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Abstract

Multiparticle collision dynamics (MPCD) is a particle based mesoscopic simulation technique for

incorporating hydrodynamics and thermal fluctuations in complex fluid simulations. Due to its

simplicity, the MPCD algorithm has become quite popular in the study of complex flow problems.

In this thesis, kinetic nature of the algorithm is investigated for quantitative accuracy in case

of flows at finite Knudsen numbers. In particular, microflow set-ups such as shear, gravity, and

pressure driven flows have been used for the study, and the algorithm is benchmarked against

the well know analytical and numerical results. In addition, the effectiveness of bounce back

and diffuse wall boundary conditions are investigated for the above mentioned canonical flows.

Here, we also present a new collision scheme in the framework of MPCD, termed as Pseudo

Binary Collision Model (PBCM), which ensures Galilean invariance for the system at small time

steps. In standard MPCD, velocity correlations start building up among particles when the

time step is small enough that the particles move only a fraction of the cell size of the grid

used. These correlations in turn lead to the failure of Galilean invariance, and the system shows

unphysical behaviour. By numerical means, we have shown that the performance of MPCD

method improves substantially by the use of pseudo binary collision model in simulations with

small time steps.

Finally, we show how the ideal gas equation of state of an MPCD fluid can be modified to

a general non-ideal equation of state. Here, we have used a phenomenological mean field model

for incorporating excluded volume effect into the system. In particular, we have used the Van

der Waals and Carnahan-Starling equations of state for including the excluded volume effect

into the MPCD system, and also the effectiveness of this approach is investigated. In addition,

the effect of attraction between molecules is included by considering a Vlasov type force on the

particles. With these changes a two phase system, condensation of a gas into liquid, is stud-

ied using MPCD. The study of Maxwell construction shows excellent agreement with the theory.
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Chapter 1

Introduction

1.1 Motivation

Multiparticle collision dynamics (hereafter MPCD) is a particle based mesoscopic simulation

tool introduced a decade back by Malevanets and Kapral as a convenient and efficient way of

incorporating hydrodynamics and thermal fluctuations in complex fluid simulations (Malevanets

& Kapral 1999, 2000). The system has discrete time dynamics; during each time step particles

are streamed and multiparticle collisions are performed. They also showed that multiparticle

collisions conserve mass, momentum, and energy and equilibrium distribution is given by the

Maxwell-Boltzmann distribution. Similar to Boltzmann dynamics, an H-theorem is shown to

hold for this model too. These microscopic consistencies in MPCD algorithm ensure that cor-

rect hydrodynamics corresponding to Navier-Stokes-Fourier model is recovered for an ideal gas

system at macroscopic length and time scales (Malevanets & Kapral 1999; Ihle 2009). Due to

simplicity of the update rules, it is possible to derive analytical expressions for transport coeffi-

cients which agree quite well with simulation results (Ihle & Kroll 2003b; Kikuchi et al. 2003).

Transport coefficients are derived following two alternative approaches-discrete time projection

operator approach (Ihle & Kroll 2003a,b) and kinetic theory approach (Kikuchi et al. 2003;

Pooley & Yeomans 2005). The two alternative approaches are complementary to each other

and coefficients obtained are in good agreement. The MPCD algorithm has been successfully

applied to simulate various complex systems such as colloids (Padding & Louis 2006; Hecht

et al. 2005, 2006), polymers (Mussawisade et al. 2005; Lee & Kapral 2006; Kikuchi et al. 2005;

Ryder & Yeomans 2006), vesicles (Noguchi & Gompper 2005a,b), and reactive flows (Tucci &

Kapral 2004). Thus the method can be viewed as a minimal microscopic model of fluid. For a

comprehensive review on MPCD, readers are referred to Kapral (2008); Gompper et al. (2008).

Despite the success of MPCD model in complex fluid applications, a number of technical

as well as conceptual issues remain. For example, though the method has its origin in kinetic

theory, the range of applicability for finite Knudsen is not well understood. The aim of this

thesis is to quantify the accuracy of the MPCD algorithm and resolve some of the problems

associated with it (for example, specifying correct equation of state).

In particular, following issues are studied in this thesis:

• Equation of State: MPCD has been applied to a variety of problems such as colloidal

suspensions, dilute polymer solutions, and flows in channels and over solid objects. We

note that in most of these applications MPCD is used to mimic liquid like properties,

although the equation of state (in MPCD) is that of an ideal gas. Therefore, the results

1



2 Chapter 1. Introduction

presented in literature correspond to systems evaluated at artificially high Mach numbers

for numerical convenience. This thesis attempts to modify the equation of state of MPCD

system using a phenomenological model which incorporates volume effect of the particles

in the mean sense while working with point particles. Unlike Enskog system the excluded

volume effect is introduced by changing the streaming velocity instead of treating them

during the collision step as is conventionally done (Alexander et al. 1995). We have also

included contribution due to attractive part of the molecular potential into the system.

This modification has allowed us to use MPCD to simulate problems involving phase

separation.

• Boundary condition: In kinetic theory, wall boundary conditions are often implemented

via diffusive boundary condition (Alexander & Garcia 1997; Ansumali & Karlin 2002). In

this boundary condition, one assumes that particles coming into the flow after wall in-

teraction are distributed according to the Maxwell-Boltzmann distribution at the wall

temperature. Thus the wall acts like a thermostat, and the thermal boundary condition is

that of constant temperature. However, for mesoscale methods with bounce back bound-

ary condition, where particles reverse their velocity directions after collision, provides an

alternate framework for implementing no-slip boundary condition. This boundary condi-

tion mimics adiabatic condition as no energy exchange happens with the wall. In MPCD

method, the most widely used boundary condition is bounce-back boundary condition. In

this thesis, effectiveness of both boundary conditions are investigated for certain canonical

flows.

• Domain of Validity: In addition to their importance in engineering applications as well

as in scientific investigations, microflows also provide an important check for the kinetic

nature of an algorithm. Microflow setups have already been used to benchmark DSMC

(Direct Simulation Monte Carlo) (Piekos & Breuer 1996) and LBM (Lattice Boltzmann

Method) (Nie et al. 2002; Lim et al. 2002; Ansumali et al. 2006). Here one of our main

objectives is to study the kinetic nature of MPCD algorithm. In this thesis we have

investigated this method for gaseous microflows to access its accuracy in a quantitative

fashion. In this regard, we have chosen the set-up of shear driven flows, gravity driven

flows, and pressure driven flows at finite Knudsen numbers, as test cases.

• Galliean Invariance and Need of a New Collision Model: Simulations using the

conventional MPCD algorithm exhibits anomalous behavior for low temperature and small

time steps (Ihle & Kroll 2001). The dependence of the algorithm on a grid for calculating

cell centre velocities is speculated to be the main reason behind this failure when the grid

is kept fixed. The use of a fixed grid makes the grid an important element for simulating

a flow. This grid dependence is conventionally circumvented by shifting the grid before

every collision. This method of grid-shift works well under the conditions in which use of

a fix grid otherwise gives unphysical behaviour. However, using this method makes the

algorithm more complicated especially for domains with wall boundary condition.

In this thesis, we present a simple solution to this problem by modifying the collision rule

of MPCD while maintaining the simplicity of the algorithm. This new collision model



1.2 Overall organization of the thesis 3

(pseudo binary collision) is motivated by Monte Carlo binary collision model for plasma

dynamics (Wang et al. 2008). In this collision model, MPCD multiparticle collisions have

been replaced with binary collisions. This removes any grid dependence in performing

collisions. The main role of the grid then is to coarse-grain the system, and to sample

macroscopic flow properties.

1.2 Overall organization of the thesis

The overall organization of the thesis is as follows

• In Chapter 2, MPCD algorithm is introduced, and derivation of viscosity based on kinetic

theory is outlined. In addition, some of the practical aspects related to using the method

such as setting MPCD parameters, sampling macroscopic quantities, and the use of grid

shift and ghost particles are discussed.

• In Chapter 3, MPCD is benchmarked for simulating microflows. Three different microflow

setups are used - shear flow, gravity driven flow, and pressure driven flow. The results in

each case are presented.

• In Chapter 4, a new collision model is presented for correcting MPCD anomalous behaviour for

low temperatures and small time steps. We have also studied the equilibrium configuration

of the system. Analytical expressions for kinetic and collisional viscosities are derived.

Finally, we have studied microflow systems using this collision model. In this study also,

we have used three canonical flow arrangements - shear driven flow, gravity driven flow,

and pressure driven flow.

• In chapter 5, MPCD is modified for incorporating volume effect of the molecules in the mean

sense by changing the streaming step. First, the phenomenological mean field model for

incorporating Enskog like dynamics is introduced. The equation of state of the modified

MPCD system is then studied; changes in the viscosity is also investigated and compared

with the theory. Furthermore, speeds of sound in the modified system is studied. Finally,

MPCD system is extended to include the effect of attractive forces between molecules, and

the phase separation problem is investigated.

• In Chapter 6, an overview of the work done in this thesis is presented, and a few suggestions

are made for future work.





Chapter 2

Multi-particle Collision Dynamics

2.1 Introduction

Multiparticle collision dynamics (MPCD) is a particle based mesoscopic simulation technique

for incorporating hydrodynamics and/or thermal fluctuations into a system such as colloidal

suspension (Malevanets & Kapral 1999, 2000; Kapral 2008). In this algorithm, fluid is modeled

by a finite number (N) of point particles with positions ri and velocities vi, where i = 1, 2, ..., N .

The system evolves in a continuous phase space but discrete time domain following two steps -

streaming and collision- repeatedly. In the streaming step, positions of the particles are updated

as

ri(t+ δt) = ri(t) + vi(t)δt (2.1)

where ri(t+ δt) are the updated positions of the particles moving with velocities vi(t) over time

interval δt. This step mimics free flight of the particles. During streaming step, particles do not

interact and in fact they can even pass through each other unaffected.

(a) (b)

Figure 2.1: Multiparticle collision dynamics model. (a) Depicting simulation domain with par-
ticles sorted into different cells. (b) Schematic diagram of the velocity rotation. ξ is the particle
velocity in the reference frame moving with cell velocity, ξ|| and ξp are the components of ξ along

and perpendicular to the rotation axis, respectively. ξ
′
is the final velocity after rotation which

is the vector sum of ξ|| and ξ
′

p, where the second component is generated by the anti-clockwise

rotation of ξp about the rotation axis by a constant angle α. In the figure, both |ξp| and |ξ
′

p| lie
on the circle.

5
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In order to perform collisions, particles are first sorted into cells (collision cells) which divide

the domain into a regular lattice. During this step, all the particles in a given cell interact with

each other via momentum exchange. The velocity of each particle in a cell is then rotated by a

constant angle (α) around a randomly chosen axis in a frame of reference moving with the cell

velocity (average velocity of particles in a given cell) defined as:

u(I)(t) =
1

N I

NI
∑

i=1

vi(t). (2.2)

Thus in collision step, all the particles inside a collision cell get affected and the velocity of each

particle is updated as

v
(I)
i (t+ δt) = u(I)(t) +R(α)(v

(I)
i (t)− u(I)(t)) (2.3)

where, R(α) is an orthogonal rotation matrix characterized by a given rotation angle α, and a

randomly chosen axis n. We assume n to be uniformly distributed over a sphere of unit radius.

Furthermore, rotation axes in a cell at different time steps are stochastically independent. They

are also independent for different cells at a given time step. All macroscopic observables are

defined by an appropriate average value inside the cell. For example, the density (ρ(I)), and

internal energy (e(I)) are calculated as:

ρ(I) =
N (I)m

V
, e(I) =

N(I)
∑

i=1

(v
(I)
i − u(I))2

N (I)
. (2.4)

The chapter is organized as follows: In section 2.2 some of the useful properties of collision

operator is discussed. In section 2.3, procedure for deriving viscosity expression based on kinetic

theory is described. Use of grid shift and ghost particles are discussed in sections 2.4 and 2.5.

Finally, a few issues associated with the implementation of MPCD is discussed in section 2.6.

2.2 Properties of Collision Model

By construction, the chosen collision model (Eq.(2.3)) conserves mass, momentum and energy.

The momentum conservation can be seen by explicitly summing the post collision velocities of

all the particle in Ith cell as

NI
∑

i=1

v
(I)
ij (t+ δt) = N I u

(I)
j (t) +Rjk(α)





NI
∑

i=1

v
(I)
ik (t)− uk

(I)(t)



 =
NI
∑

i=1

v
(I)
ij (t), (2.5)

where subscript j denotes jth component of the velocity and u(I)(t) =
∑NI

i=0 vi(t)/N
I is used

to eliminate u(I)(t). Similarly, energy conservation in the model can be seen by evaluating

fluctuating part of the energy at time t+ δt as:

NI
∑

i=1

(

v
(I)
ij − u

(I)
j

)2
∣
∣
∣
∣
∣
t+δt

=
NI
∑

i=1

RjkRjl

(

v
(I)
ik (t)− uk

(I)(t)
)(

v
(I)
il (t)− ul

(I)(t)
)

. (2.6)
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Thus, we see that the energy is conserved via time dynamics provided

RjkRjl = δkl, (2.7)

which is the condition that R is an orthogonal matrix. Thus, the basic requirement of hydrody-

namics that the collision model has correct conservation laws is satisfied for MPCD algorithm.

In addition, similar to Boltzmann systems, an H-theorem has been proved to exist for the system

(Malevanets & Kapral 1999).

Next we consider the explicit expression of orthogonal matrix R used in the simulations.

In 2D, rotation axis is fixed in orientation and is aligned with the direction in which system

properties do not change. As a result, the collision operation is simply rotation of peculiar

velocity ξξξ = (v(t) − u), by a constant angle in clockwise (positive α) or counter-clockwise

(negative α) directions; the direction of rotation is chosen randomly with equal probability.

Thus, R(α) is given by

R(α) =

(

cosα ± sinα

∓ sinα cosα

)

. (2.8)

In three-dimensions, the explicit form of R(α), which depends both on α and n̂, is:

R(α) =






cosα+ n2
1(1− cosα) n1n2(1− cosα)− n3 sinα n1n3(1− cosα) + n2 sinα

n1n2(1− cosα) + n3 sinα cosα+ n2
2(1− cosα) n2n3(1− cosα)− n1 sinα

n1n3(1− cosα)− n2 sinα n2n3(1− cosα) + n1 sinα cosα+ n2
3(1− cosα)






(2.9)

As we have mentioned before, n is chosen such that the unit vector is distributed uniformly over

a sphere of unit radius. Thus, the stochastic rotation axis is set by generating two random num-

bers, φ and θ, distributed uniformly in (0, 2π) and (−1, 1), respectively. The three components

of n = (n1, n2, n3) are given by

n1 =
√

1− θ2 cos(φ), n2 =
√

1− θ2 sin(φ), n3 = θ. (2.10)

We also emphasize here that use of the rotation matrix (Eq.(2.9)) is numerically unstable.

Instead, geometrical construction shown in Fig.(2.1b) is used for computing the post collision

velocities. Thus the post collision velocity is given by

v(t+ δt) = u+ ξ‖ + ξ⊥ cosα+ (n× ξ⊥) sinα, (2.11)

where ξ = v(t) − u(t) is the velocity of a particle in a reference frame moving with the cell

velocity, ξ‖ = n(ξ · n), ξ⊥ = ξ − n(ξ · n), and (n × ξ⊥) is the cross-product between vectors n

and ξ⊥.

2.3 Transport Properties

Simplicity of update rules in MPCD algorithm has allowed the study of the system for its

transport properties (Kikuchi et al. 2003; Ihle & Kroll 2003a,b). Analytical expressions for

transport coefficients of different transport processes such as mass transport (mass diffusion),
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momentum transport (viscosity), and energy transport (thermal diffusion) have been derived.

These expressions show quite good agreement with simulation data (Kikuchi et al. 2003; Ihle

& Kroll 2003b). In this section, following Kikuchi et al. (2003) the procedure used for deriving

viscosity of MPCD system is outlined.

Firstly, it should be pointed out that unlike kinetic description of a real fluids, fluid modeled

by MPCD has two distinct contributions to the viscosity. The first contribution, which is

often referred to as kinetic contribution, is due to transport of momentum by the movement

of particles. The second contribution, termed as collisional viscosity, is due to the non-local

nature of discrete collisions. While kinetic contribution is present for molecular fluid, the second

contribution is purely a numerical artifact. Here, we remind that this non-locality is not similar

to Enskog type non-locality (Chapman et al. 1970) and does not introduce any correction to

the equation of state. In this section, we follow Kikuchi et al. (2003), to derive the viscosity of

MPCD fluid.

Figure 2.2: Schematic diagram of shear flow.

Kinetic Viscosity

In order to calculate the kinetic part of the viscosity we consider a system undergoing shear in

x-direction with shear rate γ̇ = ∂ux(y)/∂y as shown in Fig.(2.2). If we consider any plane at a

given y, because of thermal fluctuations, fluid particles cross the plane from both sides carrying

momentum along with them. However, on an average, particles crossing the plane from above

have different x-momentum compared to those crossing the plane from below because of the

applied shear. Consequently, there is a net flux of momentum across the surface in x-direction

and a non-zero shear force is experienced by the surface, which can be expressed as

σxy = η
∂ux(y)

∂y
≡ ηγ̇, (2.12)

where η is shear viscosity.

We aim to calculate this contribution to the viscosity hereafter termed as kinetic viscosity,

ηkin, by analyzing the relationship between shear stress σxy and strain rate γ̇ at location y,

as the particles stream. It can be accomplished by computing total momentum flux crossing

the plane y in x-direction; the shear stress at y is negative of this quantity. For simplicity, we
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consider a given plane y = y0 = 0. A particle at coordinate x ≡ (x, y) crosses the plane y0 in

the time interval δt provided it is moving towards the plane and the magnitude of y component

of the velocity is greater than |y|/δt where |y| corresponds to the magnitude of y. Furthermore,

we need to know the local density, ρ = mM/a2, where M is the average number of particles per

collision cell, and local velocity distribution function P (ξx, ξy), in order to calculate the total

flux through y0. Note that the local distribution function P (ξx, ξy) is normalized to unity. The

shear stress at y = y0 is

σxy = −
ρ

δt

∫ ∞

−∞
dvx

∫ 0

−∞
dy

∫ ∞

− y
δt

dvyvxP (vx − γ̇y, vy)

+
ρ

δt

∫ ∞

−∞
dvx

∫ ∞

0
dy

∫ − y
δt

−∞
dvyvxP (vx − γ̇y, vy); (2.13)

The first integral on the right hand side denotes contribution to x-momentum flux from the

particles in the region y < 0 as they move across the plane y0 (notice that in this integral vy

is positive since y is negative). Similarly, in the second integral x-momentum flux contribution

is calculated by the particles in the region y > 0. Also note that we have subtracted γ̇y, which

is the flow velocity at y, from the x-component of the particle velocity vx since the distribution

function considered here is written in the co-moving reference frame. By change of variables

(vx − γ̇y, vy) to (ξx, ξy), the above equation is reduced to

σxy = −
ρ

δt

∫ ∞

−∞
dξx

∫ 0

−∞
dy

∫ ∞

− y
δt

dξy(ξx + γ̇y)P (ξx, ξy)

+
ρ

δt

∫ ∞

−∞
dξx

∫ ∞

0
dy

∫ − y
δt

−∞
dξy(ξx + γ̇y)P (ξx, ξy).

(2.14)

Figure 2.3: Schematic diagram depicting region of integration (Eq.(2.14)) in ξ-y plane.

Next, changing the order of integration between ξy and y (see Fig.(2.3)), the above equation
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simplifies as

σxy = −
ρ

δt

∫ ∞

−∞
dξx

∫ ∞

0
dξy

∫ 0

−ξyδt
dy(ξx + γ̇y)P (ξx, ξy)

+
ρ

δt

∫ ∞

−∞
dξx

∫ 0

−∞
dξy

∫ −ξyδt

0
dy(ξx + γ̇y)P (ξx, ξy)

=
ρ

δt

∫ ∞

−∞

∫ ∞

−∞
dξxdξy(−ξxξyδt+ γ̇

ξ2yδt
2

2
)P (ξx, ξy)

=
γ̇ρδt

2
〈ξ2y〉 − ρ〈ξxξy〉 =

γ̇ρδt

2
〈v2y〉 − ρ〈vxvy〉 (2.15)

where we have used the fact that the peculiar velocity (ξx, ξy) is same as the particle velocity

(vx, vy) at y = 0.

Finally, the behavior of 〈vxvy〉 can be computed by considering the effects of streaming and

collision separately. For simplicity, γ̇ is assumed to be positive and a frame of reference moving

with the flow velocity at any given y is chosen. In a time interval of δt, particles with positive vy

come from y − vyδt, and have comparatively smaller flow velocity. In other words, as a particle

moves in the positive y direction, a part of x component of the peculiar velocity, given by γ̇vyδt,

transforms into the flow velocity. Consequently, the peculiar velocity has a smaller value at the

changed position. Similarly, particles with negative vy that come at y have relatively higher flow

velocity, and the x component of the peculiar velocity increases as the particles move to new

locations. Thus, the probability distribution for velocity at y after time δt can be written as

P (vx, vy)
after = P (vx + γ̇vyδt, vy)

before, where γ̇vyδt is added in vx in the velocity distribution

function before streaming to account for the change in x component of the peculiar velocity.

This is a consequence of the applied shear in y, as the particles stream to new locations. The

average velocity correlation, 〈vxvy〉, changes as

〈vxvy〉
after =

∫ ∞

−∞
dvx

∫ ∞

−∞
dvyvxvyP (vx + γ̇vyδt, vy) (2.16)

Again, by changing the variables (vx + γ̇vyδt, vy) to (ξx, ξy) the equation transforms to

〈vxvy〉
after =

∫ ∞

−∞

∫ ∞

−∞
dξxdξy (ξx − γ̇ξyδt) ξyP (ξx, ξy)

=

∫ ∞

−∞

∫ ∞

−∞
dξxdξy

[
(ξxξy)− γ̇ξy

2δt
]
P (ξx, ξy)

= 〈ξxξy〉 − γ̇〈ξ2y〉δt (2.17)

Using the fact that at y = 0, the peculiar velocity (ξx, ξy) is same as the particle velocity (vx, vy),

the above equation can be written as

〈vxvy〉
after = 〈vxvy〉 − γ̇〈v2y〉δt, (2.18)

which suggests that streaming operation changes 〈vxvy〉 by −γ̇δt〈v2y〉 and makes vx and vy

increasingly anti-correlated.

Furthermore, we need to estimate the effect of collision on the velocity correlation. This
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can be done by considering the Ith collision cell with n particles. After the collision velocity of

each particle gets updated according to Eq.((2.3)). The velocity components of a particle after

collision can be written as

vix(t+ δt) = cos(α)ξix± sin(α)ξiy + ux

viy(t+ δt) = ∓ sin(α)ξix + cos(α)ξiy + uy
(2.19)

Velocity correlation after collision, using this equation and averaging over particles in the cell

and over different rotation angles (α, and −α), is:

〈vix(t+ δt)viy(t+ δt)〉 = 〈uxuy〉+ 〈ξixξiy〉
(
cos2(α)− sin2(α)

)
+ cos(α) (〈ξix〉uy + 〈ξiy〉ux) ,

(2.20)

where all the terms containing (±) and (∓) are absent due to averaging over angle. Also, the

terms containing 〈ξx〉 and 〈ξy〉 are zero by definition. Thus the above equation simplifies to

〈vix(t+ δt)viy(t+ δt)〉 = 〈uxuy〉+ 〈ξixξiy〉 cos(2α). (2.21)

The correlation 〈ξixξiy〉 can be expressed in terms of particle velocity correlation, 〈vixviy〉, as

〈ξixξiy〉 =〈(vix − ux)(viy − uy)〉

=〈vixviy〉 − 〈uyvix〉 − 〈uxviy〉+ 〈uxuy〉
(2.22)

The average velocity can be written as u = (vi+ v̂)/n, where v̂ =
∑n

k=1,k 6=i vk. Furthermore, we

assume that molecular chaos is valid, that is, velocities of the different particles are uncorrelated

and thus 〈v̂xviy〉 = 0, and 〈v̂yvix〉 = 0. Thus, under molecular chaos assumption following

relations holds:

〈uyvix〉 =
1

n
〈vixviy〉, 〈uxviy〉 =

1

n
〈vixviy〉. (2.23)

Similarly, as there is no distinction between the particles, one can write:

〈uxuy〉 =
1

n
〈uxv1y〉+

1

n
〈uxv2y〉+ · · · = 〈uxviy〉 =

1

n
〈vixviy〉. (2.24)

Using the relations in Eq.((2.22)), the correlation 〈ξxξy〉 is

〈ξixξiy〉 =
n− 1

n
〈vixviy〉. (2.25)

Finally, substituting the expressions for 〈ξixξiy〉 and 〈uxuy〉 from Eq.((2.25)), ((2.23)) into

Eq.((2.21)), the expression for correlation is:

〈vix(t+ δt)viy(t+ δt)〉 =

[

1−

(
n− 1

n

)

(1− cos 2α)

]

〈vix(t)viy(t)〉 (2.26)

For simplicity, we drop the index i since all the particles are identical. If we consider density

fluctuation inside the cell to follow Poisson distribution P (n) = e−MMn/n!, the probability of

finding a particle together with other n − 1 particles is nP (n)/M . So, taking an average over
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all possible configurations, the equation is modified to

∞∑

n=1

nP (n)

M
〈vx(t+ δt)vy(t+ δt)〉 =

∞∑

n=1

nP (n)

M

[

1−

(
n− 1

n

)

(1− cos 2α)

]

〈vx(t)vy(t)〉(2.27)

=

[

1−

(
M − 1 + e−M

M

)

(1− cos 2α)

]

〈vx(t)vy(t)〉 (2.28)

= f(α,M)〈vx(t)vy(t)〉 (2.29)

Hence we see that the velocity correlation 〈vx(t)vy(t)〉 first decreases due to streaming step

and then gets multiplied by a factor f(α,M) after the collision step. Thus, in steady state

following self-consistency condition must hold

(〈vxvy〉 − γ̇δt〈v2y〉)f = 〈vxvy〉, (2.30)

which implies

〈vxvy〉 = −
γ̇δtf

1− f
〈v2y〉. (2.31)

Substituting into Eq.((2.15)) gives

σxy = ργ̇δt〈v2y〉

(
1

2
+

f

1− f

)

, (2.32)

and we use the equipartition argument, 〈v2y〉 = kBT/m, to get

η2Dkin =
ρkBTδt

2m

[
2M

(M − 1 + e−M )(1− cos 2α)
− 1

]

. (2.33)

A similar procedure can be followed in 3D to get the following expression for kinetic viscosity

(Pooley & Yeomans 2005):

η3Dkin =
ρkBTδt

2m

[
5M

(M − 1 + e−M )(2− cos(α)− cos 2α)
− 1

]

. (2.34)

Figure 2.4: Schematic diagram for partitioning the collision cell to calculate momentum exchange
between the two subcells due to collision.
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Collisional Viscosity

Finally, we need to estimate the so called “collisional viscosity”which emerges due to non-local

nature of momentum exchange during the collisions. To compute this contribution, as shown in

Figure (2.4), Ith collision cell with n particles is considered. A horizontal plane at a distance y0

from the bottom of the cell, which divides the cell into two subcells with upper subcell containing

n1 particles with average velocity u1x and lower subcell containing n2 particles with average

velocity u2x is considered. The average velocity in the cell is uI = (n1u1x + n2u2)/(n1 + n2).

The goal is to calculate the momentum exchange across the plane during the collision step. If

the cell size a is small enough, the average quantities do not change substantially over distances

comparable to a. Thus, the shear rate in the cell is:

γ̇ =
∂ux
∂y

=
u1x − u2x

δy
(2.35)

where δy = a/2 is the distance between the centers of the two collision cells. Using the expression

for u1x − u2x in the above equation for shear stress, we get

γ̇ =
u1x − u2x

δy
=

2n

a(n− n1)
(u1x − uIx) (2.36)

where we have used the fact that n = n1 + n2 and also u1x − uIx = n2(u1x − u2x)/(n1 + n2).

To calculate contribution to shear stress, σxy, at plane y0, the momentum change in the

upper subcell resulting from the collision needs to be estimated, as there is a net transfer of

x-momentum across y0 because of the collision. Thus, the shear stress is given by

σxy = −
m

aD−1δt

[
n1∑

i=1

(vix(t+ δt)− vix(t))

]

(2.37)

where aD−1 is the area of the plane y0 across which momentum transfer takes place. Using

Eq.((2.19)) to substitute for vix(t+ δt)− vix(t) in the above equation, we get

σxy = −
m

aD−1δt

[
n1∑

i=1

{(cosα− 1)(vix − uIx)±viy sinα}

]

,

= −
m

aD−1δt

[

n1(cosα− 1)(u1x − uIx)± sinα

n1∑

i=1

viy

]

.

(2.38)

Next, averaging over the isotropic distribution of the rotation axis, the second term in the

numerator drops off, and the equation simplifies to

σxy =
m

aD−1δt

[
2

D
n1(1− cosα)(u1x − uIx)

]

, (2.39)

Substituting for (u1x − ux) from Eq.((2.36)) and using the definition of viscosity, we get

ηcol =
mn1(n− n1)

aD−2dnδt
(1− cosα) (2.40)
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We assume that the probability of finding a particle in a subcell is proportional to the subcell

area. This implies that the number of particles in the upper subcell, n1, follows binomial

distribution with p = (1− y0/a), and q = y0/a. When we take the average over all possible n1,

the equation reduces to

ηcol =
m(1− cosα)

aD−2Dδt
(n− 1)

y0
a

(

1−
y0
a

)

. (2.41)

In the above equation, we have used the fact that for a binomially distributed random variable,

n1, 〈n1〉 = np and 〈n2
1〉 = npq+n2p2, where n is the total number of particles in the Ith cell, and

corresponds to the maximum number of particles that the subcell can accommodate. Further-

more, considering the fluctuations in the number of particles (n) inside the cell to follow Poisson

distribution, and averaging over all possible particle configurations, the equation becomes

ηcol =
m(1− cosα)

aD−2Dδt
(M − 1 + e−M )

y0
a

(

1−
y0
a

)

(2.42)

Finally, averaging for 0 < y0 < a, we obtain the final expression for the collisional viscosity as

ηcol =
m(1− cosα)

6 aD−2Dδt
(M − 1 + e−M ) (2.43)

In 2D and 3D, collisional contributions are thus given by

η2Dcol =
m(1− cosα)

12 δt
(M − 1 + e−M ), η3Dcol =

m(1− cosα)

18 aδt
(M − 1 + e−M ). (2.44)
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Figure 2.5: Plot of viscosity with α; η is shown by the solid line, ηkin in broken line with filled
squares, and ηcol broken line with cross. For these two plots M = 20, a = 1.0, kBT/m = 1.0,
δt = 0.6

As we mentioned before, the total viscosity of MPCD fluid is a sum of kinetic and collisional

viscosities (Fig.(2.5)). In 2D following Eq.((2.33)) and ((2.43)), it can be expressed as

η2D =
ρkBTδt

2m

[
2M

(M − 1 + e−M )(1− cos 2α)
− 1

]

+
m(1− cosα)

12δt
(M − 1 + e−M ). (2.45)
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Similarly in 3D, we arrive at the following expression for viscosity (Eq.((2.34)) and ((2.43)))

η3D =
ρkBTδt

2m

[
5M

(M − 1 + e−M )(2− cosα− cos 2α)
− 1

]

+
m(1− cosα)

18aδt
(M−1+e−M), (2.46)

where the first term on the right hand side corresponds to the kinetic contribution to the viscosity,

and the second term that of the collisional contribution.

2.4 Galilean Invariance and Grid Shift

MPCD systems at low temperatures and small time steps (δt < 0.4) show anomalous behaviour

when a fixed grid is used (Ihle & Kroll 2001). The reason is that, under such conditions same

particles in a cell undergo collisions over multiple time steps. As a result, velocity correlations

start building up, i.e. particles retain memory of their previous collisions. This results break-

ing of Galilean invariance and the system shows unphysical behaviour such as flow dependent

transport properties.

Ihle and Kroll (Ihle & Kroll 2001) have shown that it is possible to restore Galilean invariance

by shifting the particle, or alternatively by placing the grid randomly by a constant vector before

each collision. The different components of the shift vector is drawn from an uniform distribution

in [−a/2, a/2]. The grid-shift (or particle-shift) ensures that at each time step, different particles

participate in a collision, and so, the problem of velocity correlation is remedied. Due to grid-

shift, the average jump in moment is enhanced, which in turn leads to increase in the viscosity

of the system. This additional correction to the viscosity should be accounted for in simulations

using grid shift (Kikuchi et al. 2003).

2.5 Ghost Particles or Wall Particles

When the domain boundaries are complicated, often partially filled collision cells are encoun-

tered. With grid-shift partially filled cells are quite common and can not be avoided. If the

partially filled cells result from wall boundaries, different fluid behaviour, compared to bulk, can

be observed in the vicinity of the wall. In order to overcome this problem, use of ghost particles

or wall particles have been suggested (Lamura et al. 2001; Bolintineanu et al. 2012), and are

used for calculating the cell velocity during collision step. These particles have average velocity

same as the wall, and fluctuating part of the velocity is drawn from the Maxwell-Boltzmann

distribution at the wall temperature. The cell velocity is thus computed as

uI =

∑M̃
i=1 v

I
i + g

M
, (2.47)

where g is velocity contributions from the wall particles. Since sum of Gaussian random numbers

is also a Gaussian, only one velocity vector is needed with velocity components drawn from the

Maxwell-Boltzmann distribution with mean Uw and variance ((M̃−M)kBT/m); M̃ is the number

of particles in the partially filled cell and Uw is the wall velocity.
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2.6 Few Practical Issues

In this section, specifics of setting the simulation parameter setting, and sampling macroscopic

quantities are presented briefly. In addition to temperature and density of the system, transport

properties of an MPCD fluid also depend upon parameters such as, time step (δt), average

number of particles per collision cell (M), and angle of rotation (α). For different flow problems

we need to set appropriate non-dimensional numbers, e.g. Schmidt number (ν/D), Reynolds

number (lv/ν), Peclet number (νl/D), where ν = η/ρ is the kinematic viscosity, D is the

diffusion coefficient, and v and l are the characteristic velocity and length scale in the problem,

respectively. For example, a fluid modeled using MPCD, the Schmidt number can be increased

by lowering δt, and the fluid behaviour can thus be changed to that of a gas or a liquid (Ripoll

et al. 2005) by adjusting δt. The MPCD parameters should be set such that, the required

non-dimensional number is set appropriately for the problem.

Finally, it should be noted that fluctuations are inherent in MPCD algorithm, and to get a

smoother values of these observable quantities, further averaging might be required. We often

take ensemble averaging, especially for a transient simulation, from a large number of indepen-

dent runs with same initial conditions. However, for steady state calculations, time averaging

can be used once the initial transience has passed. Similarly, in a flow simulation with periodic

boundary condition, physical properties do not change in the direction of periodicity and thus,

slab wise averaging is done to reduce the fluctuations in macroscopic quantities.



Chapter 3

Microflows with Standard MPCD

3.1 Introduction

A quantitative understanding of the effectiveness of MPCD algorithm is required for its appli-

cation to the hydrodynamic problems. Furthermore, as the method has molecular background

and a well defined notion of mean-free path, one would like to know the domain of validity of

the method in terms of Knudsen number. In this regard, gaseous microflows provide an ideal

benchmark condition, as well as possible new applications for the method. Such flows are typ-

ically observed in devices where characteristic length scales are in micro-meters (in the range

of 1-100 microns)(Ho & Tai 1998). As the operating pressures are atmospheric, the mean free

path of the fluid (∼ 68nm at room temperature) is comparable to the geometry, i.e the flows

are finite Knudsen flows and, in particular, in the slip flow regime (Karniadakis et al. 2002).

In this regime, one expects to observe departure from the continuum hydrodynamics de-

scribed by Navier-Stokes-Fourier equations, and a good amount of understanding already exists

for this departure. In Fig.(3.1) range of applicability for various methods, used to study finite

Knudsen flows, are shown. Traditionally, three distinct approaches were used, with varying

degree of success. In the first approach, Navier-Stokes-Fourier description was used with slip

boundary condition. It was argued that the dominant effect for finite but small Knudsen flows

is the appearance of slip at the wall (Beskok & Karniadakis 1994, 1999; Arkilic et al. 1997). In

the second approach, simplified collision description, e.g. Boltzmann-BGK approximation, was

used to get semi-analytical results in simple geometries such as channel flows (Cercignani 1975).

The third route was numerical solutions using Direct Simulation Monte-Carlo (DSMC) method,

which is accurate as well as general enough for most of the applications in the microflow regime

(Piekos & Breuer 1996; Oran et al. 1998). However, this route is computationally very demand-

ing due to inefficiency of DSMC for sub-sonic flows (which is often the case in microflows) (Oran

et al. 1998).

Due to increased importance of gaseous microflows in engineering applications (e.g. Micro-

Electro-Mechanical Systems (MEMS)), and lack of accurate and fast simulation tools, in the last

decade various new methodologies were developed for modeling gaseous microflows. Mesoscale

simulations tools such as LBM, DPD and MPCD due to their good computational efficiency, are

potentially quite attractive for modeling them. The vast amount of available data for canonical

flows (e.g. shear flow, Poiseuille flow) using Boltzmann-BGK model, or slip flow models make

this regime an ideal case for checking the domain of validity of a given mesoscale method. These

set-ups have already been used to establish the kinetic nature of the mesoscale algorithms such

17
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as DPD and LBM (Czerwinska & Adams 2003; Nie et al. 2002; Lim et al. 2002; Ansumali et al.

2006). In this chapter, the effectiveness of MPCD algorithm for simulating gaseous flows in the

slip-flow regime is investigated. In this regard, as test cases, the set-up of shear driven flows,

gravity driven flows, and pressure driven flows at finite Knudsen numbers are chosen.

The chapter is organized as follows: In section 3.2, a brief description of gaseous microflows

is presented and different tools for predicting flow properties are described. In section 3.3, two

different wall boundary conditions (bounce back and diffuse wall) are discussed, and preference

for diffuse wall boundary for simulating microflows is explained. Applicability of MPCD for

different Knudsen range is investigated in section 3.4. In section 3.5, different flow set-ups are

described and relevant results are presented. Finally, few conclusions are drawn in section 3.7

based on our findings.
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Figure 3.1: A rough sketch showing computational feasibility of different methods in different
regimes (Oran et al. 1998). Here, L is a characteristic length scale, d is the molecular diameter,
and δ is the average spacing between two molecules.

3.2 Gaseous Microflow

The continuum model of fluid dynamics for gases, as described by Navier-Stokes-Fourier (NSF)

description, assumes that macroscopic length scales are much larger than mean free path. In

this description, stress tensor and heat flux do not have independent dynamics and are known in

terms of constitutive relation of Stokes and Fourier. The validity of hydrodynamics is quantified

in terms of the Knudsen number (Kn), which is defined as a ratio of the mean free path to

a characteristic length scale of the system (e.g. channel width). It is widely accepted that

the Navier-Stokes-Fourier description with no-slip boundary condition is valid for Kn < 0.001,

and the first departure from this description is in terms of the failure of no slip boundary

condition. As Knudsen number is increased, constitutive relations break down and one notices

non-Newtonian behaviours (Ansumali et al. 2007). Gaseous flows through a microdevice are
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often in the intermediate regime of slip flow (0.001 ≤ Kn ≤ 0.1). It can be safely said that the

flow is weakly rarefied in this regime.

The flow is usually highly sub-sonic such that Mach number of the flow, Ma ≪ 0.3. Though

the continuum flow in this range of Mach number is considered incompressible, it is often ar-

gued that mild compressible behavior does show up in the slip-flow regime (Beskok et al. 1996;

Arkilic et al. 1997). For example, it has been found experimentally that centre line pressure in

microchannels, in which flow is driven by maintaining a pressure difference at the inlet and at

the outlet, is non-linear (Pong et al. 1994). For numerical simulations, such low Mach numbers

imply that the fluctuations in hydrodynamic quantities can make resolution requirements on

particle methods such as DSMC, MPCD etc. quite stringent (Oran et al. 1998). Another in-

teresting aspect of microflow, that is generally noticed, is relatively high viscous heating due to

low Reynolds number (Re). Thus, in realistic applications such as gas flow in electronic devices,

where the fluid medium has bad conductivity, temperature variations can not be ignored.

As discussed earlier, in the continuum modeling of gaseous microflow, it is assumed that

the bulk hydrodynamics remains same as the Navier-Stokes-Fourier description, but the slip

boundary conditions are used to model the boundary effects. Though, first order velocity slip

model works quite well for shear flow or pressure driven flow simulations, second order correction

is required for simulating gravity driven flows. Hadjiconstantinou (see Hadjiconstantinou (2003))

has suggested a modified form of Cercignani’s second order velocity-slip model, in which first

and second order coefficients are adjust to suit a hard sphere gas. It is generally accepted that

a hard sphere gas is a reasonable approximation to a real gas in an isothermal flow; the hard

sphere model is often used in particle based algorithms, such as DSMC, for simulating gases. In

literature, following form is suggested for the second order velocity-slip model:

u|wall = δ1λ
∂u

∂y

∣
∣
∣
wall

− δ2λ
2∂

2u

∂y2

∣
∣
∣
wall

, (3.1)

the positive y direction is taken perpendicular to the wall pointing into the flow, and slip

coefficient δ1 and δ2 are typically obtained by asymptotic theories using microscopic Boltzmann-

BGK description. This slip flow model shows a good agreement for the velocity profile when

compared with the DSMC simulations of hard spheres molecules.

An alternate, more microscopic approach, as already indicated, is to use DSMC (Oran et al.

1998). In this algorithm, the motion is decoupled into two distinct steps of collision and advec-

tion. This decoupling of streaming and collision imposes that the streaming time step is smaller

than the mean collision time. During streaming, particles do not interact and move ballisti-

cally over time step δt. In the collision step, binary collisions are performed in a small volume

(collision cell) between particles chosen randomly. The collision step is an stochastic procedure

which tries to capture the overall scattering effects between colliding molecules, where any two

particles inside a collision cell is allowed to collide. Thus, cell size in the method should be

smaller than the mean free path. Similarly, every cell must have a minimum number of particles

to avoid large fluctuations. Empirical studies suggest that cell size should be approximately

one third of the mean-free path, and number of particles in each collision cell should be greater

than 20. A brief introduction about this method can be found in (Alexander & Garcia 1997),

and a detailed description can be found in the monogram (Bird 1994). Theoretically, DSMC
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can be used for simulating flows at all Knudsen numbers but limitations on the computational

resources restricts its uses to high Knudsen, high Mach applications. It is an accepted view that

in the regime of microflows, the method is not very efficient due to large statistical fluctuations

(in microflows, the difference between the flow velocity (1 − 10 cm/s) and the molecular speed

(330 m/s) may differ by orders of magnitude) as well as due to the need of long time simulations

(Oran et al. 1998). Here, it should be reminded that the time step in DSMC is of the order of

mean free time (10−9s), but the flow properties in microchannels are required at a much larger

time scales (∼ 1 sec).

Recently, Ansumali and Karlin using shear flow set-up showed that hierarchy of LBM kinetic

equations with diffuse wall boundary condition form a closed system which can be solved exactly

in 1D to predict flow properties such as velocity profile, shear stress in a microflow (Ansumali

et al. 2007). Furthermore, they showed that by including more terms in the hierarchy, higher

order effects can be resolved. For example, by including forth-order terms development of

Knudsen layer in the velocity profile can be captured. Later, Yudistiawan et al. solved LBM

hierarchy with gravity, and by including forth and sixth order terms in the hierarchy, captured

Knudsen layer effects in the velocity profile (Yudistiawan et al. 2008, 2010). Success of LBM

in formulating a consistent closed system with diffuse wall boundary condition also suggests a

possible remedy to the consistency problems in solving Boltzmann equation via expansion of

distribution function in Hermite polynomials. Note that hierarchy of equations obtained by

this method, with diffuse wall boundary condition, remain inconsistent. Solving Boltzmann

hierarchy is expected to result in more accurate solutions compared to LBM kinetic equations.

3.3 Wall Boundary Conditions for MPCD

Appropriate treatment of wall boundaries is important for internal flows in microdevices. It is

well known that for flows at finite Knudsen numbers, velocity slip and temperature jump can

be observed at the wall. In MPCD, one of the most widely used boundary condition is bounce

back (Lamura et al. 2001; Whitmer & Luijten 2010; De Angelis et al. 2012). However a few

authors have also used diffusive wall boundary condition (Padding et al. 2005; Padding & Louis

2006). In this section, both of these boundary conditions is reviewed.

(a) (b)

Figure 3.2: Wall boundary conditions. (a) Bounce Back (b) Diffuse Wall.
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3.3.1 Bounce Back

In mesoscale methods such as MPC and LBM, bounce back condition is often used for modeling

no slip boundary condition (for LBM see Succi (2001); Chen et al. (1996), and for MPCD see

Bolintineanu et al. (2012)). In this boundary condition the velocity of the particle is reversed

after it interacts with the wall, i.e. the particle traces back the same path it followed to approach

the wall (see Fig.(3.2a)). Thus, velocity components parallel, v′||, and perpendicular, v′⊥, to the

wall are changed to

v|| = −v′||, v⊥ = −v′⊥, (3.2)

just after the wall interaction. It is clear that with bounce back, the energy of the particle,

before and after the wall interaction, remains unchanged. This suggests that the wall acts like

an adiabatic boundary for the fluid. It is also apparent that the bounce back boundary condition

can not be used for simulating flows in which energy is supplied to the system by an external

force. In such cases, the thermal energy of the system will keep increasing leading to a blow up

scenario. In order to keep the energy bounded thermostating is used which sets the temperature

of the system to a given value (Gompper et al. 2008). Thus, this boundary condition is applied

for the problems where temperature variations are not important, i.e. for isothermal flows.

3.3.2 Diffuse Wall

An alternative methodology, for modeling walls in simulations, is diffuse wall approximation.

In implementing diffuse wall boundary condition, it is assumed that the particles get adsorbed

into the wall and undergoes multiple collisions before re-emerging into the fluid (Fig.(3.2b)).

Because of multiple collisions with the wall, particles forget everything about the velocity before

wall interaction and get equilibrated to the wall temperature (Tw). Furthermore, physically

fast moving particles interact more frequently than the slower moving particles, and the diffuse

boundary condition tries to capture this phenomena by using biased Maxwellian distribution for

generating the velocity components of the re-emitted particles (Alexander & Garcia 1997). The

velocity component normal to the wall is generated using following distribution:

P⊥(v⊥) =
m

kBTw
v⊥e

−mv2⊥/2kBTw , (3.3)

and each parallel velocity component is generated using

P‖(v‖) =

√
m

2πkBTw
e
−mv2

‖
/2kBTw , (3.4)

where m is the mass of the particle and kB is the universal Boltzmann constant.

Since the particles get equilibrated to wall temperature, the wall behaves like an isothermal

boundary. Furthermore, no thermostats are required with this wall boundary condition as

the wall itself acts like a heat bath. This method is regularly used in the context of gaseous

microflows with DSMC (Alexander & Garcia 1997) and LBM (Ansumali & Karlin 2002) to

produce velocity slip and temperature jump at the wall. Moreover, the slips have been shown
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to be consistent with the known results from Botzmann-BGK equation (Ansumali et al. 2007;

Yudistiawan et al. 2008, 2010). It is known that this boundary condition leads to slip flow in

MPCD simulations (Bolintineanu et al. 2012). However, consistency of such slip with kinetic

theory has not been investigated so far. In this chapter, the slip observed in MPCD with diffusive

boundary condition will be contrasted with the slip flow models and other known results from

kinetic theory.

3.4 Kndsen Number for MPCD Fluid

Though molecular collisions are modeled in the MPCD algorithm, there are no explicit molecular

parameters involved. In this method, one relates the rotation angle and time step with the

transport coefficients such as viscosity. Thus, one needs to consistently define Knudsen number

so that the method can be contrasted with the results known from kinetic theory. In this thesis,

viscosity based definition of the mean free path is used. In Ref. Hadjiconstantinou (2003),

following form is suggested for the viscosity:

λ =
η

p

√

πRT

2
, (3.5)

where η is the dynamic viscosity, p and T are the pressure and temperature, respectively, and

R = kB/m is the gas constant of the fluid. In this definition, by substituting the viscosity of the

MPCD fluid (Chapter 2, section 3), we get

η =
ρkBTδt

2m

{
5M

(M − 1 + e−M )(2− cosα− cos 2α)
− 1

}

+
ρa2

δt

{
M − 1 + e−M

6DM
(1− cosα)

}

,

(3.6)

where D is the dimensionality of the problem. The expression for Kn is:

Kn =
a

L

√
π

2

[
τ

2

{
5M

(M− 1 + e−M)(2− cosα− cos 2α)
− 1

}

+
1

τ

{
M− 1 + e−M

6DM
(1− cosα)

}]

,

(3.7)

where p = ρkBT/m is used to simplify the equation and time factor τ is defined as

τ =
δt
√

kBT
m

a
, (3.8)

and it is related to δt such that a particle moving with velocity
√

kBT/m travels a distance τa.

In practice, the factor τ is an O(1) quantity. This happens due to the fact that τ ≪ 1 tends

to build correlations among the particles which leads to the break down of Galilean invariance,

and τ > 1.0 shows unphysical flow behavior near the wall.

Eq.(3.7) suggests that the Knudsen number is a function of the following parameters: the

average number of particles per collision cell (M), lattice size (a), time factor (τ), rotation angle

(α), and the characteristic length L. It is clear that Kn dependence on M is extremely weak

and can be ignored. Furthermore, for a given density of the fluid corresponding variation in

a is very slow. Later, it would be shown that for α < 450 numerically yielded value of the

viscosity departs significantly from the theoretical value, and the observed departure depends
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Figure 3.3: Plot of Kn with α for MPCD (Eq.(3.7)) at different values of τ ; a/L = 0.1, M = 20.

strongly on the Knudsen number of the flow. Also note that for α > 450, only a small variation

in the viscosity can be observed. Thus, only free parameter remaining is L. Our experience

with MPCD shows that for various values of these parameters, only flows with Kn . 0.1 can

be simulated (see Fig.(3.3)). It is worth mentioning here that in this range, DSMC is very

expensive, and an alternative simulation tool is required (Oran et al. 1998).

3.5 Canonical Flow Arrangements

In this thesis, attention is restricted to 2D unidirectional flows only. In particular, we consider

flows between two infinitely large parallel plates (Fig.(3.4)) located at y = 0 and y = L, where

L is the separation between the two plates. It is also assumed that the flow is in steady state

with flow velocity in x-direction, and the flow quantities (e.g. velocity, and temperature) vary

only in y.

Here, we have considered canonical flow arrangements such as shear driven, gravity driven,

or pressure driven flows. In shear flow, the flow is driven by the motion of the confining walls

through momentum diffusion; in gravity driven the flow results due to the action of a constant

force (e.g. gravity) on the fluid particles; and in pressure driven, which is most common in the

microfluidic devices, the flow is driven by maintaining a pressure gradient along the length of

the channel. Though, gravity and pressure driven flows appear similar on the macro scales, the

microscopic details are quite different (Zheng et al. 2002).

Navier-Stokes equations can be solved, for the canonical flow arrangements described here,

using the second order velocity-slip boundary condition. The resulting velocity profile is

ux(y) =
L2

2η

(

ρFx −
∂p

∂x

)[

−
y

L

(
y

L
−

1

2

)

+ δ1Kn+ 2δ2Kn2
]

+
(U2 − U1)

(2Knδ1 + 1)

(
y

L
−

1

2

)

+
(U1 + U2)

2
,

(3.9)

where Fx is the constant force (per unit mass), ∂p/∂x is the pressure gradient at a given x,
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Figure 3.4: Schematic depicting the flow arrangement.

and U1 and U2 are the lower and upper wall velocities, respectively. The cross-stream velocity

profile corresponding to the gravity and pressure driven cases is shown in Fig.(3.5b), and for

shear driven flow the same is shown in Fig.(3.5a). It is evident that the velocity profile is

parabolic for the gravity and pressure driven flows, while it is linear for the shear flow. The

velocity slip at the walls is also apparent.
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Figure 3.5: Cross-stream velocity profiles. In these figures ux is scaled with U , which is chosen
appropriately for different flow scenarios, and y with L. (a) Gravity or pressure driven flows.

U = L2

2η ρFx for gravity flow, while for pressure driven flow U = −L2

2η
∂p
∂x (b) Shear driven flows.

We have chosen U2 = −U1 = Uw, and U = Uw.

3.6 Numerical Simulations

In all the simulations, the mass of each particle, m = 1, the particle diameter, σ = 1, and the

energy was measured in the units of kBT/m. We have also set T = 1 and kB = 1, except in

pressure driven flow scenario in which kB = 0.5. The density of the gas, ρ = 1.21 × 10−03, and

the time factor, τ , was set to 0.6 such that we were working in the gas flow regime (Ripoll et al.

2005). The average number of particles per collision cell (M) in simulations was fixed to 20. The

cell size (a) obtained form this number and the density is 25.4731. In simulations flow Knudsen

number was changed by changing the separation (L) between the two walls.

We have also compared the MPCD data with that of DMSC for a hard sphere gas (the code

was developed following Alexander & Garcia (1997)). The same set of parameters, as MPCD
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simulations, were considered for DSMC. Based on the chosen density and temperature the mean

free path, λ ≈ 182.04 (Eq.(3.5)), for the gas in DSMC simulations, where viscosity is estimated

using η = 5mπ1/2(RT )1/2/(16σ) (Lifshitz & Pitaevskii 1981). Furthermore, time step used for

streaming was roughly 0.1 × τc, where τc = λ/
√

kBT/m is a measure of mean free time. In

this section, the velocity profiles obtained form different simulations (Kn ∈ (0.05, 0.001)) are

contrasted with the exact solution (Eq.(3.9)) and the data obtained from DSMC simulations.

In order to make the comparison possible, the observed quantities are non-dimensionalized

appropriately (ux with U , and y with L).

In case of shear flow simulations, we have assumed that the bottom plate velocity, U1 = −Uw,

and the top plate velocity, U2 = Uw, where Uw = 0.2. The characteristic velocity, U = Uw. In

this case, using Eq.(3.9) the expression for the velocity is:

ux(y) =
2Uw

2δ1Kn+ 1

(
y

L
−

1

2

)

. (3.10)

Here, it should be noted that the second order slip coefficient (δ2) does not appear in the velocity

expression, which suggests that first order slip model is adequate for predicting the velocity

profile in shear flows. Fig.(3.6) shows that in the slip flow regime, velocity profiles obtained

from MPCD are in good agreement with the profiles obtained from second order velocity-slip as

well as DSMC simulations.

As the second set-up, gravity driven flow was considered. In this case, using Eq.((3.9)), the

expression for the velocity is:

ux(y) =
ρFxL

2

2η

[ y

L

( y

L
− 1
)

+ δ1Kn + 2δ2Kn2
]

. (3.11)

It is evident from the above equation that the velocity slip at the walls (y = 0, and y = L) is

not zero, and the corresponding value of the velocity slip is:

uslip =
ρFxL

2

2η

(
δ1Kn + 2δ2Kn2

)
. (3.12)

This set-up also provides a convenient means for measuring the viscosity of the fluid (Allahyarov

& Gompper 2002), which can be written using Eq.((3.11)) as

η =
ρFxL

2

8(umax − uslip)
. (3.13)

where the maximum velocity at the center line is:

umax =
ρFxL

2

2η

(
1

4
+ δ1Kn+ 2δ2Kn2

)

. (3.14)

This expression (Eq.(3.13)) is used to calculate the viscosity of an MPCD fluid as a function of

rotation angle (α), using both bounce back and diffuse wall boundary conditions. As discussed

earlier, bounce back simulations are stable only when system is coupled with a thermostat.

As a thermostat, a simplified procedure of rescaling the components of peculiar velocity of

each particle corresponding to the system temperature is used (Bolintineanu et al. 2012). This
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ȳ

ū
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ū
x

Second order slip
MPCD
DSMC

(c)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ȳ
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Figure 3.6: Couette flow velocity profiles at different Knudsen numbers (a) Kn = 0.025 (b)
Kn = 0.0167 (c) Kn = 0.0125 (c) Kn = 0.01.

procedure can be expressed as:

vI
i (t+ δt) = uI + sR(α)(vI

i (t)− uI), (3.15)

where vI
i is a particle in the Ith collision cell, uI is the cell velocity, R(α) is an MPCD multi-

particle collision operator, and s the scaling factor. The scaling factor, s, is given by

s =

√

kBTsetD(n− 1)

m
∑

i=1 |v
I
i − u|2

. (3.16)

In the above equation Tset is the desired temperature, D is the number of dimensions treated

with the thermostat, and summation in the denominator is performed over all the particle in the

Ith collision cell. In the simulations presented here, thermostats are used only in the z-direction,

which means D = 1.

Fig.(3.7) shows that the measured viscosity using bounce back boundary condition is in

good agreement with the analytical prediction for the range of α plotted. Furthermore, It

is also visible in Fig.(3.7) that the measured viscosity with bounce back boundary condition

does not match with that from diffuse wall boundary condition for small α. Here, we remind
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Figure 3.7: Plot of kinematic viscosity, ν̄ = ν/(a
√

kBT
m ), with α from two sets of simulations

with bounce back and diffuse wall boundary conditions. A good agreement between numerically
measured viscosity and theoretical prediction is evident for the range of α plotted. It is clear that
the measure viscosity with two boundary conditions do not match for α < 450. The reason is
evident in Fig.(3.8).
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Figure 3.8: Plot of measured viscosity (diffuse wall boundary condition) to predicted viscosity
ratio, (ηs/η) with Knudsen number. Strong dependence of the viscosity ratio for small α can be
seen in this plot.

that the molecular chaos assumption can break down if collisions are weak (i.e. α → 0). For

example, one can expect that at α close to zero, any particle will remember its past history

for a longer duration. In Fig.(3.8), it can be seen that for small angles, (α < 450), the ratio of

numerically observed viscosity to theoretical viscosity shows strong dependence on the Knudsen

number. These observations suggest that there is a coupling between correlation related error

and boundary related error, which needs to be investigated in details. As stated in section 3.4,

this restrictions on α limits the range of Knudsen flows which can be simulated using MPCD.
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Figure 3.9: Plot of kinematic viscosity, ν̄ = ν/(a
√

kBT
m ), with τ . In this figure it can be seen

that measured viscosity do not match for τ < 0.4 which indicates building up of correlations.
This build up eventually leads to breakdown of Galilean invariance.

In addition, measured kinematic viscosity with δt is plotted in Fig.(3.9) against the analytical

result. We see that the numerical data starts departing form the analytical curve for τ < 0.4.

This indicates building up of correlations among the particles for smaller values of time step.

These velocity correlations lead to the break down of Galilean invariance. As a result, anomalous

behaviour is observed. It is observed that Galilean invariance can be resorted by applying the

grid-shift (Ihle & Kroll 2001). However including grid-shift into MPCD algorithm is non-trivial,

specially for the flow domain with walls. In the next chapter, a simplified algorithm is presented

which reduces the correlation effects.

We have also studied velocity profiles for Kn ∈ (0.01, 0.05). In Fig.(3.10), the velocity

profiles obtained from MPCD simulations at different Knudsen numbers are plotted along with

the analytical solution (Eq.(3.11)) and DSMC simulation data. In order to make the comparison

possible, velocity is scaled with U = ρFxL
2/2η (the prefactor in the Eq.(3.11)), and the distance

from the bottom plate is scaled with L. From Fig.(3.10), it can be seen that numerical velocity

profiles show a small deviation form the second order velocity slip profile. A possible reason

for this deviation is that the theoretical prediction of viscosity does not exactly match with the

measured viscosity in the simulation (3−5% error), i.e. the MPCD velocity profiles plotted here

correspond to a fluid whose viscosity is slightly different from the value set for the simulation.

Same is true for the DSMC data plotted here.

In gravity driven flow, another quantity of interest is the non-dimensional mass flow rate,

defined as:

Q̄ =
ũx

L2(ρFx)

√

2kBT

m
, (3.17)

where ũx = 1
L

∫ L
0 ρux(y)dy is the average velocity in the channel. The second order velocity slip
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model with correction due to Knudsen layer (Hadjiconstantinou 2003) predicts that

ũx =
ρFxL

2

2η

(
1

6
+ δ1Kn + 2βKn2

)

, (3.18)

where β ≈ 0.31 is second order slip coefficient, modified due to the contribution from Knudsen

layer. In Fig.(3.11), the non-dimensionalized mass flow rate as a function of Knudsen number

obtained from the MPCD simulations is contrasted with mass flow rate curve obtained from the

second order velocity slip model and the DSMC prediction. We see that the results are in good

agreement.

Finally, It can be pointed out that, unlike MPCD simulations using bounce back, simula-

tions using diffusive boundary condition can also predict temperature dynamics. As first check,

temperature dynamics in gravity driven flows is investigated. The external force (per unit mass)

is selected such that the flows remain subsonic. In particular, temperature profiles from MPCD

simulations were investigated at different Knudsen numbers for two different Mach numbers-0.3,

and 0.5. In these cases, the temperature profiles obtained from MPCD were contrasted with

those obtained from DSMC simulations. It is evident from Fig.(3.12) that the temperature

profile from MPCD is only qualitatively correct. We also observe that the agreement is usually

better for the smaller Mach number (Ma = 0.3).

Lastly, we consider the pressure driven flows. In this set-up, the flow is driven by maintaining

a pressure gradient between the inlet and the outlet. In experiments, the outlet is often kept

at the atmospheric pressure while the flow is driven by maintaining a higher pressure at the

inlet. In the continuum flow regime, the pressure is expected to vary linearly along the length

of the channel for a subsonic (incompressible) flow. However, in microchannels the effects of

compressibility and rarefaction both become important (Arkilic et al. 1997; Beskok et al. 1996).

Moreover, it has been shown that rarefaction causes opposite effect than compressibility (Beskok

et al. 1996).

Arkilic et al. (Ref. Arkilic et al. (1997)) have systematically studied 2D Navier-Stokes

equations with first order velocity-slip boundary condition. The study is done for isothermal

gas flows with slight rarefaction through long microchannels. They used perturbation expansion

in smallness parameter ǫ, height-to-length ratio of the channel, and showed that at zeroth order

we get following expression for the pressure along the channel:

p̄0(x̄) = −6δ1K +
√

(6δ1K)2 + (1 + 12δ1K)x̄+ (P2) + 12δ1KP)(1− x̄) (3.19)

where δ1 is the first order velocity-slip coefficient, K is the Knudsen number at the exit of the

channel, P is the inlet to outlet pressure ratio, x̄ is the distance measure from inlet down the

channel and is non-dimensionalized using length of the channel, and p̄0(x̄) is the pressure at a

point which is rescaled with pressure at the outlet. This non-linear pressure profile is shown to

match well with the experimental data. Here, we have used this profile to compare the pressure

data obtained from MPCD simulations.

The set-up used for simulating pressure driven flows is shown in Fig.(3.13). We have applied

reservoir boundary conditions at the inlet and outlet in order to maintain constant pressures at

the two ends of the channel. The reservoirs are created by extending the length of the channel
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Figure 3.10: Force driven flow velocity profiles at different Knudsen numbers (a) Kn = 0.025
(b) Kn = 0.0167 (c) Kn = 0.0125 (d) Kn = 0.01.
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Figure 3.11: Plot of mass low rate with Knudsen number, Ma = 0.3.

in both directions. Before streaming, all the particles in the inlet reservoir are refreshed and

temperature (Tin), pressure (pin), and density (ρin) are set to that of the fluid entering the
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Figure 3.12: Force driven flow temperature profiles at different Knudsen numbers (a) Kn = 0.025
(b) Kn = 0.0167 (c) Kn = 0.0125 (d) Kn = 0.01.

channel which are known a priori. Thus total number of particles and temperature are always

fixed in the inlet reservoir. In addition, average velocity is assigned to each particles such that,

∂v/∂x = 0, can be set at the inlet. This has been accomplished by imposing

vin = vin+1, (3.20)

where vin is the mean velocity in the reservoir which is set to be equal to vin+1, the velocity

in cells adjacent to inlet boundary. Similarly pressure in the outlet reservoir is set to the outlet

pressure (p−). However, density, and the mean velocity are taken from the cells adjacent to the

outflow boundary. Thus at the outlet we have:

ρout = ρout−1, vout = vout−1, pout = p−. (3.21)

The subscript out corresponds to fluid properties in the outlet reservoir and out-1 to the cells

adjacent to the outflow boundary inside the channel. Moreover, the temperature (Tout) in the

reservoir is imposed using pout and ρout, and considering the gas to be ideal.

Selecting an appropriate length for the reservoirs is also important. If the length is small

compared to the length of the channel then the calculated flow quantities can be incorrect. And
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Figure 3.13: Schematic of the set-up used for simulating pressure driven flows.

if the length is too large compared to length of the channel then it might affect the flow properties

in the bulk; the values appear to shift by an additive constant. However, for a sufficiently large

channel changing the length of the reservoirs by small magnitudes does not change the flow

properties. In present simulations length of the reservoirs, Lr = 10×a.

In pressure driven flows presented here, length to height ratio of the channel is 20; and a

pressure ratio P = 1.9 (few cell at the inlet and outlet are ignored in order to minimize boundary

effects. For the complete length of channel P = 2.0) is maintained for driving the flow. It is

worth mentioning here that simulation of such a flow with DSMC is much more expensive.

In Fig.(3.14), pressure (p̄(x)) is plotted with distance (x̄) measured from the the inlet. The

pressure has been non-dimensionalized with respect to exit pressure and the distance is non-

dimensionalized with channel length. In this figure we observe that the measured pressure profile

is basically linear. Note that MPCD can be used to simulate hydrodynamics for Re ∈ (1 − 10)

(Gompper et al. 2008). However, for Eq.(3.19) to remain valid, we need, Re ∼ O(ǫ), and

Ma ∼ O(ǫ), at the exit. In the simulations presented here, at the exit, Re = 13.6, and Ma = 0.3.
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Figure 3.14: Plot of pressure with distance from the inlet of the channel. The pressure
is non-dimensionalized with the exit pressure whereas the length down the channel is non-
dimensionalized with respect to the channel length. The simulation data is plotted in red dots,
the analytical curve (Eq.(3.19)) and the linear pressure distribution curve are shown by the green
solid line, and the blue dashed line, respectively.
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3.7 Outlook

Here we have shown that MPCD with diffuse wall boundary can predict velocity slip and tem-

perature jump at the wall for finite Knudsen flows. However, there is a limit on Kn which can

be simulated using MPCD (we have, Kn < 0.1). Moreover, there is a limit on Re as well, the

preferred range for Re lies from 1 to 10. This makes MPCD not very suitable for simulating

pressure driven flows, where Re is smaller than one. So far, with MPCD we have not been able

to capture non-linear pressure distribution along the length of the channel which are linear in

our simulations. We also find that quantitative agreement can be found for the velocity profile

in shear and gravity flows. However, the obtained temperature profiles (gravity driven flows)

are only qualitatively correct.





Chapter 4

Pseudo Binary Collision Model

4.1 Introduction

The multiparticle collision dynamics model is perhaps one of the simplest microscopic model

of hydrodynamics. Due to the simplicity of the collision rule, the computational efficiency

of the model is quite good. For example, compared to DSMC, only one random axis (two

random numbers) per collision cell is required during the collision step, which makes the model

quite efficient. Here, it should be reminded that in DSMC one needs to generate two random

numbers for every selected pair of particles for collision. Furthermore, in MPCD the dynamics

of every particle is coupled to other particles only via average velocity, which increases the

inherent parallelism in the algorithm. However, as discussed in the last chapter, the method

has a number of shortcomings too. For example, when time step (δt) is small, fluid properties

predicted by the analytical expressions do not match with the simulation results. The reason

is that for small δt many particles in a given collision cell undergo collisions for multiple time

steps which leads to building up of correlations among them. Because of these correlations, the

Galilean invariance of the system breaks down, and the system shows unphysical behaviour.

Thus, for this numerical algorithm δt → 0 limit does not exist. Though, the random grid-shift

method partially resolves the issue, we find the absence of consistency in the continuum limit

unsatisfactory.

Here, a simple solution to this problem of ensuring Galilean invariance at small time steps

is suggested by modifying the collision rule of the MPCD algorithm. The new collision model

(pseudo binary collision) presented in this chapter is motivated by the Monte Carlo binary

collision model for plasma dynamics (Wang et al. 2008). In pseudo binary collision model,

the multipartile collisions in MPCD algorithm are replaced by two particle collisions between

randomly chosen particle pairs. It is clear that selecting same pair of particles for collisions

over multiple time steps is quite unlikely, considering that the time step is short enough, and

the particles remain in the same collision cell. Consequently, the velocity correlations among

particles do not build up. The present method, can also be viewed as an hybrid between DSMC

and MPCD, where MPCD rotation procedure is applied to carry out binary collisions used in

DSMC.

The chapter is organized as follows: in section 4.2, collision rules are explained for the

pseudo binary collision model. In section 4.3, relaxation of the MPCD system with pseudo

binary collision model to an equilibrium configuration is investigated, and the result shows that,

as in MPCD with multiparticle collisions, the velocity distribution is Maxwellian. Expressions

35



36 Chapter 4. Pseudo Binary Collision Model

for predicting kinetic and collisional viscosities are derived in section 4.4. The kinetic theory

approach (Kikuchi et al. 2003) is again followed for deriving the expressions. In section 4.5,

subcell structure is proposed for a collision cell with the aim of reducing the contribution to

collisional viscosity by making collisions relatively local. In section 4.6, gaseous microflows are

studied with this model in order to access its kinetic nature, and we find that it behaves very

similar to the standard MPCD algorithm. Here, we also show that with this collision model

Galilean invariance is ensured for small time steps. Finally, in section 4.7, some remarks are

made based on the results obtained.

4.2 Pseudo Binary Collision Model (PBCM)

In this section, a modified collision rule is proposed where the key new idea is to replace the

multiparticle collisions in MPCD (standard MPCD) with binary collisions, while keeping the

concept of velocity rotation for carrying out the collisions intact. In order to perform collisions

all particles in a collision cell are listed randomly and M/2 particle pairs (for even M) are

formed. The velocity of each particle is then rotated by a constant angle α (rotation angle) in

a reference frame moving with the centre of mass velocity of the two particles about an axis

(rotation axis) chosen randomly. Thus for a pair of particles vI
i (t), and vI

j (t) chosen randomly

in the Ith cell, the collision routine modifies to

v
(I)
i (t+ δt) =

vI
i (t) + vI

j (t)

2
+R(α)

vI
i (t)− vI

j (t)

2
,

v
(I)
j (t+ δt) =

vI
i (t) + vI

j (t)

2
−R(α)

vI
i (t)− vI

j (t)

2
,

(4.1)

where R(α) is a rotation matrix and α is the angle of rotation. Here it is emphasized that same

rotation axis is used for all the collisions inside a collision cell. Moreover, rotation axes are

stochastically independent for different cells at a given time and also for a given cell at different

times. Also, note that a small modification in the collision rule is required when there are odd

number of particles in the cell. In such cases, last three particles are grouped together after

all the particles in the cell are listed randomly. On this group of three particles, three pseudo

binary collisions are performed on pairs with particles taken two at a time (preferred choice), or

a three particle MPCD collision is performed.

It is evident that similar to standard MPCD, current algorithm has correct collisional invari-

ants. Furthermore, the detailed balance is intact and thus connection with Boltzmann dynamics

is evident. As the collisions have correct invariants and detailed balance is not violated, it is

reasonable to expect that the equilibrium for current model is Maxwell-Boltzmann distribution.

The qualitative motivation behind the current model is that due to binary nature of collisions,

one would expect that even for relatively small time steps used in simulations, a given par-

ticle will not collide with the same partner in the subsequent time-steps. Thus, unphysical

correlations are expected to be less severe in this model.

Finally, it should be pointed out that the pseudo-binary algorithm proposed here is quite

similar to the algorithm of plasma dynamics developed by Takizuka & Abe and Nanbu (Takizuka

& Abe 1977; Nanbu 1997) in the way particles are considered for collisions. However, the
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methods differ in details for calculating the post collisional velocities. Furthermore, three particle

collisions proposed here is again a peculiarity of MPCD.

4.3 Relaxation to Equilibrium

Similar to MPCD, the pseudo-binary collision model described in last section conserves mass,

momentum and energy. In case of MPCD, it is argued that, if ergodicity condition holds,

the stationary distribution for the MPCD system is microcanonical, and the single particle

distribution is Maxwell-Boltzmann distribution

fMB(v) =
N

V

(
m

2πkBT

) 3
2

e
− mv2

2kBT , (4.2)

in the limit of large system size (Malevanets & Kapral 1999). Here, N is total number of particles

in the system and V is the volume of the simulation domain. Using numerical simulations it has

been shown that standard MPCD system indeed relaxes to Maxwell-Boltzmann distribution.

As the current collision model has correct invariants, and satisfies detail balance conditions on

collision (Liboff 1983), one would expect that the equilibrium is Maxwell-Boltzmann for this

model too.

In Fig.(4.1), relaxation of MPCD with pseudo binary collision model to equilibrium is shown.

Here, a subtle difference can be observed between MPCD with multiparticle collisions and pseudo

binary collisions. Note that in the simulation only one collision cell is used and yet the system

relaxes to Maxwell-Boltzmann distribution. However, the same is not possible for standard

MPCD. It has been observed that for standard MPCD, fluctuation in u is required for the

system to relax. Therefore, in a system with only one collision cell no appreciable relaxation

to Maxwell-Boltzmann-distribution can be observed. MPCD with pseudo binary collisions does

not suffer from this limitation, i.e. the system relaxes to Maxwell-Boltzmann distribution even

with a single collision cell. We also note that the scenario presented here is only hypothetical,

no practical simulation would involve just one cell, as with just one point we can not hope to

approximate a flow domain.

4.4 Viscosity

In this section, the procedure used in standard MPCD for viscosity evaluation (see Kikuchi et al.

(2003), or Chapter 2 for a detailed derivation) is repeated for the PBCM. For the sake of com-

pleteness all the relevant steps are listed gain in this section. Similar to standard MPCD, the

fluid modeled by PBCM has two distinct contributions to the viscosity. The first contribution

is due to transport of momentum by the movement of particles and is termed as kinetic contri-

bution. The second contribution, termed as collisional viscosity, is due to non-local collisions.

4.4.1 Kinetic Viscosity

In order to calculate the kinetic part of the viscosity, as described in Chapter 2, a system

undergoing shear in x-direction, with shear rate γ̇ = ∂ux(y)/∂y, is considered. As it is derived
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Figure 4.1: (a) Distribution of x-velocity component is plotted at initial time (t = 0) and after
four time iterations (t = 4). (b)The velocity distribution (triangles) is rescaled to match the
Maxwell-Boltzmann distribution at system temperature (solid line). These two figures clearly
indicate that the system relaxes quite fast and the steady state distribution is Maxwell-Boltzmann
(When the simulation is run for longer times, it does not show any significant changes in the
distribution function). This simulation is run with 20000 particles at kBT = 1.0. Only one cell
(with periodic boundary condition in all three directions) is considered for the simulation.

there (see subsection 2.3.1), 〈vxvy〉 after advection can be related to before advection value as:

〈vxvy〉
after = 〈vxvy〉 − γ̇〈v2y〉δt, (4.3)

As compared to standard MPCD, collision step is different in PBCM, so 〈vxvy〉 after collision

needs to be estimated for this model. Similar to the calculation done for the standard MPCD,

the Ith collision cell with n particles is considered, where in a collision step the velocities of a

pair of particles get updated according to Eq.(4.1).

Firstly, for any pair of particle denoted by index i and j, due to the molecular chaos approx-

imation, we have:

〈(vix + vjx) (viy + vjy)〉 = 〈vixviy + vjxvjy〉 = 2 〈vixviy〉 (4.4)

Similarly,

〈(vix − vjx) (viy − vjy)〉 = 〈vixviy + vjxvjy〉 = 2 〈vixviy〉 . (4.5)

We intend to calculate the velocity correlation after collision, 〈vx(t+ δt)vy(t+ δt)〉, with ith

particle in the collision cell taken as the test particle. The velocity correlation can be expressed

as

〈vix(t+ δt)viy(t+ δt)〉 =
1

4
cos(2α) 〈(vix − vjx) (viy − vjy)〉+

1

4
〈(vix + vjx) (viy + vjy)〉 . (4.6)

Finally, substituting the expressions for 〈(vix − vjx) (viy − vjy)〉 and 〈(vix + vjx) (viy + vjy)〉

from Eq.(4.4), and Eq.(4.5), respectively into Eq.(4.6), we get
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〈vx(t+ δt)vy(t+ δt)〉 =
1

2
(1 + cos 2α)〈vx(t)vy(t)〉 = f(α,M)〈vx(t)vy(t)〉. (4.7)

In the above equation we have dropped the index i, as all the particle are identical.

Hence we see that the velocity correlation 〈vx(t)vy(t)〉 first decreases due to streaming and

then gets multiplied by a factor f(α,M) after the collision. Thus, in steady state following

self-consistency condition must hold:

〈vxvy〉 = −
γ̇δtf

1− f
〈v2y〉. (4.8)

As a result, we get following expression for the shear stress:

σxy = ργ̇δt〈v2y〉

(
1

2
+

f

1− f

)

, (4.9)

From the above equation, the expression for the kinetic viscosity can be extracted, and by using

the equipartition argument, 〈v2y〉 = kBT/m, we get

η2Dkin =
ρkBTδt

2m

[
4

(1− cos 2α)
− 1

]

. (4.10)

It is evident that transport coefficient in present model is same as MPCD with M = 2. Using

this argument, in 3D we have:

η3Dkin =
ρkBTδt

2m

[
10

(2− cosα− cos 2α)
− 1

]

. (4.11)

4.4.2 Collisional Viscosity

In order to get an estimates for the collisional contribution to viscosity (Kikuchi et al. (2003)),

the momentum transfer across a plane (y0), which divides the collision cell into two subcells

(upper and lower), is calculated during a collision step. Here n is the total number of particles

in a cell, and n1 and n2 are number of particles in the upper and the lower subcells, respectively

(see Chapter 2 for details).

In pseudo binary collisions, momentum exchange between the two subcells takes place only

when the the two particles in a collision pair lie in different subcells. In general, there are

n(n − 1)/2 different collisions possible during a collision step. Among all the collisions, only

n1n2 collisions will result in the momentum exchange. Therefore, the probability that a collision

results in momentum exchange between the two subcells is 2n1n2/n(n− 1), and there are total

n/2 collisions in a given time step; this results in the total momentum exchange between subcells

to be proportional to n1n2/(n− 1). Thus, the shear stress can be given by

σxy =
m

aD−1δt

[
2

D

n1n2

n− 1
(1− cosα)

(u1x − u2x)

2

]

(4.12)
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Considering the average velocities in the two subcells, the above equation can be written as

σxy =
m

2aD−2δt

[
1

D

n1n2

n− 1
(1− cosα)

]

(4.13)

We assume that the probability of finding a particle in a subcell is proportional to the

subcell area. This implies that the number of particles in the upper subcell, n1, follows binomial

distribution with p = (1− y0/a), and q = y0/a. When we take the average over all possible n1,

the equation reduces to

ηcol =
m(1− cosα)

aD−2Dδt
n
y0
a

(

1−
y0
a

)

(4.14)

where we have used the fact that for a binomially distributed random variable, n1, 〈n1〉 = np and

〈n2
1〉 = npq+n2p2, where n is maximum number of particles that the subcell can accommodate.

Furthermore, ignoring any fluctuations in n (i.e. n = M , where M is average number of particles

in a collision cell), and averaging for 0 < y0 < a, we obtain the final expression for the collisional

viscosity. This is given by

ηcol =
m(1− cosα)

12aD−2Dδt
M (4.15)

In 2D and 3D, collisional contributions are thus given by

η2Dcol =
m(1− cosα)

24δt
M, η3Dcol =

m(1− cosα)

36aδt
M. (4.16)

As we mentioned before total viscosity, η2D, of an MPCD fluid is a sum of kinetic and

collisional viscosities. Using Eqs. ((4.10)) and ((4.15)), it can be expressed as

η2D =
ρkBTδt

2m

[
4

(1− cos 2α)
− 1

]

+
m(1− cosα)

24δt
M. (4.17)

Following the steps outlined in this section for a 3D system, we can arrive at a similar

expression for the viscosity, given as

η3D =
ρkBTδt

2m

[
10

(2− cosα− cos 2α)
− 1

]

+
m(1− cosα)

36aδt
M, (4.18)

where the first term on the right hand side corresponds to the kinetic contribution to the viscosity,

and the second term that of the collisional contribution.

Here we point out that the viscosity expressions have not be confirmed by numerical sim-

ulations. Each contribution to the viscosity can be obtained in a simulation following the

methodology used in Kikuchi et al. (2003). However, with the expressions derived in this sec-

tion, we hope to capture the right qualitative behaviour of the viscosity dependence on different

parameters (e.g. δt, M). These expressions seem to give a reasonably good prediction for the

overall viscosity (Fig. 4.3) for α > 900.

4.5 PBCM with Subcell

From Eq.(4.15), it can observed that the collisional contribution is approximately half of what

we get for standard MPCD. Here, we again emphasize that collisional contribution to viscosity is
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an artifact of non-local discrete collisions in MPCD, and there is no counterpart to this viscosity

contribution in the kinetic theory. This viscosity contribution can be reduced further by making

collisions relatively local by dividing collision cells into subcells. Thus, collisions are performed

considering only those particles inside a subcell. We refer to this pseudo binary collision model

with subcell structure as PBCM-Subcell. We see that this procedure is very similar to DSMC

for choosing collision pairs, which is done for ensuring that particle pairs in close proximities

undergo collisions.

It is evident that the kinetic contribution to the viscosity remains unchanged for pseudo

binary collision model with subcell structure (Eq.(4.10) and Eq.(4.11)), but the collisional con-

tribution reduces substantially. The collisional viscosity for the subcell model (PBCM-Subcell)

can be given as

ηcol =
m(1− cosα)

12.0ad−2
s dδt

Ms, (4.19)

where as is length of the subcell andMs is the average number of particle per subcell. If there are

ns divisions (ns = 2 is chosen in this work) made in each coordinate directions for constructing

subcells, we get as = a/ns and Ms = M/(nD
s ), where D is the dimensionality of the problem.

In calculating Ms we assume that particles are uniformly distributed in each cell.

4.6 Gaseous Microflows

It was shown in the last chapter that, with standard MPCD, the simulations were reliable

when the rotation angles (α) were greater than 900. It was also shown that simulations of finite

Knudsen flows, Kn < 0.1, were feasible. In this section, the objective is to use the same canonical

set-ups for PBCM-Subcell in order to establish its range of applicability in terms of Knudsen

number. As with standard MPCD (Chapter 3), three different flow setups - shear driven flows,

gravity driven flows, and pressure driven flows are analyzed. Furthermore, the obtained results

are compared with those from the second order velocity-slip model, and DSMC simulations of

hard sphere gas molecules. The results are also compared with that of standard MPCD, if

possible.

In all the simulations the mass of each particle, m = 1, the particle diameter, σ = 1, and

the energy was measured in the units of kBT/m. Here also, the mean free path (λ) is defined

based on the viscosity, pressure (p), and temperature (T) of the system as

λ =
η

p

√

πRT

2
(4.20)

where η is the viscosity and R = kBT/m is the gas constant. Based on the mean free path define

above (Eq.(4.20)), an estimate for the Knudsen number can be obtained, which is

Kn =
λ

L
, (4.21)

where L is the separation between the confining walls. In simulations Knudsen number was

changed by varying L. In addition, the values of temperature and Boltzmann constants were set

as: T = 1, and kB = 1, except in pressure driven flow scenario where kB = 0.5 was chosen. The
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density of the gas, ρ = 1.21 × 10−03, was set and the average number of particles per collision

cell, M , was fixed to 80 (i.e. 10 per subcell). The cell size (a) obtained form this value of M

and the gas density is 40.436. Similar to MPCD simulations (see Chapter 3) the time factor, τ ,

defined as

τ =
δt
√

kBT
m

a
, (4.22)

was chosen to be 0.6. For the DSMC simulations (the code was developed following Alexander

& Garcia (1997)) for the same density and temperature, the mean free path value is λ ≈ 182.04

(Eq.(4.20)). In order to get an estimate of viscosity, η = 5mπ1/2(RT )1/2/(16σ), is used. In

DSMC simulations number of particles per collision cell (M) was taken as 20. Furthermore,

time step used for streaming was roughly 0.1× τc, where τc = λ/
√

kBT/m, is a measure of the

mean free time.
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Figure 4.2: Couette flow velocity profiles at different Knudsen numbers (a) Kn = 0.05 (b)
Kn = 0.02 (c) Kn = 0.0125 (c) Kn = 0.01.

As the first test, shear driven flows was considered for Kn ∈ (0.01, 0.1). Similar to standard

MPCD, U1 = −UW = −0.2, and U2 = UW = 0.2 were chosen, where Uw is the magnitude of the

wall velocities. In Fig.(4.2), dimensionless velocity (scaled with Uw) is plotted as a function of

distance for various values of the Knudsen number. These plots show good agreement with the

DSMC and the second order velocity-slip model results. Also, due to insufficient time averaging,
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at lower Knudsen numbers, wave like structures around mean straight-line profiles is visible upon

zooming.
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Figure 4.3: Plot of kinematic viscosity, ν̄ = ν/(a
√

kBT
m ), with α. A good match between analytical

curve and numerical data can be observe for α > 900
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Figure 4.4: Plot of kinematic viscosity, ν̄ = ν/(a
√

kBT
m ), with δ̄t = δt/

(

â/
√

kBT
m

)

, where â

corresponds to a cell size with 20 particles. (a) PBCM-Subcell (b) standard MPCD. It is clear
from this figure that for δ̄t as small as 0.15 agreement between numerical data and analytical
predictions is quite well which implies velocity correlations do not build at these time steps with
PBCM-Subcell. However, with standard MPCD the numerical estimate deviates considerably for
δ̄t < 0.4.

As the second test, gravity driven flows were considered. The viscosity of the fluid was

measured for different values of α. Fig.(4.3) shows that the measured viscosity match well with

the analytical curve for α > 900. In Fig.(4.4), the kinematic viscosity as a function of time step

is plotted. In contrast to standard MPCD, the numerical results are in good agreement with the

theoretical result even for small time steps. As shown in Fig.(4.4b), for MPCD simulations the



44 Chapter 4. Pseudo Binary Collision Model

measured viscosity does not match with the analytical prediction for δ̄t < 0.4, because of the

velocity correlations among the particle. This result clearly indicates that with PBCM-Subcell

the problem of velocity correlations among the particles is reduced substantially.

Furthermore, in Fig.(4.6), the mass flow rate is plotted, and good agreement with the DSMC

and the second order velocity-slip predictions is visible. Thus, for Kn < 0.1, (or may be slightly

larger value for Kn) PBCM-Subcell shows a good representation of hydrodynamics. To have

more quantitative comparisons, in Fig.(4.5), the dimensionless velocity profiles for gravity driven

flows are contrasted with the DSMC data and the second order velocity-slip solutions. We

observe that near the wall slip is captured well with PBCM-Subcell, and there is a good match

with the DSMC data. However, near the center line of the channel the velocity profiles for

PBCM-Subcell and DSMC show small deviations from the second order velocity-slip profile.

The reason is that the viscosities estimated for DSMC and PBCM-Subcell fluids do not match

exactly with the measured viscosities in the simulations; for DSMC it is overestimated while for

PBCM-Subcell it is underestimated. We also note that the difference between the two viscosities

(analytical and numerically measured) remains smaller than 5% for both the methods.
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Figure 4.5: Gravity driven flow velocity profiles at different Knudsen numbers (a) Kn = 0.05 (b)
Kn = 0.02 (c) Kn = 0.0125 (c) Kn = 0.01.

Finally, for the gravity driven flow set-up, the temperature profile obtained from PBCM-

Subcell are contrasted with the corresponding DSMC data in Fig.(4.7). Though, the agreement
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is only qualitative, it is better at Ma = 0.3 than at Ma = 0.5. Furthermore, the temperature

profiles from PBCM-Subcell are always over-predicted compared to the DSMC data.
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Figure 4.6: Plot of non-dimensional mass flow rate with Kn; Ma = 0.3.
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Figure 4.7: Gravity driven flow temperature profiles at different Knudsen numbers (a) Kn = 0.05
(b) Kn = 0.02 (c) Kn = 0.0125 (c) Kn = 0.01.
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Figure 4.8: Plot of pressure with distance along the channel measured from the inlet. Pres-
sure is non-dimensionalized with the exit pressure whereas length down the channel is non-
dimensionalized with respect to channel length. The simulation data is plotted in red dots, the
analytical curve and the linear pressure distribution curve are shown by the green solid line, and
the blue dashed line, respectively.

In the pressure driven flow set-up, we have compared the centre line pressure profile obtained

from simulation with the analytical result presented in Arkilic et al. (1997). In the pressure

driven flows presented here, length to height ratio of the channel is 20; and a pressure ratio

P = 2 is maintained for driving the flow. In Fig.(4.8), pressure (p̄(x)) is plotted with distance

(x̄) measured from the the inlet. The pressure has been non-dimensionalized with respect to the

exit pressure and the distance is non-dimensionalized with the channel length. In this figure, we

observe that the measured pressure profile is almost linear. This suggests that compressibility

effects are not captured appropriately in the PBCM-Subcell simulation. Here, we remind that

similar trend for centre line pressure was obtained from the standard MPCD simulations. Thus,

further investigations are required in which Re and Ma are set properly corresponding to a

microflow (see Chapter 3).

4.7 Outlook

A new collision model (pseudo binary collision model) is proposed in order to remove the re-

striction in the standard MPCD simulations with smaller δt, which is caused by the building up

of velocity correlations among the particles. Here, it is shown that the new collisional model,

same as the MPCD multiparticle collisions, conserves mass, moment, and energy and the lo-

cal equilibrium distribution is same as the Maxwell-Boltzmann distribution. Further, different

microflow set-ups are used to benchmark the kinetic nature of the algorithm, and we find that

MPCD with the new collision model behaves very similar to standard MPCD. Here, we also

show by measuring viscosity for different δt, in a gravity driven case, that the system behaviour
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remains consistent for small δt, where for standard MPCD anomalous viscosity prediction can

be observed. This in turn suggests that the building up of velocity correlations in not as severely

restricted by δt in this new collision model as in standard MPCD.

——————————————————————————————————————————

—————————————-





Chapter 5

Non-ideal Equation of State for

Particle Algorithms

5.1 Introduction

Even though most of the applications of MPCD is for modeling solvent dynamics in complex

fluids, the equation of state of an MPCD fluid is that of an ideal gas (Gompper et al. 2008).

Modeling liquid state via an ideal gas equation of state is unsatisfactory not only from physical

but also from numerical point of view. Numerical disadvantages are due to the fact that for the

same flow velocity and temperature, the Mach number is smaller in case of a non-ideal equation

of state due to increased value of the speed of sound. Thus, having non-ideal equation of state

should allow one to reduce undesirable compressible effects in the method. Physically, one would

also like to model non-ideal equation of state in MPCD framework so that phase transitions such

as vapour-liquid transition can be modeled with this method. It should be reminded here that

unlike MPCD other mesoscale methods such as LBM (Shan & Chen 1993, 1994; He & Doolen

2002; Kikkinides et al. 2008; Suryanarayanan et al. 2013), and DPD (Liu et al. 2006) do manage

to mimic this phenomena.

Very few works have attempted to model non-ideal equation of state in MPCD framework.

One of the most successful work in this regard is Ref. Ihle et al. (2006), where a biased multipar-

ticle collision for modeling excluded volume effect, in a thermodynamically consistent manner, is

presented. It has been shown that a consistent non-ideal pressure, which is linear in temperature

and quadratic in local density contribution, can be obtained via this model (Ihle et al. 2006).

In addition, this contribution is inversely dependent on the time step, and for smaller values

significantly large contribution to non-ideal pressure can be obtained. However, to the best of

our knowledge this model is not widely used and so far remains qualitative at best.

In this thesis, an alternate framework for incorporating excluded volume effect in MPCD

systems is presented. This framework is based on kinetic model of Ansumali (Ansumali 2011),

where excluded volume effect is modeled as mean field shift in the trajectory of a particle during

the free propagation step. An attractive feature of the model is that it can be easily incorporated

in a particle based algorithm such as MPCD. The effectiveness of this approach is investigated

by evaluating a few thermodynamic properties and transport coefficients. Further, we extend

the model by adding the effect of long range attractive forces between molecules as Vlasov type

force (He & Doolen 2002; Liboff 1983). Finally, we present liquid-gas coexistence curve using

this model.

49
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This chapter is organized as follows: in section 5.2, Van der Waals and Carnahan-Starling

equations of state are presented. A phenomenological mean field model for including excluded

volume effect is reviewed in section 5.3, and in section 5.4 a systematic approach for modeling

long range attraction between molecules is elucidated which appears as a Vlasov type force in

the system. Numerical implementation of the dense gas model is presented in section 5.5 and

a few studies, such as changes in pressure, viscosity, and sound speed with density, are done in

section 5.6 for the dense gas system. Finally, in section 5.7 condensation of a gas into liquid is

studied by including the effect of molecular attraction into the system.

5.2 Equation of State for a Non-ideal Fluid

If the gas is dilute, the total volume occupied by particles (note that terms particle and molecule

are used in the same sense) is negligible. In such a scenario, ideal gas is a good approximation,

which gives the equation of state in terms of pressure pID and temperature T as:

pIDV = NkBT, (5.1)

where kB is the Boltzmann constant, V is the volume of the container and N is the number of

gas molecules. A more fundamental representation of this equation of state is given in terms of

internal energy (e) and entropy (sID) of the system ( per unit volume) as (Callen (2006)):

sID = ρR ln

[

V

N

(
2πmkBT

h2

)3/2
]

+
5

2
ρR, (5.2)

where the mass density ρ = Nm/V and R = kB/m is the specific gas constant.

Van der Waals argued that the volume of the container may not correspond to the free volume

when the gas is not dilute, i.e. a considerable portion of the container volume V is excluded due

to the presence of other gas molecules. In order to quantify excluded volume, he argued that

any given molecule with diameter σ hinders the free volume by 4πσ3/3 (see Fig.(5.1a)). Since

this volume is shared between two molecules, per molecule contribution to excluded volume is

b = 2πσ3/3. Thus for N particles, total excluded volume is N2πσ3/3, and the equation of state

for hard-sphere with volume correction due to finite size of the gas molecules in terms of pressure

ph is

ph(V −Nb) = NkBT. (5.3)

This equation of state also implies that entropy (per unit volume) of the hard-sphere should be

s = sID + ρR ln
(
1− b′ρ

)
, (5.4)

where b′ = b/m, m is the mass of a molecule.

For hard-sphere systems, a quantitatively accurate model was provided by Carnahan and

Starling (CS) (Carnahan & Starling 1969) as

ph = ρRT

(

1 +
y(4− 2y)

(1− y)3

)

, (5.5)
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where reduced density y = ρb/4, and Pade-approximation to the original virial series was used

to arrive at this expression. Such departures from ideal gas behavior is often quantified in terms

of compressibility factor χ defined as

χ =
p

ρRT
− 1 ≡

1

ρR

(

s− ρ
∂s

∂ρ

)

. (5.6)

Thus, corresponding to Van der Waals’ equation of state of hard-sphere, we get χ as

χVDW =
ρb′

(1− ρb′)
, (5.7)

while for Carnahan-Starling equation of state of hard-sphere it is:

χCS =
y(4− 2y)

(1− y)3
. (5.8)
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Figure 5.1: (a) Depicting excluded volume; per-particle contribution is 2πσ3/3. (b) Plot of
χV DW and χCS as a function of density (ρ).

In Fig.(5.1b), hard-sphere compressibility factor is plotted for Carnahan-Starling and Van der

Walls equations of state. It can be seen that for small departures from ideality, both are identical,

but they are quite different at high densities. A direct comparison with molecular dynamics

data suggest that CS equation of state is practically indistinguishable from the predictions of

molecular dynamics simulations for y < 0.5 (see Carnahan & Starling (1969)).

Van der Waals also included the effect of attractive forces in the system by arguing that

the role of attractive part is to reduce the pressure, and the correction should be quadratic in

density. Essential argument is that each particle experiences an attractive force proportional to

the number density of the gas molecules, (N/V ), and the number of particles interacting with a

surface is again proportional to the local number density. Thus, due to presence of N particles

in a volume V total reduction in the pressure should be ã(N/V )2, or equivalently a′ρ2, where ã

is a measure of the strength of attractive force between gas molecules and a′ = ã/m2. Thus the
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pressure is given by

p =
ρRT

(1− b′ρ)
− a′ρ2. (5.9)

It should be noted that the Van der Waals equation of state is one of the simplest model which

is capable of predicting phase separation. From Fig.(5.2a), it is evident that, similar to an ideal

gas law, Van der Waals equation for hard-sphere predicts a monotonic dependence of pressure

on specific volume, v = 1/ρ. However, a phase change can be observed when contribution due

to long range attractive forces between molecules is also included. It is apparent from Fig.(5.2b)

that p−v isotherm becomes unstable for a range of v (in Fig.(5.2b) line OPQ), and in this region

both phases co-exist together. The line OPQ is selected such that the area OBPO is equal to

the area PQCP. This equal area construction is called Maxwell construction.
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Figure 5.2: Plot of pressure with volume for the Van der Waals equation of state. (a) correction
due to the volume effect of the molecules is considered, Eq.(5.9). (b) both volume effects and
long range attractive forces between molecules are considered, p = ρRT

(1−ρb′) − a′ρ2

The phenomena of phase separation is observed only below a critical point in the p − v

diagram, which is defined as the point on a given isotherm where the first and second derivatives

of pressure with respect to density vanish. For the Van der Waals equation of state, properties

(pc, Tc, ρc) at the critical point are

ρc =
1

3b′
, pc =

a′

27b′2
, Tc =

8a′

27Rb′
. (5.10)

Finally, the free energy per molecule, in non-dimensional unit, can be written as:

f = fID − ρRT ln
(
1− b′ρ

)
− a′ρ2, (5.11)

where

fID = −ρRT ln

[

V

N

(
2πmT

h2

)3/2
]

− ρRT (5.12)

The critical value of the ratio (pc/(ρcRTc) obtained by Van der Waals equation of state is
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0.375, while that obtained in experiments are in the range 0.28 − 0.33. The equation of state

can be made more accurate by using Carnahan and Starling model for the repulsive part. This

modified model suggests that the pressure expression is:

p = ρRT

(

1 +
y(4− 2y)

(1− y)3

)

− a′ρ2. (5.13)

The critical properties for the Carnahan-Starling equation of state is given by

ρc =
0.52170

b
, pc =

0.07066a′

b2
, Tc =

0.37733a′

bR
. (5.14)

5.2.1 Sound Speed

As discussed in the introduction, an important thermodynamic quantity from fluid dynamics

point of view is the speed of sound. The sound propagation process is adiabatic and the sound

speed can be calculated using the thermodynamic relation c2s = (∂p/∂ρ)s, where the partial

differential of pressure (p) with density (ρ) is calculated for an isentropic process. Equivalently,

the speed of sound can be calculated using following expression:

c2s =

(
∂p

∂ρ

)

T

+
T

ρ2Cv

(
∂p

∂T

)2

ρ

, (5.15)

where T is temperature, Cv = 3R/2 is specific heat capacity at constant volume. Thus, for Van

der Waals’ equation of state (Eq.(5.9)) speed of sound is:

cVDW
s =

√

5

3
RT

(√

1

(1− ρb)2
−

6

5

a

RT
ρ

)

, (5.16)

and similarly for Carnahan and Starling equation of state, speed of sound is:

cCS
s =

√

5

3
RT

(√

1 +
3

5

[
8y − 2y2

(1− y)4
+

2

3

{
8y − 4y2

(1− y)3
+

16y2 − 16y3 + 4y4

(1− y)6

}]

−
6

5

a

RT
ρ

)

. (5.17)

These expressions will be used in subsequent sections to evaluate effectiveness of the numerical

implementations.

5.3 Mean Field Model for Non-ideality due to Molecular Re-

plusion

Enskog kinetic model was the first successful model of molecular repulsion in the context of

kinetic theory (Chapman et al. 1970). In this description, one starts with Van der Waals’

picture where molecular repulsion is modeled as finite size of the molecule. Enskog suggested

that finite size of the molecules should reflect as non-local collisions in the Boltzmann kinetic

theory. This theory was later refined by van Beijeren and Ernst (known as the revised Enskog

theory (RET)) (Van Beijeren & Ernst 1973). The revised Enskog theory is quite successful in

describing corrections to the viscosity due to non-ideality and provides the basic framework for
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modeling non-ideal gas effect in kinetic theory (Chapman et al. 1970; McQuarrie 1976). However,

very limited success has been achieved in successful extensions of particle based simulation

tool such as DSMC for Enskog equation (Alexander et al. 1995). The non-local collision is

difficult to handle both for methods such as DSMC as well as for kinetic modeling via simplified

phenomenological theories of BGK type (Alexander et al. 1995; Ansumali 2011).

Recently, a new framework for incorporating non-ideal effects due to repulsion in kinetic

equations has been developed in Ref. Ansumali (2011). In this section, we briefly review this

approach of introducing non-ideal equation of state. The key new idea in this work was that

molecular repulsion need not be modeled via non-local collisions only. A simple way to build

excluded volume is to change the free propagation step by introducing mean field shift in the

trajectory of a particle reflecting molecular repulsion. This work suggested that in streaming

step, which happens in mean free time τs, the shift in trajectory ∆xiα for ith molecule with

velocity viα should be

∆xiα = viατs + τsχ(ρ)(viα − uα) ≡ τsv̂α, (5.18)

with χ(ρ) being compressibility factor and is expected to be a positive quantity which is a

monotonically increasing function of the density. In the above equation v̂α is the modified

streaming velocity. Following form has been suggested for v̂α (Ansumali 2011):

v̂α = vα + χ(ρ)(vα − uα), (5.19)

where uα is the local bulk velocity.

The physical rationale behind this model can be understood by considering the motion of a

tagged particle. According to Eq.(5.19), when a tagged particle is moving faster than the local

average velocity, it gets more displacement. Thus, the tagged particle can avoid joining the

locally dense region. Conversely, if a particle in moving slower than the local velocity its speed

reduces and thus cluster formation is avoided once again. Thus, on an average, this modification

captures the effect of strong repulsive cores of molecules which does not allow them to come

very close to each other, or to form a cluster.

This change in free propagation step leads to change into evolution equation for one particle

distribution function f(x,v, t) as

∂tf(z, t) + ∂α [v̂αf(z, t)] = C , (5.20)

where C is the appropriate collision operator (for example Boltzmann collision operator or BGK)

which conserves mass, momentum, and energy.

It is evident that, similar to Boltzmann equation, this modified equation also leads to evo-

lution equations for density (ρ), momentum density (jα), and energy density (E) in the conser-

vation form:

∂tρ+ ∂αjα = 0,

∂tjγ + ∂α(uαuγ + pδαγ + σαγ) = 0,

∂tE + ∂α ((E + p)uα + σαγuγ + qα) = 0,

(5.21)
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where pressure is that of a real gas, p = (1+χ)ρkBT/m, and the shear stress, and heat flux are:

σαγ = (1 + χ)σK
αγ , qα = (1 + χ)qKα . (5.22)

Here σK
αγ , and qKα are kinetic part of the stress tensor, and heat flux, respectively. These

quantities are defined in terms of peculiar velocity ξα = vα − uα as:

σK
αγ =

∫

dξfξαξβ, qKα =

∫

dξfξα
ξ2

2
. (5.23)

Thus, we see that the conservation laws are consistent with dense gas models such as Enskog

equation. Furthermore, The H-function for this model is:

H =

∫

f (ln f − 1)

︸ ︷︷ ︸

HID

−
s(ρ)

kB
(5.24)

It can be noted that the non-ideal part of entropy is a function of density only. Also, from

continuity equation, we get

∂t

( s

R

)

+
1

R

∂s

∂ρ
∂αjα = 0. (5.25)

The evolution equation for H can be obtained by multiplying Eq.(5.20) with ln f − 1 and

integrating with respect to v, this results

∂tH
ID + ∂α

∫

[v̂αf(ln f − 1)]dv −

∫

v̂αf∂α ln fdv

︸ ︷︷ ︸

I

=

∫

C ln fdv, (5.26)

where the right hand side in the above equation gets simplified because
∫

C dv = 0. In the above

equation the integral I can be further simplified to

I =

∫

vαf∂α ln fdv+

∫

χ(vα − uα)f∂α ln fdv. (5.27)

The second term on the right hand side of the above equation can be integrated in v, and by

using Eqs. (5.6) the integral I becomes

I =

∫

vα∂αfdv− ∂α

( s

R
uα

)

+
1

R

∂s

∂ρ
∂αjα. (5.28)

Substituting for I from above equation into Eq.(5.26), and using Eq.(5.25), we get following

evolution equation for H:

∂tH + ∂αj
H
α =

∫

C ln fdv, (5.29)

where

jHα = − (suα/R) +

∫

v̂αf(ln f − 1)dv. (5.30)

From this equation it becomes obvious that only flux term gets affected due to the modified

streaming velocity, and there is no extra source term for non-ideal entropy. This feature that

non-ideality due to repulsion does not change entropy production is consistent with Enskog
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equation (Van Beijeren & Ernst 1973).

As expected from a model of repulsive core, current model does not change entropy produc-

tion but only changes the entropy flux. Thus, the equilibrium distribution remains as Maxwell-

Boltzmann distribution because collision term is same as that of Boltzmann.

5.4 Multiphase System: Vlasov Model

In the previous section, current approach for incorporating repulsive part of the potential, a

mean field theory for dense gases, was described. In this section, an extension of the dense

gas model (Ansumali 2011) for multiphase flow is presented by adding attractive part of the

molecular potential. Here, it should be reminded that for simulating phase separation problem,

one needs to capture both the effects due to short range repulsion as well as long range attraction

between molecules (see section 5.2).

Following Ref. He & Doolen (2002), the attractive part of the potential is added as mean

Vlasov force. The final kinetic model, which includes both effects that of repulsive core and of

long range attractive force between particles, is:

∂tf + ∂α [v̂αf ]−∆Vm ·∆v1f = C , (5.31)

where Vm is defined in terms of local density as:

Vm = −2aρ− κ∆2ρ (5.32)

with a and κ defined in terms of attractive part of intermolecular potential V (r) as:

a = −
1

2

∫

r>σ
V (r)dr, κ = −

1

6

∫

r>σ
r2V (r)dr. (5.33)

As for example a and κ value for attractive part of Lennard-Jones molecular potential (V (r) =

−4πǫ(σ/r)6)) is (Kikkinides et al. 2008):

a =
8πσ3ǫ

3
, κ =

8πσ5ǫ

3
, (5.34)

This relationship suggest that for Lennard-Jones molecular potential

κ = a σ2. (5.35)

However, in general one may expect κ = a′σ2κ̂, where κ is a constant of order 1.

In Ref. He & Doolen (2002), modeling attractive term as Vlasov force was motivated using

BBGKY hierarchy. For detailed derivation, we refer the readers to He & Doolen (2002). A

qualitative understanding of the current approach can be achieved by writing the conservation
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laws based on Eq.((5.31)), they are

∂tρ+ ∂αjα = 0,

∂tjγ + ∂α(uαuγ + pδαγ + σαγ) + ∂α (κ∂γρ∂αρ)
︸ ︷︷ ︸

V dW−Stress

= 0,

∂tE + ∂α ((E + p)uα + σαγuγ + qα)−

[

aρ2 + κ

(

ρ∂2
αρ+

1

2
(∂αρ)

2

)]

∂αuα + uγ∂α (κ∂γρ∂αρ) = 0,

(5.36)

where the thermodynamic pressure of the system is:

p = ρRT (1 + χ(ρ))− aρ2 − κ

(

ρ∂2
αρ+

1

2
(∂αρ)

2

)

, (5.37)

which has the usual local Van der Waals type term and other than that an interfacial stress

term needed to model phase transition (Suryanarayanan et al. 2013).

Thus, we see that in order to model multiphase flows with particle based methods, we can

add attractive part as Vlasov’s type force and repulsive part as shift in position during the free

propagation step.

5.5 Particle Based Method for Non-ideal Equation of State

An attractive feature of the model proposed by Ansumali (Ansumali 2011) is that it can be

easily implemented in any particle based simulation tool. Similarly, attractive part, which is

represented as Vlasov type force, can be treated like acceleration term in particle simulations.

As for example, numerical implementation of this model of dense gas in the context of original

MPCD, or with pseudo-binary collision model is quite trivial. In particular, when there is an

external force acting on the system, we use Verlet scheme (Rapaport 2004) for updating velocity

and position. The streaming step changes to

vα

(

t+
δt

2

)

= vα

(

t−
δt

2

)

+ aα

(

t+
δt

2

)

δt+Ω(t),

ṽα

(

t+
δt

2

)

= vα

(

t+
δt

2

)

+ χ

[

vα

(

t+
δt

2

)

− uα

(

t+
δt

2

)]

,

xα(t+ δt) = xα(t) + ṽα

(

t+
δt

2

)

δt.

(5.38)

where aα is the acceleration of a particle under the influence of external forces. It is apparent

that numerically implementing the dense gas model requires only few changes in the streaming

part of the code and rest of the code remain unchanged.

5.6 Verification of the Model

In this section, a few results related to the mean field model for dense gases are presented.

Firstly, a homogeneous system with the mean field dense gas model is investigated for the

changes in the observed pressure with density. This numerical evaluation of the pressure is done
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to ensure that the non-ideality in equation of state is correctly implemented by the new scheme.

Secondly, sound speed is numerically evaluated as a function of density for a given equation of

state. Furthermore, viscosity as a function of density is evaluated to contrast with the theoretical

prediction that the kinetic part of viscosity gets a factor (1+χ)2 (Ansumali 2011). Finally, phase

diagram for a single component two phase system is reconstructed, numerically, to ensure that

Maxwell construction (Callen 2006) is properly captured in the new framework.

5.6.1 Pressure in Homogenous System

As the first test, pressure values in a homogeneous system is contrasted with the expected

theoretical values. Numerical simulations were set-up by considering 10 × 10 × 10 number of

boxes and periodic boundary condition in all three directions. In case of PBCM, average number

of particles per collision cell was set to 80 (10 particle per subcell), the rotation angle used was

850, and as equation of state the Carnahan-Starling equation of state (Eq.(5.8)) was chosen.

In order to show that the dense model works for all particle methods, provided the collision

operator conserves mass, momentum, and energy; we have also run same set of simulations with

standard MPCD.

Numerically, pressure was calculated by measuring the flux of normal momentum across

a given surface (Chapman et al. (1970)). In Fig.(5.3), pressures as a function of density using

MPCD and PBCM simulations are plotted, and contrasted with the Carnahan-Starling equation

of state. This plot shows that both collision models show good agreement with the theoretical

pressure profile. As mentioned before, this suggests that the working of the mean field model

for dense gases is not dependent on collision operator as long as it conserves mass, momentum,

and energy.
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Figure 5.3: Plot of pressure with density (ρ). In this figure pressure obtained from MPCD and
PBCM-Subcell simulations are compared with the theoratical plot obtained via Carnahan-Starling
equation of state. We have set temperature, T = 1.
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5.6.2 Sound Speed

Once the non-ideality in the equation of state is implemented, the speed of sound should also

change. In section 5.2, sound-speeds corresponding to different equations of state were provided.

In this section, speed of sound as a function of density is computed numerically, and contrasted

with the analytical expression. For simplicity, we work with the Van der Waals equation of

state.

In order to numerically compute speed of sound, a particle based simulation technique devel-

oped in Ref. (Hadjiconstantinou & Garcia 2001) is used. In this approach, as shown in Fig.(5.4),

an air column of length L which is closed at one end with specularly reflecting wall is employed

for generating a confined wave. The other end of the column, x = 0, is attached to a reservoir

in which velocity of the fluid is excited sinusoidally as, v = v0 sin(ωt), where ω is angular fre-

quency. As a result of periodically varying velocity in the reservoir a sound wave propagates into

the column (vin). This wave after reaching the other end of the channel (x = L), gets totally

reflected by the wall, and travels back (vref ). At any instance, the net velocity disturbance in

the air column is sum of the velocity disturbances created by the two propagating waves, and is

given by

v(x, t) = v1

[

e−m̃x cos(kx)− e−m̃(2L−x) cos(k(x− 2L))
]

sin(ωt)

− v1

[

e−m̃x sin(kx) + e−m̃(2L−x) sin(k(x− 2L))
]

cos(ωt)

= A(x) sin(ωt) +B(x) cos(ωt),

(5.39)

where m̃ is attenuation coefficient, and k is wave number. In deriving Eq.(5.39), we have used

following forms for vin and vref (Landau & Lifshitz 2013):

vin = v1e
−m̃x sin(ωt− kx), (5.40)

vref = v1e
−m̃(2L−x) sin(ωt+ k(x− 2L) + π) (5.41)

We also note that v1 is used as the amplitude for the disturbances vin and vref , and is different

from v0. This is done because only a part of the wave from the reservoir gets transmitted into

the column, and it’s amplitude is represented as v1 here. In general we expect that v1 ≈ v0/2.

Furthermore, The parameters ω and k are related to the sound speed, cs = ω/k.

Figure 5.4: Schematic diagram of the air column used to measure the speed of sound.
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Figure 5.5: Showing data fit to A(x), B(x), and V(x). In cross (×) the chi-square fit data is
shown and in solid line (-) non-linear curve fits are shown. The data presented here corresponds
to the case with ρ = 0.1

Using the setup described above it is possible to compute speed of sound in a medium

occupying the air column. Sound speeds are calculated at densities, ρ = 0.01, 0.05, 0.1, 0.15, and

0.2. In numerical simulations, ω = 0.05, and the corresponding time period, trp = 125.6. We

note that in these simulations, it is desirable to have trp much grater than the stream time δt.

We have taken τ = 0.2, and the largest stream time corresponds to the lowest density, ρ = 0.01,

which is δt = 4.0. It is clear that in all the simulations trp/δt > 30; it insures that time variations

in the velocity field is captured appropriately in the simulations. Also, Reynolds numbers based

on the sound speed, Re = ρc2/(ηω), range from 6 to 20. In order to minimize the effect of

non-linearity in the flow, it is desired that v0 ≪ cs/Re. In simulations, v0 = 0.05cs, is set which

in turn implies, v1 ≈ 0.5v0. In addition, the length of the column is small enough so that the

effect of non-linearity remains insignificant. In Ref. Hadjiconstantinou & Garcia (2001) these

parameter settings are explained in more detail.

We start the simulation at t = 0 with fluid in the column at a temperature, T = 1, and zero

mean velocity. After the initial transient dies out, we record the mean velocities at different

points inside the air column at every time step. For sampling mean velocity, the column is

divided into slices of equal thickness (subcell size) perpendicular to the x-axis and average

velocity of the particles in these slices is computed and stored during each interval. The data is
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recorded over N time cycles. The chi-square fit to this data results

A(xj) =

∑
c2
∑

vs−
∑

sc
∑

vc
∑

c2
∑

s2 − (
∑

sc)2
, (5.42)

B(xj) =

∑
s2
∑

vc−
∑

sc
∑

vs
∑

c2
∑

s2 − (
∑

sc)2
, (5.43)

where

∑

s2 =

N∑

i

sin2(ωti),
∑

c2 =

N∑

i

cos2(ωti), (5.44)

∑

sc =
N∑

i

sin(ωti) cos(ωti),
∑

vs =
N∑

i

v(xj , ti) sin(ωti), (5.45)

∑

vs =

N∑

i

v(xj , ti) cos(ωti). (5.46)

Here xj is the x-coordinate of the centre of jth slice. The data extracted give the form of

A(x), and B(x) at discrete points. Next, using non-linear curve fits through A(xj) and B(xj),

the values of wave number (k) and attenuation coefficient (m) are extracted. Finally, sound

speed is calculated using cs = ω/k. Note that we have also used velocity magnitude profile ,

V (x) =
√

A2(x) +B2(x), for curve fitting. Typical curves for A(x), B(x), and V(x) obtained

from a simulation are shown in Fig.(5.5). In Fig.(5.6), measured sound speeds are plotted with

density. We observe that the numerical data show good agreement with the theory.
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Figure 5.6: Plot of sound speed with density for the Van der Waals equation of state.
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5.6.3 Viscosity of the Gas

In order to compute the viscosity of the modified system, we use the setup of Poiseuille flow.

According to the dense gas model presented in section 5.3, we note that the viscosity of the

modified system (η(d)) should be (1 + χ)2 times that of the original system (η). The same can

be observed in numerical simulations (Fig.(5.7)).
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Figure 5.7: Plot of viscosity ratio (dense gas to the original system) with density. From theory
of the dense gas algorithm presented in section 5.3, this value is expected to be (1 + χ)2.

5.7 Condensation of a gas: single component two phase system

As discussed in section 5.4, Eq.(5.31) is the kinetic model for the multiphase system. In this

section, phase coexistence curve is computed using this model. The Laplacian and the gradient

of the potential term Vm in the Vlasov type force are calculated using second-order central

differencing schemes. We can calculate a′ using critical properties of Carnahan-Starling equation

of state as, a′ = 2.560Tcb (Eq.(5.14)). The value of κ can be predicted using a′, κ = κ̂a′, where

κ̂ is an order one quantity. In simulations the value of κ̂ is set to 10.

In order to reduce density fluctuations, running time average was taken for the density over

three time steps. Furthermore, smaller value for τ is used, τ = 0.1. No phase separation was

observed when τ is comparatively larger or smaller than 0.1. Simulations also showed large

temperature variations in the system. In order to perform the simulation at fixed temperature,

a simple thermostats was used (see Chapter 3). It was observed that the time step restrictions

became less severe for simulations. Moreover, It was found that the the two density bounds, and

their ratio became consistent with Maxwell construction. We have studied a single component

two phase system for different values of T/Tc ranging from 0.98 to 0.60, and lower and higher

densities in the system are reported. For T/Tc < 0.6, the two densities corresponding to liquid
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and gas phases of the system start deviating from the theory. Thus we have been able to produce

maximum of liquid to gas phase density ratio of about 140, corresponding to T/Tc = 0.60. In

Fig.(5.8) obtained densities are plotted and is shown to be in excellent agreement with Maxwell

construction for the Carnahan-Starling equation of state.
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Figure 5.8: Plot of ρ
ρc

with T
Tc

using PBCM-Subcell

The shape of the separated phases is such that it tries to minimize the free energy. In present

simulations (in 3D) we observe shapes depend on ρ/ρc values. For smaller values of ρ (towards

ρmin), we do observe spherical bubbles, but for larger values of ρ (towards ρmax) flat surfaces

are found in the phase separated system. In the intermediate range of ρ cylindrical surfaces or

combination of cylindrical surface with either flat or spherical surfaces can be observed. This

behaviour can be explained based on the volume of the liquid phase in the separated state. A

smaller value of ρ corresponds to a smaller volume for the liquid, and a spherical shape is possible

which gives lowest energy for the system. As the density in the simulation increases, the volume

corresponding to the liquid phase also increases. However, the spherical shape becomes infeasible

cylindrical structure is formed. Similarly, at higher densities only flat surfaces are possible

(Fig.(5.9)). In Fig.(5.10) contour plots have been shown at different sections (corresponding to

Fig.(5.9c)) along z-axis which clearly shows 1D type of phase separation for large density values.

We have also extracted density variations as we traverse from liquid region to gas region to liquid

region in the domain along a given x-direction by keeping y and z coordinates fixed. Fig.(5.10b)

shows the obtained density curve. From 1D phase separation problem, it is well understood that

the density profile is tan-hyperbolic in x. We fit following curve to the density data

ρ(x) =
ρL − ρG

2
−

ρL + ρG
2

tanh

(
x− x0

k

)

, (5.47)

where ρL and ρG are liquid and gas phase densities, respectively; k and x0 are unknown parame-

ters dependent on the physical property of the system. Only one part of the curve (Fig.(5.10b))
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with liquid to gas density variation is used for the fit (Fig.(5.11)), and a good fit is obtained

with Eq.(5.47). The values of the two parameters extracted by the fit are k = 9.5354 and

x0 = 59.5942.

(a) (b) (c)

Figure 5.9: Plot of density iso-surfaces at different ρ/ρc; T/Tc = 0.65. (a) ρ/ρc = 0.80 (b)
ρ/ρc = 1.04 (c) ρ/ρc = 1.40

We also note that for simulations at lower ρ values, the values for lower and upper densities

show slightly overestimated values compared to higher ρ simulations. Also, comparatively larger

temperature variations can be observed in small ρ simulations which is almost constant in

simulations at large ρ values.

5.8 Outlook

Performance of a phenomenological mean field model for incorporating excluded volume effect

in a system comprising point particles is studied using standard and pseudo binary collision

models for MPCD. Numerical measurements of pressure, sound speed, and viscosity at different

densities show good agreement with the theory. In addition, attraction between the molecules is

also included as a Vlasov type force on the particles and a single component two phase system

is studied. Densities of the two separated phases are measured and are shown to be in excellent

agreement with the theory. Maximum density ratio of 140 is obtained in simulations. It can

be noted that liquid-gas phase simulation of water still remains unattainable for which required

density ration is of the order of 1000. Moreover, with better discrete Laplacian and divergence

operators maximum liquid to gas density ratios can be further improved in the present scenario.

——————————————————————————————————————————

—————————————-
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Figure 5.10: ρ/ρc = 0.35; T/Tc = 0.65. (a) density contour (b) density plot with x
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Figure 5.11: Plot of ρ
ρc

with x (in (×)) for the first half of curve in Fig.(5.10b) and in solid line

we have a tanh curve fit of the form ρ(x) = (ρL−ρG
2 )− (ρL+ρG

2 ) tanh(x−x0
k ); T

Tc
= 0.65



Chapter 6

Outlook

In this thesis an attempt is made to address some of the technical issues with MPCD algorithm.

Firstly, the range of applicability of this algorithm is studied for finite Knudsen flows using

canonical flow set-ups such as shear driven flows, gravity driven flows, and pressure driven flows.

It has been shown that the method can be used for simulating flows with Kn < 0.1. In this range

of Knudsen, shear and gravity driven flows show good quantitative agreement for the velocity

profile with that of Navier-Stokes solution using second order velocity-slip boundary condition

and the DSMC data. Moreover, mass flow rate as a function of Knudsen number is obtained

for gravity driven flows, and shows good quantitative agreement with the theory and DSMC

predictions. Temperature profiles from gravity driven flows are also contrasted with DSMC

data, but only qualitative comparison has been found. Further investigation is needed in order

to understand the different thermal behaviour of MPCD algorithm compared to DSMC, which

is a standard tool for studying finite Knudsen flows. Simulation of Poiseuille flows (pressure

driven flows) show linear pressure distribution along the length of channel as opposed to the

non-linear pressure profiles found in the experiments. This suggests that compressibility effect,

which is commonly observed in microflows, is not captured appropriately. This can be explained

considering the fact that MPCD algorithm operates for Reynolds number (Re) in the range

1-10. However, the observed Re in pressure driven microflows is much smaller. Further study

of Poiseuille flow for small Re is therefore required.

Here, we have also proposed a new collision model (pseudo binary collision model) in order

to remove the restriction on the small time step for simulations using standard MPCD. The

standard MPCD system shows anomalous behaviour for small time steps, and it is more pro-

nounced for the systems at low temperatures. Failure in ensuring the Galilean invariance is

believed to be reason for this behaviour. In the case of MPCD multiparticle collisions, the same

set of particles undergo collisions over multiple time steps, and this leads to building up of the

velocity correlations among the particles. As a result, the satisfaction of Galilean invariance is

violated. In pseudo binary collision model, only binary collisions are considered between ran-

domly chosen pair of particles. It is clear that selecting the same pair of particles over multiple

time steps is quite unlikely, and so the problem of particles developing velocity correlations is

remedied. Here, flexibility in choosing small time steps for simulations is confirmed by numerical

simulations. We have also studied equilibrium velocity distribution with pseudo binary colli-

sion model, and found that, like standard MPCD, it is Maxwellian. Analytical expressions for

predicting the viscosities with pseudo binary collision model have been derived by following the

kinetic theory arguments used for standard MPCD. Though the derived expressions show good

agreement when rotation angle, α > 900, a more rigorous derivation and numerical validation is

still needed. Microflows with different canonical flow arrangements (shear, gravity, and pressure
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driven) are also studied with the new collision model. We find that the obtained results are

quite similar to standard MPCD results.

Finally, we have studied the equation of state aspect of MPCD. It can be noted that MPCD

is commonly used to incorporate hydrodynamic interactions into complex systems, where liquid

like properties are desirable for modeling solvents. However, ideality suggests that the system is

easily compressible and there is a need to modify the equation of state of the system. Here, we

have used a phenomenological mean field model for including excluded volume effect into the

system. Pressure, viscosity, and sound speed are studied by changing densities in the modified

system and show good agreement with the theory. Further, the effect of attraction between the

molecules is also included as Vlasov type force acting on the molecules. This modification has

allowed the study of a single component two phase system, e.g. condensation of a gas into liquid.

The observed densities of the liquid and gas in the phase separated system is contrasted with

the theory and excellent agreement has been found. A maximum liquid to gas density ratio of

about 140 is achieved in present simulations.
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