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Abstract

In the present study, a basic problem of granular particles flowing in a channel under the influ-

ence of gravity is considered. Granular particles are modeled as smooth inelastic hard spheres

which interact through binary collisions. Event-driven molecular dynamics simulation is used

to study granular Poiseuille flow in two and three-dimensions.

2D Poiseuille flow

In the first part, the bi-modality in granular temperature profile is studied as a function of nor-

mal restitution coefficient (en), wall roughness (βw) and volume fraction (ν) and the results are

compared with previous theoretical work. In the second part, the velocity distribution functions

(VDF) are analyzed for varying en and βw over three orders of magnitude of Knudsen number

[Kn ∼ O(1), O(0.1), O(0.01)] for dilute flows. The VDFs tend to obey a Gaussian for nearly

elastic collisions (en ∼ 1) but are non-Gaussian if the system is dissipative. The high-velocity

tail of VDFs is fitted to ∼ C exp(−γ(|u|/σ)α) where c is the normalized fluctuation velocity. It is

found that the exponent α(en , Kn, βw) decreases with the reduction of Knudsen number. For

Kn ∼ O(1) with smooth walls, the exponent is ∼ 2.0 (i.e. a Gaussian) throughout the system

but decreases as we move from the center of the channel towards the walls for both Kn ∼ O(0.1)

and Kn ∼ O(0.01). The VDF for cross-stream fluctuation velocity is found to be bimodal for

dissipative flows, and the degree of bi-modality is enhanced with increasing Knudsen number.

In the final part of 2D granular flows, slip velocity (Uw), wall temperature (Tw) is looked into.

Effect of normal restitution coefficient and wall restitution coefficient on Uw, Tw and their gra-

dients [d(Uw/U0)/dy and d(Tw/y0)/dy] is studied for dilute flows (ν = 0.01). An effort is made

to understand the relation between Knudsen number, slip velocity and gradient of slip.

3D Poiseuille flow

Two geometries are considered in 3D flows - (i) the flow between two parallel plates and (ii)

the flow in a closed duct. Mean field properties like velocity (U), granular temperature (T)

and volume fraction (ν) along with VDFs, as a function of normal restitution coefficient (en),

are studied for both geometries. For dissipative systems (en < 1), the particles accumulate in

the center of the channel, exhibiting various wave patterns. Evolution of density waves with

time is studied in detail in 3D channels with square cross-section. Plug, symmetric and asym-

metric waves are different types of patterns observed in simulations. To analyze the effect of

asymmetry in flow in a duct, the width (W) of the system is increased compared to the depth

(D). Separation and periodic migration of density waves along the width (W) of the channel is

evident.
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Chapter 1

Introduction

Granular materials can be defined as individual solid entities put together. Their size ranges

over many orders of magnitude - from micron (below this size Brownian motion of the particle

becomes dominant) to huge boulders of ice floating in the polar region. Two important features

of granular particles are [Jaeger et al. (1996)] - (i) the room temperature (T ) does not affect them.

The energy kbT , where kb is the Boltzmann’s constant is negligible. The relevant parameter is

mgd where m is the mass of the particle, g is gravitational acceleration and d is the particle

diameter. This is greater than kbT by twelve orders of magnitude. (ii) collisions are dissipative.

Granular matter can be considered a separate state of matter as they behave like a solid when at

rest, liquid when made to flow and a gas in dilute conditions. Study on sand piles by Leonardo

da Vinci, laws of dry friction by Coulomb and study of effect of vibration on sand piles by

Michael Faraday laid the fundamental foundation for granular physics.

Granular materials can be studied as a group of particles as in case of discrete models or can

be modeled as a continuous medium as in continuum analysis. Limitations in computing power

does not allow us to simulate large system using discrete models but flow in complex geometries

can be easily modeled [Rao et al. (2008)].

1.1 Some interesting phenomena

Granular particles exhibit myriad phenomena such as granular saltation, singing sands, Brazil

nut effect, granular convection and pattern formation. In this section, we introduce some of

these phenomena.

Brazil nut effect

When a box of different sized particles is shaken vertically, the larger particles tend to accumu-

late at the top while the smaller particles settle at the bottom. This phenomena is called Brazil

nut effect The name Brazil nut comes from the fact that Brazil nuts are always found on the

top when a cereal box is opened. Some explanations suggest that each time the box containing

polydisperse granular particles is shaken vertically, the smaller particles tend to seep through

the interstitial space to the bottom [Rosato et al. (1987)], thus letting the larger particles to

come up. Some studies suggest that the convection currents set due to the vertical vibrations,

density difference and air flow also have effective contributions [Möbius et al. (2001)]. Another

complication observed while experimenting on Brazil nut effect is the reverse Brazil nut effect

explained by Shinbrot & Muzzio (1998). Their experiment showed that if two large balls of

different densities are vibrated vertically in a granular bed, the lighter ball migrates down and

stays at the bottom at all times whereas the heavier ball tends to remain at the top.

1
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Singing sands

It is a distinctive booming/whistling sound is observed in some sand dunes and sea shores when

an avalanche is created by displacing the top layer of the sand. The dune is said to act as a

resonator. Vriend (2010) lists few sand dunes are found all over the world which produce such

sounds. They summarize from various other studies that the frequency of the sound produced

in the dunes depends on the size of the particle, size distribution and moisture content [Vriend

(2010)]. Laboratory experiments done by Goldsack et al. (1997) show that booming noise is

produced in silica-gel type materials. Not much research is done till date to understand them

thoroughly.

Maxwell’s demon effect

When a cell with a large number of compartments containing granular particles is vertically

shaken at an optimum frequency for sufficient time, all the particles tend to cluster in a single

compartment due to dissipation. This phenomena is analogous to the Maxwell’s demon effect

seen in gases.

Pattern formation

Many interesting structures are formed when granular particles are vibrated. One can see dif-

ferent oscillating peak-like patterns when granular particles are vibrated in a Hele-shaw cell and

in circular plates. Streaks like patterns were observed experimentally by Forterre & Pouliquen

(2001) for flow down a inclined plane. In Chapter 5 we discuss the various patterns formed in

granular Poiseuille flow.

1.2 Industrial applications

Granular materials are used in almost all manufacturing industries. One of the first documented

research on bulk solids was by Janssen. As the saying goes - ’necessity is the mother of invention’

- during the end of 19th century there was excess import of corn. He discovered that, unlike in

liquids, the pressure at the bottom of a vertical silo does not proportionally increase with the

height of the corn. He devised a scale similar to the barometric scale of fluids which is used till

date [Sperl (2006), Schulze (2012)].

Processing of clinkers for cement production, processing of food grains, mixing of powders to

manufacture tablets in pharmaceutical industries, extraction of metals from ores, all require

proper design of equipments to handle these granular materials. After water, granular materials

are the second most used raw material. They account for 10% of the energy consumption in

industries [Duran (2000)]. Though extremely important not much efforts are put in optimizing

the design of equipments which process them (except the major ones like silos and hoppers).

Two most important problems encountered in processing grains are segregation and clogging.

Segregation is a phenomenon where two different mixtures of particles separate out after mixing,

due to small differences in properties like size, shape and density . It is a colossal problem espe-

cially in pharmaceutical industry where different powders with different chemical compositions

need to be mixed homogeneously. Uniformity is achieved by mixing the powders a number of
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times in different mixers which is time consuming. Lack of realistic models and continuum de-

scriptions are the reasons for poor engineering of mixers [Ottino & Khakhar (2000)]. Clogging is

another major problem encountered in hoppers and chutes. It is caused due to jamming where

a large number of particles accumulate and obstruct the flow.

While designing granular flow equipments for industries, along with parameters like shape, size

and distribution of particles; humidity, temperature, chemical composition and other variables

also need to be accounted for. It is not possible to include all these in design consideration.

Thus, engineers includes two-three important variables for the design. Proper quantification of

the bulk properties of granular matter based on particle-level properties and system parameters

would benefit the industries.

1.3 Chapter organization

In our present study we consider rapid flow dry granular matter. Some interesting reviews in

rapid flows are Campbell (1990) and Goldhirsch (2003). A simple problem of flow of granular

particles in a channel under the influence of gravity (Poiseuille flow) is simulated for 2D and 3D

cases. The results of 2D granular flows are discussed in Chapter 3 and 4. 3D granular flows are

dealt in the Chapter 5.

Chapter 2

In this chapter, the geometrical description of the problem is given. Details of the event-driven

molecular dynamics algorithm is discussed briefly. The hard sphere collision dynamics of two

granular particles is explained with schematic diagrams. The equations of used to obtain the

mean properties like velocity, volume fraction and density are listed. The results from the present

code is validated with published results [Alam & Chikkadi (2010)].

Chapter 3

The chapter is divided into 2 sections. In the first section, mass flow rate is studied as a function

of Knudsen number for 3 different volume fractions ν = 0.01, 0.1 and 0.3 for granular Poiseuille

flow. The granular temperature (T) exhibiting bimodal behavior is analyzed as a function of

normal restitution coefficient (en), wall restitution coefficient (βw) and volume fraction (ν).

In the second section, results for the velocity distribution function (VDF) in dilute granular

flows are presented for different orders of Knudsen number as a function of en and βw. The tails

of the distribution are analyzed similar to the method used by van Noije & Ernst (1998) and

van Zon & MacKintosh (2005).

Chapter 4

This chapter has 2 sections. In the first, slip velocity (Uw) and its gradient (d(Uw/U0)/dy) is

studied as a function of en, Knudsen number and βw. We also try to analyze the relationship

between the slip velocity, gradient of slip velocity and Knudsen number which corresponds to

the boundary conditions in granular Poiseuille flow.

In the second section, the variation of wall temperature (Tw) and gradient of wall temperature
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(dTw/dy) is looked into.

Chapter 5

Simulations are done for 2 different geometries - flow between two parallel plates and flow in

a square duct. All simulations in this chapter are done for moderately dense flows ν = 0.15.

This chapter has 5 sections. The results in the first 4 sections are for square cross-section of the

system.

In the first section, mean properties are examined at varying dissipations (en). In the second

section - VDF results are shown for varying restitution coefficients for both flow between two

parallel plates and flow in a square duct. Density wave pattern observed in flow in parallel plates

and square duct are examined in third and fourth section, respectively. The power spectrum

analysis similar to Liss et al. (2002). The fifth section explain the results obtained for simulating

rectangular channel.



Chapter 2

Problem description and simulation

technique

2.1 Problem description

In the present study, a basic problem of granular flow through a channel under the influence

of gravity (Poiseuille flow) is considered. Simulations are done for 2 and 3 dimensional channel

flows, see Fig. 2.1.

The width of the channel is represented by W/d where d is the diameter of the sphere. L/W is

the ratio of length to width and D/W (for 3D flows) is the ratio of depth to width. Trials are

done for mono-disperse spheres and all the system dimensions are scaled by the particle diameter

(d). The system is periodic in x-direction for both 2D and 3D cases. The walls are present in

the y-direction for the 2D case (Fig. 2.1a); the z-direction is periodic for flows between two

parallel plates. The walls are present in y- and z-direction for flows in a closed channel. The

body force (g), represented by the red arrow in Fig. 2.1, acts in the positive x-direction.

2.2 Model used

Granular particles are modeled using hard sphere potential. According to this the particles are

impenetrable and interact only during collisions. The hard sphere potential is given by

U(r) =







0 (r > d)

∞ (r ≤ d)
(2.1)

All the particles are assumed to be smooth i.e. there is no rotational degree of freedom.

2.3 Hard sphere collision dynamics

Consider two particles 1 and 2 move towards each other for collision as shown in Fig. 2.2. Let

~u1, ~u2 be the pre-collision velocities and ~́u1, ~́u2 be the post collision velocities. Collisions occur-

ring only in pairs are accounted for. Thus, conservation of linear momentum gives

m~u1 +m~u2 = m~́u1 +m~́u2 (2.2)

The mass of particles is set to unity. The collisions between granular particles are always inelastic

and some amount of energy is lost during this process. The coefficient of restitution (en), which

is the ratio of post-collision velocity to the pre-collision velocity, quantifies this energy loss. It is

assumed to be constant throughout the simulation though in practice it depends on the impact

5
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(a)

(b)

Figure 2.1: Schematic of the (a) 2D system (b) 3D system
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Figure 2.2: Vector diagram of two smooth hard spheres (1) and (2), before and after collision.
u1, u2 are pre-collision velocity and ú1,ú2 are post-collision velocities
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velocity Lun & Savage (1986). During a collision the particles conserve their tangential velocity

and the loss is manifested as change in the normal velocity which is the velocity component

along the line joining the particle centers. Thus we can write

~́u12.~n = −en~u12.~n (2.3)

where ~n is vector in normal direction and ~u12 = ~u2 − ~u1. The coefficient of restitution varies

from 0 to 1. It is set to 1 for elastic collisions and less than 1 for inelastic collisions.

Expanding Eq. 2.3
~́u1 − ~́u2 = −en~u1 + en~u2 (2.4)

Substituting Eq. 2.4 in Eq. 2.2 and rearranging the terms we get post-collision velocity in terms

of pre-collision velocity as:

~́u1 = ~u1 −
1 + en

2
(~u12.~n)~n (2.5)

~́u2 = ~u2 +
1 + en

2
(~u12.~n)~n (2.6)

Collision time calculations

Consider two particles of same diameter d at distances r1 and r2. At any time t, for the collision

to occur the minimum distance between the particles must be equal to the particle diameter.

~r1(t)− ~r2(t) = d (2.7)

~r2 can be written in terms of ~r1

~r2(t) = ~r1(t0) + ~u12t12 (2.8)

Substituting Eq. 2.8 in 2.7 and squaring on both sides we get

[~r12 + (t12~u12)]
2 = d2 (2.9)

The above equation is quadratic in t12.

t12 = t0 +
(−~u12.~r12)±

√

(~u12.~r12)2 − ~u212(~r
2
12 − d2)

~u212
(2.10)

The solution of the above quadratic equation can be real or complex. If real, it can be positive or

negative. In order to eliminate the complex and negative roots and zero down to the minimum

time of collision the following conditions are imposed.

Condition A:

The particles can be moving parallel to each other, away from each other or towards each other.

The collisions occur when particles move towards each other. To find out the the condition for

such a situation a vector construction is shown in Fig. 2.3. The red line represent u12 and the

green line represents r12 which are the resultants of the individual velocity and position vectors

of particle 1 and 2. It can be seen that for the particles to be moving towards each other, the
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Figure 2.3: Vector construction showing condition for 2 particles to collide

dot product ~u12.~r12 < 0 or 3π
2 > θ > π

2 where θ is the angle between the 2 vectors ~u12, ~r12. If

this product is positive then the particles are moving away from each other.

Condition B:

Further to eliminate complex root, Eq. 2.10 must satisfy the rule of discriminant.

(~u12.~r12)
2 − ~u212(~r

2
12 − d2) >= 0 (2.11)

Condition C:

When all the above conditions are fulfilled two real roots are obtained. The larger root is ne-

glected as the particles are impenetrable while the small root is chosen.

Boundary conditions

There are various ways in which the walls can be modeled. Lennard-Jones potential is commonly

used to model flow of molecular gases. Some assume that once the particle hits the wall they lose

their previous memory and the new particle velocity is assigned as per Maxwellian distribution.

The walls can also act as thermostats through which the system can be heated or cooled.

In our simulations, the boundary conditions are set such that the particles which hit the wall

either bounce back or specularly reflect as shown in Fig. 2.4. Due to the impenetrable boundary

condition the magnitude of the normal velocity is unchanged whereas the tangential component

of the velocity can change. To characterize this, a parameter called wall restitution or tangential

restitution coefficient (βw) is defined, which is the ratio of post collision tangential velocity to

pre-collision tangential velocity. This also is assumed to be a constant throughout the simulation.
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Figure 2.4: Vector diagram of particle 1 and 2 colliding with the wall

Thus, collision rule for wall-particle collision for 2D granular Poiseuille flow is as follows:

~́ux = −βx~ux, (2.12)

~́uy = −ew~uy, (2.13)

where ew = 1 for walls and βw = [-1,1].

For the 3D simulations in a closed channel, the collision rule for a wall-particle collision is as

follows

~́ux = −βx~ux, (2.14)

~́uy = −ewy~uy, (2.15)

~́uz = −ewz~uz, (2.16)

(2.17)

where ewy, ewz = 1 for walls and βw = [-1,1].

For the 3D flows between two parallel plates, the collision rule for a wall-particle collision is as

follows

~́ux = −βx~ux, (2.18)

~́uy = −ew~uy, (2.19)

~́uz = −βz~uz. (2.20)

(2.21)

where ew = 1 for walls and βx, βz = [-1,1].

In above equations, βx and βz are set to -1 for specular reflection and to 1 for bounce back con-

dition [Chikkadi & Alam (2007); Alam & Chikkadi (2010)]. The walls which reflect all particles

(βw = -1) forward are called smooth walls, and those which bounce back (βw = 1) the particles
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Figure 2.5: Schematic of periodic boundaries

in the direction of incidence are called perfectly rough walls.

The no slip boundary condition corresponds to βw = 1, for elastic collisions.

Periodic boundaries

Periodic boundary conditions are used to mimic large systems. The positions of the particles are

replicated in all directions as shown in Fig. 2.5. If a particle moves out of the box as depicted

by solid arrow, the corresponding particles in all the other cells also move as marked by broken

arrow. In the present Poiseuille flow problem the domain is periodic in x-direction. Thus, for all

the particles leaving the cell through the bottom boundary, a periodic image of the particle is

created in the top boundary. Thus periodic boundary condition in x-direction implies that the

system is replicated infinitely in the x-direction. In 3D simulations, two directions - x and z are

periodic for flow between two parallel plates and only x-direction is periodic for flow in closed

channel

Inelastic collapse In our our simulations the normal restitution coefficient (en) is kept con-

stant. For very small values of en (∼ 0.0) there might be a condition where two particles collide

infinitely in a finite interval of time. This effect is called inelastic collapse [McNamara & Young

(1992); Pöschel & Schwager (2005)] and is commonly encountered in molecular dynamics simu-

lations where the system is highly dissipative. In order to prevent this, we adopt the TC rule

formulated by Luding & McNamara (1998). According to this rule, if the collision time between

particles is less than a critical time of collision (tc) then en is set to 1 which implies elastic

collision. This critical time of collision in all our simulations is set to 10−9.
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2.4 Simulation procedure

A general procedure of molecular dynamics involves step by step process of moving the system by

an interval of δt along with accounting for the collisions which might occur in the time interval.

All input parameters (eg. en, βw) are assumed to be independent of time. In such cases of

event-driven molecular dynamics, the system moves from one state to another with respect to

events. The main assumption in event-based molecular dynamics is that at any instant only one

collision occurs in an infinitesimal small interval of time. The framework of this event-based

simulation constitutes the following steps [Allen & Tildesley (1989)]:

1. Setting up particle positions in the system [rix,riy,riz]

2. Initialization of particle velocities [uix, uiy, uiz]

3. Calculation of collision time of all particle pairs (t12, t13...t1n...t(n−1)n)

4. Find the minimum of collision between particle pairs tij

5. Move the system to time t = t0 + tij by calculating the new positions and velocities of the

system

6. Go to step 3

In such a procedure there are two types of events - particle-particle collision and wall-particle

collision.

Domain modification In a scenario as described above one needs to calculate the collision

time between all the pairs of particles 12, 13, 14 ..., 23 ,24 ...., (n-1)n. The computational time

required is of the order of the O(N) per event processed. Such algorithms are efficient only for

small number of particles.

To ease the load it was suggested that the domain be divided into regions and the collision

partners of i be searched in cells neighboring the cell containing particle i. For example, in 2D

case, particles in 8 neighboring cells and the cell in which the particle is present is to be looked

into as shown in Fig. 2.6. This reduces the computational load to O(logN) per one processed

event (Lubachevsky (1991)) for a system with all peroidic boundaries. Using such scheme, fol-

lowing are considered as an event while simulating Poiseuille flow - particle-particle collision,

cell-crossing and wall-particle collision. In order to implement this scheme efficiently a separate

array-list is required, which contains information regarding the particles, the cell to which they

belong, and their neighbors. Though this is computationally burdensome, it is better than the

conventional method where one moves the whole system event by event

Event calendar

The present molecular dynamics code is based on the algorithm developed by Rapaport (1980,

2004). An event calendar contains a list of future events, its partners and the time of occurrence

of the event. For a large number of particles it becomes imperative to not only use manage the

calendar effectively but also use the memory space economically. A event calendar must satisfy

the following conditions:
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Figure 2.6: Schematic of cell division in 2D system

• Should be easy to add and delete events.

• Should be ordered depending on the time of event occurrence.

• No memory wastage in any step of the algorithm.

In the present algorithm event calendar is maintained in the form of a binary tree. Each event

is represented by a node.

Node:

A node carries information about collision partner for particle-particle collision, particle number

and which cell it is crossing for cell crossing, and particle number and which wall it collides

along with the time of event. A node can be pictorially represented as shown in Fig. 2.7. It is

initialized as follows:

typedef struct{
real time;

int left, right, up, circAL, circAR, circBL, circBR, idA, idB;

}Evtree;

Unlike a linear linked where a single pointer connects one node to another, this structure has

2 pointer (left, right) which connect to two successive nodes. These are placed such that the

occurrence of the event in left node is before the current node and the occurrence of event in the

right node is after the current node event. The pointer up is used for easy traversing through

the binary tree. circAL, circAR, circBL, circBR are used to maintain doubly linked circular

lists where A and B represent the 2 lists. idA, idB store information required to process the

event. They represent the particle identity if the future event is a collision or represent the wall

identity and particle number in case of wall collision. For cell crossing they represent the particle

identity and identity of the cell. The real pointer time represents the time of the event.
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Figure 2.7: Representation of a single node

A typical binary tree for a few particles looks as shown in Fig. 2.8. The following operations

are performed on a binary tree:

• finding the earliest event

• add a new event

• delete unwanted events

• create new events

A pool of nodes is maintained. The deleted events are stored in an event pool and new events are

created by retrieving the nodes from the event pool. Hence at each loop a check has to be made

to ensure that the event pool is not empty. The binary tree fluctuates in size as the simulation

progresses. The algorithm given by Rapaport (1980) allows efficient modification (during cell

crossing and wall-particle collision) and deletion (during particle-particle collision) of nodes. It

give a computational efficiency of 2ln(N) +O(1) which is close to log2(N).

Basic functions of the program

There are two different structures which are used in this procedure. The entire simulation

revolves around modifying relevant nodes in every step. The event calendar which maintains

the sequence of events is made up of nodes interconnected with pointers to form a binary tree.

Each node is represented by a structure Evtree which holds information of the type of event the

partners involved and the time of event. The position, velocity and time of each particle stored

in the structure Mol The following operations are the basic units of the simulation algorithm:

1. Setparams: Calculates the dimensions of the system, number of particles, number of cells

and dimension of each cell.

2. Initcoords: Initializes the particle positions and ensures that they do not overlap.
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Figure 2.8: Representation of a binary tree

3. Initvels: Initializes the particle velocity in all directions using random number generator

function

4. PredictEvent: Predicts the future boundary crossing, wall-particle collision and particle-

particle collisions taking into account the periodic boundary condition.

5. ScheduleEvent: Inserts an event node at the correct location in the event calendar and

links it to the circular linked lists. Each time a node is taken from the pool it checks if

the event pool is empty.

6. NextEvent: Searches for immediate future event.

7. DeleteEvent: Once the immediate future event is found the node becomes invalids. Dele-

teEvent recognizes these nodes.

8. DeleteAllMolEvents: It deletes all the nodes which are linked to the previous events as

they are no longer valid. It also restructures the broken branches of the binary tree.

9. InitEventList: Initializes the first set of nodes in the event calendar.

10. Single Event: Once the future event is predicted, a variable called MOL LIMIT is set to a

known integer - say 1000000 for collision, >1000000 for boundary crossing and wall-particle

collision and 1000006 for updating the whole system. Single event reads this variable and

ensures that the proper event is processed.
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Figure 2.9: Schematic of 3D and 2D bins

2.5 Calculation of macroscopic properties

The gravity acts in the positive x-direction and the walls are present the y-direction. As the

quantities change along the direction of the wall, we divide the system in vertical bins as shown

in Fig. 2.9. Within each bin, the macroscopic properties of all particles are assumed to be

almost constant. The width (w) of each bin is set as per a thumb rule given by -

d < w < 2d. (2.22)

The simulations are run for N*30000 collisions. The average kinetic energy [E(t)] initially

varies but later reaches a steady state in case of dissipative systems. The macroscopic properties

like granular temperature (T ), stream-wise velocity (Uxa), volume fraction (ν) are calculated by

averaging the microscopic properties once the system reaches a steady state. It is to be noted

that mean square energy term is inversely propotional to
√
N . Thus, the fluctuations can be

reduced by increasing the number of particles. The mean properties for 2D simulations are

obtained by:
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ui(t) = ci(t)− Ux(yi, t) (2.23)

Ux(yi, t) =
1

Ny

N
∑

i=1

ci(t)δ(y − yi) (2.24)

Ux(y) = 〈Ux(yi, t)〉 (2.25)

ν(y) =
πd2

4

〈 1

AyNy

N
∑

i=1

δ(y − yi)
〉

(2.26)

T (y) =
〈 1

2Ny

N
∑

i=1

ui(t)ui(y)δ(y − yi)
〉

(2.27)

E =
1

2N

N
∑

i=1

U2
αi (2.28)

The mean properties for 3D simulations are obtained by dividing the simulation domain in x

and z-direction into columns (Fig. 2.9) and the macroscopic properties are calculated by the

below formula :

ui(t) = ci(t)− Uxz(yi, zi, t) (2.29)

Uxz(yi, zi, t) =
1

Ny

N
∑

i=1

ci(t)δ(y − yi)δ(z − zi) (2.30)

Uxz(y, z) = 〈Uxz(yi, zi, t)〉 (2.31)

ν(y, z) =
πd3

6

〈 1

VyzNyz

N
∑

i=1

δ(y − yi)δ(z − zi)
〉

(2.32)

T (y, z) =
〈 1

2Nyz

N
∑

i=1

ui(t)ui(t)δ(y − yi)δ(z − zi)
〉

(2.33)

E =
1

3N

N
∑

i=1

U2
αi (2.34)

where E is the average kinetic energy, ci is the instantaneous velocity, ui is the fluctuating

velocity, Ay is area of single bin and Vxz is the volume of one bin. The angular brackets

represent average over time.

2.6 Validation of the code

The code was compared with the results published by Alam & Chikkadi (2010). The average

kinetic energy versus time is plotted in Fig. 2.10 for volume fraction ν=0.565, en=0.99, βw=-

0.9, W/d=31.0, L/W=1.3 and number of particles N=900. The results from the code based on

Rapaport (2004) algorithm agrees with published results within an error margin of 0.1%.
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Figure 2.10: Average kinetic energy (E(t)) Vs time (t) to validate the present code with published
results for ν=0.565, en=0.99, βw=-0.9, N=900, W/d=31.0, L/W=1.3.



Chapter 3

Mean fields and velocity distribution

function

Velocity distribution function (VDF) obeying the Boltzmann equation has been studied theoret-

ically for inelastic hard spheres by Esipov & Pöschel (1997). van Noije & Ernst (1998) calculated

the VDF for heated hard spheres by solving Enskog-Boltzmann equation using Sonine polyno-

mial expansion. It was found that the distribution function goes as ∼ exp(−Ac3/2) where A∼
1/sqrt(ǫ), with ǫ being the inelasticity and c the normalized velocity. The validity of these results

was further discussed by Brey et al. (1999) and specifically for the high energy tails by Moon

et al. (2001). VDF has been studied in detail for vibrated granular matter by Brey & Ruiz-

Montero (2003) and Moon et al. (2004). Rouyer & Menon (2000) carried out experiments with

inelastic spheres in between two horizontal Plexiglas plates vibrated in vertical direction and

found an expression for VDF as P (v) = C exp(−γ(|u|/σ)α) where α =1.55±0.1. Blair & Kudrolli

(2001) conducted experiments for granular matter flowing along an inclined plane with energy

supplied through a oscillating wall and found that the exponent α ∼ 1.5 is not always true.

They found that the exponent α varies from 0.7 to 2.0. van Zon & MacKintosh (2004, 2005) did

simulations for dilute granular gases subjected to boundary heating and uniform heating. They

quantify the exponent depending on two parameters: (i) q = NH/Nc where NH average num-

ber of heating events andNC is the total number of collisions; and (ii) coefficient of restitution en.

In granular Poiseuille flow, the deviation of VDF from a Gaussian has been attributed to

the spatial correlation by Moon et al. (2004), Chikkadi & Alam (2007) and Alam & Chikkadi

(2010). The theoretical description for dilute Poiseuille flow is derived from Boltzmann equation

and compared with Navier-Stokes equation by Tij & Santos (2004) . They found the existence

of bimodality in the temperature profile. Galvin et al. (2007) devised a method to locate the

Knudsen layer in 3-dimensional flows between two parallel plates with periodic boundary con-

ditions applied to all other sides. All these studies show that the VDF is a Gaussian for dilute

gases within the elastic limit and non-Gaussian for inelastic and dense systems.

In the present chapter we focus on understanding the mean fields and VDF in a dilute

granular Poiseuille flow. In the first section, mean fields - mean velocity, temperature and

volume fraction at different orders of magnitude of Knudsen number is discussed. Granular

temperature bimodality and mass flow rate as a function boundary conditions and Knudsen

number of the system are studied in detail. As the width of the system (W/d) is decreased the

ratio of wall-particle to particle-particle collision increases leading to wall effects being visible

near the channel center. In the present work simulations are done in regimes where continuum

approximation is no longer valid. Velocity distribution function has been studied extensively

19
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for varying volume fraction, normal restitution coefficient and wall restitution coefficient for

granular Poiseuille flow by Alam & Chikkadi (2010) and Chikkadi & Alam (2007). In the above

works, the effect of Knudsen number is studied by varying the density of the system. In the

present work, the density of the system is set to a constant value and the Knudsen number is

varied by varying the width of the channel. An attempt is made to explain the high energy tails

of velocity distribution functions in dilute granular flows in a way similar to the work done by

van Zon & MacKintosh (2005).

3.1 Knudsen number and flow regimes

Knudsen number It is the ratio of mean free path (λ) to the width of the channel (W ).

Kn =
λ

W
(3.1)

Flow regimes can be classified based on the Knudsen number as follows Karniadakis et al. (2005):

• Kn ≤ 10−2, continuum regime

• 10−2 < Kn<0.1, slip flow regime

• 0.1 < Kn < 10, transition flow regime

• Kn ≥ O(10), free molecular regime.

In all simulations in this chapter the length of the system is kept constant (L/d=500) and the

width of the system(W/d) is varied to get results for different Knudsen number.

Volume fraction

It is defined as the ratio of the volume occupied by the spheres to the volume of the system,

given by

ϑ =
πd2N

4L ∗W (3.2)

where N is the number of particles, d is the diameter of the particle.

For most of the simulations in this chapter the volume fraction is set to 0.01 that corresponds to

a dilute flow. The effect of varying density on the mass flow rate and the temperature bimodality

is also assessed.

3.2 Mean fields and other quantities

Granular temperature, mean velocity and the volume fraction are calculated by the method

described in Sec. 2.28. Figure 3.1 shows the mean fields versus position of the bin for different

orders of Knudsen number at en=0.99, ew=1.0 and βw=-0.5. The volume fraction is set to

ν=0.01 which approximately fixes the mean free path of the system. The width (W/d) of the

channel is decreased to increase the Knudsen number. The number of bins is set according to

a thumb-rule given in Eq. 2.22. The mean properties are averaged once the system reaches a

steady state. In general the properties are calculated over at least N*5000 collisions. Table 3.1

gives details about the system parameters used to obtain the mean fields in different regimes.
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Order of Knudsen Number L/W N Knudsen number Number of bins

O(1) 0.0608 200 1.204 25

O(0.1) 0.782 2500 0.101 300

O(0.01) 3.14 10000 0.039 1000

Table 3.1: Parameters used in simulations for different orders of Knudsen number.
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Figure 3.1: Granular temperature (T) (main panel), mean stream-wise velocity (U) (top inset)
and volume fraction (ν) (bottom inset) versus position at different orders of Knudsen number
for en=0.99, βw=-0.5.

As seen in Fig. 3.1, the temperature profile is bimodal and it is pronounced for Knudsen

number of O(0.01). The granular temperature is studied more rigorously in the next section.

The density profile shown in the lower inset of Fig. 3.1 shows inverse behavior of granular

temperature. The density profile is peaked at the center of the channel for Kn ∼ O(0.01) which

indicates accumulation of particles at the center of the system, unlike that of Kn ∼ O(0.1) and

Kn ∼ O(1). The ratio of wall-particle to particle-particle collision increases in case of higher

Knudsen number flows which in turn leads to homogeneous system. However, significant clus-

tering at the center of the system is seen in lower Knudsen flows. Lower Knudsen number

implies larger width of the channel. Hence, the effect of the wall is not felt near the center of the

system. On examining the velocity profile shown in the top inset of Fig. 3.1, we see that the slip

near the wall increases as the Knudsen number is increased. The velocity profile is sharper for

Kn ∼ O(0.01). The slip velocity and wall temperature details will be dealt in detail in Chapter 4.

3.2.1 Mass flow rate versus Knudsen number

The length of the system is kept constant for all simulations at a given density, and the width is

varied to calculate the mass flow rate at different orders of Knudsen number. The length (L/d)

of the system is 500.0, 200.0 and 60.0 for ν = 0.01, 0.1, 0.3, respectively.
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The plots of Knudsen number versus mass flow rate for varying wall roughness (βw) for ν=0.01,

0.1 and 0.3 are shown in Figs. 3.2, 3.3 and 3.4, respectively. The mass flow rate is calculated

as:

Q =

∫

νUdy

ν̄g
1

2W
3

2

, (3.3)

which has been made dimensionless.

The perfectly rough walls corresponding to βw=1.0 has the lowest mass flow rate (Q) at all

volume fractions. The denser systems have relatively higher mass flow rates for a given Knudsen

number and wall restitution coefficient. This is because higher density implies increased particle-

particle interactions compared to wall-particle interactions, leading to increased clustering at the

center and hence larger mass flow rates. It is observed that Knudsen number decreases with

increase in density of the system for a fixed width (W/d) of the system.

For a fixed width of the channel, both the Knudsen number and mass flow rate increase with

the change in βw from 1.0 to -1.0 (i.e with decreasing wall roughness). The plots corresponding

to βw ≥ 0.0 (Figs. 3.2a, 3.3a, 3.4a) show that the flow rate decreases in a similar fashion for

all positive values of wall restitution coefficient. The wall roughness, which is corresponds to

-1.0 < βw < 0.0, yields results which are non-monotonous with Knudsen number. The flows

with high-slip show a drastic increase in the mass flow rate. The high-slip walls tend to align

the particles which collide with the wall along the direction of gravity which in turn increases

the mass flow rate. The same is seen from Figs. 3.2b, 3.3b and 3.4b. The mass flow rate,

particularly for βw > -0.9, decreases rapidly for Kn ∼ O(0.01), becomes flatter at Kn ∼ O(0.1)

but later decreases faster for Kn > 1.

At lower Knudsen numbers (Kn < 0.01) the particle-particle collisions become important but

as the width is decreased in order to span higher Knudsen regimes the wall-particle collisions

dominate. The dense flows in narrow channels lead to Kn decrease below 0.01 as seen in Fig.

3.4b. For this case, the flow rate decreases with the decrease in Knudsen number below Kn ∼
0.005.

A schematic of the Knudsen-paradox predicted by Knudsen (1909); Toschi & Succi (2005);

Dongari et al. (2009); Taheri & Struchtrup (2012) is shown in Fig. 3.5. Results which predicted

Knudsen paradox were done by considering a mixture of reflection and bounce-back [Succi

(2002)], implementing isothermal wall [Taheri & Struchtrup (2012)] or by considering that the

particles loose their memory once they hit the the wall and the outgoing particles velocities are

random. These boundary conditions are not realistic for granular flows. Thus, by comparing

our results with Fig. 3.5, we find that Knudsen-paradox is absent in a dilute granular Poiseuille

flow.

3.2.2 Bimodality of granular temperature

Rarefied gas flow between two plates has shown a deviation in the general hydrodynamics when

it comes to the temperature profile. Mansour et al. (1997) was one of the first to simulate dilute

Poiseuille flow for elastic Maxwellian molecules and reported the clear presence of bimodality

in the temperature at a Knudsen number as low as 0.01. Aoki et al. (2002) did asymptotic

analysis for rarefied flows in low Knudsen regimes, and numerical analysis for intermediate
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Figure 3.2: Plot of mass flow rate (Q) as a function of Knudsen number for (a) βw ≥ 0.0 (b) βw
< 0.0. The parameters are en=0.99, L/d=500.0, ν=0.01.
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Figure 3.3: Plot of mass flow rate (Q) as a function of Knudsen number for (a) βw ≥ 0.0 (b) βw
< 0.0. The parameters are en=0.99, L/d=200.0, ν=0.1.

and low Knudsen number flows. Tij & Santos (2004) studied the Poiseuille flow of granular

particles subjected to constant gravitational force and white noise in two-dimensions in inelastic

regime. The later work showed that the decrease in the normal restitution coefficient (en)

moves the maxima seen in the granular temperature profile towards the center of the system for

a given gλ0/(v0)
2 where λ0 is the mean free path in the center of the system, T0 is the granular

temperature at the center of the system and g is the gravitational acceleration. This behavior

reverses when en reduces below 0.4. They also found that the location of peaks in the granular

temperature occur at ∼ 3 mean free paths from the center of the system for gλ0/(v0)
2=0.05.

The ratio (T0-Tmax)/T0 is approximately 10 times the square of the non-dimensional number
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Figure 3.4: Plot of mass flow rate (Q) as a function of Knudsen number for (a) βw ≥ 0.0 (b) βw
< 0.0. The parameters are en=0.99, L/d=60.0, ν=0.3.
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Figure 3.5: Schematic showing Knudsen paradox.

gλ0/(v0)
2. In this section we discuss our simulation results with reference to the theoretical

work reported by Tij & Santos (2004).

Effect of restitution coefficient

The raw data of granular temperature is fluctuating and hence to smoothen the curve, running

averages are taken as follows -

Ti =

∑i+n
j=i Tj

n
, yi =

∑i+n
j=i yj

n
, (3.4)

where n ∼ 5 to 10, which corresponds to spatial averaging over bins.

All simulations in this section are done for L:W = 2.94:1, βw = 0.0, N = 1500.

The effects of en on the temperature bimodality for ν = 0.01, 0.1 and 0.3 are shown in Figs.

3.6, 3.8 and 3.10, respectively. The channel widths for ν=0.01, 0.1, 0.3 are 200.0, 63.0 and
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Figure 3.6: (a)Variation of granular temperature with restitution coefficient (main panel). Top
left inset: Maximum temperature versus en. Top right inset: Position of maxima at different en
(b) Centerline mean free path (left inset), centerline granular temperature (right inset) versus
en for βw=0.0, ν=0.01, L/d=589.1.0, W/d=200.0, N=1500.

36.5, respectively. The main panel in Figs. 3.6a, 3.8a and 3.10a shows the smoothened data

of granular temperature for en ranging from nearly elastic to inelastic. The top left and right

insets show the value of the peak granular temperature [(T/T0)max] and the position of this

peak [(y/λ0)Tmax)] as a function of en. The variation of centerline mean free path and granular

temperature are shown in Figs. 3.6b, 3.8b and 3.10b. One cannot simulate beyond a certain

inelasticity for a given system due to the problem of inelastic collapse as discussed in Chapter

2.

The bimodality becomes pronounced with the increase in inelasticity as shown in the plots of

peak temperature versus en in top left inset of Figs. 3.6a, 3.8a, 3.10a. The top right insets

indicates that the position of the bimodal peak initially decreases slightly, reaches a minima and

increases further on. But beyond a certain value of en the position of the peaks rapidly increases.
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Figure 3.7: Snapshots of instantaneous particle positions for en=0.95 (Fig. 3.7a), en=0.65 (Fig.
3.7b) and en=0.26 (Fig. 3.7c) corresponding to Fig. 3.6.

This value of en is dependent on the density of the system; it appears closer to the elastic limit

for denser systems. The value of en beyond which the bimodal peaks start moving away from

the center rapidly is ∼0.3, ∼0.7 and ∼0.8 for ν = 0.01, 0.1 and 0.3, respectively. In order to

understand the reasons for such anomalous behavior, a plot of λ0 as a function of en is shown in

the left panel of Figs. 3.6b, 3.8b and 3.10b. The centerline granular temperature (T0) decreases

sharply and the curve flattens out at lower dissipations as seen in the right panel of Figs. 3.6b,

3.8b and 3.10b. The centerline mean free path (λ0) increases initially as en is decreased, reaches

a maxima and decreases beyond a certain value of en. The plug flow and wavy structures as

reported by Liss et al. (2002) and Alam et al. (2009) are seen in regions where the centerline

mean free path increases. The flow transitions from plug to slug as the dissipation in the system

is increased. The region where the mean free path decreases with decrease en represents the

slug flow region. The plug and slug flow regions are marked in Figs. 3.6b, 3.8b and 3.10b. The

snapshots of plug and slug flows are shown in Figs. 3.7, 3.9 and 3.11. A detailed study of plug

and slug-type flows is provided in Chapter 5.

Effect of wall roughness

The granular temperature versus distance curves are smoothened as per Eq. 3.4. The effect

of wall roughness (βw) on the temperature profile is studied in Fig. 3.12. The granular tem-

perature (T) is normalized with the centerline temperature (T0), which is plotted against y/λ0

where λ0 is the centerline mean free path. The smoothened curve is shown in the main panel.

It is observed from the graph that as the boundaries are made very smooth (βw ∼ -1) or very

rough (βw ∼ 1), the peaks move away from the center. Thus for easier identification of the peak

most of the simulations in this section are carried on for βw ∼ 0.0.

Effect of volume fraction

Fig. 3.13 shows the variation of granular temperature at different volume fractions, for en=0.9

and βw=0.0. For L/d=1000, W/d=1570.0, en = 0.9 and βw= 0.0, the increase in volume fraction
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Figure 3.8: (a)Variation of granular temperature with restitution coefficient (main panel). Top
left inset: Maximum temperature versus en. Top right inset: Position of maxima at different en
(b) Centerline mean free path (left inset), centerline granular temperature (right inset) versus
en for βw=0.0, ν=0.1, L/d=187.0, W/d=63.0, N=1500.

(ν) leads to broader temperature profiles. The maximum temperature (Tmax) along with the

position of this peak (ymax) increases with increasing ν. The peaks for ν = 0.001, 0.002, and

0.005 appear at 2.4, 3.3 and 4.8 times the mean free path, respectively.

3.3 Velocity distribution function

Here we discuss results on VDF in a dilute (ν = 0.01) granular Poiseuille flow. The goal in this

section is to assess the effect of normal restitution coefficient (en) and the wall roughness (βw)

on VDF over different orders of Knudsen number in a dilute granular Poiseuille flow.
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Figure 3.9: Snapshots of instantaneous particle positions for en=0.95 (Fig. 3.9a) and en=0.8
(Fig. 3.9b) corresponding to Fig. 3.8.

3.3.1 Varying normal restitution coefficients

The stream-wise mean velocity profile for Kn ∼ O(1), Kn ∼ O(0.1) and Kn ∼ O(0.01) are

plotted for en = 0.99, 0.9 and 0.85 in Fig. 3.14. The velocity profiles overlap for all values of

en for Kn ∼ O(1) as seen in the bottom panel of Fig. 3.14. For lower Knudsen numbers [O(0.1)

and O(0.01)] the slip near the wall increases with increase in inelasticity as seen in the main and

top panel of Fig. 3.14.

To understand the effects of particle-particle dissipation on the system-distribution function,

wall restitution coefficient (βw) is set to -0.9, volume fraction (ν) to 0.01, wall-particle normal

restitution coefficient (ew) to 1 and the normal restitution coefficient (en) is varied. This value

of wall restitution coefficient βw = -0.9 corresponds to a nearly smooth wall. The fluctuating

velocity (ui) is normalized with standard deviation (σi =
√
ui2). Stream-wise [P (ux/σx)] and

cross-stream [P (uy/σy)] fluctuating velocity distribution plot for quasi-elastic limit (en=0.99)

over different orders of Knudsen number is plotted in Fig. 3.15a and Fig. 3.15b. The y-axis is

normalized by the area under the curve. The green solid is a reference to Gaussian distribution.

The main panel in each the VDF plot shows the distribution in the wall bin. The upper and lower

insets show the distribution at intermediate and middle bin of the system. The intermediate

bin is located between the wall bin (bin=1) and the center bin. Most of the distributions tend

to obey Gaussian distribution.In order to find out the behavior at high velocity, log-log plots of

the VDF are shown in Fig. 3.15c and Fig. 3.15d. The data points corresponding to |ux|,|uy|
< 1 are ignored to calculate the exponent for the high energy tails. As the VDF seems to be

symmetric, both tails are analyzed together. The scatter plots marked by open circles represent

the data from the wall bin and those marked by stars are for the center bin. It is seen that the

exponent α ∼ 2.0 in all middle bins. There is a minor decrease in the exponent (∼ 1.84 to 1.9)

for lower Knudsen number in the wall bin which is attributed to the wall roughness.

Figs. 3.16a and Fig. 3.16b show the velocity distributions for the inelastic case of en =
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Figure 3.10: (a)Variation of granular temperature with restitution coefficient (main panel). Top
left inset: Maximum temperature versus en. Top right inset: Position of maxima at different en
(b) Centerline mean free path (left inset), centerline granular temperature (right inset) versus
en for βw=0.0, ν=0.3, L/d=107.6, W/d=36.5, N=1500.

0.9 and β = -0.9. Both distributions are shifted from the Gaussian distribution and appear

to be skewed. To understand the degree of deviation from the Gaussian, the kurtosis (κi) and

skewness (si) was calculated in all the bins as shown in Fig. 3.18. Kurtosis tells the peakedness

of the distribution. The equation to calculate the kurtosis for a finite number of points (m) is

given by:

κi =
σm
j=1(Yj − Ȳ )

4

σ4
i (m− 1)

(3.5)

where σi is the standard deviation and Ȳ is the mean. Kurtosis is equal to 3 for a Gaus-

sian/normal distribution. The bin-wise kurtosis for stream-wise and cross-stream fluctuating

velocity for Kn ∼ O(1), Kn ∼ O(0.1) and Kn ∼ O(0.01) are shown in Figs. 3.18a and 3.18b. It

is seen that the κi is high near the channel centerline for Kn ∼ O(0.01) which indicates maximum
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Figure 3.11: Snapshots of instantaneous particle positions for en=0.95 (Fig. 3.11a) and en=0.83
(Fig. 3.11b) corresponding to Fig. 3.10.
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Figure 3.12: Granular temperature at varying wall restitution coefficients (βw) for ν=0.001,
en=0.6, W/d=1570.0, L/d=1000, N=2000. Inset indicates the raw data at different βw. Main
panel shows the smoothened values of the raw data.

peakedness in the VDF near the channel center compared to any other bin. Kurtosis is close to

3 for Kn ∼ O(0.1) and Kn ∼ O(1).

The skewness is a measure of asymmetry of the distribution. It tells how much and to which side

the distribution is tilted with respect to the mean. For a given set of data points (m), skewness

is given by:

si =
Σm
j=1(Yj − Ȳ )

3

σ3
i (m− 1)

(3.6)

where σi is the standard deviation in the ith direction and Ȳ is the mean. The skewness is 0 for

a Gaussian/normal distribution which implies that the distribution is symmetric. A negative
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Figure 3.13: Granular temperature at varying volume fraction (ν) for βw=0.0, en=0.9,
W/d=1570.0, L/d=1000.

value of si tells that the distribution is skewed towards the left side and a positive value - towards

the right. The skewness in different bins for x and y-velocity is shown in Figs. 3.18c and 3.18d.

The skewness of P(ux) are all negative; it is maximum at the center of the channel for Kn ∼
O(0.01) which tells that the left tails are longer than the right tails. The cross-stream skewness

is symmetric around the channel centerline as found previously by Alam & Chikkadi (2010).

The high energy tails for both x-velocity and y-velocity for Kn ∼ O(0.01) clearly deviate from

Gaussian distribution. The tails of the distribution follow a stretched exponential given by -

P (ui) = C exp[−γ(ui/σi)α] (3.7)

The exponent α is obtained by taking a double logarithm of Eq. 3.7 as previously done by

van Noije & Ernst (1998) and van Zon & MacKintosh (2005). The exponents were calculated

separately for the left (Figs. 3.17a, 3.17c) and right (Figs. 3.17b, 3.17d) velocity tails as the dis-

tribution is asymmetric. The value of α is slightly higher for the positive velocity tail compared

to negative fluctuation velocity tail for the x-velocity. This implies that the there is a higher

probability of particles having negative fluctuating velocity. The decrease in en from 0.99 to

0.9 decreases the exponent from 1.3-1.4 to ∼1.0 in the wall bin, and from ∼2.0 to ∼1.0 in the

center for Kn ∼ O(0.01). The value of α for higher Knudsen numbers [Kn ∼ O(0.1),Kn ∼ O(1)]

remains ∼2.0 throughout the system, representing a Gaussian.

In the next trial (Figs. 3.19a, 3.19b) the system is made more inelastic by decreasing en to

0.85. The exponents of the VDF for Kn ∼ O(0.1) and Kn ∼ O(0.01) further decrease compared

to en=0.99 and 0.9 whereas the values of the exponent for Kn ∼ O(1) remain almost unaffected

throughout the system. The deviations of high energy tails are studied in a manner similar

to Figs. 3.17a, 3.17b, 3.17c, 3.17d. The trend of the right velocity tail of P(ux) with higher

exponent for inelastic case persists. It is seen that for Kn ∼ O(0.01) the exponent lies at around

∼0.85 - 0.96 for both right and left tails. The exponent α is reduced to ∼1.3 - 1.5 for VDFs
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for Kn ∼ O(1) (bottom inset), Kn ∼ O(0.1) (top inset), Kn ∼ O(0.01) (main panel).

throughout the system for Kn ∼ O(0.1).

Thus we can conclude that the exponent α ∼2.0 for quasi-elastic system (en=0.99) for all

orders of magnitude of Knudsen. It decreases with decrease in Knudsen number for inelastic

system and also with values of en. In other words the distribution becomes broader with decrease

in Knudsen number. The asymmetric tails cannot be expressed in terms of a single exponent and

hence are studied separately. The high velocity tails for positive velocities have higher exponent

than negative velocities for x-velocity. The difference between the exponents of the right and

the left tail proportionally increases with the decrease in en.

3.3.2 Varying wall restitution coefficients

With the increase in Knudsen number, the wall roughness (βw) becomes increasingly important.

This is because a higher Knudsen number implies lesser W/d which leads to an increase in the

ratio of wall-particle to particle-particle collisions. In this section we probe the effect of wall

roughness (βw ≤ 0.0) on the VDF for varying Knudsen number. In order to understand the

effect of wall roughness on the system the normal restitution coefficient(en) for particles is set

to 0.99, the wall-particle normal restitution coefficient (ew) to 1 and the wall-particle tangential

restitution coefficient is varied. The wall restitution coefficient close to no slip boundary con-

dition causes some amount of back flow of particles resulting in reduction of mean free path of

particles. This is why we cannot span all three orders of magnitude of Knudsen number (1, 0.1

and 0.01) for very rough walls (βw ∼ 1).

The plots for velocity distribution at ν=0.01 and for a smoothness β=-0.9 for different orders
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Figure 3.15: Probability distribution of ux (a) and uy (b) fluctuating velocities in wall bin (main
panel), intermediate bin (top inset) and center bin (bottom inset). Logarithmic plot for ux (c)
and uy (d) velocity distribution tail in the center bin (marked in open circles) and wall bin
(marked in stars) for en=0.99, β=-0.9, ν=0.01.



34 Chapter 3. Mean fields and velocity distribution function

−5 0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

P
(u

x/σ
x)

u
x
/σ

x

Wall 

 

 

−5 0 5

10
0 Intermediate

−5 0 5

10
0 Center

O(1)
Gaussian
O(0.1)
O(0.01)

(a) Stream-wise velocity(ux) distribution function

−5 0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

Wall

P
(u

y/σ
y)

u
y
/σ

y

 

 

−5 0 5

10
0 Intermediate

−5 0 5

10
0 Center

O(1)
Gaussian
O(0.1)
O(0.01)

(b) Cross-stream velocity(uy) distribution function

Figure 3.16: Probability distribution of ux (a) and uy (b) fluctuating velocities for en=0.90,
β=-0.9, ν=0.01 in wall bin (main panel), intermediate bin (top inset) and center bin (bottom
inset).
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Figure 3.17: Logarithmic plots of negative ux (a) and uy (c) velocity tails. Logarithmic plots
of positive ux (b) and uy (d) velocity tails for en=0.9, β=-0.9, ν=0.01. Open circles and stars
represent the values in center and wall bin, respectively.
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Figure 3.18: Kurtosis (a, b)and skewness (c, d) of ux and uy velocities, respectively for en=0.9,
β=-0.9, ν=0.01.
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of Knudsen number have already been discussed in the previous section (Figs. 3.15a, 3.15b). It

is seen that the exponent is ∼2.0 for all distributions except at the wall for Kn ∼ O(0.01) where

the exponent is ∼1.3-1.4. Figures 3.20a and 3.20b show the distribution of velocity in x and y

direction for βw=-0.5 and en=0.99. It can be seen that the x-distribution is no longer symmetric

and one can no longer describe it with a single exponent. Thus the tails of the distribution are

studied separately by logarithmic graphs. The following is inferred : (i) a distinct peak appears

at all orders of Knudsen number in the negative velocity tail which is discussed in detail by Alam

& Chikkadi (2010). The peak persists throughout the system for Kn ∼ O(1) but diminishes as we

move towards the center of the system for Kn ∼ O(0.1) and Kn ∼ O(0.01). (ii)The y-velocity

remains close to Gaussian distribution with the exponent lying in the range 1.9-2.0 (iii)The

exponent decreases as the Knudsen number is decreased in the wall bin for both distributions

(iv) In the x-distribution the left velocity tail has higher exponent than the right velocity which

is opposite to what is observed in case of smooth walled (βw ∼ -1) inelastic systems.

On further increasing the dissipation at the wall to the maximum (βw=0.0), a distribution

of both the velocities is obtained as shown in Fig. 3.21a and Fig. 3.21b. It is seen that the

peak in the distribution is enhanced compared to Fig. 3.20a and Fig. 3.20b. The deviation

from Gaussian can be analyzed by studying the kurtosis and skewness in each bin as shown in

Fig. 3.22. The kurtosis for Kn ∼ O(0.1) and Kn ∼ O(0.01) in the stream-wise velocity is ∼3.0

near the center bin but >3.0 close to the wall bins. The kurtosis for Kn ∼ O(1) is ∼4.9 which

indicated peakedness throughout the system. The cross stream kurtosis is ∼3.0 throughout the

system for all orders of Knudsen number. Skewness which speaks about the symmetry of the

system tells that the stream-wise distribution (P(ux)) is skewed near the walls for Kn ∼ O(0.1)

and Kn ∼ O(0.01) but becomes symmetric as we move away from the wall towards the center.

The cross-stream skewness is symmetric with respect to the channel centerline. The peak which

appears in the stream-wise velocity in the wall bin is independent of the order of Knudsen

number but depends on the dissipation at the wall. The effect of high dissipation on cross-

stream distribution is seen distinctly in all bins for Kn ∼ O(1) whereas the effect reduces for

lower Knudsen numbers as we move away from the wall. These high velocity tails are described

in terms of two exponents- one for the left tail and the other for the right.

The P(uy) exhibits bimodal behavior for higher Knudsen number (see main panel in Fig. 3.23).

The bimodality is due to the dissipation at the walls [Alam & Chikkadi (2010)] and as the ratio

of wall-particle to particle-particle collision becomes higher in case of high Knudsen numbers

the bimodality gets pronounced as seen in Fig. 3.23. The top left inset which shows heights of

the peak (H) as a function of Knudsen number exhibits a linear increase. The top right inset

which shows that there is a increase in the distance between the peaks (P) with the increase in

Knudsen number.
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Figure 3.20: Probability distribution of (a) ux and (b) uy fluctuating velocities for en=0.99,
β=-0.5, ν=0.01 in wall bin (main panel), intermediate bin (top inset) and center bin (bottom
inset).
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Figure 3.21: Probability distribution of (a) ux and (b) uy for en=0.99, β=0.0, ν=0.01 in wall
bin (main panel), intermediate bin (top inset) and center bin (bottom inset).
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Figure 3.22: Kurtosis (a, b)and skewness (c, d) of ux and uy velocities, respectively for en=0.99,
β=0.0, ν=0.01.
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Chapter 4

Slip velocity and wall temperature

Incompressible Navier-Stokes equation is given by:

∇.v = 0 (4.1)

ρ
Dv

Dt
= −∇p+∇.[µ[∇v + (∇v)T ]] (4.2)

where v is velocity, p is pressure, µ is viscosity and t is time. No-slip boundary condition

corresponds to the velocity of the liquid at the wall is same as the wall velocity. Though

theoretically no-slip seems to be the best answer for what happens near the wall, but some non-

Newtonian fluids like polymer melts [Denn (2001)] and rarefied gases [Knudsen (1909), Porodnov

et al. (1974)] exhibit significant slip at the solid boundaries. Lauga et al. (2005)] describes the

reviews the experimental, theoritical and computational research done on slip flows.

The Navier-Stokes equation holds good only in the continuum regime [Kn < 0.01]. In the slip

flow regime [0.01 < Kn <0.1], the Maxwell’s velocity slip and von Smoluchowski’s temperature

jump can be used as boundary conditions in the NS equation to solve for the flow [Karniadakis

et al. (2005)].

Uw − U =
(2− σv)

σv
Kn

∂Uw

∂y
(4.3)

Tw − T =
(2− σT )

σT

2γ

γ + 1

Kn

Pr

∂T

∂y
(4.4)

where Uw, Tw are the velocity and temperature of the liquid close to wall; U and T are the

velocity and temperature of the solid boundary; Pr is the Prandtl number; σv and σT are

the tangential and thermal accommodation coefficients. Thermal accommodation coefficient

gives the exchange of heat fluxes of incoming and outgoing molecules with respect to time. σT

= 1 implies total heat exchange. Tangential accommodation coefficient gives the amount of

tangential momentum exchange between the incoming and outgoing molecules. σv = 0 implies

specular reflection, where the normal velocity component is reversed. σv = 1 signifies diffuse

reflection where on collision with the wall all the tangential velocity is absorbed by the wall.

For Kn > 0.1, higher order corrections need to be applied to describe the stress tensor and

heat flux vectors. The higher order corrections are given by Burnett and Woods equation which

are derived from Boltzmann equation based on Chapman-Enskog expansion of the velocity

distribution function (f).

f = f0(1 + aKn+ bKn2) (4.5)

where f0 is Maxwell distribution function; a and b are functions of density, temperature and

velocity. Zeroth order solutions give the Euler equation, first order gives the Navier-Stokes

equation and the second order gives the Burnett equations. Karniadakis et al. (2005) gave a
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Figure 4.1: Variation of Knudsen number with en (a) and βw (b) at different volume fractions.

generalized velocity boundary condition which incorporates the second order correction as

Uw − U =
(2− σv)

σv

Kn

(1− bKn)
(
∂U

∂n
)w (4.6)

Chikkadi & Alam (2009) have studied the variation slip velocity and gradient of slip with Knud-

sen number for granular Poiseuille flow through event driven simulations. They assumed a

relationship as Uw ∝ Knγ dUw

dy and determined the value of γ for different values of en near elas-

tic limit. Here the Knudsen number was varied by changing the volume fraction of the system.

In the present study, the volume fraction (ν) in the system is kept constant and the Knudsen

number is varied by varying the width (W/d) of the channel. In Sec. 4.1, the slip velocity and

its gradient are discussed; and in Sec. 4.2 the wall temperature and its gradient are looked into.

4.1 Slip velocity and gradient of slip velocity

The domain under consideration is divided into bins as per Eq. 2.22. The velocity in the wall

bin is considered to be the slip velocity. The effects of Knudsen number, en and βw on slip

velocity are studied. Later, an effort is made to explain the slip velocity in terms of Knudsen

number and gradient of slip velocity. All simulations are done for Kn > 0.01, ν = 0.01 and

ew=1.0.

Fig. 4.1a shows the variation of Knudsen number with the normal restitution coefficient (en)

at βw = -0.1 and W/d = 31.0 at four different values of ν - 0.003, 0.015 ,0.1 and 0.4. For

volume fraction of 0.015 and 0.003 one can simulate the flows up to en ∼ 0.1. As the system is

made more denser, there is an increase in particle-particle interaction leading to clustering and

thus inelastic collapse occurs. Though the TC-rule described in Chapter 2 is applied, beyond

a certain dissipation it becomes invalid. The inset in Fig. 4.1a shows the variation of Knudsen

number with restitution coefficient for ν = 0.4. It is seen that with the decrease in restitution

coefficient the Knudsen number increases, reaches a maximum and finally decreases. The posi-
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Figure 4.2: Variation of slip velocity (Uw) with en (a) and βw (b) at different volume fractions.

tion of this maximum depends on ν. This is due to the transition of the flow from plug to slug

as the restitution coefficient is reduced as described in detail in section 3.2.2. As the mean free

path is inversely related to the system density, the decrease in the volume fraction leads to an

increased Knudsen number.

Fig. 4.1b shows the variation of Knudsen number with wall restitution coefficient (βw) at en =

0.99, W/d = 31.0. Rough walls (βw ∼ 1) have low Knudsen number and smooth walls (βw ∼ -1)

have high Knudsen numbers for all volume fractions. Since the mean free path (λ) is inversely

proportional to the density of the system, for a given value of βw the Knudsen numbers of dilute

flows are larger than those of moderately dense (ν = 0.15) and highly dense granular flows (ν

= 0.4). It is interesting to see the evolution of the graph as the βw is decreased from 1 to -1.

For low ν (0.015, 0.003), a small decrease in roughness of the wall leads to a large increase in

Knudsen number.

Fig. 4.2a shows the variation of slip velocity (Uw) with restitution coefficient at different volume

fractions for βw = -0.1, W/d = 31.0. The slip velocity decreases with the increase in dissipation

(1-e2n) for dilute flows as seen in ν = 0.015 and 0.003. The inset shows the variation of Uw with

en for moderately dense flow (ν = 0.15) and highly dense flows (ν = 0.4). It shows a slight but

insignificant rise in the slip velocity with decrease in en.

Fig. 4.2b shows the effect of wall roughness on the slip velocity (Uw) at en = 0.99, W/d = 31.0.

The flow slips the least for rough walls (βw ∼ 1) and most for smooth walls (βw ∼ 1). The

curves of Uw versus βw are concave for very dense systems as seen for ν = 0.4. As the density

is decreased, the trend of the curve gradually changes from concave to convex as seen for ν =

0.003. At a given βw, the slip is maximum in dilute flows.

Fig. 4.3a shows the variation of gradient of slip as a function of normal restitution coefficient

(en) for βw = -0.1, W/d = 31.0 at four different volume fractions. The gradient of slip initially

decreases with the decrease in en, reaches a minima and further increases as seen for ν = 0.4.

Though not significant, a slight increase in the gradient of slip near the wall is observed in dilute

flows (ν = 0.015 and 0.003). Gradient of slip velocity as a function of βw is shown in Fig. 4.3b

for quasi-elastic system (en = 0.99), W/d = 31.0. The gradient of slip is minimum for smooth
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Figure 4.3: Variation of gradient slip velocity (dUw/dy) with en (a) and βw (b) at different
volume fractions.

walls and increases with the increase in the roughness of the walls.

Till this section variation of slip and its gradient is studied with respect to the input pa-

rameters - en, βw and ν. The width of the system was kept constant and the length (L/d) was

varied to change the volume fraction. In the next section, we study the variation of slip and

its gradient with respect to the Knudsen number. For a given volume fraction, the L/d is fixed

and the Knudsen number is changed by varying the width (W/d) of the channel. Most of the

simulations in this section are done for ν = 0.01. For low Knudsen number trials the curve raw

data fluctuates as shown in Fig. 4.4a. The data is smoothened by the following equations -

Ui =

∑i+n
j=i Uj

n
yi =

∑i+n
j=i yj

n
(4.7)

where n = 1.5% of the total number of bins initially present, i.e if a trail has 1000 bins then

running average is taken over 15 points. The smoothened curve is shown in red line.

Slip velocity as a function of Knudsen number is shown in main panel of Fig. 4.4b for en =

0.99, 0.9, 0.8 and 0.7 with ν set to 0.01. At low Knudsen number the slip velocity drastically

increases. The slope of the curve decreases for higher Knudsen number and finally reaches a

constant slope at high Knudsen number (Kn > 1). For a given width of the channel, Knudsen

number is higher for lower values of en. The slip velocity is higher for quasi-elastic (en ∼ 1) trials

than for inelastic systems (en < 1). The gradient of slip is plotted as a function of Knudsen

number for different values of en in Fig. 4.7b.

In order to derive the relationship between of slip velocity, gradient of slip velocity and

Knudsen number, we restrict the normal restitution coefficient to 0.9< en <1 and try to derive

a relation between them. Inset in Fig. 4.5 is a plot of log10(Uw) versus log10(Kn). In the region

between Kn ∼ [0.01, 0.32] a power-law (Uw ∝ Knα) behavior is observed. The exponent α =

0.87, 0.83 and 0.73 for en = 0.99, 0.95 and 0.9, respectively. The residuals for these power law
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Figure 4.4: (a) Stream-wise velocity (U) showing the raw data and smoothened data for
Kn=0.02, ν = 0.01. Variation of slip velocity (b) and gradient of velocity (b) with Knudsen
number at different values βw for ν = 0.01.

fits are < 0.005. Beyond Kn ∼ 0.32 all the points at different values of en merge and the value

of the α decreases. Below Kn ∼ 0.01, the slip velocity shows different values of exponent for

different restitution coefficients.

From the main panel of Fig. 4.6, it is difficult to predict the behavior of gradient of slip with

Knudsen number. Hence, a logarithm plot is shown in the inset of this figure. If one assumes

that the curve behaves as per power-law (dUw/dy ∝ Knᾱ), then depending on the value of

ᾱ three regimes can be outlined - Kn > 0.1 where ᾱ < 0, Kn < 0.07 where ᾱ > 0 and the

intermediate regime [0.07 < Kn < 0.1] where ᾱ ∼ 0.

Fig: 4.7a shows the behavior of slip velocity as a function of Knudsen number at different

wall restitution coefficient (βw) in dilute flows. Slip velocity increase with the decrease in wall

roughness. It varies largely with Knudsen number for smooth walls (βw ∼ -1) rather than rough
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walls (βw ∼ 1) as previously predicted by Chikkadi & Alam (2009). For smooth walls, the slip

velocity reaches a constant value at high Knudsen numbers.

To understand the effect of wall roughness on gradient of slip velocity with Knudsen number,

a logarithmic plot of slip velocity (Uw) versus Kn is shown in Fig. 4.7b. Roughness does not

significantly affect the gradient of slip. It indicates that at low Knudsen number the gradient of

slip increases, reaches a maximum (Kn ∼ 0.1) and later decreases for higher Knudsen number.



4.2 Wall temperature and gradient of wall temperature 49

0 1 2 3 4 5 6
Kn

0

0.2

0.4

0.6

0.8

U
w

/U
0

0.9
0.5
0.0
-0.5
-0.9

β
w

υ = 0.01
 e

n
 = 0.99

(a)

0.01 0.1 1
Kn

0.1

1

10

d(
U

w
/U

0)/
dy

0.9
0.5
0.0
-0.5
-0.9

β
w

e
n
  = 0.99

(b)

Figure 4.7: Variation of slip velocity (a) and gradient of velocity (b) with Knudsen number at
different values βw for ν = 0.01.

4.2 Wall temperature and gradient of wall temperature

Wall temperature decreases with decrease in en close to elastic limit (en ∼ 1), reaches a minima

and later increases as shown in Fig: 4.8a. This decrease is not significant in dilute systems (ν =

0.003 and 0.015). The magnitude of increase of Tw is proportional to the volume fraction of the

system. The blue line which represents ν = 0.4 shows a large increase as compared to others.

No relationship was found between the magnitude of wall temperature and the volume fraction

from these results.

The variation of wall temperature with βw at different volume fractions (ν) is shown in Fig.

0 0.2 0.4 0.6 0.8 1
e

n

0.6

0.8

1

1.2

1.4

1.6

1.8

T
w

0.003
0.015
0.15
0.4

υ

β
w

 = -0.1

(a)

-1 -0.5 0 0.5 1
β

w

0

2

4

6

8

T w

0.003
0.015
0.15
0.4

υ

e
n
 = 0.99 

(b)

Figure 4.8: Variation of wall temperature (Tw) with en (a) and βw (b) at different volume
fractions.

4.8b. The wall temperature is minimum at βw ∼ 0 which corresponds to maximum dissipation.

Tw gradually increases with increase in | βw |.
Next we study gradient of granular temperature (dTw/dy) as a function of en at different volume
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Figure 4.9: Variation of gradient wall temperature (dTw/dy) with en (a) and βw (b) at different
volume fractions.

fractions for βw = -0.1 in Fig. 4.9a. There is almost no change in dTw/dy with en in dilute

flows (ν = 0.003 and 0.015) whereas one can see a significant appreciation in denser systems as

en is decreased. By observing the plot 4.9a, one might think that the magnitude of the gradient

of temperature increases with volume fraction. But Fig. 4.9b shows that the value of gradient

depends on βw. At high dissipations (βw ∼ 0) there is no significant increase in the gradient in

dilute flows but it reaches a maximum for dense flows.
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Figure 4.10: Variation of wall temperature (a) and gradient of wall temperature (b) with Knud-
sen number at different values en for ν = 0.01.

Fig. 4.10a shows the change in Tw with Knudsen number at different densities. For low

Knudsen number (Kn ∼ 10−2) the behavior is unpredictable. With the increase in Knudsen

number the wall temperatures for all values of en become equal to ∼ 0.6. The gradient of wall

temperature is maximum for lower Knudsen number and reduces to 0 as Kn ∼ 1 (Fig. 4.10b.

For a given width of the channel this gradient has a higher value for a less dissipative system.

Fig. 4.11a and Fig. 4.11b show the variation of wall temperature and its gradient with Knudsen
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Figure 4.11: Variation of wall temperature (a) and gradient of wall temperature (b) with Knud-
sen number at different values βw for ν = 0.01.

number at different values of βw. We do not observe any particular trend Fig. 4.11a. The

gradient of wall temperature decreases to 0 with increase in Kn ∼ O(1) (Fig. 4.11b).





Chapter 5

Granular flow in 3-dimensions

Density waves are one of the most intriguing phenomenon observed in granular flows. Ample

experiments have been conducted on about granular flow in a vertical pipe. Horikawa et al.

(1995) studied the density waves in a vertical pipe attached below a conical hopper. The

patterns were analyzed by measuring the intensity of light transmitted across the pipe. An

FFT analysis of the intensity of the light recorded showed that the power spectrum decays

as 1/ fα where α ≈ 1.5. Later Peng & Herrmann (1994), Ichiki (1995) and Moriyama et al.

(1998) conducted similar experiments and found this value to be 4/3. All the experiments find

formation of density waves at a certain distance below the hopper outlet. Raafat et al. (1996)

found that increase in the size of the grain leads to formation of waves farther away from the

inlet. Experiments also show multiple clumps in the vertical pipe. The effect of surrounding

medium is studied theoretically by Ichiki (1995) and experimentally by Horikawa et al. (1995),

Moriyama et al. (1998) and Ellingsen et al. (2010).

Some of the extensive simulations on density waves for 2D Poiseuille flow have been reported by

Liss et al. (2002); Alam et al. (2009). Density waves in 2D and 3D Couette flow is studied by

Conway & Glasser (2004). Effect of system dimensions on the wave pattern is investigated in

detail in their work. They also report formation of double waves in Couette flows in very dense

regimes and also explain the absence of hexagonal close packing for polydisperse systems. It is

reported that addition of gravity in the Couette flow leads to shift of density waves towards the

wall which moves along the direction of gravity. Simulations by Liss et al. (2002) and Conway

& Glasser (2004) broadly classify the structures in density waves into 3 groups - plug, wave and

slug/clump. Later, Alam et al. (2009) reports an additional structure called the varicose mode.

The effects of system dimensions, volume fraction (ν), particle-particle restitution (en) and walls

are studied. It is seen that particle-particle restitution coefficient (en) plays a more important

role than the wall boundary conditions in the formation of density waves. Theoretical work on

granular Poiseuille flows have been done by Riethmüller et al. (1997), Wang et al. (1997), Alam

et al. (2009) and Khain (2011).

In the present chapter the density waves in 3D Poiseuille flow are studied for moderately dense

(ν = 0.15) system. One of the major problems encountered in simulations of inelastic system

is inelastic collapse. It is a condition where there are infinite number of collisions in a short

period of time. This problem is overcome by adopting the TC model suggested by Luding &

McNamara (1998) as described in Sec. 2.3. In Sec. 5.1, mean field results are shown. Velocity

distribution function is studied in Sec. 5.2 for varying en. In Sec. 5.3 we deal with the method

used to systematically analyze density waves. In 5.4, transient and steady state behavior of

density waves formed in flow between two plates and flow in a square duct are examined. In all

cases, a square duct (W=D) is considered to remove the complexity associated with asymmetry

of the system. The last section (Sec. 5.5) deals briefly with the effect of asymmetry (W6=D) on

53
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the flow profiles in a closed duct.

5.1 Mean Fields

The flow between two parallel plates and in a square duct are discussed below. All the simulations

are done for N=125000 and ν=0.15. The ratio of system dimensions is L:W:D=2:1:1 where W/d

=60. Trials are done for three different values of en = 0.99, 0.9 and 0.8. In this section, we

discuss the mean fields (granular temperature (T), volume fraction (ν), stream-wise velocity

profile (U)). Averaging is done as discussed in Sec. 2.5. The system is divided into bins in the

y-direction as given in Eq. 2.22.

5.1.1 Flow between 2 parallel plates

The walls are present in the y-direction and the other two directions, x and z, are periodic. All

mean field profiles are translated along the y-axis for clear visualization of the surface plots. The

wall boundary conditions are - βx = 1.0, βz = 1.0 and ew = 1.0 which corresponds to perfectly

rough walls. The number of bins along the y-direction is fixed to 50. The normalized velocity

in Fig. 5.1a shows that the profile becomes flatter at the center of the system as the en is

decreased. The particles in the system lose their energy leading to accumulation in the center of

the system. Thus, an inelastic system has dilute regions surrounding a central dense core. The

same can be interpreted from the volume fraction (ν) profile as shown in Fig. 5.1b. In extremely

inelastic system these particles arrange themselves into a compact crystalline (hexagonal in 2D)

structures. The reduction in the local mean free path of the particles due to accumulation leads

to reduction in the granular temperature (Fig. 5.1c) at the center, in dissipative systems. Hence,

the granular temperature surface plot is flatter for en=0.99 compared to en=0.80. In inelastic

systems (en < 1), farther from the dense center, the particles are relatively free to move and

hence have higher mean free path. This explains the rugged profile in the granular temperature

plot (Fig. 5.1c) close to the wall.

5.1.2 Flow in a square duct (4walls)

The walls are present in both y and z-directions, and the system is periodic in the x-direction.

The system is divided into 50×50 bins along y and z-direction. The density profile (Fig. 5.2b)

shows that with the increase in inelasticity, particles cluster more near the corners and the

center. At high dissipation (en=0.8), the corners are as dense as the center of the system. The

normalized velocity profile in Fig. 5.2a shows that the velocity is minimum near the walls and the

corners. The velocity profile is flattened in systems with higher dissipation due to accumulation

of particles. As explained previously, regions of low density have high granular temperature and

vice-versa and thus, the granular temperature is minimum at the walls and center as shown in

Fig. 5.1c.
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Figure 5.1: Stream-wise mean velocity (a), volume fraction (b) and granular temperature (c) in
different bins at different en for flow between two parallel plates. N = 125000, βx = βz = 1.0,
W/d = 60.0, L:W:D = 2:1:1 and ν = 0.15.
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Figure 5.2: Flow in square duct: Stream-wise mean velocity (a), volume fraction (b) and granular
temperature (c) in different bins at different en. N = 125000, βw = 1.0, W/d = 60.0, L:W:D =
2:1:1 and ν = 0.15.
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Figure 5.3: Flow between 2 plates: Schematic of the positions of the bins where the VDF is
calculated.

5.2 Velocity distribution function (VDF)

5.2.1 VDF: Flow between two parallel plates

The VDF is calculated for 3 different values of normal restitution coefficient - 0.99, 0.9 and 0.8.

The system is divided into different bins along the direction of the wall. The positions of the

bins is shown in Fig. 5.3. The probability distribution of the bin near the wall (bin=1), the

center (bin=25) and the intermediate (bin=12) for x, y and z fluctuating velocity are shown

in Figs. 5.4a, 5.4b and 5.4c, respectively. In all these figures, the main panel shows the ve-

locity distribution for the wall bin. The top and bottom insets show the distribution in the

intermediate and center bins, respectively. The green line in all figures is a Gaussian curve

which helps in comparing the deviation of the distribution. The following general observations

can be made from the distribution functions: (i) the distribution in all the bins for x, y, and

z fluctuating velocities obey Gaussian distribution in the quasi-elastic limit (en=0.99), (ii) the

velocity distribution obeys almost Gaussian distribution in the wall bin for all values of en, (iii)

decrease in en leads to a broader distributions in bins farther from the walls. The tails of the

distribution tend behave like stretched exponential. The tails also become denser as we move

from the wall towards the center of the system as most clumping happened in the center bin, (iv)

the distributions of y and z-velocity are similar in almost all the bins. On comparing the y and

z fluctuating velocity distributions in the intermediate bin we see that P(uy) has a higher range

[-10, 10] (see top inset of Fig. 5.4b) compared to P(uz) (see top inset of Fig. 5.4c) , (v) P(ux)

distribution in the intermediate and center bin is asymmetric unlike the y and z-distribution.

Its negative tail deviates dramatically from a Gaussian.

5.2.2 VDF: Flow in a square duct

The ratio of L:W:D is 2:1:1 with W/d=60. The fluctuating velocities of the particles at different

bins are found out and the velocity distributions are separately calculated in every bin. In

order to calculate the probability distribution, the system is divided into 50 × 50 bins in x and
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Figure 5.4: P[ux] (a), P[uy] (b) and P[uz] (c) velocity distribution function for flow between two-
parallel plates for different values of en (0.99, 0.9 and 0.8), in wall bin (main panel), intermediate
bin (top right inset) and center bin (bottom right inset). Gaussian distribution is shown by the
solid green line
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Figure 5.5: Flow in square duct: Schematic of the positions of the bins where the VDF is
calculated.

z-direction. Trials are done for three values of en - 0.99, 0.9 and 0.8. The value of ewy = 1.0,

ewz = 1.0 and βw = 1.0 which corresponds to perfectly rough walls.

The VDF for x, y and z velocities are shown in Figs. 5.6a, 5.6b and 5.6c, respectively, in which

the main panel shows the distribution in the corner bin [(nx,nz)=(1,1)], the upper left inset

shows the center bin [(nx,nz)=(25,25)], upper right inset shows the wall bin [(nx,nz)=(25,1)]

and the lower right inset shows the intermediate bin [(nx,nz)=(12,12)]. The green line in the

figures indicates Gaussian distribution. The positions of all the bins is shown in Fig. 5.5.

The following observations are made from the probability distribution plots - (i) the corner bin

distribution is symmetric for all velocities, (ii) decrease in en leads to longer and denser tails in

the corner and the central bin as the particles tend to accumulate, but the same is not seen the

wall bin, (iii) inelastic systems (en < 1.0) have distribution which deviate from the Gaussian

distribution. (iv) the distribution in the stream-wise direction is different in the intermediate

bin for high inelasticity, there is a dominant peak in the positive direction. (v) the x-distribution

in the center bin for lower en is asymmetric and has a flatter tail for the negative velocity. This

is due to the dense arrangement of the particles in the center of the system.

5.3 Density waves: Method of analysis

As already mentioned, the density waves have been studied previously by Liss et al. (2002);

Conway & Glasser (2004) and Alam et al. (2009). We use the same approach and analyze density

waves in 3D Poiseuille flow. In 5.4.1 density waves formed in the flow between parallel plates is

studied. Section 5.4.2 deals with density waves formed in flow in a square duct. Transient and

steady state behavior is studied under separate subsections.

In case of 2D Poiseuille flows, snapshots are taken at different intervals of time to analyze the

different modes of density waves. The system is divided into N1 × N2 cells and the density in

each cell is found. This density is stored in a matrix (N1 × N2).The FFT is applied on this

matrix and Fourier coefficients [a(kx,ky)] of the Fourier series a(kx,ky)exp[i2π([kxx/L][kyy/W ]

are found and stored in the matrix X. The power spectrum (P ) is obtained from the following
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Figure 5.6: P[ux] (a), P[uy] (b) and P[uz] (c) velocity distribution function for flow in a square
duct, for different values of en (0.99, 0.9 and 0.8), in corner bin (main panel), wall bin (top
right inset), intermediate bin (bottom right inset) and center bin (top left inset). Gaussian
distribution is shown by the solid green line
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Figure 5.7: Flow between 2 plates: Average kinetic energy versus time curve for en=0.85, βwz=-
0.6, W/d=60, L/W=2.0, D/W=1.0, N=125000

equation :

P =
2X.conj(X)

(N1N2)2
(5.1)

The power spectrum is normalized by the size of the matrix to remove the dependence of the

chosen mesh. To eliminate the large peak obtained by the mean density of the system, the (0,0)

coefficient of the FFT matrix X is set zero. The primary peaks of the power spectrum are shown

in the results. The secondary peaks are ignored since they could be noise.

In order to use the above method in 3D flows, the channel was divided into slices in all three

directions. The width of the slice is as per Eq. 2.22. If the flow is symmetric around the central

axis as in Fig. 5.9a then the slices can be taken in any part of the channel. But if the flow is

asymmetric (Fig. 5.13a) then three slices (one center and two intermediate) equidistant from

each other are taken.

5.4 Results on density waves

5.4.1 Flow between two parallel plates

The ratio of L:W:D is set to 2:1:1 in the present section. The width (W/d) is 60.0 and restitution

coefficient en is 0.85. The walls are present in the y-direction and its properties - βw, ew are set

to -0.6 and 1.0, respectively. This corresponds to smooth walls. The volume fraction is 0.15 and

the number of particles (N) is 125000. Particles are initially positioned in a cubic lattice and

the initial velocities in all directions are set by a random number generator. The system evolves

with time and finally reaches a steady state when the dissipation in the system is balanced by

the external body force (gravity). Fig. 5.7 shows the evolution of average kinetic energy with

time. Snapshots of the density waves are taken at various times as indicated in the figure and
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(a) (b)

(c) (d) (e)

Figure 5.8: Flow between 2 plates: (a) Instantaneous particle positions and (b) density iso-
contours of a DOUBLE WAVE formed in transient conditions corresponding to t=3.9. Power
spectrum of density fluctuations in the central slice taken parallel to XY-plane (c), XZ-plane
(d) and YZ-plane (e)

analyzed. 3D isocontours indicating surface of constant density are shown in Figs. 5.8b, 5.9b,

5.10b, 5.13b, 5.14b for better visualization of the structures. All the isocontours are shown for

∼ 0.5 × νmax.

Transient behavior

In this section we will discuss the different density waves formed before the average kinetic

energy of the system stabilizes.

t=3.9

Initially, it is seen that upon collision, particles clump up near the walls. Thus, two clumps are

formed near the wall as seen in the instantaneous particle positions (Fig. 5.8a) and density-

isocontours (Fig. 5.8b). In order to analyze the system in detail the channel is divided into

various slices in all three direction. As the system is symmetric along all directions, we can

analyze any one slice taken at any distance from the origin. Hence, for this snapshot, the power

spectrum of the x, y and z-slices are calculated in the center of the channel. A slice taken parallel

to XZ-plane, yields a power spectrum with no dominant peak as shown in 5.8d. This tells that
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(a) (b)

(c) (d) (e)

Figure 5.9: Flow between 2 plates: (a) Instantaneous particle positions and (b) density isocon-
tours of PLUG FLOW formed in transient conditions corresponding to t=6.4. Power spectrum
of density fluctuations in the central slice taken parallel to XY-plane (c), XZ-plane (d) and
YZ-plane (e).

the system is homogeneous in all slices taken along the y-direction. The power spectrum of a

slice parallel to XY-plane (Fig. 5.8c) shows a dominant peak at (kx,ky)=(0,2) which correspond

to the double wave. A slice taken parallel to the YZ-plane also shows a similar second mode

(kz, ky)=(0,2) as seen in Fig. 5.8e.

t=6.4

It is seen that as the system evolves further, there is gradual migration of both these density

structures from the wall towards the center to form a single dense plug. It is also observed

that the density structures which originate from the wall, grow in size as they move towards

the center of the system. The instantaneous particle positions and the density-isocontours are

shown the Figs. 5.9a and 5.9b. Both these figures show that the system is symmetric along the

all planes drawn in the center of the system. Thus, this makes the analysis simpler as we can

take a slice in any part of the system. For uniformity in analysis we consider the central slice.

Power spectrum of the slice taken parallel to YZ-plane (Fig. 5.9e) shows a peak at (ky=1,kz=0)

which is characteristic of plug flow. Similarly a slice parallel to XY-plane shows a peak in the
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(a) (b)

Figure 5.10: Flow between 2 plates: Instantaneous particle positions (a) and density isocontours
(b) in a SYMMETRIC wave at t = 20.79

y-direction (ky=1,kx=0) as shown in Fig. 5.9c. A bin parallel to XZ-plane shows no distinct

peak which tell that system is homogeneous in the bins along y-direction (Fig. 5.9d).

Steady state behavior

t=20.79

We have seen till now that particles accumulate in the center of the system in the form of a

thick dense sheet which is symmetric in all direction. As the simulation progresses, this dense

sheet of particle in the center deforms as shown in Figs. 5.10a and 5.10b. If an XY-plane is

drawn in the center of the system then we see that the density wave is symmetric across the

plane (Fig. 5.11a). So, we analyze the power spectrum in the central slice only (Fig. 5.11c). It

indicates a dominant peak at (ky,kx)=(1,0) and a small peak at (ky,kx)=(1,1) which corresponds

to the symmetric wave as reported by the previous works. The density profile of the slices taken

parallel to YZ-plane is shown in Fig. 5.11b. The power spectrum of the central slice (Fig.

5.11d) shows a dominant peak at (ky,kz)=(1,0) and a small peak at (ky,kz)=(2,0). Finally, as

the system is asymmetric across the central XZ-plane ( Fig. 5.12a), power spectrum is calculated

in two intermediate (bin=7 and 22) bins and a central bin (bin=15). The power spectrum in

the central slice shows peaks at (kx,kz)=(2,0) as we have to cut through the density wave.

t=45.3

Beyond this stage the density wave deforms in all direction leading to asymmetric wave. The

particle positions and the density-isocontours in the center of the bin are shown in Fig. 5.13a

and Fig. 5.13b. Power spectrum calculated for the center slices are only shown. The slice

taken along parallel to XY-plane, shows a dominant peak at (kx,ky)=(1,1) and a minor peak

at (kx,ky)=(0,1) as seen in Fig. 5.13c. The major peak at (kx,ky)=(1,1) tells that there is

significant density variation in the x-direction as well as y-direction which is characteristic in

asymmetric mode. The power spectrum of the slices taken in other two direction (Figs. 5.13d,

5.13e) yield results similar to the symmetric wave.
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(a) (b)

(c) (d)

Figure 5.11: Flow between 2 plates: Density profiles in middle and intermediate bins parallel
to (a) XY-plane and (b) YZ-plane in SYMMETRIC wave at t = 20.79. The power spectrum of
the central slice corresponding to (a) and (b) are shown in (c) and (d), respectively.
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(a)

(b) (c) (d)

Figure 5.12: Flow between 2 plates: (a) Slices taken parallel to XZ-plane showing density profile
in central (bin=15) and intermediate (bin=7 and 22) bins in SYMMETRIC wave at t=20.79.
Power spectrum analysis of the slices taken at bin=7 (a), 15 (b) and 22 (c).
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(a) (b)

(c) (d) (e)

Figure 5.13: Flow between 2 plates: (a) Instantaneous particle positions and (b) density isocon-
tours of ASYMMETRIC WAVE formed in transient conditions corresponding to t=45.3. Power
spectrum of density fluctuations in the central slice taken parallel to XY-plane (c), YZ-plane
(d) and XZ-plane (e).
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(a) (b)

Figure 5.14: Flow between 2 plates: Instantaneous particle positions (a) and density isocontours
(b) in a SLUG flow at t = 225.3.

t=225.3

After a long time all the particles clump at the center of the system and move along the direction

of gravity. This kind of flow is called slug flow (Figs. 5.14a and 5.14b). The slices taken parallel

to XZ-plane are shown in Fig. 5.15a and their corresponding dominant modes are shown in Figs.

5.15d, 5.15e and 5.15f. The slices taken parallel to XY-plane have a well defined shape. The

structure has a dense thick central belly surrounded by a thin but dense head and tail region.

Power spectrum analysis reveals similar dominant peaks in all slices. The dominant peaks are

(kx,ky)=(1,0), (1,1), and (0,1). Density contours of bins parallel to YZ-plane is shown in Fig.

5.15c and the dominant peaks [Figs. 5.15j, 5.15k, 5.15l] in all these slices is (kx,ky)=(0,1).

Multiple clumps

In the previous section a single clump is found in the center of the channel. As the length

of the system is increased multiple clumps are observed. Instantaneous particle positions are

shown for ν = 0.06, N=14000, L:W:D = 1:15:1 and W/d = 20.0. Figure 5.16a shows that at

the initial t=22.85, two clumps are seen in the system. These clumps come close to each other

(Fig. 5.16b) and merge to form a single dense slug at the center of the channel (Fig. 5.16c).

As the simulation progresses, a second dense clump reappears along the channel length (Fig.

5.16d). This process of formation and merging of clumps along the direction of gravity happens

constantly throughout the simulations.

5.4.2 Flow through a square duct

The formation of density waves in a square duct is more complicated than flow between two

parallel plates. The non-uniformity in the dissipation along the walls due to the presence of four

corners is the major reason. The dissipation due to wall collisions in the corner is significantly

higher compared to other points along the walls.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.15: Flow between 2 plates: Density profile in central and intermediate slices taken
parallel to XZ (a), XY(b) and YZ(c) for SLUG flow at t=225.3. Power spectrum of slices taken
parallel to XZ-plane in bin=7,15 and 22 are shown in (d), (e) and (f). Power spectrum of slices
taken parallel to XY-plane in bin=7,15 and 22 are shown in (g), (h) and (i). Power spectrum
of slices taken parallel to XY-plane in bin=15, 30 and 45 are shown in (j), (k) and (l).
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(a) (b) (c) (d)

Figure 5.16: Flow between 2 plates: Instantaneous particle positions at (a) t=22.85, (b) t=46.07
(c) t=54.35 and (d) t= 61.5 showing multiple clumps. Parameters are ν = 0.06, L:W:D = 1:15:1,
W/d = 20.0 and N = 14000.

The plot of average kinetic energy evolution with time is shown in the Fig. 5.17. The points

of investigation are marked on the curve. The ratio of the system dimensions, L:W:D, is set to

2:1:1. The coefficient of particle-particle restitution is set to 0.85, the wall tangential restitution

coefficient βw=-0.6 and the wall normal restitution coefficients (ewy and ewz) are 1.0. The

density waves will be studied separately in two different sections - transient and steady state.

The initial configuration is set to square lattice. When the system is allowed to evolve it is

observed that the average kinetic energy of the system initially changes with time and it later

stabilizes. The structures formed when the average kinetic energy is changing is studied under

transient behavior and those formed once the average kinetic energy stabilizes is studied under

the topic - steady state behavior. The time at which the snapshots are taken are shown in Fig.

5.17. Density-isocontours in Figs. 5.18b, 5.21b, 5.22b, 5.24b, 5.25b are shown for ∼ 0.5 × νmax.

Transient behavior

t=5.9

Similar to flow in parallel plates, density waves originate from the walls. But what is important

are the four dense pillar like structures emerging from the corners of the system. The density-

isocontours and instantaneous particle positions is shown in Figs. 5.18b and 5.18a. The system

is symmetric across XY, YZ and ZX planes drawn at the center of the channel. Slices taken

parallel to XY-plane are shown in 5.19a. The power spectrum of center and intermediate bins

are shown in Figs. 5.19b and 5.19c, respectively. The central slice shows a dominant mode

at (kx,ky)=(0,2) and two minor peaks at (kx,ky)=(0,1), (0,3). The intermediate bin which

includes the waves emerging from the wall, has an additional mode of (kx,ky)=(0,3) along with

(kx,ky)=(0,2). The (kx,ky)=(0,3) mode represents a wave having secondary variations across

the channel with three spatial periods. This might be related to the secondary instability of
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Figure 5.17: Flow in a square duct: Average kinetic energy versus time curve en=0.85, βw=-0.6,
W/d=60, L/W=2.0, D/W=1.0

the plug flow. The slice taken in the plane parallel to YZ-plane is shown in Fig. 5.20a and the

power spectrum shows peaks at (kx,ky)=(0,2) and (2,0) as seen in Fig. 5.20b. These two peaks

clearly represent a square-wave.

t=10.9

As the simulation proceeds the density waves emerging from the walls merge in the center of

the system to form a cylindrical plug (Figs. 5.21a, 5.21b). As the system is symmetric power

spectrum analysis is done for central slices in all direction (Figs. 5.21c, 5.21e and 5.21d). A

slice taken parallel to YZ-plane shows a central circular dense region which corresponds to

(ky,kz)=(1,0), (0,1) in the power spectrum. An additional peak at (1,1) appears in flow in a

square duct is an effect of the corners. The slice along the planes parallel to XY and XZ-plane

are similar and the power spectrum shows a dominant peak at ky=1.

Steady state behavior

t=36.9

Further on, the cylindrical plug deforms to form a wavy structure but almost preserving the

the diameter of the cylinder. The instantaneous particle positions and density-isocontours are

shown in Fig. 5.22a and 5.22b. Slices taken along plane parallel to YZ-plane are shown in

Fig. 5.22c. The dense center appears at different positions in the YZ-planes in different slices.

The power spectrum of this (Fig. 5.22f) shows a peak at (ky,kz)=(1,0), (0,1) and (1,1). This

(1,1) peak is a wall effect and is comparatively higher than that seen for a plug flow (5.21c).

This is because as the simulation proceeds more and more particles accumulate at the corners

leading to increased influence of the corner regions on the power spectrum. The slice taken at

the center in the plane parallel to XZ-plane shows a dominant peak at (kx,kz)=(1,0) and (1,1)

[Fig. 5.22g] which is a feature of a symmetric wave. The central slice in the z-direction shows

peak at (kx,ky)=(0,1) as seen in Fig. 5.22h.
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(a) (b)

Figure 5.18: Flow in a square duct: (a) Instantaneous particle positions and (b) density isocon-
tours at t=5.9 for SQUARE wave.

(a) (b) (c)

Figure 5.19: Flow in a square duct: (a) Density profile of slices taken parallel to XY-plane in
the intermediate (bin=7 and 22) and central (bin=15) bins at t=5.9. Power spectrum of density
fluctuations in bin=7 (b) and bin=15 (c)
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(a) (b)

Figure 5.20: Flow in a square duct: (a) Density profile of slices taken parallel to YZ-plane in
the intermediate (bin=15 and 45) and central (bin=30) bins at t=5.9. (c) Power spectrum of
density fluctuations in bin=30

t=38.9

The cross section of the cylindrical central plug remains almost constant along x-axis in case of

the symmetric wave. When the cross section starts to vary then such a wave is called asym-

metric wave. The instantaneous particle positions and density-isocontours in Figs. 5.24a and

5.24b show a flattened density wave. Fig. 5.24c shows that the density center is non-circular

and occurs at different positions in the YZ-plane at different positions along x-axis. The density

profile in the central XZ-plane is shown in Fig. 5.24d. The corresponding power spectrum is

shown in Fig. 5.24g. (kx,ky)=(1,1) is enhanced compared to the plug flow which is a feature of

asymmetric density wave. The slice taken parallel to XY-plane at the channel center is shown

in Fig. 5.24e and the power spectrum of the same is shown in Fig. 5.24h.

Beyond this point, dense corners begin to influence the structures at the center of the system.

This can be seen by taking snapshots of particle positions at different times. Top view of the

instantaneous particle positions of the system taken at t = 60.8 is shown in Fig. 5.23a. It

shows that the density wave at the center is influenced by the corners on the same side whereas,

Fig. 5.23b taken at t = 70.2 shows that the diagonally opposite corners influence on the central

density wave. The effect of accumulation at the corners can seen more clearly in the next section

5.5.

t=70.2

After a long period of time when the system stabilizes, a density wave exhibits a slug flow as

shown in Figs. 5.25a and 5.25b. The slices taken parallel to the YZ-plane (Fig. 5.25c) shows

that the high density regions (represented by yellow color) of different sizes at different positions

along x-direction. The power spectrum of the central plane parallel to YZ-plane is shown in Fig.

5.25f. The dominant modes are located at (ky,kz)=(1,0),(1,1),(0,1). Slices taken in the plane

parallel to XY-plane (Fig. 5.25d) do not show any distinct shape but it does indicate that the

intermediate bins show regions of high density unlike the previous types of waves. The power
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(a) (b)

(c) (d) (e)

Figure 5.21: Flow in a square duct: (a) Instantaneous particle positions and (b) density isocon-
tours of PLUG flow formed in transient conditions corresponding to t=10.9. Power spectrum
of density fluctuations in the central slice taken parallel to YZ-plane (c), XZ-plane (d) and
XY-plane (e).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.22: Flow in a square duct: (a) Instantaneous particle positions and (b) density iso-
contours of SYMMETRIC flow formed at t=36.9. Density profile of slices taken parallel to
YZ-plane (c), XZ-plane (d) and XY-plane (e). The corresponding power spectrum of the central
slices are shown in (f), (g) and (h).
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(a) (b)

Figure 5.23: Flow in a square duct: Top view of the system showing instantaneous particle
positions at t = 60.8 (a) and 70.2 (b) to indicate that the dense corners interact with the
density wave at the center.

spectrum of its central slice is shown in Fig.5.25g. The central slice of the plane parallel to XZ-

plane shown in Figs. 5.25e. It shows a definite slug flow with a large dense region surrounded

by a head and a tail-like dense regions. The power spectrum (Fig. 5.25h) shows dominant peaks

at (kx,kz)=(1,0),(1,1),(0,1).

5.5 Flow in a rectangular duct

Asymmetry leads to very interesting effects in duct flow. For flow in a square duct (Sec. 5.4.2),

a single density wave occurred at the center of the system (Fig. 5.25a). Once the duct of the

system is made rectangular, the separation of density waves occurs as we discuss below.

Fig. 5.26 shows the mean stream-wise velocity and density profiles at three different ratios of

W:D - 4:1, 6:1 and 12:1. The density profile for W:D=4:1 (Fig. 5.26b) shows two mean density

waves whose peaks are equidistant from the channel center. The mean velocity plot also shows

a lobed profile corresponding to the positions of high density (Fig. 5.26a). As the ratio of width

to depth is increased, along with the dense regions near the corners, additional smaller dense

region near the channel center (Fig. 5.26d) develop. The number of these small density regions

which appear close to the center is proportional to ratio - W:D of the system. Three of these

are seen for W:D=12:1 as shown in Fig. 5.26f.

On analyzing the instantaneous snapshots at different times it was observed that the density

waves travel from the center, to the side walls and migrate back to the center. Figs. 5.27a,

5.27b and 5.27c show the top view of instantaneous snapshots taken at t = 65.9, 75.4 and 85.4,

respectively, for the system L:W:D=1:6:1. At t=65.9, one can see a central dense region and two

small dense regions close to side walls as marked in circles in Fig. 5.27a. Almost uniform density

wave appears along the center of the system at t=75.4 (Fig. 5.27b). At t=85.4, most particles

are arranged near two side walls as marked on circles (Fig. 5.27c). The system alternates

between these three modes throughout the simulation. The density near the corners is relatively

high irrespective of the time. Thus, we get two dominant peaks near the corner in the mean

volume fraction and velocity profiles. From this we can conclude that the separation of density

waves in rectangular ducts is an effect due to the presence of corners.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.24: Flow in a square duct: (a) Instantaneous particle positions and (b) density iso-
contours of ASYMMETRIC flow formed at t=38.9. Density profile of slices taken parallel to
YZ-plane (c), XZ-plane (d) and XY-plane (e). The corresponding power spectrum of the central
slices are shown in (f), (g) and (h).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.25: Flow in a square duct: (a) Instantaneous particle positions and (b) density isocon-
tours of SLUG flow formed at t=70.2. Density profile of slices taken parallel to YZ-plane (c),
XZ-plane (d) and XY-plane (e). The corresponding power spectrum of the central slices are
shown in (f), (g) and (h).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.26: Flow in a rectangular duct: Volume fraction (ν) (b), (d) and (f) and mean stream-
wise velocity fields (a), (c) and (e) for W:D = 4:1, 6:1 and 12:1, respectively. The restitution
coefficient en=0.85 and βw=-0.6.
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Figure 5.27: Flow in a rectangular duct: Top view of instantaneous snapshots taken at t=65.9
(a), 75.4 (b) and 85.4 (c). This is for L:W:D=1:6:1.



Chapter 6

Summary

Granular Poiseuille flow in two and three dimensions is studied. Event driven molecular dy-

namics is used to simulate the flow. A time and memory efficient code is written for granular

Poiseuille flow based on the algorithm suggested by Rapaport (1980). Study of velocity distri-

bution function (VDF), granular temperature bimodility and boundary conditions are the main

focus in 2D granular Poiseuille flow. In case of 3D simulations; mean fields, VDF and density

waves are studied for two different geometries - flow between two parallel plates and flow in a

square duct. Below is the chapter-wise summary of the results.

In the first part of chapter 3, results of mass flow rate (Q) versus Knudsen number (Kn) for

different volume fractions (ν = 0.01, 0.1 and 0.3) show that Q increases with ν. This is because

the mean free path (λ) decrease with the increase in the density of the system, with the increase

in the system density the Knudsen number decreases. Change in the wall restitution coefficient

from perfectly rough walls (βw ∼ 1) to smooth walls (βw ∼ -1) increases the mass flow rate. This

is because the particles tend to move along the direction of gravity after colliding with smooth

walls. Knudsen paradox observed in rarefied gas flows is not observed in granular Poiseuille

flow. Next, granular temperature bimodality is examined in detail. For a fixed configuration of

the system, decrease in en increases the peak of the bimodality. The distance between the peaks

initially decreases with decrease in en. This corresponds to a plug flow. Further, the distance

between the reaches a minimum and later increases when the flow transcends to a slug flow.

The value of en when the system reaches a minimum depends on the system volume fraction. In

the last section, VDF of dilute (ν = 0.01) granular Poiseuille flow is examined as function of en,

βw and Knudsen number, with the major focus on the tail region of the distribution. The tails

tend to obey stretched exponential (∼ C exp(−γ(|u|/σ)α)). The exponent α ∼ 2.0 for quasi-elastic

systems for Kn ∼ O(0.01), O(0.1) and O(1). Once dissipation is introduced into the system,

α decreases with decrease in Knudsen number. The distribution function becomes broader and

the x-distribution becomes asymmetric for dissipative flows (en < 1). In such cases the tails

of the VDF near the walls have higher exponent than at the center as most of the clustering

happens at the center of the system. For quasi elastic systems with smooth walls, α ∼ 2.0. As

the wall roughness is increased (βw ∼ 0.0), the P(ux) becomes asymmetric with a dominant

peak on the negative velocity. This asymmetry is identified throughout the system for Kn ∼
O(1) but diminishes for lower Knudsen numbers. The P(uy) distribution is bimodal for Kn ∼
O(1) in all bins. This bimodality decreases with the decrease in the Knudsen number.

Slip velocity and wall temperature are looked into in chapter 4 for ν = 0.01. Knudsen number

is varied by varying the width (W/d) of the channel. The slip velocity (Uw) in dilute flows is

higher than in dense flows. As the system is made inelastic (en < 1), Uw decreases in case of
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dilute flows but the variation of slip is negligible in dense flows. Slip velocity is highly sensitive

to wall boundary conditions. With the increase in wall roughness, it decreases sharply for dense

flows compared to dilute flows. It is observed that for Kn ∼ [0.01, 0.32], slip velocity obeys

power law [Uw ∝ Knα], where α = 0.87, 0.83 and 0.73 for en = 0.99, 0.95 and 0.9, respectively.

The gradient of slip behaves as a power law with respect to Knudsen number [dUw/dy ∝ Knᾱ].

The value of this exponent ᾱ < 0 for Kn > 0.1, is equal to 0 for [0.07 < Kn < 0.1] and is >

0 for Kn < 0.07. Wall temperature decreases reaches a minima and further increases with the

decrease in en. Very smooth (βw ∼ -1) and perfectly rough walls (βw ∼ 1) have the highest

wall temperatures. Decrease of en does not effect the gradient of wall temperature (dTw/dy) in

dilute flows but in case of dense flows this gradient increases steeply.

In the final chapter (Chp. 5), results of 3D flows are shown. Mean field profiles of stream-

wise velocity (U), granular temperature (T) and volume fraction (ν) are studied as a function of

en for flow in a square duct and flow between two parallel plates. The velocity profile is flatter

at the center for inelastic systems compared to the quasi-elastic systems (en = 0.99). This is due

to accumulation of particles at the center of the system which leads to a dense flow in the core

of the channel. This can be seen in the volume fraction profile. The local mean free path at the

center of the system is reduced for en < 1.0. This leads to clustering and thereby, decrease in

the fluctuating velocities and hence the granular temperature. The above arguments hold true

for both geometries - flow between parallel plates and flow in square duct. Along with these

arguments, the presence of corners in flow in a square duct results in accumulation of particles

at the corners. Next VDFs are studied at different positions in the system for changing en. The

VDFs of inelastic systems tend to become broader and P(ux) becomes asymmetric for lower

values of en. The degree of asymmetry increases as we move from the wall towards the center.

VDF is calculated for an additional bin at the corner of the system for flow in a square duct.

VDF of the corner bin is symmetric for all values of en but becomes broader as en is reduced.

Next, density wave formation in both the geometries are studied (square inlet). Starting with

a cubic lattice configuration, we see that during the initial time of simulation, particles tend

to accumulate close to the walls (and corners for flow in square duct) to form a density wave.

As the simulation proceeds, these density waves migrate towards the center of the system and

merge to form a central plug. Further more, they transform to symmetric, asymmetric and

finally slug flow. All these density waves modes are identified by calculating the power spectra

of slices taken at various positions of the system and analysis is done in a similar method as

reported by Conway & Glasser (2004). Furthermore, it is observed that dense corners influence

the central dense wave. Simulation done for rectangular ducts of varying W:D ratio, yield in-

teresting results. The density waves separate out and constantly migrated back and forth from

the center to the walls. This migration is an effect due to the presence of corners.
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