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Abstract

High fidelity aerodynamic shape optimization using the adjoint method for gradient cal-

culation is presented for an aircraft wing with particular emphasis on designing wings for

propeller-driven aircraft with lower induced drag with lower aspect ratio.

Rakshith et al. (2011) exploited the aerodynamic interaction of a wing with the slip-

stream of a propeller mounted in front of the wing, in order to design wings of lower

drag. They got novel wing designs with lower induced drag for a propeller driven aircraft

in tractor configuration using their own specially developed software PROWING, which

includes the coupling of an optimizer with lifting line theory. The latter was modified for

including the effect of the propeller slipstream. Inspired by this work the present work

addresses a higher fidelity optimization problem by coupling the Euler equation with op-

timization techniques for obtaining wings with lower induced drag. Rakshith et al. (2011)

optimized wings with aspect ratio of 12 which was suitable for the lifting line theory.

Present work verifies the optimized shape got by Rakshith et al. (2011) and also includes

optimization with small aspect ratio wing. A software package was developed for this

purpose and its implementation and validation have been performed.

A general Aerodynamic Shape Optimization procedure includes nonlinear constraints

such as a PDE (partial differential equation, in this case Euler equation). The present

work solves an optimization problem to minimize the induced drag calculated by Eu-

ler equations with other nonlinear constraints which include aerodynamic and geometric

properties like lift coefficient, aspect ratio etc. Hence there was a need to have a con-

strained nonlinear programming algorithm for minimization of a specified cost function. A

C++ software package PROP-OPT was developed for this purpose. This has been coupled

to a flow solver, gradients solver, shape parametrization and domain mesh deformation,

in order to automate the optimization cycle. PROP-OPT uses the open source C++

library NLOPT, which gives a choice of using various optimization techniques available

on the Internet such as Sequential Quadratic Programming (SQP) which approximates

the Hessian with Broyden Fletcher Goldfarb Shanno (BFGS) algorithms, to reach the

optimum faster. With NLOPT library the PROP-OPT can solve the optimization prob-

lem with nonlinear constraints of PDE with aerodynamic and geometric properties of the

wing-propeller system.

A gradient-based optimization procedure requires the converged flow solution for each

optimization cycle. Flow solutions by Euler Equations are considered and an in-house

ix



Euler solver PROP-EULER (Rakshith 2013) was optimized in time in the present to

enable quick solution. With the implementation of open-MP, SIMD and MPI with do-

main decomposition, 3x per processor speedup was achieved in collaboration with Intel

Technologies, Bangalore. Optimized PROP-EULER was validated with the standard test

case of the ONERA M6 wing. The Euler equations are solved by finite volume methods

with a second order accurate Kinetic Flux Vector Scheme (KFVS). For faster convergence

options such as LU-SGS (Lower Upper Symmetric Gauss Seidel) or point Jacobi solver

have been used. PROP-EULER has a propeller module based on blade element theory,

which is used to determine appropriate sources distribution on an actuator disc in the

Euler field.

Gradient calculations are known to be computationally costly in general. A simple

way to calculate a gradient is by the finite difference method, but the computational cost

increases with increase in the number of design variables. One way to reduce this cost

is by the adjoint method. The Discrete Adjoint method is explained, implemented and

validated in the thesis. A C++ code PROP-ADJ was developed to solve the adjoint

equations, which are formulated by augmenting the cost function with the flow residual

flux in order to desensitize the cost function to the number of design variables used in

the problem. Such benefits in the computational cost are greater as the number of design

variables increases, as is the case in the present work. The Adjoint equation was coupled

with the blade element theory to include the effects of the propeller slipstream over the

wing. The derivatives of the cost function with respect to the design/control variables

were obtained by using Automatic Differentiation techniques by the open source software

tool TAPENADE, which includes an output subroutine that calculates the derivative for

another input subroutine which calculates the function. The PROP-ADJ code solves for

a steady state solution of an adjoint equation which includes the pseudo-time derivative

of the adjoint variables. PROP-ADJ has made use of LU-SGS and point Jacobi solver

for an implicit solution in order to have faster convergence with MPI (Message Passing

Interface) parallelization using domain decomposition.

The parametrization of design variables is an important step for the optimization algo-

rithm. Present work uses Non Uniform Rational B-spline (NURBS) for the representation

of the surface of the aircraft wing. A C++ code was developed for the purpose of getting

the design/control variable vector to use in the optimization cycle. The implementation

of NURBS and its use are explained. In an optimization cycle new shapes are formed

and these have to be re-gridded to get the flow solutions. The cost of re-gridding can be

reduced with the use of mesh deformation algorithms. A C++ code was written for mesh

deformation using radial basis functions (RBF) involving powers of the radial coordinates.

A rectangular wing with NACA 0012 airfoil with propeller mounted upstream was

considered as the control wing for the aerodynamic shape optimization. The wing has

an aspect ratio of 12. The optimization was done for the minimization of Induced Drag



for a constant lift coefficient CL = 0.4, with fixed semi-span and aspect ratio. The drag

reduction achieved was 8.2 counts with mesh size of 105, for a varying chord distribution

with the wing thickness to chord ratio held to be constant. Other cases, varying thickness

with holding the wing chord constant have also been investigated. This verified the the

optimum chord distribution is shorter behind the propeller and longer outboard, which

was obtained by Rakshith et al. (2011) for large aspect ratio wings. Continuing further

present work also investigates a wing shape for a shorter aspect ratio wing for the turbo-

prop aircraft wing with tractor configuration, here control wing of taper ratio of 0.5 with

NACA0012 airfoil was used.
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Chapter 1

Introduction

Although optimization techniques have been in use for about a century, increasing com-

putational power and the need to constantly improve design have given a boost to the

development of more sophisticated tools for optimization. Demanding the best possible

solutions for a function of interest within suitable constraints can give a good idea of the

optimization problem. In complex engineering systems, a small change can often lead to

significant benefits. For example, a small reduction in the drag of an aircraft translates

into higher top speed, quicker acceleration, shorter take-off distance and lower direct op-

erating cost in the form of fuel savings. One way to identify such small changes is by a

traditional trial and error approach, but a better approach can be by solving an inverse

mathematical problem for an optimum solution which may involve nonlinear constraints.

In engineering applications, solution of nonlinear constraint optimization problems

involves the search for a minimum of a nonlinear objective function subjected to nonlinear

constraints. It is common for such optimization problems to have multiple extrema. Due

to this difficulty two different approaches have emerged in the area of nonlinear constrained

optimization: local and global methods. Local methods aim to obtain a local minimum

in the neighborhood of an input configuration or design. In general they do not guarantee

the minimum so obtained is an absolute global minimum. These methods usually use the

gradients or Hessians of the objective function, and the constraints and the gradients are

used to obtain the search direction to march towards the optimized solution. On the other

hand global methods aim to obtain the absolute minimum of the function. They do not

need gradient information, and are mostly based on stochastic procedures which include

many functional calculations. Although local methods do not aim for the global optimum,

several approaches can be used to continue searching for a global optimum. More detailed

classification, implementation of algorithms and comparison of different algorithm can be

found in Rao (1996).

As a special field of optimization subject to partial differential equation (PDEs), shape

optimization and flow control have seen steady research interests over the past several

decades. Especially in aerodynamic design, the transition from simulation alone to a

coupled simulation and optimization approach is progressing continuously. Advances in

Computational Fluid Dynamics (CFD) give a good base for optimization in a frame

where fluid flows are considered. There have been many such optimizations carried out

in the past. One of the first in aerodynamics was Prandtl’s demonstration that an elliptic

1



2 Chapter 1. Introduction

load distribution gives the lowest induced drag for a large aspect ratio wing. Lighthill

(1945) designed airfoils for a prescribed pressure distribution in incompressible flows;

This was later extended to compressible flow by McFadden (1979). Hicks & Henne (1978)

designed a wing in a potential flow using a conjugate gradient method to minimize the

objective function. Here the gradients were computed using simple finite differences. With

the advent of high speed computing and the availability of efficient analysis algorithms,

automatic design procedures have become possible. This is due to the coupling of CFD

solution algorithms with different optimization algorithms.

CFD has been used widely as an analysis tool in order to aid the design process.

Combining CFD with optimization algorithms is a nontrivial task. In the present study

a gradient search (or local ) method is used for the optimization algorithm to find the

optimum shape of a wing for a turboprop aircraft. This optimization cycle is shown in

chapter 2. The shape is parameterized in design or control variables. These variables are

given as initial input to the optimization problem with a defined objective function. The

optimization algorithm gives as output new values for the design variables that give the

minimum value of the objective function. The governing equation for the flow is put in as

a constraint to the optimization problem with such other nonlinear constraints like aspect

ratio, lift coefficient etc. as considered appropriate for the problem. In the gradient search

method the gradients in the control/design variable space are used to provide a search

direction leading towards the optimum. There are methods which use the Hessian or an

approximation to it to get better convergence towards the optimum.

A simple way to calculate gradients is by using finite differences, but the computational

cost is proportional to the number of design variables and can become very high if the

number of design variables is large. An alternative is the adjoint method which calculates

the gradients as explained in chapter 4. Jameson (1990) first applied the adjoint method in

the design of airfoils in transonic inviscid flow. This optimization was done to reduce the

pressure drag at Mach 0.73 of the RAE2822 airfoil, and a reduction in drag coefficient was

demonstrated. Subsequently, it was extended to design using the Navier-Stokes equations.

The adjoint method is very useful when the number of design variables is large as the

objective function is made non sensitive by a large number of design or control variables.

In this method a dual problem is solved to calculate the gradients.

Combining CFD with the optimization algorithms has been a very efficient tool for

design. In the present study, this combination is used to reduce the induced drag of

a wing with propeller for a turboprop aircraft with tractor configuration. Turboprops

are often designed by treating propeller and wing separately, although the aerodynamic

influence of propeller on the wing has been studied for a long time. Prandtl (1921) was

the first to study propeller-wing interactions with experimental investigations in a wind

tunnel. For a tractor configuration Prandtl observed an increase in drag for propeller

axis below the wing, and a decrease in drag for propeller axis above the wing. More
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recently this problem has been studied with different objectives and different theoretical

frameworks with the propeller modeled as an actuator disk, and also with experimental

investigations. Kroo (1986) and Veldhuis & Heyma (2000) studied the optimization of

wing for a propeller driven aircraft. Kroo (1986) followed a variational calculus approach

for optimization. Veldhuis (2005) used modified lifting line theory to study propeller

slipstream effects on the wing. The influence of swirl was also considered. Wing twist

distribution was carried out to get lower drag. He concluded that the chord distribution

obtained by the optimization process was unrealistic. Rakshith et al. (2011) presented

new wing shapes for turboprops in tractor configuration. They modified the lifting line

theory to include the propeller effects and studied the influence of propeller slipstream on

wing characteristics. The optimization was carried out for minimum induced or total drag

at given lift coefficient (usually 0.4) and fixed aspect ratio of 12. They found reasonable

wing shapes with 9.15% reduction in the drag, which was validated using CFD tools and

wind tunnel tests.

We present here a relatively higher fidelity optimization procedure for wing shapes

for minimum induced drag with constant lift coefficient of 0.4 and aspect ratio of 12

and 6. The details are discussed in chapter 5. We have considered a rectangular wing

with NACA0012 airfoil section with propeller as a control wing for optimizing the shape

for minimum induced drag. Coupling the Euler Equations with a propeller solved using

Blade Element Theory was used to calculate the induced drag on the wing as a part of

the optimization cycle. Implementation of SIMD, open-MP, MPI domain decomposition

was done for quicker flow solutions. The shape was parameterized using Non Uniform

Rational B-spline (NURBS) and the gradients obtained using the adjoint method. The

shape optimization was carried out by an in-house written code PROP-OPT, which uses

the open source optimization library NLOPT (Non Linear Optimization).

The thesis is organized as follows:

• Chapter 2: We state the optimization problem for minimum drag with geometri-

cal and aerodynamic constraints. This chapter also shows the flow chart of the

optimization cycle and briefly discusses each part.

• Chapter 3: The numerical details of the optimization problem are described here.

Algorithms such as shape parameterization, flow solutions by Euler equation with

a source term, and a brief discussion on gradients are presented. The use of open

source library NLOPT is also explained. The validation of each part is established.

• Chapter 4: This chapter presents the use of the adjoint equation to calculate the

gradients. Other methods such as a finite difference scheme to solve the equations are

also discussed. The validation of the gradient calculation in the adjoint framework

is presented.
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• Chapter 5: Different cases for optimization of wing with propeller are discussed

in this chapter. A rectangular wing with NACA0012 airfoil section was taken as

an input control wing in most of the cases. The results of all the cases are also

explained.

• Chapter 6: Shape optimization of a small aspect ratio wing for propeller-driven

aircraft with tractor configuration is performed in this chapter. The wing of the

present generation turbo-prop aircraft with reduced aspect ratio is considered as an

control wing for the optimization. The optimal shape is presented and discussed.

• Chapter 7: Summary and conclusion are discussed with suggestions for possible

future work.

• Appendix



Chapter 2

Formulation of the Optimization

Problem

As with most engineering applications, the aerodynamic shape optimization problem is a

nonlinear constrained optimization problem. The goal is to find the best possible shape

under certain given constraints. This chapter focuses on formulating a general optimiza-

tion problem, specifically using gradient-based methods, and then coupling the optimiza-

tion technique with the CFD algorithms used in the present study. A brief discussion

of the code PROP-OPT developed in this thesis for carrying out the optimization is

presented in section 2.2.

In Section 2.1 a general nonlinear constrained problem is mathematically formulated

and all its various elements are described. A description follows of the local optimality

conditions for the general nonlinear constraint problem and also a general discussion of

how such problems are solved. The coupling of the CFD algorithms and the optimization

techniques is discussed in section 2.2. A flowchart explaining the optimization cycle is

also shown. Formulation of the appropriate cost/objective function of this study is also

described, and cases selected for the present study are addressed.

2.1 Mathematical Formulation

The objective of optimal shape design is to alter either a part or the whole of a given initial

surface to achieve a desired objective. The objective could be to achieve a shape having

least resistance or drag or highest lift , or a shape that delays transition to turbulent flows.

The objective is posed in the form of a cost function. A general nonlinear constrained

minimization problem can be formulated as follows:

minimize
x

f(x)

subject to hi(x) = 0, i = 1, . . . , p.

gj(x) ≤ 0, j = 1, . . . , q.

(2.1)

where x is the design variable vector (also called control variable vector sometimes),

f(x) is the cost function and hi(x) is the equality constraint function on x, gj(x) is the

inequality constraint function on x, and p and q are the number of equality and inequality

constraints respectively. It is assumed that f(x), hi(x), gj(x) are nonlinear functions and

5



6 Chapter 2. Formulation of the Optimization Problem

have continuous first and second derivatives.

The design variable vector must satisfy both inequality and equality constraints. Hence

a design space R is defined as

R = {x : hi(x) = 0 for i = 1, 2, . . . , p and gj(x) ≤ 0 for j = 1, 2, . . . , q} (2.2)

A point x in R, x ∈ R, is considered a ’feasible’ point. In a constrained optimization

problem the minimum of the function must lie inside the feasible region R. The inequality

constraints are a set of equations that impose certain bounds on the design variable vector.

Inequality constraints can be active or inactive. For a feasible point x, if gk(x) = 0 for

any k, the inequality constraint is considered to be active. The feasible point x satisfying

an active constraint is at a limit of the design space and all its neighboring points are not

necessarily in the feasible region. On the other hand, for a feasible point x, gk(x) 6= 0,

say gk(x) < 0, then the inequality constraint is said to be inactive. In this case, all

its neighboring points are feasible and this inequality constraint does not need to be

considered when looking for a new design point from x.

To know whether an optimum has been reached locally, a design variable x∗ needs to

satisfy the Karush-Kuhn-Tucker (KKT) conditions. The detailed proof is found in Rao

(1996), however it is outlined as follows

If x∗ is a local minimizer of optimization problem 2.1 and the gradient of all active

constraints at this point are linearly independent, then the following relations hold:

hi(x
∗) = 0 for i = 1, . . . , p

gj(x
∗) ≤ 0 for j = 1, . . . , q

∇
x
L(x∗,λ∗,µ∗) = f(x∗) +

p
∑

i=1

λ∗i∇xh
∗

i (x
∗) +

q
∑

i=1

µ∗

i∇xg
∗

i (x
∗) = 0

λ∗ih
∗

i (x
∗) = 0 for i = 1, . . . , p

µ∗

jg
∗

j (x
∗) = 0 for j = 1, . . . , q

where

L(x∗,λ∗,µ∗) = f(x∗) +

p
∑

i=1

λ∗ih
∗

i (x
∗) +

q
∑

i=1

µ∗

i g
∗

i (x
∗),

(2.3)

L is the Lagrangian, and ∇xL(x
∗,λ∗µ∗), is the gradient of the Lagrangian with respect to

x, λ∗i for i = 1, . . . , p and µ∗

i for i = 1, . . . , q are the Lagrange multipliers associated with

the local optimum. Notice that for unconstrained optimization problems, the KKT con-

ditions become a single condition, the gradient of the objective function at the minimum

must be zero. The KKT conditions must be satisfied for a point to be a local minimum.
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However, this does not guarantee that the point is an optimum. To guarantee that a point

give minimum functional value, another condition must be added to the KKT condition.

The sufficient condition is

A point x∗ is a local minimizer of the problem 2.1 if it satisfies the Karush-Kuhn-

Tucker conditions and the following relation holds:

NT (x∗)∇2
xL(x

∗,λ∗,µ∗)N(x∗) (2.4)

is positive definite, where NT (x∗) is a matrix whose columns are the basis of the subspace

N , where N is the null space of the space whose basis is formed by the gradient of all

active constraints.

2.2 Coupling of CFD and optimization algorithm

The previous section discussed a general optimization problem with nonlinear constraints.

In aerodynamic shape optimization the nonlinear constraint often includes the flow gov-

erning equation, Euler equation in the present study. Thus the cost/objective function

is now a function of a state flow variable and the design variable. For a cost function

J(U,β) the minimization problem now can be formulated as

minimize
U,β

J(U ,β)

PDE constraint R(U) = 0,

Geometric constraint g(β) = 0,

Aerodynamic constraint h(U, β) = 0

(2.5)

where U is the state flow variable, β is the design variable vector.

The present study includes the flow solution by the Euler equation which solves for the

flow with a modeled propeller slipstream. The aim of the optimization is to reduce the

induced drag of a wing-propeller configuration. The coefficient of drag is calculated by

calculating the pressure force on the wing. The component of this force in the direction

of flow is taken as drag while that normal to the flow is taken as lift. The coefficients of

lift and drag are given as:

CD =
D

q∞S
and CL =

L

q∞S
where q∞ =

1

2
ρ∞U

2
∞
, (2.6)

CL and CD are the coefficient of lift L and drag D force respectively, q∞ is the dynamic

pressure, ρ∞, U∞ are density and velocity respectively subscript ∞ denotes conditions for

upstream and S is the reference wing area. When only vortex drag is required, lifting line
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theory gives the coefficient of drag as

CD =
C2

L

πAe
(2.7)

where A = b2/S = b/c̄ is the aspect ratio of the wing, b is the span c̄ is the mean wing

chord, and e is the span efficiency. The drag prediction by lifting line theory suggests

that at the minimum induced drag the aerodynamic efficiency becomes close to one. The

span efficiency depends on geometry. However, it may be a function of CL but often a

weak one (Kroo 2001), so it remains useful for comparing the induced drag of different

configurations. This suggests that for the uniqueness of the solution to the optimization

problem 2.5 constraining either CL or L any two of the three parameters b, S and A is

sufficient, see (Hicken & Zigg 2010). The reference area is the planform area of the wing

geometry(i.e the projected area of the geometry on the plane whose normal is in thickness

direction).

We take the aerodynamic constraint as a specified value of the lift coefficient. In order

to reduce the computational cost for calculating the gradients of CL, it is augmented to

the cost function by a penalty which is a function of CL. The modified cost function is

then given as

J(U, β) = K1
CD

CD0
+K2(CL − CL0)

2 (2.8)

where K1, K2 are the constants, which can be used to control the strength of the con-

straints; CL0 and CD0 are the constant values for coefficient of lift and drag respectively,

usually the value being that for the control wing.

To summarize, in the present work the minimization of the induced drag is considered

with the coefficient of lift held to be constant, with the two geometric constraints, refer-

ence area S and the span b, being fixed. The span is kept constant by changing the control

variable only in the chord direction while keeping the thickness to chord ratio constant. A

C++ code PROP-OPT was developed for the optimization of the shape for the minimum

induced drag. PROP-OPT uses an open source optimization library NLOPT which im-

plements sophisticated algorithms for constrained optimization techniques. A flow chart

for the algorithm is given in fig. 2.1. We start with a control wing configuration, which

is parametrized using NURBS to get the control points which represent the initial shape

of wing by using a basis function, as will be discussed in chapter 3 in detail. The state

variable value is calculated over the wing using PROP-EULER++ code which is an Euler

equation solver. The gradient is then calculated by the adjoint method. The adjoint

solver needs the converged state flow variable as an input. The gradient information,

the converged flow solution and the geometric constraints with their gradient information

are given as inputs to the optimizer. The optimizer uses the subroutines for constrained

optimization algorithm and gives a new design variable as an output. This new design
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Figure 2.1: Flowchart describing the optimization cycle

variable gives the new shape, and the cycle is completed until the KKT conditions are

reached in the optimizer, after which we get the optimized design variable vector.





Chapter 3

Optimal Shape Design- Numerical

Details

In this chapter, the numerical details of the various parts of the shape optimization

cycle are explained. The part concerning shape parametrization techniques using NURBS

is explained in section 3.1. A C++ code was written for fitting the mesh points to a

NURBS surface to get the control points. The flow solution using the Euler Equation

with the propeller source term in the PROP-EULER code of Rakshith (2013) is explained

briefly and a C++ implementation of this code was also written for optimizing the code

with respect to computing time. Use of the open source optimization library NLOPT

is explained in section 3.5. The library is a Non linear Optimization library consisting

of various numerical algorithms for various optimization routines available on Internet

featuring non linear equality as well as inequality constraints. Hence it gives us a choice

in selecting the most suitable optimization method. The present study uses the Sequential

Least Square Programing algorithm (SLSQP).

3.1 Shape Parametrization

In order to optimize any shape , it is necessary to express it with a finite number of

design variables, preferably as few as possible to minimize the computation cost during

the optimization. Shape Parametrization is an essential part of any shape optimization.

In this Section we describe the use of Non Uniform Rational B-spline (NURBS) for the

parametrization in the frame of Aerodynamic Shape Optimization. In Computer Aided

Design, geometric representation methods commonly use Bezier curves, B-splines and

NURBS. These representations use control points with defined basis functions to create

the surface points. This makes it suitable for getting smooth shapes with desired con-

tinuity of surface, and hence very useful in shape optimization. The Bezier curve is the

first interpolation method to make use of control points (http://www.tsplines.com). Fur-

thermore, the method is simple to implement, and moving the control points allows for

easy and visual shape modification. Nevertheless, Bezier curves have some disadvantages.

They cannot represent conics exactly, the parametrization is global (which means that

if a control point is moved the whole curve is modified), and increase in the number of

control points increases the degree and order of the curve or surfaces, which might not be

11
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needed.

One of the main advantages of using the B-spline is having any number of control

points with any degree and order of curves and surfaces. B-spline also uses the frame of

control points, and the basis function is more complex, but with the advantage that local

characteristics such as displacement of a curve or surface induces only local modification.

More details on the implementation are found in Shene (2008). Though conics cannot be

represented exactly using B-splines, the method is often found to be very useful. Present

work uses NURBS, which are an extension of the B-spline, using the same basis function

but rationalizing it with weighted coefficients assigned to each control point. This gives

another degree of freedom, and the family of curves is much wider than with B-splines or

Bezier curves. The algorithm, explained in the next section, is easy to implement with a

definition introduced by Cox (1972) and Boor (1978).

3.1.1 Definition of NURBS curves and surfaces

B-splines are constructed using a polynomial function called B-spline basis function. Let

n̂, m̂ be the number of points in 2 direction along the surface and suppose there are two

piecewise polynomial functions of order p, q. Then the product of these two piecewise

defined polynomial function is the finite polynomial B-spline surface. Let these functions

be Np, N q and consider knot vectors ζ = (ζ1, ζ2, .., ζn̂+p) and ν = (ν1, ν2, ..., νm̂+q), defined

as follows,

ζi =



















0 if i < p ,

i−p

n̂−p
if p ≤ i ≤ n̂ for i = 1, ..., n̂+ p ,

1, i > n̂.

(3.1)

The B-Spline basis function is computed piecewise and recursively with Cox-deBoor

recurrence (Shene 2008). More details can also be found in Becker & Jameson (2011).

Introducing

N1
i =







1 if ζi ≤ u < ζi+1

0 otherwise ,

Np
i (u) =

u− ζi
ζi+p − ζi

Np−1
i (u) +

ζi+p+1 − u

ζi+p+1 − ζi+1

Np−1
i+1 (u)

(3.2)

The general B- spline surface is given as

S(u, v) =
n̂

∑

i=1

m̂
∑

j=1

Np
i (u)N

q
j (v)Pi,j, u, v ∈ [0, 1], (3.3)

where, Pi,j denotes the (i, j)
th entry of the control points P ∈ R

n̂×R
m̂×R

3. The general
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NURBS surface is a B-spline surface with a nonuniform knot vector and is defined as ,

S(u, v) =

∑n̂

i=1

∑m̂

j=1wi,jPi,jN
p
i (u)N

q
j (v)

∑n̂

i=1

∑m̂

j=1wi,jN
p
i (u)N

q
j (v)

, u, v ∈ [0, 1] (3.4)

where wi,j are the weights associated with each control point.

In grid based shape optimization there can be a need to calculate an approximation to

the surface grid points which represent the optimized shape. Fitting to a NURBS surface

is a powerful technique to change grid point positions, and therefore the shape of the ob-

jects, by adjusting the control points; more details of NURBS fitting are found in Becker

& Jameson (2011). Structured and unstructured grids are handled differently. Usually

unstructured grids are challenging to parametrize as they involve explicitly defined cells

with their connectivity information and do not form any structure for the positions of

the cells; they can be seen as an arbitrary cloud of points. A structured quadrilateral

surface mesh can be easier. However, in unstructured grids the parameters u, v are cal-

culated by projecting all the grid points on a mean plane, and knowing the neighboring

elements of the point on the mean plane the grid points can be deformed and spaced in a

[0, 1][1, 0] frame. The computational domain mesh in the present work is an unstructured

tetrahedral mesh. The knot vector calculation is common to both types of grids, hence

can used to calculate the basis functions, and a linear regression problem is solved for the

overdetermined system of equations in order to get the control points of the surface grid,

which is used as a design variable in the shape optimization.

There are many CAD software packages which use the NURBS surface for having

control over the smoothness of the surface, but there are fewer open source code available

to fit a NURBS surface from the mesh points. Hence a C++ code was written in-house to

get the control points from a grid. The code facilitates both types of grids, unstructured

as well as structured. The grid generation was done using GAMBIT (GAMBIT 2004).

3.2 Flow Solutions

Shape optimization for the minimum induced drag requires the state variable to have the

constraint of the flow governing equation. Hence there is a need to solve the flow equation

at every optimization cycle, which makes the whole process computationally very costly.

In the present work the in-house code PROP-EULER++ was optimized with respect to

computational time with the collaboration of Intel labs, Bangalore. The code is a C++

implementation of PROP-EULER of Rakshith (2013). The code solves the Euler Equation

in an unstructured cell centered finite volume method framework for the flow over a wing

with propeller. The propeller is modeled by the blade element theory (henceforth called

BET) module. This module is used to provide the source distributions of momentum and
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Figure 3.1: NURBS surface of a rectangular wing, the black points indicates Control
points and gray shade is the surface, 210 control points with 21 along chord and 10 along
span.

energy on an infinitesimally thin actuator disk that represents a propeller in the PROP-

EULER++ code. The details of the PROP-EULER++ code and results of simulation using

it are shown subsequently.

The code solves the 3-D inviscid equations with a source term,

∂U

∂t
+

∂

∂x
(Gx) +

∂

∂y
(Gy) +

∂

∂z
(Gz) = S (3.5)

where U is the vector of conserved variables , Gx, Gy and Gz are the flux vectors along

the coordinate directions x, y and z respectively, and S is the vector of Source terms, thus

U =

















ρ

ρux

ρuy

ρuz

ρe

















Gx =

















ρux

p + ρu2x

ρuxuy

ρuxuz

(p+ ρe) ux

















Gy =

















ρuy

ρuxuy

p+ ρu2y

ρuyuz

(p+ ρe) uy

















Gz =

















ρuz

ρuxuz

ρuyuz

p + ρu2z
(p+ ρe) uz

















, S =

















0

Sx

Sy

Sz

Se

















(3.6)

Here, ρ is density, ux, uy, uz are components of the fluid velocity along the x, y, z directions

respectively, p is pressure and e is the total energy per unit mass, given by

e =
p

ρ (γ − 1)
+

1

2

(

u2x + u2y + u2z
)

(3.7)

The first entry in S represents the mass source (zero strength), Sx, Sy, Sz are the

momentum sources in x, y and z directions respectively and Se is the energy source given
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by

Se = uxSx + uySy + uzSz (3.8)

The momentum sources are calculated using BET. The details of the BET can be

found in Rakshith (2013), however we will breifly state the equations.

If we consider the disk approach to model the propeller, then the total thrust on the

disk is given by

T =

∫ R

0

∫ 2π

0

σ(r) r dθ dr =

∫ R

0

σ(r) 2πr dr (3.9)

Q =

∫ R

0

∫ 2π

0

τ(r) r dθ dr =

∫ R

0

τ(r) 2πr dr (3.10)

where σ is the thrust density and is the torque density.

Expression for the thrust density is given by

σ(r) =
N 0.5 ρ V 2

R c (cl cos φ− cd sinφ)

2πr
(3.11)

and for the torque density τ

τ(r) =
N 0.5 ρ V 2

R c r (cl sinφ+ cd cos φ)

2πr
(3.12)

where N is the number of blades, ρ is the density, VR is the velocity of air relative to the

airfoil section of the blade at r, defined as the vector sum of the axial component V (1+a)

and the circumferential component rΩ(1 − a
′

) with Ω, representing the angular velocity,

a and a
′

representing the axial and rotational inflow factors respectively, and V the flight

speed, cl and cd are the lift and drag coefficients of the propeller blade at radius r and φ

is the angle of advance.

With the torque and thrust densities at any given radius, calculated using eqs. 3.11 and

3.12, they are then integrated over the area of the surface of the finite volumes abutting

the disk to obtain the surface force and hence the momentum sources in r, θ, z coordinates.

These are then transformed to Cartesian coordinates x, y, z to obtain Sx, Sy, Sz.

While carrying out the numerical simulation,

• cl and cd values for airfoil sections at prescribed radii are computed for a range of

angles of attack by prescribing the local flow conditions (i.e. sum of flight speed (V )

and tangential velocity (rΩ)) and given as an input to the blade element module.

These coefficients are computed here using XFOIL (Drela & Giles 1987);

• aerodynamic coefficients for an airfoil at any radius in between two discrete stations
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(considered in previous step) are computed using the coefficients of adjacent stations

by linear interpolation;

• aerodynamic coefficients for an airfoil at any angle of attack in between two angles

of attack considered are computed using the coefficients of adjacent angles of attack

by spline interpolation;

Eq. (3.5) is solved numerically using a second order positivity-preserving KFVS (Ki-

netic Flux Vector Splitting) scheme (Ghosh et al. 1998), which employs reconstruction of

the entropy variables called q-variables (Deshpande 1986). It has been shown that the use

of q-variables gives a computationally efficient code that yields smooth solutions (Ghosh

et al. 1998).

Unstructured grids were used to discretized the domain, and were generated using

GAMBIT (GAMBIT 2004).For faster convergence implicit time stepping based on point

Jacobi and LUSGS (Lower Upper Symmetric Gauss Siedel) was used (Jameson & Yoon

1986). The code was optimized for computational time in collaboration with Intel labs,

Bangalore for implementation of Single Instruction Multiple Data (SIMD) for use in the

optimization routines.

The propeller is modeled as an infinitesimally thin rotating actuator disk which not

only produces a pressure jump across it and accelerates the flow along the axis of the

propeller but also imparts a swirl to the flow (hence the word “rotating”) (Rajagopalan

1989; Lötstedt 1995). This is accomplished by considering the forces that the propeller

imposes on the fluid as source terms along all the three directions in the momentum

equations and in the energy equation. If x is along the propeller axis, then the sources in

y and z directions impart an angular and radial momentum to the fluid passing through

the disk. The source terms are zero everywhere except in the region where the actuator

disk is present. To estimate the source strengths, a distribution of force densities on its

surface in all the three directions is required, which when integrated over the surface area

of the finite volume abutting the disk, gives the average force acting on that particular

element of area. These forces, converted to force densities, act as source terms in eq.

(3.5). More Details on implementation of propeller module is found in Rakshith (2013).

3.2.1 Validation of code

Transonic Flow past the Onera M6 wing was chosen as the test case for the validation

of PROP-EULER++. As the equations contain a source vector we now keep it zero for

validating it for the wing without propeller. This is a general validation test case for the

performance of numerical schemes and the correctness of the code. The free stream was

at a Mach number of 0.8395 and angle of attack of 3.06◦. The arrow in fig. 3.2 shows

the direction of flow. The λ-shock structure on the suction surface of the wing (seen in
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the experiments) can be identified by plotting pressure contours obtained from the Euler

code as shown in fig. 3.2. The coordinate system of the wing is shown on the top right

of fig. 3.2 where x is along the chord, y is along the thickness and z is along the span

of the wing. Quantitative surface pressure comparisons at 44% and 65% of the semispan

are shown in figures 3.3, 3.4.

PROP-EULER++ is a C++ implementation of PROP-EULER hence we use the same

validation as was done by Rakshith (2013). Experimental results from Hartman & Bier-

mann (1938) on a propeller having R. A. F. 6 aerofoil sections were used for validating

the propeller module. All geometric details needed to model the propeller as an actuator

disk in the Euler code were available in the report. The case chosen has the following

details;

• Diameter: 10 ft

• Number of blades: 4

• Blade aerofoil section: R. A. F. 6

• Propeller blade geometry as shown in fig. 3.5. Pitch setting of 25◦ at 75% radius

was considered.

• Propeller speed: 1000 rpm

Using the chord, pitch and aerofoil thickness variation along the radius of the propeller

given in fig. 3.5, aerofoils were constructed and their corresponding drag polars were

computed using XFOIL. These act as an input to the propeller module.

CFD simulations were carried out for advance ratios 1, 1.1, 1.2 and 1.3 and for each

case the thrust coefficient was computed. Fig. 3.6 shows the variation of thrust coefficient

with advance ratio. The continuous line represents experimental results from Hartman

& Biermann (1938) drawn through the points obtained after digitizing fig. 3.7. It can

be seen in fig. 3.6 that there is close agreement between the numerical simulations and

experimental data. For advance ratios below 1, the free stream mach numbers were

becoming very low (< 0.1) which posed difficulties in running the compresible code.

Therefore simulations for advance ratios greater than or equal to 1 were carried out.

3.3 Gradient Calculation

As is well known, in gradient-based shape optimization technique the converged flow so-

lution and gradient evaluation with respect to each design variable are required for each

optimization cycle. In the present work a C++ code was written to calculate the gradi-

ents of the cost function, which solves the adjoint equations as explained in detail in the
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Figure 3.2: Pressure contours on the surface of Onera M6 wing obtained using PROP-
EULER++ code. λ-shock structure is seen on the suction side of the wing.
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Figure 3.3: Surface pressure coefficient at 44% semi-span
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Figure 3.4: Surface pressure coefficient at 65% semi-span
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Figure 3.5: Description of propeller blade geometry used for validation of blade element
module (figure taken from Hartman & Biermann (1938))
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Figure 3.6: Plot of thrust coefficient versus advance ratio showing the validation of PROP-
EULER code (Rakshith 2013)
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Figure 3.7: Plot of thrust coefficient versus advance ratio for different blade settings,
taken from Hartman & Biermann (1938)

next chapter, section 4.3. A direct way of calculating the gradient is also discussed, mak-

ing use of finite difference methods, along with the use of the adjoint equation solution

to reduce the computational cost. The code is coupled with the automatic differentia-

tion subroutines to calculate the adjoint variable, which enables calculation of the total

derivative.

3.4 Mesh deformation

In each optimization cycle a new set of design variables is created, which represents the

new wing shape. To solve the flow governing equation on this new shape we need to have

a new domain grid which fits the new wing shape. This can be done by re-gridd the

whole domain again, but this is a computationally costly operation. In the present work

we use a deformation technique which, instead of re-gridding the whole domain, uses the

old mesh and deforms it towards the new shape. The displacement in the shape of the

wing is extrapolated to the mesh points on whole domain. To do so, we have used radial

basis functions. A C++ code was written for this purpose to calculate the new deformed

grid as an output for a given input mesh with the surface displacements. The code also

recalculates all the cell property information. The present work uses radial powers as the

radial basis function; a detailed description of the implementation and the algorithms for

radial basis functions can be found in Jakobsson & Amoignon (2006). Fig.3.8 shows the

deformation done for a toy surface of a rectangular wing with NACA0012 airfoil, with a

coarse grid of 30,000 cells in the domain and 800 nodes on the surface. Fig. (a) shows
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the initial grid. In order to check the deformation a forced displacement is given to the

surface node points, and then the whole grid is deformed for this new forced displacement

on the surface. The wall points on the deformed grid are shown in comparison with the

2 different initial given displacements to points on the surface in figures (b) and (c).

3.5 Shape optimization

In the present study, a software package PROP-OPT was developed which uses NLOPT

(http://ab initio.mit.edu/wiki/index.php/NLopt) for the present nonlinear constraint shape

optimization. NLOPT features C++ library with a common interface for a number

of different free optimization routines available on Internet. It also has good support

for large scale optimization algorithms, which give us the choice to use a suitable opti-

mization algorithm depending on the problem on hand. Although NLOPT has features

for gradient-based as well as gradient-free methods, present study uses Sequential Least

Square Quadratic Programing Algorithm (SLSQP) for nonlinear constrained gradient-

based optimization, which supports inequality as well as equality constraints, and is based

on the implementation by Kraft (1988). PROP-OPT coupled the NLOPT with the Eu-

ler Equation solver and the adjoint equation solver for gradients. The control points of

NURBS are used as optimization variables.
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Figure 3.8: comparison of the forced deformation and the surface points of the deformed
grid





Chapter 4

Sensitivity Analysis and Adjoint

Method

We consider in this chapter the methods used for analyzing the sensitivities, which is

performed after the flow solution has been obtained. The purpose is to calculate the

sensitivity of cost functions with respect to the control parameters defined by NURBS.

The main question of interest is, what is the perturbation in the cost function due to

a perturbation in the geometry? In the present work two sensitivity analysis methods

are considered. The first one can be solved directly by using the finite difference and

complex steps method, the implicit gradient method etc. The second one solves the dual

problem, which is also referred as the adjoint problem.As will be shown below, although

the present work focuses mainly on the adjoint problem, the direct method is a necessary

intermediate step, which is required for the purpose of developing and testing the adjoint

formulation. It will also be discussed in the case of gradient based shape optimization,

where there are more control points. Adjoint methods can reduce the computational cost

very efficiently.

4.1 Sensitivity Gradient

We now present a way to calculate the sensitivity gradient, which is necessary for deter-

mining the direction of descent or ascent towards the optimum. Consider a scalar cost

function J , which is to be minimized in the inverse design, for given design variables β

and U , where β is the control parameter based on the NURBS parameterization, and U

is the state flow variable vector which satisfies the Euler Equations. The parameters U

and β can be interpreted as the input to the system whereas the output must be the cost

function J in a control theory approach. The minimization of the cost function is subject

to the constraint that the discrete flow equation and boundary conditions are all satisfied.

This is expressed as

R(U, β) = 0. (4.1)

As the cost function is a function of U and β, its total derivative is given by,

dJ(U, β)

dβ
=
∂J

∂β
+

nt
∑

i=0

∂J

∂Ui

∂Ui

∂β
(4.2)

25
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where nt is the number of cells in the computational domain.

The above equation contains the flow sensitivity term ( ∂Ui/∂β ) which is subjected

to the constraint of the governing equation, which in the present case are the Euler

equations. A direct way of solving the equation for the gradients is by use of the finite

difference method, which is elaborated in the following section, but we will see that these

methods are computationally costly as the number of design variables β increases. One

way of solving the equation is by augmenting the cost function by the product of the flow

residual and a new variable called the adjoint variable, then solving a dual problem to

calculate the gradient. This method is called the adjoint method, which we will discuss

section 4.3.

4.2 Direct Differentiation Methods

One of the earliest methods of finding the sensitivity gradients is by the use of the finite

difference method. The gradients are calculated by perturbing the design parameters and

then solving the flow equations for a new perturbed conserved vector U which results

in the perturbed cost functions I(β ± ∆β). A central difference formula for a gradient

approximation is then given by,

∂J

∂β
∼=
J(β +∆β)− J(β −∆β)

2∆β
+O(∆β)2. (4.3)

In the above equation the leading term in the truncation error clearly shows that the

gradient is second order accurate. The truncation error can be controlled by choosing

the values of ∆β. An interesting point to observe is that each of the sensitivity gradi-

ents requires two flow solutions. The major disadvantage of this method is that it is

computationally expensive, if there are a large number of control variables. The central

differencing method requires 2N flow solutions in order to find the sensitivity gradients

with respect to N control variables, Hence this method is better when the number of

design variables is small.

Another method of calculating the gradients is the implicit gradients method, in which

the variation in the cost function is given by

δJ =
δJ

δU
δU +

δJ

δβ
δβ (4.4)

This equation shows the variation of cost function due to variation in the state variable

δU and the design variable δβ. Here the perturbation δU can be calculated by considering

the linear variation in the governing steady flow equations and solving a system of linear

equations given by
∂R

∂U
δU = −

∂R

∂β
δβ (4.5)
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The sensitivities can be calculated by back substituting for the δU in equation 4.4. For

each control variable β a linear system of equations is solved, which makes this method

also computationally very expensive.

4.3 Discrete Adjoint Approach

The previous section showed the direct way of computing the sensitivities where at least

one flow solution was required to calculate the gradient after perturbing each design

variable. Now here using control theory, the sensitivity of the cost function is being made

independent of the flow variable δU by augmenting the cost functions. This makes the

flow calculation only once for any number of design variables, hence giving an advantage

of much less computational cost.

Consider the discrete state flow equation,

R(U, β) = 0. (4.6)

The gradient of the above equation with respect to the state variable U and the design

variable β is given by

dR

dβ
=

nt
∑

i=0

∂Ri

∂Ui

∂Ui

∂β
+
∂Ri

∂β
(4.7)

Let ψ be the Lagrange multiplier or adjoint variable. Using eq. (4.6) we can augment

the cost function and then calculate the gradient as,

dJ

dβ
=
∂J

∂β
+

nt
∑

i=0

(
∂J

∂Ui

∂Ui

∂β
+ ψT

i

∂Ri

∂Ui

∂Ui

∂β
+ ψT

i

∂Ri

∂β
) (4.8)

Now the above equation shows that the term ∂Ui/∂β can be taken as a common factor,

and then we can find a suitable value of ψi such that the coefficient of ∂Ui/∂β is zero. Now

we see that remaining terms of eq. (4.8) do not have a sensitivity to the state variable.

Collecting all the terms that are coefficients of the ∂Ui/∂β and equating them to zero

we get the adjoint system of equations.

ψi

(

∂Ri

∂Ui

)T

+

(

∂J

∂Ui

)T

= R∗

i = 0 (4.9)

Now we see that the adjoint equations are linear in ψi. The equations are solved for

the adjoint variables ψi and they are then substituted in eq. (4.8) to get the total gradient

of the cost function, which is then given by

dJ

dβ
=
∂J

∂β
+

nt
∑

i=0

ψT
i

∂Ri

∂β
(4.10)
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The main advantage of this formulation is that the variation in cost function is inde-

pendent of the number of design variables. As two equation for the gradient 4.9 and 4.10

are solved, this approach is also known as duality formulation by Giles & Pierce (2000)

Two approaches are known for the formulation of the adjoint equation, continuous

adjoint method and discrete adjoint method. The present work focuses on the discrete

adjoint approach. In the continuous adjoint method, the governing state partial differ-

ential equations are first linearized and then combined with the first variation in the

cost function using adjoint variables. More details can be seen in Jameson (1988). In

the discrete adjoint approach, developed by Elliot (1998), Neilson (1998), Mohammadi &

Pironneau (1999) and H. J. Kim & Nakahashi (2000), the governing equations are first

discretized, then linearized and then combined with the discrete form by using the ad-

joint variables. A detailed comparison of the two approaches can be found in Nadarajah

& Jameson (2000).

The adjoint equation 4.9 is usually very large and is solved iteratively by introducing

a pseudo time derivative,

Vi
dψi

dti
+R∗

i = 0, (4.11)

where R∗

i is the adjoint residual defined by eq. (4.9), and Vi is the volume of the control

volume considered. The above equation is solved by local time stepping combined with

the implicit scheme for convergence acceleration. Note that the adjoint equation (4.9)

does not have any derivatives with respect to the design variables.

As the adjoint equation is solved iteratively by introducing the time derivative, its

state update is given as

ψn+1
i = ψn

i −
∆t

V

(

ψn
i

∂Ri

∂Ui

T

+
∂J

∂Ui

T
)

. (4.12)

Here Ri is the flux residual of the Euler equations. If F is the flux of the conserved

variable U then the residual for a control volume can be given as

Ri =
noe
∑

i=0

F.n̂dA (4.13)

where noe is the number of faces of a control volume, dA is the area of the face and n̂ is

the unit vector normal to the face.

As we have seen in chapter 4 the propeller is modeled by considering the forces that

it imparts on the fluid as a source term in the Euler equations. The residual Ri in the

above equation is calculated considering the Euler equations.

To achieve higher convergence rates we have used an implicit scheme to solve the dis-

crete adjoint equations using a matrix free Lower Upper Symmetric Gauss Seidel (LUSGS)
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method (Jameson & Yoon 1986). The detailed derivation can be found in Anil (2008), so

we shall give only a brief account here

The state update of the adjoint equation can be written as

Vi
ψn+1
i − ψn

i

∆ti
+R∗(ψn+1

i ) = 0 (4.14)

Now the above equation is rearranged, and using the kinetic flux vector splitting

scheme (Deshpande 1986) for the flux and using Jameson’s spectral approximations to

make it matrix free, we get the equation

[

Vi
∆ti

+
1

2

nbh(i)
∑

i=0

ρinijdAij

]

∆ψn
i +

[

1

2

nbh(i)
∑

j=0

(A− ρI)Ti njidAij

]

∆V n
j = −R∗

i (ψ
n) (4.15)

where ρ is the spectral radius given by Jameson , I is the Identity Matrix, A is the

full flux Jacobian , nji is the unit normal to a face and n is the time level and nbh is the

number of neighboring cells of the cell i.

Using the identity
∑nbh(i)

j=0 nijdA = 0 the above equation is written in matrix form as

Mij∆ψ
n
i = −R∗

i (ψ
n
i ) (4.16)

where Mij is defined as

Mij = −
1

2

nbh(i)
∑

j=0

(A− ρI)Ti nijdA, for i 6= j

=
Vi
∆ti

+
1

2

nbh(i)
∑

j=0

ρinijdA, for i = j

(4.17)

Now the solution of eq. (4.15) requires calculation of the inverse of the matrix Mij .

Using implicit LUSGS method the matrix M is factorized into three parts, respectively

lower, symmetrical and upper triangular matrices, and the matrix systems can be solved

in two steps given as follows

D−1(D + U)∆ψn = ∆ψ∗n (4.18)

(L+D)∆ψ∗n = −R∗(ψn). (4.19)

After further simplifications we get

∆ψ∗n
i = −D−1

i R∗

i −D−1
i Li∆ψ

∗n
j (4.20)
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∆ψn
i = ∆ψ∗n

i −D−1
i Ui∆ψ

n
i (4.21)

Di =
Vi
∆ti

+
1

2

nbh(i)
∑

j=0

ρinijdA (4.22)

Li∆ψ
∗

j = −



.
1

2

nbh(i)
∑

j=0

{

(

∂Fi

∂Ui

)T

∆ψ∗n
j − ρi∆ψ

∗n
j

}

nijdA



 for j < i (4.23)

Ui∆ψ
n
j = −





1

2

nbh(i)
∑

j=0

{

(

∂Fi

∂Ui

)T

∆ψn
j − ρi∆ψ

∗n
j

}

nijdA



 for j > i (4.24)

Here ∆ti is the time step, and D,U, and L are the diagonal, upper and lower triangle

matrices formed from the matrix M .

We see that the sensitivity and the adjoint equations contain the derivatives of cost

function J and the flow flux residual R. These derivatives can be evaluated in several

ways. One of the classic ways is to manually hand differentiate it, in which the analytical

expression for the derivative of a given function is derived and subroutines are created. Of-

ten this method turns out to be laborious, time consuming and error prone because of the

complexity of the given function. Another way, which was also mentioned in section 4.2,

is the finite difference method. We can use the central differencing formula and calculate

the derivatives with second order accuracy. However there is another method to calculate

derivatives, which is known as Automatic Differentiation and is used in the present work.

In this method, differentiation of subroutines is performed by a computer tool called

TAPENADE, which is developed by INRIA (http://tapenade.inria.fr:8080/tapenade).

We can find other several softwares available which can also perform Automatic Dif-

ferentiation (AD) like ADIFOR, ADOLC, TAMC,TAF, etc; more details can be found on

http://www.autodiff.org.

TAPENADE consists of elementary functions whose derivatives are known and uses

these in a form of chain rule to calculate the desired derivatives. The programming lan-

guage used in present work is C, and for a given subroutine which calculates a function,

TAPENADE gives a subroutine as an output which calculates the derivative of the func-

tion. It is to be noted that AD tools rely on the assumption that the function which

is calculated by input subroutines is piecewise differentiable. AD does not incur trunca-

tion error and gives exact values for the derivatives if the floating point operations are

performed with infinite precision arithmetic. More details of AD are presented in the

Appendix.
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In general AD can be carried out in two modes, forward and reverse. These modes

are distinguished by the way the chain rule of differentiation is applied to a sequence

of elementary operations. In the present work, since there is a need of calculating the

transpose of the gradient, the reverse mode is more suitable in the adjoint equation solver.

More details can be found in Praveen (2006).

The Algorithm for solving the Adjoint Equations can be stated in steps as follows,

1. Give the converged flow solution as an input parameter with the flow conditions

and the grid files.

2. Initialize the state variables to converged flow solutions and adjoint variables to zero.

item Calculate the Gradients ∂J/∂U , ∂R/∂U at each cells using AD subroutines,

created by TAPENADE.

3. Calculate the adjoint variable ψ at next time level using the state update eq.(4.12)

4. Repeat step 3 until convergence.

Earlier in this section the Adjoint equation was solved using a pseudo time derivative

in an iterative manner. However, as the adjoint equation is linear in the adjoint variable,

it can be solved by using a linear algebra package for system of linear equations, for

example GMRES with suitable preconditions.

The state update can be done by implicit methods, in the present work the LUSGS

(Lower Upper Symmetric Gauss Seidel) and Point Jacobii methods were implemented in

adjoint solver for better convergence. The code developed for this purpose, named PROP-

ADJ, used MPI subroutines to run on parallel machines. After the adjoint calculation

the total gradients are given as

dJ

dβ
=
∂J

∂β
+

nt
∑

i=0

ψT
i

∂R

∂Ui

(4.25)

Here again the partial derivative terms, ∂J/∂β and ∂Ri/∂Ui, are calculated by the above

mentioned methods.

The adjoint solution can be indirectly validated by checking the accuracy of the gra-

dients. This has been done by comparing the gradients with the finite difference (FD)

approximations. We used OneraM6 wing for the validation. As there is a need of con-

verged flow solution twice to calculate the gradient for each of the control points, a very

coarse grid is used. The number of control points used was 36; these had 4 component

directions x , y , z and w each being in the coordinate directions and w as the weight asso-

ciated to each control points. The finite difference approximation will have discretization

and round off error, which largely depends on the step size used in finite difference op-

erations, a large step may lead to more discretization error whereas a very small step
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Figure 4.1: Comparision of the Finite diffrence gradients and the Gradients obtained from
Adjoint Solver for 36 control points for course grid of 2717 tetrahedral cells

can lead to round off errors, hence there should be an optimum step size. But this is

difficult to determine because of its dependency on many factors like complexity of the

objective/cost function.



Chapter 5

Two Case Studies

We now present the results and validation for aerodynamic shape optimization for a wing

carried out using the code PROP-OPT in the presence of a propeller. We consider a

rectangular wing with NACA0012 airfoil as control wing for all the cases. The aspect

ratio of the wing is 12 with mean chord of 1 and the taper ratio 1. We consider level

cruise flight conditions at lift coefficient of 0.4. The slipstream needed was calculated using

PROP-EULER++ code (described in chapter 3). The propeller, mentioned in Hartman

& Biermann (1938), is chosen for all the cases in the present optimization studies. This

particular propeller was chosen because the entire information needed to carry out the

numerical simulation is available in the public domain, and this propeller is typical of the

kind used in turbo-props. The design parameters were the control points of the NURBS

surface. Here we have two cases. In the first case the thickness to chord ratio is kept

constant as the chord varies along the span, and in the second case the chord is fixed

and the thickness is allowed to vary. In the first case we get the chord distribution by

movement of the control points along the chord of any section of the wing i.e in the

spanwise direction. The leading edge in all the cases is always fixed, allowing only the

trailing edge to vary. In the second case, the chord is kept constant and the thickness is

allowed to vary along the span. This is achieved by allowing the control points to move

in thickness direction while keeping fixed in other direction. The taper ratio is kept 1 in

case 1 and case 2. The cost function used for minimization is

J(U, β) = K1
CD

CD0
+K2(CL − CL0)

2 (5.1)

where K1 and K2 are constants, and present case we choose the values as K1 = 1.0,

K2 = 100.0.

5.1 Case 1 with constant thickness to chord ratio

Keeping the thickness to chord ratio constant in this case we use the same airfoil section

over the span and varying only the chord with a fixed span. The wing area was kept

constant during optimization. The present work uses the Euler equation as a constraint

for the optimization. There were 4 equidistant sections taken along the span with each

section having 20 control points along the chord. C2 continuity of the surface is maintained

using NURBS.

33
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Figure 5.1: Chord distribution comparison with the control wing

We consider zero twist distribution in the wing. Fig.5.1 shows a comparison of the

optimal chord distribution with the control wing. Geometric constraints given were span,

root and tip chord, all of which were fixed; the planform area is also constant. We get 8.2

counts of reduction in the drag compared with the control wing. The cost function history

with number of optimization cycle is shown in fig. 5.3. As the thickness to chord ratio is

held constant the thickness varies along the span like the chord. This is shown in fig.5.2.

The number of grid cells used was 3 × 105. The drag reduction in present work is lower

than the reduction which Rakshith (2013) had obtained. One of the reasons might be that

the present work includes compressibility effects while Rakshith (2013) used lifting line

theory to calculate drag which doesn’t account for compressibility. To demonstrate grid

independence it is necessary to use very fine meshes, but this has not been possible here

due to high computational costs. The present work includes the development of PROP-

OPT described in section 2.2 which can be used for finer grids. However, Rakshith (2013)

has observed that, for an optimal wing with propeller, the chord behind the propeller is

shorter than on either side. Here a similar conclusion has been reached by using a higher

fidelity optimization. This validates PROP-OPT as well as the results of Rakshith (2013).
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0.4% of the root chord
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5.2 Case 2: with constant chord and variation in

thickness

This case considers the chord to be constant and we try to get the optimal thickness

distribution over the wing span. Fig.5.5 shows the thickness contours compared with the

control wing. The surface area is kept the same as that of the control wing. Fig.5.6

shows the various sections taken along the span of the wing and compares the optimal

with the control wing. The planform remains the same as there is no chord variation. As

the wing has high aspect ratio, the sensitivity of the drag coefficient to airfoil thickness is

comparatively less, hence the drag reduction is expected to be less when compared with

case 1. In any case the drag of the optimal wing is 4.8 counts less than the control wing.

This is shown in 5.4. The grid size used was 3 × 105. In case 1 we observed that chord

behind the propeller is less than at other locations, in the present case we have a similar

observation that the maximum thickness of airfoil sections considered along the span was

lower behind the propeller and greater outboard.
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Chapter 6

Optimization of small aspect ratio

wings for turbo-prop aircrafts

In this chapter we present results for the aerodynamic shape optimization carried out for

small aspect ratio wings of turbo-prop aircraft with tractor configuration. Rakshith et al.

(2011) found optimal planforms using lifting line theory for wings of aspect ratio of 12.

One of the limitations of lifting line theory is that it is not valid for low aspect ratio wings.

Here we exploit the Euler code to optimize shapes for lower drag of low aspect ratio wings

for turbo-prop aircraft. Most of the current generation turbo-prop aircraft have high

aspect ratio wings. In the present work we take the wing shape of current generation

turbo-prop aircraft and change its aspect ratio to 6, and use this shape as a control wing

for the optimizer. We take a taper ratio of 0.5. The leading edge, span and wing area

are held fixed. We also consider the linear twist distribution with a washout of 3.0◦ for

the control wing. Hence for the minimization of induced drag the design variable/control

variable vector also includes the local angle of twist for each chosen section along the

span. The chord, thickness and the span is considered to be along x, y and z direction

respectively. To parameterize the shape we use the control points of a NURBS surface.

These control points are used to define a design variable/ control variable vector. We

take equidistant sections across the span along which the control points of the NURBS

are defined. This is shown in fig. 6.2. For each section we take a constant multiplier to

the x coordinate of the control points along the section. This multiplier variable when

multiplied gives chord variation as the multiplier variable changes for various sections.

We also define an angle of twist for each section in order to get the twist distribution of

the wing. We use the same multiplier for the y component (thickness direction) of the

control points for each section along the span, which ensures the thickness to chord ratio

is always constant. These multiplier along with the angle of twist for each section are

used as a design variable in the optimization procedure. The optimization is carried out

in grid size of 5 × 105. The optimization cycle with fine grid becomes computationally

very costly and hence we confirm the results by running a fine grid flow solutions both on

control and optimal wing. The propeller was considered the same as in case 1 in chapter

5. The twist distribution over a semi span is given in Fig.6.3.

Fig.6.4 shows the starting control wing in the optimization procedure and also the

optimal wing obtained by PROP-OPT. The drag reduction from the optimization pro-

39
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X

Z Y

Figure 6.1: Semi-span of wing. The dashed lines mark the sections taken along the span.

cedure was 6 counts. We confirm the control wing and the optimal wing by solving the

governing equation for the flow by PROP-EULER++ using 10× 106 grid size. Although

there is still need for further grid independence study. We compared the results obtained

by both the grids and found that the reduction in drag is 9 counts, which confirms the

optimality of the shape for induced drag reduction. The iteration history of the residual

of ρ for flow calculation of the optimal wing is compared to the control wing in fig.6.5.

The lift and the drag coefficients of the optimal wing compared with the control wing is

also shows in fig.6.6 and fig. 6.7.
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Chapter 7

Conclusion

This thesis has focused on the development of a higher fidelity optimization code PROP-

OPT for aerodynamic shape optimization of wings for propeller-driven aircraft with trac-

tor configuration. Emphasis was on the adjoint method for the calculation of the gradients

and NURBS for the parameterization of the surface. The adjoint solver, an Euler flow

solver for the wing-propeller configuration and an optimizer ( NLOPT library) were cou-

pled to find an optimal shape of the wing. Herein we summarize results of the present

study with some suggestions for future work.

The optimization problem was formulated in chapter 2. An in-house code PROP-

OPT was developed coupling the CFD solver and the optimizer. We used a C++ library

NLOPT for the various optimization techniques already implemented and available in the

open source literature. The numerical details and the algorithmic implementation were

reported in Chapter 3, which also includes the implementation of the parameterization of

the surface shape which is to be optimized. NURBS was used to have a C2 continuous

smooth surface for whatever number of control points is or may be used. An in-house

C++ code was developed for the implementation of NURBS surface fitting. The shapes

were deformed using radial basis functions. The algorithm and implementation have been

reported in chapter 3.

A C++ code PROP-EULER implemented by Rakshith (2013), which solved the Euler

equation for the wing-propeller configuration, was optimized for time with use of SIMD,

openmp and MPI domain decomposition implementations. The validation and verification

of the optimized code PROP-EULER++ is reported in chapter 4. The validation was

done using a standard test case of the transonic flow over ONERA M6 wing at Mach 0.83

and angle of attack 3.06 degrees.

The gradient of the cost function/ objective function was calculated using the adjoint

method. An in-house code PROP-ADJ was developed for the purpose. The implemen-

tation of the algorithm and the validation are discussed in chapter 4. The validation of

PROP-ADJ was done by comparing the total gradients obtained with values from the

finite difference method for a toy grid. The derivatives in the PROP-ADJ were calculated

using automatic differentiation techniques. This was implemented in C using the open

source tool TAPENADE.

The optimization for the lowest induced drag of a wing of given area and span, with

a propeller was carried out for two cases, one with chord variation and the other with
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thickness variation. We found that the chord distribution is similar to that obtained by

Rakshith et al. (2011). The drag reduction in the present study was 8.2 counts, which

is close to that obtained by Rakshith et al. (2011). They observe that the optimal wing

has shorter chord behind the propeller and longer chords on either side of it, and this was

also seen in the present case. Constraints on the geometry were that span, planform area

and aspect ratio of 12 were fixed. Optimization was carried out for cruise conditions with

lift coefficient held constant at 0.4. Another case in which the chord was kept constant

and the thickness allowed to vary was considered and results have been presented in the

thesis. In this case the induced drag of the optimal wing was 4.8 counts less than that

of the control wing. These results were reported in chapter 5. Optimization of a small

aspect ratio wing was also carried out with gird size 10 × 106, and showed a 9 count

drag reduction in the new shape. These results were reported in chapter 6. The present

work, together with that of Rakshith et al. (2011), shows that there is still considerable

potential for significant improvement in turbo-prop aerodynamics.

7.0.1 Suggestions for Future study

In general turboprop aircraft have relatively high aspect ratio wings. In most cases, there-

fore the extended lifting line theory Rakshith et al. (2011) should be applicable. however

the complete aircraft needs multi-disciplinary optimization, and structural considerations

(root bending moments, weight, manufacturing constraints) play a strong role in deter-

mining overall aircraft performance. For example, a wing design using a main spar may

demand a maximum thickness line along the spar of the wing and a wing thickness that

diminishes linearly towards the wing tips to accommodate a spar whose depth varies in

a similar fashion. Furthermore , as Rakshith et al. (2011) have shown, a planform of

the kind considered here implies that, if the wing has constant t/c ratio along the span,

the lower thickness in the short-chord region could result in undesirable concavities on

the wing surface. If turboprop speeds were to increase (there is currently a noticeable

trend in this direction) special airfoil sections and somewhat lower aspect ratios may be

worth considerable. For all these reasons a surface optimization technology of the kind

considered in this thesis is a useful design tool.

In all these cases the cost function would have to be modified to include other appro-

priate parameters in the optimization process; in addition to drag. Minimization of total

drag will be need to solve the RANS equations, allowing for the turbulent flow in the

boundary layer.

Present work concentrates on cruise conditions, so the multi-disciplinary optimization

which mentioned earlier in this section could include design of optimized wings for phases

of the flights, with suitably weighted cost function.

There is a need to do high performance computing with higher grid resolutions in
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order to have grid-independent values of all aerodynamic parameters.





Appendix A

Automatic Differentiation

Automatic differentiation(AD) is a set of techniques to numerically evaluate the deriva-

tive of a function specified by a computer program. AD exploits the fact that ev-

ery computer program, no matter how complicated, executes a sequence of elemen-

tary arithmetic operations such as additions or elementary functions such as exp(). By

applying the chain rule of derivative calculus repeatedly to these operations, deriva-

tives of arbitrary order can be computed automatically, and accurate to working pre-

cision. There are several softwares available today which can perform AD like ADIFOR,

ADOLC,TAMC, ODYSSEE,TAPENADE, etc. These tools can be found very extensively

on http://www.autodiff.org. To explain this, consider the function f , given by

f = f1(f2(f3(...(fn(x))...))) (A.1)

The gradient is given by
df

dx
=
df1
dx

df2
dx

df2
dx
....
dfn
dx

(A.2)

The chain rule can be applied from left to right as well as right to left of the eq. A.2,

the former one is called as reverse mode and the later as forward mode. To demonstrate

further on how the AD tools perform these modes, consider a simple test function f in

two variables, x1 and x2 as given below

f(x1, x2) = x1x2 + sin(x1) + ex2 (A.3)

This test example is taken from Anil (2008), the AD tools read this function as a

sequence of urinary and binary operations, given as,

t1 = x1

t2 = x2

t3 = x1x2 = t1t2

t4 = sin(x1) = sin(t1)

t5 = ex2 = et2

t6 = t3 + t4

t7 = t5 + t6 = f

(A.4)
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In forward mode the chain rule is applied from top to bottom of eqs.A.4, after applying

the forward mode of AD to the function f , we get

ṫ1 = ẋ1

ṫ2 = ẋ2

ṫ3 = t1ṫ2 + ṫ1t2

ṫ4 = cos(t1)ṫ1

ṫ5 = et2 ṫ4

ṫ6 = ṫ3 + ṫ4

ṫ7 = ṫ5 + ṫ6

(A.5)

here calculation of the partial derivatives ∂f/∂x1 and ∂f/∂x2 is done in two forward

mode sweeps. Depending on the initialization of ṫ1 and ṫ2 we get either of the derivative,

in this case ṫ1 = 1 and ṫ2 = 0 will calculate ∂f/∂x1 and vice versa.

In reverse mode the computation is in reverse order. We first define the following

notations (Praveen 2006).

t̄k =
∂f

∂tk
and ti,k =

∂ti
∂tk

(A.6)

Using chain rule of differentiation in reverse mode, tk can be written as

t̄k =
∂f

∂tk
=
∂t7
∂tk

=
∑

i∈Ik

∂t7
∂ti

∂ti
∂tk

=
∑

i∈Ik

t̄iti,k (A.7)

where index Ik is defined as

Ik = {i : i > k and ti depends explicitly on tk} (A.8)

Reverse mode calculates all the component of the derivatives in one sweep in present

case it calculates both the partial derivatives ∂f/∂x1 and ∂f/∂x2, however the intermedi-

ate derivatives are stored which requires extra memory requirements. In iterative methods

only the final converged solution is of interest. If AD in reverse mode is used it cannot

distinguish such situation and it will differentiate the whole iterative sequence. This leads

to enormous memory requirement. In order to overcome this memory requirement AD

must be applied in a piecemeal manner. The solver must be highly modular structure

using subroutines and function. Then AD must be applied to those individual modules.
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The test equations after applying the reverse mode of AD to the test function f are

t̄7 =
∂f

∂t7
=
∂t7
∂t7

= 1

t̄6 =
∂t7
∂t6

= t̄7t7,6 = 1

t̄5 =
∂t7
∂t5

= t̄7t7,5 + t̄6t6,5

t̄4 =
∂t7
∂t4

= t̄7t7,4 + t̄6t6,4 + t̄5t5,4

t̄3 =
∂t7
∂t3

= t̄7t7,3 + t̄6t6,3 + t̄5t5,3 + t̄4t4,3

t̄2 =
∂t7
∂t2

= t̄7t7,2 + t̄6t6,2 + t̄5t5,2 + t̄4t4,2 + t̄3t3,2 = x1 + ex2

t̄1 =
∂t7
∂t1

= t̄7t7,1 + t̄6t6,1 + t̄5t5,1 + t̄4t4,1 + t̄3t3,1 + t̄2t2,1 = x2 + cos(x1) = x1 + ex2

(A.9)

The present work uses an open source tool called TAPENADE which was developed

by Hascet and Pascual . It takes as input a computer program written in c and re-

turns the corresponding derivative program which can be used in the solver to calculate

derivatives. The details of running the tool and getting the subroutines can be found in

http://tapenade.inria.fr:8080/tapenade.





References

Anil, N. 2008 Optimal control of numerical dissipation in modified kfvs (m-kfvs) using

discrete adjoint method. PhD thesis, Dept. of Aerospace Engg., IISc, Bangalore, India.

Becker, G. & Jameson, M. S. A. 2011 An advanced nurbs fitting procedure for post-

processing of grid-based shape optimizations. 49th AIAA Aerospace Science Meeting

.

Boor, C. D. 1978 A Practical Guide to Splines . Springer-Verlag.

Cox, M. G. 1972 The numerical evaluation of b-splines. IMA journal of Applied Math-

ematics .

Deshpande, S. M. 1986 A second order accurate kinetic theory based method for inviscid

compressible flows. NASA Technical Paper .

Drela, M. & Giles, M. B. 1987 Viscous-inviscid analysis of transonic and low reynolds

number airfoils. AIAA Journal 25, 1347–1355.

Elliot, J. 1998 Aerodynamic optimization based on the euler and navier-stokes equa-

tions using unstructured grids. PhD thesis.

GAMBIT 2004 Gambit 2.1 documentation, user’s guide. Fluent Inc. Software .

Ghosh, A. K., Mathur, J. S. & Deshpande, S. M. 1998 q-kfvs scheme - a new higher

order kinetic method for euler equations. 16th International Conference on Numerical

Methods in Fluid Dynamics, Lecture Notes in Physics 515.

Giles, M. B. & Pierce, N. A. 2000 An introduction to the adjoint approach to design.

Technical Report No. NA 00/04, Oxford University Computing Laboratory .

H. J. Kim, D. Sasaki, S. O. & Nakahashi, I. 2000 Aerodynamic optimization of

supersonic transport wing using unstructured adjoint method. Proceeding of the fist

ICCFD,kyoto Japan .

Hartman, E. & Biermann, P. D. 1938 The aerodynamic characteristics of full-scale

propellers having 2, 3, and 4 blades of Clark Y and R.A.F. 6 airfoil sections. NACA-

report-640 .

53



54 Appendix A. Automatic Differentiation

Hicken, J. E. & Zigg, D. W. 2010 Induced-drag minimization of non planar geometries

based on the euler equations. AIAA Journal, Vol. 48, No. 11 .

Hicks, R. M. & Henne, P. 1978 Wing design by numerical optimization. Joournal of

Aircraft 15:407-412 .

http://tapenade.inria.fr:8080/tapenade . Inria.

http://www.autodiff.org . Automatic differentiation.

http://www.tsplines.com . Bezier curves.

http://ab initio.mit.edu/wiki/index.php/NLopt . Non linear optimization(

nlopt).

Jakobsson, S. & Amoignon, O. 2006 Mesh deformation using radial basis functions

for the gradient-based aerodynamic shape optimization. Computers and fluids .

Jameson, A. 1988 Aerodynamic design via control theory. Journal of Scientific Com-

puting .

Jameson, A. 1990 Automatic design of transonic airfoils to reduce the shock induced

pressure drag. Proceedings of the 31st Israel Annual Conference on Aviation and Aero-

nautics .

Jameson, A. & Yoon, S. 1986 Lower upper implicit schemes with multiple grids for

the euler equations. AIAA .

Kraft, D. 1988 A software package for sequential quadratic programming. Technical

Report DFVLR-FB 88-28, Institut fÃ1
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