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Abstract

The present work concerns the orientation dynamics of anisotropic particles in

viscoelastic fluids. A spheroidal geometry is taken as being representative of an

anisotropic, axisymmetric particle, and the work is an analytical investigation of

the effects of weak inertia and viscoelasticity on the orientation of a spheroidal

particle (both prolate and oblate) of an arbitrary aspect ratio in two canonical flow

situations:

1. A spheroid sedimenting in a quiescent fluid, and

2. A neutrally buoyant spheroid in a simple shear flow

Applications include sedimentation of muds and slurries, processing of cellulose

fiber suspensions in the paper and pulp industry, and processing of filled poly-

meric materials (wherein anisotropic clay particles are typically used as cheap filler

materials).

In the absence of both inertia and viscoelasticity, the orientation dynamics of

a spheroid is governed by the Stokes equations. On account of reversibility, a

sedimenting spheroid continues to retain its initial orientation, while a neutrally

buoyant spheroid in simple shear continues to rotate in an initially chosen (Jef-

fery) orbit. In either case, the particle orientation distribution remains indetermi-

nate as a result. In situations where the characteristics of the motion of a single

anisotropic particle may be applied to the calculation of a bulk property of a dilute

non-interacting suspension of such particles, the aforementioned indeterminacy in

the orientation distribution presents an impediment. In order to eliminate the in-

determinacy, and thereby, arrive at a unique orientation distribution, it becomes

necessary to consider the influence of additional physical phenomena. Possible

candidates for the resolution of the indeterminacy include Brownian motion, pair-

particle hydrodynamic interactions, fluid inertia, viscoelasticity of the suspending

fluid, etc.

The present work focuses on weak fluid inertia and viscoelasticity with a weakly
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viscoelastic fluid being modeled as a second-order fluid in the analysis. It is impor-

tant to note here that even a weak deviation from the Stokes limit will invariably

have a strong cumulative effect over long times precisely due to the above inde-

terminacy. For instance, a weak inertial torque, acting on a sedimenting spheroid,

stabilizes orientations transverse to gravity, while a weak viscoelastic torque ends

up stabilizing the longitudinal (vertical) orientation. In both cases, the indeter-

minacy in the orientation distribution is eliminated. One anticipates a similar

situation for the case of simple shear flow.

The canonical motions of a spheroid referred to above, sedimentation in particu-

lar, are classic problems, and have been extensively investigated, both theoretically

and experimentally, by various authors. The present work analyzes both problems

using a new approach based on the formalism of vectorial spheroidal harmonics.

The formalism was developed by Vladimir Kushch [see Kushch & Sangani (2003)]

and has a structure similar to the well-known spherical harmonics formalism which

owes its origin to Lamb (1932). Unlike earlier approaches, and in a manner similar

to spherical harmonics, the spheroidal harmonics formalism is readily extended to

a multi-particle scenario wherein hydrodynamic interactions between anisotropic

particles may begin to play an important role in determining the orientation dy-

namics. However, as a first step, in this work, the formalism is applied to the

motion of a single particle, and the results obtained compared to those of earlier

investigations.

The formalism, together with the use of the generalized reciprocal theorem, is

first applied to the sedimentation problem, leading to closed-form analytical expres-

sions for the O(Re) inertial and O(De) viscoelastic torques in both sedimentation

and simple shear flow as a function of the spheroid aspect ratio. Here, the Reynolds

number and the Deborah number denote the scaled magnitudes of the inertial and

viscoelastic torques, respectively. Since the two torques act in opposite directions,

a balance of the two leads to a neutral curve, that is, a critical value of De/Re as a

function of the particle aspect ratio [see figures 3.13 & 3.15] that separates regions

where transverse and longitudinal orientations are stable. Despite extensive work

on this classic problem, our fully analytical approach shows some of the earlier re-

sults to be incorrect. In particular, it is shown that the viscoelastic torque always

tends to zero in the limit of an infinitely slender particle for an arbitrary ratio of

the two normal stress differences [see §3.2.1]. In fact, the viscoelastic torque be-
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comes extremely sensitive to changes in the particle aspect ratio in the limit of very

slender particles, and this may be one reason why earlier numerical calculations of

the same turn out to be erroneous [see §3.2.1].

The inertial and viscoelastic contributions to the angular velocity of a neutrally

buoyant spheroid in simple shear flow are currently being calculated. The simple

shear flow problem is inherently more complicated, since the orientation of the

spheroid now changes as a function of time even in the inertialess limit (as the par-

ticle moves along a Jeffery orbit) [see Jeffery (1922)]. Further, unlike sedimentation

where the only stable orientations turn out to the transverse and longitudinal ones,

the more complicated angular dependencies in simple shear flow allow, in principle,

for the existence of stable intermediate orbits (that is, in between the limits of in-

plane tumbling and log-rolling). Significant progress has already been made, and

in the near future, we expect to be able to map out the orientation dynamics in

presence of the (possibly) competing effects of viscoelasticity and inertia. Our aim

then is to obtain an orbit-constant-surface as a function of De/Re and the particle

aspect ratio [see figure 4.1].
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CHAPTER 1

INTRODUCTION

A suspension is a dispersion of solid particles in a fluid medium. Solid particles

constituting the disperse phase, are suspended in a continuous phase which is a

liquid or a gas. Suspensions typically possess a definite small-scale structure (the

disperse phase constituents or particles) that is much larger than the atomic or

molecular scale. This usually is referred to as the microstructure. This is unlike

simple fluids like air, water or honey which are composed of atomic constituents,

and hence may be regarded as structure-less. On length scales larger than the

atomic, the motion of simple fluids is governed by the Navier-Stokes equations.

Suspensions can be found readily in our everyday lives. Chocolates are concen-

trated suspension of sugar crystals, cocoa and milk solids in a continuous fat matrix.

Ice-cream is a suspension of microscopic ice crystals dispersed in cream. Blood,

the most common biological fluid, is a concentrated suspension of red blood cells

(bi-concave disks), white blood cells (irregularly shaped particles) and platelets in

a plasma medium.

Suspensions find immense applications in industry as well. For example, in the

paper-pulp industry, paper manufacture involves the processing of cellulose fiber

suspensions in an aqueous medium and the orientation distribution of fibers under

flow conditions decides, in part, the characteristics of the final product. Nano-

particle suspensions, popularly known as nanofluids, are being touted as the future

heat-transfer agents. The addition of short fiber-like particles to a polymer matrix
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is known to enhance the mechanical properties of the resulting composite material,

and the degree of enhancement depends strongly on the orientation of the fibers.

The fiber orientation is caused by the flow occurring in the molten state.

The inherent complexity of these fascinating fluids, and their ubiquity evident

from their wide-ranging applications, and presence in our daily life and indus-

try, makes the study of suspensions of great interest and importance. This thesis

examines the orientation dynamics of axisymmetric (spheroidal) particles in sedi-

mentation and simple shear flow.

1.1 Literature Survey

Suspensions of spherical particles have been studied in this regard [see Kim & Kar-

rila (1991)], Batchelor (1972), for instance determined the average sedimentation

velocity in a dilute homogenous suspension arising from pair-particle interactions.

There are significant differences between sedimenting suspensions of spherical and

anisotropic particles. In the latter case, Koch & Shaqfeh (1989) showed that a

dilute suspension of spheroids is unstable to number density fluctuations in the

inertialess limit. Factors such as inertia and viscoelasticity even in small amounts

may play a crucial role in stabilizing such a suspension.

Review of experimental work

The case of single particle sedimentation in a quiescent fluid is a logical first step

in understanding the dynamics of a dilute sedimenting suspension.

In the absence of both inertia and viscoelasticity, the orientation dynamics of

a spheroid is governed by the Stokes equations. Using reversibility arguments, one

can show that a sedimenting spheroid continues to retain its initial orientation.
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This may be seen from the photograph of an experiment performed by Leal (1975),

in which the motion of slender particles in a highly viscous fluid is studied [See

figure 1.1(a)]. Leal (1975) also carried out preliminary experimental investigations

on the motion of cylindrical particles with rounded ends (slender particles) in 0.5%

Dow’s Separan-AP30 (viscosity∼ 0.15 Pa-sec), a viscoelastic fluid, and in 99.5%

glycerine solution (viscosity∼ 1.150 Pa-sec), a Newtonian fluid. The cylindrical

particle (0.704in in length and axis ratio of 28) was introduced into the top of the

tank (18 in. in height and 6 in. square in cross-section) and observations were

made by taking successive photographs that were separated by a known increment

of time.

Figure 1.1: Leal(1975) Multiple-image photograph of a slender rod-like particle sed-
imenting in (a)Newtonian fluid, 99.5% glycerine (b)Viscoelastic fluid,0.5% Separan
AP30,

The particle motion in Separan AP30 was markedly different from that in the

99.5% glycerine solution. The particles rotated rapidly from their initial orientation

to a vertical orientation when sedimenting through the Separan-AP30 solution

while the particle did not change its orientation in 99.5% glycerine solution.The

photographs (figure1.1) show the results obtained.

Experiments performed by K.Chiba et al. (1986) demonstrated the effect of
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Figure 1.2: Chiba(1986) Multiflash photograph of slender body motion
(a)Newtonian fluid,water (b)Viscoelastic fluid,0.25% by wt. Separan AP30 solution

inertia, which was not captured by Leal’s experiments [see Leal (1975)]. Inertial

effects were enhanced by using water as the suspending fluid. Slender bodies with

a diameter 0.512mm diameter and a length of 60mm, were dropped in water and

Separan AP-30 solution (0.5% concentration and having a viscosity of around 0.15

Pa-sec). The results obtained from the experiments may be seen from the multi-

flash photographs tracking the body trajectory [see figure1.2]. The slender particle

orients vertically in the viscoelastic fluid (Separan AP-30 solution) and adopts a

horizontal position in the low viscosity Newtonian fluid (water).
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Figure 1.3: Galdi et al.(2002) Orientation of cylinders with rounded ends in (a)In
the Newtonian case (b)purely viscoelastic liquid at vanishingly small Reynolds
number

G.P.Galdi et al. (2002) obtained similar results in their experiments using cylin-

ders with rounded ends. They concluded that the only possible equilibrium orien-

tations are when the axis of the cylinder is either parallel or perpendicular to the

acceleration due to gravity. Their results may be seen from figure1.3.

Experiments have also been conducted to study the motion of neutrally buoyant

axisymmetric particles suspended in a simple shear flow. The motion of a single,

small, neutrally buoyant particle suspended in a fluid which is undergoing simple

shear flow ( u=γ̇yex, where x is the flow direction, y is the velocity gradient
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direction, z is the vorticity direction and γ̇ is the shear rate [see figure 1.4]) has,

in fact been the subject of a considerable number of theoretical and experimental

investigations spanning approximately fifty years. Interest in this problem stems

mainly from its central role in the determination of the bulk properties of a dilute

suspension. Jeffery was the first to show that, an axisymmetric particle, suspended

in a Newtonian fluid undergoing a simple shear flow, in the absence of inertia, may

rotate in any one of an infinite number of orbits known as the Jeffery orbits [see

Jeffery (1922)]. The particle executes a periodic orbiting motion which depends on

its aspect ratio and the initial inclination. For a spheroidal particle in particular,

the motion of the axis of symmetry of the particle is described by:

dφ

dt
=

γ̇

Ar
2 + 1

(Ar
2 cos2 φ + sin2 θ),

dθ

dt
=

γ̇

4

(
Ar

2 − 1

Ar
2 + 1

)
sin 2θ sin 2φ, (1.1)

where γ̇ is the shear rate, θ and φ are the polar and azimuthal angle respectively,

as shown in the figure 1.4. Here, Ar is the aspect ratio of the spheroidal particle or

the ratio of the major and minor axes (Ar > 1 for a prolate spheroid and Ar < 1

for an oblate spheroid).

The equations of motion can be obtained in terms of the orbit constant C by

transforming coordinates from (θ, φ) to (C,τ) in equation (1.1) using the transfor-

mation:

θ = tan−1(C
√

cos2 τ + Ar
2 sin2 τ),

φ = tan−1 (Ar tan τ). (1.2)
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Figure 1.4: Jeffery orbits of an arbitrary aspect ratio prolate spheroid; the orbits
are stretched along the flow direction. Whereas for an oblate spheroid, the Jeffery
orbits would be stretched along the flow-gradient direction.

In this new coordinate system the equations of motion become:

dC

dt
= 0, (1.3)

dτ

dt
=

Arγ̇

Ar
2 + 1

,

where C is the orbit constant, and can vary from 0 (corresponding to a log-rolling

motion about the vorticity axis) to ∞ (corresponding to a tumbling motion in the

plane of shear); τ indicates the phase of the particle in the orbit. Equation (1.3)

shows that the orbit constant C does not vary with time, and the particle therefore

continues to remain in the orbit which it was initially in.

Mason and his co-workers [see Bartman et al. (1975)] reported the effect of iner-

tia and viscoelasticity of the fluid on the orbit of a rotating particle in a simple shear

flow. They studied the motion of nylon rods (aspect ratio≥10) and polystyrene

discs (aspect ratio≈0.1) in the annulus between counter-rotating cylinders of a

Couette apparatus. 2.5% polyacrylamide in water was used as a viscoelastic fluid

(viscosity∼ 0.7 Pa-sec) and Glycerol (viscosity∼ 0.6 Pa-sec) was used as a New-
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tonian fluid. Their experiments conclusively showed that the effect of inertia was

to cause rods and disks to gradually drift into orbits of maximum dissipation; that

is, the rods drift to C=∞, where they rotate completely in the plane of the flow

(tumbling motion), and the disks drift to C=0 where they spin (log-rolling motion)

with the axis of symmetry aligned with the vorticity vector of the undisturbed flow.

On the other hand, at low shear rates, viscoelasticity causes the particle to drift

into orbits of minimum dissipation, exactly the opposite of what inertia would do.

Review of analytical and computational work

The effects of inertia and viscoelasticity on the motion of axisymmetric particles,

in the context of both sedimentation and shear, have been studied with great

interest owing to the interesting phenomena revealed by experiments described in

the earlier section. Many authors have analysed this problem both numerically and

analytically.

Cox (1965) found an analytical expression for the inertial torque to O(Re) on

a spheroid of small eccentricity using the method of asymptotic expansions. The

Reynolds number is defined as Re = ρUL
µ

, where ρ is the density of the fluid, U is

the velocity of translation of the spheroid, L is the major diameter of the spheroid

and µ is the viscosity of the fluid. He assumed the body surface to have the (di-

mensionless) form

r = 1 + ε
{

r3 ∂2

∂r2
1
(1

r
)
}

using rectangular Cartesian co-ordinates (r1, r2, r3) with the origin fixed in the

body. The term (r3 ∂2

∂r2
1
(1

r
)) is a surface harmonic of order two and ε is a dimension-

less measure of the departure from sphericity. The parameter ε is assumed small

so that squares and higher-order terms were neglected. The surface to O(ε) is a
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spheroid axially symmetric about the direction 1 (ε > 0 for a prolate spheroid and

ε < 0 for an oblate spheroid). The O(Re) inertial torque Lsed(inertial) was found

to be:

Lsed(inertial) = Re
29π

40
εµUL2 sin 2α (1.4)

where U is the velocity of the body, ρ is the density of the fluid, µ is the viscosity of

the fluid, L is the length of the body and α being the angle between the translational

velocity and axis of symmetry. In our notation ε is defined as: ε= 1
2ξ2

0
, here ξ0

represents the surface of the particle in spheroidal coordinates, further details about

our notation can be found in §2.1.1 of the second chapter. The sense of the inertial

torque is so as to make the axis of symmetry perpendicular to the velocity of

translation.

Later, Khayat and Cox (1989) derived an expression for the inertial torque, for

finite Re, on a sedimenting fiber of large aspect ratio using slender body theory

[see Batchelor (1970) & Cox (1970)]. The inertial torque again makes the particle

eventually sediment with its centerline perpendicular to its direction of translation.

The torque acting on the slender fiber in the limit Re << 1 is given by:

Lsed(inertial) = Re
−5π

6 (ln(Ar))
2µUL2 sin 2α (1.5)

where α is the angle the axis of the fiber makes with the translation velocity and

Ar is the aspect ratio of the particle.

On the other hand, the effect of viscoelasticity on a fiber sedimenting in a

second order fluid was first determined by Leal (1975) again using slender body

theory. The viscoelastic fluid in the theoretical analysis was modelled as a second-

order fluid. His analysis showed that the viscoelastic torque rotates the axis of the
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slender fiber towards alignment with the direction of translation. In particular, the

expression for the viscoelastic torque acting on the slender fiber was given by:

Lsed(visco) = De
−π

36
(16− 96ε1)µUL2 sin 2α (1.6)

where ε1 is related to the ratio of the normal stress coefficients of the second-order

fluid. ε1 is defined as −ψ1

2(ψ1+ψ2)
and is therefore a material property. ψ1 and ψ2 can

be defined in terms of the familiar normal stress differences, N1 and N2, as: ψ1=
N1

γ̇2

and ψ2=
N2

γ̇2 [see Larson (1988)]. Here Deborah number is defined as De = λU
L

, λ is

the intrinsic relaxation time of the second-order fluid.

Feng et al. (1995) solved the problem of a sedimenting spheroid numerically

on a three-dimensional domain using a finite element method with fictitious do-

mains. They reported the existence of equilibrium tilt angles between zero and

ninety degrees that the settling prolate spheroid would eventually assume. In a

more recent work, G.P.Galdi et al. (2002) determined the inertial and viscoelastic

torques, semi-analytically, on a prolate spheroidal particle of an arbitrary aspect

ratio. They used the singularity method for Stokes flows, originally developed by

Chwang and Wu [see T.Chwang & Wu (1974) and Chwang & Wu (1975)], to ob-

tain the disturbance velocity field due to a translating prolate spheroid. Although,

closed form analytical expressions for the velocity fields were used, the final inte-

gration for the torque was carried out using a numerical integration package. They

showed that only transverse and longitudinal equilibrium orientations are possi-

ble. Shatz (2004) has since extended the singularity method to the case of oblate

spheroids by placing the fundamental singularities along an imaginary focal length.

But, so far no literature has been found for the inertial and viscoelastic torques on

an oblate spheroid of an arbitrary aspect ratio, sedimenting in a quiescent fluid.
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In summary, the theoretical analyses for a sedimenting axisymmetric particle are

in qualitative agreement with the experimental observations.

A large body of work exists on the problem of a spheroidal particle rotating in a

simple shear flow. Jeffery (1922) showed that an axisymmetric particle, suspended

in a Newtonian fluid undergoing a simple shear flow, may rotate in any one of

an infinite number of orbits known as the Jeffery orbits in the absence of inertia.

The effects of inertia on fiber motion in a simple shear flow have been examined in

Subramanian & Koch (2005). It is shown therein that for small Reynolds number,

the rotating fiber drifts toward the shearing plane and for Reynolds above a critical

value the fiber ceases to rotate, instead drifting monotonically towards the shearing

plane; in simple shear flow, the Reynolds number is defined as Re = ργ̇L2

µ
, γ̇ being

the shear rate. Subramanian & Koch (2006) analysed the effects of inertia on the

motion of a nearly spherical particle in a simple shear flow. The authors have

shown that the axis of symmetry of a neutrally buoyant slightly prolate spheroid

migrates toward the direction of vorticity, while that of an slightly oblate spheroid

drifts toward the shearing plane. It is seen from the above results that while the

axis of symmetry of a fiber drifts towards the shearing plane, that of a nearly

spherical prolate spheroid drifts towards the vorticity vector of the ambient shear

flow. This indicates the presence of a bifurcation in orientation dynamics occurring

at a critical particle aspect ratio. No literature has, however, been found on the

effects of inertia and viscoelasticity on a spheroidal particle (prolate or oblate) of

an arbitrary aspect ratio spheroidal particle placed in a simple shear flow. Our

analysis, being applicable for an arbitrary aspect ratio spheroidal particle, will

allow one to calculate this critical aspect ratio.
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1.2 Motivation and Objectives

As a first step in understanding suspensions of anisotropic particles, we have in-

vestigated the free fall orientation of spheroidal particles in a quiescent fluid and

the orientation dynamics of spheroidal particles in simple shear flow as a function

of the aspect ratio. The orientation dynamics of a spheroidal particle is thus taken

to be representative of that of a general axisymmetric particle. The knowledge

of the motion of a single particle in a flow can be directly applied to the analy-

sis of a dilute sedimenting suspension and the rheology of a dilute suspension of

neutrally buoyant particles. By dilute, we mean the limit φ <<1, where φ is the

hydrodynamic volume fraction. The hydrodynamic volume fraction (φ) is defined

as the ratio of the volume occupied by the spheres circumscribing the spheroidal

particles to the total volume occupied by the suspension. Each particle in a dilute

suspension is effectively isolated since interparticle hydrodynamic interactions are

negligible.

The rheological properties and the average sedimentation velocity depend on

the probability distribution of orientations among all the suspension particles. We

have analysed the role of inertia and viscoelasticity both of which are expected to

lead to

1) a unique terminal orientation of a sedimenting spheroidal particle

2) the existence of a unique preferred orbit for a neutrally buoyant spheroidal par-

ticle in simple shear flow,

and hence enable us in calculating the rheological properties of a suspensions of

these particles independent of their initial orientation distribution. We assume in

our analysis that the Peclet number(Pe), which is defined as the ratio of the Brow-

nian diffusion time scale (L2

D
, where D is the Brownian diffusivity) to the externally
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imposed flow time scale (L
U

for sedimentation and γ̇−1 for simple shear flow), to

be very large. Thermal effects may be neglected when considering the dynamics of

particles larger than 10µ. The ratio of the Reynolds to the Peclet number (Re/Pe)

is a characteristic of the system and is independent of the externally imposed flow.

So, as Re increases, Pe also increases, making the system increasingly athermal.

Our analysis assumes Pe → ∞ and φ → 0, and hence, the effects of factors such

as Brownian motion, hydrodynamic interactions, etc. on the particle orientation

have been neglected.

In this thesis, we aim to determine the torque on a non-Brownian spheroidal particle

sedimenting in a quiescent viscoelastic fluid as a function of its initial orientation,

and to determine if, for a neutrally buoyant non-Brownian spheroidal particle,

rotating in a simple shear flow, there exists a unique stable orbit among the single-

parameter family of periodic orbits (Jeffery orbits) known to exist in the inertialess

limit. Both the sedimentation and the shear flow problems have a degenerate char-

acter in the inertialess Newtonian limit, and one expects inertia and viscoelasticity

to remove this degeneracy. As is evident from the discussion in the earlier sections,

each of these problems have a long history of both theoretical and experimental

work. The novel aspect of our work lies in the method of approach. We use the

formalism of vector spheroidal harmonics developed by Kushch (Kushch & Sangani

(2003)). The method is a generalisation of the well-known spherical harmonics for-

mulation for Stokes flow problem (Kim & Karrila (1991)), and therefore lends itself

naturally to the analysis of spheroids of an arbitrary aspect ratio.
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1.3 Thesis layout

The thesis is structured as follows. The problem formulation has been presented

in the second chapter. In particular, this chapter involves a formulation for solving

the Stokes equations in spheroidal coordinates (both prolate and oblate) and, use

of the generalised reciprocal theorem with these solutions to determine the effects

of inertia and viscoelasticity in sedimentation and simple shear flow. The third

chapter is devoted to the determination of the required Stokes velocity disturbance

fields using Kushch’s spheroidal harmonics formulation (Kushch & Sangani (2003)),

and the results for the sedimentation and simple shear flow problems. In the final

chapter,we comment on possible extensions of the present work that can be carried

out in the future.

—————————————————-



CHAPTER 2

KUSHCH'S FORMULATION AND LORENTZ

RECIPROCAL THEOREM : PROBLEM

FORMULATION

Introduction

Kushch’s formulation for vector spheroidal harmonics (Kushch & Sangani (2003))

and the generalised reciprocal theorem (Happel & Brenner (1973), Leal (1980),

Subramanian & Koch (2005), Subramanian & Koch (2006)) have been used to

find:

(1) the inertial and viscoelastic torques on a sedimenting spheroid in a quiescent

viscoelastic (second-order) fluid, and

(2) the effect of inertia and viscoelasticity on the angular velocity of a neutrally

buoyant torque-free spheroid rotating in simple shear flow of a second-order fluid.

In this chapter we introduce Kushch’s formulation and the generalised reciprocal

theorem and apply it to the aforementioned problems.

2.1 Kushch’s Formulation

A novel analytical framework constructed by Kushch and his co-workers (Kushch

& Sangani (2003)) is applied here to solve a series of problems for a viscous fluid

with suspended spheroidal particles. The basic idea of the method is the multi pole

17
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expansion, a method that has been applied to determine the interactions among N

spherical particles [see Sangani & Mo (1996)] when the motion of the fluid is gov-

erned by the Stokes equations. The structure of the spheroidal harmonics formalism

developed by Kushch is analogous to the well-known solution in terms of spherical

harmonics that is in standard use [see Chapter-4 of Kim & Karrila (1991)]. Kushch

earlier had developed a similar formalism to solve the Lame’s equations (the equa-

tions of linear elasticity) in a spheroidal basis to find the microstresses and effective

elastic moduli of a solid reinforced by periodically distributed spheroidal particles

[see Kushch (1997)]. The new features added by Kushch & Sangani (2003) are

the vectorial partial solutions of the Stokes equations in the spheroidal coordinate

system and the re-expansion formulae due to the position change of the reference

coordinate system. The implementation of the spheroidal harmonics formulation

reduces the boundary-value problem in a multi-particle system to a set of linear

algebraic equations by exact satisfaction of the boundary conditions at all the in-

terfaces. In practice the system of equations is truncated at a certain order, which

is equivalent to the neglect of multipoles higher than that order. This formulation

allows for an analytical description of the flow around spheroidal particles (either

prolate or oblate spheroids) of an arbitrary aspect ratio. Hence, one can vary the

aspect ratio of a prolate spheroid and reach an infinitely slender fiber at one end of

the spectrum and reach a near-sphere at the other end [see figure 2.1]. Similarly,

by varying the aspect ratio of the oblate spheroid, one can reach a flat disk at one

end and a near sphere at the other end [see figure 2.2]. Thus, this formulation

allows one to conduct a detailed study of the effect of particle aspect ratio on the

bulk properties of suspensions. Kushch and his co-workers (Kushch & Sangani

(2003)) developed this technique to solve the N-particle interaction problem in the

Stokes limit for a specified micro-structure. We will be extending the formalism
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to study the effects of tiny departures, due to inertia or viscoelasticity, from the

Stokes scenario on the orientation dynamics of a single particle.

Figure 2.1: Range of particle shapes that can be studied by varying the aspect
ratio of a prolate spheroid

Figure 2.2: Range of particle shapes that can be studied by varying the aspect
ratio of an oblate spheroid

2.1.1 Prolate and oblate spheroidal coordinate systems

The most convenient form of the solutions to the Stokes equations for the problems

of interest is that corresponding to a spheroidal coordinate system. This is, of

course, because the bounding surface of the spheroidal particle now reduces to a

constant coordinate surface.

In the prolate spheroidal coordinate system, (ξ, η, φ) are the three independent

coordinates. ξ, η, and φ are related to the Cartesian coordinates(x,y,z) by:
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x + iy = d
√

ξ2 − 1
√

1− η2 exp(iφ), z = dξη; (2.1)

1 ≤ ξ ≤ ∞, |η| ≤ 1, 0 ≤ φ < 2π

Figure 2.3: The constant coordinate surfaces in a prolate spheroidal coordinate
system

Figure 2.3 shows the topology of the constant coordinate surfaces in a prolate

spheroidal coordinate system. By assigning a series of different values to ξ, one

generates a family of confocal prolate spheroids with inter-foci distance being equal

to 2d. Constant η surfaces represent a family confocal two-sheeted hyperboloids.

The third set of coordinates φ consists of planes passing through the axis of sym-

metry, the z axis.

Let ξ0 represent the surface of the particle and ξ > ξ0 represent the domain out-

side the particle. With increasing ξ, the constant ξ spheroids approach a spherical

shape, and correspondingly, the constant η surfaces approach a conical geometry,

the latter being the second family of constant coordinate surfaces in a spherical

coordinate system. Constant φ surfaces are planes that pass through the axis of
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symmetry (the z axis), and φ is usually referred to as the azimuthal angle. This

also shows that in order to proceed to the limiting case of spherical coordinates, the

relevant limit is that of ξ →∞ and d → 0 with (dξ) fixed. The quantity (dξ = r)

represents the radius of the limiting spherical surface. On the other hand, for ξ

approaching unity, the prolate spheroids become increasingly slender, tending to

an infinitely slender fiber at ξ = 1.

Similarly, one may now define the oblate spheroidal coordinate system. The

oblate spheroidal coordinate system may be obtained by replacing ξ by i
√

ξ2 − 1

and d by −id in the expressions for the prolate spheroidal coordinate system given

above [see equation (2.1)].

Again denoting (ξ, η, φ) as the three independent coordinates, ξ, η, and φ are

related to the Cartesian coordinates (x,y,z) by:

x + iy = dξ
√

1− η2 exp(iφ), z = d
√

ξ2 − 1η; (2.2)

1 ≤ ξ ≤ ∞, |η| ≤ 1, 0 ≤ φ < 2π

Figure 2.4: The constant coordinate surfaces in an oblate spheroidal coordinate
system
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Figure 2.4 shows the topology of the constant coordinate surfaces in an oblate

spheroidal coordinate system. By assigning a series of different values to ξ, one

generates a family of confocal oblate spheroids with inter-foci distance being equal

to 2d. Constant η surfaces represent a family confocal single-sheeted hyperboloids.

The third set of constant coordinates φ surfaces consists of planes passing through

the axis of symmetry, and is thus the same as the azimuthal coordinate in a spher-

ical coordinate system. In a manner similar to the prolate coordinate system, the

limit ξ → ∞ and d → 0 with (dξ) fixed leads to a spherical coordinate system.

The quantity (dξ = r) represents the radius of the limiting spherical surface. On

the other hand, for ξ approaching unity, the oblate spheroids become increasingly

flat, tending to an infinitely thin disc at ξ = 1.

(see Appendix A for further details on the prolate and oblate coordinate systems)

2.1.2 Partial vectorial solutions of the Stokes equations in spheroidal

coordinates

Here we discuss the set of decaying partial vectorial solutions of Stokes equation

as introduced by Kushch and his co-workers (Kushch & Sangani (2003)). Any

exterior velocity field may be expressed as a linear combination of these decaying

solutions. We only deal with exterior problems since the spheroidal particle, both

in sedimentation and simple shear flow, is in an unbounded fluid domain.

The decaying vectorial solutions in the prolate spheroidal coordinate system are

given by:
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S
(1)
ts = e1F

s−1
t+1 − e2F

s+1
t+1 + e3F

s
t+1; (2.3)

S
(2)
ts =

1

t

[
e1(t + s)F s−1

t + e2(t− s)F s+1
t + e3sF

s
t

]
;

S
(3)
ts = e1

{−(x− iy)D2F
s−1
t−1 −

[
(ξ0)

2 − 1
]
dD1F

s
t + (t + s− 1)(t + s)β−(t+1)F

s−1
t−1

}

+e2

{
(x + iy)D1F

s+1
t−1 −

[
(ξ0)

2 − 1
]
dD2F

s
t − (t− s− 1)(t− s)β−(t+1)F

s+1
t−1

}

+e3

[
zD3F

s
t−1 − (ξ0)

2 dD3F
s
t − C−(t+1),sF

s
t−1

]
;

where βt = t+3
(t+1)(2t+3)

; further,

Cts = (t + s + 1)(t− s + 1)βt; t = 0, 1, ...; |s| ≤ t.

e1 = (ex + iey)/2, e2 = (ex − iey)/2, e3 = ez,

D1 = (∂/∂x− i∂/∂y), D2 = (∂/∂x + i∂/∂y), D3 = (∂/∂z).

The z-axis of the Cartesian coordinate system is the axis of symmetry of the

spheroidal coordinate system.

The functions F s
t = F s

t (r, d) are solid spheroidal harmonics of the form

F s
t = Qs

t(ξ)Y
s
t (η, φ). Y s

t (η, φ) = P s
t (η) exp(isφ) are the scalar surface harmonics

and P s
t (η) and Qs

t(ξ) are the associated Legendre polynomials of the first and

second kind, respectively [Morse & Feshbach (1953)]. The functions Qs
t(ξ) → 0 as

ξ → ∞, and this provides the decaying nature of the velocity field for an exterior

problem. Thus, the index “t” indicates the rapidity of decay of the disturbance

velocity field. The index “s” governs the variation of the velocity field with the

azimuthal angle. Thus, s=0 for an axisymmetric disturbance velocity field.

The expressions for the first few Legendre polynomials of the first kind are given
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below:

P 0
0 = 1,

P 0
1 = η,

P 1
1 =

√
1− η2,

P 1
2 = 3η

√
1− η2,

P 2
2 = 3(1− η2).

The expressions for the first few Legendre polynomials of the second kind are given

below:

Q0
0 =

1

2
log

(
ξ + 1

ξ − 1

)
,

Q0
1 =

ξ

2
log

(
ξ + 1

ξ − 1

)
− 1,

Q1
1 =

1

4

(
3ξ2 − 1

)
log

(
ξ + 1

ξ − 1

)
− 3

2
ξ,

Q1
2 =

1

2

√
(ξ2 − 1) log

(
ξ + 1

ξ − 1

)
− ξ√

ξ2 − 1
,

Q2
2 =

3

2

(
ξ2 − 1

)
log

(
ξ + 1

ξ − 1

)
−

(
3ξ2 − 5ξ

ξ2 − 1

)
.

A few properties of these functions S
(i)
ts ’s are:

∇.S
(i)
ts = 0, i = 1, 2, 3,

∇× S1
ts = 0, d∇× S

(2)
ts = −i∇× S̃

(1)

ts , d∇× S
(3)
ts = −2i∇× S̃

(2)

ts ,

where S̃
(1)

ts and S̃
(2)

ts have the form of equation (2.3), with F s
t replaced by dD3F

s
t−1.

The Cartesian derivatives of the solid spheroidal harmonics are related by

D3F
s
t−1 = D1F

s+1
t−1 = −D2F

s−1
t−1 .
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Further, ∇2S
(i)
ts = 0, (i = 1, 2) implying that these are vectorial harmonic

functions and therefore do not have any disturbance pressure field associated with

them in the Stokes limit. Since ∇ × S
(1)
ts = 0, S

(1)
ts must be the gradient of a

scalar and hence will give rise to potential flow field. On the other hand, S
(3)
ts

is a biharmonic function (∇4S
(3)
ts =0), and gives rise to a non-trivial disturbance

pressure field. Since∇2S
(3)
ts = 2

d
∇Ds

t (Ds
t = dD3F

s
t−1), this identity helps in finding

out the pressure field corresponding to the velocity field obtained using the series

of partial solutions.

The similarity in the structure of vectorial solutions of Stokes equations in the

spheroidal and spherical coordinate systems is illustrated in Appendix C.

Now, we proceed to discuss the underlying idea of this method. A body-fixed

Cartesian coordinate system is chosen with the origin placed at the spheroid’s

center of mass and with z-axis as the axis of symmetry of the particle. To describe

the spheroidal particles conveniently we will use the spheroidal coordinates(ξ, η, φ),

which are related to the Cartesian coordinates via equations (2.1) and (2.2). In the

notation of the spheroidal coordinate systems introduced earlier, the surface of the

spheroidal particle is denoted by ξ = ξ0. The motion of the incompressible viscous

fluid is governed by the Stokes equations in the exterior domain ξ > ξ0. The Stokes

equations and the mass conservation equation for an incompressible fluid are given

by:

µ∇2u = ∇p; ∇ · u = 0; (2.4)

where u is the velocity field, p is the pressure field and µ is the viscosity of the

fluid. The no-slip boundary condition at the particle surface can be written as:
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u |ξ=ξ0 = U + r0 ×Ω, r0 = x− x0; (2.5)

where U is the translational velocity of the particle, x0 is the position vector

of the center of the particle, x is a vector that lies on the surface of the particle,

and Ω denotes the particle’s angular velocity. Also, as one goes far away from

the particle surface the disturbance velocity decays to zero and the total velocity

equals the externally imposed velocity U∞. Thus,

u → U∞ as ‖r‖ → ∞. (2.6)

It follows from the last condition that the series of multipole expansion of

the induced disturbance velocity field will contain only decaying singular partial

solutions S
(i)
ts which were introduced earlier[see equations (2.3)]: Thus,

u =
3∑

i=1

∞∑
t=0

t∑
s=−t

A
(i)
ts S

(i)
ts (r, d) , (2.7)

where the A
(i)
ts are the multipole strengths to be found from the boundary conditions

in equation (2.5). One obtains,

U + r0 ×Ω =
3∑

i=1

∞∑
t=0

t∑
s=−t

A
(i)
ts S

(i)
ts |ξ=ξ0 . (2.8)

The three decaying partial vectorial solutions of the Stokes equation (2.3) eval-

uated at ξ = ξ0 in the prolate spheroidal coordinate system are given below [see

Kushch & Sangani (2003)]:
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S
(1)
ts |ξ=ξ0 = e1Q

s−1
t+1Y

s−1
t+1 − e2Q

s+1
t+1Y

s+1
t+1 + e3Q

s
t+1Y

s
t+1; (2.9)

S
(2)
ts |ξ=ξ0 = e1

(t + s)

t
Qs−1

t Y s−1
t + e2

(t− s)

t
Qs+1

t Y s+1
t + e3

s

t
Qs

tY
s
t ;

S
(3)
ts |ξ=ξ0 = e1

{−(t− s + 1)ξ0Q
s−1
t + (t + s− 1)

[
1 + (t + s)β−(t+1)

]
Qs−1

t−1

}
Y s−1

t−1

+e2

{
(t− s− 1)ξ0Q

s+1
t − (t− s− 1)

[
1 + (t− s)β−(t+1)

]
Qs+1

t−1

}
Y s+1

t−1

+e3

{−(t− s)ξ0Q
s
t − C−(t+1),sQ

s
t−1

}
Y s

t−1,

where Qs
t = Qs

t(ξ0) and Y s
t = (t−s)!

(t+s)!
P s

t (η) exp(isϕ) are the scalar surface harmonics.

These partial vectorial solutions evaluated at the surface of the particle will help

us solve the system of simultaneous linear equations [see (2.8)] to find the unknown

mutipole coefficients A
(i)
ts .

One may proceed similarly for the oblate coordinate system. The partial vec-

torial decaying solutions in the oblate coordinate system may be obtained from

the above expressions, valid for prolate spheroidal coordinates by replacing ξ by

i
√

ξ2 − 1 and d by −id. Thus the decaying partial vectorial solutions of the Stokes

equations in an oblate coordinate system are given by:

S
(1)
ts = e1F

s−1
t+1 − e2F

s+1
t+1 + e3F

s
t+1; (2.10)

S
(2)
ts =

1

t

[
e1(t + s)F s−1

t + e2(t− s)F s+1
t + e3sF

s
t

]
;

S
(3)
ts = e1

{−(x− iy)D2F
s−1
t−1 − i

[
(ξ0)

2] dD1F
s
t + (t + s− 1)(t + s)β−(t+1)F

s−1
t−1

}

+e2

{
(x + iy)D1F

s+1
t−1 − i

[
(ξ0)

2] dD2F
s
t − (t− s− 1)(t− s)β−(t+1)F

s+1
t−1

}

+e3

[
zD3F

s
t−1 − i [(ξ0)− 1]2 dD3F

s
t − C−(t+1),sF

s
t−1

]
.

The three decaying partial vectorial solutions of the Stokes equations (2.10) eval-
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uated at ξ = ξ0 in the oblate spheroidal coordinate system, are as given below:

S
(1)
ts |ξ=ξ0 = e1Q

s−1
t+1Y

s−1
t+1 − e2Q

s+1
t+1Y

s+1
t+1 + e3Q

s
t+1Y

s
t+1; (2.11)

S
(2)
ts |ξ=ξ0 = e1

(t + s)

t
Qs−1

t Y s−1
t + e2

(t− s)

t
Qs+1

t Y s+1
t + e3

s

t
Qs

tY
s
t ;

S
(3)
ts |ξ=ξ0 = e1

{
−(t− s + 1)

[
i

√
ξ0

2 − 1

]
Qs−1

t + (t + s− 1)
[
1 + (t + s)β−(t+1)

]
Qs−1

t−1

}
Y s−1

t−1

+e2

{
(t− s− 1)

[
i

√
ξ0

2 − 1

]
Qs+1

t − (t− s− 1)
[
1 + (t− s)β−(t+1)

]
Qs+1

t−1

}
Y s+1

t−1

+e3

{
−(t− s)

[
i

√
ξ0

2 − 1

]
Qs

t − C−(t+1),sQ
s
t−1

}
Y s

t−1,

where βt = t+3
(t+1)(2t+3)

;

Cts = (t + s + 1)(t− s + 1)βt; t = 0, 1, ...; |s| ≤ t.

e1 = (ex + iey)/2, e2 = (ex − iey)/2, e3 = ez

These forms may then be used in the boundary conditions to again obtain a system

of simultaneous linear equations to be solved for the multipole coefficients.

2.1.3 Force and torque calculation

The force on the particle in the prolate and oblate spheroidal coordinate systems

are given by:

F = 16πµd

(
−A

(3)
11 e1 + A

(3)
1,−1e2 +

1

2
A

(3)
10 e3

)
, (2.12)

F = −16πµid

(
−A

(3)
11 e1 + A

(3)
1,−1e2 +

1

2
A

(3)
10 e3

)
, (2.13)

respectively. In the above expressions A
(i)
ts are the multipole strengths chosen from

the boundary conditions relevant to the particular problem. Similarly, the expres-
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sions for the torque on the prolate and oblate spheroids, respectively, are:

M =
16

3
πµid2

(
−A

(3)
11 e1 + A

(3)
1,−1e2 − 1

2
A

(3)
10 e3

)
(2.14)

M = −16

3
πµid2

(
−A

(3)
11 e1 + A

(3)
1,−1e2 − 1

2
A

(3)
10 e3

)
(2.15)

2.2 Generalised reciprocal theorem

The generalised reciprocal theorem relates the velocity and stress fields of two

problems, the actual problem (σ(1),u(1)) and a test problem (σ(2), u(2)) for which

the solution is known. Both (σ(1), u(1)) and (σ(2),u(2)) are solutions of the flow

past the same body but with different boundary conditions and possibly governed

by different dynamical equations.

In our case, the actual problem is that of a spheroidal particle undergoing a

specified motion in a non-Newtonian fluid. The non-Newtonian fluid used in the

experiments (described in Chapter-1) is a dilute polymer solution at reasonably

small shear rates. At these small shear rates, the effects of viscoelasticity are

small, and the fluid may be modelled as a second-order fluid. In other words,

the fluid is slightly non-Newtonian , and the Deborah number De = λ
tflow

is much

smaller than unity. Here, tflow is the externally imposed flow time scale and λ is

the intrinsic relaxation time of the non-Newtonian fluid. The Deborah number is

the key dimensionless parameter in non-Newtonian fluids, and is a measure of the

degree of viscoelasticity. If the Deborah number is small, then thermal motions

keep the polymer molecules more or less in their equilibrium configurations, and the

polymeric fluid shows only a minor qualitative difference from a Newtonian fluid.

Thus, Newtonian behavior is obtained in the limit De = 0. When the Deborah
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number is large, polymer molecules distorted by the flow will not have time to relax

during the time scale of the experiment. In the limit De →∞ the flow time scale

is so small that the polymer molecules have no time to relax in response to changes

in configuration imposed by the flow. In this limit, the elastic component of the

response is important.

In the limit of slow, slowly varying flows, the fluid rheology is governed by the re-

tarded motion expansion [see Bird et al. (1987) and Larson (1988)]. To O(De), the

retarded motion expansion reduces to the second-order fluid constitutive equation.

Thus, the second-order fluid rigorously accounts for the first effects of viscoelastic-

ity in slow flows. The second-order fluid constitutive equation predicts a constant

viscosity and constant normal stress differences in a simple shear flow, but fails to

capture the variation of the viscosity and normal stress coefficients.

The appropriate non-dimensional equation of motion for the problem of interest

is as given below:

Re

(
Du(1)

Dt

)
= ∇ · σ(1); (2.16)

∇.u(1) = 0 (2.17)

In equation (2.16), σ(1) is the total stress tensor of the non-Newtonian fluid,

and u(1) is the disturbance velocity field of the actual problem;
(

Du(1)

Dt

)
is the

convective acceleration. The scales chosen for non-dimensionalization of the above

equation are as follows. The length scale is the major diameter of the spheroid

(L=dξ0). Taking the major axis of the spheroid as the relevant scale ensures that

one obtains the correct length scale even in the limit of a slender body; slender

body theory says that it is the length and not the diameter of the body that is the

correct length scale characterizing the variation of the disturbance velocity field

in the limit of large aspect ratio. An appropriate velocity scale U is chosen. The
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stress σ for viscous flows scales as µU
L

. The Reynolds number, the ratio of inertial

to viscous forces, is based on the major diameter of the spheroid, and is given by

Re = ρUL
µ

. Re = 0 indicates that there is a instantaneous balance between the

pressure and viscous forces every where in the fluid and the fluid motion is in the

Stokes regime. As the Reynolds number is increased, inertia of the fluid becomes

important.

The total stress in the actual problem is the stress in a second-order fluid, and

is composed of two parts, the Newtonian stress σ
(1)
N , linear in the velocity gradient

tensor and the non-Newtonian stress σ
(1)
NN which is a non-linear function of the

velocity gradient tensor. Thus,

σ(1) = σ
(1)
N + De

(
σ

(1)
NN

)
(2.18)

where De is the Deborah number defined earlier. The non-dimensional Newtonian

stress can be written as:

σ
(1)
N = −p(1)I + 2E(1), (2.19)

where p(1) is the pressure field and E(1) = 1
2
(∇u(1) +∇u(1)t) is the strain rate

tensor of the actual problem. The non-dimensional non-Newtonian stress can be

written as the sum of a co-rotational (σ
(1)
NNC) and a quadratic (σ

(1)
NNQ) contribution :

σ
(1)
NN =

(
σ

(1)
NNC + σ

(1)
NNQ

)
, (2.20)

where the co-rotational portion of the non-Newtonian stress is given by
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σ
(1)
NNC = 2ε1

(
∂E(1)

∂t
+ ∇.

(
uE(1)

)
+

(
W (1).E(1)

)
+

(
W (1).E(1)

)t
)

,

and the part of the non-Newtonian stress that is quadratic in the strain rate is

given by:

σ
(1)
NNQ = 4(1 + ε1)E

(1).E(1).

Here, W (1)=1
2
(∇u(1) − ∇u(1)t) is the vorticity tensor and ε1 is an intrinsic

fluid property. ε1 is defined as −ψ1

2(ψ1+ψ2)
, where ψ1 and ψ2 are the normal stress

coefficients and can be defined in terms of the familiar normal stress differences,

N1 and N2 as ψ1=
N1

γ̇2 and ψ2=
N2

γ̇2 [see Larson (1988) & Bird et al. (1987)]. The ratio

of −ψ2

ψ1
typically varies from 0.01 to 0.2 for a dilute polymer solution and hence ε1

varies from −0.5 to−0.65.

The test problem is simply the inertialess translation of a spheroidal particle in

a quiescent Newtonian fluid if the dynamical quantity of interest is the force, and

rotation in a quiescent fluid if the dynamical quantity of interest is the torque. The

particle in the test problem has the same orientation as the one in the problem of

interest. The equations of motion and continuity of the test problem are:

∇.σ(2) = 0 (2.21)

∇.u(2) = 0

where,

σ(2) = −p(2)I + 2E(2), (2.22)

where p(2) is the pressure field and E(2)=1
2
(∇u(2) +∇u(2)t) is the strain rate tensor
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of the test problem.

When the generalised reciprocal theorem is applied to the actual and test problems

one obtains the following identity:

∫

S

n.u(2).σ(1)dS −
∫

S

n.u(1).σ(2)dS = Re

∫

V

Du(1)

Dt
.u(2)dV + De

∫

V

σ
(1)
NN : ∇u(2)dV

(2.23)

(see Appendix B for a derivation of the above reciprocal theorem identity)

Here, n is the unit normal pointing into the fluid domain V bounded by the

surface S. If the disturbance velocity decays rapidly away from the particle, the

surfaces integrals at infinity may be neglected, and the bounding surface S in the

integrals in (2.23) becomes that of the particle (Sp). The unit normal on the

surface of a spheroidal particle is êξ, the unit vector perpendicular to the constant

ξ surfaces.

2.2.1 Generalised reciprocal theorem applied to the sedimenta-

tion of a spheroid in a quiescent second-order fluid

In this section we use the generalised reciprocal identity (2.23) to find the torque

on a sedimenting spheroidal particle in a second-order fluid. The non-dimensional

equations of motion (2.16) and the boundary conditions for the actual problem

are: u(1)|ξ=ξo = U, where U is the translational velocity of the particle, and u(1) →
0 as ‖x‖ → ∞

Since we are interested in finding the torque acting on the sedimenting particle,

we choose the test problem as a spheroidal particle of the same orientation rotating

about an axis (the y-axis) perpendicular to the plane containing the vectors U

and axis of symmetry of the particle in a quiescent Newtonian fluid in the Stokes
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regime. The geometry of the two problems is shown in figure 2.5. The direction

of the torque in the actual problem will determine the direction of rotation of the

translating spheroidal particle.

Figure 2.5: Reciprocal theorem: spheroid sedimenting in a second-order fluid

When applying the reciprocal theorem identity (2.23) to the sedimentation

problem, we make use of the fact that the spheroidal particle rotating in a qui-

escent fluid experiences no force, but only a torque; this reduces the second surface

integral (on the left hand side) in equation (2.23) to zero. In addition, the velocity

of the fluid on the surface of the particle in the test problem is given by Ω(2)× ro,

where the angular velocity Ω(2) of the test particle is a unit vector along the y-axis,

and ro represents any point on the surface of the particle. The remaining surface

integral in equation (2.23) then turns out to be the torque acting on the sediment-

ing spheroidal particle.
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With further simplification, we get the torque acting on the particle to be:

Lsed = Re

∫

V

(
Du(1)

Dt

)
.u(2)dV + De

∫

V

σ
(1)
NN : ∇u(2)dV (2.24)

where Du(1)

Dt
is the convective acceleration field. In lab-fixed coordinates

Du(1)′

Dt
= ∂u(1)′

∂t
+u(1)′.∇u(1)′ . u(1)′ being the velocity field in the lab-fixed coordi-

nates. It is more convenient, however, to use a frame of reference that trans-

lates with the particle, and the velocity field in this frame of reference is given by

u(1)=u(1)′−U 1, with the convective acceleration taking the form (u(1)′−U 1).∇u(1)′ .

At large distances the dominant contribution is the convection by the ambient flow

−U 1. The Reynolds number, Re, for sedimentation is defined as ρUL
µ

, where ρ

is the density of the fluid, U is the magnitude of the translation velocity of the

spheroidal particle and (L= dξo) is its major diameter. The Deborah number, De,

for sedimentation is defined as Uλ
L

, where L
U

is the externally flow imposed time

scale.

It can be seen from equation (2.24) that the first volume integral is the O(Re)

inertial torque and the second volume integral is the O(De) viscoelastic torque.

The two volume integrals have to be computed over the entire fluid domain V to

obtain the total torque acting on the particle. It turns out that the integrands

decay rapidly enough for both volume integrals to be convergent over an infinite

fluid domain. This convergence may be illustrated using the well- known far-field

behaviour of the Stokes velocity field. In the integrand for the inertial torque the

dominant contribution in Du(1)

Dt
comes from the term U 1.∇u

′
1, linearized inertial

term corresponding to convection by the ambient flow. This term decays as O( 1
r2 )

since the disturbance velocity due to a translating spheroidal particle, u
′
1, decays
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as O(1
r
) for large r; here r is the distance from the spheroidal particle. The test

disturbance velocity field u(2) is due to a spheroidal particle rotating in a quiescent

fluid decays as O( 1
r2 ) and dV∼O(r2dr). Hence, the integrand for the inertial torque

is O( 1
r2 ) for large r which is convergent, and may therefore be integrated over the

entire fluid volume. The non-Newtonian stress σ
(1)
NN in the O(De) viscoelastic

torque integrand decays as O( 1
r4 ) for large r. It can then be shown that integrand

in the viscoelastic torque decays as O( 1
r5 ), and the resultant integral over r is again

convergent. The convergence of the volume integral for the inertial torque indicates

the regular nature of the inertial correction. This is unlike the inertial Oseen

correction for the drag on a translating spheroidal particle, where the dominant

contribution originates at distances of the order of the inertial screening length

(dξ0)Re−1.

2.2.2 Reciprocal theorem applied to a spheroid placed in a sim-

ple shear flow

To find the effects of inertia and viscoelasticity on a neutrally buoyant torque-free

spheroid rotating in a simple shear flow, we again employ the generalised reciprocal

theorem identity (2.23).

Now, we choose our test problem to be a spheroid rotating about an arbitrary

axis in a quiescent Newtonian fluid in the Stokes regime; that is the same test

problem as in sedimentation, since the dynamical quantity of interest is the torque

in both cases. The actual problem is that of a neutrally buoyant spheroid rotating

in a simple shear flow (with shear rate γ̇) for small but finite inertia and weak

viscoelasticity; the geometry of the two problems are shown in figure 2.6.

When applying the reciprocal theorem identity, (2.23), to the simple shear flow
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Figure 2.6: Reciprocal theorem: spheroid rotating in a simple shear flow

problem, we again make use of the fact that the test spheroid, rotating about an

arbitrary axis in a quiescent fluid experiences no force, but only a torque; and that

the velocity of the fluid on the surface of the test particle is given by Ω(2)×ro, where

the angular velocity Ω(2) of the test particle is a unit vector, and ro represents the

surface of the particle. Using (2.23) we obtain the angular velocity of the spheroid

in a simple shear flow, W shear, to be:

St

(
Isp.

dW shear

dt

)
.w2−Wshear.L2 = −

∫

Sp

(Γ.x) .
(
σ(2).n

)
dS+Re

∫

V

f.u(2)dV +De

∫

V

σ
(1)
NN : ∇u(2)dV,

(2.25)

where, Isp is moment of inertia of the spheroidal particle. L2 is the torque acting

on the test particle rotating in a quiescent Newtonian fluid. f is the acceleration

associated with the disturbance velocity field u(1)′ in the actual problem, and is

defined as: f= ∂u(1)′

∂t
+ Γ.u(1)′ + (Γ.r).∇u(1)′ + u(1)′.∇u(1)′ .

The disturbance velocity field in simple shear flow is defined as u(1)′=u(1)−Γ.x,

where u(1) is the total velocity field in the actual problem and Γ.x is the imposed

shear flow. Γ is the transpose of the velocity gradient tensor of the ambient simple

shear flow. Here, Γ is given as:
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Γ =




0 1 0

0 0 0

0 0 0




The boundary conditions for the disturbance velocity field are:

u(1)′ → 0 as ‖x‖ → ∞ and u(1)′ = (Wshear × x)− Γ.x as ‖x‖ = x0

The Reynolds number, Re, for a simple shear flow is defined as ργ̇L2

µ
, because

the characteristic velocity scale is γ̇L and the Deborah number, De is defined as

γ̇λ, where ρ is the density of the fluid, L=dξo is the major diameter of the spheroid

and γ̇ is the shear rate. Thus, γ̇−1 is the externally imposed flow time scale. St

in (2.25) is the Stokes number and is defined as St=ρpγ̇L2

µ
, ρp being the particle

density. The Stokes number is a measure of particle inertia, and is usually the

relevant parameter in gas-solid systems.

The first order differential equation(2.25) for the angular velocity (Wshear) of

the spheroidal particle has three contributions - the three integrals on the right

hand side of equation (2.25). The first term, the surface integral, represents the

Stokes solution and leads to the well known Jeffery orbit equations (Jeffery (1922)).

The second and third volume integrals give the O(Re) inertial correction and O(De)

viscoelastic correction, respectively, to the angular velocity of the neutrally buoyant

spheroid placed in a simple shear flow.

In the present analysis, it is assumed that Reynolds and Deborah numbers are

small but finite. As a result, the generalised reciprocal theorem allows us to calcu-

late to a first approximation i.e. the O(Re) and O(De) quantities using the Stokes

velocity and pressure fields in the appropriate volume integrals. The integrand of

the inertial torque on a sedimenting spheroid decays as O( 1
r2 )×O( 1

r2 )dV =O( 1
r2 ) for

large r, while the integrand of the viscoelastic torque on a sedimenting spheroid
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decays as O( 1
r4 )×O( 1

r3 )dV =O( 1
r5 ) for large r (dV∼O(r2dr)), both of these are con-

vergent, and can be integrated over the entire volume of the fluid.

———————————-





CHAPTER 3

CANONICAL VELOCITY FIELDS AND

SEDIMENTATION TORQUES : RESULTS

Introduction

In this chapter we present the results that we have obtained using Kushch’s formu-

lation (Kushch & Sangani (2003)) and the generalised reciprocal theorem (Happel

& Brenner (1973)) which have been introduced in the previous chapter. The canon-

ical velocity fields required for the evaluation of the torque and angular velocity

integrals obtained, using Kushch’s formalism are presented in this chapter. The

analytical results for the O(Re) and O(De) torques acting on the sedimenting

spheroid, and the corresponding corrections to the angular velocity of a neutrally

buoyant spheroid in a simple shear flow, obtained using the generalised reciprocal

theorem are presented. The significance of these results are discussed herein.

3.1 Canonical velocity fields

This section discusses a few simple velocity fields, arising from certain canonical

motions of a single spheroidal particle, which are constructed using the vectorial

partial solutions of the Stokes equation in the spheroidal coordinate system [see

equations(2.3)]. Further, these elementary velocity fields are used to generate the

actual and test disturbance velocity fields needed in the reciprocal theorem formu-

lation.

41
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The velocity field induced by the motion of the spheroid reduces to the velocity

field induced by a sphere in the same ambient flow in the limit ξ0 → ∞, ξ → ∞,

d → 0 and η → cos θ, such that ξd → r and ξ0d → a are finite; here r is the radial

coordinate in the spherical coordinate system, a is the particle radius and θ is the

polar angle of the spherical coordinate system. The limiting forms of the various

canonical velocity disturbance fields for a spheroidal particle were verified in this

manner, since the expressions for the disturbance velocity fields generated by the

motion of a spherical particle are well documented [see Kim & Karrila (1991)].

Some of the velocity fields were also verified by comparison with the same

velocity field obtained using a different method - the singularity method of Chwang

and Wu valid for Stokes flows [See T.Chwang & Wu (1974) and Chwang & Wu

(1975)].

3.1.1 Disturbance velocity field due to a translating spheroid

Herein the disturbance velocity fields due to the translation of a spheroidal particle

along the three Cartesian directions (x, y and z) are presented. The disturbance

velocity field for translation in an arbitrary direction, needed in the reciprocal

theorem formulation, can be found by a suitable linear combination of these three

disturbance velocity fields.

Figure 3.1: Prolate spheroid translating along X-axis
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The disturbance velocity field generated due to a prolate spheroid translating

along the X-axis with a velocity of magnitude U, as shown in figure 3.1, is given

by

ut
x = At

x

(
S

(3)
1,1 − S

(3)
1,−1

)
. (3.1)

The constant is obtained using boundary conditions given by equation (2.8),

with the expressions for the spheroidal harmonics on ξ = ξ0 being given by (2.9).

One finds

At
x =

U

(3Q0
0 − ξ0Q0

1)
. (3.2)

Figure 3.2: Prolate spheroid translating along Y-axis

The disturbance velocity field generated due to a prolate spheroid translating

along the Y-axis with a velocity of magnitude U, as shown in figure 3.2, is given

by

ut
y = At

y

(
S

(3)
1,1 + S

(3)
1,−1

)
. (3.3)

The constant is again obtained using boundary conditions given by as mentioned

in equation (2.8).

At
y =

iU

(ξ0Q0
1 − 3Q0

0)
. (3.4)
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Figure 3.3: Prolate spheroid translating along Z-axis(the axis of symmetry)

The disturbance velocity field generated due to a prolate spheroid translating

along its axis of symmetry, the Z-axis, with a velocity of magnitude U, as shown

in figure 3.3, is given by

ut
z = At

z

(
S

(3)
1,0

)
. (3.5)

The second index s, which is equal to zero in (3.5), indicates the axisymmetric

nature of the velocity field.

Using (2.8) and (2.9), one finds,

At
z =

U

(ξ0Q0
1 + Q0

0)
. (3.6)

The expressions for the disturbance velocity fields due to the translating spheroid

were verified by comparison with the same velocity field obtained using the singular-

ity method (Chwang & Wu (1975)), which employs a line distribution of Stokelets

and potential doublets between the foci of the spheroid to generate the required

disturbance velocity field in each case.
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3.1.2 Disturbance velocity field due to a rotating spheroid

Herein, the disturbance velocity fields due to the rotation of a spheroid about the

three independent Cartesian directions(x,y,z) are presented. Rotation about an

arbitrary axis can be found by a suitable linear combination of the three canonical

disturbance velocity fields.

Figure 3.4: Prolate spheroid rotating about the X-axis

The disturbance velocity field generated due to a prolate spheroid rotating

about the minor axis, X-axis, with angular velocity a magnitude W(as shown in

figure 3.4) is given by

ur
x = Ar

1x

(
S

(3)
1,1 − S

(3)
1,−1

)
+ Ar

2x

(
S

(3)
2,1 + S

(3)
2,−1

)
. (3.7)

The constants obtained using the boundary conditions in equation (2.8) and

using equation (2.9) are,

Ar
1x =

Wid(2ξ2
0 − 1))

(2ξ0Q0
1 −

√
ξ2
0 − 1Q1

1)
, (3.8)

Ar
2x =

−Wid

(2ξ0Q0
1 −

√
ξ2
0 − 1Q1

1)
. (3.9)

The disturbance velocity field generated due to a prolate spheroid rotating
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Figure 3.5: Prolate spheroid rotating about the Y-axis

about the Y-axis with angular velocity of magnitude W (as shown in figure 3.5) is

given by

ur
y = Ar

1y

(
S

(3)
1,1 + S

(3)
1,−1

)
+ Ar

2y

(
S

(3)
2,1 − S

(3)
2,−1

)
. (3.10)

The constants are obtained using the boundary conditions in equation (2.8).

Ar
1y =

Wd(2ξ2
0 − 1))

(2ξ0Q0
1 −

√
ξ2
0 − 1Q1

1)
, (3.11)

Ar
2y =

Wd

(2ξ0Q0
1 −

√
ξ2
0 − 1Q1

1)
. (3.12)

Figure 3.6: Prolate spheroid rotating about the Z-axis (axis of symmetry)

The disturbance velocity generated due to a prolate spheroid rotating about the
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Z-axis, its axis of symmetry, with an angular velocity of magnitude W, as shown

in figure 3.6, is given by

ur
z = Ar

z

(
S

(2)
1,0

)
(3.13)

The constant is again obtained using boundary conditions in equation (2.8)

with the expressions for the spheroidal harmonics on ξ = ξ0 being given by (2.9).

Ar
z =

−2iWd
√

ξ2
0 − 1

Q1
1

(3.14)

3.1.3 Disturbance velocity field due to a spheroid immersed in

ambient linear flows: Axisymmetric extension, Transverse

extensions and Longitudinal extensions

Since the rate of strain tensor E is symmetric and traceless, an arbitrary extensional

flow given by u∞=E.x may be generated by a linear combination of axisymmetric

extension, a pair of transverse extensions, and a pair of longitudinal extensions.

The axisymmetric extension is the only 3-D flow amongst the five flows. Here,

‘transverse’ refers to the plane perpendicular to the axes of symmetry, and ‘longi-

tudinal’ refers to the plane containing the axis of symmetry.

(1) The rate of strain tensor for an axisymmetric extension flow is given by

Eaxi=




−k1 0 0

0 −k1 0

0 0 2k1




; here, k1 denotes the strength of the straining veloc-

ity field. The disturbance velocity field generated due to a force-free, torque-free

prolate spheroid placed in an axisymmetric extensional flow, as shown in figure 3.7,
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Figure 3.7: Prolate spheroid placed in an axisymmetric extensional flow

is given by

uaxi = Aaxi

(
S

(3)
2,0

)
. (3.15)

The constant is obtained using boundary condition, uaxi = −(Eaxi.x), where

Eaxi is the rate of strain tensor for axisymmetric extension flow. One finds,

Aaxi =
k12d

√
ξ2
0 − 1

(Q1
1 − ξ0Q1

2)
. (3.16)

The above velocity field verified by comparison with the same velocity field

obtained using the singularity method (Chwang & Wu (1975)). In the latter method

a distribution of stresslets and potential quadrupoles between the foci was used to

generate the required disturbance velocity field.

(2) The rate of strain tensor for a transverse extensional flow-1, with the axes of

extension and compression along Y and X-axis respectively, (shown in figure 3.8

on the left) is given by
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Figure 3.8: Prolate spheroid placed in a transverse extensional flow

E1
te=




−k2 0 0

0 k2 0

0 0 0




; here, k2 denotes the strength of the flow. The disturbance

velocity field is given by

u1
te = A1

te

(
S

(3)
2,2 + S

(3)
2,−2

)
. (3.17)

The constant is obtained using the boundary condition u1
te = −(E1

te.x), where

E1
te is the rate of strain tensor for transverse extension flow-1. One finds,

A1
te =

k22d
√

ξ2
0 − 1

(ξ0Q1
2 − 3Q1

1)
. (3.18)

(3) The rate of strain tensor for a transverse extensional flow-2, with the axis of

extension and compression inclined at an angle 45o to the X and Y-axes (as shown

on the right of figure 3.8) is given by
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E2
te =




0 k3 0

k3 0 0

0 0 0




;here, k3 denotes the strength of the flow. The disturbance

velocity field is given by

u2
te = A2

te

(
S

(3)
2,2 − S

(3)
2,−2

)
. (3.19)

The constant is obtained using boundary condition u2
te = −(E2

te.x), where E2
te

is the rate of strain tensor for transverse extension flow-2. One finds,

A2
te =

k32id
√

ξ2
0 − 1

(3Q1
1 − ξ0Q1

2)
. (3.20)

Figure 3.9: Prolate spheroid placed in a longitudinal extensional flow

(4) The rate of strain tensor for a longitudinal extensional flow-1, with the extension

and compression occurring in the X-Z plane as shown on the right of figure 3.9, is

given by
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E1
le =




0 0 k4

0 0 0

k4 0 0




;here, k4 denotes the strength of the flow. The disturbance

velocity field is given by

u1
le = A1

le

(
S

(3)
2,1 − S

(3)
2,−1

)
. (3.21)

The constant is obtained using the boundary condition u1
le = −(E1

le.x), where

E1
le is the rate of strain tensor for longitudinal extensional flow-1. One finds,

A1
le =

k4d(ξ2
0 − 1)

2ξ0(Q0
1 − ξ0Q0

2)
. (3.22)

(5) The rate of strain tensor for a longitudinal extensional flow-2, with the extension

and compression occurring in Y-Z plane as shown on the left of figure 3.9, is given

by

E2
le =




0 0 0

0 0 k5

0 k5 0




, here k5 denotes the strength of the flow. The disturbance

velocity field is given by

u2
le = A2

le

(
S

(3)
2,1 + S

(3)
2,−1

)
. (3.23)

The constant is obtained using boundary condition u2
le = −(E2

le.x), where E2
le

is the rate of strain tensor for longitudinal extensional flow-2. One finds,

A2
le =

k5id(ξ2
0 − 1)

2ξ0(Q0
1 − ξ0Q0

2)
. (3.24)

The disturbance velocity field due to a prolate spheroid placed in a longitudinal
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extensional flow is obtained using the singularity method (Chwang & Wu (1975))

for comparison. This may be done by superimposing a longitudinal shear flow past

a prolate spheroid and a cross-flow with a longitudinal rate of shear past a prolate

spheroid.

In a similar manner, the canonical velocity fields were obtained for an oblate

spheroid too. The velocity can be expressed using the same linear combination

of the partial vectorial solutions as given for a prolate spheroid. The partial vec-

torial solutions for an oblate spheroidal coordinate system are given in equation

(2.10). But the constants obtained differ,and these are obtained using equations

(2.11).

The disturbance velocity fields obtained for the various motions of a prolate spheroid,

and in different ambient linear flows, with their corresponding constants have been

tabulated below:
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Motion Velocity fields Constants

1 X-axis translation At
x

(
S
(3)
1,1 − S

(3)
1,−1

)
At

x = U
(3Q0

0−ξ0Q0
1)

2 Y-axis translation ut
y = At

y

(
S
(3)
1,1 + S

(3)
1,−1

)
At

y = iU
(ξ0Q0

1−3Q0
0)

3 Z-axis translation ut
z = At

z

(
S
(3)
1,0

)
At

z = U
(ξ0Q0

1+Q0
0)

4 Rotation about X-axis Ar
1x

(
S
(3)
1,1 − S

(3)
1,−1

)
+ Ar

2x

(
S
(3)
2,1 + S

(3)
2,−1

)
Ar

1x =
W id(2ξ2

0−1))

(2ξ0Q0
1−

√
ξ2
0−1Q1

1)

Ar
2x = −W id

(2ξ0Q0
1−

√
ξ2
0−1Q1

1)

5 Rotation about Y-axis Ar
1y

(
S
(3)
1,1 + S

(3)
1,−1

)
+ Ar

2y

(
S
(3)
2,1 − S

(3)
2,−1

)
Ar

1y =
W d(2ξ2

0−1))

(2ξ0Q0
1−

√
ξ2
0−1Q1

1)

Ar
2y = W d

(2ξ0Q0
1−

√
ξ2
0−1Q1

1)

6 Rotation about Z-axis Ar
z

(
S
(2)
1,0

)
Ar

z =
−2iW d

√
ξ2
0−1

Q1
1

7 Axisymmetric extensional flow Aaxi

(
S
(3)
2,0

)
Aaxi =

k12d
√

ξ2
0−1

(Q1
1−ξ0Q1

2)

8 Transverse extensional flow-1 A1
te

(
S
(3)
2,2 + S

(3)
2,−2

)
A1

te =
k22d

√
ξ2
0−1

(ξ0Q1
2−3Q1

1)

9 Transverse extensional flow-2 A2
te

(
S
(3)
2,2 − S

(3)
2,−2

)
A2

te =
k32id

√
ξ2
0−1

(3Q1
1−ξ0Q1

2)

10 Longitudinal extensional flow-1 A1
le

(
S
(3)
2,1 − S

(3)
2,−1

)
A1

le =
k4d(ξ2

0−1)

2ξ0(Q0
1−ξ0Q0

2)

11 Longitudinal extensional flow-2 A2
le

(
S
(3)
2,1 + S

(3)
2,−1

)
A2

le =
k5id(ξ2

0−1)

2ξ0(Q0
1−ξ0Q0

2)

The velocity fields obtained for the corresponding motions of an oblate spheroid

in different ambient flows have been tabulated below:
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Motion Velocity fields Constants

1 X-axis translation At
x

(
S
(3)
1,1 − S

(3)
1,−1

)
At

x = U

(3Q0
0−i

√
ξ2
0−1Q0

1)

2 Y-axis translation ut
y = At

y

(
S
(3)
1,1 + S

(3)
1,−1

)
At

y = iU

(i
√

ξ2
0−1Q0

1−3Q0
0)

3 Z-axis translation ut
z = At

z

(
S
(3)
1,0

)
At

z = −U

(i
√

ξ2
0−1Q0

1+Q0
0)

4 Rotation about X-axis Ar
1x

(
S
(3)
1,1 − S

(3)
1,−1

)
+ Ar

2x

(
S
(3)
2,1 + S

(3)
2,−1

)
A1r

x =
id

[
i(ξ2

0−1)Q1
2−ξ0(2Q0

1−2i
√

ξ2
0−1Q0

2)
]

2
[
i
√

ξ2
0−1Q0

1Q1
2+Q1

1(Q0
1−i

√
ξ2
0−1Q0

2)
]

A2r
x =

id

[√
ξ2
0−1Q1

1+2ξ0Q0
1

]

2
[
i
√

ξ2
0−1Q0

1Q1
2+Q1

1(Q0
1−i

√
ξ2
0−1Q0

2)
]

5 Rotation about Y-axis Ar
1y

(
S
(3)
1,1 + S

(3)
1,−1

)
+ Ar

2y

(
S
(3)
2,1 − S

(3)
2,−1

)
A1r

y =
d

[
i(ξ2

0−1)Q1
2−ξ0(2Q0

1−2i
√

ξ2
0−1Q0

2)
]

2
[
i
√

ξ2
0−1Q0

1Q1
2+Q1

1(Q0
1−i

√
ξ2
0−1Q0

2)
]

A2r
y =

d

[√
ξ2
0−1Q1

1+2ξ0Q0
1

]

2
[
i
√

ξ2
0−1Q0

1Q1
2+Q1

1(Q0
1−i

√
ξ2
0−1Q0

2)
]

6 Rotation about Z-axis Ar
z

(
S
(2)
1,0

)
Ar

z =
2iW dξ0

Q1
1

7 Axisymmetric extensional flow Aaxi

(
S
(3)
2,0

)
Aaxi =

k12dξ0
(i

√
ξ2
0−1Q1

2−Q1
1)

8 Transverse extensional flow-1 A1
te

(
S
(3)
2,2 + S

(3)
2,−2

)
A1

te =
k22dξ0

(3Q1
1−i

√
ξ2
0−1Q1

2)

9 Transverse extensional flow-2 A2
te

(
S
(3)
2,2 − S

(3)
2,−2

)
A2

te =
k32idξ0

(3Q1
1−i

√
ξ2
0−1Q1

2)

10 Longitudinal extensional flow-1 A1
le

(
S
(3)
2,1 − S

(3)
2,−1

)
A1

le =
−k42idξ0

√
ξ2
0−1)

Q1
2(2(ξ2

0−1)+1)

11 Longitudinal extensional flow-2 A2
le

(
S
(3)
2,1 + S

(3)
2,−1

)
A2

le =
−2k5idξ0

√
ξ2
0−1)

Q1
2(2(ξ2

0−1)+1)

3.2 Results

In this section we discuss the analytical results for the torque obtained using the

generalised reciprocal identity (2.23), and the expressions for the disturbance ve-

locity fields derived in the previous section. We shall first present the results for

the sedimentation problem. The results for the inertial and viscoelastic torques will

be presented, and then the motion under the the combined effects of both these

torques will be discussed. The results obtained thus far for the simple shear flow

problem will also be discussed thereafter.
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3.2.1 Spheroid sedimenting in a quiescent second-order fluid

Inertial torque acting on a spheroidal particle sedimenting in a

quiescent second-order fluid

The total torque acting on the sedimenting particle is given by

Lsed = Re

∫

V

(
Du(1)

Dt

)
.u(2)dV + De

∫

V

σ
(1)
NN : ∇u(2)dV. (3.25)

The inertial torque has been found by evaluating the expression: Re
∫

V

(
Du(1)

Dt

)
.u(2)dV ,

where Du(1)

Dt
is the acceleration of the disturbance velocity as observed from the

body-fixed coordinate system translating with velocity U 1 and is defined as u(1).∇u(1).

Here, u(1) is the disturbance velocity in the body-fixed coordinate system trans-

lating with velocity U 1, and is defined as u(1)′−U 1, where u(1)′ is the disturbance

velocity observed from the lab frame of reference. u(1)′ can be written as the sum

of the x-axis and z-axis translation disturbance velocity fields . The latter velocity

fields can be found in the previous section [see equations (3.1) & (3.5)].

u(1)′ = Az

(
S

(3)
1,0

)
+ Ax

(
S

(3)
1,1 − S

(3)
1,−1

)
, (3.26)

where Az =
(

U1 cos α
(ξ0Q0

1+Q0
0)

)
, Ax =

(
U1 sin α

(3Q0
0−ξ0Q0

1)

)
and U 1 is the velocity of translation

of the spheroid given by (U1 sin α)ex+(U1 cos α)ez. α is the angle between the

translational velocity U 1 and axis of symmetry of the spheroidal particle.

The velocity field of the test problem u(2) is the disturbance velocity due to

a spheroid rotating about the y-axis rotation [see (3.3)], with the magnitude of

angular velocity equal to unity, and is given by
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u(2) = A1y

(
S

(3)
1,1 + S

(3)
1,−1

)
+ A2y

(
S

(3)
2,1 − S

(3)
2,−1

)
, (3.27)

where A1y =
d(2ξ2

0−1))

(2ξ0Q0
1−
√

ξ2
0−1Q1

1)
and A2y = d

(2ξ0Q0
1−
√

ξ2
0−1Q1

1)
.

Using the above expressions for the disturbance velocity fields, and the inertial

acceleration, the O(Re) inertial torque on a sedimenting spheroid is:

Re
(
µL2U

)
Lsed(inertial) sin 2α, (3.28)

where Lsed(inertial) for a prolate spheroid is given by

Lsed(inertial) =
−πe2 (420e + 2240e3 + 4249e5 − 2152e7)

315((e2 + 1) tanh−1 e− e)2((1− 3e2) tanh−1 e− e)

+
πe2 (420 + 3360e2 + 1890e4 − 1470e6) tanh−1 e

315((e2 + 1) tanh−1 e− e)2((1− 3e2) tanh−1 e− e)

− πe2 (1260e− 1995e3 + 2730e5 − 1995e7) (tanh−1 e)2

315((e2 + 1) tanh−1 e− e)2((1− 3e2) tanh−1 e− e)
, (3.29)

and Lsed(inertial) for an oblate spheroid is given by

Lsed(inertial) =
πe3

√
1− e2 (−420 + 3500e2 − 9989e4 + 4757e6)

315
√

1− e2(−e
√

1− e2 + sin−1 e + 2e2 sin−1 e)(e
√

1− e2 + (2e2 − 1) sin−1 e)2

+
210πe2 (2− 24e2 + 69e4 − 67e6 + 20e8) sin−1 e

315
√

1− e2(−e
√

1− e2 + sin−1 e + 2e2 sin−1 e)(e
√

1− e2 + (2e2 − 1) sin−1 e)2

+
105πe3

√
1− e2 (12− 17e2 + 24e4) (sin−1 e)2

315
√

1− e2(−e
√

1− e2 + sin−1 e + 2e2 sin−1 e)(e
√

1− e2 + (2e2 − 1) sin−1 e)2
.

(3.30)

(We have obtained all our analytical expressions as a function of the particle

eccentricity e. The particle eccentricity e is defined as e = 1
ξ0

. As e → 0 we obtain
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a sphere and as e → 1 we obtain a rod in case of a prolate spheroid and a disc in

case of an oblate spheroid)

The above analytical expressions were obtained using the symbolic computing

tool, Wolfram Mathematica-6.

Our analytical results for the inertial torque on a prolate spheroid of an arbitrary

aspect ratio did match with numerical values given by G.P.Galdi et al. (2002), who

used the singularity method developed for the Stokes flows by Chwang and Wu

(T.Chwang & Wu (1974) and Chwang & Wu (1975)) to calculate the disturbance

velocity fields, and further, did a numerical integration to find out the inertial

torque acting on the prolate spheroid.

In the limit of a slender fiber, that is, when ξ0 → 1, the expression for the in-

ertial torque acting on a prolate spheroid matched with the O(Re) inertial torque

acting on the sedimenting fiber given by Khayat and Cox in the limit of small Re

[see Cox (1989)]. An alternate, more succinct method of obtaining this torque has

been given in Subramanian & Koch (2005). The limiting inertial torque acting on

the fiber is given by

Lsed(inertial) = Re
−10π

3 (ln(ξ0 − 1))2µUL2 sin (2α) ,

where α is the angle the axis of the fiber makes with the direction of translation.

In all the above expressions the trigonometric factor sin (2α) implies that there

exists only two equilibrium orientations α = 0o and α = 90o. α = 0o is an unstable

equilibrium and fluid inertia causes the fiber to orient at α = 90o, that is, the par-

ticle aligns with its axis of symmetry perpendicular to the direction of translation.

Our analytical result in the limit of a spheroid of small eccentricity matched with

what has been reported in Cox (1965) [see equation (1.4)], but with a slight numer-
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ical discrepancy. We obtained the inertial torque on a spheroid of small eccentricity

to be:

Lsed(inertial) = Re
811π

1120
εµUL2 sin 2α. (3.31)

In our notation dimensionless measure of the departure from sphericity (ε) is given

by ε= 1
2ξ2

0
.

The inertial torque given in equation (3.28), characterized by the Reynolds number,

turns the spheroid in a direction which offers maximum resistance to flow, that is,

the spheroid turns broadside on. In other words, the axis of symmetry of a prolate

spheroid turns in a direction perpendicular to the direction of translation and the

axis of symmetry of an oblate spheroid orients along the direction of translation.

Figure 3.10: The effect of inertia on a sedimenting prolate spheroid

Figure 3.10 shows a prolate spheroid turning broadside on in a Newtonian

fluid as the wake of the leading part of the spheroid shields the lagging part of

the spheroid. The lagging part of the spheroid does not feel the full force of the

incoming flow. Hence the spheroid rotates until the lagging part catches up with
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the leading part of the body, making the whole spheroid turn in the direction

indicated in figure 3.10. Note that the depiction of the mechanism is intended to

be strictly qualitative, since for small Re, the wake of the particle begins only at a

distance of O((dξ0)Re−1), the inertial screening length, behind it.

Viscoelastic torque acting on a spheroidal particle sedimenting in

a quiescent second-order fluid

The viscoelastic torque acting on a sedimenting spheroidal particle has been found

by evaluating the expression: De
∫

V
σ

(1)
NN : ∇u(2)dV in equation (3.25). Here, σ

(1)
NN

is the non-Newtonian stress due to the disturbance velocity field u(1) in the actual

problem, and u(2) is the disturbance velocity field in the test problem.

The analytical expression for the O(De) viscoelastic torque acting on a sedi-

menting spheroid is given by De(µL2U)Lsed(visco) sin 2α, where Lsed(visco) for a pro-

late spheroid is given by

Lsed(visco) =
8πe3ε1

(−3e− (e2 + 3) tanh−1 e
)

(
e− (e2 + 1) tanh−1 e

) (
(3e2 − 1) tanh−1 e + e

)

+
16πe3(ε1 + 1)

(
6e2 − 64e4 + (6e− 26e3) tanh−1 e + (13e4 − 6e2 − 3)

(
tanh−1 e

)2
)

(
e− (e2 + 1) tanh−1 e

)2 (
(3e2 − 1) tanh−1 e + e

) ,

(3.32)

and Lsed(visco) for an oblate spheroid is given by

Lsed(visco) =
−8πe3ε1(3e

√
1− e2 + (2e2 − 3) sin−1 e)

e2(e2 − 1) + 2e
√

1− e2(sin−1 e) + (4e2 − 1)(sin−1)2
(3.33)

+

16πe3(1 + ε1)
(
29e4 + 3e2 − 2e

√
1− e2(10e2 + 3) sin−1 e− (4e4 + 12e2 − 3)(sin−1 e)2

)
(
e
√

1− e2 + (2e2 − 1) sin−1 e
)2 (

e
√

1− e2 − (2e2 + 1) sin−1 e
) .



60 Results and Conclusions

The sense of the viscoelastic torque is to rotate the spheroidal particle into an

orientation that offers minimum resistance to flow. Here, the terminal orientations

are exactly opposite of what inertia would do.

Leal (1975) found the torque acting on slender fiber in a second-order fluid to

be: Lsed(visco) = K sin 2α, where K is the torque coefficient, given by

K = De

(
µUL2π

−32(lnAr)3

) ∫ 1−r

−1+r

dx1

∫ c1

R(x1)

rdr

[
x2

1

r2

(
ln

r2

4(1− x2
1)

)2
]

(96ε1 − 16) .

Here, Ar is the aspect ratio of the particle, which in our notation is denoted by(
ξ0√
ξ2
0−1

)
, ε1 is related to the ratio of the normal stress coefficients and the co-

ordinate system(x1, x2, x3) are fixed in the particle, such that x1 is aligned along

the axis of symmetry of the particle and R(x1) is
√

x2
2 + x2

3 for a spheroidal par-

ticle. Leal reported that the torque coefficient is strictly negative, implying that

the torque will align the axis of symmetry of the particle with the direction of

translation. We computed the torque coefficient K, and found it to be:

K = De

(−π

36
(16− 96ε1)

)
µUL2

This result, unlike ours, does not tend to zero in the limit Ar →∞ (a fiber with an

asymptotically large aspect ratio). Leal’s result appears to be erroneous since an

infinitely long fiber has no finite surface area for the fluid stresses to act on. Hence

one expects there to be no net torque to act on a infinitely slender fiber.

Galdi and his co-workers [see G.P.Galdi et al. (2002)] have reported that the

viscoelastic torque changes sign for e at approximately 0.9 for ε1 = −1.25,−1.42

(ε1 is related to the ratio the normal stress coefficients). This is unlike our results,

which do not show any sign reversal for any value of ε1. This error can perhaps
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be ascribed to the extreme steepness of the viscoelastic torque curve [see figure

(3.12)] near the slender fiber limit (e→1). This extreme steepness may make any

numerical calculation prone to error.

Figure 3.11: The effect of viscoelasticity on a sedimenting prolate spheroid

Figure 3.11 shows a prolate spheroid turning longside on due to fluid viscoelas-

ticity. The polymer molecules in the fluid align themselves along the stream-

lines. The partially-aligned polymers molecules make the streamlines behave like

stretched rubber bands. The tension in the streamlines is responsible for producing

a net torque on the spheroid which makes it rotate into an orientation parallel to

the direction of translation as shown in figure 3.11.

The other noteworthy features of the inertial and viscoelastic torques is that

they vanish as the spheroids (both oblate and prolate) tend to a sphere, that is, as

e → 0 (ξ0 →∞) [see figures 3.12 & 3.14]. This is because an isotropic object such

as a sphere cannot experience any torque when sedimenting in an unbounded fluid.

As already discussed earlier in the context of Leal’s calculation, both the inertial

and viscoelastic torques also vanish in the limit of a slender rod or a fiber (e → 1
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or ξ0 → 1). An infinite aspect ratio fiber does not have a finite area for the stress,

either inertial or viscoelastic, to act on. Hence, it cannot experience any torque

due to the fluid stresses. In the case of an oblate spheroid, as e → 1 (ξ0 → 1), the

spheroid approaches a disc, which has a finite area. Hence, the infinitely thin disc

continues to experience a finite inertial and viscoelastic torque.

Further, as can be seen from figure 3.13, as the prolate spheroid tends to a fiber

the viscoelastic torque becomes dominant compared to the inertial torque. The

inertial torque decays as O
(

1
(log (1−e))2

)
, where as the viscoelastic torque decays as

O
(

1
log (1−e)

)
in the limit e → 1. The rate of decay of the inertial torque compared

to the viscoelastic torque is faster by a factor of O
(

1
log (1−e)

)
in the limit e → 1.

As a result, the viscoelastic torque will always dominate over the inertial torque

on a sufficiently slender fiber, and such a fiber will always orient parallel to the

direction of translation.

Neutral curve: competing inertial and viscoelastic torques

Since the inertial and viscoelastic torques act in opposite directions for both prolate

and oblate spheroids as seen in figures 3.12 and 3.14, a balance of the two leads to

a neutral curve, a critical value of De/Re as a function of the particle aspect ratio

that separates regions where transverse and longitudinal orientations, respectively,

are stable. Since we have the analytical expressions [see equations (3.29), (3.30),

(3.32) & (3.33)] for the total torque on an arbitrary aspect ratio spheroid, we can

obtain a neutral curve from the ratio of the inertial and the viscoelastic torques.

The ratio De/Re tends to zero as the prolate spheroid tends to a slender fiber

(e → 1), indicating, as discussed earlier, that in the limit of a slender fiber the

viscoelastic torque dominates the inertial torque [see figure 3.13]. On the other
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Figure 3.12: Inertial and viscoelastic torque on prolate spheroid

hand, De/Re tends to a finite constant as the oblate spheroid tends to a disc(e → 1)

because the inertial and viscoelastic torques have finite values in this limit (e → 1)

[see figure 3.15]. De/Re also tends to a finite constant as the spheroid (prolate or

oblate) tends to a sphere, since both the inertial and viscoelastic torques decay as

O(e2) in the limit e → 0.

3.2.2 Spheroid rotating in a simple shear flow

The inertialess trajectories of a spheroid placed in a simple shear flow are known

as Jeffery orbits, and are governed by the following equations:

dφ

dt
=

γ̇

Ar
2 + 1

(Ar
2 cos2 φ + sin2 θ),

dθ

dt
=

γ̇

4

(
Ar

2 − 1

Ar
2 + 1

)
sin 2θ sin 2φ, (3.34)

where, Ar is the aspect ratio of the spheroid, and is defined as: Ar = ξ0√
ξ2
0−1

for a
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Figure 3.13: Neutral curve for a prolate spheroid

Figure 3.14: Inertial and viscoelastic torque on oblate spheroid

prolate spheroid and Ar =

√
ξ2
0−1

ξ0
for an oblate spheroid. Here θ and φ are defined,

with respect to the vorticity direction as the polar and azimuthal angle respectively.

The Jeffery orbit equations are often defined in a more natural coordinate sys-

tem of (C,τ). The coordinate transformation from (C,τ) to (θ,φ) are:
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Figure 3.15: Neutral curve for an oblate spheroid

θ = tan−1 (C
√

cos2 τ + Ar
2 sin2 τ),

φ = tan−1 (tan Arτ), (3.35)

where C is the orbit constant and τ indicates the phase of the particle in the

orbit. The Jeffery orbits of a arbitrary aspect ratio prolate spheroid is shown in

figure 3.16.

The equations of motion in this coordinate system becomes:

dC

dt
= 0, (3.36)

dτ

dt
=

Arγ̇

Ar
2 + 1

. (3.37)

The above equation shows that the orbit constant C, does not change with time,

meaning that the particle will continue to rotate in the orbit which it was initially

at. Thus, the particle does not drift across Jeffery orbits when fluid inertia or



66 Results and Conclusions

Figure 3.16: Jeffery orbits of a arbitrary aspect ratio prolate spheroid

viscoelasticity are absent (the Stokes limit). C ranges from 0 to ∞. C=0 repre-

sents a log-rolling motion along the ambient vorticity axis, and C=∞ represents a

tumbling motion in the flow gradient plane. As the particle aspect ratio is varied

from Ar = 1 to Ar = ∞ (sphere to a infinitely slender fiber), the projection of the

Jeffery orbits on the flow-gradient plane changes from a circles to highly skewed

ellipses. In the limit of infinite aspect ratio, the Jeffery orbits approach meridional

trajectories running from one pole to the other, where the poles are the points of

intersection of the flow axis with the unit circle [see figure 3.17].

The time period of rotation T is given as:

T =
2π

γ̇

(
Ar +

1

Ar

)
.

Hence, a fiber of large aspect-ratio (Ar >> 1) spends a relatively long time aligned

within the flow-vorticity plane, where the torque is small, it rotates away from the

plane for a small time and flips rapidly until it becomes nearly aligned again.

When we apply the reciprocal theorem identity (2.23) we find that the angular

velocity of a neutrally buoyant spheroid placed in a simple shear flow is governed
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Figure 3.17: Jeffery orbits for various aspect ratio prolate spheroids

by a first-order differential equation, given by

St

(
Isp.

dW shear

dt

)
.w2−Wshear.L2 = −

∫

Sp

(Γ.x) .
(
σ(2).n

)
dS+Re

∫

V

f.u(2)dV +De

∫

V

σ
(1)
NN : ∇u(2)dV.

(3.38)

Here, f is the acceleration associated with the disturbance velocity field u(1)′ .

f= ∂u(1)′

∂t
+ Γ.u(1)′ + (Γ.r).∇u(1)′ + u(1)′.∇u(1)′ . To find the Stokes disturbance

velocity field u(1)′ induced by a neutrally buoyant spheroid in a simple shear flow,

we first transform the strain rate tensor from the space fixed coordinate system

(x,y,z) to a body fixed coordinate system (xb, yb, zb) [see figure 3.18]. To obtain the

body-fixed coordinate system we rotate the space fixed coordinate system by an

angle θj and φj as shown in the figure 3.18. The z-axis of the body-fixed coordinate

system is aligned with the axis of symmetry of the spheroidal particle. Further, the

y-axis of the body-fixed coordinate system is chosen to lie in the flow-gradient plane.

Note that the transformation to the body-fixed coordinate is time dependent. In

other words, θj and φj are functions of time, their evolution being governed, at

leading order, by the Jeffery orbit equations [see equation(3.34)].
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In this body-fixed coordinate system, we decompose the strain rate tensor into

five independent parts. This is because the rate of strain tensor, being symmetric

and traceless, has only five independent components. The Stokes disturbance ve-

locity field due to each part is found, and these pieces are summed up to find the

total disturbance velocity field due to the spheroidal particle rotating in a simple

shear flow. Each of these five parts correspond to the five canonical ambient flows

discussed in §3.1.3. Since we are assuming that Re and De are small, the resulting

Stokes disturbance velocity field is sufficient when calculating the volume integrals.

Figure 3.18: Coordinate rotation: from space-fixed(x, y, z) to a body fixed coordi-
nate system (xb, yb, zb)

The transpose of the velocity gradient tensor for simple shear flow in body-fixed

coordinates takes the form:

Γbody=




cos2 θj sin φj cos φj
cos θj cos2 φj

2
sin θj cos θj sin φj cos φj

− cos θj sin2 φj − sin φj cos φj − sin θj sin2 φj

sin θj cos θj sin φj cos φj sin θj cos2 φj sin2 θj sin φj cos φj




,

and the strain rate tensor for simple shear flow in body-fixed coordinates takes

the form:
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Ebody=




cos2 θj sin φj cos φj
cos θj cos 2φj

2
sin θj cos θj sin φj cos φj

cos θj cos 2φj

2
− sin φj cos φj

sin θj cos 2φj

2

sin θj cos θj sin φj cos φj
sin θj cos 2φj

2
sin2 θj sin φj cos φj




The above strain rate tensor may now be decomposed into five parts, as shown

below:

Ebody=Ebody−1 + Ebody−2 + Ebody−3 + Ebody−4 + Ebody−5

where,

Ebody−1=




− sin2 θj sin φj cos φj

2
0 0

0
− sin2 θj sin φj cos φj

2
0

0 0 sin2 θj sin φj cos φj




,

Ebody−2=




cos2 θj sin φj cos φj+sin φj cos φj

2
0 0

0 −
(

cos2 θj sin φj cos φj+sin φj cos φj

2

)
0

0 0 0




,

Ebody−3=




0
cos θj cos 2φj

2
0

cos θj cos 2φj

2
0 0

0 0 0




,

Ebody−4=




0 0 sin θj cos θj sin φj cos φj

0 0 0

sin θj cos θj sin φj cos φj 0 0




and

Ebody−5=




0 0 0

0 0
sin θj cos 2φj

2

0
sin θj cos 2φj

2
0




.

Ebody−1 represents axisymmetric extension flow, as shown in figure 3.7. Ebody−2

represents transverse extensional flow-1, shown on the left in figure 3.8. Ebody−3

represents transverse extensional flow-2, as shown on the right of figure 3.8. Ebody−4

represents longitudinal extensional flow-1 in the x-z plane, as shown on the left in
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figure (3.9). And Ebody−5 represents longitudinal extensional flow-2 in y-z plane,

as shown on the right in figure (3.9). Let the disturbance velocity due to each of

the five above flows be represented as u1
1, u1

2, u1
3, u1

4 and u1
5 respectively.

The expressions for the five disturbance velocity fields with the relevant con-

stants can be found out by using the procedure mentioned in §3.1.3. Summing up

these five disturbance velocity fields will give the total disturbance velocity field

u
′
1 due to a spheroidal particle rotating in a simple shear flow. Thus,

u
′
1 = u1

1 + u1
2 + u1

3 + u1
4 + u1

5,

where,

(1)

u1
1 = Aaxi(shear)

(
S

(3)
2,0

)
,

Aaxi(shear) =

(
2d

√
ξ2
0 − 1

(Q1
1 − ξ0Q1

2)

)(
sin2 θj sin φj cos φj

2

)
,

(2)

u1
2 = A1

te(shear)

(
S

(3)
2,2 + S

(3)
2,−2

)
,

A1
te(shear) =

(
2d

√
ξ2
0 − 1

(ξ0Q1
2 − 3Q1

1)

)(− cos2 θj sin φj cos φj+ sin φj cos φj

2

)
,

(3)

u1
3 = A2

te(shear)

(
S

(3)
2,2 − S

(3)
2,−2

)
,

A2
te(shear) =

(
2id

√
ξ2
0 − 1

(3Q1
1 − ξ0Q1

2)

) (
cos θj cos 2φj

2

)
,

(4)

u1
4 = A1

le(shear)

(
S

(3)
2,1 − S

(3)
2,−1

)
,
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A1
le(shear) =

(
d(ξ2

0 − 1)

2ξ0(Q0
1 − ξ0Q0

2)

)
(sin θj cos θj sin φj cos φj) ,

and

(5)

u1
5 = A2

le(shear)

(
S

(3)
2,1 + S

(3)
2,−1

)
,

A2
le(shear) =

(
id(ξ2

0 − 1)

2ξ0(Q0
1 − ξ0Q0

2)

) (
sin θj cos 2φj

2

)
.

The inertial acceleration in the actual problem due to the disturbance velocity

f , and non-Newtonian Stress due to the disturbance velocity σ
(1)
NN can be found out

once u
′
1 is known. Now, the O(Re) inertial and O(De) viscoelastic contributions

may be determined by calculating the respective volume integrals. The angular

velocity, W shear, of the neutrally buoyant spheroid placed in a simple shear flow

is then determined by solving the first-order differential equation (3.38). As a test

case, the Jeffery orbit equations have been derived using the (3.38) by equating the

Reynolds and Deborah numbers to zero, and neglecting the inertia of the particle

(St=0). With the neglect of fluid inertia, viscoelasticity and particle inertia the

angular velocity, W shear, of the spheroid is given by

W shear =

∫

Sp

Γ.x.(σ(2).n)dS.

This surface integral was evaluated using the expressions for the stress field in terms

of vector spheroidal harmonics, and yielded the angular velocity of the spheroid in

the body fixed coordinate system. We find the following equation for the compo-

nents of the angular velocity transverse to the axis of symmetry.
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Wshear−x = −
(

sin θj

2
+

ξ0

2
√

ξ2
0 − 1

sin θj cos 2φj

)
(3.39)

Wshear−y =

(
ξ0√

ξ2
0 − 1

sin θj cos θj sin φj cos φj

)

These have been verified to be identical to the Jeffery orbit equations (3.34)

given in the space fixed coordinate system. The equation for the component of

the angular velocity along the axis of symmetry is a trivial one, since the particle

rotates at a rate commensurate with the projection of the ambient vorticity vector

along its axis of symmetry.

—————————————————-



CHAPTER 4

SCOPE FOR THE FUTURE

Conclusions

Kushch’s spheroidal harmonics formalism, together with the use of the generalised

reciprocal theorem, is first applied to the sedimentation problem, leading to closed-

form analytical expressions for the O(Re) inertial and O(De) viscoelastic torques in

sedimentation. The two torques act in opposite directions and by balancing the two

we have obtained a neutral curve as a function of De/Re and particle aspect ratio.

Despite extensive work on this classic problem, our fully analytical approach shows

some of the earlier results to be incorrect. We have shown that Leal’s viscoelastic

torque acting on the slender fiber is qualitatively right but quantitatively wrong

[see Leal (1975)]. Also, Galdi et.al have reported reversal of the viscoelastic torque

as the spheroid tends to a fiber for ε1 = −1.25,−1.42 (ε1 is related to the ratio

of the normal stress coefficients), this error can be ascribed to the fact that the

viscoelastic torque vanishes very rapidly for a slender fiber; a variation that might

lead to errors in the numerics [see G.P.Galdi et al. (2002)].

In the near future, we intend to complete the calculation of the inertial and

viscoelastic contributions to the angular velocity of a neutrally buoyant spheroid in

simple shear flow. The simple shear flow problem is inherently more complicated,

since the orientation of the spheroid now changes as a function of time even in

the inertialess limit (as the particle moves along a Jeffery orbit). Further, unlike

sedimentation where the only stable orientations turn out to the transverse and

longitudinal ones, the more complicated angular dependencies in simple shear flow
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allow, in principle, for the existence of stable intermediate orbits (that is, in between

the limits of in-plane tumbling and log-rolling). The results for the simple shear

flow are perhaps best understood in the form shown in figure 4.1.

Figure 4.1: Orbit constant surfaces in a simple shear flow

The figure shows an orbit constant surface plotted as a function of the particle

aspect ratio and De/Re. This non-trivial surface arises because in the simple

shear flow problem one can have intermediate orbits due to competing inertial and

viscoelastic effects. On the vertical axis of the figure 4.1 we have the quantity C
C+1

that characterizes the orbit in which the spheroid is rotating; C
C+1

is equal to zero

for a log-rolling motion and is equal to one for a tumbling motion. On the two

horizontal axes we have the particle aspect ratio and the ratio De/Re.

We eventually intend to apply Kushch’s formalism to find the effect of pair-

particle interactions on the orientation distribution across the Jeffery orbits for

a particle placed in a simple shear flow. Kushch’s formalism, in fact, allows one

to model N particle systems. For the said problem, one needs to study the drift

across Jeffery orbits of a single test particle as it interacts hydrodynamically with
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Figure 4.2: Particle interactions in a simple shear flow

the particles that are convected around it due to the externally imposed shear flow

[see figure 4.2].

—————————————

—————————————————-
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A Spheroidal coordinate systems

A.1 Prolate spheroidal coordinate system

In the prolate spheroidal coordinate system, (ξ, η, φ) are related to the Cartesian

coordinates (x,y,z) by:

x + iy = d
√

ξ2 − 1
√

1− η2 exp(iφ), z = dξη; (A-1)

1 ≤ ξ ≤ ∞, |η| ≤ 1, 0 ≤ φ < 2π

The unit vector in the prolate spheroidal coordinate system are:

êξ=(
ξ
√

1−η2 cos φ√
ξ2−η2

)êx + (
ξ
√

1−η2 sin φ√
ξ2−η2

)êy + (
η
√

ξ2−1√
ξ2−η2

)êz,

êη=(
−η
√

1−η2 cos φ√
ξ2−η2

)êx + (
−η
√

1−η2 sin φ√
ξ2−η2

)êy + (
η
√

ξ2−1√
ξ2−η2

)êz,

êφ=(− sin φ)êx + (cos φ)êy.

The Cartesian partial derivatives in prolate spheroidal coordinates are:

∂
∂x

=(
ξ
√

ξ2−1
√

1−η2 cos φ

d(ξ2−η2)
) ∂

∂ξ
− (

η
√

ξ2−1
√

1−η2 cos φ

d(ξ2−η2)
) ∂

∂η
− ( sin φ

d
√

ξ2−1
√

1−η2
) ∂

∂φ
,

∂
∂y

=(
ξ
√

ξ2−1
√

1−η2 sin φ

d(ξ2−η2)
) ∂

∂ξ
− (

η
√

ξ2−1
√

1−η2 sin φ

d(ξ2−η2)
) ∂

∂η
+ ( cos φ

d
√

ξ2−1
√

1−η2
) ∂

∂φ
,

∂
∂z

=( η(ξ2−1)
d(ξ2−η2)

) ∂
∂ξ

+ ( ξ(1−η2)
d(ξ2−η2)

) ∂
∂ξ

.

The scale factors in the prolate spheroidal coordinate system are:

hξ=

√
ξ2−1

d
√

ξ2−η2
, hη=

√
1−η2

d
√

ξ2−η2
, hφ=

1

d
√

ξ2−1
√

1−η2
.

The area element and volume elements in an prolate spheroidal coordinate

system are

dA = d2
√

ξ2
0 − 1

√
ξ2
0 − η2; dV = d3

√
ξ2 − η2.
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A.2 Oblate spheroidal coordinate system

In the oblate spheroidal coordinate system, (ξ, η, φ) are related to the Cartesian

coordinates (x,y,z) by:

x + iy = dξ
√

1− η2 exp(iφ), z = d
√

ξ2 − 1η; (A-2)

1 ≤ ξ ≤ ∞, |η| ≤ 1, 0 ≤ φ < 2π

The unit vector in the oblate spheroidal coordinate system are:

êξ=(

√
ξ2−1

√
1−η2 cos φ√

(ξ2−1)+η2
)êx+ (

√
ξ2−1

√
1−η2 sin φ√

(ξ2−1)+η2
)êy + ( ξη√

(ξ2−1)+η2
)êz,

êη=( −ξη cos φ√
(ξ2−1)+η2

)êx+ ( −ξη sin φ√
(ξ2−1)+η2

)êy + ( ξη√
(ξ2−1)+η2

)êz,

êφ=(− sin φ)êx + (cos φ)êy.

The Cartesian partial derivatives in oblate spheroidal coordinates are:

∂
∂x

=(
(ξ2−1)

√
1−η2 cos φ

d((ξ2−1)+η2)
) ∂

∂ξ
− (

ξη
√

1−η2 cos φ

d((ξ2−1)+η2)
) ∂

∂η
− ( sin φ

dξ2
√

1−η2
) ∂

∂φ
,

∂
∂y

=(
(ξ2−1)

√
1−η2 sin φ

d((ξ2−1)+η2)
) ∂

∂ξ
− (

ξη
√

1−η2 sin φ

d((ξ2−1)+η2)
) ∂

∂η
+ ( cos φ

dξ2
√

1−η2
) ∂

∂φ
,

∂
∂z

=(
(ξη
√

ξ2−1

d((ξ2−1)+η2)
) ∂

∂ξ
+ (

√
ξ2−1(1−η2)

d((ξ2−1)+η2)
) ∂

∂η
.

The scale factors in the oblate spheroidal coordinate system are:

hξ=

√
ξ2−1

d
√

(ξ2−1)+η2
, hη=

√
1−η2

d
√

(ξ2−1)+η2
, hφ=

1

dξ
√

1−η2
.

The area element and volume elements in an oblate spheroidal coordinate sys-

tem are

dA = d2ξ0

√
(ξ2

0 − 1) + η2; dV =
d3((ξ2−1)+η2)ξ√

ξ2−1
.

All of the above formulae have been derived using the procedures and conven-
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tions mentioned in Happel & Brenner (1973).
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B Lorentz reciprocal theorem

The generalised reciprocal theorem relates the velocity and stress fields of two

problems, the actual problem (σ(1),u(1)) and a test problem (σ(2), u(2)) for which

the solution is known. Both (σ(1), u(1)) and (σ(2),u(2)) are solutions of the flow

past the same body but with different boundary conditions on the surface of the

body and possibly governed by different dynamical equations.

Let the actual problem be a body undergoing a specified motion in a non-

Newtonian Fluid. The non-dimensional equation of motion with the mass conser-

vation is as given below:

∇ · σ(1) = Re

(
Du(1)

Dt

)
; (B-1)

∇.u(1) = 0

Here, σ(1) is the total stress in the non-Newtonian fluid, Re is the Reynolds

number and u(1) is the velocity field of the actual problem.

The total stress of the actual problem is composed of two pieces, the Newtonian

stress σ
(1)
N involving linear velocity gradients and the non-Newtonian stress σ

(1)
NN

involving non-linear velocity gradients.

σ(1) = σ
(1)
N + De

(
σ

(1)
NN

)
(B-2)

The non-dimensional Newtonian stress of the actual problem can be written as:

σ
(1)
Nij = −p(1)δij + 2E

(1)
ij ; (B-3)

where p(1) is the pressure and E
(1)
ij is the strain rate tensor of the actual problem.
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The non-dimensionalised non-Newtonian stress is composed of two parts:

σ
(1)
NN = σ

(1)
NNC + σ

(1)
NNQ (B-4)

The first component involving the corotational derivative of the rate of strain

can be written as:

σ
(1)
NNC = 2ε

(
∂E

∂t
+ ∇. (uE) + (W.E) + (W.E)t

)

and the second contribution that is quadratic in the rate of strain can be writ-

ten as:

σ
(1)
NNQ = 4(1 + ε)E.E

where De is the Deborah number, E = 1/2(∇u+∇ut) is the strain rate tensor,

W = 1/2(∇u−∇ut) is the vorticity tensor and ε is an intrinsic fluid property.

Equation of motion of the test problem, which belongs to the Stokes regime

are:

∇.σ(2) = 0 (B-5)

∇.u(2) = 0

The non-dimensionalised Newtonian stress of the test problem can be written as:

σij
(2) = −p(2)δij + 2E

(2)
ij ; (B-6)

where p(2) is the pressure and E
(2)
ij is the strain rate tensor of the test problem.

By double doting equation (B-2) by E
(2)
ij and equation (B-6) by E

(1)
ij and mak-

ing use of equation (B-3), We arrive at the following result:
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2E(1) : E(2) ⇒ σ(1) : E(2) −De
(
σ

(1)
NN : E(2)

)
= σ(2) : E(1); (B-7)

Since Eij = Eji

Using σ : E ⇒ σ : ∇u = ∇. (u.σ) − u. (∇.σ) equation (B-7) can be written as:

σ(1) : ∇u(2) − σ(2) : ∇u(1) = De
(
σ

(1)
NN : ∇u(2)

)
(B-8)

Further simplification leads to:

∇.
(
u(2).σ(1)

)−∇.
(
u(1).σ(2)

)
=

(∇.σ(1)
)
.u(2)+De

(
σ

(1)
NN : ∇u(2)

)
;
{∇.σ(2) = 0

}

(B-9)

Integrating the above equation (B-9) over the entire volume of the fluid and

using the Gauss divergence theorem,we get:

∫

V

(
n.

(
u(2).σ(1)

)− n.
(
u(1).σ(2)

))
dS =

∫

V

(
Re

(
Du(1)

Dt

)
.u(2) + De

(
σ

(1)
NN : ∇u(2)

))
dV

(B-10)
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C Relation between partial vectorial solutions of the

Stokes equation in spheroidal and spherical coor-

dinate system

The following is the set of the partial vectorial solutions of Stokes equation in

the spheroidal coordinate system: constrained at ‖r‖ → ∞, or singular S
(i)
ts =

S
(i)
ts (r, d):

S
(1)
ts = e1F

s−1
t+1 − e2F

s+1
t+1 + e3F

s
t+1; (C-1)

S
(2)
ts =

1

t

[
e1(t + s)F s−1

t + e2(t− s)F s+1
t + e3sF

s
t

]
;

S
(3)
ts = e1

{
−(x− iy)D2F

s−1
t−1 −

[(
ξ(0)

)2 − 1
]
dD1F

s
t + (t + s− 1)(t + s)β−(t+1)F

s−1
t−1

}

+e2

{
(x + iy)D1F

s+1
t−1 −

[(
ξ(0)

)2 − 1
]
dD2F

s
t − (t− s− 1)(t− s)β−(t+1)F

s+1
t−1

}

+e3

[
zD3F

s
t−1 −

(
ξ(0)

)2
dD3F

s
t + C−(t+1),sF

s
t−1

]
;

We give some idea of a limiting behavior of the above vectorial solutions of

Stokes equations. So, in the case where a spheroid degenerates into a sphere (d →
0 and ξ → ∞ so that dξ → r, η → cos θ in (C1)), we have the following limiting

relations

lim
d→0

(
2

d

)t+3−i

S
(i)
ts (r, d) =

(−1)s√π

Γ (t− i + 7/2)

[
U

(i)
ts (r) + δi3

r2

(2k + 1)
U

(1)
ts (r)

]
;

(C-2)

The functions U
(i)
t,s are the singular vectorial solutions of Stokes equation in the
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spherical basis, of the following form

U
(1)
ts =

(t− s)!

rt+2

(
−(t + 1)P

(1)
ts + P

(2)
ts

)
; U

(2)
ts =

(t− s)!

rt+1
P

(3)
ts ;

U
(3)
ts =

(t− s)!

rt

(
γ−t−1P

(1)
ts + β−t−1P

(2)
ts

)
;

where γt = t
2t+3

and P
(i)
ts are the vectorial spherical harmonics (Morse & Feshbach

1953):

P
(1)
ts = erY

s
t (θ, ϕ); (C-3)

P
(2)
ts = eθ

∂

∂θ
Y s

t (θ, ϕ) +
eϕ

sin θ

∂

∂ϕ
Y s

t (θ, ϕ);

P
(3)
ts =

eθ

sin θ

∂

∂ϕ
Y s

t (θ, ϕ)− eϕ
∂

∂θ
Y s

t (θ, ϕ).

The functions (C3) are the linear combinations of the functions introduced else-

where (e.g., Kim & Karilla 1991). As easy to show, at r → ∞ the functions

U
(3)
1s ∼ 1/r; for the rest of singular solutions U

(i)
ts the decay rate is higher. It is

fairly straightforward to show that the same limiting behavior show the functions

S
(i)
ts at r →∞ and d being fixed.
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