+A . ,
= e i) <050 PR 5065 PR
—df_g(lx;—erly:—y)(PSQg)} , (2.49)
2dEo(1+ A . . 9
Ps =~ 7, Eof‘f ij%)( g7 (SIT Bisingi cosgy) 5 (PYQY). (2.50)
d&o(1+ A . , . ,
e (Eon(f‘Zg ol o snacosn [x{ rialsing - £ elateosn |
d P
fg (1 Xax +1ydy) (P5Q5cos 2p) — fg 755 (P2Q20082P)] (2.51)
2d&o(1+ A . , _ ;
P ey i o s cosn | (ricsing - L eojeosn)|
(2.52)
d&o(1+ A . , . ;
Uss = (3Q%(Eo())( EoQ)%(fo)) coshj (cog @, —sirf ¢;) {x { a—X(PllQ%smqo) + 0—y(P11Q% cosgo)}
P .
+% <1Xa +1y0 )(P2Q28|n2(p) 1’520 120 (P2Q3sin2p) | , (2.53)
2d&o(1+ A . ) _ )
e <3Qi<fo>0(— ik o 0 - )| Pidisng) + Jriccoso)]

(2.54)

4S_Q2(€o)(2€0 )(smej cosB; sing; cosy;) [r aZ(PlQlcosqo) 3 1Z (PZchosgo)
d 0
go (1Xa +1 ay) (P%Q%cosgo)] , (2.55)
AdEoo(1+A) . .
s = Ql(?;;z?éf:— i) (sinB; cosh; sing, cosgoj)d—Z(PllQ% cosp), (2.56)
> 0
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déoéo(1+A) . J
USS:Qng(iO((ZE: >)S|n9j(coszqoj—smzqoj)[ 5 —(P{Q1sing) — go 75, - (P3Q3sing)
. d 17} .
éo (1 o —i—lydy) (P%Q%smcv)], (2.57)
. — ZdEOEO(l—FA) S|n91(00§¢j _szqoj) (Pllem(p) (258)

Q3(&0) (255 - 1)

As shown byDabadeet al. (2015, the test velocity fields in.31), corresponding to transverse
rotations about thg andy axes, are given by:

(2 _ id (28— 1) 2 2 id (£QL (&) + 260Q0(&0)) S
& Qs - i@ (S-s%)+ Q}(%0)(2Q0(é0) &0 — &0 () (Sad+ %)
(2.59)
d(255—1 _
) <250Q8<<£o§0— EoC)Qi(Eo)) (2PrQ1Ly + PLQrsingL:)
d 0 .
 (280Q0(&0) — &QL(&)) l'a_z(PllQ%S'”“’) go 120 (PQzsing)
1
déo (1X o +1y;y) (P%Q%singo)], (2.60)
@ _ d(285-1) <2 &2 d(&Q (%) +280Q(&))  («® G
~ (280Q}(&0) — EOQ1<EO))< L 1’_1>+Q%(fo)(zfoQg(fo)—EOQ%(EO)) (Sz’l SZ’_1>’
(2.61)
d(2&2—1
- (ZEoQ(l)((foio— fo()?%(fo)) (2PLQi L+ PrQrcosply)

d 12 —(P3Qzcos0)

d J
2 (piicosp) - &

i (2£0Q}(&0) — £0Q7(&0)) {r 0z

d d
go <1Xd +1y0y) (P3Q3 cosqo)] , (2.62)
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respectively, with the corresponding pressure fields bgivgn by:

@ __ 2id(&0Qk(&) +260Q (&)
T Qb(&0) (260Q0(&0) — &0k (&)
2d(£0Q1(&0) +260Q0(%0)) 0

(D3 +D3Y), (2.63)

- 2.64
Q3(&0)(280Q%(&0) — &0Q1(&0)) 92 (1Q15|n<P) (2.64)

@ 2&Qi(&) +28R&) 1 o1 e
P Q(&0) (26000080) — &0Ql(E0)) 2 2 (2.65)
2d(&0Q1(&o) + 280Q(&0)) (3( PGl cosp). 2.66)

QL&) (260Q0(&0) — £0QL(&0)) 02

whereDp = dD3R°. The test velocity field corresponding to rotation aboutzlagis is given
by:

2 — 2Id€o §12’ (2.67)
— dEO (—singly + cosply) (PLQY), (2.68)
Qi(&o)

with pg) = 0, there being no associated pressure field with axial motafihe magnitudes of

the torque for axial and transverse rotations are giveninig8and 8tYc respectively, with

4(&2-1 4(282-1
xc = 363(2{02((§§1))c0th1€0) andYc = SES(Z(Eng(l)Egoth)lEo2.»50)'
characterizing the test problem that appear218) are therefore given by (? = ug() 1, +
u$)1,+uZ'1, andL®@ = —8r(Xcpp+ Yc(I — pp)) with p = 1,. The test torque tensd(?
in (2.76), is defined in the end of sectidh3. The non-dimensional moment of inertia tensor,
I, is given by3Z 5[2;2 pp-+ (250 2 —pp)} and‘fgf [Eopp-i- (285 1)(I—pp)] for prolate
and oblate sphermds respectlvely

The second-order tensors

2.4 Stokes limit and the equivalent aspect ratio

In this section we will focus on the trajectories of the ot&ion of a spheroid in a planar
linear flow in the Stokes limit. The rate of change of anglgsand ¢; in this limit are
given in 2.29 and @.30. These angular velocities can be recovered fr@m1) by evalu-
ating the integral in the limit oRe= 0 andSt= 0, and noting thaE® . 1; = ~P@1; +

2 m(f—gu @ 111, A(ODAU®) |, whereP? is the pressure corresponding to the trans-
verse rotations. It can be shown that for a given aspect, tdwgotrajectories are closed orbits
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on a unit sphere only till a particular say A it (seeHinch & Leal (1972). This is expected
because the vortical component of the flow responsible #®ettistence of closed orbits de-
creases with increasinyg (figure2.1(a)-(e)) and a = A¢it, becomes sufficiently small com-
pared to the extensional component, and as a result clobédd oeases to exist far > Agit.

It can be noted thaxi; is always positive implying that the critical flow separgtiopen and
closed trajectories on the unit sphere is always a hyperboéar flow. One findd it = 1/K2
andk? respectively for prolate and oblate spheroids of aspeict katNote thatAciy — O for
infinitely thin fibers and disks, implying that the criticab¥ asymptotes to a simple shear
for extreme aspect ratios. This is consistent with the flaat the orientation of an infinitely
slender fibre and the normal to a flat disk evolve in an affinemagmmerely following the
ambient streamlines (projected onto the unit sphere). rdig.3, At is plotted as a func-
tion of k. As indicated, the trajectories for the spheroid orieptatire closed, when\( k) is
below Aqit curve. There are six fixed points on the unit sphereAfedit; pairs of unstable
and stable nodes, and a third pair of saddle points oZtlexis ( the indices of these fixed
points add to the Euler characteristic, as must be the cAsmpst all the trajectories end in
the two stable fixed points. The stable fixed points and theedmrbits for both prolate and
oblate spheroids are also shown in the relevant regionsur&fiy3. As will be shown in later
sections, in the region below thg,i; curve in figure2.3 weak inertia will result in a drift
across the closed orbits, and the long-time orientatiotmiligion can be drastically different
from that implied by Stokesian dynamics which predicts atiomred dependence on the ini-
tial orientation distribution for all times. For the regiabove the\.i; curve, weak inertia can
only alter the location of the fixed points by Rg or O(S{). Therefore this region in the — k
plane is not analyzed in detail. Note that the correctiomé&angular velocities at @€ and
O(St) presented in the next two sections are, however, validlfoegions in theA — k plane.

It has been shown that in the Stokes limit, the closed trajexs of the spheroid orientation
vector in a planar linear flowA( < Agit), are the same as the trajectoridsffery(1922) of
an equivalent spheroid in a simple shear flow of strerigith A ) (Hinch & Leal 1972 Prager
1957 Bretherton 1962 The aspect ratio of this latter spheroid is a functiod aindk, and
is given by:

(K24+1)(1—A)+ (k2=1)(1+A)
Keq:\/<K2+1)<1—A)_(K2_1)(1+/\)' (2.69)
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10
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Oblate Spheroid Prolate Spheroid

25 21 17 13 9 5 1 5 9 13 17 21 25
K

==

Fig. 2.3 The criticall curve in theA — Kk plane. The blue curve corresponds to the critical
curve which separates the region of closed orbits from th@neof open trajectories in the
A — Kk plane. Typical trajectory topologies, that is the tracehef drientation vector on a unit
sphere centered at the origin starting from various ing@iditions, are shown in the inset
plots as blue (closed) and red (open and moving towards figad)urves for regions above
and below the\q; curve. The two stable fixed points for both prolate and oldateeroids in
the open trajectory region are also indicated.
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K A -
ot
0.01 -0.04
0.1 -0.03
0.2 0
0.4 0.121
0.98 0.957

Keq =

Fig. 2.4 The trajectories of a spheroid of aspect ratio 0.2 simple shear flow. The table
shows some combinations fandA for which the equivalent aspect ratio is 0.2

This means that the angular velocities of a spheroid in agplamear flow given in2.29
and @.30 are (1) times the angular velocities of a spheroickof= keqin simple shear flow.
For simple shear flowX=0), of coursekeq is same ax. From @.69), Keq varies from 1 to
oo(0) for prolate(oblate) as th& increases from -1 tdit. In figure 2.4 we have shown the
orbits of a spheroid with aspect ratigq = 0.2 in a simple shear flow and have listed some
combinations ok andA which results in an equivalent aspect ratio of 0.2. Thusctosed
trajectories in a planar linear flow are Jeffery orbits oféfi@rementioned equivalent spheroid.
This would also mean that spheroids of different aspeabsatan have the same trajectories
for different flows. In particular, a spheroid of an arbiyraspect ratio describes the nearly
meridional trajectories similar to a slender fibre (for pte) or a flat disk (for oblate) for
A — Acrit -

In the following sections, we interpret the weak inertidkets in terms of a drift across
the trajectories described above in a non-orthogonalarbdordinate systenC(r)(Leal &
Hinch (1971). The constan€ lines coincide with the Jeffery orbits of the planar lineaml
for the spheroid under consideration, while the constalmies are same as the constgnt-
contours (on the unit sphere). The orbital coordinateseletad tof; andg; in terms of the
equivalent aspect ratikeg;
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\/(Kgqsinz @ +cof )
C =tanb; P , (2.70)
eq

T =tan ! (#) . (2.71)

Here,C varies from 0 too, with C = 0 (called a spinning orbit) being the trajectory where the
spheroid is aligned witl’ axis (vorticity axis) andC = « (called a tumbling orbit) being the
trajectory where the spheroid orientation vector traveesenit circle in thex’-Y’ plane (flow-
gradient plane). The angular velocities of the spheroichentumbling and spinning orbits
are respectively, perpendicular and parallel to the oaigm vector. The intermediate finite-C
orbits are three-dimensional precessional orbits. Foffiaag C, the orbit phase varies from

0 to 2rrand is defined such that the rate of change of orientatiorein doordinate is constant
(despiteg; changing at a variable rate). The equations for the ratebarfige take a simple
form in the orbital coordinate system, and are given by:

dC
5 =° (2.72)
dr  (1—A)Keq (2.73)

dt — (kZ+1)

Evidently, the orbital coordinat€ of the spheroid does not change in the Stokes limit. Note
that the above equations are valid fot < A < Agit. Inthe limitof A — —1, that is the trivial
case of solid-body rotatiomeqis 1, and the orbits are merely circles transverse to the@mhbi
vorticity. In the limit of A — Acrit, Keq— o (0) for prolate (oblate) spheroid, and the angular
velocity dr/dt — 0O, consistent with the fact that the rotation of the sphehaid to arrest at
A= )\crit-

2.5 The effect of particle inertia: massive spheroidsRe=0
and St < 1)

In this section we investigate the effect of the particlatiason the orientation dynamics of
a spheroid in a planar linear flow. We calculate th&tp¢orrection to the angular velocity
using .31 by settingRe= 0, whence 2.31) reduces to:
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Qi-L,=r :/ x(Z? . n)dS+ St%(l Q). (2.74)

S
The second term on the right-hand side above gives the tmmedue to the particle an-
gular acceleration. As mentioned earlier, it is conventenévaluate the correction in the
body-aligned coordinate system (XYZ in figuge2), which rotates Witthjeff. The rate
of change in the space-fixed coordinate system is relateletodte of change in XYZ as
L) = (&), + Q% A (), the subscript ‘b’ denoting thXY Z system. Noting that the
moment of inertia tensor is a constaniilY Z, (2.74) takes the form:

Q,-L? =r :/pr(2<2> -n)dS+-St ll o- (%)bﬂ)‘jeff Alp-Q1)]. (2.75)

Using a regular expansion of the foly = Qjefs + StQ(lls)t+ O(Stz) for the particle angular
velocity, one obtains:

dQjess
Q(lls)t' L =lp dtjl:ff +Qtjeff/\(|p’Qjeff), (2.76)

atO(St). In (2.76), to leading order(d/dt)y, is replaced byd/dt)jesf, where the latter de-
notes the rate of change along the closed orbit in the Stakés given by .29 and .30
in terms of6; and¢;. The rates of change qf and6;, atO(St), can be obtained fron2(76),
Pist = —Q\2¢/sin6j and b = QLYY and are given by:

do; .
(d—tj)s = sin6; cost; [F(&o,A) + F) (&0, A) cos 2 + FJ(&0,A) cos B + FJ (&0, ) cos 4p,
t

+Fg(&0,A) c0526; — 4¢y) + Fg'(§0.A) cos(26; +4gy)] , (2.77)

do; _
(d—qt)J)S =sing; cosgj [GY (&0, A) + G (&0, A) cos B + GE (v, A) cos 2p,
t

+G}(&0,A) cos B cos 2] . (2.78)
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The functions ok andA that appear above for a prolate spheroid are given by:

(—1+83) (—3+2A —3A24+4(—1+1)2&3) (—&+coth 1 & (1+&Z))

p _
F (é0,A) = 16050(1—255)2 ,
(2.79)
p _ (142 (14 &) * (~Go+coth 1éo (14€5))
F (é0,A) = 4060 (1 282) : (2.80)
2 2 —1 2
FP(&0,A) =FP(&0,A) = _QHAP (14 8) (S0t oot 4o (1+&5)) (2.81)

16080 (1—2&2)2 ’

2 2 —1 2
F2(60.0) =FP(E, 1) = (EFAS 1+3€200)E§(1EO—+2§§;2 O+E) L
(=1+A2) (2582 +3&5) (—& +coth & (1+&2))
408y (1—282)2 ’
(—14+22%) & (—1+&2) (—&+coth 1 & (1+&3))
40(1—282)2

G:E)(EO?)‘) =

(2.83)

GY(&0,A) = — (2.84)

(1+2)%(=1+&]) (—&o+coth *& (1+&F))
p —__ P _

The functions for an oblate spheroid can be obtained usiagrémsformatiorg <> if_o and

d + —id, on the dimensional angular velocity, having accountedteraspect-ratio depen-
dence that occurs in the relevant non-dimensional param&there andRein section2.6).
Einarssoret al. (2014 had derived the (&j) correction to the angular velocities for a spheroid
in a planar linear flow in an invariant form and the expression2.78and @.77) match with
those. However they restrict their analysis to finding tHatdhat is stabilized at long-times
for the particular case of simple shear flolv= 0).

In the analysis that follows, we investigate the effect & ihertial angular velocity cor-
rections given in2.77) and Q.78 on the trajectory of the orientation vector for aN,(k)
combinations below thaci; -curve in figure2.3. There are two approaches for carrying out
this investigation. The first, brute-force, approach isdmerically integrate the differential
equations governingj andgj, obtained by adding the angular velocities given2rv@ and
(2.77 and the corresponding leading order angular velocitiesrgin equations2.29 and
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Starting 7
orientation

Drift towards
tumbling

=2, =02

Fig. 2.5 (a) The Gft) inertial trajectory (black) is plotted on a unit sphere.r Bte purpose
of illustation a Stokes number is chosen to be 1. The oriemtalrifts towards the tumbling
orbit (red curve). The blue curves on the unit sphere in (d)(Bhare the Jeffery orbits.

(2.30, to obtain the trajectory on the unit sphere. The trajgctdotained in the manner de-
scribed above, starting from a particular initial conditi&t = 1, 8;0=0.5, ¢jo = 1) is shown
in figure 2.5a) for a prolate spheroid of aspect ratio 2 in an elliptic floith A = —0.2. The
Jeffery orbits, for the same set of parameters are plottédune 2.5b) for purposes of com-
parison. As is evident, the orientation of the spheroidtgitbwards the tumbling orbit (red
curve on the unit sphere in figu&5a)). To repeat this exercise for the whole ) plane
below theAit- curve in figure2.3, and for all possible initial orientation on the unit sphese
cumbersome and is not pursued further.

In the second approach, the orbital drift across the closgectories in the Stokes limit
is calculated using2.77) and @.78. The orbital drift QT?) can be obtained by differentiating
(2.70 and is given by:

dc_ c  dg C(kaq— 1) cosp; sing dgy
dt  sin6jcos6; dt K3 Sinf @ +cog g dt

(2.86)

The drift takes the form:

- Kk2,— 1) cosy; sing, :
9 gl (%) 4 Kea—)cosp sing (%) : (2.87)
dt singjcosd; \ dt /gt k3,sifg+cofe \ dt /gt
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where(S4)gand(5%) g are given by2.77) and @.78. As expected, the drift is @), since
dC/dt = 0 at leading order. The G drift leads to an inertial trajectory where the spheroid
orientation vector spirals towards the flow-gradient pldfar St << 1, this spiralling is tight,
with each turn of the spiral closely approximating a Jefferlit (see figure2.5 (a)). The
orbital drift can then be conveniently characterized bygiteh of the spiral measured in units
of C. This pitch,AC, defined at leading order as the chang€ wuring a single Jeffery period
(Tiet1=271(K3q+ 1)/ Keq), is given by:

Tiett
AC, = / FACy (2.88)
s dt
dr._, [?"dC
~(gt) /0 S (2.89)
K3,+1 [2m 1 de; (k2,— 1) cosy; sing, /dy
oL (1 (a6 yomasnn (da) ),
(1—A)Keq Jo singjcosd; \ dt /gt Kkgsirfg +cofg \ dt /st
(2.90)

where the subscripf’ denotes particle inertia. Theiintegrals in .90 are to be evaluated
for fixed C, implying closeness of the inertial spiralling traject@tya given point to a Jeffrey
orbit passing through the same point. Usi@g/() and @.79:

Kéq+1 Ml b p p p
AC;, :Stci(1 K {/o {Fl (€0,A) +F; (é0,A)cosap, + F5 (&o,A)cos DB +F, (€o,A) cos 4,
_ eq

2M(Kk2,— 1) COS @} SINF
K3,SiN? ¢ + co ¢

{Gf(fo, A)+GB(&,A) cos B +GE (&, A) cos 2p;+G} (o, A ) cos B cos Zpl} dr} .

+FP(&0,1) cos(26; — 4¢y) + FL (&0, A) 0526 + 4 )} dr + /0

(2.91)

This may in turn be written as:
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_|_
6y =StC P eq HlleEo, )+ 1EP(E0,A) + 1P (€0, )+ 1P (€0, 1) +16F(E0. 1)

16FP (80,2 >} {Jlep@o, >+JZG§<«SO,A)+JSG§<«SO,A>+J4GE:(EO,A>}},
(2.92)

where thdj’s and theJ;'s result from integrating the corresponding trigonontefinctions in
(2.91) overt. The trigonometric functions are related@oand t through .70 and @.71).
The expressions fdr — J4 as functions ofC andkeq are given in AppendiA. The orbital
drift approximation in 2.92) has reduced the need to consider all possible initial ¢mmdi in
the brute force mentioned earlier, to a one dimensional eéaton of all possibl€C’s. The
average change, however, should be much less@hdnerefore the above analysis implies
% << 1. It can be seen fron2(92) that this condition breaks down for wh&t~ Keq(1/Keq)
(F's andG;j’s are O(1) numbers in this limit) that is for extreme valué®guivalent aspect
ratios that iskeq << 1(Keq>> 1) for oblate (prolate) spheroid. This would mean that cltose
A = Acrit curve in figure2.3, the average drift approximation is valid whBe < Keq, and this

is one of the limitations of the orbital drift approximatiand we discuss those, in the context
of a formal multiple scales analysis, in sectg.

The orbital drift in .92 is a function ofC, the flow parametehA as well as the aspect
ratio (throughép which is the inverse of the eccentricity of the spheroid)isishown later
in section2.8 that the orbital drift interpretation, motivated here gsphysical arguments,
emerges naturally as the leading order term in the framewafaknultiple time scales analysis.
The drift is positive for a prolate spheroid of any aspeciorat a planar linear flow with
a nonpositiveA (all elliptic linear flows including the limiting case of sdlbody rotation
and simple shear flow). In particular far= —1, one expects the particle inertia to cause
the prolate spheroid centrifuge out towards the tumblirigtorThe long-time orientation
dynamics of a prolate spheroid in a flow with< 0 approach therefore that of the tumbling
orbit. This is noted in the fourth quadrant of the- k plane in figure2.6(a). In a hyperbolic
flow (0 < A < Agrit), the tumbling orbit continues to be the long-time orielt@atimit for
a prolate spheroid witlxk approximately 30. However, if the aspect ratio of the spigero
is smaller than 30, the orbit that is stabilized at long-snsethe tumbling orbit, only till a
particularA1(k) (0 < A1 < Agrit), indicated by the red curve in the first quadrant of figure
2.6(a). For these aspect ratios,Af characterizing the flow is larger than, a repeller (a
Jeffery orbit at the order of approximation considered¥yesxon the unit hemisphere dividing
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it into two distinct basins of attraction; with the attracb®ing the tumbling orbit for one basin
and the spinning orbit for the other. The shaded region inéigu6(a) corresponds to all those
A values for which two distinct basins of attraction exist ba tinit hemisphere. Eventually,
with increasing}, the spinning orbit becomes the sole attractor at a paatidgl Kk )(A1 < A2)
indicated by the magenta curve in the zoomed plot in fiQué), and this remains so for the
narrow range of’s in the intervaldz(K) < A < Acrit-

In figure 2.6(c), the orbital driftAC;, is plotted agains€/(C + 1) for a particular aspect
ratio, k = 2, for differentA’s. The drift is positive for allk’s belowA =~ 0.13(A; for k = 2),
and the long-time orientation dynamics approaches thelingbrbit. AsA becomes larger
than 013, the sign of the drift changes across a critiCalJeffery orbit withC = C*, say).
This Jeffery orbit acts as a repeller. It emerges from tharspg orbit at arounch = 0.13
(A1), and with increasind , moves towards the tumbling orbit, eventually coincidinighwit
atA =~ 0.20(A2) . The repeller orbits fok = 2 at variousA’s are plotted on the unit sphere in
figures2.6(d) (e) and (f).

The long-time orientation dynamics of an oblate spherosingpler compared to that of
the prolate spheroid discussed above. An oblate spherdtd thwards the spinning orbit
irrespective of its initial orientation and aspect ratiamy planar linear flow witiA (< Acrit).
In figure 2.7(b), the orbital drift is plotted againg&/(C + 1) for variousA’s for an oblate
spheroid of aspect ratio 0.1 and is negative irrespectiveanfdA .

It is important to understand the effect of particle inedirea spheroid rotating in a simple
shear flow to understand the rheological properties of assuspn, which is presented in detail
in chapter3. The drift for a prolate spheroid is plotted as a functionhe hormalized orbit
constantC/(C—+1) in figure2.8for various aspect ratios. The drift is evidently zero@o+ 0
andC =« [C/(C+1) = 1] on account of symmetry, but is positive for all other valuE€ and
for all aspect ratios. Thus, a massive prolate spheroidyawefts towards the tumbling mode.
In the near-sphere limigf — o), ACp ~ Stg—gfo‘z, as is expected on account of the drift being
proportional to the square of the eccentricégy{1/&p). In the limit of a slender fibelgy — 1),
one findsACp ~ —St@(fo — 1)% In(§o—1). A leading-order estimate from the non-aligned
phase of a rotating fiber comes out to be large®€o — 1) In(ép — 1)]. This estimate arises
from transverse moments of inertia ©f o — 1) driving a drift against a resistive torque of
O[In(&,—1)]~* predicted by slender body theory; the next correction imthe-aligned phase
is O[(£0— 1)2In(&o— 1)]. The actual estimate @[(& — 1)2 In(& — 1)] above must therefore
involve the dominant flow-aligned phase of the fiber. Thesar-sphere and slender fiber



38 The orientation dynamics of a spheroid in planar linear flow

(@) PARTICLE INERTIA

SPINNING TUMBLING

005 A1(k)  TumBLING

Oblate Spheroid: Prolate Spheroid T 5 3 3 17 2 P

:
x
.
!
:
:
A
25 21 17 13 9 5 3 b 5 9 13 17 21 25
1 K
7
:

A = 0.13 A=0.19 A =0.208

Fig. 2.6 (a) The orbit stabilized at long-times due to p#eticertia are identified for all combi-
nations ofA -k below theAit curve (blue curve). Red curve denotes thek) value at which
the repeller emerges from spinning. The shaded region de¢hetcombinations afA, ) for
which there is a repeller on the unit hemisphere. (b) The mabwew of the shaded region.
(c) The orbital drift is plotted again%% for a prolate spheroid of aspect ratio 2. Thever
which drift changes sign correspond to the repel&r) (ocation. The repeller orbit (red) is
plotted for the prolate spheroid of aspect ratio 2 andAfer(d) 0.13 (e) 0.19 and (f) 0.208.
The blue orbit in (d),(e) and (f) corresponds to the tumbbnigjt.
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Fig. 2.7 (a) The orbit stabilized at long-times due to p&tiaertia are indicated. (b) The
orbital drift is plotted againsé% for an oblate spheroid of aspect ratio 0.1. The drift does not
change sign for an oblate spheroid.

scalings, together with a normalizing factor (@2+1)~1, are accounted for in figur2.8in
order to render thAC,, curve, in the relevant asymptotic limit, a finite one for@ll

The normalizedAC,, for a massive oblate spheroid in simple shear flow is plotsed a
function ofC/(C+1) in figure2.9, and is negative for all’s and aspect ratios, implying that
the spheroid would asymptote to a steady spinning moderggdrom any initial orientation.
In the near-sphere limifAC,, is just negative of that for a prolate spheroid. In contrast
prolate spheroid, however, a normalization based on tlas sighere scaling (@(50’2) alone
suffices for plottingACy, since the inertial drift remains finite in the flat-disk ltmilimg 4

1
ACp ~ —nz%. The moments of inertia of a thin oblate spheroid are @l§, — 1)%,

but their smallness appears to be compensated by theQidg— 1)*%, period available for
inertia to act, leading t&C, beingO(1) for &, — 1. Note that theAC, curve for any oblate
spheroid crosses that of a near-sphere, with this croagsoug moving in fromC/(C+1) =1
to a limiting value of about 0’5 for a flat disk. Thus, for sufficiently thin spheroids, theirtial
drift increases in magnitude below this cross-d@ewhile decreasing for greatérs.

2.6 The effect of fluid inertia (St=0 and Re < 1)

In this section we investigate the effect of fluid inertia dr torientation dynamics of a
spheroid in a planar linear flow. The rates of change(bjoand éj, at ORe, is obtained
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Fig. 2.8 The drift due to the particle inertia in simple shélaw, as characterized by the

normalized change in the orbit constant in a single Jeffenyog, St‘lﬁ, plotted as a

function of <4, for a prolate spheroids$; = 0 and%; = 1 correspond to the log-rolling
and tumbling modes. The upper plot uses the additional rnigat@n factor offg, so the
drift remains finite in the near-sphere limfp(— «). The lower plot uses the normalisation

factor ((& — 1)%2log(& — 1)) 1, to make the drift finite in the slender fiber lim&y— 1).
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Fig. 2.9 The drift due to the particle inertia in simple shélaw, as characterized by the

normalized change in the orbit constant in a single Jeffenyog, St‘l(CAzipl), plotted as a

function o_fc%l, for an oblate spheroigs>; = 0 and<$; = 1 correspond to the spinning and
the tumbling modes.

by evaluating the integrals proportionalRein the right hand side ofX;31), using the veloc-
ity fields given in sectior2.3. The rates of change are given by :

do; ]
(d—tJ)R = sing; cosb, [Flf(fo,)\)—l—sz(fo,)\)cosij +F3f(£o,)\)cosa9j +FJ(EO,)\)cos4rpj
e

+F] (£0,4) cos(26; — 4)) + F{ (&0,1) cos(26; + 4}) (2.93)

do _
<d—?)R =SIng; CoSy; [G{(EO,A)+G§(EO,/\)cosz9j +Gl (&, )cos 2,
e

+G! (&,1)cog26)) cos2g, )] . (2.94)



42 The orientation dynamics of a spheroid in planar linear flow

The aspect ratio andl dependent functions for a prolate spheroid are given by:

A (&o— &3+ (—1+&F) coth1&)

Py (0,A) =(1+2)2F/ (&,0)+ oo (11 222) . (@95)
Fy (80,0) =(1—A?)F, (£,0), (2.96)
RS (E0,4) =(A +1)%F (&,0), (2.97)
Fy (80,A) =(A +1)%F/ (&,0), (2.98)
Fy (80.4) =F¢ (&0,4) = (A +1)%F (&0.0). (2.99)
G{(&,A) =(1-22)G{(&0,0), (2.100)
G} (&,A) =(1-A2)G}(&,0), (2.101)
Gy(&0,A) =(A +1)%G}(&0,0), (2.102)
Gl (&0,1) =(A +1)%G}(&,0), (2.103)

WhereFif (&0,0) andGif (&0,0) are those corresponding to simple shear flow given by:

F,f (80,0) =(83(—64851% 4 1350610 — 557188 + 118418 — 926 % + 226%Z + 6)
— 278§ (2458 — 1485 — 1967 + 163 — 3) &P coth ™ (£9)*
+9&0(288532 — 564510 — 2068 + 79%S — 74368 + 26152 — 29)&y* coth 1(&p)3
+ &0(259253% — 7020832 + 13932 3% — 2112F8 + 142558 — 57785 — 271153
+652) coth & — 3(129653° — 4320534 + 5346532 — 1477630 — 42608
+ 611655 — 34925 + 8492 — 58) coth 1(&p)?)
(480E3(— 1+ 288)3 (388 +3& Egcoth L &g+ 2) (— 33 + 580 + 3&" coth 1 &)
(3§ — 1) coth™ & —3)) (2.104)

F) (£0,0) = —(&o"(—9&3 + 306] — 11565 + 9083 — 1280 + 9&o (&4 + 1)&Zcoth (&)
38 (968 — 1064 — 1762 + 14) & coth 1(&)?
+ (27830 — 8788 + 133§ — 3385 — 5282 + 12) coth 1 &)

(40(& — 2E3)2(—3E2 + 350 Egcoth ™t £+ 2) (— 33 + 58 + 3&* coth 1 &) )~
(2.105)
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FJ (£0,0) = — (E2(378510+ 80158 — 47318 + 555164 — 236%2 + 342)
— 2783 (685 + &3 — 485 + 1) & coth (&o)* + 9&o(12630+ 288§ — 201£¢
+ 2738 — 14782 + 27) &0 coth L (&o)3 + (— 972633 — 324511 + 736588
— 1040%] + 514355 — 84TES + 44&0) coth 1 &y + 3(21653* — 37852
+109530 — 41288 + 120458 — 102855 + 31152 — 22) coth 1 (&y)?)
(48082(—1+ 262)3(— 382 + 3 Epcoth & + 2)(—3&3 + 58 + 3&* coth 1 &)
(38§ — 1) coth™* &o— 3&)) (2.106)

F. (&,0) = — 2R (&,0) = —2F/ (£0,0) = F, (&,0) (2.107)

G (£0,0) =(£5(8183°— 41485 + 10748 — 1162¢ + 479%E — 54) + 9EF(9&§ — 7&6 +2)
&o° coth 1 (&o)* — 380(108510 — 24658 1+ 698 + 16764 — 12062 + 23) &,  coth L (&o)°
+ (—324833 + 156653 — 3309 + 3133 — 10235 — 7963+ 36&0) coth 1 &,
+ (486514 — 2214512 1 3816610 — 25688 — 22068 + 103654 — 35552 + 18)
coth1(&0)?) (40(8o — 263)(—3&Z + 3" Eocoth & + 2)(—3E3 + 580
+3&*coth 1 &) (382 — 1) coth 1 & — 3&)) * (2.108)

Gy (£0,0) =( — EZ(27E3°— 180ES + 20469 + 688§ — 1333 + 18) — 984(388 + 288 — 1) &°
coth1(&o)* + 380(3663°0 — 788 + 7365 — 695¢ + 3562 — 5) & coth (&)°
+ &0(10853% — 630530+ 104158 — 61785 + 11585 — 2982 + 12) coth 1 &
+ (—162834 4 810632 — 1551530+ 160058 — 105488 4 44885 — 9782+
6) coth 1(&)) (40(&o — 263)%(—3E3 + 3&0 o coth L & + 2)(—3&3 + 5&
+3&* coth 2 &) ((382 — 1) coth 1 &, — 3&0)) (2.109)
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G3'(&,0) =(&5(3785°+ 801E5 — 47315 + 555155 — 236% +342) — 2765(685 + & — 485
+1)E8 coth L(&g)* + 980 (12610 + 2868 — 20168 + 27368 — 14762 +27)&*
coth 1(&0)3 + (—972633 — 324831 + 736555 — 1040%] + 51433 — 847E3
+ 440) coth 1 & + 3(21655% — 378532+ 109830 — 41268 4 120428 — 1028
131182 — 22)coth(&0)°) (12085 (288 — 1)3(—3&Z + 3 &ocoth &9 + 2)
(—3E28 + 58 + 38, coth L &)((3E2 — 1) coth L & — 350)) 2 (2.110)

Gy (&.0) = — G4(&,0) (2.111)

The near sphere limits of the above functioég-¢ «,) are given by:

F (60,0) ~ ; 10;02, (@00~ ‘Z i (E.0)~ % (2.112)
iGi(ffo,0> =§Gz(€o,0) ~ ﬁ, G (&,0) ~ %, (2.113)

and the slender fibre limit€g — 1) are given by:
Fi (80,0 = —F5 (£0,0) ~ _240[Iog(€o—1) —log2+3]’ (2.114)
F) (£0.,0) %—é(fo—l), (2.115)
G, (£0,0) == G,(&.0) = —;Gé(fo) ~ 20“09(50_11) “log21 3 (2.116)

The second term in2(95 is the contribution due to the ambient pressure field, amishes
for a simple shear flow. The functions for an oblate spheraidle obtained using the prolate-
oblate transformation mentioned in sectigh8and2.5. The analytical approach introduced
in section2.5is used to evaluate the orbital drift due to the fluid inertid #he drift is given
by :

+
ACt REC eq {{MF (€0, A +|2F2f(fo,)\)+|3F3f(fo,/\)+|4|:4f(fo,)\)+|5F5f(fo,/\)

+6Fy (£0,A )} + [3161(50,)\ )+ 1G5 (80,A) + J3Gg (&0, 1) + JaGy (&0, A )} } :
(2.117)
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with I’'s andJ’s given in appendiA. Note that’s andJ’s are same as that seen in sect2ob

The sign of the fluid inertial drift varies in a non-trivial miaer withA. The orbits stabi-
lized by fluid inertia, for long times, for all's below theA: curve in figure2.3are indicated
in figure2.1Q0@). For a prolate spheroid of any aspect ratio, in solid badgtion @ = —1),
the orbital drift is negative for all’s and the spheroid drifts towards the spinning orbit. This i
expected, because in solid body rotation, the pressuréemtaskt up by inertial forces results
in an inward centrifugal buoyancy, which stabilizes thengpig orbit. The spinning orbit
continues to be the stable orbit for alis less than a particular that is a function of aspect
ratio, and denoted b}3(k)( < 0), indicated by the magenta curve in the fourth quadrant in
figure2.10@)). At A = Az, a repeller emerges from the tumbling orbit, splitting thiewta-
tion space on a unit hemisphere, for larges into two distinct basins of attraction, with the
attractors being the tumbling and the spinning orbits. Hpeller moves towards the spinning
orbit with increasing\, and eventually merges with the spinning orbit at a secodé@noted
by A4(k)(< 0 and indicated by the red curve in the fourth quadrant in &gutQa)). The
shaded region in figur2.1(a) indicates theX, k) combinations for which the fluid inertial
drift changes sign, across a certain Jeffery orbit (thellepgeleading to two distinct basins
of attraction. On the either side of this region, that isA& in the rangels, < A < Aqit and
—1 < A < A3z, the tumbling and spinning orbits, respectively, remaim $ble attractors. In
figure2.1Qb), the orbital drift is plotted again&t/(C+ 1) for a spheroid of aspect ratio 2 as
an example to illustrate the above mentioned bifurcatidre 3hifting of the repeller location
from tumbling to spinning as one traverses the shaded laifiorc regionfs < A < Ay) in fig-
ure2.10a), can be seen in the magnified view in fig@r&Qc).

An oblate spheroid drifts from any initial orientation towda the tumbling orbit fod =
—1, again driven by centrifugal buoyancy. However, therestsxa range oA'’s, for which
there are two distinct basins of attraction separated byellexr on a unit hemisphere. This
range is indicated by the shaded region, bounded by the £Ag(e) andA4(k), in the third
guadrant in figur@.11(a)). However, unlike the prolate spheroid, the repellghia case first
emerges from the spinning orbit AtA3(red curve in the third quadrant of figugl1l (a))
and shifts towards the tumbling orbit with increasihgfinally merging with it whemi=A4
(magenta curve in the third quadrantfil(a). If the aspect ratio of the spheroid is less than
approximately 0.32, there exists a second bifurcationoregboveA > A4(indicated by the
shaded region near = 0 in figure2.11(a)). In this region, the repeller (s&y) first emerges
from the tumbling orbit al = Ag and flat out to increasingly thin ellipses centered around
the gradient-vorticity plane a& — Agit. At A = Aqit, the repeller reduce to an arc on the
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Fig. 2.10 (a) The orbits that are stabilized at long-times identified for all combinations
of A -k below theAit curve(blue). The shaded region corresponds to the conidisabf
(A, k) for which there are two distinct basins of attraction sefgatay a repeller. The red and
magenta curves corresponds to all combinatior{d ok ) for which the repeller coincide with
the spinning orbit and the tumbling orbit respectively. Tie drift is plotted again%% for
a prolate spheroid of aspect ratio 2.(c) Zoomed view of (b) .
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two bifurcation regions identified in (a).

7 for an oblate spheroid of
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great circle in which the gradient-vorticity plane intestsethe unit sphere. This is because
C* is finite in the limit of kKeg — 0 (A — > Acrit), and therefore the angular extent of the arc
is 6j = tan~1C* (see2.70. In figure2.11(b), the orbital drift is plotted for an aspect ratio
of 0.1 to show the above mentioned bifurcations. The slgfahthe repeller location in the
shaded bifurcation regiom§ < A < Ag) in the third quadrant of figur2.11(a) is plotted in
figure2.11(c) and the shifting in the shaded region correspondingtoAs is plotted in figure
2.11(d) and the angle of extent of the arcXas— Acit is 163.

In the particular case of simple shear flow, the normalizeshgk in the drift constanACs)
is plotted for a prolate spheroid as a functiorCah figure 2.12for various aspect ratio&Cs
is positive for all aspect ratios and for all values®bfFluid inertia in simple shear flow there-
fore causes a prolate spheroid to drift towards the tumbtiiogle starting from an arbitrary
initial orientation. For a near-sphes&C+ reduces to:

lim AC; = ﬂf (2.118)
do—roo 7060
at leading order and, for a slender fiber, one obtains:
2
lim ACt = — \C"C . (2.119)
So—1 15(50— 1)? |n(fo— l)

These expressions motivate the normalizations used irefiya@ The factorg‘(‘)2 in the near-
sphere limit is identical to that for particle inertia, aswmabe expected since an inertial drift
in either case would scale with the square of the eccentricithe limit of a slender fiber, the
inertial terms may be linearized at leading order, beingprbonal to the leading order Stokes
disturbance field 0®[In(& — 1)] ! associated with the axisymmetric extensional component
of the simple shear (given b 39 in section2.3). The resulting inertial angular velocity is
ReO[In(& — 1)] 1. Over theO(& — 1)~ Jeffery period, this leads to an angular displacement
and aAC of O[(& —1)"2/In(& — 1)] as in R.119. Recall from sectior2.5 that AC, ~
(&0—1)%2In(& — 1), SOACs >> ACy, and fluid inertia is dominant fafp — 1. In other words,
one requires an asymptotically large density ratiGgRe~ O[1/((& — 1)In(& — 1))]? for
particle inertia to influence the inertial drift of a slendiéer.

The functionsFif (&0,0) andGif(fo,O), for an oblate spheroid are obtained from those for
a prolate spheroid in the usual manner. The flat disk limithefresulting functions are given
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Fig. 2.12 The drift due to fluid inertia, as characterizedhm normalized change in the orbit

. . : —1 ACt i Cc
constant in a single Jeffery perioRe ) plotted as a function of=, for a prolate

spheroid in simple shear fIO\@i— =0 andCL+1 =1 correspond to the log-rolling and tumbling
modes. The upper plot uses the additional normalizatiotofauf zg, so the drift remains

finite in the near-sphere limi§( — ). The lower plot uses the normalisation factgp —
1)2In(&— 1), to render the drift finite in the slender fiber limfiy(— 1).
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by
f 29 1 f .o
3 1 11
G1(£0.0) ~ 45, G5(£.0) = 75. G3(80.0) ~ 5 (2.121)

The ACt for an oblate spheroid in simple shear flow is plotted aga&nstfigure2.13 In
contrast to the particle inertia case (see fig@®, the near-sphere normalization alone is not
sufficient for an oblate spheroid. The inertial angular e#loapproaches a finit®(Re) value
independent of aspect ratio in the flat-disk limit, and tl@iads toACs ~ ReO(&p — 1)*%
for o — 1 owing to the diverging Jeffery period . The differing sogk for particle and
fluid inertia imply that the density rati8t/Remust become asymptotically large, ©féo —
1)*% (although still far smaller than the corresponding pro&stigmate), before particle inertia
can begin to exert an influence on the orientation distrisutif flat disks. Figur@.13includes
separate plots aiCt with the near-sphere and the flat-disk normalizations. Ritwarplots in
figure 2.13 it can be seen thaiC; is not single-signed as predicted in figulzell Now,
AC; must certainly be negative, for all values ©f for a near-sphere, as is implied by the
prolate-oblate transformation and&; of O(&, 2). This remains true for aspect ratios greater
than about 42(&y ~ 1.01), and such oblate spheroids drift towards a steady spinnotem
starting from any initial orientation. For aspect ratiosadler than this critical value, th&Cy
curves cross th€-axis, so the drift becomes positive beyond a critical vali@ (say,C*). C*
is a function ofép, and equalse for an oblate spheroid with the critical aspect ratid &®),
decreasing ta/35 in the limitéy — 1. For a flat diskACy is given by:

im AC, n(7+C2—7(1+C2)%). _ n(V1+C? -1 (V1+C? - V14C?) (2.122)
Eo—1 15\/2C(&o—1)2 15\/2C(& — 1)2
The movement o€C* towards its limiting value in the range<d ¢y < 1.01 is highlighted by

the magnified view in figur@.13 As the aspect ratio decreases belot4@, a repeller (which

is a Jeffery orbit at this order of approximation) emergesfithe tumbling orbit, separating
the unit hemisphere into distinct basins of attraction. fégon on the unit hemisphere be-
tween the repeller and the tumbling orbits, corresponds toowrientations that asymptote
towards a tumbling mode, while the region around the vaytiakis enclosed by the repeller
corresponds to orientations that asymptote towards aystgadning mode. With decreasing
aspect ratio, the repeller flatten out into increasingly #llipses centered about the gradient-
vorticity plane. Eventually, in the flat disk limit, the rdje reduce to an arc (with an angular
extent of about 167, on the great circle in which the gradient-vorticity plangrsects the
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unit sphere. As a result, a flat disk, like a prolate spherafhroaches a tumbling mode
from almost any initial orientation (except for a set of m@aszero corresponding to the re-
peller). This happens despite the movementotowards a finite limiting value (frone to
V/35) for & — 1. This is because, for sufficiently thin oblate spheroilis,drbit constant is
appropriately defined & = tan@; cosg;/k = tan8j cosg; &/ (&2 — 1)Y/2, so that for a given
Jeffery orbit to remain bounded away from the gradientigitytplane ask — 0 (§g — 1),C
must diverge as /k (1/ Eg —1); in other words, Jeffery orbits corresponding to any dnit
C in the flat disk limit (including the&C* = /35, the zero-crossing of th&C; curve for a flat
disk) must collapse onto the gradient-vorticity plane @mgular extent of the resulting arc
is C/v/1+C2, and withC = C*, this gives 162 as mentioned above). To illustrate the ap-
proach of theAC; zero-crossing towards = 0 for a flat disk, the fluid inertial drift is plotted

. . : g2 12 . . .
against the re-scaled orbital coorqu&% in figure2.14 Figure2.15illustrates the
repelling (Jeffery) orbits starting from the equator of tiet sphereC = «), and moving to-
wards smalleC’s with decreasing aspect ratio. Figutel6shows the nature of the finifee
spiralling trajectories of the orientation vector on eitkile of the repeller. solutions, at the
critical aspect ratio, renders the tumbling orbit unstaatel the system migrates to a distant
equilibrium (the spinning mode). In the vicinity of the ocdl aspect ratio, the repeller loca-

tions are given by AC* = +1.48(& — 0.142)%.

2.7 The effect of fluid inertia on neutrally buoyant spheroics
(Re=St)

The inertial drifts presented in the earlier sections applgertain limiting scenarios. Drift in
section2.5is important for massive spheroids that occur in gas-soigtesns, where as the
drift in section2.6is important for hollow spheroids in an inertial ambientofra rheological
perspective, which we discuss in chaf@eone would want to know the effect of weak inertia
on a neutrally buoyant spheroig{ = ps, Re= St). In this section we investigate the effect
of the combined fluid and particle inertial drift, witke= St, on the orientation of a neutrally
buoyant spheroid in a planar linear flow.

The drifts given in 2.92 and @.117 are summed up to obtain the drift for a neutrally
buoyant spheroid. The orbits stabilized by the combinefl dtilong-times are indicated in
figure 2.17. For a prolate spheroid irrespective of< Aqit) andk, the orbit is the tumbling
orbit. For an oblate spheroid, for a given aspect ratio tlesist a criticalA (As(k)) below
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Fig. 2.13 The drift due to fluid inertia, as characterizedhmy normalized change in the orbit

. . .o 41 AC :
constant in a single Jeffery perioBge 1ﬁ, plotted as a function o&, for an oblate
spheroid in simple shear flons%; = 0 and & = 1 correspond to the spinning and the

tumbling modes. The upper plot uses the additional normatidia factor offg, so the drift
remains finite in the near-sphere limjp(— o). The middle plot uses the normalisation factor
(éo— 1)%, to render the drift finite in the flat disk limi€f — 1). The lower plot is the magnified
view highlighting the shift in the repeller location withahgingéo.
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Fig. 2.15 The repeller orbit location for various aspeciosat As the aspect ratios decreases
below 0.142 §, = 1.01) a repeller orbit(denoted by thick black lines) emergesfC/C+1
=1(the tumbling orbit). With further decrease in the aspatb, the repeller progressively
shrinks, collapsing into the vicinity of the gradient-voitly plane in the flat-disk limit.
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Fig. 2.16 The nature of the spiralling trajectories on eitside of the repeller is shown for a
pair of aspect ratios. For the purpose of illustration, geareynolds numbeRg= 0.8) is
chosen.

which the steady state is the spinning orbit, wWil{k) approaching\¢it as the aspect ratio
increases to about 0.32. Fer< 0.32 andAs(k) < A < A¢rit, there exists a repeller as seen
in the earlier sections, and th&,k) combinations in this range are indicated by the shaded
region in figure2.17. It is interesting to compare figurés17, 2.11( a) and2.7(a). In the
rangeAs(K) < A < A4(k), the bifurcation regions which existed due to the fluid iraédrift
alone, vanish for the neutrally buoyant spheroids, sineeditift due to particle inertia tend
to be stronger than fluid inertial drift when the ambient \@it component dominates the
extensional component. However if thé&s are closer to simple shear than solid-body rotation,
thatis in the rang@s(K) < A < Arit, the drift due to fluid inertia dominates that due to particle
inertia, and therefore the bifurcation region in this rgngdigure2.11(a), is not altered much.
In the case of solid body rotation, the drift on a neutrallpyant spheroid is zero for both
prolate and oblate spheroids, as must be the case, owing &xttt compensation between
the centrifugal buoyancy and the centrifugal force on thiiga.

For the particular case of simple shear flow, the drifts farlgte and oblate spheroids
are plotted against the normalized orbit constant in fig@r&8and2.19 respectively. These
curves closely resemble those in figu$2and2.13 showing that fluid inertia dominates
the inertia of the particle for most aspect ratios. Accagtiinthe critical aspect ratio at which
(ACt + ACy) first changes sign (fo€ — ) is only slightly altered from the original value,
0.142, for hollow oblate spheroids (fluid inertia acting alprie 0.137 for a neutrally buoyant
oblate spheroid.
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Fig. 2.17 The orbits stabilized for a neutrally buoyant spiteby the combined particle and
fluid inertial drifts.

2.8 Multiple time scale analysis

The orbital drifts in 2.92 and @.117 were derived fromZ.86) based on an assumption that
C remains constant over each turn of the finite-Re trajectwayit an inertial spiral (an exam-
ple of such a spiralling trajectory was shown in fig2r&). As mentioned in sectioB.5, for
ReSt << 1, the advantage of such an approximation is that it reddneeseed to numerically
integrate the differential equations governigand ¢; over initial orientations spanning the
entire unit sphere, to the determination/x@; (or AC,) as a function oC. In this section, we
derive the expression for the orbital drift formally usingnailtiple time scale analysis, and
substantiate the above physically motivated charactesizaf inertial effects. This allows
us to discuss the limitations of the orbital drift approxtioa, particularly for extreme aspect
ratios (slender fibres and flat disks).

The inertial drift occurs on a slow time scale & Rely~1 or St-1y1) compared to
the leading order Stokesian convection time scale-(y~1). The orbital coordinate of the
spheroid can then be written as a two time scale se@les,Co(t1,t2) + RgorSt) Cy (g, t2),
whereCyp will turn out to be the average drift at leading order, &ds the fluctuation about
the average. The distinction between the fast and the stow/dcales arises from the fact that
there can be no secular growth on thescale. As is the case in this formalism, this is enforced
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Fig. 2.18 The drift due to fluid and particle inertia for a @@ (neutrally buoyant) spheroid in
simple shear flow, as characterized by the normalized chiarthpe orbit constant in a single
Jeffery periodRe‘lme%ff”, plotted as a function 0f%;; <= = 0 and5; = 1 correspond
to the log-rolling and tumbling modes. The upper plot usesitiditional normalization factor
of zg, so that the drift remains finite in the near-sphere li§t{ «), while the second plot
uses the normalization fact¢&y — 1)%/2log(& — 1) such that the drift remains finite in the
slender rod limit§y — 1). The contribution due to fluid inertia dominates particlertia for

all aspect ratios.
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Fig. 2.19 The drift due to fluid and particle inertia for anatlel (neutrally buoyant) spheroid in
simple shear flow, as characterized by the normalized chiarthpe orbit constant in a single
Jeffery periodRe*lAfC’iAl():f, plotted as a function 0f%;; <=4 = 0 andS; = 1 correspond

to the spinning and tumbling modes. The plot uses the additioormalization factor ofg,
so the drift remains finite in the near-sphere linji & ).

by the condition tha€ be a periodic function af, with periodeeff(=2n(K§q+ 1) /Keg), for

t> fixed. We will focus our analysis on the fluid inertial driftfteough the analysis holds good
for the particle inertial drift too. Denoting the right-héieide of .86) asReH(C, 1, &), with
df;/dt anddg; /dt given in .93 and @.94), and noting that = Keqtl/(Kgq—i— 1), (2.86) can
be rewritten asiC/dt = ReH(C, Kedt1/ (K§q+ 1), &o). Substituting the series f@ above, and
using the usual splitting of the time derivative into fast @&ow component# = d% + Red%,
as part of the multiple scale formalisi&i{bramanian & Brady 20Q08ender & Orszag 1999
one gets:

dG
T 0, (2.123)
at leading order and
dG d
—1—|——CO =H(C, Keqtl/(Kgq—i— 1),&o0), (2.124)
dty dty

at ORe. The average orbital driffy, which is the solution to the leading order equation in
(2.123 is therefore independent tf, Cp(t1,t2) = Co(t2). To evaluate both the dependence of
Co onty, and the fluctuatiof®, one can integrate2(124 over the time period, and noting that
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the integral of the first term on the left-hand side 2f14) evaluates to zero, one gets:

dc, 1 /Tjeff 5 1 /2" ACy

— = H (Co, k Ksq+1),&0)dty = — H(Co, T, &0)dT = ,

d  Tiet Jo (Co, kedta/(Keq 1), So)dt = 57 0 (Co.7:¢0) ReTef s
(2.125)

wherelAC; is the average change@over a Jeffery time period, which was already evaluated
in (2.117. Using .125 in (2.124 one get<; as:

Tieff T TACs
C,= &1 H ! Eo)dT — . 2.126
= ([P dar - g ). (2126)

Thus, the multiple scale analysis allows one ta@k into a differential equation fat, thereby
allowing one to track the leading order evolutior@idvith time. In figure2.20 we have plotted
theC coordinate of spheroids with two aspect ratios, rotating stmple shear flow = Ke(),

as a function of time as well ag, starting from C = 10, 1=11/2) using two methods; the
first by numerically integrating.93 and @.94), and then evaluating(t) using its definition
(2.70 in terms of6;(t) and ¢;(t), and the second using the orbital drift obtained from the
multiple scale analysis presented above. In fig@r@8a and c, it can be seen that the results
from two methods compare well (the blue and green curve matoost exactly). Figures
2.2Qb) and (d) are plotted to identify the phases at which th#& drimaximum. It can be
seen that for the O(1) aspect ratio spheroid in figRu2Qd), the drift in the aligned and
nonaligned phases are of the same order. However, for thenegtaspect ratio spheroid in
figure 2.2Qb), the maximum drift occurs closer to the aligned phaseis ©hexpected and
can be seen from a simple scaling analysis. @8¢dt in (2.86) is orderReCin the extreme
aspect ratio limit Keq — 0 or «). The rotation is however nonuniform, and therefore the
spheroid spends O(1) time in the non-aligned phase arg(Y0Q(1/keg)) time in the aligned
phase if it is oblate (prolate) spheroid. ThidnonalignedACaligned iS O(Keq) (O(1/Keg)) for
oblate (prolate) spheroid, making the chang€ imuch larger in the aligned phase compared
to the non-aligned phase for extreme aspect ratios. As iegulaearlier in sectior2.5, the
prediction from the multiple scale analysis should evelhtimeak down wherReor St~ Keq

for an oblate spheroid. The cases plotted in fig2u20 are forRe= 0.01, and they satisfy
the restrictiorRe < keq mentioned above. The relaxation of this restriction howésads to

a breakdown of the average drift analysis. To illustratedteakdown, in figur@.21we have
plotted theC coordinate of a spheroid rotating in a simple shear flaw=(keg) for different
Rés as a function ofp;, starting from C = 10, 1 = 11/2). It can be seen from the figure that
the sum of the orbital drift approximatioild) and the fluctuation@,) fails to capture the
actual variation irC with increasing ratio oRe/keq= Re In what follows we discuss a way
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Fig. 2.20 The orbital coordinat€ starting fromC = 10 andt = 0, estimated from 1) the
orbital drift alone (red), 2) the orbital drift together Wwithe fluctuations (green) and 3) tBGe
obtained from numerical integrating the governing equrtiof 8; and ¢; (blue) are plotted
against time for spheroids of aspect ratios 0.02 and 0.5imgtan a simple shear flow in (a)
and (c) respectively. The orbital coordinate is plottediasfap; for the same aspect ratios in
(b) and (d).
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to capture this actual variation for an oblate spheroidnprily because it has an interesting
bifurcation in the orientation dynamics in the extreme aspatio limit, as already seen in
section2.17, although an analogous analysis can be performed for atprefieroid, the
extreme aspect ratio analysis for an oblate spheroid wifi medetermining the location of
the repeller well beyond the regime accessible to an orthitélinterpretation.

For an extreme aspect ratio spheroid, the maximum chan@eaturs during the aligned
phase, and therefore a boundary layer analysis allows ocaptoire the actual variation for
O(1) values oRe One can write the net change@as:

21 -2 dC
/O O'CdgoJ /O $d¢,—, (2.127)

dg, X ReW |re
whereddqt’J d€ and dq” ! |re are given in 2.29, (2.86), and Q.94 respectively. Now in the limit
of Keq— O(equwalently)\ — 1/k?), (2.29 is proportional to co%cp, and @.86) is proportional
to cosg; , making the integrand ir2(127) proportional to choszqoj and therefore divergent at
@ = —1/2 andg; = —311/2. These divergences suggest that the contribution to tegrial
comes from the aligned phase as expected from figzg&(e), and one can therefore rewrite
(2.127 as:

o dg Jo \dg <o,+—d<01 " r \dg go—emde )T

-1 C 2n dc
+/ lim —dqoj+/ lim —dg (2.128)
0 [ I j m (p]%f—n dcpj

where we have isolated the divergences-at/2 and—3r/2. Using a rescaled coordinate
defined agp = (¢ + 1/2)/K, one can rewrite divergent integral-att/2 as:

- dc » CReéf —CRe -7, i an
/0 dt dgj = / -d@ = ACjump, (2.129)

49 | Re %0 —(1+ ¢?) — ReGQ
at e limy, g

whereF = Iim)‘_>K_12(F1f —F) —F] +F/ —2r))andG = im, (G — G —GL+G]), where
F'sandG''s are defined in sectidh 5. One could write the dlvergencecﬁt—> —3m/2alsoin

a similar manner. The jump i@ close to the aligned phase obtained frae8 and .129,

is plotted against the rescaled coordinate in figu&2 for a spheroid in a simple shear flow.
This jump (green) predicts the total change€ifblue curve) near the aligned phase, obtained
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Fig. 2.21 The orbital coordinat€ starting fromC = 10 andt = 0, estimated from 1) the
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Fig. 2.22 The orbital coordinate is plotted against theakstboundary layer variable for a
spheroid in simple shear flow. The average drift approxiomathumerical integration result
and the prediction from the boundary layer analysis are showed, blue and green color
respectively.

from numerically solving the differential equations forethngular velocities; note that the
orbital drift approximation breaks down for these paramsef@e= 0.1, k = .01Re= 10).

The bifurcation region shown in figuz17was estimated on the basis of the orbital drift
approximation. As we have seen above, the orbital drift me#de a good approximation to
the numerical solution of the differential equations@tl) Re In such cases, one would want
to check the actual repeller location with that predictedtsyorbital drift approximation. In
figure 2.23 we have shown the shift in the repeller location for varivakies ofRein three
planar linear flows. It is clear from the figure that despitanbainable to predict the actual
drift, the average drift approximation predicts the regelbcation with reasonable accuracy
down to an O(l)i’ve The plots show an eventual deviation for laréer

2.9 Conclusions and future work

In this chapter we have analyzed the effect of particle arid fhertia on the orientation dy-
namics of a spheroid in a planar linear flow. The correctianthe leading order angular
velocity at OGt) are given in 2.77) and .78 . The corrections at @ are given in 2.93
and @.94. We have used an average drift approximation to analyzedhsion of the differ-
ential equations governing the rates of change of oriemtafThe average drift is interpreted



2.9 Conclusions and future work 63

a) A=0
22 T

20

18f

16

*

14r e e Average drift prediction 8
ee Re=0.10
121 e e Re=0.30

10f

(=)
T
e ®
LN )
(1]
L]

b) A =0.00009
22 T

20t °
18F
16f
14 e e Average drift prediction

e e Re=0.10
12/ ¢ e Re=0.30

C*

10f

(‘)‘.02 0.04 0.06 0.08 0.10 0.12 0.14

c) A=0.0025

14

12f

® e Average drift prediction
@) 10r e e Re=0.10

e e Re=0.30
[
°
8 4
3
° e
° 8 °
61 ® °

(‘)‘.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
K
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in terms of the orbital coordinate defined iB.70. The average drift for the particle and
fluid inertia are given inZ.92 and @.117. The orbits stabilized by particle and fluid inertia
are identified in the\ — k plane in figure2.6, 2.7 and figures2.10 2.11respectively. The
shaded regions in these figures correspond ta the« combinations for which a bifurcation
in the orientation dynamics leads to the existence of a lepeh the unit-hemisphere which
divides the orientation space into two basins of attractwath attractors being the tumbling
and spinning orbits respectively. Typical examples of gzetler are shown i@.6(d),(e) and
(). The orbits stabilized by inertia for a neutrally buoyapheroid are identified in figure
2.17. In the neutrally buoyant case, the bifurcation regiontexigy for oblate spheroids. For
the spheroids in this region inertia does not stabilize aquenorbit. Fot the particular case
of simple shear flow the aforementioned repeller exists éutrally buoyant oblate spheroids
whose aspect ratios are smaller than 0.137.

Finally, we note that a very recent woikiQarssoret al. (2015,b)) has also investigated
the effect of weak fluid inertia on spheroidal particles difitiary aspect ratio in a simple shear
flow. The reciprocal theorem volume integral for the rate ldge of the orientation vector
of the spheroid is written in a general tensorial form, anevisluated after applying symme-
try arguments to reduce it to a set of four scalar integralse flinctions of aspect ratio that
multiply the trigonometric functions in the expressionsttee inertial angular velocity contri-
butions are not given in closed form; rather, they are pib#te a function of the aspect ratio.
The authors investigate the stability of the spinning aredttimbling modes for both prolate
and oblate spheroids and arrive at the same conclusion® gsakent work with respect to
the stability of the tumbling and log-rolling/spinning mexlin simple shear flow. Importantly,
however the authors have not interpreted their resultsrmdef the physically significant
orbital drift and the consequences for rheology given irptéieB are not explored.



Chapter 3

The effect of inertia on the rheology of a
dilute suspension of spheroids

3.1 Introduction

This chapter is concerned with the theoretical deternomadif the viscosity of a dilute non-
interacting suspension of non-Brownian anisotropic pbasi as a function of the particle vol-
ume fraction, a classical problem in microhydrodynamiBat¢helor(1977). The relevant
volume fraction here is the hydrodynamic om&2, wheren is the particle number density
andL is the largest characteristic dimension of an individuatipe; nL3 < 1 implies hy-
drodynamic diluteness. We consider the simplest geometrg hon-spherical particle, that
of a spheroid, wherein the deviation from sphericity is elcégrized by a single parameter,
the particle aspect ratio, and in which cdsaould be the semi-major axis (see chag2gr
The analogous problem for spheres was first analysed bydhirst1906 [eal (1992) who
showed that a suspension of rigid spheres, in the diluteim@nacting limit, behaves as a
Newtonian fluid with an effective viscosity that is enhancelative to that of the suspending
fluid by a factorg @, ¢ (< 1) being the volume fraction, and the faclg)loften referred to
as the Einstein coefficient. The determination of the analdipe Einstein coefficient for a
suspension of spheroids, a dimensionless function of therspl aspect ratio that multiplies
nL3, turns out to be considerably more involved. Stokesian dyyinamics alone does not, in
fact, provide for a unique answer in this regard.

In order to better understand the above difficulty, one majiragxamine a suspension of
spheres where a similar difficulty occurs in determining@{e?) correction to the effective
viscosity. This calculation, which includes the first eteeof hydrodynamic interactions, was
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accomplished much later (than Einstein) by Batchelor areeGim 1972 Batchelor & Green
(1972);Batchelor & Greerf1972a)). The difficulty in the pair-problem arises because a naive
summation of the long-ranged pair interactions in the susip@ viscosity problem, and in
other related ones that include the determination of thddred settling velocityRatchelor
(1972) and the permeability of a dilute fixed beldifich (1977), leads to either divergent or
conditionally convergent integrals, and only in the 197%@s it shown that appropriate renor-
malizations were needed to sensibly characterize theteftédydrodynamic interactions on
the bulk characteristics of Stokesian suspensions. FosuBpension viscosity problem in
particular, even after the renormalization, the notionha particulate phase modifying the
shear viscosity to @), and thence, of a Newtonian rheology for a Stokesian sisspemat
this order, was found to be crucially dependent on the tapotd the pair-sphere trajectories.
This is due to the occurrence of closed pair-pathlines, haddsulting indeterminacy of the
pair-distribution function on such trajectories in the glyrhydrodynamic limit Batchelor &
Green(1972)). The occurrence of closed particlégo et al. (1977a)) or fluid trajectories
(Subramanian & Koclf2006);Subramanian & Koclf200&);Subramanian & Kocl{2007)

in Stokes flows is not uncommon, the underlying reason bé&iagtinciple of reversibility as-
sociated with the quasi-steady Stokes equations. The abdetrminacy associated with the
pair probability on closed pair-particle pathlines pretgem straightforward determination of
the stress tensor, at @), for a range of linear flows that includes the rheologicatiportant
case of simple shear floW&o et al. (1977a)). Any calculation of the Q%) contribution in
such flows must therefore appeal to physics outside of Stmkégydrodynamics in the dilute
regime such as three-particle interactions, weak par(8lgbramanian & Brady2006) or
fluid inertia Morris et al. (2007) or weak Brownian motionMorris & Brady (1997).

For a suspension of spheroids, the aforementioned rhealogideterminacy is already
present at Q(L3), that is, even in the absence of hydrodynamic interactidhe aspect-ratio-
dependent analog of the Einstein coefficient depends onlhersingle particle orientation
distribution in the dilute limit (owing to the absence of fmsal correlations at this order),
and the latter is indeterminate. As we have seen in ch&pten isolated spheroid in simple
shear flow (and over a range of planar linear flows) rotatasgadmy of a one-parameter fam-
ily of closed orbits, now known as Jeffery orbitkeffery 1922. The existence of such closed
orbits on the unit sphere of orientations leads to the indeteacy above. In the convective
limit, that is in the absence of any inter-particle inter@aes, the orientation probability density
may be conveniently written in the forg{C, 1) f (C) (Leal & Hinch(1971). The coordinates
(C,1) form a non-orthogonal system on the unit sphere that ctexraes the particle motion
along Jeffery orbits(see chap®@®x with C being an orbit constant that ranges from @tand
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T being the phase that changes at a constant aspect-ratodkayg rate along a given orbit.
The first factor in the orientation probability densig(C, 1), determines the distribution of
orientations along a Jeffery orbit, while the second fadt@€), determines the distribution of
orientations across the various Jeffery orbits. Strigigaking, neither of these two compo-
nents is uniquely determined in the convective limit in theence of inter-particle interactions.
A tiny polydispersity in the particle aspect ratio, howevsisufficient for the orientation dis-
tribution along a single Jeffery orbit to converge to a ueigteady distribution given by the
inverse rate of change of the azimuthal angle as found beJefand is a function of the
particle aspect ratioQkagaweet al. (1973);0kagaweet al. (1973)). On the other hand, the
function f(C) is, by definition, unchanged by particle motion along Jgfferbits, and there-
fore preserves its functional form in the absence of intevas. As a result, one predicts a
sensitive dependence of the rheology of a dilute non-interg suspension of non-Brownian
spheroids on the initial orientation distribution! As fgoteerical particle suspensions, earlier
authors have appealed to mechanisms like Brownian motieal & Hinch (1971);Hinch &
Leal (1972),viscoelasticity eal (1979), fluid and particle inertia Subramanian & Koch
(2009;Subramanian & Kocl{200@)), and pair-hydrodynamic interactions in the limit of
large aspect ratiosQkagaweet al. (19732);Rahnamaet al. (1995), to obtain a drift across
Jeffery orbits in an effort to endow the suspension with adimemory, and thereby, arrive
at a unique steady state distribution across Jeffery orbitsee aforementioned efforts that
consider inertia, viscoelasticity or hydrodynamic intgians are restricted to limiting particle
geometries(large or near-unity aspect ratios)

In chapter2, we have seen that weak inertial effects, daR@(Re< < 1), stabilize a unique
orbit for a neutrally buoyant spheroid rotating in a simgiear flow, provided its aspect ratio
is larger than 0.137. The unique orbit is the tumbling orbiitd prolate spheroid of any aspect
ratio and it is the spinning orbit for an oblate spheroid whaspect ratio is larger thanl37
(see chapte?). Hence, for the above mentioned range of aspect ratioslistrgbution across
Jeffery orbits are delta functions peaked eithefjat 11/2 or 6; = 0, where the polar angle
0 is defined in figure2.2. The viscosity of a suspension of spheroids mentioned abawe
be readily evaluated from the unique delta function orkstribution. For neutrally buoyant
oblate spheroids with aspect ratios smaller than 0.13&rtpg on the initial condition, iner-
tia stabilizes either the tumbling or the spinning orbitr feese spheroids, as shown in chapter
2, a repeller exists on the unit hemisphere separating tleat@ation space into two distinct
basins of attractions with the attractors being the tungidind spinning orbits(see figu2el5
for a typical example of such a repeller). For a suspensiauci spheroids, this would mean
that the distribution is given by a couple of delta functipesked ad; = 0 and6; = /2, and
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the relative amplitudes of these delta functions are deteunby the initial distribution of
orientations. The steady-state partitioning of orieotagibetween these two orbits is uniquely
determined only when physical effects other than inerteiacluded. In order to render the
viscosity of the suspension unique, we consider stochasgatation fluctuations in the form
of rotary Brownian motion as an example of such a physicaloeffThe importance of rotary
Brownian motion in relation to rotation by shear flow is claesized by the rotary Peclet
number Pg ), defined a%yr, whereD; is the rotary diffusivity of the spheroid. Interestingly,
the distribution that is set up across the Jeffery orbitstduetary Brownian motion and iner-
tia is of the Boltzmann form and is dependent on the nonditi@mmsd parameteRePe. This
allows for an equivalent thermodynamic interpretationref tinique steady state orientation
distribution. The original pair of Jeffery orbits, smearadgt by thermal fluctuations, may
be regarded as tumbling and spinning phases, and compesartall and larg€& branches
of a two-phase envelope ending in a critical point. The iteorsbetween the tumbling and
spinning phases is interpreted as a phase transition anéhve & ‘tumbling-spinning tran-
sition’. The three-dimensional parameter space, with draupeters beingePe, k andC,
characterizing this tumbling-spinning transition has a-to-one correspondence with the fa-
miliar thermodynamic description of the one-componentsghtaansition. Specificallx and

C are analogous to the pressure and specific volume, resplgctivhile an appropriate non-
dimensional shear rate plays the role of an inverse norlilequm temperature. One can also
draw an analogy between the famous coil-stretch trans{@nGennes 197Hinch 1974
and the tumbling-spinning transition, with the transigon both cases endowing the system,
suspension in here and polymer solution in case of coitedtrigansition, with a memory that
exceeds the nominal microstructural relaxation time.

This chapter is divided into different sections as follows.section3.2, we express the
viscosity as an integral which gives the average of the ggesver the steady state orien-
tation distribution. Note that this is the hydrodynamicess; the direct Brownian stress is
negligible in the limit examinedRg >> 1). For prolate spheroids of any aspect ratio and
oblate spheroids whose aspect ratios are larger than Qri8#al effects at ORe alone set
up the unique steady state distribution and we present gw®sity of a suspension of such
spheroids in sectioB.3. For oblate spheroids whose aspect ratios are smaller th&@,0ve
calculate the steady state distribution set up by rotaryvBian motion at ORe~1) and inertia
at ORe in section3.4.1 The thermodynamic interpretation of the ‘tumbling-sphgntran-
sition’ based on the steady state distribution determineskection3.4.2 and the associated
three dimensional phase diagram including the two-phasebting-spinning’ envelope is de-
veloped in this section, first for the simple shear flow. Newt,examine the phase diagrams
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for the class of planar linear flows investigated in cha@ieand that have closed orbits in
the Stokes limit. The two-phase envelope is the largest ierngxor simple shear flow, and
rapidly diminishes in extent on either side ( that is withrgese in extension or vorticity). In
section3.4.3 we return to the case of simple shear flow and analyze thedependent ori-
entation distribution for different initial conditionshd show that the finite-time evolution in
the two-phase envelope is characterized by a pronounceerbgs, leading to the suspension
viscosity being sensitively dependent on the precise dhistry. We summarize our findings
in section3.5, where we also argue that the tumbling-spinning hystexdsasacterized here
should be observable in more general circumstances.

3.2 Formulation for the viscosity

In this section, we formulate the integral for estimating $inear viscosity of a dilute suspen-
sion of neutrally buoyant spheroidal particles. The ctotion of the particulate phase to
the averaged suspension stress may be writténi%;s: n(S;j) where, in the dilute limit, the
stressletSj, is that associated with an isolated torque-free sphenoidérsed in an ambient
simple shear flow. Note that the stress above is due to hydesdics alone. The Brownian
stress is negligible in the nearly athermal limit of intéreBhis stresslet is a function of the
instantaneous spheroid orientatprand the angled brackets therefore denote an average over
the relevant orientation probability density. ThiS;) is given by:

(Sj) :/Q(p)dp/sp%[(fikxjnk-i-(fjkxink—gdj(0|kX|nk)]dA7 (3.1)

whereS, denotes the surface of the spheroid, &) is the orientation distribution of an
isolated spheroid in an ambient simple shear flow. For fiRi#éé= St), as originally shown
by (Batchelor(197()), the suspension stress contains additional terms imgboth the par-
ticle phase acceleration and the fluid phase velocity fltictng, and these have been shown
to lead to a non-Newtonian rheology, even for suspensiosploérical inclusiond(n et al.
(197(),Subramaniaret al. (2011)). However, these effects scale witg and become van-
ishingly small forRe— 0. Thus, for small but finitdRe the dominant effect of inertia is
an indirect one in terms of determining the steady statentai®n probability density (and
thereby, the shear viscosity). In the Stokes limit, as notethapter2, a spheroid continues to
rotate in a Jeffery orbit corresponding to its initial otigtion. As a resultQ(p) and therefore
the particle contribution to the stress given &1, depends on the initial orientation distribu-
tion of the spheroid. As seen in chap&meak inertial effects lead to a drift which stabilizes
a unique orbit for spheroids of aspect ratio larger than 0.1Bhe steady-state orientation
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distribution corresponding to this unique orbit is set upapnasymptotically long time scale
which is given byO(Re™1). For oblate spheroids with aspect ratio smaller than 0.tt@7qrift
stabilizes either the spinning orbit or the tumbling ordgpending on the initial orientation.
As mentioned in sectio.1, we need an additional orientational decorrelation meisham
this case to make the steady state distribution unique. \Wsider rotary Brownian motion
as a canonical example of the decorrelation mechanism, eswrigan motion together with
the inertial drift result in a unique steady state orieotatlistribution for the spheroid. This
unique steady state distribution is set up on an exponsnlialg time scalel(l expRePeg]).

The instantaneous stresslet B11) is a function of p and may be written down from
symmetry arguments as:

3

(0] 1 (0}
ED(lp/ ) (&) (Expep) (i Pi—3 3j) + Dgp/ ) (&0)[(Bk—PiPk)Ew P Pj + (Ojk—Pj Pk)

Expipi] + DY (£0)[(Gk— PiPk)Exi (851 — pipj) + %(Ekl PP ) (G —pip))],  (3.2)

Sj(p) =

where the coefficien®{”®, D{”® andD{”'®), respectively, denote the aspect-ratio-dependent
strength of the stresslet singularities (recall s the inverse of eccentricity of the spheroid
andE is the rate of strain tensor of the simple shear flow) corredpw to the component
flows (axisymmetric, longitudinal and transverse planaeesions, see secti@?d) that make
up the ambient simple shear in the body-fixed reference fig¥& in figure 2.2) for prolate
(p) and oblate @) spheroids. The number of coefficients (three) is fewer themumber of
component flows (five), since the axisymmetry of the spheroglies identical responses to
the two longitudinalfss anduss) and transverse planar extensional flowsg @nduss), which
combine to give the terms proportional@@ andD3, respectively, in3.2). For the limiting
case of a spher@”® = D\P/?) — D{P/% — 201 and @.2) takes the familiar forng; = 227E;
which yields the Einstein coefficient. Frokim & Karrila (1991), the expressions for the co-
efficients, translated to our notation, are given by:

D17 (o) = 9&3[(362 — 1) coth 1 &y — 3&g)’ (3:3)
z2
D(p) _ 167T€0 7 3.4
2 (%0 [382(1—2&2)(2 - 382 +3&pE2 coth 1 &)] (34)
2
D) (&) = 32 (3.5)

3E3(5&0 — 3E3 + 3¢ coth 1 &)’
(3.6)
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(0) B 16m
Dl (EO) _953[(35(?_2) 001_160_360]7 (37)
Do _ 1671, 7 3.8
2 (%) [3&0(1—2E2)(1— 385+ 3E2&pcot 1 &p)] (3:8)
DO (&) = Sl (3.9)

3&(—(2+3&2) &+ 35 cot 1 &)

The above expressions may also be obtained from the farifigldfor ¢ — ) of each of the
component velocity fieldss — Usg), of the form(Ei;—SXX)x, Ei (i = 1—5) being the component
rate-of-strain tensor (see secti@r8), with the constant of proportionality, a function &,

giving the ép-dependent stresslet coefficient.

The excess stress in a dilute suspension is therefore gwen b

3D(p/0) 1 o
oP = nEk|/{1f(€0> PP (Pipj — 3 3 )+DSP"%) (&) [(Sk— pi pi) i Pj + (i —Pj Pi) Pi P
o 1
+DS (&) [(8k—Pip) (3) —p Pi)+5 PP (S —Pip;)] }Q(P)d p. (3.10)

The orientation distributio2(p) needed in .10 is governed by the convection-diffusion

equation given by:
0Q 1

ot T Hel(Pjer +Repy)Q] = %D%Q, (3.11)
wherepjq; andp; are respectively, the rate of change of orientation veatertd the angular
velocity at the leading order given i2.@9and2.30 and that due to the inertial correction to
the angular velocity given ir2(77,2.782.93& 2.94). The term on the right-hand side above is
the diffusion in the orientation space due to rotary Browmsotion. In both the non-Brownian
case (spheroids witk > 0.137) this term is zero. In the Brownian(spheroids witk: 0.137)
and the non-Brownian cases, it will be seen in the next twb@esthatQ(p) can be written in

a separable forr@(p)=f(C)g(C, 1), wheref(C) andg(C, 1) are the distributions across and
along the Jeffery orbits respectively. The distributionogs the orbits in the non-Brownian
case can be determined by weak inertial effects alone andléta function peaked either
atC =0 orC = . The distribution across the orbit is set up by inertia tbgetwvith rotary
Brownian motion in the Brownian case. While solvir§jX1), an assumption is made that
there is an aspect ratio polydispersity in the suspens®is@ways the case in experiments),
and it will be shown that the distribution along the orpiC, 1) is set up by the polydispersity
on shorter time scales. In sectioBS and 3.4, (3.1]) is solved in the asymptotic regime
where the time scales governing the orientation distrdsutilong and across orbits is well
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separated. The solutions are used to evaluat for the non-Brownian and the Brownian
cases, respectively.

3.3 Rheology non-Brownian case

3.3.1 Derivation of orientation distribution

In this section, we derive the orientation distribut@(p) set up by the inertial drift required
to evaluate the integral irB(10 for the non-Brownian case. The orientation distributien s
up by the inertial drift alone, is relevant for prolate sphds of any aspect ratio and oblate
spheroids, whose aspect ratio is larger than 0.137. In therae of Brownian motion3(11)
can be rewritten as:

0Q

5t T Up(PjerrQ) = —Rep.(piQ). (3.12)

There are two time scales in the problem; the first of Q) corresponds to the Stokesian
convection due to the imposed shear and the second corasspoithe slower drift due to
fluid inertia, and is of Oy 'Re™1). ForRe<< 1, the solution of .12 is obtained using a
multiple scales analysis. Defining the non-dimensional &l slow time scales ds and

to respectively, witht; =t andt, = Ret and writingQ = Qo (C, 7,11,t2) + ReQ1(C, 1,11,12),
(3.12 takes the form:

0Q .
ot OplPjeriQ0) =0 (3.13)
at leading order, and
0Qq . . 0Qp
Em + Op.[Pjes Q1] = —Op.[ PiQ0] — ot (3.14)

at ORe. The ORS@ term in the expansion faR is the direct effect of inertia which is, of
course, small. The O(1) term is the indirect effect, via theration of the orbit constant dis-
tribution at leading order, for long times.

The rate of change of orientatighle; in (3.13 takes the formKrﬁf in the C, 1) orbital
coordinate system. Herb; is the metric factor for the coordinate, and is the unit vector
in the 1 direction in the orbital coordinate system (see ApperB)ixThe divergence operator
in the C, 1) orbital coordinate system given iB ) is used to simplify 8.13 which gives:

0Qo 1 0 (QohchT&na) o, (3.15)

ot, | hohrsina 9t \ K+ 1/k
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The first-order hyperbolic equation above admits an infinimber of solutions, each corre-
sponding to a particular initial orientation distributi@nd with all of them, except one, being
time dependent. However, as is shown below, if there is gaotydispersity in the particle as-
pect ratios (as is invariably the case in experiments) altithe dependent solutions approach
the steady one at an exponential rate on a time scale inygrsgbortional to the polydis-
persity. To see this, we assume that the probability demsityhe spheroid aspect ratios is
given byh(k;k,o0), with meank and standard deviatiom. The assumption of a tiny polydis-
persity implies that the variance bfk;k,0) given bya? = [(k — k)?h(k; K, 0)dk satisfies
02 << K2. Defining f1 = Qghchr sina, (3.15 can be rewritten as:

(9f1 K (9f1 .
ot (m) I (3.16)

Note thatk in the above equation is a random variable and thereffgrevhich is the proba-
bility density for spheroids of a given aspect rakipis also a random variable. Defining a
new variablerp = 1 — 7+1t1, wheretp denotes the (fictitious) initial phase calculated from
the current phase (of a spheroid of aspect rajiausing the Jeffery angular velocity of the
spheroid of mean aspect ratio. Rewritir&y1(© in terms of1g leads to:

dfl K K 0f1
— — =0. A7
dt1+(K2—l—l E2+1) AT 0 317

The solution to the equation above is given byg(C, 10 — (KZLH - ﬁ)tlﬁg(C, 11+

WL;ltl), wheret;=19 — (KZLH) t1 and the functiorg is specified by the initial condition. For
K = K, the equation reduces %{11 = 0, and the solution is thereforig = g(C, 19); that is if
the initial distributionh(k; kK, 0) = d(k ), then the solution fof; merely reflects the fact that
the initial distribution of both orbit constan@®and phase angleas is preserved for all times.
However wherh(k; k, g) is not ad function, the initial distribution is not preserved and the
measurable distribution would then be the averagg @fhich is defined as:

f_lz/flh(K;E,a)dK. (3.18)

The average o0f3.17) gives the governing equation for:

dfl K ’? 5f1
——h(k;Kk,0 dk+/( 2 1) —h(k;k,0)dk=0. (3.19)

dtl K2+1 dTO

In the analysis that follows, we will show thét, at long times, converges to a time-independent
distribution. The first term on the left-hand side 8fX9 is dfl Expanding the bracketed term
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)2 andB = £ =3K the sec-

on the left-hand side of3(19 aboutk = k and definingA = ey (15R2)3

ond integral in 8.19 becomes:

! K 1
/o (Kz’j—l_lpil) gicl)h( o)dk= /0< (K= K)+B(K—K)?)

dafy _ 0 d0fy —
— —K)— | =— h(k;k,o0)dk 3.20
(ol 3k ()|, Jreemo 020
The solution ofB 17) shows thatf; is an explicit function ofry. Therefore5* ‘”1 e51 is an explicit
function of ;. 2 3¢ can be transformed tﬁ’r—o as:
2 2 _
0 oty 0 kc—1 0 K<—1 0 (3.21)

i
Ok 0k 011 (1+k2)2'ar,  (1+«k2)2 a1,
Substituting 8.21) in the rhs of 8.20 one obtains:

/:(KZKH—,;Z’;)Zi;h( o)dk= /01< kR0 (52

—Aty (K —K)=— 4 <ﬂ) ) h(k;k,o0)dk, (3.22)

0To 0T0 K=K

where we have replacedby k in the relevant terms to the required order of approximation
Usingo? = fo (k — K)?h(k; k, o)dkand neglecting higher order correctior®22 becomes:

1 K E (9f1 2 20 0f1
/0<K2+1—,zz )0Toh( 0)dk= (‘A“(’a—m(a—m) )

(3.23)
To O(0?), the derivatives in3.23 may be replaced by the corresponding derivative$,; of
and one obtains the following equation fiar

afy Zﬁfl o 5 0 [0f
G, FBO G = Aot (G ) (3.24)

d0fy
Bo 2
- 0T0

K=K

Defining a new variabléy = 1o - Bo?ty, the equation above can be written as

oft ., .0 (0f
o, ~Nuotse (dfo) (3.25)
of; 9 (df
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The governing equation fo is a one dimensional diffusion equation in a finite domaithwi
the diffusion constard = A%g?/2 = 1+:22)4 ”62/2. The normalization condition d, which
is given by [ Qohch; sina dCdr=1, results in the following restriction of:

o  r2IT
/ / fidCdr = 1. (3.27)
o Jo
The no-flux condition leads to:
?::1 =0 atC=0 andeo. (3.28)

The solution for 8.26) can be found in terms of an eigenfunction expansion usipgre¢ion
of variables:

fl = Z)e”thf (Ancosnty+ Bnsinnty). (3.29)

n=

Applying the boundary and the normalisation condtion orts ge

/OovodC: %T (3.30)

and
0Ao

3 =0 atC=0 andeo. (3.31)

Then =0 term in the summation in3(29, together with 8.30 and @.31) gives the time-
independent solution t&(13 as:

Ao

Qp=—"2 . 32
0 hchy sina (3.32)

In (3.32), Ap is a function ofC alone and therefore captures the orientation distribldtynss
the Jeffery orbits. The terrinch; sinadCdr is the differential area element in tkke— 1 co-
ordinate system, and ensures ttsatisfies the normalization condition above. The above
expression foQy clearly shows that the polydispersity stabilizes a unigone independent
distribution along the orbit, and the distribution is pssdy the inverse of the Jeffery angular
velocity.

Itis clear from .32 thatQq is of the formf (C)g(C, T), wheref (C) is the distribution across
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orbits andg(C, 1) is the distribution along the orbit, with(C) = Ap andg(C, 1) = m
If there were no inertiaf (C) would be determined by the initial condition. The long-time
orientation orbit stabilized by inertia, for a neutrallydyant prolate spheroid is the tumbling
orbit, and thereford (C) takes the form‘% in theC — 1 orbital coordinate system. For a
neutrally buoyant oblate spheroid, whose aspect ratiargetahan 0.137, the long-time ori-
entation orbit stabilized by inertia is the spinning orlind f (C) takes the forméé—? in the

orbital coordinate system. In terms of the polar and aziraiuihglesﬁo then takes form:

- K3(6;—3)
Q = 3.33
o(P) 2msing; (k2sir? ¢ +co2 ¢;)’ (3:33)
for the tumbling spheroid, and
S oy 9(6)

for the spinning spheroid. Note that the above expressiangatten in the spherical coordi-
nate system using the relations given in appemdix

For oblate spheroids of aspect ratio less tha80, inclusion of weak inertial effects does
make the functional form of the steady-state orientatigtrihution determinate, which is

given by a couple of delta functions peakedat= 0 and6; = 11/2. However, in a suspen-
sion of such spheroids, the ratio of the amplitudes of thet& dunctions is determined by
the initial distribution of spheroids in the suspensiond éme orientation distribution of the

spheroids in the suspension is given by:

o(p)  A(CI80) | KI#(C)3(6—F)
0 211sing; 2msinG; (k2cof ¢ +sirf ;)

(3.35)

where the constantg’; and .o, in addition to depending o6* (and thereby on the aspect
ratio), are functions of the initial orientation distrilbrt. This dependence arises because the
relative proportions of oblate spheroids asymptoting sottimbling and spinning modes de-
pend on the number of particles located on the either sideeafdpeller (the Jeffery orbit with
C=C*(&o), see figure2.15 on the unit sphere at the initial instant. Thus, for nonv@n@n
neutrally buoyant oblate spheroids in the range of asp&osrd, 0.137), the inertial suspen-
sion rheology, at leading order, still depends on the irstiate of the dilute suspension. Using
the orientation distribution given ir8(33 (3.34 and @.395, we calculate the viscosity of a
dilute suspension of spheroids in the presence of inertidna next section.
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3.3.2 Rheology of non-Brownian suspensions of inertial sgnoids

In this section, the viscosity of a dilute suspension of spigis in the presence of inertia
alone is calculated by evaluating the integral3riLQ), using the distributions derived i8.33
(3.34) and @3.35. For a dilute suspension of prolate spheroids, the digioh given in 3.33

is substituted in.10), with p = cosg; 1} + sing, 1§, (primed unit vectors are defined in the
space-fixed coordinate system see figid, to obtain the particle contribution to the stress,
which is given by:

(ij) =n

Eij. (3.36)

() 3p(P)(g,) _ 2DP) 3
D, (fo)+<2D1 (§0) —2D5 (o) + 2 EO‘FE?J)Z—'_

Dm)(fo)) &0 &o
(

The rheology is evidently Newtonian. In terms of an effeetwscosityle¢, we have from

(p) =
(330 that (et — 1)/ [(N3)1] = 3(O (20) + (30 (£0) — 20 (80) + 252 o)

for a suspension of prolate spheroids at small but fiRike The left-hand-side plot in figure
3.1 shows this intrinsic viscosity coefficient as a function lo¢ tspheroid eccentricity. It is
seen to vary from a value corresponding to the Einstein coeffi (the value near 10 comes
from the factor 4t/3 involved in the spherical volume fraction) for a near-gphe a vanish-
ingly small contribution for a slender spheroid. This happdue to a change in the scaling of
(Hets— M)/ u from O(nL3) in the near-sphere limit t&(nL?b)/ Ink in the slender fiber limit;
from (3.36), limg, e (et — 1)/t = 2nL3 and limg, 1 (Hett—H)/H = 52=-nL2b. For large
aspect ratios{ — ), the dominant contribution to the averaged stresslebimfnon-aligned
fibers with the probability of such orientations only bel@gk ). From viscous slender body
theory, the stresslet for a non-aligned fiber arises fromesli force density oD[uyL/Ink]
acting with a moment arm d@d(L) over the length of the spheroid, anddguyL3/Ink]. The
resulting (dimensional) stress@n).O(k ~1).0[uyL3/Ink], leading to an effective viscosity
(Heff — u)/u of O[NL?b/Ink]. The stresslet for flow-aligned fibers is smaller than the-non
aligned contribution byD(k —?Ink), and only contributes to a small correction @fnLb?)

to the above estimate. The right-hand side plot in figdieuses the slender fiber scaling
above to obtain a finite viscosity coefficient in the slendeifiimit; note that the near-sphere
asymptote is zero in these units owing to the additionalritiyaic factor involved. The scal-
ing of the intrinsic viscosity with aspect ratio, in the dlen fiber limit, is controlled by the
anisotropy of orientations within a given Jeffery orbitdatius, Leal and Hinch'sLgal &
Hinch (1971) original calculation, involving the effect of weak Brovam diffusion in setting
up a steady smooth distribution across Jeffery orbits, l@lads to a viscosity coefficient of
O[nL?b/Ink] for large aspect ratios, albeit with a differedtl) coefficient.
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Fig. 3.1 The intrinsic viscosity coefficient as a functioreatentricity for a dilute suspension
of neutrally buoyant prolate spheroids.

For oblate spheroids with aspect ratios greater tha8Q p = 1,, and only the two transverse
planar extensions ir2(34) contribute to the rheology. Using.34), (3.10 reduces to:

(o) = nDY) (&0)Ej 1.01< & < o, (3.37)

For oblate spheroids with aspect ratios smaller thalD, (.35 is substituted in3.10 to
obtain:

0 0 3. (0 0 s . D5 &
(gf)=n [Dé (&) 1+ <D§ (&0) + <§D(1 (&) —2DY) (&) + 2 > o (503_20)2

(1— Defl)} = 1< & <101 (3.38)

The area within a Jeffery orbit, with an orbit const@nis given by 21— 4K(1+C2)—%I'I [1—
K2,—Czl(fc’21)], and normalizing by the area of the unit hemisphere, oneirebta; = 1 —
27’((1+C2)—%I'I [1- K2, —%] and.@% = 1— ¢/ for an initially isotropic orientation dis-
tribution, M(x,y) being the complete elliptic function of the third kin@diadshteyn & Ryzhik
(2007). The intrinsic viscosity coefficient et — u)/[(nL3)u] for a suspension of oblate
spheroids, over the entire range of eccentricities, idgdiodn the left in figurd.2 There is a
kink (a discontinuity in slope) in the curve atz 0.99 due to the oblate spheroids transition-
ing from a pure spinning mode to a weighted combination ofisipig and tumbling modes.
The part of the viscosity curve fag > 0.9905 (aspect ratios smaller tharil87) is plotted

as a discrete sequence of points because the relative pomsoof spinning and tumbling




3.3 Rheology non-Brownian case 79

spheroids in this range of aspect ratios is a function of épelter locatiorC*, and this is
found numerically from the zero-crossing in a plotA&€ againstC/(C+ 1) for a particular
aspect ratio (similar to figur2.13. The right-hand side plot shows a magnified view of the
aforementioned kink. Here, the curve corresponding to tire ppinning mode is continued
until e= 1 to emphasize the transition from spinning oblate sphera@baspect ratio.Q37, at
e=0.9905, to tumbling flat disks &= 1. Note that the spinning-mode curve would terminate
in a finite coefficient ae= 1, since the viscosity coefficient for spinning disk&ig1L.3) as for
spheres. The bifurcation at= 0.9905, however, implies that the viscosity coefficientat 1,
arises almost entirely from tumbling flat disks, and is astatigally smaller thar©(nL3). The
appropriate scale in the flat-disk limit may be obtained bingpthat the averaged stresslet
arises from the combination of & yL3) stresslet associated with &ik) fraction of spin-
ning disks, and a comparab®(uybL?) stresslet associated with disks that tumble in the
flow-gradient plane (unlike the prolate case, both aligned @on-aligned flat disks end up
contributing, at the same order, to the tumbling stress @orapt). This leads to an effective
VisCosity et — 4 ~ O(nbL?)u in the flat-disk limit. Figure3.3 plots (Uets — i)/ [(NbL?) U]

as a function of the spheroid eccentricity which leads to iefivalue in the flat-disk limit;
the spinning-mode coefficient diverges@g&€p — 1)_% with this normalization. The viscos-
ity coefficient for sufficiently thin oblate spheroids is agaontrolled by the anisotropy of
orientations within a given Jeffery orbit, and the effectsveak Brownian motion, although
resulting in a different distribution across Jeffery ogsblead to a similar scale in the flat-disk
limit (Leal & Hinch (1971)).

Apart from the kink ate = 0.9905 discussed above, there are two points worth noting in fig
ure 3.3 The first is that the intrinsic viscosity curve correspotwa steady state orientation
distribution. Within the framework of an orbital drift, thiene required to attain such a steady
state diverges in the flat-disk limit owing to the divergirgfféry period; recall that the Jeffery
period is 21# and isO(k 1) for k — 0. Note, however, that the orbital drift interpretation,
that assumes the inertial trajectory to be a tightly wourich§decomes increasingly restric-
tive for both large and small aspect ratios (see se@i8n Notwithstanding this restriction,
the viscosity coefficient, plotted for any finite time, wikdate from the steady-state plot for
sufficiently thin oblate spheroids, asymptoting to a (firoze-time) isotropic orientation dis-
tribution ate= 1. For longer times, this deviation from the steady-stat@ewill occur at
progressively smaller aspect ratios. The second featuhe idifference between the value of
the intrinsic viscosity coefficient &= 1, and that corresponding to a suspension consisting
only of tumbling flat disks (indicated by the horizontal dadHine in the right-hand side of
the figure ). This jump comes from the implicit assumptionmfrdinite suspension for which
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Fig. 3.2 The intrinsic viscosity coefficient as a functiorestentricity for a dilute suspension
of neutrally buoyant oblate spheroids. An initial isotroprientation distribution is assumed
while calculating the viscosity for aspect ratios less ttrancritical aspect ratio (0.137). The
dotted line denotes the viscosity coefficient for theseosgy ratios. The plot on the right is
a magnified view of the viscosity coefficient transitionimgrh the spinning to the tumbling
asymptote close to the flat-disk limit.

a statistical description, in terms of an orientation pioliy density, is appropriate. For any
finite-sized system, there will be a small enough asped vetien the area within the Jeffery
repeller, corresponding ©* = /35, is small enough that the number of spheroid orientations
in this tiny region of the unit sphere is of order unity, andralgabilistic description is no
longer valid. Below such an aspect ratio, the viscosity fodeht will approach the lower
value corresponding to the pure tumbling mode (aga@(@ibL?)). Said differently, the jump

in the viscosity coefficient a& = 1 is an artifact of the thermodynamic (infinite system size)
limit.

3.4 Rheology- Brownian case

3.4.1 Derivation of orientation distribution

In this section, we derive the orientation distributi@iip) which is set up by the combined
effect of inertial drift and the rotary Brownian motion. Theentation distribution is relevant
for thin oblate spheroids, whose aspect ratio is smaller ha37. As in the non-Brownian
case, there are two time scales in the problem; the first oaéodihe Stokesian convection and
is of O(y~1) and the second time scale being the inertial time scale anf ORey 1) (the
parameteiRePe is assumed arbitrary, so that Brownian motion, formallyguss on a time
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Fig. 3.3 The intrinsic viscosity coefficient as a functioreatentricity for a dilute suspension
of neutrally buoyant oblate spheroids presented in fi@u2eis now appropriately re-scaled in
the flat-disk limit.

scale comparable to the inertial drift; as is shown lates,abtual time scale might be much
larger in the limitRePeg >> 1). The multiple scale analysis proceeds in a similar matmer
the non-Brownian case, with the leading order equation sasn@.13, and the equation at
O(R# takes the form:

0Q
oty

09,

5, (3.39)

1 1
+ Op.[Pje Q1] = Re PGDZQo— Op.[ PiQo] —

Compared to3.14), the above equation has an additional term on the righttisade due to
the rotary Brownian motion. Sinc8.39 is an inhomogeneous version 813, one needs to
find the Green’s function of3(13), to solve 8.39. Recall that after accounting for the effects
of phase mixing due to polydispersity, the averaged versigi3.13 is shown to be 3.26),
in section3.3.1, and therefore, solving3(39 requires the Greens function d.26. This
Green’s function is the solution of:

ofp a8 [(0f

——= D= | 2= | =0(tf —t1°)d(Tp — 3.40

8 Oar (52 ) ~ sE— st (3.40)

The Greens function is given by :

@ g D)

G(fp— T, t7 —t}?) = Z)f (cosn (10— 16— Bo?(t1 —17))) . (3.41)
n=
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Using the Green'’s function given above, the solution®grin (3.39 can be formally written
as:

— t 2m 1 aQ
dt’2 _ 2 0
1= hchTS|na/ / fo—To. 17 —t7") { (R Pe Q ~Op Qo] - oty )

hchy sina} dip.
(3.42)

For times much longer thar;/rDl/Z, neglecting exponentially small corrections, one may ob-
tain the leading order estimate &.42 by using the time-independent form O, givenin
(3.32, and further, retaining only the time-independent temrthieé Green'’s function ir3(42.

As result,ﬁl, for long times, is given by:

Q1= hChTsinatl/o 7_1{ <RePer (hchrsina) ~He. [p, <hchrsina)

o[ A O\
- <W)) hchTsma} il (3.43)

Clearly, Q, grows as Cl(f) for long times. In order to avoid this aphysical seculamgig one

must have:
o 1| \RePeg hch; sina UOp- | P hche sina

0 Ao _ L
o (m)) hchfs'”a} d7p =0. (3.44)

DenotingAp asf, the third term in 8.44) becomes:

/2"—i # hchysinadt = —271ﬂ (3.45)
o 0t \ hchesina ! - oty '

Note that in 8.45, we have changed the variabig to T using the relationty=1-Bo;-

t1 (see above3.25). The fluid inertial correction to the angular velocity ivgn by
uCCC-i— Uc:T. The component ann@ Ucc , IS responsible for the drift across Jeffery
orblts (proportional to%—ctf given in 2.86)). The divergence operator iB6) is then used to
simplify the second term in3(44). Noting that ther derivative integrates to zero over (0 to

7+1
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2m), the second term simplifies as:

- | ; ‘ 2m 0 f

[y (-0 (b (repysina) ) renesmaar = [ (5 (nesmavee (jp g ) ) o
[2 (ot ) dr = s (emaci), (349
~Jo “ac \he - oC |

whereAC; = [; "Zﬁ%dr is givenin ACj = & +1AC ACis givenin .90 and @.117 chapter
2).

The first term in 8.44) is simplified using the Laplacian, derivable from the gesdiand
divergence operators in sectiBnpand the term reduces to:

21T 2 0 ;
/ ey L hchrsinadr:/ 1 9 ! (hchrsma)
o \RePg P\ hch;sina o RePgadC hesirf o dC

cota 0<7hchfsina> T [df_f
- g hesina | dr = —< X1+ X2>

h; sina ot RePg 0C \ dC

(3.47)

wherexs(Cix) = (552+ C2 (3+ 2+ ) +CH(+ 1)) andyz = (2
c? <6— (% + ez + KTZ)> + 2CH (k2 + 1)). The final equation for the evolution df the dis-

tribution across Jefferys orbits, can be obtained by suibsig (3.45,(3.46 and @.47) in
(3.44) and is given by

Jof o0 1 o0 /df f
+—(ACif) = == <—X1—|— 6X2> . (3.48)

at,  aC 2RePe 0C \ dC
The orientation distribution in the presence of Browniartiorotherefore takes the form:

_ £(C)

wheref (C) is governed by3.48. The steady state solution f6(C) is given by:

c , — 2AGi(C';K)
- RePeC
RePe/ ( o )dC’], (3.50)

fs(C) = Nexp
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whereN is a normalization constant. To calculate the steady siat®sity in the Brownian
case, one would want to substitu®49 together with 8.50 in (3.10 and evaluate the in-
tegral. This calculation is done in sectiB™.3 It is of interest to note thats(C) in (3.50
is a distribution of the Boltzmann form. Thu@®RePe)~1 in (3.50 is the KT -equivalent, and
the function ofC multiplying it may be interpreted as an effective potentidC; k, RePe).
Inertia and Brownian motion cause any initial Jeffery-bibstribution to slide down to the
potential minima, this tendency being balanced by@iBePeg) ! diffusive fluctuations irC
due to Brownian motion alone. Before presenting the visgastimation for the Brownian
case, we will first focus on understanding the nature of therg@l in the next section.

3.4.2 Thermodynamic Interpretation: The ‘tumbling-spinning transition’

In this section, we will try to develop an understanding &f totentialJ (C; k, RePg), that
governs the steady state distribution given3rb(), from a thermodynamic point of view. It
is evident from the Boltzmann form ir8(50 that 1/RePe is like the temperature. One can
develop a one-one to analogy between the parameters in thetjab above; that i€, k and
RePe, respectively, with specific volume, pressure and tempesathich are the parameters
in the free energy for a single component system. The steatly gistribution peaks at the
minima of the potential and these peaks can be interpret@tha@ses. This is analogous to
defining the liquid and gas phases as the minima of the Gilegsdnergy in the case of a
one component system in thermodynamics. Dependinged?g, the nature of the potential
changes with increasing aspect ratio, from a single weltddriial peaked closed to tumbling,
to a double welled potential, and eventually to a single @kepotential peaked close to spin-
ning, and therefore to identify the phases it is importarttack the minima of the potential.
The loci of the potential extrema in tike-C plane, for varioufkePe, are plotted in figur8.4a.

In the limit RePe <« 1, Pa > 1, when Brownian motion alone controls the distribution
across Jeffery orbit§) (C; k, RePe) always has a single minimum that moves to progressively
largerC’s with decreasing. This corresponds tBePe¢ = 0 curve in figure8.4a. For the oblate
spheroids of interest witk < 1, the potential minimum lies in the vicinity of the tumbling
mode, and the correspondirigC) was originally derived irLeal & Hinch (1971). The emer-
gence of an inertial drift with increasirigePe leads to a broadening of the minimum until, for
sufficiently largeRePe, U (C; k, RePe) transitions to a double-welled structure below a criti-
cal k, with a pair of minima separated by an intermediate maximtinis transition is due to
the bi-directional nature of the inertial drift. The crdix is a function ofRePe, approaching
a maximum of 0137 in the deterministic limitRePg — ) with the pair of minima asymp-
toting to the spinningg = 0) and tumblingC = ) modes, and the intermediate maximum
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approaching th&-dependent repeller in figure (see fig@&d5. Note that at a giveRePe,
if the potential at a particular aspect ratio has a doubléededtructure, then the constant
line(horizontal) should cross the constét#Pe curve at three points in (see figuseda); in
other words, the constaRePe curve is a multivalued() locus.

For a given multivalued locus in figutg4a, a horizontal dashed line is drawn at the
for which the two potential minima have equal magnitudesnalogy with thermodynamic
tie-lines. The shifting of the deeper minimum of the potahécross the tie-line for a par-
ticular RePe of 70000 is shown irB.4b. The smallc and large€ minima that the tie line
connects may be identified, respectively, with ‘spinningd atumbling’ phases that co-exist
at the particulak and RePe. This leads to a phase diagram with a two-phase (tumbling-
spinning) envelope that ends in a critical poifk,C,RePg) = (0.06653.1,1150. The pro-
jections of the phase diagram in thke- C andRePg — C planes are shown in figur&s4c and
3.4d, respectively. The constaRePe loci in figure 3.4c may be regarded as isotherms, the
non-dimensional inverse shear rate squat@Pg) 1, being the non-equilibrium tempera-
ture equivalent. Tie-lines in both figures replace the mestiate non-monotonic (and, in the
one-component case, thermodynamically inaccessiblejopaof the isotherms in the range
1150< RePe < «. The phase diagrams in figurgsla,c and d arise from a one-dimensional
description of the orientation dynamics along @woordinate, and fok < 1, this requires
Pg > k3(Hinch & Leal 1972. Interestingly, the phase diagram in figu8efa includes,
on one hand, the infinite-temperature isotherm calculateldeal & Hinch (1971); on the
other hand, the two-phase envelope in fig8re is bounded below by the zero-temperature
isotherm atk = 0.0126. This piecewise linear isotherm is defined®y 0,k > 0.0126;
0<C<o,K=0.0126;C =,k < 0.0126, and implies a discontinuous transition from a
suspension of spinning spheroids to tumbling ones aeres$.0126 in the limitRePg — .
Thus in the limit ofRePg — oo, the distribution across orbitig(C), is a delta function peaked
at spinning fork > 0.0126 and at tumbling fox < 0.0126.

The regions where the reduced description loses validgysaown in figures.4e and
3.4f (dashed red curves), and occupy only a small fraction ofplrameter-plane for small
Re WhenPg is O(k —3) or smaller, Brownian rotations affect the orientation isttion both
across and along Jeffery orbits, close to the gradienteityrplane, and a reduced description
requires first determining the full distribution on the usyhere.

The tumbling-spinning transition identified above has istg similarity to the coil-stretch
transition of high molecular weight polymers in extensawminated flowdDe Gennes 1974
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Fig. 3.4 (a) shows the extrema loci, together with dashdhes, for variouRRePe. (b) shows
the nature of the potenti&dl() above and below the tie line for d&ePe of 70000. (c) and (d)
show the envelope of the two phase region in #h€ and RePe-C planes respectively. (e)
and (f) delineate the regime of validity of the reduced omeeshsional description for two
different Re’s.
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Hinch 1979. Intra-chain hydrodynamic interactions sharpen thesitaon from the coiled to
the stretched configuration, with increasing flow strengtfatacterized by a Deborah number
De = y1;, Ty being the longest relaxation time), so as to render it digsocoaus. The discon-
tinuous transition implies a hysteresis, and coiled anetcted states (produced by varying
deformation histories) can co-exist at a gii@afor times much longer than (Schroedeet al.
2009. These states may be identified with the aforementionedlnmand spinning phases,
respectively, with the average polymer extension in a egrained description playing the
role of C, De being the analog ok, and the polymer molecular weight being equivalent to
RePe. The co-existence of multiple conformations has been eerifi single-molecule exper-
imentsSchroedeet al.2003, and the approach in select scenarios, to a bi-modal bquitn,
has been verified in simulatioB$ck & Shaqgfeh 2006 A tentative phase diagram in the
extension-De plane, the analog of figuig4a, appears ischroedeet al. (2003.

The hysteretic orientation dynamics of thin oblate splisas better understood in the three-
dimensionak —C—RePeg space in figure.5. The region of multiple extrema in figui®4a
now defines a bi-nodal volume and the superposition of thdesheegions defines a smaller
spinodal volume confined between the inflection-point Idcine double-welled potentials.
Unlike the thermodynamic case, there is no equation of statteconstraing to be a certain
function of RePe¢ andC, and all points within the hysteretic bi-nodal volume remaccessi-
ble (this remains true for the polymeric case). The bi-nagdlime shrinks with decreasing
RePe, and vanishes &®eP¢ of 1150.

In chapter2, it was shown that for neutrally buoyant oblate spheroitls, lifurcation
region exists in planar linear flows close to simple shear {low corresponding to the shaded
region in figure2.17). For variousA’s in the shaded region of figu&17, the phase diagrams
are plotted in figur®.6. The phase diagrams for positi¥és are bounded below bymin = v/A,
the smallest aspect ratio at which the orbits of the spheacédclosed in the Stokes limit.
WhenA is positive, for a giverRePe, the upper limit of the range of aspect ratios for which
the potential is bi-stable, increases, with increasinjom k = 0.14 for A = 0 and reaches
aroundk = 0.2 for A = 0.03. However, this rate of increase is slow compared to thétef
lower boundkmin. WhenA is negative, the upper limit decreases with decreasin@here
are no lower bounds for the phase diagram in the case of megéds. Thus, the hysteretic
region encountered in the simple shear flow case in fi§utequickly shrinks on either side
with increasingA |.
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Fig. 3.5 The three-dimensional phase diagramkrC{RePe) coordinates. The tumbling-
spinning envelope ending in a critical point is shown asdadhed lines.
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3.4.3 The rheology of a suspension of oblate spheroids witlspect ratio
less than0.137: the role of weak Brownian motion

In this section we calculate the viscosity of a dilute suspmn of oblate spheroids with
Kk < 0.137. We explore both the steady state rheology as a functitmreqnon-dimensional)
shear rate, and the time-dependent evolution of the vigclosm its initial value (correspond-
ing to a chosen orbit constant distribution) for points ie kh— RePg — C parameter space
that lie within the tumbling-spinning envelope.

At long times as shown in the previous sections the distiobutakes the formQo =
hCLST(g)na, with fs(C) defined in 8.4). The evolution tofs(C) however is governed by3(48
and one has to solve this equation numerically to undergtenttansient dynamics. This evo-
lution has a non-trivial character within the tumbling+sgping envelope owing to the bistable
nature of the potential. As seen in figu3es, one can identify spinodal and binodal regions
in the region of three dimensional parameter space comelsipg to tumbling-spinning enve-
lope. The evolution of the distribution can accordingly kessified into spinodal and binodal
(nucleation-growth) routes. The analog of spinodal dyramorresponds to the evolution of
f(C) from an initial condition fp(C)) peaked close to the potential maximum, while the ana-
log of the nucleation-growth route ensues for an initialdibon peaked outside the inflection-
point interval. The narrow Gaussians are the only initialdibons that occurs in thermody-
namical systems, in which case the fluctuations af¢ @), and the spinodal-binodal clas-
sification is relevant to all initial conditions. This is nibe case here. Figu®@7a shows the
rapid evolution foRePg = 3x 10°, starting from a narrow Gaussian at the potential maximum,
into a bimodal distribution peaked at the potential minidmefigure 3.7b, for an initial Gaus-
sian adjacent to the smallpotential minimum, the distribution now remains unimodaid a
second peak is ‘nucleated’ at much later times via a banog@ping process. Kramer’s theory
gives the barrier hopping scal %imax( f‘,‘,"TC'?niz’ﬁ%mm)l 2 eRePetU Chandrasekhdd 943, where
AU is the magnitude of the difference in the potential betwéerldwest minimum@nin) and
the central maximumQmay) Of the bi-stable potential. The time-dependent viscesitan be
evaluated fron8.1Q using thef (C) at each instant and is plotted for aforementioned evolu-
tions are shown in figur8.7c (Dwivedi 2016. The viscosity for the spinodal case evolves
quickly to begin with on account of peak splitting; this c@sts with the slow evolution of the
bi-nodal viscosity via the barrier hopping process. As islent at finite times, the viscosity
of the suspension is therefore going to be strongly depedratethe initial orientation distri-
bution, making the suspension hystertic.

Although a narrow Gaussian has been used to illustrate tihedgd and binodal routes to
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Fig. 3.7 The evolutions starting from localized Gaussianadenta) peaked at the maximum
(a) and adjacent to the small-C minimum (b) of the potentidl), respectivelyk = 0.016,
RePg =3 x 10°. Thefs(C) in each case is shown as a blue curve. The dashed line cangsspo
to the instant ((a) & x 10~ D/ and (b) 61 x 10~2 D; %) at which a tumbling peak first
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Fig. 3.8 (a) Intrinsic viscosity evolutions for the quensidgentified in the text (inset shows the
evolution for step 2 of the second quench) (b) The quasdgtetate orientation distributions
atRePe = 2 x 10°. The second quench leads to a greater fraction of spinningrefs, and
therefore, a higher viscosity.
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equilibrium above, generating a localized orbit-constasiribution in an experiment requires
the application of an external fiel@kagawa & Mason 197Znniset al. 1978. From an
experimental point of view, an isotropic orientation distition is readily generated by initial
mixing. For anfp(C) corresponding to this well-mixed state (recall thg(C) is the complete
elliptic integral, see sectioB.3.2), a signature of the hysteresis is the sensitive dependence
of the viscosity in the bi-nodal volume to the precise shase history. To illustrate this de-
pendence, we consider a pair of ‘quenches’ applied to amojsiatsuspension of spheroids
with k = 0.04 1. In the first single-step quench, the suspension is shearad RePg of

2 x 10°. In the second quench, the suspension is first sheared RéB@ of 25000 until a
steady state (achieved at a titag), andRePe is then increased to the aforementioned value
of 2 x 10°. The evolution of the viscosities is plotted in figue3a. In the first quench, the
distribution, and thence, the viscosity settles down to asgsteady state arising from the
partitioning of fo(C) across the potential maximum, followed by local equilitmatin the
spinning and tumbling wells. In the second quench, the gisgevolves quickly to its steady
state value in the first step owing to the loviRePe; in the second step, it evolves to a differ-
ent quasi-steady state that corresponds to a partitioritigesteady state fdRePe = 25000.
The true steady states are inaccessible for both the firsictpyand the second step of the sec-
ond quench, owing to the exceedingly large barrier-hoppimgs. The pair of quasi-steady
states, aRePg = 2 x 10°, are shown in figur&.8b, and represent a viscosity contrast of ap-
proximately 38. Note that far higher viscosity contrasts are obtainaiolefspin-rich’ initial
conditions, but as indicated earlier, these require theositjpn of external electric or mag-
netic fields .

At times larger than the barrier hopping time mentioned abdtive viscosity asymptotes
to a value independent of its shear history, and we now foousis long-time rheology. In
the limit of RePg — o, the distribution across orbitk(C) is a delta function peaked at the
spinning fork > 0.0126, and peaked at the tumbling fox. 0.0126. In figure3.9, the viscosity
coefficient scaled with @ ?b) is plotted against eccentricity. It is obtained by avemagi
the stresslet using the orientation distribution given3dr84 for k > .0126, and 3.33 for
Kk < .0126. Note that the aforementioned critical aspect rafii@rdi from the critical value
of 0.137 found in the absence of Brownian moti&®efe = «), implying the singular role
of Brownian motion; the viscosity coefficient now varies stidy across the earlier critical
value. A relevant question one could ask is about the vanatf the steady shear viscosity
as a function of suitable non-dimensional shear rate fdemiht aspect ratio spheroid and

1The quenches discussed may be achieved in an experimeritrie aftapproximately 3 hours, by shearing
oblate spheroids of with ~ 10 microns in an aqueous medium with the maximum shear r&igakto achieve
RePe = 2 x 10°, being 9005 2.
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Fig. 3.9 The intrinsic viscosity for a suspension of Brownablate spheroids is plotted as a
function of the aspect ratio. The right figure shows the juropfthe spinning to the tumbling
value at the critical aspect ratio of .0126.

not merely the viscosity values corresponding to the irdistiear rate limit reported above
The detailed review byrenner(1974 describes the variation of the intrinsic viscosity
coefficient for a non-interacting suspension of Browniahespids, as a function d?g, in
the inertialess limit (see figures 7 and 10 therein). As etquedor a general complex fluid
with an isotropic microstructure at equilibrium, the impims of shear and the resulting flow-
alignment of the spheroidal particles leads to a sheanthgnrheology. More specifically,
for a spheroid of a given aspect ratio, either prolate ortebté?f“f—_“ decreases from a zero-
shear-rate plateau @(nL3), arising from a combination of the hydrodynamic and Brownia
stress contributions for a nearly isotropic orientatiostriution, to a smalle®(nL?b) high-
shear plateau, arising solely from the hydrodynamic stessribution associated with a flow-
aligned orientation distribution. The high-shear platealuwes were first calculated byinch
& Leal (1972, numerically for arbitrary aspect ratio spheroids (@@ & Karrila (1991)),
and analytically in the slender fiber and flat disk limits. $&elateaus correspond to the
limit Pg > 1, RePeg = 0 for spheroids with aspect ratios of order unity. For exegeaspect
ratios, a more stringent requirement arises from the negleBrownian motion even close
to the flow-vorticity (gradient-vorticity) plane for sleadfibers (flat disks) given bpe >
k3(k—3),RePg = 0 (Hinch & Leal (1972). The analysis here helps extend the behavior of
the intrinsic viscosity coefficient beyond the ‘Leal-Hingiateaus, as a function &ePe, up
until the point wherd&Rke~ O(1), RePg — . Said differently, the shear-thinning rheology of a
dilute inertialess suspension of spheroids is known up aig¢ where a limiting Newtonian
plateau results from Brownian motion only determining tistrébution of orientations across
Jeffery orbits. The viscosity versus shear rate curvesngdetow, both the schematic and the
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actual numerical calculations, start from this point andaine the non-Newtonian rheology
at higherRePeg due to the distribution given by3(50.

The behavior of the vicosity for oblate spheroids with shrasée depends on the whether
the aspect ratio is above or belowd026. In the former case, a shear-thickening rheology
results for sufficiently larg&ePe, while for the latter case, the suspension continues tarshea
thin even with the onset of inertia. Accordingly, figu8el0 shows the viscosity v/s shear
curves, corresponding to the two aspect-ratio groups,ragpg out in the limitRePg — o,
this being consistent with a jump in the shear viscosity ig limit as seen mentioned earlier.
The actual plots of the intrinsic viscosity coefficient péat againsRePe are shown attached
to the schematics in figuréa10and3.11 These reveal the scenario for oblate spheroids,
with aspect ratios greater thar0Q26, to be a little more complicated than that shown in the
schematic, owing to the suspension first shear thinninganbally with increasingRePe, for
aspect ratios just above the critical value, before evdligtabear thickening for sufficiently
largeRePe. This non-monotonicity arises because of an initial Bramnpeak close to tum-
bling, and the transition from this to a spinning peak withreasingRePg; the transition
involves a sharpening of the tumbling peak (leading to ski@aning) prior to the develop-
ment of a spinning peak. A similar calculation for oblate esiids with smaller aspect ratios
shows a monotonic shear-thinning; the viscosity coefficiere is plotted againftePex?,
this being the actual ratio of drift to diffusion far < 1.

As shown in figure3.11, accounting for a non-zerBePe will always lead to a shear-
thickening rheology(relative to the Leal-Hinch plateaan)rolate spheroids owing to the drift
towards the maximum dissipation (tumbling) orbit. Notettthe inertial high-shear plateaus
for a prolate spheroid are asymptotically small in relatiothe zero-shear plateaus for large
aspect ratios, becoming comparable (and even exceedihgjasmearly spherical particles.
In contrast, for the oblate case, the inertial plateausfgigntly exceed the zero-shear values
even for small aspect ratios, implying that inertia leadarni@verall shear thickening behavior
of the suspension for most aspect ratios. For higher shess, Rewould be of order unity
or larger, and the rheology will begin to be influenced by thédiRebifurcations that have
been identified in numerical simulations. DependindR@as well as the aspect ratio, the sus-
pension can exhibit shear thickening as well as shear thgnmehaviourRoseret al. (2015).

It is important to note that the presence of multiple atoesat finite Re would again point to
the role of stochastic orientation fluctuations in estdlntig a steady state rheology.
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Fig. 3.10 The middle plot is a schematic of the expected tranaf intrinsic viscosity for a
suspension of Brownian oblate spheroids. The upper plotshioe variation of the viscosity,
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3.5 Conclusions

Inertia eliminates the rheological degeneracy, assatmith the existence of Jeffery orbits
in the Stokes limit, although the manner of elimination degseon the aspect ratio for oblate
spheroids. For neutrally buoyant prolate spheroids, anddatrally buoyant oblate spheroids
with aspect ratios greater thanl@7, the inertial drift leads to a singular orientation dist
bution localized at either the tumbling or the spinning ma@pending on whethekC is
positive (prolate) or negative (oblate). In sect®B, we calculate the associated intrinsic vis-
cosity coefficients, in the absence of Brownian motion, asrection of the particle aspect
ratio (see 8.36 and @.37) for prolate and oblate spheroids, respectively) arisiognfthe
aforementioned singular distribution. Weak Brownian motonly leads to asymptotically
small corrections to this estimate. In contrast, for obdguieeroids with aspect ratios less than
0.137, the inertial drift acting alone leads to an initial-ddion-dependent rheology, and it
is only with the inclusion of weak Brownian motion that a wnégsteady state rheology re-
sults. In sectiorB.3, we calculate the initial condition-dependent intrinsiscosity for the
non-Brownian case for an initial isotropic orientationtdizution (see 8.39). In section3.4,
we analyze in some detail the steady state distributionsaclteffery orbits in the presence of
weak Brownian motion, the inclusion of which implies a deg@mce of the steady-state rhe-
ology on the parametd&ePe. Interestingly, the steady state Jeffery-orbit distiidaitmay be
interpreted in terms of a one-dimensional drift-diffusigquilibrium along the orbit constant
coordinate wittRePe governing the relative magnitudes of the convective arfdsiife fluxes

in orientation space. This distribution has a bi-modal abtar, with peaks corresponding to
the tumbling and spinning modes, for sufficiently lafRePe. For any finiteRePe, the shear
viscosity varies smoothly with changing aspect ratio of dbéate spheroid, but in the limit
RePg — oo, the shear viscosity must exhibit a jump across a much snfelleslation to the
non-Brownian value of 0.14) critical aspect ratio 00026 owing to a transition in the (limit-
ing) orientation distribution from a delta function locad alC = 0 (the spinning mode) to one
localized at the tumbling mod€(= ). As mentioned in sectioB.2, we calculate here only
the leading-order (indirect) effect of inertia on the suspen rheology. For prolate spheroids,
and oblate spheroids with aspect ratios greater than Oth8direct effects of inertia enter at
O(R&. Interestingly for oblate spheroids with aspect ratiss ldnan 0.137, the next correction
to the drift occurs aO(Re%) and this implies a Iarge@(Ré) correction to the leading order
rheology.

Inertia and Brownian motion are somewhat incompatible imgeof the relevant particle
size ranges. Thus, the convergence to a unique long-timiébegum, consistent with the
thermodynamic picture in figur8.4, may require unrealistically long times, especially for
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spheroids large enough for the inertial drift to be signiiica he rheological signature of the
hysteresis - a multi-valued shear viscosity at a given staaiRePe), as in figure3.8, should,
however, be measurable. The phase transition and the assbbiysteresis discussed in sec-
tion 3.4 arises due to the combined effect of a bi-stable potentthlged by non-linearity and
stochasticity; the bi-directionality of the inertial dyifn fact, persists at finitRe (Meibohm

et al. 2016. Other sources of non-linearity and stochasticity shdeddl to similar behavior.
Athermal orientation fluctuations arising from hydrodynammteractions should control the
tumbling-spinning transition at higher volume fractionkY). Each such interaction changes
C by a finite amount, and the resulting relaxation is non-latalrientation space, being gov-
erned by a Boltzmann equation:

or, Rei(Aq f)= nL3/dC’/ery/dédé’[f ©)f(C)x (C,C|c,Cir ) —f(C)f(C],

ot aC
(3.51)

for smallnL® when pair-interactions drive the fluctuations. The scaitgkernel.#” in (3.57)
relates the pre{C,C']) and post-C,C']) interaction orbit-constant-pairs, add, denotes the
differential interaction cross-section. Note tfR&nL3)~1 in (3.57) is the analog oRePg in
(3.48. Although an analysis based dh%1) is difficult due to.#” not being known, this might
nevertheless be the most convenient experimental routetigthysteretic time scale capable
of being tuned to modest values by varying the volume fractiendering both short-time dy-
namics and long-time orientational equilibria observaBleid viscoelasticity either in steady
(Leal 1979 or large-amplitude oscillatory shedtlgrlen & Koch 1997 Leahyet al. 2013 is
an alternate (experimentally) more accessible source mdinearity, and the ratio of normal
stress differences (besidBg) (Dabadeet al. 2015 may allow one to additionally tune the
nature of the non-linear drift.

The tumbling-spinning transition highlights an interagtconnection between suspension
rheology and polymer physics. Much like the coil-streta@msition for polymer solutions
(Shagfeh 2005_arson 200%, the tumbling-spinning transition endows an inertialparssion
of thin oblate spheroids with a memory that far exceeds thmimal microstructural relax-
ation times. This memory is likely to significantly influenitee suspension stress response in
inhomogeneous shearing flows, since the viscosities gonekng to different (Lagrangian)
shear rate histories can differ by a large amount owing tdatge difference in the dissipa-
tion associated with spinning and tumbling spheroids. Ngdrodynamic forces, including
Brownian motion, have been known to play a subtle role inrdeiteng the strong-shear rheol-
ogy of spherical particle suspensions at high volume foastiBrady & Morris 1997 Cheng
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et al. 2011). In contrast, the tumbling-spinning transition pointsth@ subtle role played
by Brownian motion in determining the rheology of anisotooparticle suspensions at much
lower volume fractions. Furthermore, in being a simpleteyswith far fewer degrees of free-
dom when compared to high molecular weight polymers, a gldesuspension of anisotropic
particles may serve as a model system for the study of hystelygnamics in complex fluid
systems.






Chapter 4

The orientation dynamics of a spheroid
sedimenting in a simple shear flow

4.1 Introduction

In this chapter we discuss the effect of inertia on a spheybatbitrary aspect ratio sediment-
ing in a simple shear flow. Itis well known that in the Stokesitj a translating spheroid does
not rotate in a Newtonian fluid_éal 1993. In a recent effortDabadeet al. 2015, the effects
of weak inertia as well as viscoelasticity on the orientatd a spheroid sedimenting in a
quiescent fluid was investigated. The authors have estththéstorque acting on a translating
spheroid at CReeg), as well as at Aje), using a generalized reciprocal theorem formulation.
Here,Reeqis the Reynolds number in the sedimentation defingdlagd-/ 1, whereUgeqis
the translational velocity of spheroids the semi-major axis of the spherojdandp are the
viscosity and the density of the fluid. The non-dimensionmhberDe, characterizes the time
scale of the dominant relaxation process of the fluid micoostire, and is given bygeqt; /L,
whereTt; is the microstructural relaxation time of the fluid. The liraf De << 1 considered
allows for modelling of viscoelastic effects in terms of @sed-order fluid constitutive equa-
tion. The torque was obtained as an integral using the giereataeciprocal theorem, and the
integral was evaluated using the spheroidal harmonicsdism, which was used earlier in
chapter2. They find that the effect of inertia at R@eg) results in a torque which makes the
spheroid sediment with a broadside-on configuration. Inbtte@adside-on configuration, the
orientation of a prolate spheroid will be perpendiculatsdranslational velocity, whereas that
of an oblate spheroid will be aligned to its velocity. Depiagdon the ratio of normal stress
differences in the second-order fluid, the effect of visasgtity results in a torque, which
makes the spheroid sediment either in a broadside-on coafign or in a longside-on config-
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uration. In the latter configuration, the orientation igakd with the translational velocity for
a prolate spheroid, and is perpendicular to the velocityafooblate spheroid. The effect of
simple shear flow on the orientation dynamics of the sphesatteady discussed in chapgr

Understanding the orientation dynamics of a spheroid (orengenerally, anisotropic par-
ticles) sedimenting in a shear flow is important in many ptgisapplications. For instance,
the orientation of the suspended ice-crystals determiaestiattering properties of a cirrus
cloud and, thereby affecting the cloud radiation forcibgp(t 1986, which in turn plays a
crucial role in the earth-atmosphere radiation budget.ichfpce crystals are small in size
(Auer Jr & Veal 1970 and are subjected to both forces and torques due to grawitylaear
flow due to the turbulence in the cloud, the turbulence beiramdom linear flow at the length
scales of the sub-kolmogorov ice crystals. As a first ste@tds/analyzing the scenario, in
this chapter, we determine the inertial torque under thelioed effects of sedimentation and
a simple shear flow.

This chapter is organized as follows. In secttbAwe determine the angular velocity of a
spheroid sedimenting in a shear flow using a generalize@nazal theorem. The derivation
follows that seen in chapter 1, except for an additional tdum to sedimentation. This term
is related to the inertial torque acting on a translatingespial that has already been derived
in Dabadeet al. (2015. A non-dimensional parametéReeq/Re characterizes the strength
of this term relative to the torque due to fluid inertial efteemn the shear flow. HerdReis
the Reynolds number in the shear flow, definedRas- pyL?/u, wherey is the shear rate.
The angular velocity is also a function of another non-disiemal parameteiSt/Re which
characterizes the strength of the torque due to particitiaheffects relative to that due to
fluid inertial effects. HereStis the Stokes numbegt = ppyLZ/u, wherepy, is the particle
density. Recall that in chapt&r it was shown that for a neutrally buoyant spheroid in simple
shear flow, the fluid inertial drift dominates the particlerimal drift. So for the particle inertial
torque to be importanSt/Reshould be large. The reciprocal theorem formulation gihes t
angular velocity of a spheroid sedimenting due to a condtang, aligned arbitrarily with
respect to the ambient simple shear flow, and the angulacitgls presented in sectioh3.
To orderRe the results for sedimentation and shear flow may be supedpdisis simpler to
analyze the orientation dynamics of the spheroid in threewcizal cases, these being defined
by the direction of the sedimenting force. The three caramzections are the vorticity, the
flow and the gradient directions of the simple shear flow, &edbtientation dynamics in these
three cases is analyzed in sectidng 4.5and4.6. It turns out that for O(1) values &t/Re
when the force is along the flow or the gradient directionjnieetial drift due to sedimentation
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and that due to the shear flow stabilize different orbitsy #tabilize the same orbit when the
force is along the vorticity. Depending on the non-dimenalg@arameters mentioned above,
the competing effects of sedimentation and inertial effestshear flow may result in the
emergence of a repeller, that divides the orientation spaoetwo basins of attraction, for
spheroids, with no repeller &e,.g/Re= 0 andSt/Reof O(1). The limitations of the analysis
are discussed in secti@n?. The results are summarized in sectib8

4.2 Formulation for inertial drift: The generalized recipr o-
cal theorem

The expression for the angular velocity of a spheroid sediimg in a simple shear flow is
derived using the reciprocal theorem discussed in ch&pt&he problem of interest here is
a spheroid sedimenting in a simple shear flow due to a fbg@igned arbitrary with respect
to the simple shear flow. The simple shear flow is defined ad™ - x, with ' = 1;19 being
the transpose of the non-dimensional velocity gradienddenThe test problem is again a
spheroid rotating in a quiescent fluid, similar to the testpgm defined in chaptet. The
velocity and stress fields in the problem of interest are tishbyu) and oM and that in
the test problem are denoted b{?) and a(®. The velocity and stress are scaled with
anduyL, whereL is the semi-major axis of the spherojdl,is the viscosity of the fluid and
y is the shear rate. Note that the scaling has been done ugrgh#ar rate in the simple
shear flow and not the translational velocity in the sedimtort. Due to sedimentation, a
spheroid may move across the streamlines of the simple 8beaand therefore, the velocity
corresponding to the streamline passing through its ceh{¥.e), changes with time. The
velocity and stress fields defined above for the problem efé&st are defined in a coordinate
system that is translating with the centroid streamlin@e#y, given byl - X¢en In the same
coordinate system, the disturbance velocity and stresisfiel the problem of interest are
denoted b/ anda’™!), and are related to the full velocity field &Y = u® — T -x and
ot =@ _ 0%, wherea® is the viscous stress due to the ambient simple shear flow. The
boundary condition on the surface of the spheroid in thepiesilem is given by(@= Q, x x,
where Q5 is the angular velocity of the spheroid in this problem. Theitdary condition
on the surface of the spheroid in the problem of interestisrgby u'(V= Ugeq + Q1 x X -

I -x, whereQ; andUq are the angular and translational velocities of the spdarothe
translating coordinate system. Noting that the spheroithéntest problem is force free, the
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reciprocal theorem gives the angular velocity as:

Q,.%, = /Sp @ : (I.x)-ndS+Q,- (St%l.(ll) + /V u?.0-a'Ydv. (4.1)

The surface integral above is done over the surface of thersjghS,) and the volume integral

is done over the infinite fluid volume outside the spherdd. (The torque acting on the
spheroid in the test problem is denoted By, and given by.Z, = —8n(Xcpp+ Yc(l —
pp)) - Qo , whereXc = 4 (&2 —1) / (3&3 (28— 2 (82— 1) coth &) andYc = 4(2&2 —
1)/(383(2(&2 +1) cothr* & — 2&)) for a prolate spheroidkim & Karrila (1991). Here,p

is the orientation vector of the spheroid. The reciprocabtkem in 4.1) contains the angular
velocity in the test problen€},), and as in chapte?, one defines new tensors such®s =
Ly-Qp u@ =U®@.Q, anda@ = 5@ .Q, to render the reciprocal theorem statement in
(4.1) independent 0€2,. The reciprocal theorem in terms of these tensors take the fo

Ql.Lzzr:/ x(Z(Z)-n)dS—i—St%l.Ql—i—/U(z)-El-a’(l)dv. (4.2)
S \%

The divergence of stress in the third term may be obtained fite equation governing the
disturbance velocity fielau’(l), which is derived by subtracting the equation governing the
ambient simple shear from that governing the full velociggdiuY), and is given by:

1
DZU/(l) . Dp/ —0. O_/(l) _ Re(al;li ) +u/(1) . Du/(l) + (r‘x> . Du/(l) 4r ‘u/(l)>
R (I - Xeen)
dt cen

/(1)
:Re( l;t n u/(l) . Du/(l) +(F.x)- Du’(l) Y u’(1)> — Re(lg, . Used)l;

(4.3)

The last term in the equation above, is the fictious force du@e acceleration of the trans-
lating coordinate system. The acceleration is determiryeithids component of the translation
velocity along the gradient axis. The inertial drift undee tombined effects of sedimentation
and shear occurs at R, and at this ordey V) can be replaced by the Stokes velocity field,
u él). The Stokes velocity fieldy él), can be written as a sum of the disturbance velocity field
in sedimentationy **¥)) and that in shean(*"*®) as follows:

u,(sl) _ u,(sheat) + u/(sed'/). (4.4)
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In the equation above,in the superscript of the sedimentation velocity field iradiés that it is
scaled withyl instead olUseq Substituting 4.4) in (4.3), one can rewrite the volume integral
in (4.2 as:

h
/ U(Z) 0. o-/(l)dv _ Re/ U 2 (au/(s ea + u,(shear) . I:Iu/(sheaI) + (I- X) . Du/(Sheab
v v ot )

4T u’<3hea’)> dV +Re /
V

T ) dV +Re / u®. (u’(Shea') . Ou/ oY)y (Sed), IIIu’(Shea')) dv
v

(sedy) . , .
U (2. <0u’0t n u/(sed/) . I:Iul(sed/) 4 (r.X) . Du'(sed/)

—Re Vu<2> - 1,(1) - UsegdV. (4.5)

The velocityU seqis related to the sedimenting fortg dsU sed= Used (& 1g- (i pp+ Y—lA(I —
pp))), whereXa andYa are the axisymmetric and transverse translation coeffigiven
by Xa = 8/(3&0(—280+ (1+&§)log((0+1) /(&0 — 1)) andYa = —16/(3&0(—280 + (—3+
&2)1og((&o+1)/(&—1)))) for a prolate spheroidiim & Karrila 1991). The coefficients for
an oblate spheroid can be obtained from those of a prolagraiohby using the transformation
defined in chapte, or alternatively, fronKim & Karrila (1991). Noting that]i((lg,-used)

is independent ok, andU @ is an odd function ok, it can be seen that the integral in the
last term of 4.5) will vanish. Further noting that’ *"*® and u'**¥) are respectively odd
and even functions of, it can be seen that the integral involving the cross tern{d.m) also
vanishes, and the above equation reduces to:

h
/U<2>.D.a/<1>d\/: re [ U®@. <M
Vv Vv

+ u/(shealj . Du/(shealj +(T.x)- Du/(sheao
ot )

a u/ (Sed/)
ot

4T u’(S“eaO) dvV+Re[ U®. ( +ued). Elu’(sed/)> dv. (4.6)
V

The disturbance velocity field in sedimentation, scaledWilq is related to the one scaled
with y, in the equation above, through®*¥ = (Reeq/ReU'*®?. The disturbance veloc-
ity field as well as time in the second integral above can beated with the dimensional
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quantitiedJsegandL /Ugeq (t =(Re/Resgg)tsed O give:

h
/ U @ 0. a-/(l)dv _ Re/ U 2 <au/(s eal 1 u,(sheatj . Du/(sheatj + (I— X) . Du/(SheaO
v Vv ot '

/(sed
1r. u'(S“eab) dv + —ngd / ReodJ @ - (L; INTICLR Du'(se"’> dv. (4.7)
\% sed

In Dabadeet al. (2015, the second integral on the right-hand side above is showe tqual
to the negative of the torque acting on a sedimenting spth¢kgiy contracted with the sec-
ond order tensotd ?. The torque is given b¥seq = —R&edF (&) (Useax P)(Used- P) =
—ReedF () (1g x p)(1g- P)/ (362 XaYa). The functionF (&) is negative for a prolate
spheroid and is positive for an oblate spheroid, so the wagpis in a way to makp per-
pendicular tol} for a prolate spheroid and makealign with 14 for an oblate spheroid. After
substituting the sedimentation torque in the second iateégi4.7) one can rewrite4.2) as:

_r @ @ . (g ), (O
Q,.%,=I: X(Z'“-n)dS+U'“ . | St-1.Qy ) +Re[ U . [ —————
Sy dt V ot
+u/(shea|) . Du/(shealj F(Fx)- Du/(shealj ir. u/(shea|)> dv
R
+ iu(z)-(':(fo)(lg X P)(1g.p)) (4.8)

36Rem XAYA

Note that the first three terms in the above reciprocal theaee the same as those seen in
chapter2 for simple shear flow alone. The last term on the right-hade sif @.9) is the
contribution due to the sedimentation. The reciprocal theoabove is simplified for a force
aligned in an arbitrary direction with respect to the singilear flow in the next section.

4.3 Sedimentation along an arbitrary direction with resped
to flow

As in chapter2, we evaluate the reciprocal theorem in a body aligned coatdisystem de-
fined by the unit vectord,l= cosB; cosy; 1} + cosf;sing; 1, — sinf;1;, 1, = —sing 1 +
cosg; 1, and I, = sinB; cosy; 1; + sin; sing; 1] + cos; 1; (see figure2.2). The angular ve-
locity Q1 can be expanded &= Qjer+ ReQre Defining Iy = lglx+ 151y+ 1512 and



4.3 Sedimentation along an arbitrary direction with respgflow 107

0.00CF" i T T T ™ —
0.0012-

—0.00&

(b) Oblate spheroi

Fsec
Fsec

(a) Prolate spheroi 0.000€

—-0.01C}

—-0.015}

0.0 0.2 0.4 0.6 0.8 1.0
e e

Fig. 4.1Fseqplotted against eccentricity for (a) prolate spheroid (flate spheroid. It diverges
as logk for prolate spheroid as eccentricity goes to 1 and is a coh&iaoblate spheroid, in
this limit.

Qre= —qu SinBj 1, + Gj 1+ gbj cosBj1;, and substituting in4.8) one gets at (Re):

. St-pan - fiid , [ Réed)” Feed &)
G=gd to T+ ( Ree S;nej 113, (4.9)
; St . part 4 fluid Re&ed 2
= 2™ +6™+ (Fo2) Rk to) 35, (4.10)
where
F (o)
. _ _ 4.11
5o $0) = S BB AYAY: (4.11)
The angular velocitie§; ™", ¢,"", 6" andg, """ in (4.9-4.10) are defined in equations

(2.77 (2.78, (2.93 and .99 respectively. The angular dependence of these termsene th
fore known. The third term on the right-hand side of eachdo®)(and @.10 is due to sed-
imentation. The angular dependence of these terms woulendepn the orientation of the
sedimenting force, while the amplitude would dependrQiy(&o), which is plotted for prolate
and oblate spheroids in figurdsl a and b. The function asymptotes to a constant for flat disk
(k — 0) and that for a slender fibr& (— o) diverges as log.

As seen in chapte?, there are two approaches to understand the orientaticanags of
the spheroid. The first brute-force approach is to numdyiaategrate the set of differential
equations governing; and ¢;, obtained by adding the angular velocities given4rf) and
(4.10 and the corresponding leading order angular velocitiesrgin equations2.29 and
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(2.30, to obtain the trajectories on the unit sphere. Howevanglthe numerical integration
for various combinations of nondimensional paramet8tsRe Reypea/Reandk), and for

all possible initial orientation on the unit sphere, is cerdgmme, and is not pursued further
here. Since the correction to the angular velocities ardlsoree would expect the orbit of

a spheroid to be approximately equal to a Jeffery orbit dyamperiod of rotation. Therefore
we approximateC, the orbital coordinate of the spheroid defined in chapteas a constant
over a period of rotation. The change@nduring a single Jeffery period in the presence of
sedimentation and inertia, definedXS;s, can be derived in a manner similar to that in chapter
2 and is given by:

Tietf
ACss— / ’ c:j—i:dt, (4.12)
0
dr._, [?"dC
—_(= -~ 4.1
@7 G (4.13)
2 2 . 2 ST )
:ReK_'H'/ cl — 1 <%) i (K .1)COS(PJS'n(PJ (%) dr,
K Jo sinf;cos; \ dt K25|n2(pj+co§(pj dt
(4.14)

with dd"i’ and de’ defined in 4.9) and @.10. Characterizing the trajectories corresponding to
all possible |n|t|al orientations is equivalent to exammiACss over the entire range @'s.

To evaluate the drift above, one needs to know the oriemtatfdhe sedimenting force.
To begin with, we consider the force to be aligned with anyhef the vorticity, the gradient
and the flow axes of the simple shear flow. The response of acghe an arbitrarly aligned
force can be easily obtained from the three cases mentidmaca The drifts are presented
for these three cases in the next three sections. It turrnthauthe drift is of the same form as
we have encountered in chapgand is given by:

K2+1 R%ed St R%ed St Reeq St

ACss= Re I1F I |

CSS C {[1 1(507 R +12 2(507 Re R )+ 3 3(507 Re Re)
R%ed St R%ed St Reeq St Reeq St

AR o, o) 168 Tt =)+ 1eRS(E, et )|+ 963 et 2
Reeq St Resed St Resed St

S S
+3G3 (&0, —— Re ’Re> +33G3(&0, Re ’Re) + 34G3 (&0, —— Re ' Re)}} (4.15)

with functionsF* and G} are defined for the three cases mentioned above, in sechiahs t
follow, andl’s andJs defined in AppendiA. WhenReeq4/Re = 0, these functions take the
form = SIFP+F" andGP = LGP+ G/, and these are defined in chapzerwe analyze
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the drift for the simplest case in which the sedimentatiandas aligned with the vorticity
axis in sectiord.4, followed by the case in which it is aligned with the flow axissectiord.5,
and finally the case in which it is aligned with the gradierisai sectio.6.

4.4 Sedimentation along vorticity axis

In this section we analyze the orientation dynamics of a sptieotating in a simple shear

flow but subjected to a force aligned with the vorticity axis this alignment, the sedimenta-
tion force will try to push the orientation vector of a pra@apheroid towards the flow-gradient
plane, and that of an oblate spheroid towards the vorticity. & hus, the drift due to sedimen-
tation should be positive for a prolate spheroid and negdtivan oblate spheroid. The force,
when expressed in the body aligned coordinate system, ta&derm:

F = —sinBj1« +cosbj1, (4.16)

For a spheroid, the angular velocities given4rdf-(4.10 take the form:

y _St * part - fluid

@ —=9 o : (4.17)
. St:opat  :flud [ Reed)’ -
g :R_eej +6; ( Ree ) FseaSing; cosb; . (4.18)

Thus, the contribution due to sedimentation only affe&;tsFrom figure4.1it can be noted
that Fseq is negative for a prolate spheroid and positive for an oldateeroid and therefore
sedimentation pushes a prolate spheroid towards the taghatid an oblate one towards the
spinning orbit. The drift takes the form id.(L5 with functions therein given by:

St )
FS— —ReFip+Fif,(| =2,.6), (4.19)
St )
Gls: ﬁeGip—i_Gif(l - 1,..4), (420)
St t [Reed)’
FP= —ReFlp—I- F - ( Re ) Fsed (4.21)

For O(1) values o8t/Re the drift due to particle inertia is small compared to tha ¢b fluid
inertia, as seen in chaptar We analyze the drift due tal(17-4.18 for St/Re= 2. For this
St/Re and in the absence of sedimentati®®ety/Re= 0), a repeller exists only for oblate
spheroids whose aspect ratios are less than 0.131. Fousarabues of the nondimensional
parameteRey/Re the drift is plotted for prolate spheroids of aspect railds/ o = 1.001)
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Fig. 4.2 The drift is plotted for prolate spheroids of aspatit (a) 70.7 and (b) 2.4 sedimenting
due to a force along the vorticity axis. The drift is positiee Re,.q/Re= 0 and remains
positive for all values oReeq/Re

and 2.4€, = 1.1) in figure4.2, and for oblate spheroids of aspect ratios 0.§44{ 1.0001),
0.044¢p = 1.001) and 0.3y = 1.051) in figure4.3. When the nondimensional parameter
Reeq/Reis zero, the inertial effects stabilize the tumbling orlait & prolate spheroid. As
explained above, sedimentation also results in a drift tde/éhe tumbling orbit. Thus, the
drift due to the combined effect of sedimentation and sheareases witliRe,qg/Reas shown

in figure4.2 For oblate spheroids with aspect ratios larger thaB8D(see figurd.3e) the sole
attractor is the spinning orbit &eeq/Re= 0. Similar to prolate, sedimentation only results
in an increase in the drift rate, with increasing value ofnba-dimensional parameter . For
oblate spheroids of aspect ratio less tha8Q, a repeller exists dividing the orientation space
into two distinct basins of attraction Beeq/Re= 0 (see4.3a and c,). In these figures, the
repeller locations correspond to tBdocation at which the drift changes its sign. Rgeq/Re
increases, the repeller shift towards the tumbling orbit at a criticalReeq/Re (marked in
red color), merges with the tumbling orbit making the spngnorbit the sole attractor for the
whole orientation space.

4.5 Sedimentation along flow axis

In this section we analyze the orientation dynamics of asptieotating in a simple shear flow
but subjected to a force aligned with the flow axis. In thig@ahent, the sedimentation force
will try to push the orientation vector of a prolate sphermaards the gradient-vorticity plane
and that of an oblate spheroid towards the flow axis. One wihigld expect sedimentation to
affect bothéj and goj The force when expressed in the body aligned coordinatersyskes
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Fig. 4.3 The drift is plotted for oblate spheroids of aspatior(a) 0.014 (c).044 and (e) 0.3
sedimenting due to a force along the vorticity axis. The zedwiew of (a) and (c) are shown
in (b) and (d). The repeller moves towards the tumbling onliih increasingRe;eq/Refor
both aspect ratios.
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the form:
F = cosbj cosg; 1 — sing;1y +sin6; cosy; 1. (4.22)

The angular velocities of the spheroid take the form:

. St - part - fluid Reeq 2 .
@ = ReQO + @ —( Re FsedSing; cosg, (4.23)
g — 9 part 9 fluid Reeq 2F ino. 0 col 424
I "Re i + Re sedSiNB; cosH; cos ¢;. (4.24)

The drift takes the form in4.15 with the functions therein defined as:

St

FS= = Fp+F (i=3,..6), (4.25)
St

G = = 2 GP 4G (i=2,.4), (4.26)

Fngp Ef 4 (1/2)F (4.27)

1 Re + 1 ( / ) sed .
St

FS = = P+ +(1/2)Fecs (4.28)

St Re

Gszﬁeei%ef—( Rg") = (4.29)

The contribution due to sedimentation pushes a prolatersgh®wards the spinning and an
oblate one towards the tumbling orbit. We 8%'Re= 2, similar to the vorticity case analyzed
in the previous section.The drift is plotted for variousues of the nondimensional parameter,
Reyeq/Re for prolate spheroids of aspect ratios 7§/ 1.001) and 2.48, = 1.1) in figure
4.4, and for oblate spheroids of aspect ratios 0.§44{1.0001) and 0.3{p = 1.051) in figure
4.5. The prolate spheroid has only a single attractoR@ty/Re= 0 which is the tumbling
orbit. With increasingReeq/Re at first a repeller emerges from the spinning orbit (green
curves) and then moves towards the tumbling orbit, evelytaalnciding with it (red curves).
The spinning orbit remains the sole attractorRete 4/ Revalues larger than that corresponding
to the red curve. For an oblate spheroid of aspect ratio less @131 (see figurd.5a), the
repeller present &Re,eq/Re= 0 shifts towards the spinning orbit with increasiRgeq/Re
and eventually coincides with the spinning orbit(red cyinFor Reeq/Relarger than the one
corresponding to that of the red curve, the tumbling orbmtas the sole attractor. For oblate
spheroids of aspect ratio larger thari®1 (see figuret.5 c), the spinning orbit is the sole
attractor atReeq/Re= 0. However with increasiniRe,eq/Re a repeller emerges from the
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Fig. 4.4 The drift is plotted for prolate spheroids of aspatib (a)70.7 and (b)2.4 sedimenting
due to a force along the flow axis.

tumbling orbit (green curve), and then moves towards therspg orbit eventually coinciding
with it (red), making the tumbling orbit the sole attractor fargerRe,eq/Revalues.

4.6 Sedimentation along gradient axis

In this section we analyze the orientation dynamics of agptieotating in a simple shear flow
but subjected to a force aligned with the gradient axis. is #fignment, the sedimentation
force will try to push the orientation vector of a prolate sphid towards the flow-vorticity
plane and that of an oblate spheroid towards the gradiesat &ie force when expressed in
the body aligned coordinate system takes the form:

F = cosbj sing; 1« + cosg; 1y + sinb; sing; 1. (4.30)

The angular velocities of the spheroid take the form:

. St pat - fluid (R ? :

A Pty g T +< F?eed) FseaSing; cosg, (4.31)
. St. - flui R 2 . -

6, :Reej Part 1 g, flud ( sgd) FsedSing; cosh; sirf . (4.32)

The drift takes the form in4.15 with functions given by :
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Fig. 4.5 The drift is plotted for oblate spheroids of aspatibr(a)0.014 and (c)0.3 sedimenting
due to a force along the flow axis. The zoomed views of (a) apdrgcshown in (b) and (d).
The repeller moves towards the spinning orbit with incregBle,.q/ Refor both aspect ratios.
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Fig. 4.6 The drift is plotted for prolate spheroids of aspatib (a)70.7 and (b)2.4 sedimenting
due to a force along the gradient axis. The zoomed views d@r{d)(c) are shown in (b) and

(d).
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St

ES:EeFierFif(i:B,.ﬁ), (4.33)
St .
GP = GF+ G (i=2,.4), (4.34)
St f
FP= ﬁeFlp +F, +(1/2)Fseq (4.35)
St
= o Fl+ Fs — (1/2)Fseq (4.36)
St f Reed) >
Gi= = CP+Gf + ( e ) Feed (4.37)

The contribution due to sedimentation pushes a prolatersghtowards the spinning orbit,
and an oblate one towards the tumbling orbit. Again weSti¥Re= 2. The drift is plotted
for various values of the nondimensional paramdReteq/Re for prolate spheroids of aspect
ratios 70.7§p = 1.001) and 2.4§, = 1.1) in figure 4.6, and for oblate spheroids of aspect
ratios 0.014¢, = 1.0001) and 0.3y = 1.051) in figure4.7. The prolate spheroid has only a
single attractor aReeq/Re= 0 which is the tumbling orbit. Like the flow aligned case seen
in the previous section, with increasifRgeq/Re at first a repeller emerges from the spinning
orbit (green curves), and then moves towards the tumblibg,@ventually coinciding with

it (red curves), and the spinning orbit remains the soleeiitr thereafter. For an oblate
spheroid with aspect ratio less thari81 (figure4.7 a), the repeller present Rig,eq/Re= 0
shifts towards the spinning orbit with increasiRgq/Reand eventually coincides with the
spinning orbit(red curves). For oblate spheroids of aspaat larger than 31 (figure4.7

c), the spinning orbit is the sole attractoReq/Re= 0. However with increasinBe;eq/ Re

a repeller emerges from the tumbling orbit (green curve) taed eventually move towards
the spinning orbit and eventually coinciding with it (red)aking the tumbling orbit the sole
attractor for largeReyeq/Revalues.

4.7 Limitations of drift analysis

In this section we look at the limitation of the average daiftalysis presented in previous
sections. The drift analysis is based on the approximatiahthe initial orbital coordinate
C of a spheroid is constant over a time period of rotation. Asaaly seen in chapt& this
approximation can be formally derived from a multiple scabalysis. The average drift anal-
ysis eliminates the need to numerically integrate the argeélocities for initial conditions
ranging over the entire unit sphere for understanding tlentation dynamics of the spheroid.
However, this analysis has certain limitations and we disadhem below. We will rewrite
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Fig. 4.7 The drift is plotted for oblate spheroids of aspatibr(a)0.014 and (c)0.3 sedimenting
due to a force along the gradient axis. The zoomed views ar{d)(c) are shown in (b) and
(d). The repeller moves towards the spinning orbit with éasingReeq/Refor both aspect

ratios.
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(4.1H as follows:

R&ed
Re

2
ACss= ACp+ ACs + ReCKZ: ! < ) (LFP+ 1R+ 0 GY), (4.38)
whereF?, Fp andGj are defined in previous sections for the three canonicabcase4.38),
AC, andACs are the contributions to drift due to particle and fluid iregresented in chapter

2, and the third term is the contribution due to sedimentatidhe contribution due to par-
ticle and fluid inertia comes at Sf) and OR€ whereas that due to sedimentation comes at
O(Reged/Re, and the latter contribution is proportional@ The analytical approximation
would be valid when the constraiACss/C << 1 is satisfied. For neutrally buoyant spheroids
of O(1) aspect ratios this would impose the condilR@ed< ReandRe< 1. ProvidedReis
sufficiently small, this restriction oReqis satisfied for the spheroids of O(1) aspect ratios
analyzed in earlier sections.

To illustrate that the average drift analysis and the datamed from numerical integration
of the angular velocities compare well, we have plotted tiifeledicted using both methods
in figure 4.8 for an oblate spheroid subjected to a sedimentation foroegathe gradient
direction. The oblate spheroid is of an aspect ratio §g3= 1.05), and the average drift
analysis predicts that, for a%%gd of 12.04, a repeller exists & = 1.85, and therefore, the
drift is negative foIC < 1.85 and positiveC > 1.85 (see figurel.7 c). In figure4.8, the drifts
are plotted againstp;|, with the red curve corresponding to the chang€ predicted by the
average drift analysis, and the blue curve correspondirigaibobtained from the numerical
integration of angular velocities. The initi@l value is aboveC = 1.85 in figure4.8 a, and
belowC = 1.85in figure4.8b. As s evident, the average drift analysis is a good apprakon
for the average of the drift from numerical integration, dine repeller location predicted by
the average drift analysis is also consistent with that iMeskfrom the numerical integration.

In the case of oblate spheroids of extreme aspect raties (), the sedimentation contri-
bution in @.38) is proportional tcCR(%ed/(Re() and the inertial contributions are proportional
to ReC/k. Note thatFseqfor an oblate spheroid is a constant in the limitkof> O as seen in
figure4.1b and therefor&?, F5 andG3 in (4.38) are also constants. The drift analysis is valid
whenRe< k andR&, < Re Recall that in chapte?, we had already seen that the constraint
Re< K is necessary for the validity of the average inertial drifrovided this constraint is
met, the range dReyq for which the drift analysis is valid would be given BRgeqless than
approximately 2¢/Re which is satisfied in the cases considered in previousse(tie max-
imum value ofReeq/Rewhere a significant change in the repeller behaviour oceut4 49).
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Fig. 4.8 The drift is plotted against angular coordingtéor an oblate spheroid of aspect ratio
0.3. The prediction from the average drift analysis (red) e numerical integration (blue)
are plotted starting fror@s on the either side of the repeller.

In the case of prolate spheroid of extreme aspect rakios (), the sedimentation contribu-
tion in ACgs is proportional toCKIogKReged/Reand the inertial contribution is proportional
to Re(x. Note that~¢q diverges as O(log) in the limit of Kk — « as seen in figurd.1a and
thereforeF>, F; and G in (4.38 also diverge as log. So for the drift analysis to be valid,
one getRe< Kk andReyqless than approximately 25, /Re/(k logk) which is satisfied in
the cases considered in previous section (the maximum e#lRe;.4/Rewhere a significant
change in the repeller behaviour occurs.i87).

4.8 Conclusions

In this chapter we have investigated the effects of sediatiem on a spheroid rotating in a
simple shear flow. The inertial effects on the orientationaiyics of a spheroid in the absence
of sedimentation is already analyzed in chajteA reciprocal theorem formulation was used
to obtain the angular velocity of the spheroid in the presesfcsedimentation. The angular
velocities of the spheroid, while sedimenting due to a falagned arbitrarily with respect to
the simple shear flow, are given in equatiod®) and @.10. The angular velocities for the
canonical cases of the force being aligned with vorticigywfand gradient axes are analyzed
in sections4.4-4.6. For O(1) valuesSt/Re it is found that the drift due to sedimentation
opposes that due to inertial effects in the simple shear fidwen the force is aligned with the
gradient or the flow axes, and it complements each other wiefotce is aligned with the
vorticity. The limitations of the drift analysis are dissesl in sectiort.7. It is shown that
the average drift analysis is reasonably good in predid¢hiegepeller locations as well as the
final stabilized orbits in the cases considered here.






Chapter 5

The time period of rotation of a spheroid
In simple shear flow

5.1 Introduction

In the Stokes limit, it is well known that in simple shear flow@heroid rotates in any of a one
parameter family of orbitsleffery 1922, eponymously called the Jeffery orbits. The generic
Jeffery orbit is a spherical ellipse corresponding to a tthependent three-dimensional preces-
sional motion of the orientation vector about the vorti@iis. The limiting members of the
aforementioned family are the tumbling orbit, a great eiolthe flow-gradient plane, and the
spinning orbit, where the angular velocity vector is tim@gpendent and aligned with ambient
vorticity(see figure$.1 (a) and (b)). In the Stokes limit a spheroid will continue dtbate in

a Jeffery orbit determined by its initial orientation fof @e. It was shown in chaptéthat
weak inertia in the suspending fluid and that of the partat€)Re and OSt), respectively,
stabilize either the spinning or the tumbling orbit. HeRegand St are the Reynolds and the
Stokes numbers witRe= yL?p/u andSt= yL2py,/ 1, wherey is the shear rate corresponding
to the ambient flowl. is the length of the semi-major axis of the sphergids the viscosity of
the fluid, ando andpp are the densities of the fluid and particle respectively. fithe period

of rotation at leading order is given Byefs = 2ny1(k +1/k) in the tumbling orbit and #

in the spinning orbit. Herex = L/b(b/L) is the aspect ratio of the prolate(oblate) spheroid,
with b being the semi-minor axis of the spheroid. A recent simatafMao & Alexeev 2014
has shown that, fluid inertia increases the time period @itian in the stable orbits from its
leading order Jeffrey value, although the simulation hagily exploredRées of order unity;
the smallReregime, characterizing the first effects of inertia has resrbsystematically in-
vestigated. This simulation has also shown that the timegef rotation in the stable orbits
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decreases from its Jeffery value in the presence of paitieleia. In this chapter, we will
investigate the effect of inertia on the time period of ratatin the stable orbits. To begin
with, the effects of inertia at ®e and O&t) on the time period are investigated based on the
angular velocities derived in chapt2rand it is shown that the inertia at these orders do not
alter the time period from its leading order value. It turns that the time period gets altered
due to corrections at ®¢”/2) and OGB).

The estimation of the (Xf) correction to the angular velocity of a spheroid in a simple
shear flow is straightforward due to the regular nature optieblem. In a simple shear flow,
the ORe’?) correction arises due to the fluid inertial effects in thgioas of order and be-
yond the inertial screening length defined &e /2 (Re<< 1). In this so-called outer region,
the Stokes approximation breaks down and the inertial fobaéance the viscous forces. The
aforementioned inertial screening length can be obtaired this precise balance as follows:
the Stokes disturbance field due to a spheroid in simple stwadecays as Ar?. Here,r
is the distance from the center of the spheroid. The inektiah would scale aRe/r? and
the viscous term would scale agrt and the balancing of these terms would give Re /2.

To calculate the effects of fluid inertia based on an analylike outer region is non-trivial.
Saffman(1965 had estimated the lift force on a translating sphere ‘gigjgppast an ambient
simple shear flow using an analysis based on the outer regjlom Fourier space analysis in
Saffman(1965 was originally used irChildress(1964) in the context of estimating the cor-
rection to the well known Stokes’ drag formula for a spherethle rheological contextin

et al. (197() (also seeStoneet al. (2000) analyzed the effects of fluid inertia at R€/2)

in order to characterize the @) rheology of a dilute suspension of rigid neutrally buoyant
spheroids; Herep is the volume fraction of the suspended spheres. Spedfficallin et al.
(197(), a matched asymptotics expansion was used to estimate(ifee?’?) correction to
the viscosity of a suspension of rigid spheres, which cbuatés to a shear thickening rheology.
Stoneet al. (2000 redid the calculation using a concise Fourier-space ftatimn based on
the reciprocal theorem by treating the sphere as a foragedgingularity. The concise for-
mulation was used bgubramaniart al.(2011) to characterize the complete non-Newtonian
rheology of an emulsion to @Re”2), for arbitrary ratios of the viscosity of the disperse
(drop) phase to the continuous phase. Note that in all theeath@ntioned cases, the leading
order disturbance velocity field due to the particle is syema account of its spherical shape.
The steady disturbance velocity field around the spheraigbe also allows one to calculate
the correction to the angular velocity atRE/?) (Stoneet al. 200Q Subramaniaset al.2011)
and is shown to be-0.054Re%/2, so that inertia slows down the rotation of the sphere. In the
case of a sphere one can easily see that the angular velocigcton at ORé in a simple
shear flow is zero. This is because the correction is quadrathe shear rate, and it being
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a pseudo vector, should be proportionatdaeE, whereE andw are the rate-of-strain tensor
and the vorticity vector in the simple shear flow, respetyivorticity is perpendicular to the
flow-gradient plane of the simple shear flow and therefareE = 0.

The disturbance velocity field for a spheroid in a spinningitois steady, and therefore
the scaling of the inertial correction to the angular velpwould again be similar to that of a
sphere. The detailed calculation can be easily seen fro®{Re*2) Fourier space formula-
tion as shown in a later section; although, in a recent wigiéiohmet al.2016), the ORe”2)
correction for a spheroid in a spinning orbit, has been edgohusing the traditional matched
asymptotic expansions approach. In the tumbling orbit,éves, the disturbance velocity field
due to the spheroid is unsteady, and the torque-free sghacts as a time-dependent force
dipole singularity in the outer region. This dependenceemvtepresented in frequency space,
is an infinite Fourier series and this makes the evaluati@(B£”/2) correction to the angular
velocity difficult. However, as shown in a later section, fiechas to only evaluate correction
to time period at ORe¥/2), one only needs the Jeffrey averaged angular velocityecton,
and the relevant infinite series truncates to three terrmyialg one to determine the correc-
tion. The correctness of the R€/2) correction to the angular velocity for a sphere mentioned
above, and the associated increase in time period was aifionged in a numerical investiga-
tion by Mikulencak & Morris(2004). They have extended the results for the inertial correctio
to O(1) Re More recentlyMao & Alexeev (2014 have investigated the effect of inertia on
the time period of rotation of spheroids of different aspatibs using the lattice Boltzmann
method. This work concluded that the time period of rotaiimmeases with Reynolds number,
but they find the scaling for the inertial correction to beR@(for small Reynolds numbers.
However based on the B€ correction of the angular velocity derived in chap2eit can be
easily seen that the correction to the time period at thisraisizero. The accurate estimation
of the ORE/?) inertial correction, in a numerical effort, is not easyics the correction orig-
inates in the outer region, and demands that the outer boyfatahe computational domain
be much farther than the (large) inertial screening length.

This paper is organized as follows. In sectm@we derive the expression for the inertial
correction to angular velocity using a reciprocal theoremmiulation. We express the recip-
rocal theorem in Fourier space similar$oneet al. (2000 and Subramaniaret al. (2011).

In section5.3, we summarize the Stokesian scenario and investigate fikesbdbf ORe and
O(St) correction to the angular velocities, derived in chag{em the time period . Itis shown
that that the time period correction vanishes aR@@nd OEY) in the stabilized (spinning or
tumbling) orbits. The calculation of the 8€) correction to the time period is presented in
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section5.4. We investigate the effect of fluid inertia on the time periodthe simpler case of
the spinning spheroid in secti@b, and show that the Fourier space integral for thR&@)
angular velocity correction reduces to that of the sphergivaen in Stoneet al. (2000. A
numerical evaluation of this integral yields the spinnilogrection over the relevant range of
aspect ratios. As mentioned above, this is expected sinpaaisg spheroid acts as a time-
independent force-dipole singularity. In secti®, we evaluate the reciprocal theorem inte-
gral for the difficult case of the tumbling orbit, the diffitylarising from the time-dependent
nature of the force-dipole singularity. However, as sholgrein, for the time period correc-
tion one can reduce the reciprocal theorem integral to theafla three-dimensional integral
and a four-dimensional integral. These integrals are ev@tlinumerically and the results are
presented in sectioh 7. We summarize our findings in sectidrB.

5.2 Formulation for the time period: The reciprocal theo-
rem

In this section, we derive the formal expression for theextron to the time period of rotation
of a spheroid, in a simple shear flow, for smRRk The time period is related to the angular
velocity of the spheroid, and the latter can be evaluatatusigeneralized reciprocal theorem
formulation. The reciprocal theorem relates the velocitg atress fields of two problems,
the first one being the problem of interest and the second eimg la simpler test problem
with a known solution. The flow physics in the two problems bandifferent, however the
configuration, size and shape of the particle, a spheroid imean unbounded fluid domain,
are the samdal (1979;Subramanian & Koch{2005;Subramanian & Kocl{200&) and
chapter2). The problem of interest here is a torque-free spheroiatirgg in a simple shear
flow, accounting for the inertial acceleration of the fluicaimunbounded domain; the objective
is to relate its angular velocit@, to the time period of rotation, to ®€¥2) and OS#), and
determine the latter. The test problem corresponds to thieeSian rotation of a spheroid in
a quiescent ambient with an angular velody, and with the same instantaneous orientation
as that of the spheroid in the problem of interest. The vlauid stress fields in the problem
of interest are denoted hy?) andoV, and those in the test problem arfé) andg?. The
reciprocal theorem is formulated in terms of the scaledudisince fields (both stress and
velocity) in the problem of interest which are givend§t) = ¥ — 2E andu' =u® —r -x,
whererl - x is the ambient simple shear defined in a coordinate systewseavbrigin is at the
center of the spheroid. The space-fixed coordinate systentdd, Y andZ along the flow,
gradient and vorticity directions, respectively, of thelaemt simple shear (see figusel(a)),
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SPINNING

= INITIAL
ORIENTATION

TUMBLING

Fig. 5.1 (a) The orientation vector (red) defined by the amfleand ¢; in the space-fixed
coordinate system XYZ. The X,Y and Z axes correspond to the, flbe gradient and the
vorticity directions of the simple shear flow.(b) Jeffernybibs (blue) for an oblate spheroid
of aspect ratio 0.05 for different initial conditions. Theniting Jeffery orbits that is the
tumbling and spinning orbits are indicated. (c) The repailbit (red) for an oblate spheroid
of aspect ratio 0.05 which divides the unit hemisphere ino distinct basins of attractions.
The trajectories of the spheroid due to fluid inertial driftC{Re), starting from either side
of the repeller, and ending at the attractors of the cormeding basins, are shown as purple
and green curves. Note that the notation of the unit vectodstlae definition of body-fixed
coordinate system are different from chaer

with the unit vectors in the X, Y and Z directions beifg 1, and I3 respectively. Note that
the notation of the unit vectors and the definition of bodgdixoordinate system are different
from chapter2. The disturbance velocity and stress fields are scaledyignduyL. Thus,
Mr=1,1, andE = %(1112 +1,1;) are the transpose of the non-dimensional velocity gradient
and the rate-of-strain tensors, respectively. The exmme$sr the inertial angular velocity, has
already been derived i”2(20), using a reciprocal theorem formulation and takes the@¥atg
form in non-dimensional terms fér = O:

Ql-,sz:I’:/ x(6? - n)dS+St {%(lp.gl)} Q)

S

/(1)
+Re/ ldl;t +(I’.x)-I:Iu’(l)+I‘-u’(1)+u’(1)-EIu’(1)]-u(2)dV, (5.1)
\Y

where, Q, and.Z> are, respectively, the angular velocity of the spheroidhi@ problem

of interest and the torque acting on the spheroid in the tedilem. The latter is given by
£y =-8n(Xcpp+Yc(l — pp)) - Q2, p here being the orientation vector of the spheroid, and
the torque coefficients being given B¢ = 4 (& — 1)/ (383 (280 —2 (&3 — 1) coth 1 &)
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andYc = 4(28% — 1) /(3&3 (2(&& + 1) coth * & — 2&)) for a prolate spheroidkim & Kar-
rila (1991), whereé is the inverse of the eccentricity of the spherdjg€ 1//1— 1/k2 for

a prolate spheroid). The expressions XgrandYc, for an oblate spheroid, can be obtained
by using the transformatio& = i /Eg— 1 andd = —id (d is the interfocal distance of the

spheroid) in the dimensional forms of the prolate torquefaments € = 1/v/1— k2, for an
oblate spheroid). The volume integral on the right-hand sid5.1) gives the contribution to
the angular velocity due to fluid inertia, the domain of imtggpn being the unbounded fluid
volume outside the spheroid. The leading order contriloudiiee to fluid inertia, at e, can
be obtained by replacingV with the disturbance velocity field in the Stokes lirnit)) in
the integral. The resulting integral is convergent, impdythe regular nature of the R cor-
rection. This correction has been evaluated in se@iénand it stabilizes certain Stokesian
orbits of the spheroid. Specifically, while Re= 0 andSt= 0, the spheroid may rotate in
any of a one-parameter family of precessional orbits knogviedfery orbits Jeffery 1922,
for finite Re(or St), only the limiting members of this family (the tumbling atite spinning
modes; see figurg.1(b)) are rendered stable by theR¥ (O(St)) orbit drift induced by iner-
tia. As shown later in sectioh.3, the ORe and OEt) corrections to the angular velocity of a
spheroid rotating in either of the asymptotic states abdwes not change the time period of
rotation from its leading order value given, in non-dimemsil terms byTje ¢ = 27m(k2+1) /K

(= 4n) for the tumbling (spinning) orbit. However, as mentionegeéctiorb.1, numerical sim-
ulations have observed a change in the time period in pres#rituid inertiaMao & Alexeev
2014, although the scaling for this change has not been rigtyalsracterized in the limit
Re St<< 1. Thus there is the need to calculate the next correctidmet@amgular velocity. As
shown later in this section, this comes aR&{'2) for fluid inertia, and at C&t) for particle
inertia (see sectioh.4).

To calculate the next correction due to fluid inertia, we Wit examine the assumptions
made while replacing’V with u'® to obtain the ORe) correction. The equation governing
u'D is given by:

ou'
ot

0%u® —Op= Re( +u@.ou® 4 (Fx) - ou® + I'.U'(l)> (5.2)

The equation above, is obtained by taking the differencénefgoverning equations for the
full velocity field uY) and the ambierff - x. Neglecting the inertial terms proportional Re
in (5.2), one gets the Stokes equation, whose solution is denotati*hyit is well known that
u'® is not a uniformly valid approximation for the velocity fietdroughout the unbounded
domain outside the spheroid. To see this, we compare theitndga of the viscous and
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the inertial terms in§.2). The Stokes solutioo’® decays as Ar?, wherer is the distance
away from the spheroid, and therefore the viscous terms efeftthand side off.2) decay
as 1r* asr — . The inertial terms on the right-hand side decays A%,1and cannot be
neglected when ~ Re 1/2, the inertial screening length, and the Stokes solutiose®#o be
a good approximation to the disturbance velocity field atasices of order and beyond this
length. The region around the sphere can therefore be divide two, depending on whether
the inertial terms can be neglected compared to the vis@usst the inner regiorr (~ 1)
and the outer regionr (~ O(Re‘l/z)). The Stokes velocity field is a good approximation
to the actual disturbance velocity field only in the innerioeg The leading order velocity
field in the outer region should, however, be obtained byisgl{5.2). The velocity fields
in the inner and outer regions, however, reduce to the samaifumal form in a matching
region (L<< r << Re%/2). To calculate theD(Re¥/?) correction to the angular velocity,
the velocity field in the integrand on the right-hand-sidgmfl) is written, formally, as the
following uniformly valid expansiorifinch (1991)):

u/(l) _ IJinner_i_ youter _ umatch‘ (5.3)

In (5.3), "M€" is the velocity field in the inner region, andu&® at leading ordemn®uter
is the velocity field in the outer region being governed byérzed version ofy.2). In the
matching region, botl™e" and u°Ute’ reduce tou™c" Next, definingu’ = ueuter — ymatch
the reciprocal theorem irb(1) becomes

Ql..sfz:r:/ x(0® . n)dS+St l%(lp.nl)} .Q,
S
n Re/ 0u(;”tner H(Fex)- Duinner+ r. IJinner_i_ uinner.Duinner} .u@qv
\%

Ay
+Re/ %Jr(l‘-x)-liluf+I‘-uf+uf-I:qu]-u(2)dV
VL

+ Re/ uf.Oumer - u‘“”er-liluf]-u(z)dv (5.4)
V L

In the inner regionu’® is zero at leading order and in the outer region the nonliceass
terms,u’ - Ou™e" andu™e".Ouf, decay faster than the linear terms, and therefore the inte-
grals involving the cross terms i5.@) contribute at a higher order. The second term on the
right-hand side in§.4) gives the ORe correction to the angular velocit§d;), arising from

the inner region, and is evaluated in chaferThe third term on the right-hand side is the
contribution to the angular velocity from the outer regidio. explicitly see the scaling with
respect tdRefor this contribution, the velocity fields in the third termeawritten in terms of
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a rescaled coordinate defined@s- Re"?r. The rescaled coordinate is of O(1) wheis of
order the inertial screening length, and is therefore tloedinate appropriate for the outer re-
gion. The radial vector and the differential volume can bgregsed in the outer coordinate as
p = Re"/?x, dV,, = Re¥/?dV. Since the spheroid acts as a force-dipole singularity fer- L,
the disturbance velocity fields in the problem of interestvali as the test problem decay as
1/r? whenL << r << Re /2, and can be written as’ = Re *u’ andu(®) = Re1u@.
Note thatu’e = (uoUte® _ ymacip) the superscrigh in the outer and matching velocity fields
indicate that they are now expressed in the outer coordmatée reciprocal theorem ib(4),
with the third term expressed in terms of the rescaled owterdinate, is given by:

Ql-.i”z:F:/x(a(Z)-n)dS—i—St {%(Ip-ﬂl)} .Q,

S
uinner . : ; i
n Re/ [ = + (r -X) . Dulnner+ r. ulnner+ yinner. yinner -U(Z)dV.
Vv
f
" Reg/v [0:;:‘ +(-p)-Oue 4T “f"} u®dv. (5.5)
P

Note that the nonlinear terol - Ou' in (5.4), when expressed in terms of the outer coordinate,
contributes at a higher order, and is neglected in the seiobegral in £.5). It is evident from
(5.5) that the correction from the outer region comes &&/(2). The volume of the spheroid
expressed in outer variables isf#/2), and its omission only leads to an error of@}). This

is equivalent to treating the spheroid as an equivalentt poine-dipole singularity. Thus, the
outer integral in $.5 may be extended right until the origin, and the resultinigdation is
then more conveniently done in Fourier space. The conwsldtieoremArfken et al.(2011)

is applied to the QRe¥/2) integral in 6.5) to obtain:

ot ot
-0 (—k)dk. (5.6)

f o~ f
/ [0" ’ —|—(F-p)-Elufp—i—r-ufp]u(zp)dvp :/ lﬁi—(rT-k)-Dkﬂf r-af
A

where the hatted variables above, denote the Fourier tanskhich is defined a$ (k) =

[ f(r)e?m™rdr. In (5.6), 0®(—k) andd’ (k) are the Fourier transforms of the test velocity
field u(?) and the velocity field in the problem of interas. Note that the ambient simple
shear flow takes the foriip, = — k11, in Fourier space. Herdy is the component of the wave
vectork in the X direction(see figuré.1(a)).
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To evaluate%.6), we need to find the Fourier transformswf») andu’». The governing
equation fou(?) is:

D2 Op) — 2.9 gg’l (5.7)

whereS? is the time-dependent force-dipole singularity corresfyog to a spheroid rotating
in a quiescent fluid. The singularitsfz), is given by:

S?2 =B1((Q? Ap)p+p(Q? Ap)) +B2((Q? - p)e- p) +Bs(e-Q1?), (5.8)

where p is the spheroid orientation vector and the const@itsB, and Bz for a prolate
spheroid are given by:

8

e £3(—3& +3coth 1& (1+&2))’ (5-9)
8, _ 811 (2+ 3& (—coth L&+ & (—1+ &coth 1&p))) (5.10)
27382 (—coth 1[&|2+ &2 (—1+ &coth 1&)2) '
2
Bs Br(1-2%) (5.11)

T £3(—3& + Bcoth &g (11 £2))

The terms proportional to constar®s and Bz correspond to rotlet singularities and the one
multiplying B1 corresponds to the stresslet singularity induced by thegtingt spheroid. In
the limit g — o, that is for a sphereBs = —4m andB; and B, are O(]/E(‘)z), consistent
with a rotating sphere acting as a pure rotlet singularitys b®fore, the constants for an
oblate spheroid can either be obtained using the transtmmdy = i, /E(‘)2 —1andd = —id,
mentioned belowq.1) (alternatively, se&im & Karrila (1991). The Fourier transform of
(5.7) gives:

is?.
0 (—k) = "‘szk (I - %‘) . (5.12)

To evaluatell’, we need to find the equation governinfy, which can be derived from the
equations governing®Ue® andu™MacP given by:

t
2youter Opeuer — . dg(:) n (duc;terp + (T x) - Ououter 4 r_uouterp) . (5.13)
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and

Dzumatcfp o meatdp —S. 05(p) (5_14)
ap
respectively. Here, to the order of approximation desi&id the time-dependent force-dipole
singularity corresponding to a torque-free spheroid imgée shear flow. ARe= 0, Sis given

by

S:Alg(E L PP) (pp— %) +A2((1 —pp)-E-pp+pp-E- (I - pp))

a0 ((1-pp)-E-(1 - pp)+ (1 - pp) =P ). (5.15)

To understand in more detail, we note that the Stokesian disturbance freddaed in an
ambient linear flow can be split into 5 component flows coresiing to the five degrees of
freedom of the rate of strain tensor (see sec8@). These may conveniently regarded as an
axisymmetric flow, two planar extensional flows in both thediudinal plane (containing)
and transverse plane (orthogonapio respectively, with the component amplitude dependent
on the spheroid orientation. Due to its axisymmetry, a sphdeesponds identically to the two
extensions in the longitudinal and the transverse planestefore, the force-dipole singularity
can be written as a sum of only three stresslets as givesm 1%)( with the terms proportional
to A, A> andAg being the stresslets induced by the axisymmetric extengierlongitudinal
and the transverse planar extensional flows, respectiVhl.constants for a prolate spheroid
(Kim & Karrila (1991) are :

l6m
A= - 983 (—3& + coth L&, (—1+382))’ (5.16)
_ 16m(—1+&2)
Ao = 382 (—1+283) (2—3&2+3coth 18pép (—1+&3))’ (5.17)
2
Az=— 327—[(_1"“50) (5.18)

363 (560 — 383 +3coth 18y (—1+&2)2)

In the limit o — oo, that is for a sphere, all three constants equa0rt/3, makingS. =
—(20rt/3)E corresponding to the well-known stresslet singularity @fely rotating sphere
(nS. yields the well known Einstein coefficient). The equationgmingu’? is derived using



5.2 Formulation for the time period: The reciprocal theorem 131

(5.13 and 6.14) and is given by:

0 fp 0 matcltp
O%ufP — OpfP = —;t +(Fx)-0u'P+ru+ udt + (F.x) - OQumatetp
+ [ .umatep, (5.19)

The bracketed term on the right-hand sidem®®) is obtained by taking the Fourier transform
of (5.19 and is given by

A~ f fymatch
00 (Ft.k)- O +T -0 = —4rAea’ — i2nkp' — <‘9“
at ot
—(FT-K) - O™ 1. amatcf) . (5.20)

Substituting $.12 and 6.20 in (5.6), the reciprocal theorem relation i6.6) becomes

Ql-gzzri/ at

S
yinner , , . :
+ Re/ [ + (r . x) .OuMer . yinner ulnner.Dulnner} -U(z)dV
Vv

ot
3
—Reiz/

g2,
‘ (7571@"- <| - %‘)) dk. (5.21)

Note that the term containing the Fourier transform of trespure in%.20), which is propor-
tional tok, vanishes when contracted with the Fourier transformed/&dscity field, and has
therefore been omitted irb(21). For the test problem, we define two second order tensors
L, andU», and two third order tensoiE? and $2 such that¥,=L,-Q,, u@=U,-Q, ,

0@ =32 .0, andS? = - Q,. In terms of these newly defined tensors the relatioa1
becomes independent of the angular velocity of the testregh@&,). The correction to the
angular velocity in the problem of intere€2{), due to particle inertia to any order8tcan be
obtained by equating the left-hand side 5f21) with the second term on its right-hand side.
The OBt correction is already evaluated in sect®b. The next correction comes at §¥)

and is evaluated in sectidn4. To evaluate the fluid inertial correction €2, it is expanded
asQjeft + ReQ¢1 + Re/2Q., and substituting the expansion as well as the newly defined

x(6? .n)dS+St [Ea p.Ql)} .Q,

I]match

ArPk2af +

_ (r’r -K)- Dkﬁmatch+ r. ﬁmatcri
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tensors in%.21) leads to

Qjeff-LZ:r:/ x(£? .n)ds (5.22)
S

Juinner ) ) ) )
ch . L2 :/ [ 0t _|_ (r . X) . Dulnner+ r . ulnner+ ulnner_Dulnner} -Ude, (523)
\Y

and

aﬁmatch

- 26 f
Qo-Lo /[4ﬂ2k u -+ ot

iS2) .k kk
. (72nk2 . (| — W)) dk (5.24)

at successive orders. The detailed expression8¥, obtained using a spheroidal harmonics
formalism, was used to evaludik, in chapter2. The Fourier transformed matching velocity
field (@M2" in (5.24) is obtained by taking the Fourier transform 6f14), and given by:

amatehyk) = —%2‘. (I - %‘) , (5.25)

_ (l-T -Kk) - Dkﬁmatch+ r. ﬁmatci

with S given by 6.15. To evaluate the integral ir6(24), one also need&', which can be
obtained by solving®.20). This is a rather elaborate calculation, and is presemsedtions
5.5and5.6.

5.3 Summary: Time period at leading order and at ORe)

The leading order angular velociQietf in (5.22 may be expressed in terms of the rates of
change of the polar and azimuthal anglgsand ¢ (Jeffery(1922), defined in figureb.1(a),
and these are given by:

1 k2-1

oneff :_§+m COSZDJ’, (526)
2

: kc—=1 . .
Bjett :msm%j sin2g;. (5.27)

The angular velocity also has an additional spin componlemigethe orientation vector de-
fined asyy = —cosB;/2 — gbjeffcosej. As is well known, the solution ofy(26 and 6.27)
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shows that the spheroid rotates in any of a one-parametdyfafelosed orbits (figur&.1(b)),
the particular orbit being determined by its initial oriation. The parameter is the orbit con-
stantC, that takes values from 0 t®. The orbital or the natural coordinateS,t) were
originally introduced byLeal & Hinch (1971), with the constan€ lines being Jeffery orbits,
and the constant-ines (r being the phase change along an orbit) being the congtplanes
projected onto the unit sphere (see chagjeln these coordinates, the aforementioned rates
of change take on a much simpler foraC/dt = 0 anddt/dt = k /(k? +1). If the spheroid

is initially aligned with the vorticity axis, it will contine to spin in that orientation. This par-
ticular orbit withC = 0 is called a log-rolling (spinning) orbit for a prolate (ab#) spheroid.
At leading order, the angular velocity of the spinning spletis a constant and is equal to
—(1/2)13. The disturbance velocity field is steady in this orbit, jike a sphere, and the time
period of rotation is 4. If the initial orientation of the spheroid is in the flow-giiant plane,
the orbit would be a unit circle in this plane and is called mhling orbit. The rotation in

a Jeffery orbit is not uniform for any orbits other than thg-tolling (spinning) orbit. The
disturbance velocity field due to a spheroid in these orlritduding the tumbling one in par-
ticular, is unsteady. The time period characterizing thianging orientation can be defined
based onbjeff, and is given byljef = 271%. Note that the period is the same for all orbits
becausep;ef ¢ is independent o).

As mentioned in sectioB.2, the correction to the angular velocity atR¥, Q¢, given in
(5.23 is evaluated in sectioR.6. The angular velocity components expressed in terms of the
angles defined above are of the form:

Oy = sing; cosH; [Flf (&o) + sz (éo)cos2p + F3f (é0)cosB; + F4f (é0) cos 4y,

+F (&) cog(26; — 4gy) + Fo (£0) o526, +4¢,) | , (5.28)
@1 = Sing; cosy [G{ (o) + Gé (o) cOSD; + Gé(fo) Cos 4p; + Gi(fo) c0g26;) coq 2¢) )] )
(5.29)

The functionsFif’s and Gif 's are defined for a prolate spheroid 2.952.103 with A =0,
the corresponding functions for an oblate spheroid beirtginbd using the transformation
defined in sectio®.2 The angular velocity components atSi)(is also of the same form as
givenin (6.285.29, but with the functionsl;:if 'S andGif 's replaced wittF”'s andGP’s, respec-
tively, and these functions are defined t179-2.85 with A = 0. The rates of change defined
in (5.28 and 6.29), lead to a drift across Jeffery orbits. The orbital drittfided as the aver-
age change i€ over one complete rotation of the spheroid, can be obtaireed & multiple
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time scale analysis and has been used to analyze the efieertvh at ORe (Subramanian &
Koch (2005 2006) and chaptep). It has been found that on time scales oR®(%), a prolate
spheroid of any aspect ratio settles into the tumbling pénitd an oblate spheroid with aspect
ratiok in the range @42< k < 1 asymptotes to the spinning orbit. For oblate spheroids wit
Kk < 0.142, a repeller exists on the unit sphere (see red curve ireflga (c)), dividing the
orientation hemisphere into two basins of attraction whh attractors being the spinning and
the tumbling orbits, and, in the absence of stochastic fatiins, the spheroid can settle into
either of these depending on its initial orientation. Thgudar velocity corrections at Gf)
result in a drift which stabilizes the tumbling(spinningbi for prolate(oblate) spheroids. In
the analysis below, we focus on the effect of inertia on theetperiods of rotation, of both
prolate and oblate spheroids, in the orbits into which tregilesat long times due to the R€
and OGSY) drifts.

The correction to the spinning time period aR&is zero. The regular nature of the Ré
correction implies that the alteration of the time periodhas order is related to the symme-
try of the inertial acceleration of the Stokes velocity fiekhe latter is symmetric about two
planes; these being formed by the ambient vorticity with@kensional and compressional
axes of the simple shear. The resulting acceleration fiddisymmetric. This antisymmetry
together with the regular nature of R4 correction, makes the correction to angular velocity
at this order zero and therefore the time period is unalteféds can also be seen by noting
that due to the regular nature of the inertial correctioa,ahgular velocity must be quadratic
in the velocity gradient tensor. Being a pseudo-vector dusth therefore be proportional to
w - E (note thatp is coincident withw), which is zero for a simple shear flow, since vorticity
w is perpendicular to the components of the rate of strainoteles The OSt) correction to
the spinning time period is also zero. This is because, thaing order angular acceleration
is O for a spinning spheroid, and therefore, the particletimeannot affect the rate of rotation
of the spheroid.

In the tumbling orbit,gbj is not a constant, and depends pnfurther, the latter is not
coincident withw. The time period for a spheroid rotating in the tumbling dbrbigiven by:

AT UMb _ /n. d9 . :/n 99 ge inmd(P"JrO(Re?/z)
n Gett - Rega+REP@r  Jn  Petr o Pett

(5.30)

where the expansion is valid far~ O(1), when@Re< < (bjeff. The leading order integral
on the right-hand side above, evaluatesmok? + 1) /k, which is of course, the Jeffery period.
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The ORe integral in the above equation, evaluates to zero aftestgubng for¢jeff and @
from (5.26 and 6.29), respectively. The CRf) correction to time period in the tumbling orbit
can be shown to be zero in a manner similar to that for the fhediial correction above. This
follows from the identical angular dependence of the rafeshange of orientation at Gf)
and ORe.

The correction to the time period due to fluid inertia therefarises at G§e¥/2) for both
the tumbling and the spinning orbits. As mentioned in theoiction, the ORe”?) cor-
rection for a rigid sphere is evaluated iBténeet al. 2000 Subramaniaret al. 2011). The
evaluation of the correction for a spheroid in the spinningitas simpler in that it closely
resembles the calculation for a sphere, and this simpleulzion is presented in secti@b.
The correction for a spheroid in the tumbling orbit, whichmsre involved, in having to ac-
count for the unsteadiness of the disturbance velocity,fislgresented in sectidn6. The
correction due to particle inertia at &%) is presented in sectidh4.

5.4 Evaluation: Time period - particle inertia

The correction to the time period for an inertial spheroi@&6t) is evaluated in this section.

In the spinning orbit, th@(SE) correction to the angular velocity is zero due to the absence
of angular acceleration at 6f). Recall that angular velocity correction atSd)is 0. In what
follows, we determine the correction to the Jeffery periodd tumbling prolate spheroid.
Using @ = @ieft +St(%> ot St (%)SF the O(S¥) correction to the period of rotation
comes out to be:

AT =SE [" [;psl— (%)2&_ ?P? (%) sf} , (5.31)

et

where(%) Stis given by @.78. The correction to the angular velocity can be easily oletdi

by expandingQ; in (5.21), with Re= 0, to OGt). The correction for the angular velocity at

O(SP), Q(Slt% takes the form:

D (2 dQjers  dQTY) | D\, o
Qgp L =1y at +dtjeff +QierA(lp- Qigp) + Qe (1p- Qjerr), (5.32)
whered/dt; denotes the correction to the leading order rate of chamhgitjesr (defined in

section2.5), due to the O&t) deviation from a Jeffery orbit. In5(32, QtSt, is the OGY)
correction to the angular velocity of the body aligned camaite system. For the tumbling
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orbit, simplifying (.32 gives:

(%) op — "1 (%0)cosp +H;(£o) cosdp +Hg (o) cosp, (5.33)

where

(1688 — 1662 +5)(& &0+ (1— E2) cothL &p)?

p - _
—2
oo (& &+ (1— &) cothrt&p)?
_, 9
HP(&0) = — 3(&0 &0+ (1—&F) coth H&p)? 5.36)

320062 (283 —1)3

Using 6.33-(5.36 in (5.31), the change induced by patrticle inertia in the period odrot
tion of a tumbling prolate spheroid is given by:

2%0(&0 — &0) + 1][(1 — &) coth & + &5 — &0l

ATSta_:Slz 10062262 1)

(5.37)

At O(St), the inertial persistence leads to a shift in the locatiohthe angular veloc-
ity extrema relative to those for the original Jeffery orbithe angular displacements are
of O(Q(@n)Tp), Tp = I /L) being the inertial relaxation time that governs the pessist
of the angular velocity. HereQ(@y) is the angular speed at the extremums the (non-
dimensional) equatorial moment of inertia relevant to tivatling mode whileL® is the
aspect-ratio scale for the test-torque coefficient. In #er+sphere limit, the angular displace-
ments aréD(St) for both the maxima and minima, while for the slender fiberitirthe test-
torque coefficient i©[In(&,— 1)] 1, and these displacements @5t(&—1).In(& —1)] and
O[St(& — 1).In(& — 1)] for the maxima@m = ZF,3") and minima @, = 0, 1), respectively.
This O(St) alteration in the angular velocity profile does not, howeekange the period due
to the anti-symmetry of the angular acceleration profilah@compressional and extensional
guadrants of the Jeffery orbit. /@(Stz), this antisymmetry is broken with the result that the
decrease in the traversal time of the extensional quadisugi®ater than the corresponding
increase in the compressional ones, leading to a net deciedlse period of rotation. For
a near-sphere, this reduction in period is smaller than egpeowing to a cancellation at
O(Stzfo‘z); (5.37 gives _812457&6" For a slender fiber, the changes in angular velocity over
the meridional portion of the trajectory (the non-alignédge) govern the reduction in period.
The O(St) angular acceleration of a non-aligned slender fiber consbivigh a moment of
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Fig. 5.2 TheO(SF) corrections to the time period and the angular velocityemt, as a
function of &, for a prolate spheroid in the tumbling mode

inertia ofO(&y— 1), leading to a change in angular velocity3tf & — 1) In(&y— 1). An analo-
gous argument implies that the change in angular veloc®( &) is SE(&— 1)2[In(&—1)]2,
which then gives the aspect-ratio-scaling for the reductiothe period; the limiting form of
(5.37) gives—SE L (& — 1)2[In(& — 1)]2.

It turns out that the minimum and maximum angular velociiethe tumbling mode are
unaltered aO(St). Starting from 6.33, one obtains the following expressions Q¢St), for
the angular velocity extrema:

§ o8B+ o+ (&~ 1)coth &P

Qmax= — 255— 1 400(25(‘)2— 1)3 , (5.38)
& p&lE— (8 +Dcoth &P
Qmin= — 265— 1~ 400502(2562—1>3 (5.39)

The corrections to the time period, maximum and minimum &rgeelocities are plotted as
a function of the prolate spheroid eccentriciyf 5—10) in figure5.2 The effect of particle in-
ertia is to make the angular velocity extrema approach etr,acconsistent with the general
notion of an inertial resistance to angular accelerationlérgeSt, the particle begins to rotate
with a constant angular velocity of@in the flow-gradient plane_(ndell (2011))). Although
the changes in the maxima and minima are of opposite sigagadrection to time period is
negative for allo, implying that the time period decreases®6t). This decrease is consis-
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tent with consistent with recent simulatiohdqo & Alexeev(2014), although a quantitative
comparison is not possible due to the simulations beingezhaut for much largest

5.5 Evaluation: Time period - spinning orbit

In this section we focus on the effect of fluid inertia on spmgspheroids. The spinning mode
is the only steady state orbit for oblate spheroids with eisgagios larger than 0.142, and one
of two steady state orbits for oblate spheroids with asp@i tess than A42. As explained

in section5.3, there is no correction to angular velocity atR&). Noting that the leading order
angular velocity in spinning is-(1/2)13, and defining the correction to the angular velocity at
O(R€/2) as 13, e being independent of the spin angledue to symmetry, the ®Re”/2)
correction can be written as:

ATSP" = 87RE 2y, (5.40)
> can be obtained by contracting.24) with 13 and is given by:

Yoz = ﬁ/ [4712k2|]f _ (rT .K)- Dkﬁmatch+ r. ﬁmatclj

i (S?.k) 13 kk
{T (I —P)}dk, (5.41)

where all the terms in the integrand are evaluateédj at0, corresponding to the spinning orbit,
andXc is the axisymmetric torque coefficient defined in secbad The Fourier transforms
of the velocity fieldsi™"and@f are now independent of time. The integral for the time
period in 6.40 then becomes:

, /2
ATchm _ R)i [_4n2k2f.lf + (r’r -k)- Dkﬁmatch_ r. ﬁmatci

i (S2).k)-
. { 87403, () } a 5.42

The term within braces above, is independent of time and eamritten as:

i (S2).k)- in 1
M.O kk):TSp'”—M(kzll—klh) (5.43)

271K2 1 7 2k
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using 6.8). For a spherd; + B3 above reduces te-4m, which is equal to half the torque
exerted by a sphere rotating with a unit non-dimensionaliEmgelocity.

The singularitySin the actual problem takes the for8= AsE, and therefordi™ " s
'A23n'§2k | — ';—'2‘> from (5.25, which is same as the Fourier transformed stresslet \gloci
field for a spheref{s = —20r1/3), except for &p dependent coefficient. The inertial terms in

(5.42 involving ™" take the form:

(1K) - Omaten . gmateh— geP™ (5.44)

whereR:P"is given by:

R = zig (k3 (K2 — 4I3) 11 + ikika (3K* — 4k3) 1p + ik] (K*—4K5) kals).  (5.45)

The Fourier transform of the velocity field in (5.42) is governed byg.20). After eliminating
the pressure term5(20 reduces, for the spinning case, to:

—(rt.k-Oa +r-a'. (l —2%() + 4K = RSP (l - 'lz—'z() — QSPIn
A

= - (-kiKEAGL: + ikEke (K +K8) 12 — ikEkBkla). (5.46)

The equation governingl’ above can be written in terms of its components in the space-
fixed coordinate system as:

oas L0 2k2\ 0} spin
d—k2—4712k——(1—ﬁ) DA (5.47)
aa; Zu; 2kiko\ G5 QSP"
3k, — 41k < ( 2 )k_l = (5.48)
aa; Zu; 2kiks )\ Gy Qs
3 — 41k < ( > ) = e (5.49)

where subscripts 1, 2 and 3 denote the components dpMgandZ axes of the space-fixed
coordinate system. While the components along the flci\b/aﬁd the vorticity (Ié) axes are
coupled to the component along the gradient aub,(fhe equation governing the latter is
independent of the other two, and is therefore solved firs{(5147)-(5.49, one can identify

a simple shear flow in Fourier space, given®V (k) = —k;1,. This simple shear flow is
orthogonal to the one in physical spat® (X) = x21;). The orthogonality arises because the
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C u™(x) = 2214 4 (k) = —k11s
k

Fig. 5.3 The red lines denote the wave frorkss the wave vector which gets turned due to
a simple shear flow of the form™(X) = x21;. This is equivalent to a convection by a simple
shear flow of the fornii** (k) = —k; 1, in the Fourier space.

wavevector is oriented normal to the wave fronts, the ldie@ng turned by the simple shear
flow in physical space (see figue3). The components of the Fourier transformed velocity
field are convected by the Fourier space simple shear flow twélstreamlines of this flow
being defined by, = k> + kis, wheresis a time-like variable. This convection has the effect
thatdif (k), of a giverk, has contributions from all wavevectors turned dafom orientations
further upstream. The viscous term, proportionalidi€ in (5.47-5.49 causes an exponential
decay in amplitude which is proportional to the square ofctienging wavevector during this
‘turning’ period. Thus, the solutions for the individualmponentm;‘ﬁ, 0{ andu”; are written

in terms of integrals oves as follows:

/w 4 (kz%klkzsbr@) < 1 ) ik2 (ko + ki8) (K2 4 K3) Ag
0

A f
Uy (k) = e k2 k41T

ds (5.50)

23 )
f © 4 (Kstkykos®+ L ik3(kz + k15)%Ag 2 o

and

253 .
K © _an?(Kestiqkos+ L ik2(Ky + k1S)%kaAg  2kiKs .t
u3(k):/0 e ( 3) kg k’ﬁn) 2 U,(k') ) ds  (5.52)

where the components in the flow and vorticity directions@epled to the component in
the gradient direction through the telunb(k’). Here,k' = (ki1; + (k2 +ki8)12 + ksl3) and
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K = |k'|,andu'£(k’) in (5.51) and 6.52) is given by:

® 472 (K28 +ky (kprkyg) 82 5 ik2K! (K2 -+ K2) A\
o;(m:/ o (K73 i s 5 )(k_}z) e (K +K5) As (5.53)
0

k//4 T

wherek” = (ki1; + (ko + ki (s+9))1, + kslz), K’ = |K”| andkj = (ko + ki (s+)). Thus,
the expressions for components in the flow and vorticitydiom given in £.50 and 6.52
include a one-dimensional and a two-dimensional integhene@as that for the component in
the gradient direction given irb(51) consists of only a one-dimensional integral. The Fourier
transform of the test velocity field given iB.43 and the inertial terms given irb(44)-(5.49
and 6.50-(5.52 are now substituted irb(42) to obtain:

ATSP" = — Ri [ APK3(0F 13 + 0 15+ Gl 13) + RSp'”] - TSPg (5.54)
The different terms in the integral above can be expressedsipherical coordinate system
with k; = ksin@ cosg, ko = ksin@ sing, ks = kcosd anddk = k?sin8dkdfdg as :

2 31/2
/(—4n2k20{()11 TSP dk = / //4n2{k2|kkl,<§7f3

. co _ 2
{w} }/ ke 4#(k &Fklkzsu )dkdssnﬂdedgo

2k2
2m Bz+53>k2 2k2\ k3K (K2 +k3)Ag
o b b e e () e

3
© 42 (k25+k1kzs2+1Tsa) —Am? (k’25’+k1k’zs’2+T§)
e e
0

k’dkdddssin6dodep,  (5.55)

/ (—4rPK2a)(K) 1+ T3P dk = — / 4nz{ {"(Bzzk;f“’)kﬂ

k2 (ka -+ kas) (K2 -+ K2) Ag } /we art (s ol + 55
0

2T )kdedssinededgo, (5.56)

/ (4226 (K) 13- TSP")dk = 0, (5.57)
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and

: : 2m e (0 Agk3 (k2 — 4K3) (B, + Ba)k
pin_4-spin _ - 1 2 2 3) K2
& Tldk/o/o/o{ i an

A3k%k2(3k2 — 4k§) (Bz + B3) Ky
4
Kot 4

}dksin@d@dgo, (5.58)

where we have retained the notatliank, andks for brevity and the terms grouped within the
braces are such that they are independeht dhe test velocity field has no component along
the vorticity axis and therefore the contribution 854 due to the term proportional ta% 1s
zero.

The right-hand side ofy55 is sum of a 4-dimensional and a 5-dimensional integral
whereas that ofy.56) is a single 4-dimensional integral. In the 4 dimensiontgnals, the
integration ovek gives a term proportional to/$%2, which is a divergent term in the inte-
gration over §, ass— 0. Thus the integral ovét is divergent ak — o whens= 0. The
three dimensional integral in the rhs &.%8 also diverges in the limik — o. Although,
individually, the above mentioned integrals are divergemihe said limit, the sum is neverthe-
less convergent. This divergence arises because whilMargthe expression for the angular
velocity in (5.21), we had rewritten the three terms proportionalifar’ (5.6), as a sum of a
term proportional tai™ and three terms proportional t§'®" and each of these four terms
are divergent in the limit ok — . Noting that [’ 4r°k?exp(—4mk?s)ds= 1 for s # 0 and
is divergent as — 0, we isolate the divergence iB.68 by introducing an additional integral
over the dummy variables® as shown below:

. . 2 e Agk3(k? — 4k2) (By + Ba)k
pin spiny, 1 2 2 3) K2
T T e

A3k%k2(3k2 — 4k§) (Bz + Bg)kl
+
Kérr 4m

/ 4T2K2e4PK*sd s d ksinBdBd . (5.59)
0

Thekintegrals in the above equation can be readily evaluatedsagiden by [, k2e~4CK*sgk =
1/(32r%/2s%2) and 6.59 takes the form:

. . 2 e Agk3(k? — 4K3) (By + Bs)k
Rspln_-rsplndk:/ / / 3K 2 2 3) K2
/1 ! o Jo Jo Tk® am

+A3k%k2(3k2 — 4k§) (Bz + Bg) kl
Ko7t ATt V/TTs3/2

dssin6d6de. (5.60)
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The integration ovek in the 4-dimensional integrals iB 65 and 6.56) gives:

/ kzef4n2 <k23+k1k232+1T) dk :/ k24K (s+sir’ B cospsings’+sin” 6 cos’ ¢s*/3) 4 |
0 0
B 1
© 32m5/2(s+ sir? B cospsings? + sir? 6 cos ¢s3/3)3/2”
(5.61)

The integration ovek in the 5-dimensional integral irb(59 gives:

2 2J3
® —4n2(kzs+k1kgsz+@) 74n2(k’25’+k1k’25’2+—k13s, ) 5
/ ke e dk= / k
0

e—4n'2kzli2 (3(4+s2—Pco20+2ssin? 6(scos Ap-+25in Ap) ) +4 cospsir? B (3sing-+cosp(3s+s)) )

@ 4TT°K?(s+sin? @ cospsings’ +sir? 6 cos’ ¢s/3) 1 1 (5.62)

 32m/2(fex(s S, 0, ¢))3/2’

wheref®*Pjs the function that multiplies*471k?’ in the exponent of the integrand. Note that
there is no divergence for the five dimensional integral @ ltmit of s— 0 ors' — 0. The
integration ovek for the four-dimensional integrals given i6.65 and 6.56) are substituted
from (5.61), and the sum of the resulting three-dimensional integggther with the matching
term contribution given ing.60 is convergent in the limit o6 — 0. This sum, which is a
three-dimensional integral (ovey 8, @), and the four-dimensional (overs/, 6, @) integral
obtained from the five-dimensional ones ;35 and 6.56), after substituting from5.62),
are evaluated numerically using Gaussian quadrature éotlge/time period correction as:

2A3(Bz + Bg)

ATSP" = Re¥ 0.00516 (5.63)

The angular velocity correction at R€/2) can be obtained by using.40 and is given by
&=ATSP". For an oblate spheroiég(B, + Bg) /X:=1281%/ (9 ArcCs&g &5 —6&0y/ —1+ &Z—

963@ /—1+ Eg). For a sphere, the angular velocity reduces to that obteigg@toneet al.
200Q Subramaniamt al.2011).

5.6 Evaluation: Time period - tumbling orbit

In this section we focus on the tumbling orbit which is thegeiirme orbit for prolate spheroids
of any aspect ratio and for oblate spheroids with aspeagagiss than 0.142. The integral
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for the ORE”?) correction to the tumbling time period can be obtained ifmélar manner to
that derived in%.30 and is given by:

-7/ . Tietf ¢
. Pers 0 Peff

In (5.64) above, we have changed the variable of integration badkn® based onl¢; /dt =
gbjeff since the error associated with this change of variablectffdhe time period only at
O(R€¥/2). The angular velocity of a spheroid in a tumbling orbit canexpressed in terms of
(pj alone due to symmetry, and therefoge; may be obtained by contracting.p4 with 13
which gives:

) 1 aﬁmatch
@2 / 412K20° + _ (r’r -K)- Dkﬁmatch_|_ . qgmate

B 8rYe ot
i (S?).k)-13 kk
{ Tt (| — _kZ)} dk, (5.65)

where all the terms in the integrand are evaluate@ at 71/2, corresponding to the tumbling
orbit, andY; is the transverse torque coefficient defined in secii@ The angular velocity
given in (.65 is substituted in%.64) to obtain the ORe*2) correction to the time period in
the form:

ot

i(S?-k)-13 kk
. {W (I _ p) } dtdk  (5.66)

/2 Tieff pmatch
arymo_ REC /] [—4n2k20f——‘9" +(rt -k)-Dkﬁmatch_r.amatCi
c 0

The integral above is evaluated in the space-fixed coomlisgdtem XY Zin figure 5.1
(a)] and the details are presented in sectiBsl- 5.6.4below. The assumptions used when
deriving the reciprocal theorem restricts the orientatbthe spheroid in the test problem to
be the same as that of the spheroid in the problem of intéFastefore, in the tumbling orbit,
the velocity field is unsteady in the test problem too. Theularities corresponding to both
the problems are time-dependent point-force-dipole dargies, the time dependence arising
from the motion ofp along the tumbling orbit. The time depend(mﬂetermineﬁz), S and
thencel™ " and@i’. Thus, the term involving the test velocity field given witiraces in
(5.66), and the inertial terms in the problem of interest givenqonare brackets, are functions
of time. The unsteadiness makes the evaluation of time gh@&amtrivial when compared to
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the analysis done for the spinning in sect®Bb.

To evaluate the integral ir5(66), in section5.6.1, the term within braces is expressed in
the aforementioned coordinate system as a Fourier timessatich involves a combination
of three Fourier modes, the mode independent of time thatesdy present for a sphere
and modes proportional to o@stt /Tierf) and si4mnt /Tietf), Tier being the Jeffrey period.
Note that the combinati06<2t)/queff is crucial to a finite Fourier time series, and therefore
correction to time period can be evaluated. If this comlamatvas not there, for instance,
while evaluating the correction to angular velocity mg5, the time dependence &2
would have led to an infinite Fourier series in time, in tureyanting an exact calculation
of the OR€E¥/2) correction to the angular velocity. Note that the two tinependent modes
have a frequency which is twice the Jeffrey frequency defamesmy = 271/ Tjer¢. Physically,
this is due to the fore-aft symmetry of the particle whichdie#o the same disturbance field
in the test problem, i is replaced with—p. In (5.66 since one is only interested in the
integration over a time period, only the terms correspogdinthese three Fourier modes, in
the Fourier expansion of the inertial acceleration termfi,l@ad to non-zero contributions.
The expansions for the inertial terms involvieg®“"are done in sectioB.6.2 and those for
the inertial term proportional té' is done in sectio5.6.3 The details of the evaluation of
the integral are presented in sectmb.4

5.6.1 Expression for the term proportional to the singularty in the test
problem

In the tumbling orbit, the orientation vect@ris of the form cog1; + sing;1,, whereg; is
now a function of time given by tap = 1/(k tan(cwyt)), which is obtained from the solution
of the Jefferys equations irb.26 and 6.27). This relation is used for both the orientation
in the test problem, and that in the problem of interest. Emntcorresponding to the test
velocity field in braces, in4.66), simplifies to :

i (S?).k)-13 kk\ o (k?+1)2 (1—k%) (k*—1) (K241)2

W(' )—‘“7”27+(T TJ’TZT)
2

cog2uyt) —T3K +1sin(2wgt),

_ Ttlumb_|_ thumbCOS(ngt) —|—Tt3umbsin(2%t), (5.67)
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with @y = 271/ Tjett . IN5.67, T, T2, T3, THME, TP and T{™P above, are given by:

Ta= (Zili(zznll a 2i:21n12) Ba, (5:68)
To= (—i (< Z_i(ff)kz 1+ ikl(;i;fk%) 1- ikifik‘" 13) By, (5.69)
Tae (_i(kZ _2§4;k§)k1 1, ikz(k224l:4ki— k3) 1, i(k§2;4|§)k31 ) B,  (5.70)
Tiumb_ _-|-1(K22;|<—21)2 2(12—K’;4>, (5.71)
Tymb—T, (K;K_zl) +T2 (Kzz;l)z, (5.72)
Tumo _ —T3K2:1. (5.73)

The constant8; andBs above are defined irb(9) and 6.11) for a prolate spheroid. In the
tumbling mode, one need not consider the axial spin singyleorresponding td,, since
the orientation vector is perpendicular to the angularcigfpand thus,%.67) is independent
of Bo. As is evident in §.67), there are only three Fourier modes for an arbitrary aspect
ratio spheroid. In the limiting case of a spheke-{ 1), By — 0, and thereford {'mP, T4Imb

— 0, and only the time-independent mode survives. In the loh# flat disk k — 0), B; =

Bs = —16/3, andT4{MP is O(x) smaller than botiT{"™? and T{'™", and can therefore be
neglected. So, for a flat disks.67) scales as O(kP). In the limit of a slender fiberq — ),

B; = —Bz = 4m/(3logk), consistent with viscous slender body theory, a‘@kﬂ“b is O(1k)
smaller than botﬁ'tlUlrnb anthZUlrnb and can again be neglected. So for a slender fib&7(
scales as Q°/logk). The scaling forATégmb, for these extreme aspect ratio particles is
further analyzed in sectidn.6.5

5.6.2 Expression for the inertial terms with a™ach

In this section we expand the three terms involviifift®" in the integrand in%.66), as a

Fourier Series. The general Fourier expansion of the temadhiing M "contains an infinite
number of terms, but one needs to retain only terms correspgto the three modes ib.67).

As for the test velocity field, the expression @F2 " given in 6.25 now depends on time
through the singularitys. Hence, we expan8 as a Fourier series in time and retain only the
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aforementioned terms. This truncated expansion takeothe f

S= —2A1125in(2wgt)1111 + (A120+ 2A12200$<2(A)gt)>(1112 + 1211)

— 2A222SiN(20gt) 1215 — 2A3328iN(20yt ) 1313, (5.74)
where
Allzz—(%—ZAz-l— %) (1172,()3_ (AZ_A3—|2—A1) (1:’()2, (5.75)
Avzo= (% 4 (% —2g+ %) ﬁ) , (5.76)
Ar22=— (%—ZAan %) %, (5.77)
gy = — (%—ZAZJr %) ﬁ_ (AZ_A3‘|2‘A1) (14'_<K)2, (5.78)
Azzr= <A1;A3) (14’—<K)2’ (5.79)

where theA’s are defined ing.16)-(5.18. In deriving 6.74), we have again used the relation
betweeng; andt obtained from the Jefferys solution (see secofl). For a sphere —
1), Ay = Ap = A3 = —20m/3 and thereforé&Sin (5.74) reduces to-10m/3(111, + 151;) =
—(20m/3)E. For a flat disk K — 0), 2A; = A3 = —64/9 andAy is —81k /3, therefore .74

is O(k). For a slender fiber(— ), A; = —811/(9logk), A> andAg are O(1/«?) and 6.74

is therefore O(1(k logk)).

Using (.25 and 6.74), the truncated Fourier expansion of the terms invohifig®" to
be used in%.66), is obtained as:

match

(rT -Kk)- Dkﬁmatch_ oa

T r. ﬁmatch: Rtlumb+ thumbCOS(ngt) + Rtsumbsin(ngt),

(5.80)

where RUMP, RYMP and RY'™P are functions ok ko ks, wy andAjj’s are defined in%.79-
(5.79, and are given by:

iAlZOkf (k2 — 4k%) 1, + iAp_ok%kz (3k2 — 4k§) 1,4 iAlzok% (k2 — 4k%) ks

umb __
R = k67T 1 kST k67T

137
(5.81)
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2ik1 (Algzk% (kz — 4k§) + O.)gkz (A112 (—kz + k%) + Azzzkg + A332k%))

b
thum — kGT[ 11
" 2iko (A122k% (3k2 — 4k%) + (A)gk2 (Allzk% + A2 (—kz + k%) + Aggzk%)) 1
Ko 2
. 2ik3 (A122k% (k2 — 4k§) + (A)gkz (/T\(]ﬁ_];k% + Azzzkg + Ag32 (—k2 + k%) )) 1, (5.82)

Rtumb_ ( 2i (A)gA]_zz (kz — ZK%) k2 n iAllzk% (—k2 + 4k%) k2 n iA222k2 (—k2 (kz + ZK%) + (kz + 4k%) k%)
M= —

k41T Kot Ko
1A332 (k2 + 4k%) kzk% 1 2i %A]_zzk]_ (kz — ZK%) iA]_lzk% (—kz + 4k%)
* Kérr Lt k41T * Ko7t
1A220K1 (k — kz) (k-i— k2) (—kz + 4k%) 1A332K1 (kz — 4k§) k%
— _ 12
Kot Kot
4 O.)gAlp_zklkzkg 4iA112k%k2k3 2iA220k1 ko (—kz + 2k§) k3
+ a + 6 + 3
kmt kem kerm
2iA33k1koks (—k? + 2KZ
TRaatiol ZszT +25) ) 1, (5.83)

For a sphere only the time independent mode survives.80). In the limit of extreme aspect
ratios , that is, a fiber or a flat disk one needs to consider thayfirst two terms ing.80),
since the test singularity has only those two modes, as sdée iast subsection.

5.6.3 Expression for the inertial term with @'

In this section we expand the lone term proportionalifoin the integrand in%.66) as a
Fourier Series. As in the previous section, we need to ontytfie coefficients of the three
modes present irb(67). To begin with, 6.20) is contracted with{l — kk/k?) to eliminate the
pressure, leading to the following governing equationifar

aﬁmatch
ot

o f
ﬂ—(FT-k)-Dkﬂf+r-ﬂf-<l —2%()+4n2k20f:—<

ot

—(rt-k) - Omeeh - getet) <| - t_lz() (5.84)
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The expression on the right-hand side above is evaluated &BO0 to give:

aa“t —(rfk-oaf +r-af (I 2';'2‘) + 4220
= (RUMP RYMPeog 2at) 4 RYMPsin(2axt)) - <I — I;—Iz()
_ Y Qe (5.85)

Be{0,2,-2}

whereQ® = RI'™ — (Ry - k)k/k?, Q% = (RY™—iR§'™) /2 andQ 2 = (RY™+ iR§™) /2.
The QP for B = 0,2and — 2 are given below.

2iA 0k3k2 2iA120k2k2 (k2 — kz) 2iA k2k2k
0 120%1 %2 1 2 120%1R2H3
Q' =- k6T L+ k6T 1o- k6T 1s, (5.86)

Q%= Q*e+iQ%, (5.87)
Q 2 Q2R6+ IQZI (588)
Qe ( 2 (—K* A2y — 264k*Anzy (K2 — 2k) + Aa1a (—k? +2K]))

2kb1t
ke (A22 (K2 + 2k2) K3 + Agaz (k? 4 2K2) K3 k2)> 1 ( Ky (K2 — 2k2) Aq12K2
4=

2k 7T 2k8 7T

ky (K2 — 2Kk3) (+A022k3 + Agaoks + K2 (—Agao+ 2A1200y)) ) 1,
2k6 1t

k1k2k3 (2009k?A122+ A112KE + Aok + Agzo (—K? +K3) ) 1
T 3, (5.89)

0 Ky (—2A120KTKE + K? (Aq12 (—K? 4 KZ) + Aok 4 Agaoks) ay) 1,
- Ké7r
ke (212 (1€ —1G) + K2 (Arakf + Aoza (K + 1) + Asad) ) | ,
Kérr
. ks (—2A120k8K3 + k? (A112K2 + Apookd + Agzo (—k2 4+ K3) ) ay)
Kérr

15. (5.90)

We have written the Fourier modes in complex exponentiahfar (5.85 to simplify the
analysis that follows. To reiterate, the general solutimrif’ would contain a forcing on the
right-hand side of§.85 that involves an infinite Fourier series. Only the threen®icorre-
sponding to the values @ above contribute to the increase in the time period of rotati
however.
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To obtain the solution of5.85), f is expanded as a complex exponential Fourier series
given by:

o'= 5 ofefu (5.91)
Be{0,2,—2}

Substituting the expansion above B&5, the governing equations for each of the compo-
nents of Fourier transformed velocity field may be written as

aalP , afP a2\ aff QP

¥y — (4m%k +|wgﬁ)— — (1— ?) T T (5.92)
00fB 5 AfB 2k1k2 0;3 Qg
o — (41K + m)gB) < 2 ) A (5.93)
aalP ) Oéﬁ kaks) 0
T — (42K + |wgﬁ)k—1+ ( %, ) < Tk (5.94)

The equations above are similar to the ones seen for theisgicase in%.47-5.49 except for

an additional frequency dependent term(involving on the left-hand side and a frequency-
dependent forcing amplitude on the right-hand side. Thetwol to 6.92-5.94) therefore pro-
ceeds in a manner similar to that of the spinning case. Theonents ofif (B = 0,2, —2)
along the flow (Ifiﬁ) and the vorticity (éﬁ) axes are coupled to the component along the gra-
dient axis (éﬁ). Thus, as for the spinning case, the gradient componentiependent of the
other components and is therefore solved first. The solati¢h.92-(5.94) arising from the
substitution of $.91) corresponds to the neglect of an exponentially decaymugstent, that
governs the relaxation from a particular initial velociwglfl, and consideration of long time dy-
namics corresponding to the frequencies present in théegdplrcing. The steady linear flow
ensures that there is a one-to-one correspondence betheeEBourier amplitudes of the forc-
ing and the velocity field, with inertia determining the fusipcy dependent phase lag between

the two via the terms proportional tay in (5.925.94). Note again that 3 Qﬁeiﬁ‘*’@t
Be{0,2,—2}
is not the complete outer velocity field, but the part thateigevant for the determination of

tumb
ATHIME,
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Again, definingk;, = k2+ kis, where ‘s’ is a time-like variable, the solutions for theiind
vidual componentazﬁ, Uy andu“éﬁ are written in terms of ‘s’ as follows:

1B © —4n2(k23+k1k2$2+$) k2+kfsz+2klk23

) efi%BSQg(kl,kzﬂLle, ks)ds
(5.95)
23
© _ar(Kestkylo2+ ) ®
aiﬁ(k)zfo e ( TR >e_'“’9BSQ[13(k17k2+kls,ks)ds—/O CR

—41P (k23+k1k232+ @) 1 zkf
e J—
(K2 + k2s? + 2k koS)

) 03P (ki ko + kis ka)ds  (5.96)

243
© 42 (Kestkikos? 1) ®
g;ﬂk):/ e ( e )e'%BSQg(kl,k2+kls,k3)ds+/ g iwps
0 0

—4772 (k23+k1k2$2+k 53) ( 2k1k3
e

k2 + k%S2 + 2kpkos

) 0P (ky, ko + ki, ks) ds (5.97)

The solutions foru{“ﬁ and u”;B are coupled witru;’8 as expected, and are given as a sum of
a one-dimensional and a two-dimensional integral, withl#ter integral arising from the
coupling with u”;_ﬁ. The contributions in§.95-(5.97), for the differentB’s are substituted in
(5.91) to obtain the components &f in the space-fixed coordinate system, and are given by:

iy (K) = 0 °(ke, ko, ka) + 0’ (ke ko, ks, t), (5.98)
0 (k) = 01° (ke, k. k) + 01 (k. ke, ks, 1), (5.99)
05 (K) = 050 (Ky, ko, ka) + G (kg ko, Ka, ), (5.100)

where we have written the components as a sum of a time-indepéterm(superscript0’)
and time-dependent term(superscrifit). Denoting the convected wave vectkil; + (ko +
kis)1, + kslz, ask’ andk’ = |K'|, the time-dependent and time-independent contributions i
(5.985.100 which may be conveniently expressed in the form:
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® 472  K2stkikos? K k2 4 K2 2k k
ago(lo—/o e ( sHakesT )( + 1Si2+ 1 ZS) QK')ds (5.101)

© _ar2(\stiaks+ 92 /K2 1 K2 i
itk — [ iz (o) & e 22 (@@ ) coszang

—Q3R(K') sin(2wys)) cos 2wyt + (QB7K') cos(2wy9) + QF (K') sin(2wys)) sin(2ayt) ) ds

(5.102)
— G5'°%%(k, t) cog 2at) + G5'"(k, t) sin(2ayt), (5.103)
®© 7'[2 23 1282 ﬁ 2
Oio(k) :/0 o 4 (k +kikos™ 45 ) <Q2(k’)— (l_i_ile> Oéo(k’)),ds (5.104)

(<) . 2S 1ko @ .
a{t(k>:/0 i2e or?(Cstishes+ % >(( 2 (k') cog(2a9)

—QIRE(K') sin(2ays) ) cos(2wgt) + (QZRK') cog2ays) + QF (K') sin(2ays) ) sin(2ayt) ) ds

o —4n2(k2s+klk2s2+$) 2k§ I g
_/o e —z | (k',t,s+s)ds (5.105)
— 01"k, t) cog 2ayt) + 0"k t) sin(2t), (5.106)
© 42 (\shqlo+ 9
a;"(k):/O e ( ST ) (Qg(k’)+%a;°(k')),ds (5.107)
©  _ar(Keshgkost+ 95 .
Oét(k,t):/o %6 4 ( S+K1KpS™+—3 )((Q%'(k’)COE(ZO.)gS)

—QFRE(K') sin(2ays)) cos2wqt) + (QFREK') cos2ays) + QF (K') sin(2ays) ) sin(2ayt)) ds

253
© 42 (KRstkike?+ ) [ 2kika )\
+/0 e ( 3 ) ( k}23) (K t,s+9)ds (5.108)
= 0"k, t) cos(2et) + G *"(K, t) sin(2ayt). (5.109)

where the term&?R¢Q? are given in 5.89-(5.90, with *j’ denoting the component along
the 1,2 and 3 directions. The coefficients of @ugyt) and sir{2ayt) in (5.102 and 6.108
are denoted by™°Sandufts". The flow and vorticity components are coupled to the gradien



5.6 Evaluation: Time period - tumbling orbit 153

component through“(K',t, s+ ) andu’(K') which are given by:

243

oo- — 412 K24 +k k’s'2+k1 k/2 kZSIZ 2k klsl

Gét(k,,t,S-I-S/):/ i2e < v ’ ) ( = k’;_ =2 )
0

((QF(K") cog2ay(s+5)) — Q37K sin(2ay(s+))) cog 2at)
+ (QFK") cog2wy(s+9)) + Q2 (K”) sin(2ay(s+9)) ) sin(2awgt)) dg,  (5.110)

and

253
[« 747.[2 (k’251+k K. 512+k1_) k/2 kZSZ 2k k/ s
gy« [[o (ot ) 0

2 )Qg(k”)ds (5.111)

respectively. The primed variables i6.{10 and 6.11]) are defined ak” = ky1; + (ko +
ki(s+9))1z+ ksls, K = ko +kysandk” = |k”|. The coefficients of cdawyt) and sir{2awyt)
in the time-dependent terms are definediH&°%k,t) andui'*®"(k,t) respectively. The com-
ponents along the flow and vorticity directions given $1104-(5.109 is therefore a sum
of one-dimensional integral and a two-dimensional integfde two-dimensional integrals
in (5.109- (5.109 are coupled with the velocity in the gradient direction amd given by
(5.110 and 6.111).

5.6.4 Evaluation of the integrals

The integral for the tumbling time period given i6.66) is evaluated in this section. The
inertial terms given in§.80 along with the term involving the singularity in the tesbptem
in (5.67), are substituted ing(66) to obtain the final form of the integral as:

AT tumb _ Re?'/z
RE2 T 8rY,

+Rsin(2agt)] - (Ttlumb+ TMbcog 205t +Tgumbsin(2wgt>) dtdk  (5.112)

Tiett
/ / [—4ri2(0{11 + 615+ 0 15) + Ry + Rocos2aa)
0
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where the components @ are given in 5.99-(5.100. The integration over time in
(5.112 is straightforward and leads to:

AT

REZ ™ 8riYe

@T&”mb- (Ry — 4rPk3(01°11 + 0,°15 + 03°13))
nm ~ ~ ~
+ @thumb‘ (Ro— 4n2k2(u{tcosll + u;_tcosl2 + u;tcos]_3>)

The expressions fou'" (i='0’,‘cos’,'sin’) are given in (6.103)-(5.109. Each of the terms
proportional touii and u’éi (i='0’,'cos’,'sin’) in (5.113 is a sum of 4-dimensional and 5-
dimensional integrals. The terms proportionaugba?e 4-dimensional integrals and the terms
proportional toR1,R, andR3 involve 3-dimensional integrals.

The numerical evaluation of the integrals proceeds in a masimilar to that of the spin-
ning case in sectioh.5. First we express them in a spherical coordinate systenill haseen
that, individually, the 3-dimensional and the 4-dimensidntegrals mentioned above are di-
vergent in the integration ovérin the spherical coordinate system. However the combinatio
of these integrals are convergent, and proceeding in a mammgar to the spinning case, we
could reduce the integral ib (113 to a sum of 3-dimensional and 4-dimensional convergent
integrals. These integrals are evaluated numerically taiobhe time period.

To illustrate the simplification of5.113 to convergent integrals mentioned above, we
focus on the evaluation of the integrals proportionall{t?q R1,R> andRs3. The simplification
of the other terms in the integral follow the same method asqmted below. We present the
final simplified form of the integrals for the other terms ipapdixC. We have written the
4-dimensional and 5-dimensional integrals for the ternpprbonal tou‘l0 below:

/(—47'[2k20:[0(k) 11_ Ttlumb)dk: _/4n2k2 |:_ <K2—|— 1)2 i83k2 n |Bl(k2—2k%)k2 (1_ K4):|

2k2  2K2m 2k4 T 2K 2
23 . .
© A <k23+k1k282+k1T) 0 (K2 + 1)2 Ingz IBl(k2 — 2k2)k2 (1 — K4>
Kdsdk+ | 4m2k? | — 1
/0 € Qi(k)dscct / k2 e 2kA 1T 2k2
© 4P <k23+k1k282+§) 1 ZI(% ® 47 (k’25'+k1k’25'2+§> K2+ k%S/Z + 2k1k/23/
; e %2 ), € K2

Q9(K")d<dsdk (5.114)
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The first and the second integral on the right-hand side apeively the 4-dimensional and
5-dimensional integrals. Recall that the 5-dimensioni@gral arises due to the coupling with
the velocity component in the gradient direction. Whiletimg the 5-dimensional integral, we
have used the definition cm‘;Q in (5.111 and substituted in5(104. The term in the square
brackets in%.113 corresponds to thi&; lcomponent oil'tlumband is obtained fromB(67). The
integrals in 6.113 can be expressed in a spherical coordinate systemkwithksind cosg,

ko = ksin@sing, ks = kcosd anddk = k?sinfdkdBdg. Rewriting 6.114 to isolate the k
integral in the spherical coordinate system (again for ibyave have retained the notation
k1,ko andks), one gets:

fiamestun s [ [l 5

k§s3

iBy (K2 — 2k2)ky (1— K )H / 2 74n2(k23+k1k252+ ;

kAT 22 ©
2n 2 : 2 2 4
2 K —l—l) iBsko IBl(k —2k1>k2 (1—K)
/ ///{Amzk[ 2K?2 2k27'[+ 2k4mT 2K?2
2k2\ K2 + k252 4 2k; koS
o )t (<)

0 2 k%s3 12 / J2 ks’
—41P ( K2stkgkoS*+ 4= | —4mP ( K28 +kqKhs?+ Lo

e e
0

>dkdssirﬁd9d(p

)kzdkdédssinededq), (5.115)

where the term in the curly brackets is independerktlmécaus@(l’(the ‘1’ component oRQ°,
see b.86) and the term in the square brackets above are proportiorigk. Thek integrals
above are evaluated for the 4-dimensional case, given by

o0 kfs® 00
/ kze_4"2 (kz%klkzsszlT) dk — / k2e74712k2(s+sin2 6 cospsin@s®-+sir’ 6 cos’ s /3) dk
0 0
1

" 32rB/2(s + Sir? 6 cospsings + sir?  cod gs®/3)3/2”
(5.116)

and the 5-dimensional case given by:

- K2s3 , , o KB
/ k2674n2 (kzsﬂ(lkZSZ*lT) e*4"2 (k 25I+k1k2512+1T) dk — / K24k (s+sir?  cospsings™+-sin” 6 cos’ ¢s*/3)
0
e74k2nz%’(s(4+3273200529+253in2 6(scos 2p+2sin 2p) ) +4 cospsir? 0S (3sing-+cosp(3s+5)) ) dk
B 1
- 32md/2(fexr(s, 9,0, @))3/2’

(5.117)
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where fP js the function that multiplies—41?k? in the exponent of the integrand. The
result of thek-integration for the four-dimensional integral is proponal to # and there-
fore diverges in the limit o6 — 0. The sum of all the four-dimensional divergent integrals
in (5.115 and C.1)-(C.9), and the three dimensional integral presente®ihi8 is however
convergent. The reason for the emergence of this divergemglained in sectioh.5. Such

a divergence is present in the 4-dimensional integralsqtmmal tou’é0 , 0;0 : Ol-fi(jzl,z and

3 and i="tcos’,'tsin’) given in appendix.1)-(C.9) also. Further th& integrals in C.1)-(C.9)

are identical to that of5.115.

The three-dimensional integral proportionaRgR, andR; in (5.114 are given below:

21 T n
/ [_Ttlumb. (Ry) + _thumb. R, + _T%umb, Rs| dk. (5.118)
Wy Wy Wy

Ry, Ry, R, TYUME TWMP and TW™P (see 6.81)-(5.83 and 6.67)-(5.70) are proportional to
(1/k) anddk is proportional tddk in (5.118 making thek integral divergent ak — o. The
divergence here can again be isolated by introducing agratever a dummy variable ‘s’.
Noting that [’ 4m*k?exp(—4mk?s) = 1 for s # 0 and is divergent as — 0, the integrals
proportional toR;,R, andR3 are written as

21T pTT po0 oo
4772/ / / / {Z—HTtlumb- Ry + Ethumb. R, + ET%Umb. Rs] kze—4n2kzsdsk2d ksin0dodo,
o Jo Jo Jo LW Wy Wy
(5.119)

where we have added an additionglihtegral to isolate the divergence. Théntegral can be
readily evaluated and(119 becomes:

4n2/2"/"/°°{ {2_"Ttumb. Ry + —TWm. R, + ETt“mb-Rs} kz} arsarzdssingdedy
o Jo Jo w wy 2 w 32/2sY? |
(5.120)

where the term in the curly brackets above is independekt of

In (5.115 and C.1)-(C.9), the results ok integration from $.119 and £.117 are substi-
tuted, and they are combined with.{20, to obtain the final integral for the time period. The
final integral is evaluated numerically using Gaussian catade. The numerical integration
has to be carried out for each of the aspect ratios. This ikeutthe spinning case, where
the aspect ratio dependent term factored out from the ialige5.63. However in the limit
of extreme aspect ratias{ > 0 for an oblate spheroid and— > o for a prolate spheroid),
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one can pull out aspect ratio dependence and obtain the &styerpnit. This is discussed in
section5.6.5 The correction for the tumbling orbit obtained from the rarroal integration is
presented in sectiob.7.

5.6.5 Extreme aspect ratio analysis

In this section, we evaluate the inertial correction to theetperiod for spheroids with extreme
aspect ratios << 1 ork >> 1) rotating in the tumbling orbit. An oblate (prolate) spbielr
spends a time of @) (1/k) in the aligned phase and O(1) time in the non-aligned phEse.
aligned phase of a thin prolate spheroid (slender fiberesponds tg close to the flow axis
(¢ = 0), while that of for a thin oblate spheroid (flat disk) copends top being close to
the gradient axis¢j = 11/2). One would then expect the inertia to primarily alter timeet
period during the aligned phase, that is, wiggiis close torr/2 or 3r1/2 (0 orm) for an oblate
(prolate) spheroid. The integral when expressed in terngg tefkes the form:

—T do: -m q aﬁmatch
ATUmb _ _ ped/2 CRPZ @, :/ / ark2at + _(rt.k) - 0O,gmatch
c2 no @y Jn 8T o (k- Dk

i i(S(Zt) k) - 13 kk 1
ir. umatc)j . {2—7_['(2 . (| — p) gbz.—ffdkdgoj'.
je
(5.121)

Noting thatqueff (5.26) in the extreme aspect ratio limit is zero when the sphesoperfectly
aligned , one can see that the above integral diverges irliiveed phase. This suggests that
the contribution comes from region close to the aligned ph&mne can then use a boundary
layer analysis, to isolate the contribution to the integrgb.121).

We will first estimate the contribution from the aligned pbéar a flat disk. Defining the
boundary layer variable ag= (—1/24 @) /K, one can rewrite¥.12]) in the boundary layer
variable as:

tumb =1 n22Af aﬁmatch T amatch
ATHmb — s | |4 KA 4= — (1K) - Ol

g J 1K1 (0 Kk 1 -
40 j{ 3 |- K3(é2+1)2dkd<p. (5.122)
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At the leading order i, the term within braces irb(122 becomes:

i(S?.k)-1 kk
{% (| ‘ﬁ) } ST -Ts, (5.123)

whereT;, T, and are defined in5(685.69 andB; = B3 = —16/3. The term proportional to
the singularity in the test problem is therefore indepehdér. The leading order term in the
amachiakes the form:

ﬁmatch:_i(kz—Zklz)Azkz 1_iklA2 (k% — 2K3) ) ik1Aokoks
aKk4T 4Kk4 T 2k4 1T

13 (5.124)

Recall thatA; is the coefficient of the longitudinal extension and is edoal-87k /3 in the
flat disk limit. The inertial terms in the square bracket @2 is therefore proportional to
K. Although the inertial terms involving the singularitiesthe axisymmetric extension and
transverse extensions come akQ)(these contributions are also proportional to the boundar
layer variableg, and the integration ovep in (5.122 is zero for these contributions. The
evaluation of the integral irb(122 leads to:

ATYMD — Re¥/20.1763/k? (5.125)

for a flat disk.

The estimation of the correction for the slender fiber casdightly nontrivial. If one
proceeds in a manner similar as that of the flat disk given @bave can see that the scaling
of the leading order term of the integrand in the time peritteégral, when expressed in the
boundary layer variable) is k?/logk. However, it turns out that the leading order term is
an odd function of the boundary layer variable, and theeefbe integral ovep is zero. To
evaluate the integral at the next ordef(ogk) is difficult and not pursued here.

5.7 Results: Time period - ORe%)

In this section we summarize the numerical results obtairsaay the analytical expressions
derived in the previous two sections. The scaled corredbotie tumbling time period is
plotted against eccentricity(e) for a prolate spheroidguirie5.4a. For a spheree(= 0) the
correction is 1355, and it first decreases with increasing eccentricityr@asing aspect ratio)
till an e of about 075, shown in the inset plot, before eventually diverginghe slender fiber
limit. The correction normalized with the Jeffery periodhieh diverges ag ask — o, is
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a) Prolate spheroid—Tumbling b) Prolate spheroid tumbling
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Fig. 5.4 (a) The correction at @€¥2) is plotted against eccentricity for prolate spheroid in
tumbling orbit. The inset plot shows a zoomed view of ecaeityr< 0.8. (b) The correction
at ORe¥2) scaled with the Jeffery period is plotted against ecceityrfor the same. (c) The
correction is plotted on a log-log scale. The red line haspeslL.

plotted against eccentricity in figutedb. As is clear from the dip in the plot for large the
divergence of the inertial correction is slower tharkDior kK — co. To obtain the scaling for
the divergence we have plotted it on a log-log scale in figude. together with a line of slope
1 (red) for purposes of comparison. The plot suggests angrafiapproximately Q¢/logk)
consistent with the arguments at the end of sedhi@bh

The correction to the time period is plotted against ecagtytr for an oblate spheroid in
the tumbling orbit in figurés.5a. The correction starts again from that for the sphere Q)
and, to begin with, decreases slightly with increasing Btaaty(decreasing aspect ratio), as
shown in the inset plot, before eventually diverging in tinetl of a flat disk. The correction
scaled with the Jeffery period(which diverges d& hsk — 0) is plotted in figures.5b, and
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a) Oblate spheroid tumbling b) Oblate spheroid tumbling
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Fig. 5.5 (a) The correction at ®€*/2) is plotted against eccentricity for oblate spheroid in
tumbling orbit. The inset plot shows the zoomed view for etgeity < 0.8. (b) The cor-
rection at OR€”/2) scaled with the Jeffery period is plotted against ecceityrfor the same.
(c)The correction is plotted on a log-log scale. The redikthe asymptote obtained from an
analysis for flat disk.

in contrast to the prolate case continues to diverge in thé bf k — 0. We have plotted
the flat-disk asymptote (red) given b§.{25 as well as the numerical results on a log-log
scale in figures.5c; the asymptotes compare well to the numerical results yahdates the
predicted Ok —2) divergence. In figur&.6we have plotted the correction against eccentricity
for an oblate spheroid in spinning orbit, which was given5r6Q. In the spinning case the
correction to time period decreases with increasing edcgégtand approaches a finite value
0.47 for the flat disk.

The ORe’?) time period corrections for both the prolate and oblateespids have been
found to be positive, implying an increase in the time penbdbdtation due to inertia. This is
consistent with what has been observed in the simulations.
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a‘) Oblate spheroid spinning

2.0

1.5¢

Spin
c2

-3/2 AT

1.0r

Re

0.5}

0.0 0‘.2 0‘.4 0‘.6 0‘.8 1‘.0
eccentricity

Fig. 5.6 The correction at ®e*/?) is plotted against eccentricity for oblate spheroid imspi
ning orbit.

5.8 Conclusions and future work

In this chapter we have evaluated the leading order fluidiaierorrection, at ORe¥/2), and
the particle inertial correction, at @), to the time period of rotation of a spheroid, in simple
shear flow, in the tumbling and the spinning orbits. The fifigats of fluid inertia occur at
O(R#9), but at this order inertia acts to stabilize either one af deffrey orbits depending on the
spheroid aspect ratio and its initial orientation. Spealljcit has been shown in chapt2that
the stable orbit for a prolate spheroid of any aspect rattansbling and an oblate spheroid
with k > 0.142 is spinning. The stable orbit for an oblate spheroid with 0.142 is spinning
or tumbling depending on the initial orientation. The firfeets of particle inertia occur at
O(St) and it stabilizes the tumbling orbit for a prolate spheraid the spinning orbit for an
oblate spheroid. In the stabilized orbits, it is shown tihat ¢orrection to the time period at
O(Rg and OEY) is zero.

The calculation of the correction to the angular velocit@&bt) for a spheroid is straight-
forward and is presented in sectiérd. The correction to the angular velocity atRE/2)
is formulated as an integral in Fourier space, based on progal theorem formulation, the
details of which are given in sectidn2 The disturbance velocity field around a spinning
spheroid is steady and therefore, the correction to angelacity at ORe¥?) is trivially re-
lated to the correction to time period through40. The calculation proceeds in a manner
similar to earlier ones for a spheg&tneet al. (2000; Subramaniaret al. (2011), and the
result is given in $.63. The disturbance velocity field around a spheroid is umistéa the
tumbling orbit, and the evaluation of the time period cotigcis therefore not trivial. How-
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ever, we show in sectioh.6 that by expanding the integrand in the reciprocal theorem as
Fourier series in time one can evaluate this correction.ntimeerical results for both the tum-
bling and spinning orbits are given in secti®i7. The results conclude that the time period of
rotation increases with fluid inertia in both tumbling anthsiing orbits consistent with earlier
simulations. We find that the scaling for the correction félaaidisk rotating in the tumbling
orbit is 1/k? both from the plot of the arbitrary aspect ratio oblate sphiepresented in sec-
tion 5.7 as well as an asymptotic analysis presented in se&tiéra For a slender fiber we
obtain the scaling as approximatedy logk from the plot of the arbitrary aspect ratio prolate
spheroid presented in sectiéti. The stronger divergence of the inertial correction, fon th
oblate spheroids, evidently implies a breakdown of theyamahere. This will be taken up for
future work.



Chapter 6
Conclusions and future work

This thesis has tried to answer the four questions that &eda chapted.

In chapter2, we address the first question, that is, whether weak ineffects at ORe
and OGt) eliminate the indeterminacy associated with the Stokes.liThe indeterminacy,
as explained in chaptdr, arises due to the reversibility of the Stokes flow, which esa&
spheroid rotate in any of a one parameter family of closedrknown as Jeffery orbits, in
planar linear flows withh < A¢it. The investigations in chapt@rconcluded that for certain
regions in theA — k plane, the weak inertial effects stabilize either of the twhits, namely
the tumbling and the spinning orbits. However, there aréregin theA — k plane, where
the orbit that is stabilized by inertia, depends on theahirientation of the spheroid. To be
precise, in this region, a repeller divides the orientatiait-hemisphere into two basins of
attractions, with the attractors being the tumbling andsihi@ning orbits. In particular, for a
neutrally buoyant spheroid in simple shear flow=£ 0), this region corresponds ko< 0.137.
This finding for simple shear flow in chapt2ris utilized in chapteB, to address the second
question, that is about calculating the viscosity of a @ilstispension of neutrally buoyant
spheroids. The viscosity of a suspension of neutrally bobgpheroids, which include prolate
spheroids of any aspect ratio as well as oblate spheroidiswwit 0.137, is calculated based
on the distribution that is set up by inertia alone. To calteithe viscosity of a suspension
of oblate spheroids witk < 0.137, an additional orientation decorrelation mechanisthén
form of rotary Brownian motion is considered. The orierdatdistribution that is set up by
weak inertial effects together with weak Brownian motionimgerestingly, a distribution of
the Boltzmann form, with a potential that depends@rk, and a dimensionless shear rate
(RePe), and therefore lends itself to a novel thermodynamic pregation inC — Kk — RePe
space. The transition of this potential between a singléed@nd a double-welled structure is
interpreted as a phase transition, and the s@alhd large€ minima identified with spinning



164 Conclusions and future work

and tumbling phases. A phase diagram is plotte@ ihk — RePe space to identify the two-
phase region and its envelope. The phase transition naraeaithbling-spinning’ transition,

results in hysteretic dynamics within the two-phase emlonaking the viscosity sensitively
dependent on the precise shear rate history. In this sdmes&ymbling-spinning transition is
analogous to the well known coil-stretch transition forypoér solutions, in that it endows
an inertial suspension of thin oblate spheroids with a mgntiwat far exceeds the nominal
microstructural relaxation times.

The third question is addressed in chapteby investigating the effects of inertia on a
spheroid sedimenting in a simple shear flow using a recipribemrem formulation. The
combined effect of the torque due to sedimentation, anddbhatto inertial forces are ana-
lyzed therein, for three canonical cases, where the sediingeforce is aligned with any of
the gradient, vorticity and flow axes of the simple shear flmterestingly, depending on the
non-dimensional parametBey/Re the torque due to sedimentation may result in the emer-
gence of a repeller in the orientation space, in cases where twere no repellers in the limit
of Re,eg/Re= 0. The final question is addressed in chaptevhere an investigation is carried
out to understand the effect of inertia on the time periodtdtton of a spheroid in a simple
shear flow. As mentioned in chaptkersimulations have observed that in the tumbling and the
spinning orbits, the effect of fluid inertia is to increase thme period from its leading order
value, and that of particle inertia is to decrease it. It isvahin chapteb that in these orbits,
the ORe and OEGt) angular velocities calculated in chap&rdo not alter the time period
from its leading order value. The next correction due toiparinertia comes at Xf), and
the calculation of this is straightforward due to the regukzure of the problem. On account
of being a singular problem , the correction due to fluid iisecbmes at GRe¥/2), and from
the outer regionl( >> Re 1/2). A Fourier space based formulation is used to calculate the
correction. The corrections to the time period aB8) and ORE”?2) are calculated and the
qualitative change in time period predicted by the anajysisonsistent with simulations. It
is important to note that for the case of a neutrally buoyahtsoid the correction comes at
O(R€¥/2) and the effect of fluid inertia is therefore dominant.

Several new questions have emerged from this thesis andvarelzelow.

In chapter2, the solution to the Stokes equations around a spheroidhriplgishear flow,
is presented in terms of a vector spheroidal harmonics fiisma This formalism, together
with addition theorems, readily generalizes to the casendfl-dody problem, and is thus a
powerful one, and can be extended to problems of a greateplezity. As mentioned in
chapter3, in an experiment with an inertial suspension of spherdiggrodynamic interac-
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tion might be the easiest accessible orientation decoioelanechanism. If one could solve
the two body problem for a spheroid in a shear flow, the resaltsbe used to understand the
combined effect of inertia and hydrodynamic interactiord the resulting phase diagram may
be different from that presented in chapddor the Brownian motion. More importantly in an
experiment, it will be easier to access the different regiiithe resulting phase diagram. The
spheroidal harmonics formalism may also be used to undetstee effect of viscoelasticity,
on the orientation dynamics of a spheroid of arbitrary asp®®, rotating in a planar linear
flow. Again in an experiment, it is fairly straightforward tealize the effects of viscoelas-
ticity, and therefore it is important to understand the mia¢ion dynamics of a spheroid in a
viscoelastic fluid. The orientation dynamics of a sphereidimenting in random linear flow
is a question that can be pursued due to its importance inhysagal situations such as the
orientation distribution of ice crystals in clouds, whighturn contributes to the scattering
albedo of the earth-atmospheric system.
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Appendix A

Expressions for the functionsl;’s and J;'s

|y =21 (A.1)
l =271(Keq— 1) (Keq+1) (A.2)
I3 — 2n(2 ((C?+1) (C%Z+1)) 1/2—1> (A.3)
|4 =271(Keq— 1)%(Keq+1) (A.4)

I5+lg = — (4n(2;<eq (3\/ (C2+1) (C2k2y+ 1) —8C2— 6) +AKeqy (G2 + 1) (C2Zy+ 1)

+1/(C2+1) (C2Zy+ 1) +4(4C2+ 1) k3 /(C?+1) (3 + 1)

+Keg (\/((:2 +1) (C2k3,+1) —16(C*+C?) — 2) — 2))
-1

((Kgq— 1)? \/ (C?+1) (CPk3,+ 1)) (A.5)
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J =1(kgq— 1) (Keq+1) 2 (A.6)

Jp = —T(K5y— 1) <—4¢ (C2+1) (C%Z+1) +C*(Keq+1)* + 4) C?(k&q—1) 2 (A7)

J3 = "(Kgq_ 1)(Keq— 1) (Keq+1) (A.8)

Jy=— (k3 1) <8C4K§q+ C? ((Keq—i— 1)4— 8K,§q\/(C2 +1) (C2kZ,+ 1))

—4 (K5t 1) <\/ (C?+1) (C%k3y+1) — 1)) C2(kZ-1)"° (A.9)

Note that onlyls + lg matters since=P(&,A) = F2(£0,A) (see 2.82) and F/ (%) =
Fe (%) (see2.99.



Appendix B

The C — 1 coordiante system

The details of thé€C, 1) coordinate system are given below. The orbital coordin@es are
tand; (k2,sir? ¢ +cos ¢;)Y/2

related to spherical coordinate anglégandg;, asC = and tarr =

Keq

1/(Kegtang;). The unit vectorsC and T are given by /\ | and 2 /\ | respectlvely,
wheref is the unit radial vector in spherical coordlnate&(smej COS, 1’ +S|n9] sing; 1)
cosb;1,). The metric factoréic andh; are given by| | and|0’| respectively. Slmpllfylng

one gets:

C = cosf) cosg; 1}, + cosd; sing; 1|, — sin;1, = B, (B.1)
95 - 99 sine, ~
1= - ot - 6+ ;T ] > ?;, (B.2)
26, 00\ i 2 0. 926 99\ cirR B;
\/<d—r’) + (0—T‘> sin? 6 \/<d—r‘) + <0—T‘> SiN? 6
e =22, (8.3)

_ (98N (9@ o
hw(ﬁ) (%2 s, .

where éj and (ﬁj =—sin(¢;) 1+ cog @)L are the polar and azimuthal unit vectors in
spherical coordinate system, anik tangent to a Jeffery orbit. THE, 1) is a non-orthogonal
coordinate system and the angt¢petween the unit vectos andt is given by:

00
cosar = ot . (B.5)

V() () s

The can then be written as casd + sina ;.
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The divergence operator in ti€, T) coordinate system is given by:

1o

o hchry sina 0t

! 9 (hrsinaf.é) + (hesina f.7). (B.6)

~ hehy sina aC

The gradient operator in tH€, T) coordinate system is given by:

Df:< 1 ﬂ_ cota ﬂ)é-i—( 1 ﬂ_ cota ﬂ)f (B.7)



Appendix C

The integrals in (5.113

The 4-dimensional and 5-dimensional integrals for the $guroportional tmf(i:‘O’,‘tcos’,‘tsin’),
Oé' (i='0’,'tcos’,‘tsin’) and the 4-dimensional integral fafré' (‘tcos’,'tsin’) in (5.113 are given
below in the spherical coordinate system.

The integral proportional tu;0 is written using $.101) and 6.67),

/( — 42 050(K) 1 TIMD gk = — /2"/ / 4n2{kz{I28k3212(142rKK22)2

iB]_k]_(kz—Zk%) (1—K4) k252-|—2k1k28Q (k,)
2k4 1T 2K? k2 2
® 41 KPstkikos? K
/ K2e (st )dkdssineded(p. (C.1)
0

The integral proportional tu;0 Is written using $.107) and 6.67):

I
Q(K)} /O kze*‘m2 k23+k1k232+13)dkdssineded(p— /O o /0 /0 ) /0 "4 12

iB1kikoks (1 — K4) 2k1ks K2 + k%S/2 + 2k1kf28, 0 K
K 2K2 k2 k2 Q2 (k")

o0 2 ks 2 s 02, 3
412 [ K2stkqkoS?+L— | —4m? | K28 +kq K2+ -1
e e

0

k’dk dsd§sin6dode. (C.2)
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The integral proportional ta; *®is written using §.109 and &.67):

e YR N

IBl(k2k4727kl)k2<l;LK’;) } (@K COS(Z%S)_QfRe(k’)sin(ZwQS))}

«© 5 —4n’2<k28+k1k2$2+$> . 21 (T oo oo 2
/ i2k’e dkdssu@dedcp+/ / / / am’k {
0 0 0

4_1)iBsky iBy(k?®—2k2)ky (1+K2)? 2k? .
o e+ e P ] (1T ) (B coszaa(s )

12 22 / © 272 K2stkikos? k23
_ QR sin(2ay(s+ €))) (k —i—kls’k/;-Zklst’)} /0 5 (W tales+ )

2
o <k’zs+k1k’zsz+@)
i2e

k’dkd4dssin6dode. (C.3)

The integral proportional ta,*“°is written using 6.102 and 6.67):

frates=wnrroa [ ['[[ar (e[ 200

iB1ky (k% —2k3) (1 + k2s? + 2k k i
— 1§k4n DK ]( S ZS) (QB(K) cos2ays)

© _ 2 ﬁ
QZRe(k') Sin(ngS))}/ %6 4n2(k Stkikos?+ -1 )
0

k’dk dssin@dode. (C.4)
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The integral proportional ta;, °®is written using §.108 and &.69:

Y

2
—47P2 <k st+kqkos?+ @)
e

(Q4 (K') cog2ays) — QFRE(K) sin(2auys) }/ i2 k>dkds

sin6dOdg — /Zn/ / / {4n2k2{ 'Blk1k2k3(1;rK’;) } (lezks)

(|24 ) (k) coszan(s+9) — OF T sinzan(s-+) |
(C.5)
/ I (esties+ 57 26 " <k/2s+klklzsz+§) K2dkdddssin6dedg.  (C.6)
0
The integral proportional tu{t‘S " is written using 5.109 and 6.67):
/(_4n2k20{tsin(k> 1 - TLWMb) gl — _/02"/0"/0004“2 {kz |:iBl(k2 ;klﬁ:r k3)kq
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2m B1( k2 k2k 241
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The integral proportional tu;t‘s'n is written using $.102 and 6.67):

/< 4R G5O (K) 1, - TY™)dk = — /2"/ / 4n2{k2[ <K —i—l) iBlkz(kZZJII;%—kg)

2 2 i
<k + kls; s Zklkzs) (QS74(K') cos(2ays) + Q3 (K') sin(2ays)) }

o a2 (Kes gl
/ i2e (1eotiast )kzdkdssinededgo. (C.8)
0

The integral proportional o, " is written using §.108 and &.67):
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