
Lattice Differential Operators for Computational

Physics

A Thesis

Submitted for the Degree of

Master of Science (Engineering)

by

Rashmi Ramaadugu

Engineering Mechanics Unit
Jawaharlal Nehru Centre for Advanced Scientific Research

(A Deemed University)
Bangalore – 560 064

JANUARY 2014





To my father Late Sri. R. Someswar Rao





DECLARATION

I hereby declare that the matter embodied in the thesis entitled “Lattice Differential

Operators for Computational Physics” is the result of investigations carried out by me as

a student of the Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific

Research, Bangalore, India under the supervision of Dr. Santosh Ansumali and that it has

not been submitted elsewhere for the award of any degree or diploma.

In keeping with the general practice in reporting scientific observations, due acknowledgment

has been made whenever the work described is based on the findings of other investigators.

Rashmi Ramaadugu





CERTIFICATE

I hereby certify that the matter embodied in this thesis entitled “Lattice Differential Op-

erators for Computational Physics” has been carried out by Mrs. Rashmi Ramaadugu

as a student of the Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Sci-

entific Research, Bangalore, India under my supervision and that it has not been submitted

elsewhere for the award of any degree or diploma.

Dr. Santosh Ansumali

(Research Supervisor)





Acknowledgements

I cherish the moments I spent in EMU throughout my life. I would like to first acknowledge

my gratitude to my advisor Dr. Santosh Ansumali for his constant support, motivation and

opportunities to work on various areas. I thank my collaborators Prof. Sauro Succi, Prof.

Ronojoy Adhikari and Dr. Sumesh Thampi for their guidance and inspiration. I thank Sumesh

for answering all my queries patiently. I thank Prof. KR Sreenivas for teaching Heat Transfer

and giving me opportunity to setup and experiment on ”Tears of Wine”. I thank Prof. Ganesh

Subramaniam for teaching Fluid Mechanics. I thank Prof. Rama Govindarajan for teaching

Mathematical methods and inspirational lectures. I thank Prof. Mehboob Alam for teaching

Thermodynamics and Brownian Motion. I thank Prof. V. Kumaran for teaching Physics of

fluids and Prof Umesh Waghmare for his motivation.

It was fun working with my lab mates Chakradhar, Manjusha, Shivani, Siddarth, Reddy,

Vicky, Shajahan where I got relieved of the stress. I thank Deepthi for the combined studies

and motivation during hard times. I thank Ponnu for mentoring me. I thank my batchmates

Deepak, Kanwar, Saikat, Ramakrishna for all their help and fun we had together after exams.

I thank Shasank, Vaibhav and Mamtha for helping me in ”Tears of Wine” experiment. I thank

all the EMU mates Jose, Prashant, Rajesh, Sankalp, Navneet, Sunil, Saikishan, Aarti, Croor,

Reddy. Jr for all their help.

I thank my parents (Late. R. Someswar Rao and R. Saraswathi) and sister (Dr. Sneha

Lakshmi) for motivating me from my childhood. I thank my husband Anil for all the co-

operation. I thank my beloved kids (Aarush and Ayanesh) for their love. I thank the admin

staff Sukanya, Princy, Vijaya Lakshmi, Gayathri for making my stay at EMU a pleasant one.





Abstract

Differential operators such as gradient, curl, laplacian and divergence used in vector algebra

follow certain identities and symmetries, which often is absent in their discrete counterpart.

For example, the laplacian operator is rotationaly symmetric. The aim of the present work is

to present a general procedure to derive second order accurate discrete operators, which are

isotropic to the leading order. Furthermore, by taking advantage of isotropic nature of leading

order error in discrete operator, a recursive technique is developed to increase the order of

accuracy of the operator.

In order to derive discrete operators with necessary isotropy, general discrete operators on

arbitrary space-filling lattice are considered. It has been shown that the problem of preserving

isotropy of the continuous operator in their discrete counterpart can be mapped to problem of

finding discrete analog of Maxwell-Boltzmann distribution. This information is used to find a

set of discrete operators which are isotropic to the leading orders. Furthermore, it is shown that

widely used concept of staggered grid can be changed to replica grid and combined with current

procedure to find highly accurate discrete operators.

In order to illustrate the power of current technique various applications are considered. In

particular, as a first example current technique is applied to wave equation and is contrasted

with standard finite difference methods. As electrodynamics based on current formulation of

solving wave equations, an isotropic extension of Yee method of solving Maxwell equation is

constructed. Finally, an isotropic version of the standard Maccormack method is discussed.

vii
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Chapter 1

Introduction

Introduction

Lower order finite difference methods(LeVeque 2007; Chung 2010) remain one of the best option

for discretizing the differential operators because of their ease of implemenation for complex

geometries. But the accuracy of these lower order methods is very poor compared to the spectral

methods(Trefethen 1996; Canuto et al. 2007). Accuracy of the finite difference schemes can be

improved by increasing the stencil size. In general, all the finite difference are formulated for

one dimension and the same is extended to the multi-dimensions(Lele 1992; Tam & Webb 1993).

By doing so, the operator is restrained to principal directions only and all the other grid points

are neglected. This leads to loss of isotropy, which is an inherent property of continuum space.

This inabliity of the operators may reflect in the numerical simulations of the physical problems.

It is therefore desirable that discrete versions retain all the symmetries of their continuum

counterparts. This issue was addressed previously by many via mimetic discretizations(Bochev

& Hyman 2006; Hyman & Shashkov 1999), compact discretizations(Lele 1992; Kim & Lee 1996)

and dispersion preserving discretizations(Cheong & Lee 2001; Zhuang & Chen 1998; Tam &

Webb 1993). With specific regard to isotropy there are few works in the past(Patra & Karttunen

2006; Kumar 2004; Thampi et al. 2012) but they are restrained to the isotropy of the laplacian

operator only (Thampi et al. 2012).

In this thesis, we derived general discrete opeartors from a generating function which enables

the formulation of the discrete operators such as curl, divergence, gradient and laplacian.The

isotropy of these operators is ensured by taking the constraints analogous to finding the dis-

crete velocity sets and their associated Maxwell-Boltzmann equillibrium distributions from the

lattice kinetic theory.A recursive technique to improve the order of accuarcy is discussed. We

then generalize the concept of staggered grid to that of replica grid, where multiple copies of

space filling lattices are introduced simultanously. These grids are obtained via translation of

original grid by fixed amount and unlike staggered grid formulations, all variables are kept on

all grids. These operators are used on both the single grid and replica grid and the various

Time-dependent linear partial differential equation (hereafter PDE) such as advection, diffusion

and wave equations are compared with the standard central difference operators. The isotropic

discretization of the Maxwell equations is done using the replica schemes and compared with

the standard yee scheme(Yee 1966).

The organization of the thesis is as follows:

• Chapter. 2: The formulation of general discrete operator from a generating function

is discussed. Further recursive technique used to develop fourth order scheme and the

concept of replica grid is introduced.

1



2 Chapter 1. Introduction

• Chapter. 3: The discrete operators are applied to obtain numerical schemes for various

PDEs such as the advection, diffusion, wave and Maxwell equations. The consequence of

having discrete isotropy is analysed via dispersion relation.

• Chapter. 4: A brief summary and conclusions for the present thesis is given in this

chapter.



Chapter 2

Lattice Differential Operators

2.1 Introduction

Discrete operations(Taflove & Hagness 2000; Laney 1998) are generally restrained to the prin-

cipal directions of the lattice (coordinate directions on a rectangular grid), often neglecting the

grid points along other directions (Alford et al. 1974). This leads to a loss of information about

phase which deteriorates the accuracy of the discrete operation, isotropy in the first place. This

inability to perform discrete operations satisfying the inherent isotropy of continuum space may

reflect severely on numerical simulations of physical problems. It is therefore desirable to develop

discrete operators which retain as many symmetries as possible of their continuum counterparts.

Furthermore, a major disadvantage of the typical higher order finite difference approaches is

wider stencil sizes as the order of the approximation is increased. These large stencils tends to

be cumbersome near the edge of the domain where no data is available to perform the differenc-

ing. In last few decade, finite differences with narrower stencil and higher order accuracies are

obtained via implicit differencing schemes Lele (1992). These implicit difference schemes rely

on Taylor series representation and typically they are formulated in one dimensional sense only.

In this chapter, we show that the problem of finding discrete operators which respect isotropy

and symmetries of the continuous operator is analogous to finding discrete velocity models for

which lower order moments of discrete equilibrium matches with that of Maxwell-Boltzmann

distribution. We also show that compact finite difference schemes can be formulated directly in

multidimensional sense, provided the leading order error in discrete operators are isotropic. We

also suggest an explicit formulation which is computationally more advantageous than implicit

form.

Finally, we generalize the concept of staggered grid to that of replica grid, where multiple

copies of space filling lattices are introduced simultaneously. These grids are obtained via trans-

lation of original grid by fixed amount and unlike staggered grid formulations, all variables are

kept on all grids. We show that such replica grids coupled with isotropic operators provide an

efficient alternate to existing finite difference methods.

The chapter is organized as follows: Sec. 2.2 and 2.3, briefly discusses the pertinent symmetry

and isotropy of differential operators and evaluates a few existing schemes from the point of

view of the rotational invariance. In Sec. 2.4, the formulation of general operator on a lattice is

discussed along with the review of the constraints from the kinetic theory. Sec. 2.5, discusses the

formulation of the operator using a generating function and in Sec. 2.6, the refinement for the

proposed scheme to get a fourth order scheme is discussed. Sec. 2.7, discusses the isotropy using

green’s function and fourier analysis and validation of the proposed schemes with testcases.

3



4 Chapter 2. Lattice Differential Operators

2.2 Discrete Operator and Symmetry

In this section, we highlight how some of the basic continuous symmetry get violated in discrete

case. In order to illustrate this aspect, we consider the laplacian as an example where loss of

isotropy in discrete case is quite apparent.

For example, if we consider a rotation of coordinate axis x′i = Aikxk, characterized by an

orthogonal n× n matrix A, the gradient operator transforms as:

∂

∂xi
= Aik

∂

∂x′k
. (2.1)

It can be seen from the relation

∇2
i = AijAik

∂2

∂x′j∂x
′
k

= ∇′ 2
i (2.2)

that such a transformation, leaves laplacian invariant. This invariance is more explicit in the

fourier domain, where we can see that the fourier transform of the laplacian L(k) = −k2, is
only a function of the magnitude of the wavenumber. A consequence of this isotropy is that the

laplacian of a radial function remains radial. For example, in 2-Dimension, the Green function

for laplace equation is f(x, y) = (log|r|)/(2π), for which

∇2f(r) = δ(0). (2.3)

It is desirable that when laplace operator is discretized, this isotropy of the laplace operator is

retained. To be more precise, one would like to have fourier transform of the discrete laplacian

L̃(k) is such that the errorL̃(k)−L(k) is only a function of k at least for the leading order term.

At this point, we remind the reader that one of the simplest approximation to the laplacian,

often used in numerical simulation is discrete laplacian obtained via central difference operator

for derivative defined as

d2f

dx2
≈ f(x+∆x) + f(x−∆x)− 2f(x)

∆x2
. (2.4)

As an example, the discrete laplacian ∇̃2 of a scalar field f(x, y) using standard central difference

of second order in 2D at (i, j) point in space is often given as

∇̃2fi,j =
fi+1,j − 2fi,j + fi−1,j

c2
+
fi,j+1 − 2fi,j + fi,j−1

c2
, (2.5)

where c is the grid spacing and fi,j is the value of f at (i, j) point in space (See Fig. (2.1)).

It can be seen via Taylor series expansion that discrete laplacian approximate the continuous

laplacian as

∇̃2 ≈ ∇2 +
c2

12

(
∂4

∂x4
+

∂4

∂y4

)
. (2.6)

In this expression, it is quite evident that the leading order error is anisotropic. This is also



2.3 Generators for Differential Operators 5

evident in the fourier space where we see that the fourier transform of the discrete laplacian

L̃(k) = L(k) + c2

12
k4
(
1− 2 cos2 θ sin2 θ

)
, (2.7)

has angular dependence.

Furthermore, we can also note that the radial nature of the model function f(x, y) =

ln(r), r =
√
x2 + y2 is not preserved by discrete laplacian of it

∇̃2f =
c2

r4
(
7− 16 cos2 θ sin2 θ

)
. (2.8)

It is evident from the Fig. 2.2 and Fig. 2.3, that the error in case of the central difference

laplacian is not isotropic. The error is not the same at all angles which shows the angular

dependence of the central difference operator.

It can therefore be concluded that the conventional method of constructing the laplacian via

taking central difference operator in each of the dimension separetely is not isotropic.

2.3 Generators for Differential Operators

The goal of this thesis is to develop a discrete analog of operators defined in vector analysis

on a Cartesian grid. Before doing so, in this section we briefly remind the reader about basic

definitions of vector operators and associated structural properties, which one would like to

preserve on the grid. A few important operators, which we shall define on the grid, are gradient,

divergence, curl and laplacian operators. In the following, we shall show that all of the above

mentioned operators appears naturally from a generator. As an example, for any scalar function

ψ(x), an infinitely small parallel displacement over a distance dxi acts as the generator of the

gradient operator. This can be seen from the relation

ψ(x + dx) ≈ ψ(x) + dxi∇iψ, (2.9)

which leads to a generic definition of the gradient operator independent of the co-ordinate system

(Griffiths & College 1999)Similarly, a generic definition of divergence operator acting on a vector

field u is obtained via Guass theorem as

∫

v
∇∇∇ · udτ =

∮

s
u · da, (2.10)

∮

s
(∇∇∇× u) · da =

∮
u · dl. (2.11)

where da, dl and dτ are infinitely small area, length and volume elements respectively . Typi-

cally, one start with these definitions for creating discrete operators Hyman & Shashkov (1999).

However, in this thesis we shall take an alternate route, where we convert a given differential

operator into an integral operator. For example, we can introduce integral form for gradient as

∇iψ(r) =

∫
dxδ(x − r),

∂ψ(x)

∂xi
, (2.12)
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fi−1,j

fi,j+1

fi+1,j

fi,j−1

fi,j

Figure 2.1: 2D stencil for Central Difference(CD2) operator.

Figure 2.2: Polar plot of Eq. 2.7. Here the radius of the plot represents the normalized error

(i.e) L̃(k)−L(k)
k4c2

.
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Figure 2.3: Polar plot of Eq. 2.8. Here the radius of the plot represents the normalized error.

which upon integrating by parts can be re-written as:

∇iψ(r) = −
∫
dxψ(x)

∂δ(x − r)

∂xi
. (2.13)

Via this alternate representation, we have achieved our goal of representing differential operators

to an integral operator. At this point, we would like to represent it in a form convenient for

numerical evaluation on a grid. If we consider, the sequence of family of Guassian functions in

D-dimension

δǫ(r) =

(
1√
2πǫ

)D

exp

(
−y

2

2ǫ

)
, (2.14)

the Dirac delta function emerges as the limit limǫ→0+ δǫ(r). With this simplification, Eq. 2.13

can be rearranged to write the gradient operator as

∇iψ(r) ≡
[(

1√
2πǫ

)D ∫
dy exp

(
−y

2

2ǫ

)
yi
ǫ
Sy

]
ψ(r), (2.15)

where Sy defined as

Syψ(r) = ψ(y + r), (2.16)

is the standard shift operator emerging due to space translation. A very similar analysis on

divergence and curl operator shows that

∇iui(r) ≡
[(

1√
2πǫ

)D ∫
dy exp

(
−y

2

2ǫ

)
yi
ǫ
Sy

]
ui(r), (2.17)

∇∇∇×u(r) ≡
[(

1√
2πǫ

)D ∫
dy exp

(
−y

2

2ǫ

)
1

ǫ
y×Sy

]
u(r). (2.18)

Any second order operators such as laplacian can always be constructed via appropriate first

order operators (for example ∇2 ≡ ∇i∇i). However, it is often convenient to construct the
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laplacian directly. Thus, following route of replacing differential operator with that of integral

operators, laplacian can always be written as

∇2u(r) ≡
[(

1√
2πǫ

)D ∫
dy exp

(
−y

2

2ǫ

) (
y2i
ǫ2

− 2

)
×Sy

]
u(r). (2.19)

It should be noted that the form of these operators Eq.2.15 are now quite convienent for nu-

merical integration via Gauss-Hermite quadrature. Furthermore, all of these operators can be

derived via a single generator

G ≡
(

1√
2πǫ

)D ∫
dy exp

(
−y

2

2ǫ

)
exp (yi si), (2.20)

by taking appropriate derivative with respect to si ≡ ∇i. For later analysis, it would be

convenient to highlight, the differential form of the operator obtained via Guassian integration,

as

G [ψ(r)] =

(
1 +

ǫ

2
∇2 +

ǫ2

8
∇4 + · · ·

)
ψ(r), (2.21)

which shows that operator G is isotropic. Later, we shall use this expression to get discrete

version of the operator.

2.4 General Operator on a Lattice

In this section, we shall construct a general procedure to derive operators on a lattice, which can

preserve isotropy to the desired accuracy. We remind the reader that a lattice may be viewed

as a regular tiling of a space by a primitive cell. Thus, any given lattice can be parameterized

by the set of link vectors ei ∈ C, where ei denotes the translation of unit cellwhich will map the

lattice onto itself.

Notice that the discrete generator is an operator and only its action of a function is integral,

thus a straight forward application of Guassian quadrature cannot be done. We begin by noting

that on a lattice, a Gaussian quadrature type formulation can be used to approximate the

generator in Eq. 2.20 as

G̃ [φ(r)] ≡
∑

i

wi exp(yisi)φ(r) =
∑

i

wiφ(r+ ei), (2.22)

where wi denotes weights associated with each of the connector direction. The action of this

discrete generator on any function ψ(r) is:

G̃ [ψ(r)] =

[
∑

i

wi +

(
∑

i

wieiα

)
∂

∂rα
+

∑
iwieiαeiβ

2

∂2

∂rα∂rβ

+

∑
iwieiαeiβeiγ

6

∂3

∂rα∂rβ∂rγ
+

1

24

(
∑

i

wieiαeiβeiγeiκ

)
∂4

∂rα∂rβ∂rγ∂rκ
+ · · ·

]
ψ(r),

(2.23)

Here, we would follow a procedure similar to quadrature derivation (Arfken et al. 2005),
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where we require that discrete and continuous operator Eq. 2.23 and Eq. 2.21 leads to same

action on polynomials of increasing order. Following (Yudistiawan et al. 2010) we firsly link

accuracy requirement with the closure properties of the chosen lattice as follows:

• Normalization Condition: We would like that the action of discrete generator and

continuous generator are identical for a constant scalar field ψ(r) = 1. Thus, using Eq.

2.23 and Eq. 2.21, we have the normalization condition:

∑

i

wi = 1. (2.24)

• Closure under Inversion: At this point, if we invoke the argument of spatial isotropy

and demand that weight w(ei) is a function of magnitude of e only i.e., w(ei) = w(e2i ),

the condition that discrete operator is exact for the linear polynomial ψ(r) = aαrα using

Eq. 2.23 and Eq. 2.21, reduces to

∑

i

wieiα = 0. (2.25)

This implies that for any connectivity vector ei is an element of the set C then the inverse

of the it also exists in the same set (i.e),

ei ∈ C ⇐⇒ −ei ∈ C. (2.26)

Using these conditions, Eq. 2.23, simplifies as

G̃ [ψ(r)] = G [ψ(r)] +

[
1

2

(
∑

i

wieiαeiβ − ǫδαβ

)
∂2

∂rα∂rβ

+
1

24

(
∑

i

wieiαeiβeiγeiκ − ǫ2∆αβγθ

)
∂4

∂rα∂rβ∂rγ∂rκ

]
ψ(r),

(2.27)

where ∆αβγθ = δαβδγθ + δαγδβθ + δαθδβγ and we have used the fact that closure under

inversion also imply

∑

i

wieiαeiβeiγ = 0. (2.28)

• Closure under Reflection: Next, we would like the discrete operator Eq. 2.27 to be

exact for a general quadratic polynomials aαβrαrβ. Then, we have from Eq. 2.21 and Eq.

2.27 that

∑

i

wieiαeiβ = ǫδαβ. (2.29)

This implies that for a connectivity vector ei is an element of set C, all possible reflections
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ei

−ei

Figure 2.4: Illustration of closure under inversion. Here ei represents the connectivity vector
and −ei represents the inverse of the original connectivity vector.

eri ei

Figure 2.5: Illustration of closure under reflection. Here ei represents the connectivity vector
and eri represents the reflection of the original connectivity vector.

of it (i.e) (±eix,±eiy, · · · ) also exists in the same set C , (i.e),

ei ∈ C ⇐⇒ (±eix,±eiy, · · · ) ∈ C (2.30)

which is shown in the Fig. 2.5.

This condition also implies in 3-Dimension that:

∑

i

wie
2m
ix =

∑

i

wie
2m
iy =

∑

i

wie
2m
iz , (2.31)

for any integer m.

• Fourth Order Isotropy: A similar calulation for arbitrary fourth order polynomial will

imply that if we can ensure that

∑

i

wieiαeiβeiγeiθ = ǫ2∆αβγθ, (2.32)

then continuous and discrete operators will match for any fourth order polynomial.

In Fig. 2.6, three space filling lattices which wil satisfy the above mentioned constraints of

closure under inversion and reflection in 2-Dimension is shown. The second lattice is obtained

from the first one via a rotation of π/4. While first and third space filling lattice (Fig. (a) and

Fig. 2.6) is used in central difference operator, either third lattice or a union of the first two

lattices is commonly used in the lattice Boltzmann approach Succi (2001).



2.4 General Operator on a Lattice 11

2.4.1 Search for Optimal Grid and Associated Weights

As mentioned above, if discrete generator is fourth order accurate it has to satify a number of

constraints given by Eqs.2.25,2.29,2.28,2.32. Using closure under inversion and reflection, these

constraints simplifies to:

∑

i

wi = 1,

∑

i

wic
2
ix = ǫ,

∑

i

wic
4
ix = 3 ǫ2,

∑

i

wic
2
ix c

2
iy = ǫ2.

(2.33)

It is easy to check in general that it is not possible to satisfy Eq.2.33 with a basic lattices alone

Thus, in the lattice Boltzmann approach, where exactly same conditions is imposed on the lattice

in the velocity space, a concept of union lattice is introduced. In this approach, two seperate

lattices are superimposed on each other in such a way that Eq.2.33 is satisfied while space-filling

property is preserved for numerical convenience as shown in Fig. 2.7. Hereafter, we borrow LB

terminology of denoting n point stencil scheme in m dimension as DnQm lattice and denoting

elementary lattices where on a given lattice c2i = constant as energy shells (Yudistiawan et al.

2010; Chikatamarla & Karlin 2009).

As for example, if we take a union of square lattice with spacing ∆x = ∆y = c and its

rotation by π/4, we have a set of four equation for w0, w1, w2 and ǫ:

w0 + 4w1 + 4w2 = 1,

2w1 + 4w2 =
ǫ

c2
,

2w1 + 4w2 =
3 ǫ2

c4
,

4w2 =
ǫ2

c4
.

(2.34)

This set of equation can be inverted to obtain the weights and spacing c for D2Q9 lattice as:

w0 =
16

36
, w1 =

4

36
, w2 =

1

36
, ǫ =

c2

3
. (2.35)

The same process can be repeated in 3−D and the weights of the standard models (provide

figure for different 3-D lattices) are given in the Table. 2.1 Thampi et al. (2012); Ramadugu

et al. (2013).

There is no fundamental reason that a union stencil should only be constructed by superim-

posing two elementary lattices on same grid with same spacing, but the only constraint which

should be satisfied is that the union of the two elementary lattice should also form a regular

tiling of the space. As an example in 2D, if we take a lattice constructed by elementary lattices

shown in Fig. 2.6 (a) and introduce a space translation by amount (∆x/2,∆x/2), we have a

composite space filling lattice structure as shown in Fig. 2.8. Notice that while original lattice
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ci
ci

(a) (b)

ci

(c)

Figure 2.6: 2D grid with all possible connectivity vectors ei.

Figure 2.7: D2Q9 lattice model on a simple 2D grid.

N , (for 2D) D2Q9 D3Q15 D3Q19 D3Q27

0 1 (1) 4/9 2/9 1/3 8/27

NN 6 (4) 1/9 1/9 1/18 2/27

NNN 12 (4) 1/36 0 1/36 1/54

NNNN 8 (0) 0 1/72 0 1/216

Table 2.1: Popular DnQm models and their weights along with the values of N.
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Figure 2.8: As shown in left figure we have a replica structure introduced by a space translation
of original lattice by amount (∆x/2,∆y/2).Figure on right shows composite lattice created by
such replica structure. Here the stencil set is union of two energy shells with the magnitude in
the energy shell in the ratio of 1: 2m2 with m = 1/2

will map on itself via space translation of (∆x, 0), (0,∆x). In current replica structure, we have

introduced translation invariance with respect to (∆x/2,∆x/2) also. In this case of replica lat-

tice, the stencil set is union of two energy shells with the magnitude in the energy shell in the

ratio of 1: 2m2 with m = 1/2. Using Eq.2.33, we can search for weights and unit cell spacing

c for such arbitrary displaced lattice parameterized in term of displacement m. Notice that

m = 1/2 correspond to present case, while m = 1 represent standard D2Q9 model used in LB.

For such a set Eq.2.33 simplifies as:

w0 + 4w1 + 4w2 = 1,

2w1 + 4m2w2 =
ǫ

c2
,

2w1 + 4w2m
4 =

3 ǫ2

c4
,

4w2m
4 =

ǫ2

c4
,

(2.36)

which can be inverted to obtain the weights and ǫ for this stencil as:

w0 =
4ǫ2

c4m2
, w1 =

ǫ2

c4
, w2 =

ǫ2

4c4m4
, ǫ =

c2m2

2m2 + 1
. (2.37)

If m = 1 in the Eq. 2.37, the weights correspond to the standard D2Q9 model and the

weights corresponding to m = 1
2 in Eq. 2.37 are named as the replica D2Q9 weights.

In Table. 2.2, m = 1, represents the weights for the standard D2Q9 model, and m = 1/2,

represents weights for the replica D2Q9 model. These models ensure isotropy upto fourth order.

Later, we shall show that replica structure is superior for numerical implementations.



14 Chapter 2. Lattice Differential Operators

2.5 Operator Formulation via Generating Function

The discrete generator contains all the information about discrete version of differential oper-

ators. In this section, we show that any desired discrete operator can be formed by taking

appropriate derivative of the generating function given by the Eq. 2.22. As for example, the

discrete gradient operator acting on a scalar field ψ(r) can be obtained via relation:

∇̃̃∇̃∇ [ψ(r)] =
1

ǫ

dG̃

dsi
[ψ(r)] ≡ 1

ǫ

∑

i

wieiψ(r+ ei), (2.38)

which upon Taylor-series expansion, on the set of stencils with above mention desired properties

of closure the, yields

∇̃̃∇̃∇ψ(r) = (1 +
ǫ

2
∇2)∇ψ(r) + · · · , (2.39)

From this expression, we can see that the gradient operator is recovered with isotropic error of

O(ǫ) (Ramadugu et al. 2013). Similarly, we can show that(Ramadugu et al. 2013)

∇̃αFα =
1

ǫ

dG̃

dsα
Fα(r) =

1

ǫ

∑

i

wieiαFα(r+ ei), (2.40)

which approximates the continuous operator with an error of O(ǫ) as

∇̃αFα =
(
1 +

ǫ

2
∇2
)
∇αFα. (2.41)

Similarly, the discrete curl operator on vector field φ(r)φ(r)φ(r) defined on the grid is:

∇̃̃∇̃∇ × φφφ =
1

ǫ

dG̃

ds
× φφφ(r) =

1

ǫ

N∑

i=1

wiei × φφφ(r+ ei), (2.42)

which approximates the continuous operator with an error of O(ǫ) as

∇̃̃∇̃∇ ×φφφ =
(
1 +

ǫ

2
∇2
)
∇∇∇× φφφ. (2.43)

Finally, from the basic definition of the operator (Eq.2.21), it is evident that the generator

can be used to obtain discrete laplacian as

∇̃2ψ(r) =
2

ǫ

∑

i

wi [ψ(r+ ei)− ψ(r)] , (2.44)

Using Eq.2.21,we see that

∇̃2ψ(r) =
(
1 +

ǫ

4
∇2
)
∇2ψ(r). (2.45)

which is an O(ǫ) representation for laplacian (Ramadugu et al. 2013; Thampi et al. 2012).
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2.6 Higher Order Operators

In the previous section, we saw that in the present formalism, that for every continuous operator

F , the equivalent discrete counterpart F̃ in an O(ǫ) representation is of the form

F̃ =
(
1 +

aǫ

2
∇2
)
F , (2.46)

where a is a constant and a = 1 for gradient, curl and divergence, a = 1/2 for laplacian.

Following (Lele 1992), this expression can be written as

F̃ =
(
1 +

aǫ

2
∇̃2
)
F , (2.47)

where laplacian is replaced with its discrete representation with O(ǫ) validity. At this point, we

have a compact matrix representation for the discrete operator and one could use methodology

developed in (Lele 1992) to obtained O(ǫ2) representation of the operator. It should be noted

that unlike standard finite difference an isotropic operator has lead to error term, which can be

conveniently inverted almost similar to one dimensional case.

In this thesis, we follow an alternate procedure, where we perform analytical inversion to

obtain O(ǫ2) accurate representation as

F̂ =
(
1− aǫ

2
∇̃2
)
F̂ . (2.48)

Thus, we have a simple procedue where first second order accurate representation is obtained and

then refinement is done via Eq.2.48. This procedure can be thought as optimal generalization

of compact scheme of (Lele 1992). It should be noted that on the isotropic lattices discussed

in the thesis, fourth order operator will not remain isotropic. If we wish to obtain isotropy for

fourth order operator, the discrete generator should be exact for a sixth order polynomials.

2.7 Results

In this section, we shall evaluate the effectiveness of the present isotropic operator and replica

grid. Firstly, the isotropy of the operator is verified by taking the discrete fourier trans-

form(DFT) of any operator F defined as

F(k) =

∑
r exp(−ik · r)F [ψ]∑
r exp(−ik · r)ψ(r) . (2.49)

The DFT of the discrete laplacian can be computed via Eq. 2.46 for the lattice based schemes

as:

∇̃2(k) = −k2
(
1− ǫ

4
k2
)
. (2.50)

In Table: 2.3, discrete laplacian is reported for the standard and replica D2Q9 lattice along

with equivalent expression for central difference operator. It is evident that while D2Q9 model

results in isotropic laplacian, amplitude of the error is more than central difference operator.

We can also see that on the replica lattice both amplitude and phase error are smaller than CD2

operator.
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Similarly, for fourth order laplacians based on standard D2Q9 weights(L4) and replica D2Q9

weights (RL4) schemes fourier transforms are also calculated similarly and the same are plotted

on a polar plot in Fig.2.9. In the plot, the radius is normalized by exact value of the laplacian

(i.e),−k2. It is evident that the same qualitative behaviour exist for fourth order operators too

and replica lattice is superior in all the cases.

In Table2.4, the DFT of the 3D laplacian for both the standard models and replica model is

calculated and contrasted with existing result in the literature. It is evident that replica scheme

is more efficient both in terms of the phase error as well as amplitude error. Furthermore, this

isotropy is achieved with just 15-point stencil, unlike 27 value mentioned in the literature.

2.7.1 Fourier Analysis for Gradient Operator

A similar analysis for the gradient operator shows that

D(k)α = ikα

(
1− ǫ

2
k2 +

ǫ2

8
k4 +O(k6)

)
, (2.51)

which show that the lattice based gradient operators are isotropic. In the small wavelength limit,

the corresponding expressions for different fourth order gradient using standard DnQm models

and the standard second order central difference (CD2) scheme may be written as follows. For

clarity, only one component is shown below.

D(k)DnQm
α = ikα

[
1−

(
k4

36
+

k4α
180

+ a
k2βk

2
γ

36

)
+O(k6)

]
(2.52)

D(k)CD2
α = ikα

[
1− k2α

6
+O(k4)

]
(2.53)

where k = |k| and (α 6= β 6= γ) are the cartesian indices and a = 0 for D2Q9 and D3Q27 models,

a = 1 for D3Q19 and a = 2 for D3Q15. It is evident from the Eq. 2.53, that the central difference

operator is anisotropic even at the second order and from Eq. 2.52, it is evident that all DnQm

models are isotropic at second order but anisotropic at fourth order but, the anisotropy is very

less.

2.7.2 Discrete Operators: Green’s Function For 2-D Laplacian

As a first example, we shall consider the action of discrete laplacian on f(x, y) = (log|r|)/(2π),
the green function for the 2-D laplace equation. In order to show the effectiveness of the current

approach, we calculate the discrete laplacian using isotropic laplacian operator on D2Q9 lattice.

The discrete laplacian accurate upto O(ǫ) is:

∇̃2f =
8c2

r4
. (2.54)

It is evident from this expression and Eq.2.8 that though the error in discrete laplacian obtained

from D2Q9 lattice is isotropic, the absolute magnitude of the error has increased in lattice

formulation. On the other hand, if we use replica stencil the discrete laplacian of the 2-D
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values, m = 1
2 m = 1

w0 4/9 4/9

w1 1/36 1/9

w5 1/9 1/36

ǫ c2/6 c2/3

Table 2.2: Weights and ǫ values for different values of m.

Scheme ∇̃2(k) stencil size

CD2 ∇̃2(k) = −k2(1− k2

12 (1−
sin2(2θ)

2 ) +O(k4)) 5

L2 ∇̃2(k) = −k2(1− k2

12 +O(k4)) 9

RL2 ∇̃2(k) = −k2(1− k2

24 +O(k4)) 9

Table 2.3: Comparision of different 2D Laplacian operator in fourier mode L(k) in low wave
number limit with the other standard Central difference operator.

Scheme L(k) stencil size

(Thampi et al. 2012)(L2D3Q15) L(k) = −k2
(
1− k2

12

)
+O(k6) 15

RL2D3Q15 L(k) = −k2
(
1− k2

24

)
+O(k6) 15

(Kumar 2004) L(k) = −k2
(
1− k2

12

)
+O(k6 27

(Patra & Karttunen 2006) L(k) = −k2
(
1− k2

12

)
+O(k6 27

Table 2.4: Comparision of stencil sizes of different 3D Laplacian operator in fourier mode L(k)
in low wave number limit with the other standard models.
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Figure 2.9: Comparision of DFTs of different 2D laplacian operators on polar plot. These plots
are plotted for varying the number of points per wave length as 2 (Top), 4 (Middle) and 8
(Bottom). Here L2 represents the lattice laplacian of second order , L4 represents the lattice
laplacian of fourth order, CD2 represents the second order central difference, CD 4 represents
fourth order central difference, RL2 represents replica lattice laplacian of second order and RL4
represents replica lattice laplacian of fourth order.
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Figure 2.10: Polar plot of the laplacian of Green’s function for all the second order schemes
shown in Table. 2.5. Here the radius of the plot represents the normalized error.

scheme laplacian of Green’s function

CD2 ∇̃2 = c2

r4

(
7− 16 cos2 θ sin2 θ

)

L2 ∇̃2f = 8c2

r4

RL2 ∇̃2f = 4c2

r4

Table 2.5: Comparision of laplacian of 2D Gaussian using replica D2Q9 lattice laplacian(RL2)
operators and the lattice D2Q9 laplacian operator(L2)(Thampi et al. 2012) with the central
difference laplacian operator

.

Green’s function accurate upto O(ǫ) is:

∇̃2f =
4c2

r4
, (2.55)

thus, we see that unlike standard D2Q9 lattice, current formulation leads to lower error in both

amplitude as well as phase. The discrete laplacian of the Green’s function is summarized in

Table 2.5, where we see that replica lattice is most efficient.

This property is more evident in Fig. 2.10, where polar plot (normalized by r4/c2) of the

discrete laplacian of Green’s function for all the second order schemes is shown. We remind that

ideally laplacian of the chosen function should be zero, thus for any given scheme ideally we

would like the shape to be circular and radius of the circle to be as small as possible.





Chapter 3

Isotropic Discretization of Linear

Partial Differential Equations

3.1 Introduction

A discrete isotropic operators were formulated from a generating function in the previous chap-

ter. Furthermore, a concept of replica grid was introduced where discrete operator with second

as well as fourth order accuracy were developed. In this chapter, we shall apply these operators

to a host of partial differential equations and investigate the efficiency of this new approach.

In particular, examples of linear advection equation, diffusion equation and wave equation is

considered. Such PDE’s have application in various fields such as fluid mechanics, classical

electrodynamics, wave dynamics etc.

We know that even when PDE’s are non dispersive,the discrete model of the same will be

dispersive (Trefethen 1996, 1982) (i.e) the numerical solutions creates spurious dispersion and

because of which the shape of the initial function will not be preserved. Group velocity and

phase velocity are to be studied in order to understand such behavior of the numerical schemes

(Vichnevetsky & Bowles 1982). In this chapter, we shall discuss about the discretization of

PDEs along with the dispersion and thereby the group velocity and phase velocity of the discrete

models.

The organisation of the chapter is as follows: In Sec. 3.2, dispresion relation and the group

and phase velocities of the semi-discretized advection, wave and diffusion equation is discussed.

In Sec. 3.3, isotropic MacCormack method for solving the advection equation is discussed. In

Sec. 3.4, the discretization of the diffusion equation by using CD2, RL2 schemes is discussed.

In Sec. 3.5, the discretization of wave equation using CD2, RL2 and RL4 is discussed. The

dispersion relations and the group and phase velocities of the same are also discussed in the

same section. Sec. 3.6 discusses the discretization of Maxwell equations using Yee scheme, RL2

and RL4 methods along with the dispersion relations.

3.2 Dispersion Relation for Semi-Discrete Approximations

PDEs with constant coeffcients on an unbounded space domain admits plane wave solutions of

the form

u(x, t) = û exp (I (kixi + ωt)), (3.1)

21
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where û is constant amplitude, kkk is the wave number and ω is the frequency. For each value of

vector kkk, PDE imposes a relationship between wavenumber and frequency

ω = ω (kkk) , (3.2)

known as dispersion relationship. In general, for nth order (in time) PDE each wavenumber

kkk correspond to n different frequency. For real wavenumber kkk, the wave decays with time if

Imω > 0 and decays if Imω < 0. For the propogating wave, the phase velocity is defined as the

rate at which the phase of the wave propagates in space and is given by:

cphase =
ω

k
. (3.3)

However, it is often more informative to introduce group velocity, which is defined as the velocity

with which the envelop of wave propagates through the space (Brillouinn 1960) and is given by:

cgroup =
∂ω

∂k
, (3.4)

where ω is the angular velocity of the wave and k is the angular wave number. Though, it is

desirable that when the PDE is discretized, the group and phase velocities should have minimum

possible error, in practice often group velocity at high wave number shows unphysical oscillations.

The dispersion relation for some of important model equations and their semi-discrete ap-

proximations, where spatial derivatives are replaced by second order spatial approximation, are:

• Advection Equation: For the advection equation with velocity vi

ut + vi∂iu = 0, (3.5)

dispersion relation is

ω = −viki, (3.6)

which implies that both group and phase velocity is propagation velocity vi. If we replace

space derivative by central difference we have dispersion relation as

ωCD2 = −1

c

D∑

i=1

vi sin (ki c), (3.7)

where c is the grid spacing. On the other hand, the dispersion relation for the advection

equation in 2D using the replica D2Q9 weights is:

ωRL2 = − 1

3c

[
vx

{
sin (kx c) + 4 sin

(
kx c

2

)
cos

(
ky c

2

)}
+ vy

{
sin (ky c) + 4 sin

(
ky c

2

)
cos

(
kx c

2

)}]
.

(3.8)

The dispersion relation using RL4 scheme is:

ωRL4 =

[
1 +

1

36

{
10− cos(kxc)− cos(kyc)− 8 cos

(
kxc

2

)}]
ωRL2. (3.9)
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Figure 3.1: Isocontours of dispersion relation for advection equation for CD2(Top left),exact(Top
right) and RL2 operator (Bottom).

Dispersion relation for advection equation for continuous and second order discrete ap-

proximations are contrasted in Fig. 3.1 for 2D case. This plot shows that while at low

wave number dispersion relation obtained from CD operator is indeed a good approximate

representation of the continuous one.Fig. 3.2 shows that the RL2 and RL4 operator has

improved accuarcy compared to the CD2 operator.RL4 operator has the best accuarcy of

all.R

In discrete case, group velocity is

cgroup,CD2
j = −vj

kj

k
cos (kj c), (3.10)

while phase velocity is

cphase,CD2
j = − 1

kj c

D∑

i=1

vi sin (ki c), (3.11)

Notice that while phase and group velocity are same at very low wavenumber, their be-

haviour is quite different from each other as well as from exact relation. If the group

velocity and phase velocity of the discretized equation is not same as the exact one the

wave propagates with a different speeds which changes the original characteristics of the

wave(Trefethen 1982, 1996). The group and phase velocities for the semi discrete advection



24 Chapter 3. Isotropic Discretization of Linear Partial Differential Equations

Figure 3.2: Isocontours of error in dispersion relation for advection equation for CD2(Top left),
RL2(Top right) and RL4 operator (Bottom) w.r.t the exact dispersion relation.

equation using RL2 operator are

cgroup,RL2 = − 1

3ck

[
vxkx

{
cos (kx c) + 2kx cos

(
kxc

2

)
cos

(
ky c

2

)
− 2ky sin

(
kxc

2

)
sin

(
kyc

2

)}

+ vyky

{
cos (ky c) + 2ky cos

(
ky c

2

)
cos

(
kx c

2

)
− 2kx sin

(
ky c

2

)
sin

(
kx c

2

)}]

cphase,RL2 = − 1

3ck

[
vx

{
sin (kx c) + 4 sin

(
kx c

2

)
cos

(
ky c

2

)}
+ vy

{
sin (ky c) + 4 sin

(
ky c

2

)
cos

(
kx c

2

)}]

(3.12)

The normalized group and phase velocities for semi discretized advection equation using

CD2 and RL2 operators are reported in Fig. 3.3 and Fig. 3.4 respectively. The group

Figure 3.3: The normalized group velocity for semi discretized advection equation using CD2
and RL2 operator for different propagation angles.
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Figure 3.4: The normalized phase velocity for semi discretized advection equation using CD2
and RL2 operator for different propagation angles.

and phase velocities are dependent on the angle of propagation for CD2 operator but in

the case of the RL2 operator, the group and phase velocities are independent of angle of

propagation.

• Wave Equation: For the wave equation with wave speed cs

utt = c2s ∇2u, (3.13)

dispersion relation is

ω2 = c2s k
2. (3.14)

If we replace space derivative by central difference we have dispersion relation as

(
ωCD2

)2
=

4D

c2

D∑

i=1

sin2
ki c

2
, (3.15)

Similarly, the dispersion relation using the replica operators is

(
ωRL2

)2
=

2

3

(cs
c

)2 [
10− cos(kxc)− cos(kyc)− 8 cos

(
kxc

2

)
cos

(
kyc

2

)]
. (3.16)

The dispersion relation using RL4 scheme is:

ωRL4 =

[
1 +

1

36

{
10− cos(kxc)− cos(kyc)− 8 cos

(
kxc

2

)
cos

(
kyc

2

)}]
ωRL2. (3.17)

Fig. 3.5 contrasts dispersion relation for 2D wave equation for continuous and second

order (in space) discrete approximations. It is evident that the RL2 operator has better

accuracy compared to The CD2 operator. The isocontours of error in dispersion relation

for 2D wave equation using CD2, RL2 and RL4 operators is shown in Fig. 3.6. It is

evident from the figure that RL2 has better accuracy compared to the CD2 operator and

RL4 operator has the best accuracy among the three.
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Figure 3.5: Isocontours of dispersion relation for wave equation for CD2(Top left),exact(Top
right ) and RL2 operator (Bottom).

Figure 3.6: Isocontours of error in dispersion relation for wave equation for CD2(Top left),
RL2(Top right) and RL4 operator (Bottom) w.r.t the exact dispersion relation.
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Figure 3.7: The normalized group velocity for semi discretized wave equation using CD2 and
RL2 operator for different propagation angles.

The group and phase velocities for the semi discretized wave equation using central differ-

ence are as follows:

cgroup,CD2

cs
=

1

2k

∑
i ki sin(kic)√∑
i sin

2(kic/2)
,

cphase,CD2

cs
=

2

ck

√∑

i

sin2(kic/2), (3.18)

while the same obtained via RL2 scheme are:

cgroup,RL2

cs
=

1

3ck

[
sin(kxc)

kx
k

+ sin(kyc)
ky
k

+ 4cos

(
kxc

2

)
sin

(
kyc

2

)
ky
k

+ 4cos

(
kyc

2

)
sin

(
kxc

2

)
kx
k

]
,

cphase,RL2

cs
=

1

ck

√
2

3

[
10 − cos(kxc)− cos(kyc)− 8 cos

(
kxc

2

)
cos

(
kyc

2

)]
.

(3.19)

The phase and group velocities for the semi discretized wave equation using RL2 operator

is plotted against the number of points per wave length for different angles of propagation

and is reported in Fig. 3.7. It is evident from the figure that for different propagation

angles the group and phase velocities are almost same and the error in phase and group

velocities has reduced compared to the CD2 operator.

The group and phase velocities normalized with the propagation speed for semi discretized

wave equation using CD2 operator is plotted against the number of points per wave

length(Nλ) for different angles and the same is reported in Fig. 3.8. We observe that

the group and phase velocities are dependent on angle and as Nλ increases the deviation

of the phase and group velocities decrease.

• Diffusion Equation: For the diffusion equation with diffusivity D

ut = D∇2u, (3.20)

dispersion relation is

I ω = −Dk2, (3.21)
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Figure 3.8: The normalized phase velocity for semi discretized wave equation using CD2 and
RL2 operator for different propagation angles.

If we replace space derivative by central difference we have dispersion relation as

ωCD2 = −4 c2s
c2

D∑

i=1

sin2
ki c

2
, (3.22)

while the same obtained from RL2 scheme is:

ωRL2 = −4 c2s
c2

2

3

[
10 − cos(kxc)− cos(kyc)− 8 cos

(
kxc

2

)
cos

(
kyc

2

)]
. (3.23)

The dispersion relation using RL4 scheme is:

ωRL4 =

[
1 +

1

36

{
10− cos(kxc)− cos(kyc)− 8 cos

(
kxc

2

)
cos

(
kyc

2

)}]
ωRL2. (3.24)

Dispersion relation for 2D diffusion equation for continuous and with CD2 and RL2 operator

is reported in Fig. 3.9. It is evident from figure that the CD2 operator is not isotropic and at

high wave numbers the magnitude of error is high for CD2 operator.Isocontours of error in

dispersion relation w.r.t continuous for CD2, RL2 and RL4 operators is reported in Fig. 3.10.

It is evident from the figure that RL2 and RL4 have better accuracy and isotropy compared to

the CD2 operator.

From the dispersion relation for representative linear PDE’s, it is evident that in all cases,

the dispersion relation in discrete case is a faithful representation of continuous one provided

wavenumber is very close to zero. There are previous studies on discretization of Eq. 3.13 using

the dispersion relation preserving schemes(Tam & Webb 1993; Tam & Kurbatskii 2003; Cheong

& Lee 2001).

As discussed in previous chapter, these schemes are not isotropic because they are restrained

to the principal directions only. In the subsequent section, we shall discuss the dispersion relation

and thereby group and phase velocities with the isotropic operators.
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Figure 3.9: Isocontours of dispersion relation for diffusion equation for CD2(left), exact(centre)
and RL2 operator (right).

Figure 3.10: Isocontours of error in dispersion relation for diffusion equation for CD2(left),
RL2(centre) and RL4 operator (right) w.r.t the continuous dispersion relation.
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3.3 Discrete Time Stepper for Advection Equation

In last section, it was showen that current isotropic formulation of the derivatives are superior at

least in the semi discrete sense. In this section, we show that after appropriate time discretiza-

tion the present isotropic approach leads to far superior results over conventional approaches.

As a first example, we employ cuurent approach for the advection equation. For the advection

equation, we chose as time integrator MacCormack method, an elegant method for discretiz-

ing the advection equation(Laney 1998; LeVeque 2007) The method is widely used due to its

simplicity and robustness for the non-linear case (see for example (Selle et al. 2008)). In this

method, a two step integration procedure is adopted, where in the predictor step first order for-

ward Euler is used for time discretization and in space also a first order scheme (either forward

or backward) is used. In the corrector step, backward Euler is used for time discretization and

space derivative is first order but opposite to the forward step. In order to keep the method

explicit, in corrector step the spatial derivative are evaluated with the predicted value. Finally,

one averages the two solutions to get a second order accurate representation. In particular, the

method in 2-D can be formulated as follows:

• Predictor Step

u⋆i,j = uni,j − vx
∆t

∆x

(
uni+1,j − uni,j

)
− vy

∆t

∆y

(
uni,j+1 − uni,j

)
, (3.25)

Where uni,j is the value of u at (i, j) point in space and n is the time level and u⋆i,j is the

predicted value of u at (i, j) point in space.

• Corrector Step

u⋆⋆i,j = ui,j − vx
∆t

∆x

(
u⋆i,j − u⋆i−1,j

)
− vy

∆t

∆y

(
u⋆i,j − u⋆i,j−1

)
, (3.26)

finally, the solution at n+ 1 time can be reconstructed as

un+1
i,j =

1

2

(
u⋆i,j + u⋆⋆i,j

)
. (3.27)

While for linear equations, the MacCormack scheme is equivalent to the LaxâWendroff

scheme in case of non-linear advection equation it provides a simple and robust approach to

non-linear advection equation. As is the case with usual central schemes, this scheme is also not

isotropic.

We wish to apply this approach of time integration with the isotropic operators discussed in

the previous chapter. However, the operator discussed in the previous chapters were of central

in nature. Thus, we need to create forward and backward decomposition of such operators for

applying MacCormack scheme. This can be achived by noting that

∇̃α
RL2

u = ∇̃α
RL2+

u+ ∇̃α
RL2−

u, (3.28)
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where

∇̃α
RL2+

u =
1

ǫ

∑

ciβ ·êβ>0

wi|ciβ · êβ | (u(r+ ci)− u(r)) , (3.29)

where êα is the unit vector in the α direction. and the backward difference can be expressed as

∇̃α
RL2−

u =
1

ǫ

∑

ciβ ·êβ<0

wi|ciβ · êβ | (u(r)− u(r+ ci)) , (3.30)

Once, this decomposition is done, present isotropic forward and backward operator can be

used instead of original forward and backward spatial difference operators. In particular for 2D

case, we can write the scheme as follows:

• Predictor Step

u⋆i,j = uni,j − vx
∆t

3∆x

(
uni+1,j + 2ui+1/2,j+1/2 + 2ui+1/2,j−1/2 − 5uni,j

)

− vy
∆t

∆y

(
uni,j+1 + 2uni+1/2.j+1/2 + 2ui−1/2,j+1/2 − 5uni,j

)
, (3.31)

• Corrector Step

u⋆⋆i,j = uni,j − vx
∆t

3∆x

(
5u⋆i,j − 2u⋆i+1/2,j+1/2 − 2u⋆i+1/2,j−1/2 + u⋆i−1,j

)

− vy
∆t

3∆y

(
5u⋆i,j − u⋆i,j−1 − 2u⋆i+1/2,j+1/2 − 2u⋆i−1/2,j+1/2

)
, (3.32)

finally, the solution at n+ 1 time can be reconstructed as

un+1
i,j =

1

2

(
u⋆i,j + u⋆⋆i,j

)
. (3.33)

As discussed in the previous chapter, we use replica grid with two grids, primary grid and the

secondary grid. The secondary grid is displaced by half the grid size in both x and y directions.

Unlike staggered grid based method, in present case all variables are defined on both the grids

and computations are carried out on both the grids simultaneously.

We considered 2D gaussian function with variance 0.01 as the test case to validate the pro-

posed method. The evolution of gaussian function with time using both standard MacCormack

and isotropic MacCormack methods at different times is reported in the Figs. (3.12 - 3.13). The

exact solution is shown in Fig. 3.11

It is evident from these figures that the standard MacCormack method is not isotropic

whereas the modifed MacCormack method is isotropic as well as more accurate and is as simple

to implement as the standard MacCormack method. This can also be seen from the L2−norm

is calculated for standard MacCormack and isotropic MacCormack method at time= 1 and the

same is shown in Fig. 3.14.
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Figure 3.11: Analytical solution of the 2D Gaussian function at time = 1.

Figure 3.12: Evolution of 2D Gaussian function at time = 1 for standard MacCormack
method(Left) and isotropic MacCormack(Right).

Figure 3.13: Evolution of 2D Gaussian function at time = 2 for standard MacCormack
method(Left) and isotropic MacCormack(Right).
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Figure 3.14: L2−norm error vs grid spacing for standard MacCormack and Isotropic Mac-
Cormack method at time = 1. Here MacCormack is standard MacCormack method and Iso-
MacCormack is isotropic MacCormack method.

3.4 Discrete Scheme for Diffusion Equation

In this section, the discretization of the diffusion equation is presented. In this thesis, the time

discretization used for solving diffusion equation is

un+1
i,j − uni,j

∆t
= ∇̃2uni,j, (3.34)

where ∇̃2 denotes the discrete laplacian.

We consider 2D gaussian function with variance 0.001 as initial condition on a 30 × 30 grid

to solve the diffusion equation using CD2 and RL2 operators. The evolution of 2D gaussian at

time = 5 using CD2 and RL2 and exact solution is shown in Fig. 3.15

It is evident from the plot that the accuarcy and isotropy of the RL2 operator is better

compared to the CD2 operator.

3.5 Wave Equation Solver on Replica Grid

In this section, time discretization of wave equation with isotropic laplacian operator is presented.

In order to do so, we write wave equation as a system of first order equations:

∂P

∂t
= V (3.35)

∂V

∂t
= c2s

(
∂2P

∂x2
+
∂2P

∂y2

)
. (3.36)



34 Chapter 3. Isotropic Discretization of Linear Partial Differential Equations

Figure 3.15: Diffusion of 2D gaussian function at time = 5 for CD2(Top left), exact(Top Right)
and RL2 operator (Bottom). Here the diffusivity is taken as 0.01.

In this thesis, for solving wave equation we use backward difference in time for Eq. 3.35 and

forward difference in time for Eq. 3.36.

Pn+1
i,j − Pn

i,j

∆t
= V n+1

i,j

V n+1
i,j − V n

i,j

∆t
= c2s ∇̃2Pn

i,j . (3.37)

where ∇̃2 denotes appropriate discrete expression for the laplacian. The dispersion relation for

the central difference and replica schemes with this time integration scheme are as follows:

cos
(
ωCD2∆t

)
= 1−

(
cs∆t

∆x

)2

(2− cos(kx∆x)− cos(ky∆y)),

cos
(
ωRL2∆t

)
= 1−

(
cs∆t

∆x

)2 2

3

[
10− cos(kx∆x)− cos(ky∆y)− 8 cos

(
kx∆x

2

)
cos

(
ky∆y

2

)]
.

(3.38)

In Fig. 3.16, the normalized dispersion relation for CD2 solution is shown via polar plot

for different number of points per wavelength(Nλ). Here the radius of the plot is normalized

by the exact solution given in the Eq. 3.14. It is evident that the dispersion relation is not

isotropic, (i.e), and Nλ = 16 is atleast needed to get a reasonable answer. In Fig. 3.17 the

polar plot of the dispersion relation for various second order and fourth order schemes such as

RL2, RL4, CD2 and CD4 along with the exact solution is reported. It is evident that both

second and fourth order replica schemes are reasonable for Nλ = 8. Furthermore, even for very

low resolution (Nλ = 4), the RL2 and RL4 schemes are isotropic. Thus, the number of points

required per wave length to get an isotropic profile is very less for the lattice based methods
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Figure 3.16: polar plot of the dispersion relation for CD2. Here the number of points per
wavelength Nλ is taken as 2(Top Left) 4 (TopRight), 8(Middle left), 16 (Middle Right) and
20(Bottom)
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scheme Dispersion relation in low wave number limit

Exact
(

ω
cs

)2
= k2

CD2
(

ω
cs

)2
= k2 − k4c2

12

{
1− sin2(2θ)

2

}

L2
(

ω
cs

)2
= k2 − 1

12k
4c2

RL2
(

ω
cs

)2
= k2 − 1

24k
4c2

Table 3.1: Dispersion relation for 2D scalar wave equation for different schemes in the low wave
number limit, where ∆x = ∆y = c and kx = k cos θ and ky = k sin θ.

compared to the central operators. This trend can also be seen from low wave number limit

of the dispersion relation reported in Table. 3.1. From this table it is evident that among all

second order alternates, current scheme is most accurate as well as most isotropic. Here, reader

is reminded that for many application related to real time visualization qualitative agreement

with poor resolution is quite important(Enright et al. 2002; Foster & Fedkiw 2001; Nguyen et al.

2002; Foster & Metaxas 1996).

Next, we investigate the phase velocity and group veloicty for both schemes. The expressions

for the group and phase velocities for the second order central difference scheme (CD2) is given

by (Alford et al. 1974):

cgroup,CD2

cs
=

{
sin
(
π cos θ
Nλ

)
cos
(
π cos θ
Nλ

)
cos θ + sin

(
π sin θ
Nλ

)
cos
(
π sin θ
Nλ

)
sin θ

}

{
1− s2 sin2

(
π cos θ
Nλ

)
− s2 sin2

(
π sin θ
Nλ

)}1/2 {
sin2

(
π cos θ
Nλ

)
+ sin2

(
π sin θ
Nλ

)}1/2
,(3.39)

cgroup,CD2

cs
=

Nλ

πs
sin−1

[
s

{
sin2

(
π cos θ

Nλ

)
+ sin2

(
π sin θ

Nλ

)}1/2
]

(3.40)

where s = cs∆t
∆x and Nλ is the number of points per wave length and kh = 2π/Nλ and .

The expressions for the group and phase velocities using the Eqs. (3.4 - 3.3) for replica

method RL2 is:

cgroup, RL2

c
=

1
√

(6)
{
1− s2

6 G
}1/2

G1/2

{
sin

(
2π cos θ

Nλ

)
cos θ + sin

(
2π sin θ

Nλ

)
sin θ

+ 4 sin

(
π cos θ

Nλ

)
cos

(
π sin θ

Nλ

)
cos θ + 4 sin

(
π sin θ

Nλ

)
cos

(
π cos θ

Nλ

)
sin θ

}
(3.41)

cphase, RL2

c
=

Nλ

πs
sin−1

[
s√
(6)

G1/2

]
. (3.42)

where G = 10− cos
(
2π cos θ

Nλ

)
− cos

(
2π sin θ
Nλ

)
− 8 cos

(
π cos θ
Nλ

)
cos
(
π sin θ
Nλ

)
.

It is evident from the Fig. 3.18 and Fig. 3.19, that at θ = 0o both the phase velocity and

the group velocities are deviating a lot for CD2 operator compared to θ = 45o. Furthermore,

based on Fig. 3.18 and Fig. 3.19, one can claim that at all propagation angle the RL2 operator

has better accuracy for phase and group velocities as compared to the CD2 operator.
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Figure 3.17: polar plot of the dispersion relation for the wave number for different schemes
such as RL2, RL4, CD2 and CD4 along with the exact solution. Here the number of points
per wavelength Nλ is taken as 2(Top Left) 4 (TopRight), 8(Middle left), 16 (Middle Right) and
20(Bottom)
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Figure 3.18: Plots for normalized group velocity for fully discrete wave equation using CD2 and
RL2 operators at different angles of propagation.

Figure 3.19: Plots for normalized phase velocity for fully discrete wave equation using CD2 and
RL2 operators at different angles of propagation.
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Figure 3.20: snap shots of ripples at t = 0.05 for different schemes CD2(Top Left), CD4 (Top
Right), RL2(Bottom Left), RL4(Bottom Right).

3.5.1 Test Case: Simulation of Ripples

Finally, in order to test accuracy of the wave solver, simulation was performed with the source

function in the form of a ricker wavelet(Alford et al. 1974; Schneider 2010).

S(t) =
(
1− 2at2

)
exp(−at2), (3.43)

where a is a constant. A square domain of 50X50 with source function at (25, 25) point in

space was taken. Here the propagation speed cs is taken as 300 and a = 2. At t = 0.05, the

isocontours of the pressure are plotted and the same are reported in the Fig. 3.20.

It is evident from the Fig. 3.20 that the ripples simulated CD2 and CD4 are not isotropic

and the simulation using lattice schemes are isotropic. So, if operators which are not isotropic

are considered for discretization of such problems, the actual characteristics of the problem will

not be reflected in the simulation.

We considered the same ricker wavelet witha = 2 as in Eq. 3.43 at a point (1000,1000) with

cs = 1500 on a square domain of 2000X2000 and the pressure variations are recorded at six

different points using CD4 and RL4 by varying the grid spacing.

In Figs.( 3.21 -3.26), the time evolution of pressure for methods CD4, RL4 at six different

points (1212,1212), (1260,1150), (1424,1424), (1300,1600), (1600,1100) and (1520,1300) is re-
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Figure 3.21: Time evolution of pressure for different methods CD4, RL4 at a point (1300,1600).
Here the grid spacing(dx) is taken as 1(Top), 2(Middle) and 3(Bottom).
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Figure 3.22: Time evolution of pressure for different methods CD4, RL4 at a point (1600,1100).
Here the grid spacing(dx) is taken as 1(Top), 2(Middle) and 3(Bottom).
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Figure 3.23: Time evolution of pressure for different methods CD4, RL4 at a point (1260,1150).
Here the grid spacing(dx) is taken as 1(Top), 2(Middle) and 3(Bottom).
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Figure 3.24: Time evolution of pressure for different methods CD4, RL4 at a point (1520,1300).
Here the grid spacing(dx) is taken as 1(Top), 2(Middle) and 3(Bottom).
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Figure 3.25: Time evolution of pressure for different methods CD4, RL4 at a point (1212,1212).
Here the grid spacing(dx) is taken as 1(Top), 2(Middle) and 3(Bottom).
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Figure 3.26: Time evolution of pressure for different methods CD4, RL4 at a point (1424,1424).
Here the grid spacing(dx) is taken as 1(Top), 2(Middle) and 3(Bottom).
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ported. Here the grid spacing(dx) is taken as 1, 2 and 3. These results are compared with the

exact solution. It is evident from the figure that the RL4 methods coincided with the exact

solution in most of the cases compared to the CD4. It is also clear from these figures that the

phase error for the RL4 scheme is less compared to the CD4 scheme.

In Fig. 3.27, the time evolution of pressure for methods RL4 with dx = 2 and CD4 with

dx = 1.5 and dx = 2 is compared with the exact solution. In most of these plots CD4 at

dx = 1.5 coincided with RL4 at dx = 2 which shows the accuracy of the RL4 scheme over the

CD4 scheme.

Thus, it can be concluded that the replica lattice schemes are very effective in reducing the

error as well as retaining the isotropic characteristics of the original problem.

3.6 Maxwell Equations

As final example, we consider Maxwell equations describing electromagnetic wave equation (Grif-

fiths & College 1999; Jackson 1999).

µ∂tH = −∇∇∇×E,

ǫ∂tE = µ∇∇∇×H,

∇∇∇ ·E = 0,

∇∇∇ ·B = 0,

(3.44)

where H is the magnetic field, E is the Electric field, µ is magnetic permeability, B = µH and

ǫ is the electric permittivity. Maxwell equations can be rewritten in the form of vector wave

equation for electric field as:
∂2E

∂t2
=

1

µǫ
∇2E. (3.45)

Finite difference time domain method(FDTD) (Yee 1966; Yefet & Petropoulos 2001; Young

et al. 1997; Xie et al. 2002; Gilles et al. 2000) is one of the most widely used method to solve

the Maxwell equations. In this method, one uses a version of staggered grid, called Yee’s grid,

to define the electric and magnetic fields (See Fig.3.28 for grid arrangement in 2-D). As shown

in Fig.3.28, for 2D case, the secondary and tertiary grids are displaced by half the grid spacing

x and y directions respectively. As an example if we consider a transverse magnetic mode (TM)

(Griffiths & College 1999; Jackson 1999)the electric field, Ez is defined on the primary grid and

the magnetic fields Hx and Hy are defined on the secondary and tertiary grids respectively. In

this method the partial derivatives are discretized by using the standard central difference of

second order on staggered grid. For example , x derivative of any quantity φ is approximated as

∂xφ ∼
φi+1/2,j − φi−1/2,j

∆x
. (3.46)

As discussed in Chap. 2, that the standard central difference (CD) operators are not isotropic,

the Yee scheme which uses the CD operators cannot be isotropic. Later hexagonal grids were

proposed by Liu (Liu 1996) which has less numerical phase space anisotropy compared to the

Yee grid.
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Figure 3.27: Time evolution of pressure for different methods CD4 with dx = 1.5 and dx = 2
and RL4 with dx = 2 at a six sensor locations (1300,1600)(Top Left), (1600,1100)(Top
Right), (1260,1150)(Middle Left),(1520,1300)(Middle Right), (1212,1212)(Bottom Left) and
(1424,1424)(Bottom Right).
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EZ

Hx

Hy

Ez
Hx

Hy

Figure 3.28: Yee grid. Here black represents primary grid and blue and red lines represents the
secondary and tertiary grids respectively.

In this section, the dispersion relation of the Eq. 3.45 is derived and the isotropy of the

scheme is verified with replica lattice operators.

Transverse Magnetic Modes

As an example consider maxwell Equations for TM modes(Taflove & Hagness 2000), which

correspond to setting:

Bx = By = 0, Ez = 0, (3.47)

The time derivatives are discretized using the standard central difference. For example the

discrete derivative at n+ 1/2 time level is calaculated as

∂̃tφ|n+1/2
i,j ∼

φn+1
i,j − φni,j

∆t
+O(∆t)2. (3.48)

In this thesis, the discretization of the Maxwell equations is done in the form of

µ∂̃tH|n+1
i,j = −∇̃̃∇̃∇ ×E|ni,j,

ǫ∂̃tE|n+1/2
i,j = µ∇̃̃∇̃∇ ×H|n−1/2

i,j , (3.49)

For this case, Eq. 3.44 when discretized using the Yee scheme can be expressed as:

ân+1
i,j = Gâni,j, (3.50)

where G is the amplication matrixand âni,j = [H
n−1/2
x H

n−1/2
y En

z ].



H

n+1/2
x

H
n+1/2
y

En+1
z


 =




St 0 χySy

0 St − χxSx

ηySyCx −ηxSxCy St






H

n−1/2
x

H
n−1/2
y

En
z




where St = sin(ω∆t/2) , Sx = sin(kx∆x), Cy = cos(ky∆y) and ηx = ∆t
ǫ∆x , χx = ∆t

µ∆x . The
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dispersion relation for the Yee scheme in this case is:

S2
t = (c∆t)2

{(
Sx/2

∆x

)2

+

(
Sy/2

∆y

)2
}
. (3.51)

In low wave number limit the Eq.(3.51) transforms to:

(
ω

cs

)2

= k2 − k4c2

12

{
1− 2 cos2 θ sin2 θ

}
+ · · · . (3.52)

It is evident from Eq. 3.51, that in low wave number limit, the method is quite accurate but

the error is not isotropic,(i.e) it has dependence on the angle of rotation(Panaretos et al. 2007).

In Fig. 3.28, the dispersion relation for yee scheme is plotted on a polar plot for different

number of points per wavelength(Nλ). The radius of the polar plot is normalized using the exact

solution. It is evident from the figure that when resolution is moderate Nλ = 4, the isotropic

error is very high, (i.e) at different angles of rotation, the values of the normalized dispersion

relation is different.

3.6.1 Replica Lattice Scheme

As we know that the accuracy of the replica schemes is better than the standard lattice schemes

we use the replica to solve the Maxwell equations.

As already discussed in the Sec. 3.2 the replica scheme has two grids one displaced by half

the grid size in all the dimensions considered and variables are defined on all the grids. Replica

grid has the advantages of both the staggered and unstaggered grids. The error for second order

replica scheme is

(
∆x√
(2)

)2

.

Dispersion Relation

The maxwell Eqs. 3.47 using the lattice curl scheme with replica D2Q9 weights when taken in

fourier mode, the dispersion relation will be of the form:

S2
t =

(
cs∆t

6∆x

)2 {
(S2

x + S2
y) + 16(S2

x/2C
2
y/2 + C2

x/2S
2
y/2 + S2

x/2Cx/2Cy/2 + S2
y/2Cx/2Cy/2)

}
,

(3.53)

where c = 1√
µǫ is the speed of light in the material being modelled.

When low wave number limit is considered Eq.(3.53) transforms to:

(
ω

cs

)2

= k2 − 1

6
k4(∆x)2 + · · · . (3.54)

It is evident from the Eqs. 3.52 and 3.54, that the dispersion relation for the replica second

order scheme approaches that of the exact in the low wave number limit. The error of the replica

scheme as compared to the Yee scheme is still high but the error is isotropic in nature unlike

the Yee scheme.

In Fig. 3.30, the dispersion relation for the replica lattice scheme of second order (RL2) and
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Figure 3.29: Polar plot of dispersion relation using the Yee scheme . Here the radius of the polar

plot is
(

ω
cs k

)2
and number of points per wavelength(Nλ) as 4(Top),8(Middle) and 16(Bottom).
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Figure 3.30: Polar plot of dispersion relation using the Yee scheme and the replica lattice scheme

Eq. 3.53. Here the radius of the polar plot is
(

ω
cs k

)2
and number of points per wavelength(Nλ)

as 4(Top),8(Middle) and 16(Bottom).
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replica scheme of fourth order(RL4)and that of Yee scheme is plotted for different number of

points per wavelength. The radius of the plot is normalized by the exact dispersion relation. It

is evident from the figure that the error for the RL2 is high compared to the Yee scheme but

it becomes isotropic at few number of points per wavelength. The RL4 scheme has low error

comnpared to the Yee scheme and it becomes isotropic even with few number of points per

wavelength.

Testcase

To validated the formulations, consider a square domain of length 2π with the initial conditions

as follows (Yefet & Petropoulos 2001):

Ez(x, y, 0) = cos(kxx) cos(kyy),

Hx(x, y, 0) =
ky
ω

cos(kxx) sin(kyy),

Hy(x, y, 0) = −kx
ω

sin(kxx) cos(kyy),

where ω =
√
k2x + k2y.

The boundary conditions for electric field are:

Ez(0, y, t) = cos(kyy) cos(ωt),

Ez(1, y, t) = cos(kx) cos(kyy) cos(ωt),

Ez(x, 0, t) = cos(kxx) cos(ωt),

Ez(x, 1, t) = cos(kxx) cos(ky) cos(ωt).

The boundary conditions for magnetic field are:

Hx(0, y, t) =
ky
ω

sin(kyy) sin(ωt)

Hy(0, y, t) = 0

Hx(1, y, t) =
ky
ω

cos(kx) sin(kyy) sin(ωt)

Hy(1, y, t) = −kx
ω

sin(kx) cos(kyy) sin(ωt)

Hx(x, 0, t) = 0

Hy(x, 0, t) = −kx
ω

sin(kxx) sin(ωt)

Hx(x, 1, t) =
ky
ω

cos(kxx) sin(ky) sin(ωt)

Hy(x, 1, t) = −kx
ω

sin(kxx) cos(ky)sin(ωt)

Here, the exact solution for the test case is of the form:
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Figure 3.31: Replica grid with the replica D2Q9 and replica D2Q5 stencils.

Figure 3.32: L2 Norm (vs) grid spacing on a log-log plot.

Ez = cos(kxx) cos(kyy) cos(ωt)

Here we considered kx = 3 and ky = 4 and µ = ǫ = 1.

In Fig. 3.31, the replica D2Q9 stencil is used to carry out the computations in the interior

nodes and at the boundaries we use a replica D2Q5 model shown the figure to calculate the curl.

The weights for this lower model is calculated using the constraints defined in Chap. 2. Because,

we use a lower model at the boundaries, there is no need of defining the boudary conditions for

the magnetic field. So, it has the advantages of the staggered grid.

In Fig. 3.32, the L2−norm of the electric field is plotted agianst the grid spacing on a log-log

plot. It is evident from the figure that the RL4 has the best accuracy of all.

It is evident from the Fig. 3.33, that the error for the Yee scheme is very high compared to

the RL4 lattice scheme.

In Table. 3.2, dispersion relation for all the schemes is reported. It is evident from the table

that the Yee scheme is dependent on angle of rotation, whereas the lattice schemes are perfectly
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Figure 3.33: Isocontours of error in the electric field for both Yee scheme(right) and RLC4(left).

scheme Dispersion relation in low wave number limit

Exact
(

ω
cs

)2
= k2

Yee
(

ω
cs

)2
= k2 − k4c2

12

{
1− 2 cos2 θ sin2 θ

}

L2
(

ω
cs

)2
= k2 − 1

3k
4c2

RL2
(

ω
cs

)2
= k2 − 1

6k
4c2

Table 3.2: Dispersion relation for different schemes in the low wave number limit.

isotropic.

3.7 Conclusions

Discrete isotropic operators formulated in the previous chapter were implemented succesfully

for different PDEs such as advection, diffusion, wave and Maxwell equations. In most of the

cases, the replica schemes have better accuracy compared to the standard centered difference

schemes. Further, the number of points per wavelength required to have isotropy is very less for

the replica schemes compared to the other standard schemes.
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Outlook

For finite difference operators on the uniform grid, discrete operations are generally restrained

to the principal directions of the lattice (coordinate directions on a rectangular grid), often

neglecting the grid points along other directions. In this thesis, an new formalism for creating

discrete operators which retain as many symmetries as possible of their continuum counterparts

is developed. It was shown that the problem of finding discrete operators which respect isotropy

and symmetries of the continuous operator is analogous to finding discrete velocity models for

which lower order moments of discrete equilibrium matches with that of Maxwell-Boltzmann

distribution. Furthermore, it was shown that compact finite difference schemes can be formulated

directly in multidimensional sense, provided the leading order error in discrete operators are

isotropic. Finally, we generalize the concept of staggered grid to that of replica grid, where

multiple copies of space filling lattices are introduced simultenously. These grids are obtained

via translation of original grid by fixed amount and unlike staggered grid formulations, all

variables are kept on all grids. We show that such replica grids coupled with isotropic operators

provide an efficient alternate to existing finite difference methods.

Thes operators on replica grid was tested for a host of partial differential equations. It

was shown that the method is efficient for linear advection equation, diffusion equation and

wave equation. The results suggest that this new approach has potential to substantially im-

prove the performance of the finite difference methods. However, a more careful and eloborate

investigations are needed before method can emerge as an alternate to traditional approaches.
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