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Synopsis

This thesis starts with a brief overview of patterns in rapid granular flows driven by vibration,
gravity and shear, e.g. standing wave patterns and convection rolls in a vibrated granular system,
density waves in gravity driven granular Poiseuille flow, fingering in chute flow, shearbanding in
shear flow, ete. The pattern forming order parameter models such as coupled complex Ginzburg-
Landau model, Swift-Hohenberg model and continuous coupled map model have been deseribed
in chapter 1.

The continuum theory of granular fluid and Navier Stokes order constitutive models for the
inelastic hard-sphere and hard-disk fluids have been detailed in chapter 2. In chapter 3 a general
weakly nonlinear stability analysis using amplitude expansion method has been described. A
spectral based numerical scheme for solving weakly nonlinear equations and solvability condition
have been developed in chapter 3.

In the first problem of present thesis, a weakly nonlinear theory, in terms of the well-known
Landau equation, has been develeped to describe the nonlinear saturation of shear-banding in-
stability in rapid granular plane Couette flow. The shear-banding instability corresponds to
streamwise-independent perturbations {8/dz(-) = 0 and 3/dy{-) # 0, where z and y refer to
flow and gradient directions, respectively) of the underlying steady uniform shear flow which
degenerates into alternate layers of dense and dilute regions of low and high shear-rates, respec-
tively, along the gradient direction. The nenlinear stability of this shear-banding instability is
analyzed using two perturbation methods, the center manifold reduction method (chapter 4) and
the emplitude expansion method (chapter 5}; the resulting nonlinear problem has been reduced
to a sequence of linear probletns for the fundamental mode, its higher-order harmonics and dis-
tortions, and the base-flow distortions of various order. The first Landau coefficient, which is the
leading nonlinear correction in the Landau equation at cubic order in the amplitude of perturba-
tion, derived from the present method exactly matches with the same obtained from the center
manifold reduction technique. The nonlinear modes are found to follow certain syminetries of the
base flow and the fundamental mode. These symmetries helped to identify analyfical solutions
for the base-flow distortion and the second harmonic, leading to an exact calculation of the first
Landau coefficient. The present analytical solutions are further used to validate an spectral-based
numerical method for nonlinear stability calculation. The regimes of supercritical and subcritical
bifurcations for the shear-banding instability are identified, leading to the prediction that the
lower branch of the neutral stability contour in the (H, ¢%)-plane, where H is the scaled Couctte
gap (the ratio between the Couette gap and the particle diameter) and ¢° is the mean density
or the volume fraction of particles, is sub-critically unstable. Our results suggest that there is
a subcritical finite amplitude instability for dilute flows even though the dilute flow is stable
according to the linear theory which agrees with previous munerical simulation. Bifurcation dia-
grams are presented, and the predicted finite-amplitude solutions, representing shear-localization
and density segregation, are discussed in the light of previous molecular dynamics simulations
of plane shear flow. Our analysis suggests that there is a sequence of transitions among three
types of pitchfork bifurcations with increasing mean density: from (i) the bifurcation from infinity
in the Boltzmann limit to (ii) suberitical bifurcation at moderate densities to {iii} supercritical
bifurcation at a larger density to (iv) suberitical bifurcation in the dense limit and finally again
to (v} supercritical bifurcation near the close packing density. It is shown that the appearance of
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subcritical bifurcation in the dense limit depends on the choice of the contact radial distribution
function and the constitutive relaticns. The critical mean density at any transition from one
bifurcation-type to another is exactly calculated from our analytical bifurcation theory. The scal-
ings of the first Landau coefficient, the equilibrium amplitude and the phase diagram, in terms
of mode number and inelasticity, are demonstrated. The granular plane Couette Aow serves as a
paradigm that supperts all three possible types of pitchfork bifurcations, with the mean density
{¢°) being the single control parameter that dictates the nature of bifurcation.

In chapter 6 the evidence of a variety of non-linear equilibrium states of travelling and sta-
tionary waves is provided in a two-dimensional granular plane Couette flow. The relevant order
parameter equation, the Landau equation, has been derived for the most unstable two-dimensional
perturbation of finite size. Along with the linear eigenvalue problemn, the mean-flow distortion,
the second harmonic, the distortion to the fundamental mode and the first Landau coefficient
are calculated using a spectral-based numerical method. Two types of bifurcations, Hopf and
pitchfork, that result from travelling and stationary instabilities, respectively, are analyzed using
the first Landau coefficient. The present bifurcation theory shows that the flow is subcritically
unstable to stationary finite-amplitude perturbations of long wave-lengths (k. ~ 0, where k, is
the streamwise wavenumber} in the dilute limit that evelve from suberitical shearbanding modes
(k» = 0), but at large enough Couette gaps there are staticnary instabilities with k, = O(1)
that lead to supercritical pitchfork bifurcations. At moderate-to-large densities, in addition to
supercritical shearbanding modes, there are long-wave travelling instabilities that lead to Hopf
bifurcations. It is shown that both supercritical and subcritical nonlinear states exist at moderate-
to-large densities that originate from the dominant stationary and travelling instabilities for which
ky = O(1). Nonlinear patterns of density, velocity and granular temperature for all types of insta-
bilities are contrasted with their linear eigenfunctions. While the supercritical solutions appear
to be modulated forms of the fundamental mode, the structural features of unstable subcritical
solutions are found to be significantly different from their linear counterpart. It is shown that
the granular plane Couette flow is prone to nonlinear resonances in both stable and unstable
regimes, the signature of which is implicated as a discontinuity in the first Landau coefficient.
Our analysis identified two types of modal resonances that appear at the quadratic order in per-
turbation amplitude: (i) a ‘mean-flow resonance’ which occurs due to the interaction between a
streamwise-independent shear-banding mode (k, = 0) and a linear/fundamental mode &, # 0,
and (ii) an exact ‘1:2 resonance’ that results from the interaction between two waves with their
wave-number ratio being 1:2.

In chapter 7 of this thesis the vorticity banding in three-dimensional granunlar plane Couette
flow has been investigated via nonlinear stability analysis. Due to the pure spanwise (0/0x(.}) =
0,8/8y(.) = 0,8/8z(.) # 0} instabilities the uniform shear flow breaks into regions of high and
low shear stresses along the mean vorticity direction, this is known as vorticity banding. For such
pure spanwise instabilities an analytical order parameter theory has been developed. The general
solutions of the nonlinear equations (distortions of mean flow and fundamental, and harmonics
of fundamental) and Landau coefficients have been derived at any arbitrary order in amplitude.
The bifurcation analysis has been carried out for all the flow regimes. Our analysis suggests that
the vorticity banding appears via supercritical pitchfork bifurcation for density ¢° < ¢¢ and via
subcritical pitchfork bifurcation for density ¢° > ¢¢, where ¢° is the mean density and ¢¢ is the
critical mean density for the transition from supercritical to subcritical bifurcations. The first
and second order transitions at the onset of pure spanwise instabilities have been investigated
using cubic and quintic order amplitudes. The subcritical Hopf bifurcation has been found for
large spanwise wavenumbers in moderate-to-dense Alows. The present analysis suggests that the
parameters far away from the nentral stability curve there exist both types of bifurcations, Hopf
or pitchfork. The crucial effect of higher order nonlinear terms while calculating higher order
Landau coefficients is demonstrated. The variations of perturbation fields, pressure and shear
viscosity have been shown.



In chapter 8, the gradient and vorticity bandings in three-dimensional granular plane Couette
flow have been probed via analytical solutions of weakly nonlinear analysis. Such instability
leads to bands along the gradient and vorticity directions. The analytical expressions for the
distortion of mean flow, second harmonic and first Landau coefficient have been derived using
trigonometric functions. The bifurcation analysis for these instabilities has been carried out. The
finite amplitude patterns for density, temperature, velocity and vorticity have been analyzed.

At the end of this thesis two possible extensions of weakly nonlinear analysis have been studied.
The single mode analysis is not valid for the case of resonant and non-resonant mode interactions.
One possible extension is to derive coupled Landau equations for such mode interactions. The
coupled Landau equations have been derived for mode interactions with or without resonance
using center manifold method in chapter 9. Another extension is to allow non-periodic time and
space dependent perturbations in the flow. The appropriate order parameter theory in this case
contains complex Ginzburg Landau equation. The “complex Ginzburg Landaun equation” has
been derived for the granular plane Couette How using multiple scale analysis in chapter 10. The
numerical results for coupled equations and complex Ginzburg-Landau equation are left to future
work.
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CHAPTER 1
INTRODUCTION

1.1 Granular Matter

Granular materials are a collection of discrete, dissipative, solid particles, which are ubiquitous
in nature. They can be seen in our daily life in the form of building materials (e.g. sand, gravel,
coal and cement), pharmaceutical products (e.g. pills, powders and capsules), food grains (e.g.
sugar, seeds and rice) and chemicals (minerals), as shown in figure 1.1. They occur in various
sizes and shapes; a typical macroscopic grain size can vary from lpm or larger to many meters.
The granular particles are non-Brownian particles which interact solely by friction and collision.

(a) (b)

Figure 1.1: Examples of granular matter: (a) soil, (b) crushed stone, (¢) sand, (d) food grains, (e)
pharmaceutical products and ( f) chemicals.

Many industrial processes involve the bulk transport of coal, cereals, food grains, powders
and pharmaceuticals through pipes and channels. Rapid flows of granular materials occur in
geophysical phenomena and natural hazards such as rock slides, debris flows, snow avalanches
(see. figure 1.2), and the motion of the Arctic ice pack. On the other hand, the granular material
shows various dynamical phenomena and patterns under different conditions, for example, sand
ripples and dunes as shown in figure 1.3, and avalanche formation (figure 1.2), etc. The formation
of shearbands and density waves are common in such flowing materials.

Granular materials are strong enough to support building and soft enough to flow like a liquid.
Granular materials cut all the boundaries of solid, liquid and gas, and hence should be considered
as an additional state of matter in its own right (Jaeger et al. 1996). Moreover, two different flow
regimes can co-exist in the same system as shown in figure 1.4. For example, an hour-glass where
one can see all the How regimes of granular materials: rapid, quasi-static and dense flow regimes.
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Figure 1.2: (a) Slab-snow avalanche occurred at Alta, Utah. (b) Loose-snow avalanche occurred at
Murren, Switzerland. Images are taken from: http://www.avalanche.org/ moonstone/forecasting/snow
avalanches. htim.

Figure 1.3: (a) Sand ripples and (b) dunes.
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Rapid flows
P = Quasi-static and slow flows

e.g. The hour-glass
all in one!

Liquid-like
flow
Constant flow
e aciies Intermictent
avalanching
Gas-like
flow
Solid-like
state

Figure 1.4: Demonstration of all the flow regimes of granular matter. The existence of solid, liquid and
gas behavior within hour-glass,

The vast variety of behavior and phenomena in granular flows represents one of the difficulties to
understand the physics of such system.

In the following sections we will discuss various patterns in rapid granular flows and the
phenomenological models to describe such patterns.

1.2 Pattern Formation and Models for Granular Flu-
ids

In the rapid How regime (Campbell 1990; Kadanoff 1999; Ottino & Khakhar 2000; Goldhirsch
2003) a collection of particles, when subject to external forcing, show a variety of dynamical pat-
terns, such as Faraday patterns (Faraday 1831) in thin layers of particles under vertical vibration,
density waves in gravity driven Hows (Ramirez et al. 2000), Kelvin-Helmoltz instability (Goldfarb
et al. 2002) and shear banding in granular Couette flow (Mueth et al. 2000; Alam 2005). The
pattern forming systems belong to a class of problems where an external control parameter gov-
erns the system behavior beyond the critical point. As the control parameter is increased above
its critical value, the homogeneous state loses stability and reach some other state, giving rise to
a patterned state.

1.2.1 Vibration Driven Patterns

The experiments in which the energy is supplied by a vertically vibrated plate show a plethora of
dynamical behavior: heap formation, convection, size segregation, bubbling and standing waves.
The most fascinating patterns are the standing wave patterns and localized structures (oscillons)
in vertically vibrated granular layers. When a thin multilayer of granular materials is subject to
vertical harmonic oscillation, a range of standing wave patterns, squares. stripes, hexagons and
interfaces, similar to Faraday waves, can be observed (Melo et al. 1995; Umbanhower et al. 1996)
as shown in figure 1.5. These spontaneous patterns are robust which arise from the correlations
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induced by multiple collisions between the grains and by the colierent motion of the particle
layers, see figure 1.5(a)-(f).

Figure 1.5: Patterns in a 1.2 mm deep layer at f = 67 Hz: (a) f/2 strips (I' = 3.3), (b) f/2 hexagons
(T = 4.0). (¢) Hat with kink (I" = 5.8). (d) competing f/4 squares and stripes (I' = 6.0), (¢) f/4 hexagons
(I' = 7.4), and (f) disorder (I' = 8.5). The particles are bronze spheres of diameter 0.15-0.18 mm. Taken
from Melo et al. (1995).

In the experiments of Melo et al. (1995), 0.15-0.18 mm diameter bronze spheres were placed
on a cylindrical container of diameter 127 mm and height 90 mm. The container was evacuated
to 0.1 Torr!, a value at which the volumetric effects of the gas are negligible to prevent heaping
(Pak et al. 1995). The control parameters which govern patterns are: the frequency (f) of the
sinusoidal vibration (produced by an electromagnetic shaker) with displacement z = Asin(27 ft),
and the dimensionless acceleration amplitude I' = 472 f2A /g, where g is the acceleration due to
gravity.

The patterns in figure 1.5(a)-(f) are subharmonic or quarter-harmonic waves which oscillate
at either one-half or one-quarter of the driving frequency f. in which the relative phase separated
by phase discontinuities (kinks) appears in all patterns except those just beyond the onset of
instability. The stability diagram of standing wave patterns in (f,I') plane, figure 1.6, shows
that the layer remains flat for I' < 2.4 and beyond that various patterns emerge. The transition
from square to stripe pattern occurs at f = f. = 40 Hz as indicated by a dashed line above
the flat layer in figure 1.6. The transition from Hat layer to square pattern is suberitical and
to stripe pattern is supereritical (Melo et al. 1994). The bifurcation in this case is stationary,
Le. pitchfork bifurcation. At I' = 3.9, the hexagonal patterns appear spontaneously from the
square and strip patterns when the layer undergoes a period doubling bifurcation (see, for period
doubling bifurcation, Wiggins 1990; Strogatz 1994). For I' > 3.9, the square and stripe patterns
disappear and a flat surface with a kink which separates the regions of different phases appears
due to period doubling bifurcation. With further increase of I" (< 7.6), the quarter-harmonic,
f/4. squares, stripes and hexagons patterns appear and for I' = 7.6 a disordered state emerges.

A localized structure, “oscillon”, which is reminiscent of solitary waves in water (Umbanhower
et al. 1996). can appear via a hysteretic transition under certain external forcing conditions
on frequency and acceleration. An “oscillon™ is a small, circularly symmetric excitation which
oscillates at a frequency f/2: during one cycle of the vibration, it is a peak and on the next cycle
it is a crater, as shown in figure 1.7. The modified phase diagram for oscillon for the parameter

VA unit of pressure that is equal to approximately 133.3 Pa.
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Figure 1.6: Stability diagram showing transition in a 1.2 mm deep layer. The vertical dashed lines
indicate the frequencies above which only stripes appears in the square or stripe regime. Closed (open)
square and circular symbols denote transitions with increasing (decreasing) I'. This figure is taken from
Melo et al. (1995).

range. ' = (2.3,2.8) and f = (10,40) Hz, is shown in figure 1.8. The square patterns appear at
a frequency f < 18 Hz which shows a hysteresis, i.e. the acceleration at which squares appear
from a flat surface for increasing I is 20% larger than the value of ' at which they disappear for
decreasing acceleration. In a similar manner, the stripes form for f > 35 Hz with hysteresis which
is about 5%. As shown in figure 1.8 that the hysteresis decreases with increasing frequency. The
oscillons are found for a range of frequencies f = (18,35) Hz, which is the range of frequencies
between square and stripe patterns, and for acceleration I' below the lower stability boundary of
standing wave patterns. In general, they do not appear spontanecously from the flat layer which in
contrast to other standing wave patterns (squares, stripes, hexagons, etc), rather they appear from
perturbing the layer or by decreasing I from the patterned state (square and/or stripe pattern).
The like-phase oscillons (peak or crater) show a short-range repulsive interaction while the same
phase oscillons show attraction and create a dipole-type pattern shown in figure 1.7(d1)-(d2).
Due to correlations among different oscillons, more and more complicated patterns emerge, such
as polymeric chain, triangular tetramer and square ionic lattice as shown in figure 1.7(d3)-(d6).

A typical snapshot from a molecular dynamics simulation of inelastic hard disks vibrated in the
vertical direction is shown in figure 1.9 which is adopted from Paolotti et al. (2004). This figure
shows five convection rolls and a wave like horizontal density profile in a large aspect ratio box.
Depending on the control parameters and boundary conditions of the problem, we may observe
many convection rolls with different dynamical properties. These periodic convective patterns
show various types of instabilities similar to Reyleigh Bénard convection, such as skew-varicose
and crossroll instability (de Bruyn et al. 1998).

Granular convection is driven by a negative granular temperature gradient which arises spon-
taneously due to inelastic collisions of grains whereas an externally imposed temperature gradient
is needed for Rayleigh-Bénard convection of Huid. The convection pattern emerges when the ab-
solute value of granular temperature gradient, which is a function of inelasticity, is large enough.
In a granular system, the viscous and thermal diffusions, the buoyancy force and the inelastic
dissipation govern convection patterns unlike in a conservative fluid in which there is no role of
dissipation because the energy is conserved there. The granular convection pattern can be ob-
served even without vertical vibration as reported by Bizon ef al. (1998) in which the shear-free
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Figure 1.7: (a) Two oscillons with opposite phase, (b) side view of an oscillon, (¢) (1)-(2) a single oscillon
viewed from above, at times differing by 1/f: (3) and (4) corresponding side view (f = 26 Hz, T' = 2.45,
layer depth of 17 particles). Oscillon as a molecule and erystal: (d) (1)-(2) dipole; (3) polymerie chain;
(1)-(5) triangular tetramer and (6) square ionic lattice, the pictures (1) to (5) are separated in time by
1/f. This figure is adopted from Umbanhower el al. (1996)
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Figure 1.8: Stability diagram for different states. as a function of f and I, for increasing T’ (squares)
and decreasing I' (triangles and circles). The transitions from the flat layer to squares and stripes are
hysteretic. Ref. Umbanhower et al. (1996)

thermal boundary condition on the static base was used to supply energy into the system. This
shows that dissipation and gravity are enough for granular convection.

Under strong vertical shaking, a density inversion has been observed recently (Eshuis ef al.
2005. 2010) in which a high-density cluster of grains is supported by a dilute gas-like layer of
fast particles as shown in figure 1.10. This is known as the granular analogue of Leidenfrost
effect or granular Leidenfrost effeet. As we increase shaking strength, which is a ratio of kinetic
energy inserted into the system by vertical vibration and potential energy associated with particle
diameter, a transition from Leidenfrost state to convection takes place. The convection rolls
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e |

Figure 1.9: Convection in a monodisperse particle system: length of box is 375 em, number of particles
18000, hard-disk diameter 1 em, amplitude of vibration 0.5 cm, frequency 50 sec ' and g = 28 em/sec?.
Taken from Paolotti et al. (2004).

Figure 1.10: Onset of convection in experiment. The number of layers 11 of steal beads of diameter 1.0
mm was vibrated on a container of dimensionless length 101. The frequency was linearly increased from
f =42 to 48 Hz at the rate 90 Hz/min. The transition from steady Leidenfrost state to fully developed
convection took place at f = 35 Hz (between (a) and (b)). Ref. Eshuis et al. (2010).

which appear under a strong shaking are different from earlier convection patterns as observed
by Ramirez et al. (2000) and Paolotti et al. (2004) which emerge mainly due to dissipation and
boundary effects (Bourzutschky & Miller 1995).

400 = :
* experiment (a=2mm)

@ experiment (a=3mm \\\\}\\
300 * exﬁﬁmant Ea:imm;\\‘\\\

S :m:gg fit %
200} @ é
e 3\\\\\' Leidenfrost
0 . A L

Figure 1.11: Phase diagram in (S, ) plane showing the convection threshold from MD simulation (filled
symbols), experiment (open symbol) and theory (solid line). Here S is a shaking strength and I denotes
the number of layers. Ref Eshuis ef al. (2010).
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The linear stability analysis of Leidenfrost state shows that the conveetion patterns form due
to an instability of this base state and there is a threshold shaking strength below which there is
no convection and above which conveetion rolls form as shown in the phase diagram in figure 1.11.
This is similar to Rayleigh-Bénard convection in which convection oceurs above a critical Rayleigh
number Re,. = 1708 for rigid boundaries, i.e. for Re > Re,. the conduetion state becomes nnstable
and convection pattern emerges. As seen in figure 1.11, the theory, experiment and simulation

agree with each other.

(a)

Figure 1.12: (a) Top view of a submonolayer of particles on a vibrated plate, adopted from Olafsen
& Urbach (1998). Here a dense immobile cluster coexists with a dilute granular gas. (b) Numerical
simulation of a late phase of a cooling inelastic granular gas at a coefficient of restitution 0.6 and number
of particles 40000, adopted from Goldhirsch & Zanetti (1993).

The richness of patterns in a vertically vibrated layer can be realized if we vibrate a quasi-two-
dimensional submonolayer of grains that exhibit a bimodal regime of dense and dilute clusters
(Olafsen & Urbach 1998) when the vibration frequency decreases, i.e. when the system is cooled
down which is reminiscent of the clustering instability of non-driven system of inelastic particles
as observed in the simulation of Goldhirsch & Zanetti (1993), see figure 1.12. This is the simplest
pattern in a granular system which emerges solely because of inelastic collisions of grains.

The physical interpretation of the above clustering phenomenon is that the local increase in
the density of a granular gas increases the collision rate which results in more dissipation of energy
that in turn decreases the granular temperature. Since the pressure is directly proportional to
temperature, a decrease in granular temperature implies a decrease in pressure which creates a
flux of grains towards this low-pressure dense region and this leads to further increase in the
density.

Kudrolli et al. (1997) observed a phenomenon of particle clustering in a two dimensional
wall bounded setup, which appears opposite to the vibrating wall in a horizontally vibrated bed
experiment. Figure 1.13 shows an image of a dense cluster in which the maximum density occurs
opposite to the hot wall (Kudrolli el al. 1997).

Another interesting pattern forming phenomenon is the size-segregation of polydisperse gran-
lar mixtures. When we shake a polydisperse granular mixture vertically as shown in figure 1.14(a).
larger particles come at the top (Brazil nut effect). On the other hand, depending on the physical
conditions, larger particles can sink to the bottom, figure 1.14(b) (reverse Brazil nut effect). In
other cases when a polydisperse grannlar system is subject to horizontal shaking (Mullin 2000),
the system segregates into banded patterns in the orthogonal direction of shaking as shown in

figure 1.14(¢).

1.2.2 Gravity Driven Flows

The gravity driven granular Hows such as Poiseuille How and chute How often show spectacular
spatio-temporal structures., The gravity driven granular Poiseuille flow exhibits density wave
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Figure 1.13: A dense cold cluster formed opposite to the driving wall. From Kudrolli et al. (1997)

Figure 1.14: Size segregation showing the (a) Brazil nut effect and (b) reverse Brazil nut effect, adopted
from Breu ef al. (2003). (¢) segregation in a layer of copper balls and poppy seeds mixture in a horizontally
shaken cavity, adopted from Mullin (2000).

1

N

Figure 1.15: A snapshot of density waves in a gravity driven 3D-Poiseuille flow obtained from
event-driven MD simulation, Ref. Malik (2008).

patterns (Liss et al. 2002; Alam et al. 2010), see figure 1.15. It is shown in Alam et al. (2010)
that the appearance of density wave patterns (plug, slug and sinuous wave) depend on the mean
density, wall roughness and inelasticity. For example. the clumps and slugs emerge in dilute flows,
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the plugs, sinuous waves and slugs in moderately dense flows and the varicose density waves in
dense Hows.

(a)

Figure 1.16: Fingering instability in a chute flow. (a) Schematic of the instability mechanism adopted
from Pouliquen et al. (1997). Images taken from the (b) front, (¢} bottom of the layer. (d) Schematic
of the experimental setup where three pictures are the top views of the free surface at three different
locations (Forterre & Pouliquen 2001).

The fingering (Pouliquen et al. 1997) and longitudinal vortices (Forterre & Pouliquen 2001)
have been observed in rapid chute flow, see figure 1.16. When a uniform cross-sectioned front
of granular material propagates along a rough inclined plane it rapidly breaks up into fingers as
shown in figure 1.16(d) leading to fingering instability in the chute flow. The fingering instability
of viscous fluid in driven by surface tension, however, in granular fluid there is no role of surface
tension. Such fingering instabilities develop size-segregation in the flow. Figure 1.16(a) shows a
schematic diagram for instability mechanism where the arrows indicates the coarse particles on
the surface of flowing particles. The close look images of fingering instability from front, bottom
and top sides of the layer are shown in figure 1.16(b), 1.16(c) and 1.16(d). respectively.

1.2.3 Shear Driven Flows

If we shear granular materials (between two opposite walls or between rotating cylinders), it
develops shearbands (Savage & Sayed 1984: Mueth et al. 2000; Alam & Luding 2003a: Alam
2005; Alam et al. 2008), clusters (Hopkins & Louge 1991; Tan 1995; Tan & Goldhirsch 1997),
density waves and coherent structures (Conway & Glasser 2004).

The phenomenon in which the homogeneous flow separates into macroscopic co-existing bands
of different shear rates and viscosities is called shearbanding. When a granular material is sheared
in shear-cell experiments, shearing remains confined to a narrow zone (‘shear-band’ where the
shear-rate is non-zero) near the walls, leaving rest of the material unsheared (dense ‘plug” where
the shear rate is almost zero). Depending on whether these bands extend along the flow gradient
or vorticity direction, the banding is called as ‘gradient banding’ or *vorticity banding’.

The experimental observation of shearbands in dense granular flows was performed by Mueth
et al. (2000). In their experimental setup, the granular material (mustard seeds) was sheared
in a Couette shear cell, consisting of two concentric cylinders. see figure 1.17(a). The shear was
applied by rotating the inner cylinder. An image of shearband (taken from a high speed camera)
is shown in figure 1.17(h) where the fast particles (yvellow colour particles) are near the inner wall
and slow particles (orange colour particles) gather around the outer wall of the Couette cell. This
is an example of “gradient banding” because the shearband extends along the gradient direction.
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(b)

Figure 1.17: Shear-band formation in cylindrical Counette flow, Mueth et al. (2000). (a) Sketch of the
Couette cell, consisting two concentric cylinders, and (b) high speed video frame showing mustard seeds
observed through the cell's transparent bottom.

Similar evidence of gradient banding has been observed by Alam & Luding (2003a), in the
molecular dynamics simulations of granular plane Couette flow. More details on shearbanding in
granular plane Couette flow has been given in §1.4. Another effect of shearing is the formation
of dense clusters (Hopkins & Louge 1991) and density waves (Conway & Glasser 2004).

As discussed above, the collective behavior of grains give rise to a profusion of phenomena
(see, for an excellent review on patterns in granular media, Aranson & Tsimring 2006). Granular
patterns, as discussed above, employ short range forces which turn to more complex patterns if
we include additional features (shape anisotropy, interstitial Auid, magnetization or electrostatic
forces charges, etc.) and additional long range forees. Few examples of such complex patterns are:
vertically vibrated rods (Blair et al. 2003), patterns in submonolayer of magnetic micro-particles
subject to magnetic field (Snezhko et al. 2005) and patterns in electrostatically driven granular
media (Voth ef al. 2002; Sapozhnikov et al. 2003).

Dynamical patterns of granular fluids
Vibration | | Gravity | | Shear —
Bimodel regime | Avalanches Shear-banding
Clustering Clustering Clustering
Size-segregation | Size-segregation Size-segregation
Heaping Density waves Density waves
Convection Fingering
Standing waves | Longitudinal vortices
Oscillon

Table 1.1: Summary of dynamical patterns in rapid granular How when subjected to vibration, gravity
and shear (Aranson & Tsimring 2006).

1.3 Models for Granular Patterns

The theoretical description of granular patterns are challenging because there is no unified ap-
proach existing for such nontrivial patterns. In general we can divide theoretical study of pattern
formation into three classes: (1) microscopic model and molecular-dynamics simulation, (2) sta-
tistical mechanics and kinetic theories, and (3) continuum and phenomenological models. In
view of the current lack of physical understating of granular media in terms of appropriate gov-
erning equations, valid in all regimes, and the lack of scale separation between microscopic and
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macroscopic scales, it seems that the third approach, continnum and phenotuenological models,
is reasonable to study pattern forming phenomenon.

Order parameter equations like Ginzburg-Landau equation, Swift-Hohienberg equation, Kuranwto-
Sivashinsky equation and reaction-diffusion equation {Newell ¢t al. 1993; Cross & Hohenberg 1993;
Aranson & Kramer 2002) are widely used to study pattern-forming systems in many fields (su-
perconductivity, superfluidicity, vacancy diffusion, defect turbulence, convection, surface waves,
absolute and convective instabilities, ete). In order to describe cellular patterns and localized
structures as cbserved in vibrated-bed experiments (Melo ef al. 1995; Umbanhower et al. 1996),
Tsimring & Aranson {1997), Venkatarammani & Ott {1998), Aranson ef el {1999} and Crawford
& Riecke (1999) adopted this approach of order parameter models which are discussed in the
present section.

Tsinmring & Aranson {1997) proposed a phenomenclogical order parammeter medel, the Ginzburg-
Landau equatton coupled with an effective mass conservation equation, to theoretically study the
patterus in vibrated granular bed (squares, stripes, etc, see figure 1.5):

‘Z_’f = ' — (1= iwy + (1 + i)V — [yf*p ~ py (1.1)
% = aV. (pVI¥) + AV, (1.2)

Equation (1.1) is an evolution equation for a complex quantity ¥, called ‘order-parameter’ or
the *amplitude function’ of the subharmonic patterns at frequency w = f/2: (1.2) represents an
cffective equation for the conservation of mass (average mass of granular material per unit area),
with p(x.£) being the mass-density of granular materials. The last term in (1.1}, p¥, represents
a coupling between order parameter and the local bulk density of material; the cubic nonlinear
term |¢|?ty accounts for the nonlinear saturation of oscillations due to dissipation; the term
involving Laplacian accounts for any diffusive mechanisin, providing a length scale for patterns;
~¢* accounts for the parametric driving that excites standing waves, with  being the normalised
amplitude of the parametric forcing; parameter b is related to the wavenumber, &, of the pattern
as k = /w/b where b must be chosen to reproduce the correct wavenumber at given frequency.
Two terms in the right hand side of equation (1.2) represent two physical inechanisms contribute
to the mass conservation. The first terin indicates average particle drift due to the gradient of
mnagnitude of high-frequency osciilations (i.c. flux corresponding to particles escaping from regions
of large fluctuation). The second term /AV2p describes diffusive relaxation of the inhomogeneous
mass distribution where # > 0 is the mass diffusion coefficient which is proportional to the energy
of the plate vibration.

The above order parameter model is phenomenological in the sense that it has not been
derived from the governing equations of granular fluids, and the cocfficients of (1.1-1.2} have to
be determined fromn experiments or simmlations as a case-by-case basis. It may be noted that
the ahove model is strictly valid for flows where the mean velocity is zero, such as in a vertically
shaken bed under harmonic excitation, for which the momentum equation is identically satisfied.
Information about the rheology of flow needs to be supplemented, in addition to (1.1-1.2}, via
momentum balance equations (Volfson et ol 2003). At any rate, the above order-parameter
tmodel has been able to interpret the experimental and simulation data in a variety of granular
flows (see, for a review, Aranson & Tsimring {2006)). For an application of this inedel to predict
the rhieology of surface Rows i a cotating drum, sce Orpe & Khakhar (2007).

Besides the standing wave pattern, Ginzburg-Landau equation (1.1), without the coupling
term pyr, gives a model for the parametric instability in an oscillating liquid layer (Zbang & Vinals
1995} in particutar. the term y¢* accounts for the parametrie driving tlat excites standing waves,
As seen in (1.1) the order parameter ¥(x, t) is a function of space and tiine, and hence is suitable
to describe aperiodic patterns having slow modulations in space and time. For patterns having
spatial periodicity, the Ginzburg-Landau equation reduces to an ordinary differential equation for
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the temporally varying order parameter (f) = ¢»(x.t) which is the primary focus of the present
thesis.

Another model which describes primary pattern-forming bifurcation was given by Crawford
& Riecke (1999) using generalized Swift-Hohenberg equation,

il 92 2 . )
?);: = = (@ ) 1) ¥+ by — bay)® + €V - (Vi)?

~Bip(VY)? — Boy? V2 (1.3)

where 1 is a real amplitude of the oscillating solution: it is assumed that the whole pattern
always oscillates in phase. The term proportional to e is added for the description of rolls and
additional fifth order terms are incorporated into the standard Swift-Hohenberg equation for
subcritical bifurcation. Depending on the magnitude of e, this equation describes squares and
stripes patterns; it also gives a stable oscillon type solution for negative control parameter R.

Both models, Ginzburg-Landau model and Swift-Hohenberg model, employ an order parame-
ter equation. Note that the coupled Ginzburg-Landau equation [Eqns. (1.1)-(1.2)] and the gener-
alized Swift-Hohenberg equation [Eqn. (1.3)] are continuous in time and space. The dynamics and
behavior of the solution of these models resemble the properties of localized structures like oscil-
lon and standing wave patterns like squares, stripes and hexagons. The extra terms and coupling
terms in these models are system dependent and originate due to the characteristics of granular
system that need to be taken into account in order to get a correct theoretical interpretation of
these patterns.

In contrast to these models (e.g. Ginzburg-Landau model and Swift-Hohenberg model) which
contain partial differential equations, Venkataramani & Ott (1998) proposed a ‘continuous cou-
pled map’ (CCM) model in the framework of discrete time and continuous space map system.
The various patterns (e.g. squares, stripes, hexagons, etc.) emerge due to the interaction be-
tween a temporal period doubling sequence and an instability that induces standing waves on the
surface of the granular layer. This lead Venkataramani & Ott (1998) to use discrete time (for
incorporating period doubling sequence) and continuous space (for incorporating surface waves)
approach. According to this model, the height of the granular layer at time ¢ = n (discrete) and
at position x = (x,y) (continuous) is given by £,(x) and a one dimensional map is defined at
each point in space

E(x) = M(E(x),r1) (1.4)
where r is a parameter of the chosen map function and mapping M (£) is a Gaussian map
Mg) = Fem (€172, . (1.5)

To incorporate continuous space dynamics in this model, a linear spatial operator £ is inserted.
Thus the model can be written as

fnri(x) = L(EL(x)). (1.6)

This model predicts various patterns and yields a similar phase diagram as shown in figure 1.6
and 1.8.
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1.4 Patterns in Granular Couette Flow and Present
Work

The pattern formation in granular plane Couette flow has attracted much attention during the
last two decades using both simulation and theory (Hopkins & Louge 1991; Savage 1992; Babic
1993: Schmid & Kytomaa 1994; Tan & Goldhirsch 1997: Alam & Nott 1997, 1998; Sasviri et al,
2000: Kumaran 2004; Alam & Luding 2003a¢; Conway & Glasser 2004; Alam et al. 2005; Gayen
& Alam 2006; Alam 2006; Conway ef al. 2006; Khain & Meerson 2006; Khain 2007; Saitoh &
Hayakawa 2007). Among many other pattern-forming systems (see §1.2) the granular Couette
flow is a prototype problem which exhibits various spatio-temporal patterns; for example, patterns
induced by clustering inhomogeneities (Alam & Nott 1998; Conway & Glasser 2004; Alam ef al.
2005: Conway ef al. 2006) and shear-banded patterns (Alam 2005; Alam et al. 2008; Shukla &
Alam 2008, 2009). The earliest particle dynamics simulations of Hopkins & Louge (1991) identified
travelling-wave patterns in the form of oblique bands. aligned along the compressional axis of the
shear flow for a range of densities - most of these simulations were carried with about 5000
particles and hence the observed structures were no so well defined. The “large-scale” particle
simulations of Tan & Goldhirsch (1997) at a particle volume fraction of 0.05 identified a variety of
two-dimensional patterns, including a “churn-type” flow. That the granular Couette low supports
inhomogeneous patterns, having modulations along both the streamwise and gradient directions,
was predicted by Alam & Nott (1998) from a linear stability analysis; they also systematically
probed the effect of the boundary conditions on the predicted instabilities (Nott et al. 1999).

Recently, Conway & Glasser (2004) have conducted a series of two-dimensional particle sim-
nlations of “bounded” plane Couette flow at low-to-moderate densities (particle volume fraction
less than 0.4 in two-dimensions), with walls acting as sinks of granular energy which is one of
the three cases considered by Alam & Nott (1998). In these simulations, the width and the
length of the channel were systematically varied so as to get access to any long-wave instability
with streamwise modulations. They reproduced the main features of the full phase diagram of
different instabilities as predicted by the linear stability analysis of Alam & Nott (1998). How-
ever, some of the long-wave instabilities of Alam & Nott (1998) were not found in simulations
(Conway & Glasser 2004). Possibly those very long-wave instabilities are not admitted once the
nonlinear terms are taken into account or the channel length of simulations was not long enough
to capture structures with very large wavelengths-the former issue can he answered only via a
nonlinear stability analysis. More recent dense simulations of Conway ef al. (2006) identified a
two-dimensional antisymmetric stationary wave (i.e. a sinuous-type mode). This structure might
be related to the nonlinear saturation of the dominant stationary wave instabilities of Alam &
Nott (1998).

In the present thesis, the weakly nonlinear stability analysis will be carried out for the (i)
shearbanding instability (gradient and vorticity banding) and (i) finite-wave length instabilities
in two and three dimensional granular Couette flow. In the following sections, we will show
some existing particle simulation results (Tan 1995; Tan & Goldhirsch 1997: Conway & Glasser
2004: Conway et al. 2006) and experimental (Conway ef al, 2006) observations of shearbanding,
clustering, and antisymmetric wave patterns in two and three-dimensional granular Couette How,

1.4.1 Shear-banding in Granular Couette Flow

The phenomenon in which the homogeneous How separates into macroscopic co-existing bands
of different shear rates and viscosities is called shear-banding. When a granular material is
sheared in shear-cell experiments (Savage & Sayed 1984: Mueth et al. 2000; Conway et al. 2006),
shearing remains confined to a narrow zone (‘shear-band’ where the shear-rate is non-zero) near
the walls leaving rest of the material unsheared (dense *plug’ where the shear rate is almost zero),
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Figure 1.18: Molecular dynamics simulation of shear flow of inelastic disks. (a) Formation of two dense
layers of disks which subsequently coalesce to give a single layer as shown in panel, (b), for e = 0.6,
¢ = 0.05 and Couette gap H = h/d, = 1123.5 with h and d,, being the distance between moving walls
and particle diameter, respectively. Taken from Tan (1995).

Depending on whether these bands extend along the How gradient or the mean vorticity direction,
the banding is called as ‘gradient banding or ‘vorticity banding', respectively.

Such shear-banding, wherein the How undergoes an ordering transition into alternate layers
of dense and dilute regions of low and high shear rates, respectively, aligned along the gradient
direction (i.e. the density-bands are parallel to the How-direction), has also been realized in the
molecular dynamics simulation of granular Couette fow (Tan & Goldhirsch 1997; Alam & Luding
2003a; Conway & Glasser 2004; Khain 2007; Conway et al. 2006) for a range of densities from
dilute to dense flows (without gravity) in the rapid flow regime.

The MD simulation of inelastic hard disk shear flow in dilute flow regime (¢ = 0.05) has
been studied by Tan (1995) and Tan & Goldhirsch (1997). Figure 1.18(a), a particle position
plot, shows two dense plugs which subsequently coalesce to form a single plug at the center as in
figure 1.18(a). Similar MD simulations have been carried out by Alam et al. (2005) for moderately
dense flows where the mean density has been set to 0.3, see figure 1.19. It is seen that the flow
forms a shearband around the channel center-line and two plugs near the walls.

Figure 1.19: Formation of shear-band and plug in MD simulation of a sheared inelastic hard-disk system.
The average solid fraction in ¢ = 0.3, the restitution coefficient ¢ = 0.8 and the number of particle 15000,
Ref. Alam et al. (2005).
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The numerical experiments show that the position and the intensity of plugs depend on the
system parameters such as mean density, coefficient of restitution, Couette gap. ete., as deseribed
below.

ﬁiﬁ“ect of Inelasiicity and Couette Gap on Shear-bandsJ

Figure 1.20: Effect of inelasticity ¢ = (a) 0.99, (b) 0.95, (¢} 0.85, for mean density ¢ = 0.3 and Couette
gap H = h/d, = 60. Effect of Couette gap H = (d) 20, (¢) 40 and (f) 80, for ¢ = 0.85 and other
parameters are same as figure (a)-(¢). Ref. Conway el al. (2006).

The effect of particle-particle coefficient of restitution is shown by the particle position plots
from the MD simulation of Conway et al. (2006), see figure 1.20(a)-(c); these figures clearly show
that the plug is becoming more and more prominent for increasing inelasticity. For nearly elastic
particles, the particles are uniformly distributed within the Couette cell, see figure 1.20(a). With
increasing inelasticity plugs form around the channel center-line where the density approaches
maximum packing density for inelastic particles as shown in figure 1.20(b)-(e).

Figure 1.20(c)-(d) shows the effect of Couette gap on the shearbanding instability. The signa-
ture of clustering appears even for small Couette gaps which becomes more and more apparent
for larger domain size. see figures 1.20 (d)-(e). It has been predicted by Alam & Nott (1998)
that the granular plane Couette flow without gravity is unstable to the streamwise independent
disturbances that leads to shearbanding in this flow.

Shez&rIdtlding in Polydisperse System\

The banding and segregation in 2D-Couette flow of binary mixtures have been observed in
the simulation of Conway et al. (2006). The pressure and temperature diffusion of individual
components in mixtures oceur due to inhomogeneities in monodisperse fows which induce large
How property gradients. The local sampling (in streamwise strips) was performed by Conway
et al. (2006), for a binary mixture of equal density particles of different sizes, to unveil two types
of segregation in their simulations which is shown by particle position plots in figures 1.21(a)-(b)
for densities ¢ = 0.25 and 0.3. Figure 1.21(a) shows that the large and small particles form
a plug at the center of the flow but the concentration of large particles are about one third
greater than the smaller size particles at the center. This clearly shows segregation where the
large particles aceumulate within the plug region and small particles have larger concentration
in the dilute region. However, a contrasting situation arises for a slightly higher density ¢ = 0.3
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for which both types of particles form a plug but the concentration of smaller size particles is
larger at the center than the larger particles (reversal of the previous situation) as shown in
figure 1.21(b). The gradients in velocity, temperature and stresses are same in both the scenarios
but the mechanisms that drive segregations are different; the former is thermally driven whereas
the latter is pressure driven. The size segregation for ¢ = (.25, figure 1.21(a), is consistent with
simplified binary kinetic theory (Willits & Arnarson 1999; Alam et al. 2002) which predicts that
the flux of heavier particles to low temperature regions is driven by thermal gradients i.e. thermal
(or Soret) diffusion. In the reverse situation for ¢ = 0.3, figure 1.21(b), the diffusion is due to
the pressure gradients which dominate over thermal diffusion that results in an accumulation of
lighter particles in high-pressure regions (Ottino & Khakhar 2000).

Figure 1.21: Particle position plots showing size segregation for two values of densities ¢ = (a) 0.25
and (b) 0.3 for parameters de:/dp = 2, ne/ng = 1, H = h/(de +dp) = 80 and e = 0.8. Here de and dr
are the diameters of the larger (red dots) and smaller (blue dot) particles, respectively. ne and np are
the number densities of larger and smaller particles, respectively. From Conway et al. (2006).

The initial conditions are an important factor in mixing and segregation dynamics of granular
mixture. Figure 1.22 shows particle position plots of the evolution of fully developed Couette flow
from contrasting initial conditions: a homogeneous mixture, see figure 1.22(a), and a complete
transverse segregation of fine and coarse particles, see figure 1.22(b). When the initially ran-
dom, homogeneous binary mixture is sheared, total kinetic energy immediately drops as particles
rapidly cluster. This drop in kinetic energy corresponds to a plateau in a graph of energy vs.
time. The segregated initial condition has been used in figure 1.22(b) where the particles are
segregated by size into upper and lower halves (fine particles are in the upper half position and
the course particles are in the lower half). As shown in figure 1.22(b) that the plug is no longer
fixed at the center, instead its position oscillates between the walls. However with homogeneous
initial condition, the plug does not show any oscillatory behavior rather it is more stable. The
particle pressures in the two halves of the segregated initial conditions is not equal and the vertical
movement of cluster is an indication of pressure balance (Conway et al. 2006).

The effect of inelasticity on shear-bands is shown figure 1.23. adopted from Conway et al.
(2006). This figure shows the particle positions for equal density particles with varying diameter
for increasing inelasticity. It is seen from this figure that the plug appears even for nearly elastic
particles (¢ = 0.99 = 1) and the plug becomes denser for larger inelasticity.

‘An Experiment for Shearbanding Instabilityl

A pseudo-2D experiment for shear-banding in granular Couette How has been performed by
Conway et al. (2006) to verify the formation of plugs (shear-bands) as predicted by the linear
stability theory (Alam & Nott 1998) and the MD simulations (Tan 1995; Tan & Goldhirsch 1997).
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Time

Figure 1.22: Particle position plot of transient development of clustering instability for d./dp = 2,
¢ =03, H=h/(de +dr) =80, and ¢ = 0.85 from (a) uniform and (b) segregated initial conditions.
Rel. Conway et al. (2006).

Inelasticity

Figure 1.23: Particle position plot with de:/dp = 2, me/mp = 4 i.e. equal density particles with varying
diameter as a function of increasing inelasticity. Here me and mg represent masses of the larger (red
dot) and smaller (blue dot) particles, respectively. Ref. Conway el al. (2006).
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The schematic diagram of their setup and observations are shown in figure 1.24.

Figure 1.24: A pseudo-2D experiment (a) schematic of Couette cell containing an inner cylinder of
diameter 9.5 em and a outer cylinder of diameter 20 cm, (b) a digital photograph of a shear band in
Couette cell, (¢) zoomed part of (b). Associated (d) velocity field and (e) vorticity field.

Since the infinite moving walls are not possible in the laboratory, a circular geometry was
used in these experiments. To avoid outward normal force, i.e. centrifugal forces, the base slopes
slightly towards the inner wall (< 5°); gravity prevents all particles from accumulating at the
outer wall. Shearing was given by the moving inner cylinder with high shear-rate. As shown in
figure 1.24(b), the particles form a single dense plug of about 16 particle diameters wide near
the middle of the Couette gap at a rotation speed of above 400 rpm (a shear rate of 44 s~!).
An image of dense and dilute regions of particles and the corresponding velocity field, from PIV
(particle image velocimetry), are shown in figure 1.24(¢) and 1.24(d), respectively. The particles
within dilute regions have higher velocities than the particles within dense regions as shown in
figure 1.24(d). The coherent vorticity within dense regions has been observed in experiment, see
figure 1.24(e). These experimental results support dense and dilute regions of low and high shear
rates, respectively, along the flow gradient direction, which agree with MD-simulation results.

1.4.2 Clustering and Density Waves in Granular Couette Flow

As discussed by Alam & Nott (1998), the granular plane Couette flow supports various types
of stationary and traveling wave instabilities. The patterns induced by stationary and traveling
wave instabilities in granular Couette flow have been verified by particle simulations of Conway
& Glasser (2004). In this section, we discuss particle simulation results of (Conway & Glasser
2004; Conway et al. 2006) for such instabilities.

Two-dimensional Plugs and Density Waves

The particle position plots, adopted from Conway & Glasser (2004), for fully developed wave

structures are shown in figure 1.25 for varying streamwise length parameter 1/h, where [ and h are
& 3 (=] !



20 Chapter 1.

Figure 1.25: Effect of wavelength or streamwise dimension on density waves. Particle position plots
for three values of [/h (length vs height ratio), (a) 0.1, (b) 1.0 and (¢) 10. The parameters are ¢ = 0.8,
¢ = 0.15, H = 50, d, = 0.0018 m, p, = 2980 kg/m®, tangential restitution coefficient = —1, particle-wall
restitution coefficient e, = 1 and specularity coefficient for wall collision is 0.6. From Conway & Glasser
(2004).

the length and height (width) of the Couette cell. The density inhomogeneities are clearly shown
in all figures 1.25(a)-(¢). The sequential snapshots in figure 1.25(a) were taken at different time
intervals, which show a dense plug which floats between the boundaries. Figure 1.25(b) shows
that the movement of the cluster is reduced and the particles are less constrained for larger aspect
ratio (I/h = 1). For increasing [ /h ratio, a two-dimensional wave appears due to the accumulation
of particles as shown in figure 1.25(¢). These waves, which arise due to density inhomogeneities
in the system, are stationary waves as the basic structure of the wave does not vary in space and
time (Conway & Glasser 2004).

Figure 1.26: Particle position plots of fully developed structures for varying mean densities (@) (a) 0.3
and (b) 0.6. For I/h = 4 and other parameters are same as figure 1.25.

The extent of modulation of the structure (density wave) increases with increasing mean
density which gives a large-scale structure. For [/h = 4, the density waves for two values of mean
densities. @ = 0.3 and 0.6, are shown in figure 1.26. which clearly shows that the density waves
are more apparent at higher volume fractions.

The physical reason of clustering instabilities, which induce plugs and stationary waves, can
be interpreted as follows: the inelastic collisions lead to fuctuations that generates regions of
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higher densities than the average density. The disturbance or instability spontaneously leads to
dense clusters. The density disturbances are thus the cause of clusters to grow which has been
verified from the linear eigenfunctions of the equations of motion (Alam & Nott 1998; Conway &
Glasser 2004). For higher density and longer domain, these clusters form a large-scale structure
in the form of antisymmetric standing wave as shown in figure 1.26.

[Antisymmetric Waves in Shallow 3D System

The 1D-plugs and antisymmetric waves as observed in planar Couette flow are also observed
in a shallow 3D system as shown in figure 1.27. For the pseudo-1D case of I/h = d/h = 0.1, see
figure 1.27(a). a similar plug is observed as in the case of 2D simulation domain (see figure 1.25(a)).
The observed clusters and antisymmetric waves, similar to figure 1.25(b)-(¢), can be seen in a
shallow 3D system for [/h = 1 and [/h = 3 with d/h = 0.1 as shown in figure 1.27(b-¢).

Figure 1.27: Particle position plots for ¢ = 0.05, ¢ = 0.6, d/h = 0.1, where d is the depth and I/h (a)
0.1, (b) 1 ,(e) 3. 1D plug and antisymmetric wave in a shallow system. Taken from Conway & Glasser
(2004).

Fully 3D-dimensional Plugs and Antisymmetric Density Waves

For a deeper system of 3D-Couette geometries, the clusters are more extended in streamwise,
spanwise and cross-stream directions, depending on length, width and height ratios of the system.
Such 3D-clusters are shown by isosurface plots in figure 1.28(a)-(d). The isosurfaces are surfaces
of higher density than mean density, i.e. the isosurface plot marks the region where the density
is higher than mean density. For increasing depth, 1D-plug (see figure 1.27(a)) transforms to a
2D-plug (see figure 1.28(a)). A 2D-antisymmetric wave appears for d/h = 3 and [/h = 0.5, which
changes to 3D-antisymmetric wave for increasing domain size. An isosurface for [/h = 3 and
d/h = 1 which is depicted in figure 1.28(¢) shows simultaneous wave formation in the spanwise
(z) and streamwise (x) directions. The intensity of 3D-antisymmetric standing wave and plugs
increases with increasing d/h ratio: three dense plugs with d/h = 3 in the spanwise direction (z)
are shown in figure 1.28(d).

The linear stability analysis predicts (Alam & Nott 1998) that the granular plane Couette
flow is unstable to traveling and stationary waves which lead to clusters of high and low densities
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Figure 1.28: Formation of 3D-structures. (a) 2D plug ({; = % = 1), (b) 2D-antisymmetric wave (% =3
£ = 0.5), (¢) 3D-antisymmetric wave (+ = 3, £ = 1), and (d) 3D-plugs (+ = £ =3). For ¢ = 0.05,
¢ = 0.6 and other parameters are same as figure 1.25. Ref. Conway & Glasser (2004).

along the flow gradient. The formation of clusters and shear-bands has also been predicted by
the linear stability analysis of three-dimensional granular Couette flow (Alam 2006).

1.4.3 Present Work

In the present thesis an order parameter theory for various instabilities in two and three dimen-
sional granular Couette flow has been developed. Starting with granular hydrodynamic equations,
the Landau and Ginzburg-Landau equations have been derived for such instabilities (for the first
time in granular flows). The amplitude expansion method and center manifold reduction method,
for the weakly nonlinear analysis, have been used to derive these amplitude equations.

For the shearbanding instability in granular plane Couette flow, analytical expressions of the
fundamental mode, the second harmonic, the distortion to fundamental mode and the first Landau
coeflicient have been derived. The results from analytical solutions have been compared with those
obtained from the spectral based numerical method. The main result of this study is that the
granular plane Couette flow is suberitically unstable in dilute limit. The predicted bifurcation
scenario for the shearbanding is in qualitative agreement with particle dynamics simulations and
the experiment in the rapid shear regime of the granular plane Couette How.

We further extended order parameter theory to spatially periodic patterns in two dimensional
gramilar plane Couette flow. The stationary and travelling instabilities leading to Pitchfork
and Hopf bifurcation are analyzed. The nonlinear patterns of density, velocity and granular
temperature for all kinds of instabilities are compared with their linear eigenfunctions. This
analysis predicts two types of resonances, mean How resonance and 1:2 resonance. The analytical
weakly nonlinear analysis, similar to the shearbanding instabilities, has been generalized for (i)
vorticity banding, and (i7) gradient and vorticity banding, in three dimensional granular plane
Couette flow. Two generalized theories, theory for mode interactions and theory for spatial
modulated patterns, in granular plane Couette flow, have been developed, and some prelimary
results for both cases have been shown.
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1.4.4 Organization of the Present Thesis
Chapter 2

The general hydrodynamic equations, constitutive models and boundary conditions for granular
materials are discussed in detail.

Chapter 3

The general weakly nonlinear analysis using amplitude expansion method is explained in detail
that will subsequently be used in the later chapters. The spectral-based numerical method for
the nonlinear stability calculation is discussed.

Chapter 4

The center manifold method is used to derive Landau equation and its equivalence with amplitude
expansion method is shown. The phase diagram for the subcritical instability in plane Couette
flow is computed using spectral-based numerical method as given in chapter 3.

Chapter 5

For shearbanding instability, analytical solutions for the fundamental, second harmonic, distortion
of mean flow and first Landau coefficient are discussed. The spectral-based numerical results
are compared with analytical solutions. The complete bifurcation diagram for shearbanding
instability in plane Couette flow is shown.

Chapter 6

This chapter differs from chapters 4 and 5 in that the streamwise wavenumber in non-zero. The
weakly nonlinear analysis is performed using the amplitude expansion method to understand the
effect of nonlinearities on various linear instability modes as well as to unveil the underlying
bifurcation scenario in a two-dimensional granular plane Couette flow. This work is an extension
of the previous work on the shear-banding instability (chapters 4 and 5). The subecritical and
supercritical patterns, with non-zero wave number, are observed. The possibility of resonant
mode interaction is discussed.

Chapter 7

The weakly nonlinear stability analysis for the three dimensional granular Couette Aow is dis-
cussed using amplitude expansion metliod. The results for vorticity banding in pure-spanwise
granular Couette flow are presented. The bifurcation diagrams for the various values of parame-
ters are studied.

Chapter 8

We extend the analytical weakly nonlinear stability analysis for shear-banding instability in gran-
ular plane Couctte fow, as given in chapter 5, to the streamwise-independent three dimensional
case. The finite amplitude density, vorticity and velocity patterns are observed.
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Chapter 9

The coupled Landau equations for two-dimensional granular plane Couette flow is derived for the
case of two non-resonating modes which is subsequently extended for the situation of 1 : 2 wave
number resonance as well as mean flow resonance.

Chapter 10
The complex Ginzburg Landau equation for two-dimensional granular shear flow is derived.
Chapter 11
The summary of the present thesis along with future directions is discussed.
Introduction
Chapter :1
Governing Equations
Chapter :2

)

Weakly Nonlinear Analysis of Granular Fluid

Chapter :3
v v ! ]
Chapter : 4 Chapter :5 Chapter ;7 Chapter:10
3 l_—J——l
Chapter :9 v
Chapter :6 Chapter :8
!
Conclusions and Outlook
Chapter :11

Figure 1.29: Road map of the thesis.
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Dimensionless acceleration amplitude

Amplitude of the sinusoidal vibration

Frequency of the sinusoidal vibration

Displacement of vibration

Time

Acceleration due to gravity

Shaking strength

Number of layers

Rayleigh number

Critical Rayleigh number

Order parameter or amplitude function

Average mass of granular material per unit area

Material density

Dimensionless forcing amplitude

Nonlinear coupling coefficient in evolution equation for p
Diffusion coefficient in evolution equation for p

Frequency of subharmonic pattern

Positive paramter which related wavenumber with frequency of the pattern
Coeflicient of cubic and quintic nonlinearity in Swift-Hohenberg equation
Coeflicient related to tuning possibilities in Swift-Hohenberg equation
Parameter in favor of square pattern in Swift-Hohenberg equation
Height of the granular layer at time t = n

Mapping function

Position vector

Linear spatial operator

Control parameter

Particle diameter

Height (gap) of the Coueite cell

Length of the Couette cell

Depth of the Couette cell

Dimensionless Couette gap

Volume fraction

Particle-particle restitution coefficient

Particle-wall restitution coefficient

Diameters of the coarse and fine particles

Mass of the coarse and fine particles

Number density of the coarse and fine particles






CHAPTER 2

GOVERNING EQUATION

2.1 Introduction

The flowing of granular materials can be divided into two regimes depending on the interaction
between grains (Campbell 1990): “quasi-static™ flow and “rapid” flow. In the quasi-static regime
of granular flow, the shear stress is shear rate independent and the contact between the particles
are long enough to give rise frictional forces, thus the flow is slow in this regime. To study
such flows one needs to consider modified plasticity models based on Coulomb friction criterion
(Jackson 1983; Savage 1984}. Another flow regime is the rapid flow regime {fiuid like behavior)
(Goldhirsch 2003; Campbell 1990) in which the particles are in continuous fluctuational motion
and the momentum transfer cccurs through collisions and ‘streaming’ motion of particles. The
collisions of particles in this flow regime are nearly instantaneous and the stress is rate dependent.
The granular flow in rapid low regime is also known as ‘granular gas’ because of its resemblance
with molecular gases.

Despite similarities with molecular gases, there is a fundamental difference: the collisions
between granular particles are “inelastic” which is in contrast with the molecular gases where
the collisions are “elastic”. The rule of equipartition of energy does not hold in granular systems
whereas in molecular gases thermal energy is equally divided among each degree of modes (such
as translational, rotational and vibration) which contain %kBT of thermal energy where kg is the
Boltzmann's constant. In granular systems there is no role of %kBT‘ The effective energy scale is
the potential energy (Jaeger et al. 1996), m@d,, of a particle of mass 1 raised by its own diameter
d, in Earth’s gravity §. During particle collisions the translational kinetic energy is lost by
inelastic collisions and transformed to thermal energy of molecules comprising granular particles.
Since the thermal energy is incoherent, it cannot further transform back to the translational
kinetic energy of particles (Brilliantov & Péschel 2004; Rao & Nott 2008).

This chapter is organized as follows. The general balance equations are given in §2.2. Navier-
Stokes order constitutive relations are described in §2.3, and the expressions for the transport
coefficients are given in §2.4-§2.8. The boundary conditions are given in §2.9,

2.2 Balance Equations

The granular hydrodynamic field variables can be obtained through the coarse graining of the
particle level variables. The bulk density or coarse grained demsity (&, ) = ma{&,{) is defined
Bs

ﬂiﬂsﬁﬁ:ﬁ[ﬂi&ﬂ&, {2.1)

where 7 is the number density, f(Z,&,{) is the single particle velocity distribution function at
position & and time £ and the ‘overbar’ refers a dimensional quantity. The bulk velocity field or
coarse grained velocity, @{&.1), is defined as

ﬁ@ﬂ:@:%/ﬂ@jﬂ&, (2.2)

27
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where @ is the instantaneous velocity {local velocity) of an individual particle.. Similarly, the
granular temperature, 7', can be defined as
(€0 = oo [ Eraanie 23)
dim dim A
where & = & — @ is the Auctuation or peculiar velocity and dim is the dimension of the problem
(= 2 for disks and 3 for spheres).

The bulk density p can be cxpressed in terms of volume fraction (¢) and number density (7)
such that p = mf = p,¢, where p, is the material density and 7 is the mass of a particle:

mN o _V,N
'5:?:?7’1 =pprn:pp TF;- =Pp¢; (24)

where N is the total number of particles and, ¥ and V,, are the total volume and the volume
occupied by a particle, respectively.

In the present work, we are interested in the rapid flow regime (Campbell 1990; Goldhirsch
2003); as discussed in chapter 1, the most of the fascinating patterns belong to this flow regime. To
simplify governing equations, we are assuming that the particles are spherical, monodisperse and
smooth such that there is no tangential force exerted by one particle on the other at the contact
point. Consequently, the momentum transfer is mainly due to the collision and translation of the
particles.

The balance equations for mass, momentum and ‘pseudo-thermal’ energy are:

D o o
Pory = ~B,H(Y8) (25)
Dz R
n(_)p{vbﬁ = ﬁptﬁg -V 2 (2‘6)
dim _ DT & _ < = =
TPP_D—?‘ = —V‘q—E,Vu—'D (27)

where D/Di = /8 + V - @ is the material derivative. The first term on the right hand side of
(2.7) is the flux of pseudo-thermal energy, the second term is the source term which denotes the
shear work, and the last term is the sink term which represents the rate of energy dissipation due
to inelastic collisions per unit volume. Here g is the acceleration due to gravity.

The balance equations, (2.5)-(2.7), must be augmented by constitutive relations for stress (),
granular heat flux () and dissipation rate (D) which are discussed in the following section.

2.3 Navier-Stokes Order Constitutive Model

The Navier-Stokes order constitutive model for stress tensor is given below:
T = (p-UV-uw)1-28 (2.8)

where P is the pressure, 7 and ¢ are the coeflicient of shear and bulk viscosities, respectively, and
S denotes the devictoric strain rate tensor,

1
dim

= 1/ = =

5 = . (Va+ W’”) (V-1 (2.9)
2

where 1 18 an identity tensor. The flux of psendo-thermal energy is given by

g = -"RVT-FRiVe (2.10)
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where & is the coefficient of thermal conductivity associated with the gradient of granular tem-
perature and Ky, is an additional term that arises due to the gradients in volume fraction (Sela
& Goldhirsch 1998). One distinguishing feature of the hydrodynamics of the inelastic particles is
that the heat flux is not only generated by a non-uniform temperature (temperature gradients)
but also from the density inhomogeneities (density gradients). The second term in the expression
of g is zero for homogeneous density and %;, — 0 for elastic particles (¢ — 0) leading to Fourier's
law of heat conduction.

In the following sections we describe a few widely used kinetic theory models for the flow of
hard-spheres and disks (Lun ef al. 1984; Jenkins & Richman 1985; Garzé & Dufty 1999; Lutsko
2005; Alam et al. 2008).

2.4 Model for Smooth Identical Inelastic Spheres (Lun
et al. 1984)

The transport coefficients, pressure (p), shear viscosity (fi), bulk viscosity (), coefficient of ther-
mal conductivity (%) and dissipation of energy (D) are given as

W6, T) = p,T11(0), 1(6.T) = 5,4, T f2(0),
0T =7, 0, T fa(0),  ®(0.T)=0,d,T"° fa(0), (2.11)
R T) =7 T funl0),  D(6.T) = LT fy(0)
v

where d,, is the particle diameter and f;(.)’s are non dimensional functions of density which are
given in table 2.1,

Table 2.1: Non-dimensional functions (Lun et al. 1984).

The constitutive relations of Lun et al. (1984) are strictly valid for elastic limit (e = 1), i.e.
the parameter = (1 + ¢)/2 must set to be unity in the above expressions of f;'s.
Ogawa ¢t al. (1980) proposed a form for the radial distribution function that diverges at

FIFax/m TAGR

Acc o g =
No. TI 21

TEAH ANy Lo

fil¢) = o(1+4nox(e))

f200) = o= (m?;—_,—) (14 §nox(9)) (ﬁ, + En(3n - 2)9) + §n¢2x(¢'))

fale) = FEEne*x(9)

[10) = iy (1+ 2nox(9) (s + BrP(n - 3)9) + ame®x(0) | S22 08 3
fun(®) = (m-l(en + ‘-gf—n) B2y -1 - 175 (6*x(¢)) P i

fsl6) = Ban(l —n)e*x(e)

fole) = ¥ f(9) = AR~ n=1(l+e)
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¢ — ¢m, where ¢, is the maximum packing limit which is 0.65 for the random close packing:
1
1- (¢’/¢’m)1/3‘

The Carnahan-Starling (Carnahan & Starling 1969} form of radial distribution function is given
by

x(®) (2.12)

(1-4/2)

X9 = A5

(2.13)

which diverges at ¢ — ¢,

2.5 Model for Inelastic Hard-disks

For the nearly elastic limit (¢ — 1) of an inelastic hard-disks (of diameter d,) fluid, the constitutive
expressions for B, i, ¢, K and D are given by {2.11) where the f;-f5 are given below (Gass 1971;
Jenkins & Richman 1985):

fi(e) = 6+ 2¢%x, )
o) = £+£ —?(H%)cﬁ,

f3(d) = —=&x.
ﬁ 3y > (2.14)
o =L N s ( )¢2x,

fan(@) =
f5(¢s E’) =

4 2y 42

\/E(l —€ )¢' X )
These constitutive expressions give good predictions for transport coefficients of nearly elastic
granular Auid up-to a density of ¢ = 0.55 (Alam & Luding 2003b). In the above expressions, x(¢)
is the contact radial distribution function which is taken to be of the following form (Henderson
1975)

1-74/16

(1 - ¢'/ ¢m)2 ’

which diverges at ¢ = ¢, that is taken to be either (i) ¢, = 7/2v/3 ~ 0.906 (the maximum
packing limit in two-dimensions} or (ii) ¢, = ¢ =~ 0.82 (the random close packing limit in
two-dimensions). The above expression (2.15) boils down to that of Henderson for ¢, = 1
that corresponds to point particles. The range of validity of different variants of model radial
distribution functions is discussed in Luding (2009). The linear stahility of the shear fAow of
inelastic hard disks has been probed by Alam ef al. (2008) using above constitutive expressions.

x(¢) = (2.15)

2.6 Model for Dense Fluid Transport of Inelastic Hard
Spheres, Garzé & Dufty (1999)

The hydrodynamic description and the transport coefficients for a low density granular gas have
been studied by using the Boltzinann kinetic equations with inelastic binary collisions. Brey
el al. (1998) recently extended Chapman-Enskog solution of the Boltzmann equation for inelastic
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particles to obtain the Navier-Stokes cquations and the transport coefficients as a function of
coefficient of restitution. The problem considered by Brey et al. (1998) was an idealized gas of
sinooth, spherical hard spheres with inelastic binary collisions. Garzé & Dufty (1999) extended
the analysis of Brey et al. {1998) to revised Enskog kinetic theory (RET) for inelastic particles
at higher densities. The RET for elastic gases (Beijeren & Ernst 1973) is an accurate theory
which is likely to be valid for the entire range of flow domain as confirmed by both Monte Carlo
and molecular dynamics simulations. The RET provides a unified description of fuid, crystal
and metastable states for the hard sphere system near and far from equilibrium. The Navier-
Stokes level balance equations and associated transport coefficients for dense systems using revised
Enskog kinetic theory (Garzé & Dufty 1999) are given below,

The granular temperature is defined as

dim — 1__ —2

which leads to following energy balance equation

d'm %T =-V.§-%:Va-D, (2.17)

where 7 is the number density [viz‘ (2.4}] and other notations are same as in previous sections.
Here the stress tensor, ¥ and heat flux vector, g, arc defined as a sum of kinetic and collisional
contributions, i.e. ¥ = Ty + %, and § = ;. + ... The transport coefficients, pressure, (5}, shear
viscosity, (i), bulk viscosity, (¢}, thermal conductivity, (%), higher order coefficient of heat flux,
®p, and the granular energy, D using RET are given below:

PO T) = SohibelT, 7(6.Te) = 155 au f fal,e T,
¢
= . = 9 VIR =172 ey =
2. T.e) = 2 X fa(0, T, R T e) = = ——— fi(,e)VT,
16 3 i 64 2,/
m o B 7 % 1 —3/2 s v
rni{o, T, €)= 128 ‘/— ——— fan(o, ) ol 'D(¢=T»€]—gm¢f5(¢,e)7ﬂ + felo, e)(V -@)T,

where fi's are the non-dimensional functions of volume fraction {¢) and coefficient of restitution
{e) as given in table 2.2. Note that all the coefficients, B, &, etc, are functions of volume fraction
(), granular temperature (T) and coefficient of restitution (). The second term in the expression
of D is an extra term which was not included in the constitutive models of Lun ef al. (1984).

2.7 Arbitrary Energy Loss Model, Lutsko (2005)

Recently, Lutsko {2005) has given a kinetic theory using Chapman-Enskog expansion for the case
of a one component fluid in D-ditnensions with an arbitrary iodel for the normal energy loss. The
transport coefficients given by Lutsko (2005) have a simple general form which covers the entire
class of models. For ¢xample, the clastic hard spheres in two and three dimensions (Gass 1971,
McLennan 1989), a simple granular gas in three dimension {Garzé & Dufty 1999) and models
with velocity-dependent restitution cocfficient (Ramirez et of. 1999; Poschel & Brilliantov 2001;
McNamara & Falcon 2005) are special cases of the mnodel given by Lutsko (2005).

According to this model, the ouly scattering law allowing for energy loss which is consistent
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fi(g.e)
fa(d.€)
fs(o.e)
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Table 2.2: Non-dimensional functions (Garzé & Dufty 1099).
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with conservation of total momentum and angular momentum is

—

Tip = T12 — k12 (’312 K1z + sgn(@a - El:’)\/(ﬁlz - k12)? - %55) (2.18)

where ¥z = @) — 7 is the relative velocity before collision, Eu is a unit vector pointing from the
center of first particle to the center of second particle. The energy loss is §E which is a function
of normal relative velocity

SE = ATy - k12) (2.19)
and the center of mass velocity is Vizg = # + 2. The change in energy during a collision for
simple granular fluid model is

1 , 1 .
~0B = g1 (ﬁ"f + - - ) = - 3L - )iz - ko). (2.20)

For the simple granular fluid the transport coefficients: pressure (¥), shear viscosity (7), bulk vis-
cosity (¢), coefficient of thermal conduetivity (%), higher order coefficient of thermal conductivity
(R} and the granular energy (D), take the following form:

— 1 _ _ . —
5(¢! T! E) = Wﬁﬁfl (¢,€)T, E(¢! T! e) = _ﬁIIQ&.;?_dtm (f; + f{’:) Tl/z)
{o.Te) = w2 m fy(p,0)T 1, ®(¢,T,e) = mYID ™ (ff 4 1) T2,
=3/2 =372 = .=
- A e~ _dim T =, ¢fsT PfelV - )T
i k r
Ru(pye, T) = mM2Ag - 4my o (F5 + fi0) e D6, T,e) = ma.V o + Vo

where Vi is the volume of a particle of diameter cfp having dimension ‘dim’,

7 so\dim dim /2

Vaim(r) = 20Cuim—1 % with Caim = l"_(d%ﬂTl)

For example for the sphere i.e. dim = 3, V3(r) = ind). The superscript k and ¢ refer to the
kinetic and cellision contributions, respectively, and other symbols are same as in §2.6. The
transport coefficients are functions of volume fraction (¢), granular temperature (7'} and the
coefficient of restitution (e). Here f;’s are the non-dimensional functions of volume fraction and
coefficient of restitution as given in table 2.3. Note that in the three dimension limit (dim=3} we
recover transport coefficients for a low density fluid (Brey & Cubero 2000; Garzé & Montanero
2002) and for a dense fluid (Garzé & Dufty 1999) (see §2.6).

2.8 Present Constitutive Model

We have chosen the Navier-Stokes-order constitutive model of Lun et al. (1984) which has been
used by many authors (Alam & Nott 1998; Forterre & Pouliquen 2002; Mitarai & Nakanishi
2004; Khain 2007; Alam et al. 2005) to probe the stability of various types of granular shear
flows. The constitutive relations for stress, heat Aux and dissipation are given in (2.8)-(2.10), and
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Table 2.3: Non-dimensional functions (Lutsko 2005).
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the transport properties are given by (2.11) and the related non-dimensional functions are:

f1(¢) = o(1 + 40x) i
N 8 \°, 8 .
fE(‘I’) == %i— (1 + 55‘5\) + mmz\'
A 8
fa(¢) = W—;tﬁ'zx
Br. 12, ., 4 ., | (231
falo) = 128y (1+ —].;'f.f?.x} =] ﬁfi’ X
f4!a(¢) =0
_ 12 e
fs(0,€) = ﬁ(l e )" x !

where y is the radial distribution function [cf. (2.12)-(2.13)]. We set = 1 in the expressions of
fi’s as given in §2.4 in order to get relations (2.21) for the case of nearly elastic particles.

In the expression for the collisional dissipation D (which is proportional to f5(¢,¢) as in
Eqn. 2.21), some authors (e.g. Garzé & Dufty 1999; Lutsko 2005, §2.6, §2.7) have found an
additional contribution proportional to V-@ that appears as a dense-gas correction; we have
checked that this additional term does not affect the onset of linear shear-banding instability
and hence omitted in the present work. We have also neglected a ‘Dufour-like’ term (~ V) in
the expression for the granular heat flux (see, for example, Lun et al. 1984; Sela & Goldhirsch
1998; Garzé & Dufty 1999) even though this is a Navier-Stokes-order term, i.e. of order Knudsen
number! (Kn), it appears at O(eKn), where € = (1 — €2) is the inelasticity; however, it can be
casily verified that the shear rate (~ Kn) and the inelasticity cannot be separated from each
other (K'n ~ y/€) in uniform shear flow, and therefore the above ‘Dufour-like’ term is likely to be
of higher-order in terms of Knudsen number. In any case, the effect of this additional term on
the stability of uniform shear flow was checked by (Gayen & Alam 2006), along with the effects
of spin-fields and tangential restitution, who showed that this term does not introduce any new
instability in plane shear flow.

It should be pointed out that Gayen & Alam (2006) used more general expressions for fi-fs1in
(2.21) that also depend on the restitution coefficient €, having a larger range of validity in terms of
e; for example, the correct expression for fi for inelastic particles is fi(d,e) = ¢(1 + 2(1 +e)px),
with similar expressions for fo-f;. Even with such an elaborate restitution-coefficient-dependent
constitutive model, they reported no new instability in plane shear flow. Since the present
nonlinear analysis is a finite-amplitude saturation of the underling linearly unstable mode, our
contention is that a more complex restitution-coefficient-dependent constitutive model would not
qualitatively alter our predictions on “nonlinear” shear-banding instability.

The Navier-Stokes-level constitutive models are strictly valid in the quasi-elastic limit (e ~ 1)
since certain non-Newtonian effects, like the normal stress differences (Sela & Goldhirsch 1998;
Alam & Luding 2003a),become prominent at smaller values of the restitution coefficient (i.c. at
larger dissipation levels). Such effects can only be incorporated using Burnett- or super-Burnett
order constitutive models (Sela & Goldhirsch 1998) which we do not consider here.

2.9 Boundary Conditions

In contrast to Newtonian fluids, the velocity slip has been observed at the boundaries in ex-
periments (Hanes & Inman 1985; Savage & Sayed 1984) and computer simulations (Campbell
& Brennen 1985) of granular flows. The slip velocity generates pseudo-thermal energy at the

IThe ratio of the mean free path length of the molecules of a fluid to a characteristic length.
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houndaries and there is a lose of energy due to inelastic collisions between the particle and wall.
Therefore the granular temperature at the boundaries cannot be determined independently, rather
it involves solutions of Aow fields far away from the boundaries. Consequently the walls may act
as a source or a sink of pseudo-thermal energy {granular temperature) under different conditions.

Several theoretical studies have implemented boundary conditions in the How preblems using
either huristic or kinetic theory approach. The heuristic approach (Hui ef ol 1984; Johnson &
Jackson 1987) for boundary conditions depend on two specific wall properties: coefficient of resti-
tution for the particle-wall collisions e,, and the specularity cocfficient 3,. On the other hand,
the boundary conditions using kinetic theory approach {Jenkins & Richman 1986: Richiman 1988,
Jenkins 1992) deal wall properties in a rigorous manner. Hui et al. (1984) modeled boundary
conditions for dense Aow using the phenomenological theory of Haff (1983). In the derivation
of temperature boundary condition, Hui et al. (1984) neglected the contribution of shear work
performmed by the boundaries due to slip velocity which was later modified by Johnson & Jackson
{1987). They derived a set of boundary conditions in a generalized manner by assuming the fric-
tional contribution of stress at the boundaries. Moreover, Johnson & Jackson {1987) considered
the average distance between the wall and the surface of an adjacent particle, and the average
boundary area per particle, as a function of number density or volume fraction. The details of
generalized boundary conditions of Hui ef al. (1984) and Johnson & Jackson (1987) are discussed
below.

2.9.1 Boundary Conditions in the Dense Limit using Heuristic
Approach by Hui ef al. (1984)

The boundary conditions derived by Hui ef al. (1984), based on Haff's theory, are valid in the
limit where the rheology is domninated by particle collisions. We consider the Aow of spherical,
non-cohesive, smooth and ideutical particles of mass m. ki is asswined that mass density 7 is large
enough so that the average separation, 3, between the neighbors is always less than the particle
diameter, dy, i.e. 5 << dp. Under this assumption the bulk density can be defined as 5 ~ m/dS.

Balance of Tangential Momentum

The balance of momentum can be obtained by equating the tangential momentum at the boundary
due to bulk flow with the tangential momentum flux due to particle-wall collisions,

[»-X- t]at the boundary = ¢ S (2.22)

where n and ¢ are the norinal and tangential unit vectors, respectively. The quantity S, refer to
momentuni flux (the rate of transfer of momentum across a unit area) which can be defined as

S, = average tangential momentum transfer per collision
xcollision frequency
xnumber of particles adjacent to unit area of the surface. (2.23)
Thus we can write
alﬁsﬁftﬁ, WV 3T
Sy = ———— (2.24}
dp Sn

where a; is an order one dimensionless constant, 3, = 4y — 4, is the slip velocity with @, and
&, being the Aow and wall velocities, respectively, 3, the specularity cocfficient which is zero for
the perfectly specular collisions and unit for the perfectly diffusive collisions. Here the subscript
‘0" denotes the corresponding property being evaluated at the boundary. The quantity 3, reflects
the nature of particle-wall collisions which measures the fraction of collisions that transfer a
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significant tangential amount of tangential momentum to the wall (Hui et al. 1984). The left
hand side of (2.22) is the shear stress evaluated at the wall which is equal to

_diig

- _dige
[n X t] at the boundary = {‘”’cﬁ

=
]at the boundary dg

(2.25)

where fi denotes the shear viscosity and the subscript t denotes the tangential component of a
vector. From the Haff’s theory, shear viscosity at the wall is given by

asmV3T

d-pSU

fig = (2.26)

where as is an order one dimensionless constant. From (2.22), (2.24), (2.25) and (2.26) we get,

asd, diig,

|ﬂ3| ==

N a13s dy ' (227)

This is the velocity boundary condition to be satisfied at the boundary.

Balance of Pseudo-thermal Energy

The balance of pseudo-thermal energy can be obtained by equating the rate of energy loss to the

wall per unit area due to collisions (D,,) with the energy flux transmitted to the wall due to bulk
flow, i.e.

(7 - dlat the boundary = ~Du, (2.28)
where D, can be written as,
D, = energy loss per particle-wall collision x collision frequency
xnumber of particles per unit area of the wall. (2.29)

Using the Haff’s theory we can write

| V3T 1
Dy = (eg—ﬁuinz(l—(’ﬁ_,)f?, (2.30)
2 S0 d?,

where 7 is the number density; particles per unit area of the wall is equal to 7i(d), + §) = fid,, and
a3 is an order one dimensionless constant. The energy flux at the wall is given by

o o d /3 -
[7 - @lat the boundary = —Rog (?’T) , (2.31)

where Rq is the thermal conductivity at the wall. The expression for the coefficient of thermal
conductivity (Haff 1983) is given by
» V3T

—
R = aad,

(2.32)

where a4 is an order one dimensionless constant. From (2.28)-(2.32) we get an expression for
thermal velocity at the boundary,

2a4d, diy
U.;;{l = (‘ﬁ.} dy

Vg =

(2.33)

where dijg/dy is the normal derivative at the wall and @y = V3T is the thermal velocity.



38 I Chapter 2.

2.9.2 Boundary Conditions of Johnson & Jackson (1987)

Balance of Tangential Momentum

Let us define the frequency of particle-wall collisions for each particle:

fo=(31)%/5,, (2.34)
where 3,, is the average distance between the wall and the surface of an adjacent particle (Bagnold
1954),

_ _ o 1/3 _
8y = gw(¢v ¢'mvdp) = dp l:('f) - l] 1 (235)

and (3T)'/2? denotes the root-mean-square velocity fluctuation. The average boundary area per
particle is defined as

2.36)
¢ (
and thus the total number of particles adjacent to unit area of the surface is 1/@,. Here ¢
is the maximum volume fraction at closest random packing. The average tangential momentumn
transfer per collision from particles to the wall is given by

) b\
Qo = ﬁ'w(‘p: dm, dp] = CE, (_m) f

Sav = BB, = %ﬁs“ﬁpazﬁs {2.37)

where @, is the slip velocity. B, is the particle density and 3, is the specularity coefficient. The
rate of tangential momentum transfer to unit area of the wall due to particle-wall collisions is
given by

_ = /2=
Sw — Sau x f(: x _i _ ,63 \/E?Tpp(ﬁT Uy

B St [L— (0f0m) ]

(2.38)

Equating the component of bulk stress to the collisional rate of momentum transfer along the
tangential direction, we get the boundary condition for velocity

[n-Z-t] at the boundary = ©° Sw- (2.39)
Balance of Pseudo-therinal Energy

To obtain the boundary condition for granular temperature, we equate the normal component of
the flux of pseudo-thermal energy to the (i) net generation of pseudo-thermal energy at the wall
due to slip velocity and (ii) the rate of dissipation of energy due to inelastic collisions,

ng=u, Sp— Dy, {2.40)

where %, - 5, is the shear work term i.e. the generation of pseudo-thermal energy due to slip
velocity at the boundary and D, is the rate of dissipation of pseudo-thermal energy due to
inelastic particle-wall collisions per unit area of the surface. The expression of D,, is given by

D = energy loss per particle-wall collision x collision frequency per particle
xnumber of particles adjacent to unit area of the particle

_ - P3/2¢1 _ 2
= [radra-e)| « fox L - Yol c)

- B 46 [1- (6/0m) ]

(2.41)
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The first term of (2.40) was omitted by Hui et al. (1984). In the limit of e,, — 1 which implies
that D,, — 0, the first term of (2.40) dominants over the second term and thus the boundary acts
like a source of pseudo-thermal energy. In the other situation, if e,, is small, the second term of
(2.40) dominates and therefore the boundary behaves as an energy sink.

2.9.3 Boundary Conditions of Jenkins & Richman (1986)

The formal derivation of boundary conditions using kinetic theory was first given by Jenkins &
Richman (1986). They assumed a boundary which was composed of halves of similar disks for the
two dimensional flow, and hemispheres for the three dimensional low. The particle distribution
function was assumed to be Maxwellian. These boundary conditions differ from the heuristic
boundary conditions of Hui ef al. (1984) in the following manner:

I measure of the boundary roughness determined in terms of diameters of two types of disks
(or spheres) and the spacing between the wall disks (or spheres);

[I the energy balance at the boundary contains the rate of working, i.e. shear work term, of
the boundary due to slip velocity;

11T a boundary condition on pressure is obtained which fixes the density (or area/volume frac-
tion) of the flow at the boundary and leads a unique solution to the boundary value problem
for the steady shear flow between the parallel plates.

The boundary conditions of Jenkins & Richman (1985) are same as (2.39) and (2.40). However the
explicit forms of S, and D,, are obtained from dense gas kinetic theory with a defined structure
for the wall.

2.9.4 Present Choice of Boundary Conditions for the Nonlinear
Stability Analysis

The general forms of boundary condition with non-zero slip velocity and /or non-adiabatic (dT/dy #
0) walls (as defined in §2.9.1, §2.9.2 and §2.9.3 ) be incorporated into the nonlinear stability theory,
but the resulting nonlinear analysis (especially the adjoint problem and the higher harmonics)
becomes very complicated which is left for future work.

The walls can act as sources or sinks of granular (fluctuation) energy which might affect the
nonlinear saturation of shear-banding instability, thereby modifying the structure and the spatial
position of shear-bands within the Couette-cell. The effect of such slip boundary conditions with
non-adiabatic walls on the ‘linear’ shear-banding instability has been discussed by Alam & Nott
(1998). In this present work, as a first step towards developing an order-parameter theory, we
restrict to simpler boundary conditions, no-slip and zero heat flux, that admit analytical solutions
even for the nonlinear problem and the related bifurcation scenario remains perfect (Alam et al.
2005; Alam 2005).

The no-slip condition implies that the flow velocity at the wall is same as the wall velocity,
consequently, the balance of momentum and energy at the boundary gives

[n. % t] =0 and n-g=>0, at the boundaries

where n and t are the unit vectors along the normal and tangential directions, respectively. In
the component form, the boundary conditions for the bulk velocity and the granular temperature
are
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where i, is the wall velocity.
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Bulk density or coarse grained density
Material density

Particle diameter

Mass of a particle

Number density

Restitution coefficient

Instantaneous velocity of a particle
Bulk velocity or coarse grained velocity
Fluctuation or peculiar velocity
Dimension of the system

Volume fraction or solid fraction
Volume fraction at maximum packing
Total number of particles in the system
Volume of the system

Volume oceupied by a particle
Acceleration due to gravity

Granular Temperature

Heat Aux

Stress tensor

Dissipation rate

Pressure

Coeflicients of shear and bulk viscosities
Deviotoric strain rate tensor

Average separation between two neighboring particles

normal unhit vector
tangential unit vector
Momentum Hux
Specularity Coefficient

Coeflicient of thermal conductivity related to the granular temperature

Coefficient of thermal conductivity related to the volume fraction

Dimensionless functions of volume fraction

Radial distribution function



CHAPTER 3

WEAKLY NONLINEAR THEORY FOR
GRANULAR SHEAR FLOWS

3.1 Different Approaches to Derive Landau-Stuart
Equation

A general approach to derive the Stuart-Landau equation

% = O 4 (Dt 4, (3.1)

with & being the complex amplitude of the disturbance, or its partial differential analog, the
Ginzburg-Landau equation

rix-4 o
e 1)
o M +oas 22

+c a4, (3.2)

is to reduce the dimension of the system by projecting the infinite-dimensional system onto some
low-dimensional system, spanned by the slowly decaying modes of the associated linear eigenvalue
problem. A variety of seemingly different methods, like the amplitude expansion method (Stuart
1960; Watson 1960; Reynolds & Potter 1967), the multiple scale analysis (Stewartson & Stuart
1971), the Fourier expansion method {Herbert 1980} and the center manifold reduction {Carr
1981) are widely used in the theory of weakly nonlinear analysis of fluid systems (see for reviews,
Stuart 1971; Busse 1978; Newell et al. 1993).

3.1.1 Amplitude Expansion Method of Stuart and Watson (1960)

A formal weakly nonlinear analysis for fluid system was first rigorously established by Stuart
{1960) and Watson (1960). Stuart derived Landau equation in 1958 using an energy balance
equation, based on the assumption that the disturbance retain its ‘Orr-Sommerfeld' shape as
the amplitude grows which is not true in general because the distortion of disturbance plays an
important role for the viscous instabilities. Later, Stuart {1960) used the small growth rate as
an expansion paramcter and derived the Landau equation from the Navier-Stokes equations for
the plane Poiseuille flow. Watson extended and nodified Stuart’s (1960) work and established
an amplitude expansion method which is applicable to arbitrary order. The amplitude erpan-
sion method {Watson 1960}, which uses the small amplitude of the most unstable mode as an
expansion parameter, is based on the assumptions of ({) separable solution and (#4) the validity
of the Landau equation. This reduces the set of governing equations into a series of crdinary
differential equations: (a) at order Q&) we recover the linear eigenvalue problem; (b) at each
even order, O(«/%"), with n = 1,2,..., we have scts of inhomogeneous differential equations for
the harmonics of even order and the mean-flow distortion; and {c) at each odd-order, G972 +!},
with n = 1,2, ..., we have sets of inhomogeneous differential equations for the harmonics of odd
order and an equation for the distortion of the fundamental. The latter equation can be solved
using the solvability condition that yields the Landau coefficients. All these equations are solved
sequentially along with Landau coefficients. This method is known as Stuart-Watson's amplitude

41
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expansion method or Stuart-Watson theory.

Davey (1962), Davey et al. (1968) and Eagles (1971) applied Stuart-Watson theory to study the
well-known Taylor-Couette problem. Reynolds & Potter (1967) extended and modified amplitude
expansion method for three dimensional flows and developed an elegant simplified formalism which
involves few functions, represented by equations of the same kind. For incompressible shear flows,
it has been shown that the amplitude expansion method is equivalent to the direct methods of
deriving the Landau-Stuart equation such as center manifold method (Carr 1981) and multiple
scale analysis (Fujimura 1989, 1991) which are described below.

3.1.2 Center Manifold Reduction

In the center manifold reduction technique, the spectra of the linear operator is decomposed into
critical (slow/active) modes and noncritical {fast/slave) modes, and the resulting system is then
projected onto the center manifold; the eigenvectors of the center/active modes span the center
manifold. The underlying assumption is that the time-scales for the fundamental and the slave
modes are well separated in that the fundamental/critical/slow mode remains constant over a
time-scale during which the slave modes decay to zeros. When the control parameter is very
close to its critical value, the above ansatz is likely to hold and the amplitudes of all the slave
modes relax on the center manifold. If o represents an active mode and S denotes the slave
modes, then the center manifold, W, is defined as W = {(«&, S)|S = S(«),|«| < 8} where §
is a sufficiently small number. The functional relationship § = §(&) can be used to formulate
governing equations for nonlinear harmonics generated by the interaction of active modes. The
dynamics of an infinite system can be predicted by studying the dynamics of a low-dimensional
system, restricted to the center manifold (Carr 1981; Wiggins 1990). On this center manifold,
the amplitude of the disturbance satisfies an amplitude equation

d&f

— = f(o 3.3

= = J(a), (3:3)
where f is a nonlinear function of an active mode. For example, f can be written in the following
form

ja o]
fler)y = Zc("”ﬂ" + constant (3.4)

i=1
where the coeflicients of f involve integrals which are functions of active modes. For the problems
with perfect symmetry (i.e. without any imperfection or unfolding, Golubitsky & Schaeffer 1985),

Sf(&) has a normal form
fla) = + D’ + (3.5)

With this form of f{o), equation (3.3) is invariant under the transformation & — —/. The
bifurcation and the dynamics of the system can be studied from the amplitude equation (3.3)
which is much simpler than solving the original set of nonlinear partial differential equations.

3.1.3 Multiple Scale Analysis

The multiple scale analysis is based on the separation of scales. Stewartson & Stuart (1971) used
two time and length scales to derive a compiex Ginzburg-Landau equation to describe aperiodic
patterns in plane Poiseuille flow. Weinstein (1981) extended the work of Stewartson & Stuart
{1971} and shown its equivalence with Watson's amplitude expansion method. The timescale at
which nonlinear terms become dominant over the growth of the fundamental mode is taken to
be the inverse of the linear growth rate as argued by Stuart {1960}. Here the fast time scale,
71 = O(1), is related to the exponential growth/decay rate of the fundamental mode, and the
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slow time scale, 75 = O(1/¢), where € is proportional to the growth/decay rate, is related to the
amplitude function (which is equivalent to the ansatz that the perturbation amplitude & is a
slowly varying function of time). Similarly we can introduce a series of slow time scales, 7,,, such
that t, = O(1/¢"). Using ¢ as a small expansion parameter we can expand perturbation variables
as a power series in € and the Landau-Stuart equation for the slowly varying amplitude can be
derived from the solvability condition (Fujimura 1989).

Although there are interesting and unresolved issues regarding the uniqueness of the Landan
coefficients, the validity of expansion methods and the convergence of the Landau series (Herbert
1980, 1983; Morozov & Saarloos 2007; Becherer et al. 2009), the weakly nonlinear analysis is
able to predict the local bifurcation whether the flow is subcritical or supercritical near the
critical point. Such theoretical predictions have also been confirmed experimentally for the plane
Poiseuille low (Davies & White 1928; Nishioka et al. 1975), Taylor-Couette flow (Davey 1962)
and Rayleigh-Bénard convection (Busse 1978).

3.1.4 Organization of this Chapter

In this chapter we will develop a weakly nonlinear theory that takes into account the nonlinear
interaction between modes of different wave numbers. We follow the amplitude expansion method
of Stuart (1960) and Watson (1960) which was later formalized by Reynolds & Potter (1967).
This is an indirect method to arrive at Landau-Stuart amplitude equation and the related Landau
coefficients are found by using the Fredholm integral or the solvability condition as detailed here.
The nonlinear solutions are determined in terms of the basic wave, its distortions and harmonics
at various order. We have recently developed an order-parameter theory for the granular plane
Couette flow (Shukla & Alam 2009) using the second approach of center-manifold reduction
technique. This method has been briefly discussed in chapter 4.

This chapter is presented as follows (see figure 3.1). The mathematical formulation of the
problem is given in §3.2. The methodology of the amplitude expansion technique is discussed
in §3.3. An spectral-based numerical scheme has been developed to solve the related nonlinear
stability problems as detailed in §3.4.

3.2 Nonlinear Perturbation Equations for Granular
Flows

Consider a granular flow of smooth, monodisperse, inelastic particles (for example, hard spheres
in three dimensional system or hard disks in two dimensional system), obeying a simple collision
model, driven by shear, gravity or vibration; for instance, plane Couette flow between two op-
posite moving walls or gravity driven Poiseuille flow or convection in bounded and unbounded
geometry driven by shaking and/or vibration (see chapter 1). The stability of such systems
employs granular hydrodynamic equations originated from the kinetic theory with appropriate
models for the rheology of the medium as described in chapter 2. We have a set of five balance
equations (one mass, three momentum and an energy equation).

The first step to study any problem is the nondimensionalization of the governing equations
(balance equations with constitutive relations). Depending on the physical geometry of the system
we can define reference length, time and velocity scales. Using these reference scales we can obtain
a set of dimensionless balance equations and constitutive relations. The flow whose stability we
wish to determine, i.e. the base flow or mean flow (X), can be obtained by solving balance
equations along with boundary conditions under some assumptions on the flow.

The next step is to determine the disturbance equations by imposing a small disturbance
in the base flow as shown schematically in figure 3.2. Upon substituting the base flow plus
perturbation terms into the set of governing equations and subtracting the base flow equations,
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we get a set of nonlinear disturbance equations. We further assume that the base flow is steady
and one-dimensional, i.e. X?' = X (y). The nonlinear disturbance equations can be expressed
in the matrix notation as given below:

(2 — E) X(z,y,2,t) =N (3.6)
ot
where

L= L(D;.,0y,0.,0%,05.02: X°,...) (3.7)

is the linear operator, X = (¢',u’.v'.w’,T") is the disturbance vector and N denotes nonlinear
terms. Here ¢, (u/,v',w') and T" are the disturbances in volume fraction, velocity components in
x-, y- and z-directions, and granular temperature, respectively. Since the granular fluid is com-
pressible, the nonlinearities arise from the inertial terms as well as from the transport coefficients
that are nonlinear functions of density and temperature. Note that all the transport coefficients
which are the functions of two variables (density and temperature) are expressed in the form of
Taylor series around the base state. In most of this thesis, we have considered nonlinear terms
up to cubic order

N =Na(X, X) + N3(X, X), (3.8)

where A and A3 are the vector representations of quadratic and cubic nonlinear terms, respec-
tively. However in chapter 7, we will consider the effect of quartic (N;) and quintic (N5) nonlinear
terms. The general form of the boundary conditions can be represented as

BX =0 at y==1/2, (3.9)

where B is the boundary operator (for example, no-slip and zero heat flux boundary condition).
The explicit forms of N and B are not needed to develop the nonlinear theory, but they will be
written down explicitly in subsequent chapters (4 to 10) for specific types of perturbations.

In the next section we develop a weakly nonlinear theory of a general granular fluid using am-
plitude expansion method. All the problems which have been studied in this thesis are particular
cases of this general analysis except chapter 4 where we have used another method, namely, the
center manifold reduction technique. For a better understanding of the analysis we will give an
explicit form of a equation (continuity equation for example) at each step of the procedure.

3.3 Amplitude Expansion Method

Let us consider a flow between two bounded walls (e.g. Couette How, Poiseuille flow, convection,
etc.) as shown in figure 3.3. In this figure z-, y- and z- directions represent the streamwise,
gradient and spanwise flow directions, respectively.

In linear theory, we assume infinitesimal disturbances (basic wave) of the form

X(x,y,2,t) = X1 (y)eihertheztwt) gat (3.10)

where X is a disturbance vector as defined in the previous section, a-+iw is the complex eigenvalue;
e is the amplitude of the basic wave with ‘a’ denoting its growth rate, and w is the frequency
of the basic wave. Here, k, and k. are the streamwise and spanwise wavenumbers, respectively.
The superscript notation on the amplitude, X5' of the linear eigenfunction will be clarified
later. The flow is linearly unstable or stable or neutrally-stable if a is positive or negative or
zero, respectively. In nonlinear stability, the amplitude of the disturbance, A(t), is finite and
time dependent which is taken to be the counterpart of the real exponential term in (3.10),
ie. A(t) = e; moreover, the frequency of the basic wave, w, is allowed to depend on the
disturbance amplitude, i.e. w = w(A). Because of the absence of nonlinear terms in linear theory,
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Figure 3.3; Schematic for the coordinate system in the flow

any result, for example eigenfunctions, is independent of the amplitude of the disturbance and
henee the amplitude of disturbance is infinitesimally small.

3.3.1 Transformed Nonlinear Equations

Let us use the following transformation {Reynolds & Potter 1967)
=k o+ k.ztwt, w=wld) and A= A{) (3.11)

where A(t) is the “real” amplitude of the disturbance such that A(t) = e** for infinitesimal
disturbances in the linear theory. The following fact is embodied in the above transformation:
the growth rate and frequency will change with the finite size of the perturbation. Therefore, the
partial time derivative can he transformed into

7] d4 9 dw { dA ad
§_>‘(FM+ [w—i_ﬂ(t_(if_)] '(E (3.12)

This transformation is equivalent to a two time-scale transformation where the first term in
{3.12) represents a slow time-scale (which implies that the perturbation amplitude A(#) is a
slowly varying function of time) and the second term represents a fast time-scale. The spatial
derivatives are transfortned accordingly:

d a d a

e ~ Mae 2 Mar (3.13)
2 2 2 v

Kial y2 0 o 29 {3.14)

oa2 | Toee 92 o

The above transformation (3.12)-(3.14) is then inserted into the disturbance equations {3.6). As
an illusiration, let us consider a disturbance equation for the balance of mass:

% = o O¢' o 0t 1] 09 ' n% HNo'v')  He'v') | dP'v')
ar = e T T\t ) T oz T oy T o

(3.15)
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where 4 and ¢ are the base state velocity (streamwise} and density, regpectively; and ¢>° is a
derivative of " with respect to y. Equation (3.15) is transformed into:

dA 8¢’ dw ( dA (')(b’_ 0 8¢ 0 6‘u’ 0 0, Ow
dt6A+[w+dA(td)]B_ﬂ —u" ke ¢k (¢+¢ay)v—¢kag
N ,Blt’ ,% N ' L0 [ 0w 00

ks [¢> 58 T 39] [r.f? By + v ay] —k, [¢§5+ 39] (3.16)

The rest of the disturbance equations are transformed accordingly. All disturbance equations can
then be written in a compact form:

[M(04,095w) — £(8,.82,89,85:6",.. )] X = N. (3.17)
Here
£ = £(3,,92,00,83:6%,..) (3.18)
is the linear stability operator and M is a diagonal operator
d4 8 dw (. dA 7]
M=ot (5 () @) (319)

with I being the identity operator.

3.3.2 Fourier Expansion and Transformed Nonlinear Equations

To selve (3.17), now we look for solutions X = X(y, A,8) in terms of the wall-normal distance
(%), the amplitude of perturbation {4} and the instantanecus position in the cycle of the basic
wave (). It is verified that the coefficients of transformed disturbances equations (3.17) and
boundary conditions do not depend explicitly on #, therefore the transformed equations (3.17)
are translational invariant in €. Consequently, the solution can be expressed in terms of Fourier
expansion

Xy A8 = XHE(y A)e® 4 XKy, A)e— 9, (3.20)

where the summation is taken over all positive integers k > (, and the tilde over any quantity
denotes its complex conjugate. This Fourier expansion (3.20} incorporates the fact, as mentioned
before, that the finite-size of the perturbation will change both the frequency (~ # as embodied in
the exponential term in (3.20)} and the growth rate (~ A as embodied in the amplitude function
in {3.20)) of the perturbation.

Substituting (3.20) into the nonlinear perturbation equations {3.17) and collecting the coef-
ficients of ¢**?, we obtain an infinite set of coupled non-linear partial differential equations for
each Fourier coefficient X®) k& = 0,1,2,.... The matrix representation of these equations for
XE gy, A) = (o), 4®) ) (%) TN)TT can be written as:

(M® - (B, 02, ik, k% 6%, ) X = N (3.21)
where M™) is

*) = M(Da, ik w) = [(f:l_?(% + ( + :ll: (tdA)) zk] I {3.22)

The boundary conditions {3.9) are transformed into

BX® =0 at y==+1/2. (3.23)
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Thus equation (3.16) can be written in the following form,
dAat‘fl[k) dw dA . Bﬁb”") _ 0. (k) 0. 3] ( 0 1] 6 ) (k)
EW*‘ w+a§ ta 3kw———u Zkk‘;(b ¢ ikkou (,by'i'(}l’ ay v
—¢Pikk,w® —~ 1__:_"%;; [qﬁ(k'j)iju(j) + 0 i(k + julr+d — pF+D 550
a9 4 aDi(k 4 j)e®+) — n(m)mgm]

. “ k : -t
1 [ @ 5 8 909
1+ ke Yy By

.)aq)(j) N ,;,(3'134"’”‘“) + v(k+j)6¢’(j}
Ay 3y By

k , N . . ,
_ﬁ [q)(k_-’)ijw{’) ¥ ¢(J)i{k + j)w{kﬂ) _ ¢(k+”ijtbm
—'rw(k_j)t'j(b(j) + lﬂ(j)i(k + j}¢;(k+j) _ w(k"'i)iqu(i)] (3.24)

where § > 0. Due to the nonlinear interaction/coupling of different Fourier modes, the solution
to the infinite set of partial differential equations (3.21) is difficult to ascertain. Fecusing on
small-amplitude (but finite) waves, a power series solution in the amplitude A can be sought.
This procedure amounts to choosing a variable separable solution in terms of a Taylor series
in perturbation amplitude which, in turn, helps to decouple the coupled system of nonlinear
equations (3.21).

3.3.3 Taylor Expansion and Superscript Notation

When the nonlinearities of governing equations are taken into account, the perturbation inter-
acts (¢} with itself, (i¢) its complex conjugate and (¢} its higher-order harmonics, leading to
the generation of harmonics and the corrections/distortions of various order in the amplitude of
perturbation. We require that the nonlinear problem for infinitesimal amplitudes (A — Q) should
reduce to the linear problem; here (A} terms denotes the fundamental mode (linear eigenfunc-
tion), O(1) denotes the mean flow, O(A?) consists of the second harmonic (k = 2) as well as the
distortion of the mean flow (k = 0). The fundamental mode interacting (i) with itself and (i)
its complex conjugate leads to the generation of {i) the second harmonic and (ii) a distortion
of the mean-flow, respectively, both of O(A2). Similarly, the interaction of (iaz) the fundamental
mode with the second harmonic and (ib) of three fundamental modes generate the third harmonic
(k = 3), and (#{) the interaction of the fundamental with the distortion of the mean flow leads
to the generation of the distortion of the fundamental mode (k = 1), all three are of O(A®). The
above physical considerations suggest the following power series expansion for the perturbation
vector

X®(A,y) = A"X®n ), with k>0, n>1, (3.25)

where XFml(y) = (glkm) ylknl plsnl yylén] plenhTr represents the spatially varying amplitude
functions. We have followed Reynolds & Potter (1967) to identify the superscript notations and
their bounds as indicated below:

) =n20 [0 =>n2l; {n} =222 nm=n<m (3.26)

kin] = nxk kz0,n>1 (3.27)
{kin} = a2k k21, nz2 (3.28)
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Note that the negative indices are not permitted and the lower bound on any index is greater
than or equal to zero, depending on the type of the bracket/delimiter, ( ) or { } or [ ]. The
last item in (3.26) asserts that a punctuation (semicolon) puts a limit on the first index which is
bounded its second index.

In the dual superscript notation for Xkl in (3.25), the first index (k) refers to a particular
Fourier mode and the second index (n) indicates the order of a particular term as O(A"). To
clarify this, let us consider the Taylor series expansion of the first three Fourier coeflicients:

X (y,t) = ()(\"”( ) + AWPXU() +..)
XOy,t) = At (XO2(y) + A2 XO(y) +...) 3. (3.29)
X2 t) = A(r}‘*(X'“J(t;}—FA( 2xl2=-*l(y)+...)

The leading term of the first (k = 1) Fourier coefficient X *=1) is AX[11 which is of order
O(A"=1), representing the fundamental mode; the next-order term in X *=1, A3 X113 represents
the first correction/distortion to the fundamental mode and is of order O(A%), and X '] is dubbed
the distortion of the fundamental. The zeroth (k = 0) Fourier coefficient X*=9 is related
to thL ba.sc/ mean flow (which in our double index superscript notation would be X% (y) =
(@, u", 09, w®, TY)T7). Therefore, the leading term in X, A2X[%2] represents the distortion of
the mean flow and the rest being its subsequent higher-order corrections. Similarly, the leading
term of the second Fourier coefficients X #=2) is 42X (%2 which is the second harmonic and the
rest its subsequent higher-order corrections. It is clear from the arguments in the first paragraph
and equation (3.29) that

Xkl =0, for odd (k +n) (3.30)

in the power series expansion (3.25).

The above superscript bracket notations (Reynolds & Potter 1967) are extremely useful to
simplify the algebra as well as to identify a particular mode (i.e. a fundamental or a harmonic of
particular order) and its modal interactions of any order.

3.3.4 Landau Equation and Modal Equations for X %"

From the requirement that A(t) be proportional to e (a = a'?) as A — 0 it follows that

—— 5a% as 4 0. (3.31)

This is the well-known limit of infinitesimal disturbances in linear stability theory. Since the

amplitude for infinitesimal A must behave as in linear theory (i.e. grow/decay exponentially), we

can write v—% as a power series in A:

 dA
dt

A a'? + 40V + A%afD 4 ... = A"g™), (3.32)

where a® is an cigenvalue (growth rate) from the linear theory. Similarly, we can write an
expression for the terms involving frequency w,

% =w+ ‘:—“‘; (r‘—lg) = b® + Ab\V) 4 A2 4 ... = A"H, (3.33)
O as C

where b is an eigenvalue (frequency) from the linearized theory.

It is clear that the Landau equation is postulated to hold in the present formalism of amplitude
expansion method (Stuart 1960: Watson 1960; Reynolds & Potter 1967). This is in contrast to the
center manifold reduction (Carr 1981) wherein the Landau equation is derived from the evolution
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equation of the slow mode by taking its inner product with the adjoint linear eigenfunction (cf.
chapter 4, Shukla & Alam 2009). This is one of the main differences between the “direct” method
of center manifold reduction and the “indirect™ method of amplitude expansion technique. The
center manifold reduction is discussed in chapter 4.

Let us insert (3.25), (3.32) and (3.33) into equation (3.24) and equate the coefficients of A"
to obtain:

(?H-(l'-{”_mj + !.k-bt"_m})ﬁ')lk:m] _ —Un.".k‘t'-‘.;(])[""'”l B ﬁ")nékkrulk:”] i (th!'l‘ +¢03L)') U[i.-:nl

—@Vikk.wk™ 4+ NL (3.34)
where
N, s ) +.15H‘ [t"f)"‘_"'"_mlfjub‘ml 1 (;)[j,n—!n]"{k +J-)u[k+_;.m] - Q-)[k+_;.n—m|_’v_jﬁ[3.m]

+ulk—J’;n—mI?-_J-(b[j'.m] + I‘J'.U:”_m].".(k +j)¢[k+j:m] - u[kd-_j;n—m]quaf_;;mf]

]a”[khr.ml ]H.ﬁ[_;';m]

+ (‘hlk+j:n- m

I:@]k—j:n —m]| al'{“ il + d‘)|,j:n —rm

1+ 0k dy Yy Ay
+1,[k—3:n—m|a(b[jm!] 4+ I-,|J:n—m| a‘p“‘*—'j:ml + t_,|Jc+_;':n—|rn] O&U:m}
Ay Ay dy
k.,

- z {f;lll.&-—j:u—nrfuw[j:m] F é[}:u—-m]i(k +J,-)w[k+_j'.m| - G-)[kt;':n—m[!-J-,J][j:m]
L+ b
+m[k—J:H—m]ijq;)[lj:m] + 13_.f[j"ri_7”"f(.l|' +j)(lb[k+,j:m] - w;kq-;:n--m]ijqai,j:nd] . (3.35)
Equation (3.34) can be reexpressed as

(H(l(“} + Lkbt[]J}(,f?[kml - _(_”,Iﬂ[n—ml + jkbh;—m])d)[k:m] = ”Uikkxdj[k;rd s t;ﬁ”?:kkm?llkl‘”]

ST o :
= (:,»g + ¢° zTy) vkl — @O%kk, wlk™ 4 NL. (3.36)

Finally we can write above equation in the following equivalent form

("{I{UJ + -.ikb{'” )dJ|k:ﬂ] = _(ﬂi" ~-1) + I'kb[”_l])ﬂf)lhl] o (T}lﬂ.fﬂ_m] + J-A'b[“_ml)(b{k;m}

—uPikk o — BOikk,ulkin) — (46‘; + .-,a“%) olkml — $Oikk, wkml 4 NL, (3.37)
ar

(na'® + ikb")plkinl = v(ul”_'] + b heltllge, — (ma!"=™ + jkblm—rml)plkim}

—uikky ot — @ikkulknl - (m;j + r;‘)”%) ol — ¢%kk,wikinl 4 NL. (3.38)

Similarly we reduce all the disturbance equations in this form,

In general, inserting (3.25), (3.32) and (3.33) into equation (3.21) and equating the coefficients
of A" we get an infinite set of inhomogeneous equations [viz. (3.34), (3.36) and (3.37)] for
X lkin| — {q}jkuq_ ”[k:uf‘ T'[k:"], w[k:n|.T[k:n|]‘l'r':
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L, Xkl = _cln=ll x5, 4 Gy,

cln—1l = gln=14 gpln-1]

Gin = — (mal"=ml 4 ikblr—ml) xUBm} 4 By /(14 0ko) + Frn ¢ - (3.39)
Lin = (na® + ikb®) I - Ly

Ly = L(/0x — ikk,,0/0y — d/dy.d/0z — ikk.)

where Ly, and Ly are the linear operators, ¢"~I’s are the Landau coefficients, Gy, represents
a sum of linear and nonlinear (quadratic and cubic) terms, and d;; is the Kronecker delta; for
superscript notations on terms in the above equation, see (3.26)-(3.28). In (3.39), the factor
1/(1+ o) with Eg, arises from the product of two Fourier series in which the zeroth order terms
are multiplied by a factor 2; F,, represents cubic nonlinear terms that arise from the product of
three Fourier series. Note that the nonlinear terms Ej,, and F},, are vector valued functions:

Ek“ = [Ez'n! E;in! E}:n: E:rn E}E"]T!‘ and FI\'H = [F.llu? F.En‘ F:ﬂ‘ F}?N‘ F‘EHIT,I’ (3'40)

where the superscripts 1, 2, 3, 4 and 5 refer to terms that originate form the continuity, z-
momentum, y-momentum, z-momentum and granular energy equations, respectively. Further-
more we can decompose the quadratic nonlinear terms Ey,, as

Ew, =E}, +E! =E{ +E!, (3.41)

where Ef_ﬂ = E},, corresponds to f-dependent terms that involve time derivatives, and EY
corresponds to terms that are y-dependent and their derivatives with respect to y. Note that the
term E{, corresponding to the time-dependent part of disturbance equations, is the product of
a Fourier series and a time-derivative of a Fourier series that involves Landau (3.32). The above
system of equations (3.39) is to be solved with following boundary conditions

Bxknl =0 at y==x1/2. (3.42)

Equations (3.39) with boundary conditions (3.42) embody all necessary information for the non-
linear analysis of granular Couette flow as we will discuss in subsequent chapters. We have
reduced the nonlinear stability problem, (3.6) and (3.9), into a sequence of linear inhomogeneous
differential equations (3.39) for X*"l and each of which can be solved sequentially if we know
the Landau coefficients ¢/~ along the way. The latter can be obtained using the Fredholm
alternative or the solvability condition, which is described below, of inhomogeneous differential
equations for the special case when the growth rate is close to zero (weakly nonlinear assumption)
as:

'
je XtGln dy
(_'[”-1] = (1["_” f: “)|n—l] = _]_}(:;2 2 = ‘ {343)
772, Kixaldy
where X' is the adjoint eigenfunction corresponding to the linear problem Ly; = 0. In the

resonance free case, i.e. the weakly nonlinear analysis using a single mode, it is straightforward
to verify from (3.30) that Gy, = 0 when (k + n) is odd, and hence ¢(™ vanishes for all odd
n=1329,....

Table 3.1 shows the nonzero harmonics related to weakly nonlinear analysis. The definition
of the Fredholm alternative is given below which we will use frequently in the later chapters.
Fredholm Alternative

A bounded linear operator L : X — X on a normed linear space X is said to satisfy the Fredholm
alternative if L is such that either (1) or (2) holds:

(1) The inhomogeneous equations Lr = y and LT f = g where LT : X’ — X' is the adjoint oper-
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X[O:?] X[O;d]

x (1) X 13 X (155]
X [2:2] xi24]

X133 X [3:5]

Table 3.1: Nonzero eigenfunctions

ator of L, have solutions x and f, respectively, for every given y € X and ¢ € X’, the solutions
being unique. The corresponding homogeneous equations Lz = 0 and L f = 0, have only trivial
solutions = = 0 and f =0, respectively.

(2} The homogeneous equations Lz = 0 and L!f = 0 have the same number of linearly inde-
pendent solutions, x,,...x, and fi,... f, for n > 1, respectively. The inhomogeneous equations
Lz = y and L!f = g are not solvable for all y and g, respectively; they have a solution iff y and
g are stich that

(fe.y} =0 and {g.xry = 0. (3.44)

Note that in the weakly nonlinear analysis we use the second Fredholm alternative that gives
an expression for the Landau coefficients (3.43). The condition (3.44) also known as the solvability
condition or orthogonality condition. For details, see chapter 8 of Kreyszig (1978).

3.3.5 Adjoint Problem and Bi-orthogonality Condition
At order O(Ae*) we get the linear stability problem which can be written as,
L XM = 0 or LiX =c®X (3.45)

where ¢ = a'® 4+ ib® is a linear eigenvalue and X = X[*1, The boundary conditions can be
represented in matrix form for problem (3.45) as

BX =0 at boundaries. (3.48)

To formulate adjoint eigenvalue problem we need to obtain an adjoint operator corresponding to
L, and the adjoint boundary conditions related to {3.46). For this we define an inner product
such that

(XL LX) = ({LIX, X) (3.47)

where

1/2
g = f_ 1ﬂ[f,sr] dy (3.48)

for every complex valued functions f{y) and g(y). The symbol [z, y] means > ; %jy;- For example,
we can write [X, X| = ¢? + 42 + 92 + @2 + T2. Note that the complex conjugation is in the first
function of the inner product in (3.48).

Using above inner product (3.48), the adjoint operator Ly and the adjoint boundary conditions
can be derived by using integration by parts. In the matrix notation the adjoint eigenvalue
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problem corresponding to (3.45) can be written as
LixT =#9xt  with B'X'=0, at boundaries. (3.49)

The eigenvalues of the adjoint problem are complex conjugate of eigenvalues of linear eigenvalue
problem. The set of linear cigenvectors are not orthogenal. To solve inhomogeneous set of
equations of linear problem we need to find a set which is orthogonal to all the eigenvectors except
one (Eckhaus 1965; Schmid & Henningson 2001) and this is called bi-orthogonality condition.
Equation (3.47) can be simplified by using (3.45) and {3.49),

(” — e (XL, X0 =0. (3.50)
The bi-orthogonality condition (sec p. 444, Kreyszig 1978} is
t ooy J 1 ifi=k

3.4 Numerical Method: Spectral Collocation
and Gauss Chebyshev Quadrature

In the above section we have reduced the nonlinear stability problem to a sequence of system
of inhomogeneous linear differential equations for the fundamental mode and its distortions and
higher-order harmonics. The general form of this systetn of equations is

Lin XEnl = —clr=lxhoig ) 4 Gry, with k>0, 7> 1, (3.52)

where Ly, is the linear operator, c["=1 are the Landau coefficients and G &n denotes the nonlinear
terms. We have developed an spectral-based numerical method to solve the above problem and
a brief description of this numerical method is given below.

Depending on the particular choice of the index values in {3.52) we can divide nutnerical
method into three categories:

e Type (1) problem; k=n =1,
e Type (2) problem: & # 1 and n > k,
e Type (3} problem: k=1, n> 1.

Type (1} is an eigenvalue problem, Type (2) and Type (3) are the inhomogeneous problems
with or without solvability condition.

3.4.1 Type (1): Generalized Eigenvalue Problem, AX = ¢BX
Substituting & = n = 1 into (3.52) we get a gencralized eigenvalue problem

L, X610 = o x ), (3.53)

For the linear stability problem ({3.53), we neced to solve the linearized perturbation equations
along with homogeneous boundary conditions. All five equations have been discretized along
y-direction by implementing the staggered-grid spectral collocation method that uses Chebyshev
polynomials (Canuto ef ol 1988; Mason & Handscomb 2003) as basis set. More specifically, the
mass balance equation is collocated at Gauss points and the momentum and energy equations at
Gauss-Lobatto points; the interpolation matrices of spectral accuracy are then used to interpolate
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between the variables at Gauss (density) and Gauss-Lobatto (velocity and granular temperature)
points.

[spectral-ccuocation Method using Staggered Grid |

Spectral method belongs to the general class of weighted residual methods for which approxi-
mations are defined in terms of a truncated series expansion such that error or residual is forced
to be zero only in an approximate sense. In the spectral collocation we approximate the unknown
variables in terms of the Chebyshev polynomial of degree AJ:

M

F(&) =Y asTalt) (3.54)

a=l)

where T, (€) = cos(a cos1(€)) is the Chebyshev polynomial of degree . The Chebyshev polyno-
mials are then evaluated at the extrema of the M*-order Chebyshev polynomial, called Gauss-
Lobatto points, given by

£, =cos(%) where i=0,..., M. (3.55)
The coefficients a,, for & = 1,....] M, can be determined by imposing the condition that the

approximate value of unknown variables, f(£), is same as the exact value of the unknown variable
at the collocation points (3.55). Therefore the polynomial of degree M defined by (3.54) is same
as the Lagrange interpolation polynomial based on the Gauss-Lobatto points (3.55). Hence the
unknown variables can be represented as

M
FO) =Y ;) f(&) (3.56)

j=u
where the interpolation polynomial is given by

(1)1 = )T}, (8)
r"J,J".fz(E —&;)

where ¢g = cpy = 1 and ¢; = 2 for all 0 < j < M. This expression can be constructed by
recalling that the collocation points, &;. are the zeros of the polynomial (1 — £2)T},(€) and by
observing that (1 — £2)T4,(£)/(€ —&;) — (=1)*'¢;M? when £ — & for j =0,..., M. Note that
(€)= 1. The p”‘ -derivative of the unknown variable is

M

M
P& =Y wiP(€)f(&) =Y DEL.3)F(E) (3.58)

J=1 Jj=0

where i = 0,.... M. The explicit expression for the first order derivative (Canuto et al. 1988) is

TP - § ! ) i e o B .
I)(:L(LJ]) - ¢ (E‘ - E;‘. (;L("-") = 2(1 : ‘Erz}- (3"-)9}
DY) (0,0) = —DY)(M.M)=(2M? +1)/6, (3.60)

where & is given by (3.55). The second order derivative can be written as a product of two first
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order differentiation matrices,

A
D& (i.4) =Y DG (i, k) DGy (k. 7). (3.61)

k=0

Here the momentum and energy equations are collocated at the Gauss-Lobatto points. The
physical domain in the present problem is [—1/2, 1/2] thus we assume a the transformation § = 2y
which relates the physical grid variables to computational variables and vice-versa. If the scaling
factor for the transformation between physical and computational domains is given as

=%

i for i=0,...M (3.62)
dy k

because 4 = f . then the derivative matrix can be written as

) (1)

D¢ (i,j) = SiDgp(i,j), (3.63)
=) .. . =) =t . 3
Dey(ii) = Dey(i.i)Dey (i), (3.64)

In the “staggered-grid” spectral collocation method, the continuity equation is collocated at
the Gauss points, & 1/2. which are the zeros of the Chebyshev polynomial

&ip1/2 = cos (é+%) % i=0,...M—-1. (3.65)
This set of points (3.65) does not contain the boundary points and since we do not have any
boundary condition for density (or volume fraction), ¢, it is appropriate to use staggered grid in
which the continuity equation is collocated at the Gauss points (3.65), and the momentum and
energy equations at the Gauss-Lobatto points (3.55) as shown in figure 3.4. Following the similar
approach we can express density or volume fraction in terms of a interpolation polynomial of
degree M — 1
M—1

6(€) = Zg &(€j41/2)- (3.66)

The construction of the interpolation polynomial for Gauss points, G;(£), is the same as the
polynomial for Gauss-Lobatto points (¢;(£)) which is based on the Lagrange polynomial. The
expression for G;(£) is given by

Gi(€) = Tv(e) DO -E)Tu()

CE-6)TyE) M(€ ~ &)

(3.67)

where we have used Ty, (€;) = (—1)?M/,/(1 — £3). Note that G;(€x41/2) = djk.

The p!"-derivative of the density is

4(6) ey e
T ', = Qh(;*l'(fiﬂfi) = Z Gi" (Eiv1/2)0(Ej412) = Z D& (i, ))b(E41/2)  (3.68)
i+1/2 =0 <4
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Figure 3.4: Schematic of staggered grid.

where i =0,..., M — 1. The explicit expression for the first order derivative is

-1 i+] ]—£2 .

(-1) PR paria g,
(Sivr72 —&+172) | 1 —&irr)2 (3.69)
2(1 - E-JZH/Z]

Dg(i.j) =
Dfr”{z i) =

where &;11 /2 is given by (3.65). The second order derivative can be obtained by the product of
two first order differentiation matrices,

D, j) Z DY (i, k)DL (k. j). (3.70)
k=0
The derivative matrix for Gauss points (3.69)-(3.70) in the physical domain can be written as

=(1)

Dg (i,3) = S$:DY.4), (3.71)
=(2) . =) =)
D¢ (i,j) = Dg (i.j)D¢g (1.])- (3.72)

We know the velocity (u, v, w) and temperature 7' at Gauss-Lobatto points (3.55) and density
at the Gauss points (3.65). While discretizing continuity equation at Gauss points we need to
know other variables ((u. v, w) and T') at Gauss points; similarly the discretization of momentum
and energy equations at Gauss-Lobatto points requires the density at Gauss-Lobatto points. For
this we construct an interpolation polynomial from Gauss variables to Gauss-Lobatto variables
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and vice-versa, as given below
M
fEiv2) = Y il f(§) fori=0,...M—1, (3.73)
=0
M-1
o&) = 3 Gi(6)0(E1/2) fori=0,... M, (3.74)
J=0

where 1;(§;41/2) is the interpolation matrix of order M — 1 by M, from Gauss-Lobatto point to
Gauss point; and G;(&;) is the interpolation matrix of order M by M — 1, from Gauss point to
Gauss-Lobatto point. The interpolation matrix can be written as
: 1\l g2
(=171 - f+;;g}Ti:(Ei+1f2) (=) 1 =&

Vj(fiv1/2) = P I A— = =) (3.75)

where we have used the following equality

M siuﬁf(cos_’ Eiv1/2) - M sin(i + 1/2)w B M(-1)
sin(cos™1 §iy1/2) V1 —cos?(cos™ €1y 0) \/1 = £?+1f2.

Th(&igr/2) = (3.76)

Similarly the interpolation matrix from Gauss points to Gauss-Lobatto points can be written as

(-1 /(A -)Tu(&) (-1, /(1-€)
Gi(&) = = (3.77)

M(€ —€;) T M(E-§)

where we have used Ty (&) = (—1)".

We replace all the derivatives in the continuity, momentum and energy equations by the
spectral derivatives. The continuity equation is collocated at Gauss points (3.65) which uses the
interpolated velocity and temperature fields (3.75) from the Gauss-Lobatto points (3.55) to Gauss
points (3.65). Similarly, the momentum and energy equations are collocated at Gauss-Lobatto
points (3.55) which take interpolated density fields (3.77) from Gauss (3.65) to Gauss-Lobatto
points (3.55).

The discretized form of perturbation equations (3.53) are formulated as a generalized matrix
eigenvalue problem (Golub & Van-Loan 1983) of the form

AXE = cBX (3.78)

where ¢ = ¢(® is the lincar eigenvalue and X!55! is the discrete representation of linear eigen-
function; A and B are square matrices of order (5M + 4) where M denotes the degree of the
Chebyshev polynomial.

lImplement.ation of Boundary Conditions‘

We have chosen 2" to 5" and (5M + 4)'" to (5M — 1)*" rows which corresponds to no-slip
[(u,v,w) =0 at y £+ 1/2] and zero heat flux [dT/dy = 0 at y = £1/2| boundary conditions. The
matrix B of the generalized eigenvalue problem (3.78) does not contain boundary conditions, thus,
this matrix is singular. While computing eigenvalues using QZ-algorithin, we need to avoid the
spurious modes associated with the boundary conditions. Below we are describing few methods
for removing the singularity of B and spurious modes.
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In the first method, we replace the boundary rows of A with the diseretized boundary condi-
tions and the same rows of matrix B can be replaced by a complex multiple of the corresponding
rows of A. The spurious modes associated with the boundary conditions can be mapped to an
arbitrary location in the complex plane by selecting an appropriate value of a complex multiple.
Schmid & Henningson (2001) used a complex multiple, —200y/~1, for solving the generalized
eigenvalue problem for Poiseuille flow (see Appendix A.6, p 492 of Schmid & Henningson (2001)).
It is also verified that this works for the present problem too.

Another way is to replace the boundary rows of A and the corresponding rows of B with
discretized boundary conditions. The resulting generalized eigenvalue problem with boundary
conditions can be solved by QZ-algorithm of Matlab software. The eigenvalues corresponding to
the boundary conditions result into spurious modes with large growth rate (for example ¢, ~
O(10'%)), in order to get correct spectrum we need to avoid such modes which can be done by
projecting these spurious modes on to the stable regions.

The singularity of matrix B can be removed by using row and column operations which reduces
the rank of the matrix A and B. The resultant order of the matrix is (5M — 4). This is the
widely used method to remove the singularity associated with the eigenvalue problem (Khorrami
et al. 1989; Malik 1990: Alam & Nott 1998). The resultant order of the matrix is (5M — 4) which
can be solved by QZ-algorithm.

] Normalization |

The eigenvectors XI5 are normalized by dividing it by a component of the vector X[
having maximum absolute value.
Another part of the linear stability problem is to solve the associated adjoint system (3.49).
Using the same spectral method, the adjoint system has been discretized and solved for the
adjoint eigenfunction X' and its adjoint eigenvalue ¢! = ¢ Recall that the adjoint eigenfunction
is used in the solvability condition to calculate the Landan coefficients (3.43).

3.4.2 Type (2): AX =b Problem (k # 1,n > k)

The general form of equation for k # 1.n > k [viz. (3.52)] is given as
Lku)(‘kml = Gkn- (3.79)

Similar to the linear eigenvalue problem, the higher-order inhomogeneous system of differential
equations (3.79) are discretized using the same staggered-grid spectral collocation method as ex-
plained above where the continuity equation is evaluated at Gauss points and the other equations
are at Gauss-Lobatto points. The resulting square matrix A in AX = b turns out to be dense,
unstructured, unsymmetric and ill-conditioned: thus the method of Gaussian elimination is not
a good choice to solve these algebraic equations. We employed the method of singular value
decomposition (Golub & Van-Loan 1983: Press et al. 1992: Trefethen & Bau 1997) for solving
AX = b system.

3.4.3 Type (3): AX =AX +b Problem (k=1,n> 1)

The general form for the Type (3) problem is
Ly, X' = et = X1 4 Gy, (3.80)

The first part of nonlinear computations in (3.80) is related to evaluate the solvability condition
(3.43) to determine the first Landau coefficient: this is a ratio of two definite integrals, as given
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below
1/2 X"iG d;
J-1/2" 1n QY

f_l':jz )ETX[‘:I] (ly‘

(,['n—]] _ H.["_ll iy ib["_” —

These integrations are calculated using Gauss-Chebyshev quadrature: the Gaussian quadrature
using Chebyshev polynomial as a interpolating polynomial is called as Gauss-Chebyshev quadra-
ture. Next we briefly discuss about an accurate quadrature-formula at Gauss-Lobatto points
(Hanifi et al. 1996) to evaluate the above-mentioned integrals.

| Gauss-Chebyshev Quadraturel

The general rule for Gaussian quadratures is

i M
[ e =Y wiea) (&) (3.81)

a=0

where w(&,) is the weight function, f(£) is given by (3.54) and &, are called nodes. To derive
the Gauss-Chebyshev quadrature formula we need to find weight functions on the Chebyshev
grid (i.e. on Gauss-Lobatto grid). Now we make use of the discrete orthogonality condition of
Chebyshev polynomials which reads as

M
(f.9) = baf(&a)g(Ea) (3.82)
a=()

where by = by = %,bu =1for 0 < a < M, and &, are the Gauss-Lobatto points as defined in
(3.55). From this definition it follows that

0 aF Yy
(Tal@), T5() = M a=y=0M (3.83)
M2 a=~v#0,M

which can be used to obtain the expansion coefficients a,, in (3.54):
e M
ta =37 > bif(&)Ta(§)) (3.84)
j=0

where ¢ = ey = 1 and ¢, = 2 for all 0 < @ < M. Therefore the expansion formula (3.54)
simplifies to

M M M
O = Y auTal®) = Y. caTul®) Y. 2 IE)Ta(6), (3.85)
a=() a=() =0

which, upon integration with respect to &, leads to

1 1 M M 1
[ e - 37 L6 L) [ T (3.86)

where

1
/]Tn(«'i)df ={ o (3.87)

1oz @ eoven.
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This immediately yields an expression for the weight function as defined via (3.81):

it = B ks S 14 (=1 [ajr
w HJ) = ‘ﬂ_f + Z Ca ‘ﬁ(“b A ‘ (388)

If a mapping £ = £(y) is used to transform the physical domain y € [a,b] into the Chebyshev
domain £ € [~ 1, 1], then the expression for the weight function becomes

A

b, _ aym k. d :
w(;) = f’f Z(‘,, COS (F) _[_; f,,(-f)-(-l%(lﬁ (3.89)

=l

In the present problem the physical domain is y = [~1/2, 1/2] and hence we can assume a mapping
& = 2y and the Gauss-Chebyshev quadrature formula can be rewritten as

1/2 M
[y = > w(&)f(yy) (3.90)

where w(§;) is given by (3.89) and y; € [—1/2,1/2].

To numerically evaluate the solvability condition, (3.43), we first calculate each integrand
at Gauss-Lobatto points (where the terms related to continuity equation are interpolated from
Gauss-points to Gauss-Lobatto points) and then take the weighted summation as in equation
(3.90). For the present problemn, the above quadrature formula has been compared with two other
composite integration methods, namely, Simpson and trapezoidal quadrature rules. It has been
verified that the Gauss-Chebyshev quadrature converges with M = 50 grid points, while to get
the same accuracy using Simpson quadrature we need to use M > 200 grid points. The superior
convergence of the Gauss-Chebyshev quadrature is presumably due to the spectral accuracy of
the underlying scheme (Canuto et al. 1988; Hanifi ef al. 1996).



CHAPTER 4

LANDAU-TYPE ORDER PARAMETER
EQUATION FOR SHEAR BANDING IN
GRANULAR COUETTE FLOW

In the first part of this chapter we derive Landau equation from center manifold reduction and
this complements the analysis of chapter 3 where we used “amplitude expansion method.” This
proves an equivalence between two methods.

Next we show that a Landau-type ‘order-parameter’ equation describes the onset of shear-
band formation in granular plane Couette Aow wherein the flow undergoes an ordering transition
into alternate layers of dense and diiute regions of low and high shear rates, respectively, parallel
to the Aow-direction.

This chapter is organized as follows. The continuum equations and boundary conditions are
written down in §4.1. The linear stability analysis and adjoint problem are formulated in §4.2.
The ‘center manifold reduction’ method is explained in §4.3 and the comparisount between ‘center
manifold reduction’ and ‘amplitude cxpansion’ method is given in §4.3.2. The phase diagram and
bifurcation analysis, are shown in §4.4.2. The conclusions are given in §4.5.

4.1 Plane Couette flow: Continuum Equations and
Boundary Conditions

Consider a flow of granular particles between two infinite parallel plates at § = +h/2, where
h is the gap between the plates as shown in figure 4.1; both the plates are moving oppositely
along the Z-direction with velocity U,,/2. Here the “overbar” denotes a dimensional quantity.
The physical state of the particles of granular system under study is that the particles are mono-
disperse, smooth, spherical and inelastic with particle diameter Ep and the coefficient of restitution
e.

The tensorial form of balance equations in the absence of gravity are:

D¢

ﬁp_ﬁ = —ﬁp(v : ﬁ) (4'1)
D =
5 i v 4.2
dim _ DT = - = . o— =
T pp—ﬁ -V q- X:Vu-7 (4.3)

where the stress tensor (%) and the granular heat flux (g) are given by (2.8)-(2.10); *dimy’ refers
to the dimensionality of the problem (dim = 3 for spheres and 2 for disks).

The boundary conditions are chosen to be no-slip velocity and zero heat flux: %W(F = £h/2) =
+U.,/2,5(F = £h/2) = 0, and AT /dg(F = +k/2) = 0. For the purpose of non-dimensionalization,
we use the reference length. velocity and time scales as b, U, and h/U ,, respectively, sce Alamn &
Nott (1998) and Alam ef al. (2008} for related details. In the following, all *unbarred” quantities
are dimensionless.
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Figure 4.1: Schematic diagram of plane shear fow between parallel plates. The upper plate moves
with velocity U, /2 along the positive Z-direction and the lower plate moves with the same speed in the
opposite direction.

Let us define other non-dimensional quantities,

(.9) = 2@.9), (1,0 = rﬁi;(ﬁ.a), (=23
T= —_—Eﬂ—_p = _2—_"' > (4.4)
(dp/h)sz Ppr(dP/h) ' ’
7 D
== A D=_—3—-._3__
7,0 o (dp/F) PpUw(dp/h)3/dy )

The scaling of granular temperature can be derived by balancing the rate of energy dissipation
with the stress work. The Navier-Stokes-order constitutive relations (Lun et al. 1984} for stress
tensor, X, and thermal energy, §, are given by (2.8)-(2.10).

4.1.1 Streamwise Independent Equations

Since the focus of the present chapter is the shear-banding instability, that originates from a
specific form of perturbations having no variation along the streamwise direction (x), here we
start with the simplified form of balance equations that do not depend on the streamwise co-
ordinate. In dimmensionless form, the streamwise independent (8/8z(.) = 0) balance equations for
mass, momentum and granular energy, respectively, are:

FTRZ R (4.5)

#%) (4.6)

(
¢[£+02]U= 1 [ﬁé?_p + 2 (2&“3_;)] (47)
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dim 0 % 9] T - 1 a (hd_T) B ()_1
2 Yo !'(’)y T OH2oy \ Oy p(’)y
av\? 1 /ou\? A ((’hr)2
Sl s} + 2 =
e KGU) T3 (0?;) 2u \ 9y
Here H = h/d,, is the ratio between the Couette gap (h) and the particle diameter (d,). called

sealed Couette gap, which can equivalently be thought of as the inverse of the dimensionless
= . . .
particle diameter i.e. H = (d,/h) . The dimensionless transport coefficients [cf. (2.11)] are

—D. (4.8)

plo,T) = file)T w(@.T) = f2(S)VT
(6. T) = fs(o)VT k(0. T)= fa(&VT ¢, (4.9)
D(p,T) = fs(¢,e)T¥? XN T)=(— 3=

where f;(.)’s are dimensionless functions as given in (2.21). Note that, as discussed in chapter 2,
we have neglected a term in the expression of the collisional dissipation D, proportional to V - u
(Garzé & Dufty 1999), that does not affect the onset of shear-banding instability (Alam et al.
2008). The contact radial distribution function. x(¢) is given by (2.12). The boundary conditions
in dimensionless form are

dT _

1
= 4= )= —_—=
i 50 T

0 at y==+1/2, (4.10)

that correspond to zero-slip, zero-penetration and zero heat-flux, respectively.

4.1.2 Steady Plane Couette Flow: Base State

The stability of the low which we want to study is the steady, fully developed, two-dimensional
flow between two infinite parallel moving plates. Under these assumptions we can write the base
state solution as

o=0¢"(y), u=(u"(y).0), T=T%).

With no-slip and adiabatic boundary conditions (4.10), the resulting base flow equations admit
the following solution of uniform shear with constant density and granular temperature:

f2(0%)
f5(99)

Note that the pressure (p°) and the shear stress [u”(du®/dy)] are also constants for the steady
plane Couette flow. In the following, we use density or solid fraction or volume fraction to refer
to the same quantity ¢".

u(y) =y, v"=0, ¢°=constant, T(¢") = constant = (4.11)

4.2 Nonlinear Analysis

The stability of basic flow is examined by decomposing all the flow variables (density, velocity and
granular temperature) and transport coeflicients into a base low part, X, and a finite-amplitude
perturbation, X:

Xiotat(y. 1) = X (y) + X (y. 1), (4.12)

where the superseript “0" denotes the base state and the prime denotes its perturbation. The
transport coefficients are analytic functions of density and temperature, and hence can be written
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as a Taylor series around the base state, e.g., pressure ean be written as

ple.T) = p' + pt__ic')" + I+ % (pf;r__.}t;-'}’: - pf,;,f-(;)’T’ + ;}'}TT’Q + .!J'—;~‘I,,Tj(.'3’) + .y (4.13)
where the subscripts denote the respective partial derivatives, and the superseript 0’ implies that
the quantity being evaluated at the base How conditions. Inserting the Taylor series expansions of
all hydrodynamie variables and transport coefficients into equations (4.5)-(4.8) and subtracting
the base flow equations, we obtain nonlinear perturbation equations, correct up-to cubic order,
which can be put in the operator form;

(% - z:) X = Na(X, X) + N3(X, X, X). (4.14)

P 2 " ‘ 5 i .
Here £{ % ;%5 A M T ) is the linear operator, N5 and Ny are the quadratic and cubic

nonlinear terms and X = (&', v/, 0/, T)T" denotes the disturbance vector. The explicit forms of
Ny and Ny are given in Appendix 5A of chapter 5. The linear operator is given by

- 0@
[ 0 0 5 0 \
u 1] w 1] 4
He & T} = dr 8
@HT By " HET Jy? 1 STH? Gy
g = ) . (4.15)
Py 8 0 (20"+A") o* —py 8
HZam dy HIa0  GyZ H2o" Oy
2(ul -DY) " @ 2" 9 2 xd g2 0 o
\ @ ;(iim A0dim dy  Hdim dy dim \ HT 9y* + Mg - DT‘ )

and the quadratic, N5, and cubic, Ny, noulinear terms can be expressed in the vector notations,

Ny N}
N2 Y
Ny = Nz; and N = “3,3
N3 Ny

where the superseripts 1, 2, 3 and 4 on nonlinear terms correspond to terms originating from
the mass balance, r-momentum. y-momentum and energy balance equations, respectively. The
boundary conditions can be written in matrix format

000 0 o
010 0 ' _
BXw=21D=| 5 51 o ‘:, =0 (4.16)
000 & i
iy

4.2.1 Linear Problem

Neglecting nonlinearities, we obtain the well-studied linear stability problem (Alam & Nott 1998)

i
i};‘_ =X, with BX =0 (4.17)
(8
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The adjoint problem (cf. chapter 3, §3.3.5) corresponding to linear stability operator (£) is

oxt
ot

=Lt x1 (4.18)

where X1 = [of, uf,vf, TT]"" is the adjoint function and £ is the adjoint operator which is
calculated from the definition of adjoint operator

(xt.£x) = (etxt, x). (4.19)
In the above, the standard inner product has been defined via

1/2

(¥ (), 2) = /

1/2 4
Yz = [ 3 i) (4.20)
—1/2 J-1/2
for two complex valued vector functions Y (y) = [yl.yg,y;;,y4] and Z(y) = |21, 22, 23, 24] on the
interval —1/2 < y < 1/2, with the ‘tilde’ denoting a complex conjugate quantity.
With above definitions, the form of the adjoint operator can be shown to be related to the
linear operator via

L= LT (@/8y — —a/0y, 8% /oy*; ¢, T0,...) (4.21)

and the adjoint boundary conditions are
BXx' =0, (4.22)

with B being given by (4.16).

4.2.2 Linear Eigenvalue Problem

Since the linear problem is invariant under arbitrary time-translation ¢ — t+4constant, the normal
mode solutions with complex frequency ¢ are sought

X(y.t) = X(y)e" (4.23)

where )A((y) = (¢, 11,0, T|(y) are unknown functions of y. This reduces the linearized system of
partial differential equations into a set of ordinary differential equations:

cX =LX. with BX =0, (4.24)

where L = £(d/dy,d?/dy?,...) is a linear ordinary differential operator, X is a linear eigenfune-
tion and ¢ = ¢, + i¢; is a complex eigenvalue such that the flow is stable if ¢, > 0, whereas
unstable if ¢, < 0, and neutrally stable if ¢, = 0. It can be verified that this system of equations
has analytical solutions (Alam & Nott 1998) which will be discussed in the next chapter. In a
similar manner we can obtain an adjoint eigenvalue problem:

éXt=LIXT  with BX =0, (4.25)

where LT = LT"(H'% — —é%, {—E}; — gf:gbm], W T ) and X1 is an adjoint eigenfunction
Here tilde denotes a complex conjugate. The above eigenvalue problem with boundary condi-
tions form a well posed boundary value problem. The spectral-based numerical scheme (spectral
collocation method), as described in chapter 3, has been used to solve eigenvalue problem (see
chapter 3).
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4.3 Center Manifold Reduction

The spectrum of the linear operator is decomposed into slow, critical or center (i.e. the modes
having growth rates close to zero) and fast or non-critical (i.e. the modes having large decay rates)
modes. Sinece the domain of plane Couette flow (see figure 4.2) is bounded, y € (—1/2.1/2). the
spectrum is diserete which has been verified by computing the eigenvalues of the linear operator
L (Alam & Nott 1998).

For the uniform shear of a granular fluid. a typical spectrum in the complex-plane is displayed
in figure 4.2 at a Couette gap H = 200 and a density 0" = ¢, = 0.157, with ¢ = 0.95. There
are two branches of propagating modes (¢, # 0) which are always stable (¢, < 0), and the
shearbanding-instability, that lead to segregated density profiles with alternate layers of dense
and dilute regions across the gradient (y) direction, is due to stationary (¢; = 0) wmodes for
r,-‘J” = e

o

Figure 4.2: Spectra of uniform shear flow in the complex plane for H = 200, ¢ = ¢ =~ 0.157 and
e = 0.95. Flow is neutrally stable for this parameter set.

The center manifold theorem (Carr 1981) states that the dynamies close to the eritical situa-
tion is dominated by a finite number of eritical modes, resulting in an effective low-dimensional
dynamical system. Focusing on a single slow mode, therefore, the disturbance vector field
X(y.t) = ®(y.t) + W(y.t) is decomposed as a linear combination of the linear critical eigen-
function ® and an infinite number of non-critical eigenfunctions ¥,

In our analysis, the most unstable shear-banding mode (Alam & Nott 1998) from the lin-
ear theory. (4.24), X™"(y). called the fundamental mode (linear eigenfunction). represents the
critical mode:

O(y.t) = o (1) XV (y) + (1) X1 (y). (4.26)

In the weakly nonlinear regime, the spatial variation of the eritical (or center) mode is taken to
be the same as that of the linear theory, but its temporal variation is non-exponential (unlike in
linear theory in which & (t) is taken to be infinitesimally small) having a finite complex amplitude
& (1) whose dynamical equation is of interest here. To proceed further, we follow two steps (Stuart
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1960; Newell et al. 1993): (i) expend X (y.t) into a generalized Fourier series,

X =Y X0 4 X0 =3 arkjap-kxibnl 4 e, (4.27)

k=0 k=0

and (i) the Fourier coefficients X®) are expanded into Taylor series in terms of perturbation
amplitude &/ (t):
X = of¥|gp |k xlein], (4.28)

Here the summation convention is such that 0 < k < n, n > 1, and the superscript convention of
X%l is defined such that X*" = 0 if (k + n) is odd. Substituting (4.28) into (4.27) we get,

o
X=) atla|"rxinl e (4.29)
k=()

In nonlinear perturbation theory (Stuart 1960; Reynolds & Potter 1967; Carr 1981), one require-
ment is that the nonlinear problem must reduce to the linear stability problem in the limit of
infinitesimal perturbation amplitude (& — 0). In the present perturbation expansion, O(.)
terms denote the linear eigenfunction (i.e. the fundamental mode X510y, O(1) terms denote the
base-state solution (i.e. X°%) and O(&/?) terms are the nonlinear interactions of two fundamen-
tal modes. The fundamental mode interacting with itself is responsible for the generation of the
second harmonic X122 while its interaction with its 5:01:1p]ex conjugate generates the distortion
to the mean flow X2 that appears at order O(«/.&). The higher order nonlinear interactions
and distortions are defined in a similar fashion. Following the above formalism, the Taylor series
expansion of the first three Fourier coefficients can be written as (see (4.29)):

XUy t)y = (t) (X“"”(y) + e ()* X113 (y) + )
XOyt)y = | (XO2(y) + ()] XO4(y) + ...
XAy, t) = o(t)? (X2A(y) + | (t)]? X2 (y) + ...

In the dual superseript notation for X%, the first index (k) refers to a particular Fourier mode
(e.g. k=0 for mean/base How and its higher order corrections, k = 1 for the fundamental mode
and its higher order corrections, k = 2 for the second harmonic and its higher order corrections,
and so on), and the second inder (n) indicates the order of a particular term as O(|&/|").

Clearly, the leading term of X is & X", of order O(«), which represents the funda-
mental mode. The leading term of X9, is |&/|2X %2 of O(|«7|?), which represents the dis-
tortion/correction to the mean flow. The leading term of X2 is &2 X2 which is the second
harmonic. The matrix equivalent of the above power-series expressions is given by (4.29). These
superscript notations (Stuart 1960; Reynolds & Potter 1967) are extremely useful to simplify the
algebra as well as to identify a particular mode and its modal interaction of any order.

Inserting (4.29) into equation (4.14) and using (4.24), and equating the like-order terms, we
obtain

1 ;
(% - rr) .ﬁ’(t),-\'“‘l] = nonlinear terms, (4.30)
‘
0 4
(Iﬁ - ﬁ) W(y,t) = nonlinear terms. (4.31)

The former (4.30) is the nonlinear evolution equation for the critical mode ®, and the latter
(4.31), representing all noncritical modes W, are called enslaved equations. Note that we have
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used (4.17) to obtain the second term on the left hand side.

4.3.1 Landau Equation

Landau equation can be derived from (4.30). For this we rewrite (4.30) with the explicit form of
the nonlinear terms as given below,

1 : ; ;
(;7 - r) A ()X = G| + Gis | |* + ... + Grypon | I[P + ... (*)

In the above notation G2, «/|7|*", the first index, which is one, represents the order of
amplitude i.e Q&) and the second index 1 + 2n, where n is a positive integer, represents the
order of the absolute amplitude term, i.e. O(|&/|*"*!). Taking the inner product of (*) with
adjoint linear eigenfunction and separating the like-power terms in amplitude, we arrive at the
Landau equation for the disturbance amplitude «/(t):

d

— = At 4 Dt | + ... (4.32)

It is straightforward to verify from (4.32) and (4.24) that ¢?) = ¢ is the linear eigenvalue, and the
coefficients e™ (n =2,4-.. ) are called the Landau coefficients. Here we have used a normalized
adjoint eigenfunction such that

(xt, xttdly =

Similarly, the expression for the first Landan coefficient, ¢'?), can be identified as

: 12
f-(”:(x'.Gm):/ X'Gy3 dy (4.33)

J=1/2

where X1 is the least-stable adjoint eigenfunction of linear stability problem and G 3 represents
a combination of nonlinear terms as given below,

Gl-‘i = NQ(IYU:”..X[U;?]) + fa\‘rQ{)i']lJ:Ql].A—[l;]l) + Nz(X[I;II.X[z-'?I)
—|—,"\"2()\'[2;2]‘X51"|]] + J\’;;(.X“”L.‘Ell:ll,Xll;l]}
N (X, X0 X0y vyl xlia g (1.34)

where Ny and Ny are the quadratic and cubic nonlinear term, respectively.

It is clear from (4.33) that, in addition to knowing the fundamental mode X!l and its adjoint
X1, we need to determine second harmonic X221 and the first distortion to fundamental X 92l
which are described above.

From the enslaved equation (4.31) at quadratic order O(&/?), we obtain the following equation
for the second harmonic

(2¢I —~ L)X 22 = np(x it xlutly, (4.35)

This can be solved for X122l since the right-hand side of (4.35) is a known function of the
fundamental mode X'V We have verified that the second harmonic and the distortion to the
mean flow are equal, X122 = X102 for the shear-banding instability.

Neglecting nonlinear terms in (4.32), we obtain the well-known linear stability result, o/ (t) ~
expl(et), of exponential growth which is valid at order O(«/), in amplitude. In the following dis-
cussion, we decompose ¢ into real and imaginary parts: ¢/ = o™ + b0 with n = 0,2,4--;
for example, a'” and b represent the growth rate and the frequency of the disturbance, re-
spectively. For the present problem of shear-banding instability, it has been verified (Alam &
Nott 1998) that 6% = 0; i.e the unstable eigenvalue is always real which implies that the related



4.3 Center Manifold Reduction 69

bifurcation, if any, must be of pitchfork-type. Moreover the fundamental mode is also real for
shear-banding instability leading to real first Landau coefficient i.e. 52 = 0.

The shear-banding is governed by the Landau equation {4.32) which is an order parameter
equation, The equilibrium amplitude (de’/dt = 0) of disturbance can be obtained by truncating

(4.32) at the cubic order:
oy = £/ —al® fal?) {4.36)

with the third solution &% = 0 representing the base-state of uniform shear and, constant density
and granular temperature, It is clear that the finite-amplitude equilibriutn solutions (4.36) exist
iff a'© and af? are of opposite sign. The sign of the real part of /2’ decides the nature of
bifurcation: a positive value for a® denotes a subcritical bifurcation and its negative value
denotes a supercritical bifurcation.

4.3.2 Comparison of ¢¥ between Center Manifold and Ampli-
tude Expansion Methods

Recall from the chapter 3 that in amplitude expansion method, we defined amplitude of pertur-
bation A as a real function of time such that
1dA

{0) )
Adt_”l as A — 0,

In contrast the amplitude 2 in center manifold method is defined as a complex function. Sub-
stituting & = |«/|e*® into (4.32) and separating the real and imaginary parts, we get

1 _dio
|a] dt
df

(0 2)
E=C1- )+C£ |J5f|2+‘

=c® ¢+ DN +...
(4.37)

For & — 0 (for infinitesimal perturbation), |&/| — et and 8 — ¢\t. It is straightforward

from the comparison between (4.37} wiith (3.32)-(3.33) that & = A and

46 _ 4w (94 438
a - YTaa\a ) (4.38)

Consequently (4.37) is same as (3.32}-(3.33).

Now we compare the expression of c(?} (4.33) with that of (3.43). The form of nonlinear
term (3 at cubic order is same in both methods because the fundamental, second harmonic and
distortion of mean flow are exactly same. In the definition of ¢, (4.33), derived from the inner
product, we have used a normalization condition. In the amplitude expansion method c!?! (see
(3.43) for n = 3} is derived from the solvability condition. If we use the normalization condition
(X1, XMy = 1 in (3.43) we get the same expression as given by (4.33). On the whole, the
Landau equation and first Landau cocfficient from the center manifold and amplitude expansion
methods are same.
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4.4 Results and Discussion

4,41 Numerical Method

The details of spectral-based numerical techniques are given in chapter 3. Briefly, the differential
eigenvalue problem (4.24) and the differential equations {4.35) have been discretized using the
Chebyshev spectral method; the resultant matrix eigenvalue problem has been solved using the
QR-algorithm and the algebraic equations for (4.35) have been solved using SVD-algorithm of
the Matlab-software. The degree of the Chebyshev polynomial was set to 50 which was found
to yield accurate results. To calculate the first Landau coefficient {4.33), the integrals have been
computed using the Gaussian quadrature with Chebyshev grid that yields spectral accuracy.

4.4.2 Phase Diagram and Bifurcation

The phase diagram, separating the zones of stability and instability by the neutral contour {a'? =
0, thick line), in the (H, ¢*)-plane is shown in figure 4.3(a) for a restitution coefficient of ¢ = 0.95;
the flow is unstable {a{”) > 0} inside the neutral line (thick line), and stable (a'® < 0) outside.
With decreasing value of e, the neutral contour shifts towards the left (i.e. at lower H) and
the growth rate increases Alam & Nott (1998), and hence the size of the unstable region in the
(9", H) plane increases {and the flow becomes more unstable) with increasing dissipation. It may
be noted that the linear stability equations (4.17} admit analytical solution (Alam & Nott 1998}

(QSU&II,TW”) () = (@1, T1)ecoskg(y +: 1/2) (4.39)

where kg = 3= is the “discrete” wavenumber along y, with 3 = 1,2,... being the mode number
that tells us the number of zero-crossing of the density or temperature eigenfunctions along
ye(-1/2,1/2) .

The neutral contour (thick line) in figure 4.3{a) corresponds to mode 3 = 2 for which a typical
density eigenfunction is displayed in the inset in figure 4.3{a). This suggests that inside the thick
neutral contour the unstable shear flow will give birth to new solutions having modulated density
profiles along the gradient (y) direction. Interestingly, the uniform shear flow (4.11} is linearly
stable for ¢° < ¢L = minyy ¢°{al®” = 0) = 0.154 (below the lower branch of the thick neutral
contour in figure 4.3(a)). In contrast to this prediction of the linear theory, however, we note
that such density-segregated solutions have been found in the molecular dynamic simulations of
granular shear flow, see the snapshot of particle positions in figure 4.3(b).

Let us now turn to analyze the results of our nonlinear theory. Figure 4.3(c} shows the
variations of the first Landau coefficient, a'?), and the linear growth rate, a!®’, with mean density
for H = 200 and e = 0.95. Since a{® > 0 and a'® < 0 for ¢° < ¢, = ¢®(a'? = 0), the existence
of finite-amplitude subcritical solutions is strongly suggested [viz. (4.36)] in the dilute limit.

The zero-contour of the first Landan coefficient is superimposed in figure 4.3(a) as thin solid
lines, and @'® > 0 inside the thin loops. As per (4.36), it is now clear that the finite-amplitude
suberitical solutions are possible in the dilute limit, enclosed by the lower thin loop in figure 4.3(a).
As in the case of the neutra) contour (a!® = 0, the thick contour in figure 4.3(a)), the thin contours
for a2} = 0 shift towards the left with decreasing value of e (say, 0.6), and hence the size of the
subcritical region (at dilute limit} in the (H, ¢°)-plane increases with increasing dissipation. This
evidence of subcritical instability for dilute flows is in agreement with the simulations of Tan
(1995).

With parameter values as in figure 4.3(c), the bifurcation diagrams in the (&%, ¢° — ¢.}-plane
are shown in figure 4.4(a) for two values of the restitution coefficient: e = 0.95 (dash line) and
0.6 (dot-dash line). Here ¢, is the critical mean density. Each line in figure 4.4{a) provides
the threshold-amplitude, % (¢%, e), for nonlinear subcritical instability. This implies that if the
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Figure 4.3: (a) Phase diagram in the (H, ¢")-plane, showing the neutral stability contour (thick line) and
the contours of vanishing first Landan coefficient (thin line) for a restitution coefficient of 0.95. The inset
shows a typical density eigenfunction within the “linearly” unstable region. (b) Shear-band formation
in simulations of dilute granular PCF: ¢" = 0.05, ¢ = 0.6 and N = 20000. (adapted from M.-L. Tan’s
thesis 1995). Lees-Edward boundary condition has been used with the top boundary moving to the right
and the bottom boundary to the left with same speed, (c) Variations of a'” and a® with density at
H = 200 for ¢ = 0.95. The critical density is defined as the one at which the linear growth rate is zero,
¢ = ¢ (0" = 0) ~ 0.157 at H = 200. Ref. Shukla & Alam (2009)
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Figure 4.4: (e} Bifurcation diagram in the amplitude-vs-density plane for e = 0.95 (dash line) and 0.6
{dash-dot line} at H = 200. Inset shows a bifurcation diagram at H = 100 and e = 0.95. (b) Finite
amplitude solutions for the density and the shear rate at ¢° = 0.15, H = 200 and ¢ = 0.6. Note that the
density has been multiplied by a factor of 6.

perturbation amplitude & is larger than its threshold value (i.c., if & > o,(¢%¢€)), then the
uniform shear flow will jump into a new state of non-uniform shear and non-uniform density
across the gradient direction. Typical sub-critical finite amplitude solutions for the density {solid
line), ¢ = ¢9 + &, ¢!, and the shear rate (dash line), ¥ = d/dy(u® + o%ul"1), are displayed in
figure 4.4(#), clearly showing density segregation and shear localization across y-direction; these
shearbanded solutions have been calculated at the threshold amplitude & = o/, with a mean
density ¢° = 0.15, H = 200 and e = 0.6.

Figure 4.4{a) also suggests that the threshold-amplitude for nonlinear instability decreases
with increasing dissipation, implying that more dissipative particles are more prone to such sub-
critical shearbanding instability. The important point to note is that an appropriate magnitude
of finite-amplitude perturbation, & > o(¢% €), must be imposed in simulations to achieve the
shear-banded flow in the dilute limit.

At larger densities, the nature of bifurcation changes from subcritical to supercritical, see the
inset of figure 4.4{a) for H = 100 and ¢ = 0.95. The corresponding solutions for ¢(y) and ¥(y)
look similar to those in figure 4.4(b). Inside the upper loop of thin contour in figure 4.4(a}, we
have al® > 0 and a'? > 0, and hence finite-amplitude solutions do not exists {4.36} for some
range of ¢? (inside upper thin loop) in the dense limit.

4.5 Conclusion

Starting from the Navier-Stokes level continuum equations of inelastic dense-gas kinetic theory
and using the center manifold reduction technique, we showed that a Landau-type order pa-
rameter describes the shear-banding transition in granular plane Couette flow. Qur results on
the first Landau coefficient suggest that there is a subcritical finite-amplitude instability for di-
lute flows even though the dilute flow is stable according to the linear stability theory. The
calculation of higher-order Landau coefficients (required to obtain the associated stable finite
amplitude solutions in the dilute limit) is left to a future work. Even though we focused on
streamwise-independent fiows here, our nonlinear theory can be extended to analyze various non-
linear patterns in a host of granular flow problems as well as to describe shear banding in other
complex Auids (Wilson & Fielding 2006; Olmsted 2008).



CHAPTER 5

NONLINEAR SHEAR BANDING INSTABILITY
IN GRANULAR PLANE COUETTE FLOW:
ANALYTICAL SOLUTION, COMPARISON WITH
NUMERICS AND BIFURCATION

Here we develop the analytical solutions for the shear banding instability in granular plane Couette
flow. We derive the analytical expression for the first Landau coefficient. The same problem
has been solved numerically in chapter 4 {(Shukla & Alam 2009) using spectral based numerical
method. In this chapter, we compare present analytical solutions with numerical resuits and
therefore this validates our numerical code. The bifurcation analysis for all the flow regimes
are detailed. We show that the granular plane Couette flow serve as a microcosm of pitchfork
bifurcations since all three possible types of pitchfork bifurcations exists in this flow.

This chapter is organized as follows. The analytical solutions for the fundamental mode
and its adjoint are given in §5.1. A hrief outline of the amplitude expansion method for the
streamwise independent granular plane Couette flow is detailed in §5.2. The symmetries of
the linear and nonlinear modes are discussed in §5.3. The symmetries of underlying nonlinear
modes have helped us to identify analytical solutions for the second harmonic, the base-flow
distortion and the distortion to the fundamental mode, leading to an exact calculation of the first
Landau coeflicient - these analytical solutions and their comparison with numerical solutions are
detailed in §5.4.1, §5.4.2 and §5.4.4. The evidence of meanflow resonance at O(A?) is discussed
in §5.4.3. The predictions of the analytical order-parameter theory are discussed in §5.5.1 (linear
shear-banding instability), §5.5.2 (equilibrium amplitude and the nature of bifurcation}, §5.5.3
(phase diagram for nonlinear stability), §5.5.4 (finite amplitude solutions) and §5.5.5 (scaling of
first Landau coefficient, equilibrium amplitude and phase diagram). The influence of different
forms of the contact radial distribution function and the constitutive relations on the nonlinear
shearbanding predictions is discussed in §5.6.1 and §5.6.2, respectively, along with a summary
of all possible bifurcation scenario for the nonlinear shearbanding instability in granular plane
Couette flow in §5.6.3. We summarize the major findings of this chapter in §5.7. Organization
map of this chapter is depicted in figure 5.1.

5.1 Analytical Solutions for Fundamental Mode and
its Adjoint

The normal mode solution of linear problem and adjoint problem has been discussed in chapter 4
that reduces the linearized system of partial differential equations into a set of ordinary differential
equations [viz. (4.24)]. We rewrite linear eigenvalue problem (4.24) as:

cX =LX, with BX =0. (5.1)

73
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Analytical solutions for fundamental and adjoint:
sec. 5.1

Outline of weakly nenlinear analysis for sireamwise
independent flow: sec. 5.2
¥
| Symmetries of linear and nonlinear modes: gec. 5.3 I

v

Analytical solution of nonlinear problem and
comparison with numerical method: sec. 5.4
4
Results- Bifircation, phase diagram and finite
amplitude solution: gec. 5.5

rDiscussion: sec. 5.6 l

I Conclusions: sec. QJZ

Figure 5.1: Road-map of chapter 5.

It can be verified that this system of equations has analytical solutions (Alam & Nott 1998):

(@.T) = (61,T1)cos kp(y +1/2) } (5.2)
(,9) = (w,v)sin koly £1/2) '
where
ks = Br, with 5 =1,2,3,... (5.3)

being the mode number. Substituting the above solution in (5.1) we get an algebraic eigenvalue
problem for linear stability:

cXy = 2X

where Xy = (¢, u1,v1,T1) represents the amplitude of the fundamental mode, and the elements
of matrix Q are

[ 0 0 —¢%ks 0 \
S e g g2 -1 ' )
FHIE TN ohTks
Q= 6 oo o : (54)
ks 0 -Gtk Higoka
e . LIC Rl

The mode-number 3 is the number of zero-crossings of the density eigenfunction within y €
(~1/2,1/2) as shown in figure 5.2 which displays all four eigenfunctions of the first three modes
#=1,2,3for ¢ = 0.15, H = 100 and e = 0.8. It can be verified that the adjoint system [viz.
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Figure 5.2: Linear eigenfunction profiles across the Couette gap for first three modes 3 = 1 (solid line),
2 (dashed line) and 3 (dot-dash line) for ¢” = 0.15, H = 100 and e = 0.8; (a) density, (b) streamwise
velocity, (e) transverse velocity and (d) granular temperature,

Eqn. (4.25)] satisfies the analytical solution of the linear stability problem, and hence we can
write its solution in terms of sine and cosine functions as in (5.2):

Il

o' (y)

_ r;f)i coska(y +1/2). ul(y) = uT sinkg(y + 1/2),
vl (y)

ol sinks(y £1/2),  TH(y) = T cosks(y+1/2)

Similar to linear eigenfunctions, we found that the adjoint eigenfunctions corresponding to the
least-stable shear-banding mode are real.

5.2 Outline of Weakly Nonlinear Analysis for Stream-
wise Independent Flow

Below we are summarizing all the related governing equations (up to cubic order) of amplitude
expansion method (see chapter 3) for the particular case of streamwise independent granular
Couette flow. To formulate the weakly nonlinear analysis, we neglect partial derivatives of x and
z from the general nonlinear disturbance equations (3.6) and follow the same procedure as given
in §3.2, we obtain the following set of equations [ef. (3.39)]

L.&-n ‘Y“‘;lll s = r‘l"_”)(“"lém + G.f\‘l'i
r,{u—'l'] - (J']”_F]] +.?.'b]n"_l]
[7.-— m| . [H— rl !{j.--n } (56)
G = —(ma" + ikbn-ml) xtkim} L B /(0 4+ 8io) + Fiar
Ly = (na® + ikbM) I - L.

Note that Ly in (3.39) is same as L in (5.6) which is defined as

L= L(d/0x — 0,0/0y — d/dy....). (!

on
~1
=
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5.2.1 Linear Disturbance: Fundamental Mode

At O(A) we get back the lincar problem [viz (5.1)] for the fundamental mode X1, by substi-
tuting k = n = 1 into (5.6):

(5.8)

L]]xh:l] = 0
= LXIN = oy [

where L is the linear stability operator. This equation is the same as (5.1) with ¢ = ¢/ and
¥ = x

5.2.2 Mean Flow Distortion and Second Harmonic

At O{A?), we get equations for the mean flow distortion and the second harmonic. Substituting
k = n = 2 into equation (5.6), we get

Lo X 2% = [z(a“') + 6O — L] X2 = Gy = Eg, (5.9)

with the boundary conditions BX%2 = 0 at y = £1/2. Here, Gay = No(XM1, X111y = E,,
is the product of two fundamental modes. Note that there is no cubic nonlincar contribution at
second order (i.e. Far = 0).

Substituting & = 0 and n = 2 into equation (5.6), we get, at O(A?),
Loz X% = [2a(°)1 - L] X102 = Gyy = Boa/2 (5.10)

where Ggo = Goo( XU, X1y with boundary conditions BX 0:2] = g at y = +1/2. The explicit
functional form of Ggo is

Gop = 0.5 [N;,(X1‘=H, X0y 4 NQ(XM,)”(““F}} ‘ (5.11)

Note that X[%? is always real. To verify this, let us write the complex conjugate equation for
X[U;2] ~
Lo X% = Goo, (5.12)

where Lgo = Lz, and Gqa is given by
Gan = 0.5 [N 11, 1) 4 (X0, X)) = G (5.13)

This immediately implies that X192 is real:

xlo2l = xlo2), (5.14)

5.2.3 Distortion of Fundamental and the First Landau Coefhi-
cient

At O{A3), we get an equation for the distortion of the fundamental mode XU by substituting
k =1 and n = 3 into equation {5.6):

Lys X1 = [(3;;“” + NI - L] X8 = _ 2 x| G, (5.15)
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The expression for the inhomogencous term Gy is given below

Gy = NQ(XIO‘Q],X“‘”) + NQ()?|U.2|.X{I;I]) + NQ[XII;I],XID'zl) + N2(X[1;1]!Xr[0,‘2|)
+N2(X[I'II,X[2;2]) + NQ(X[2;2],X[1']I) + N3(X[1'1|,X[1;11,X[1:l])
+N3{X|ILII.X“’1|,X[l-'ll] + N3(x|l;l|'X[];l],X[l.l])

= 2 [Nz(xlu‘ﬂ?x[l:ll) + NZ(X“;”,X[U'zi)] + Np{ X xf22ly 4 No( X2 x4
+N3[X“‘”.X{I;II,X“:”} + N3(X{]:Ii,X[l’li,X[1;]|) + N3(X[I;II,X“;”,X“'”)

and the boundary condition is BX['3l = 0 at ¥ = £1/2. In the above equation, the quadratic
and cubic nonlinear terms represent Ey,, and Fy,,, respectively, in (5.6}

In (5.15), the first Landau coefficient ¢ is unknown which can be found by invoking the
solvability condition

172 }:,iG d
6(2) = 0(2) + 55(2) = =172 134y

/2 > . !
S0, rxbalay

(5.16)

where X! is the adjoint linear eigenfunction that corresponds to the solution of (4.18) {see chap-
ter 4 for the details of the adjoint problem). The solvability condition or the Fredholm alternative
asserts thai the inhomogeneous part of differential equations (5.15) must be orthogonal to the
adjoint of the associated homogencous problem  this guarantees the uniqueness of the solution
of the inhomogencous differential cquations (5.15). For the shearbanding instability, X1 is given
by (5.5).

5.3 Symmetries of Linear and Nonlinear Modes

Before embarking on the analytical/numerical solution procedure of (5.8), (5.9}, (5.10), (5.15)
and (5.16), Lhere we analyze certain symmetries of linear {(X|41) and nonlinear modes (X122,
X102 gnd X113y yp-to the cubic order.

First, let us consider the base state solution of uniform shear with constant density and gran-
ular temperature, The base state cquations remain invariant under the following transformation:

2% (—y) = "), WO(-y) = -u®(y), T(-y)=T"(). (5.17)

This symmetry about the mid-plane y = 0 of the base state solution {4.11) implies that the
velocity is antisymmetric about y = 0 and the density and granular temperature are symmetric
ahout y = (.

The linear disturbance equations for the fundamental mode and the related boundary condi-
tions satisfy the following two symmetry groups (Alam & Nott 1998)

¢|l;l|(y) - ¢||i1|(_y), u[l;ll ) =  _qallit]y

MO 1 519
and

¢,l1;l](y) = _¢[1:l](_y], u|1:1|(y) _ u[l:l](_y)

vll;ll(y) = t‘,[1;1](__,!),]‘ T|l;l|(y) — _T[l;ll(_y) : (5-19)

While the former preserves the symmetry of the base-state solution (5.17), the latter breaks (5.17).
It follows from the symmetrices of the fundamental mode that the interaction of two funda-
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Symbols Definition
& Mean density or solid fraction (the volume fraction of particles)
H="~h/d Ratio botween the Couctte gap aud the particle diameter
e Restitution cocfficient
8=123,:.-- Mode mumber
al% Growth rate of the fundamental mode,
a'® Real part of first Landau coefficient,
H. Critical Couette gap
&b, Critical mean density
A=A, Equilibrium amplitude
H* Hﬁ‘l(l—QQ)l/Z
Table 5.1: Control parameters for stability
mentals would give rise to the following symmetry for the second harmenice
oEAy) = ¢y W) = Wy |
W20 = oAy TEAG) = TEA(y) [° (5.20)

This, of course, preserves the symimetry (5.17} of the base state solution. The distortion to the
mean fow, X% also follows the same symmetry of the base state since X™? appears at the
quadratic order O(A?).

Similarly. the distortion to the fundamental mode, X L3 gatisfies the following symmetries

o'y = ' Aoy), W) = —ull(y) 5.21)

v“"3|(y] = -'Lfll""jl(—y}, T["'3|(y] = T|1:3I(-y) (5.
and

¢[1:3]{y] = —¢[1‘3l[—y), U[I;Sl(y} — -ttll::jl(_y) 5.99

i A S e &%)

The above symmetry groups can be understood from the fact that the fundamental mode is of
O(A) and the interaction of two fundamentals gives rise to the terms of order O(A?), and s0
forth. Thus the second harmonic X/%? admits a synunetry which is the product of symmetries
of the fundamental mode. Similarly, the synnetry of the distortion of fundamental at O(AY)
would follow the product of symmetrics of the fundamental and the second harmonic.

Table 5.1 summarizes all dimensionless parameters that we will frequently refer to while
presenting our results in §5.4-§5.6.

5.4 Analytical Solution and Comparison with Numer-
ical (Spectral) Solution

The underlying symmetries of the fundamental mode and its nonlinear corrections as discussed
in §5.3, together with the analytical solution of the fundamental mode (Alam & Nott 1998),
helped us to solve the nonlincar problem analytically as we discuss in §5.4.1, §5.4.2 and §5.4.4.
As mentioned before this problein was tackled numerically in (Shukla & Alam 2009) which is
detailed in chapter 4, even though the order parameter equation was derived there using another
method, namely, the center manifold reduction technique. Apart from providing new analytical
solutions in this chapter, the spectral-based munerical technique as detailed in chapter 3 is also
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validated here against present analytical solutions for harmonics and the first Landau coefficient.

5.4.1 Solution for Second Harmonic and Mean Flow Distortion

It can be verified that there exists analytical solution for the second harmonic:

oP2(y) = dycoskys(y+1/2),  ul3(y) = upsinkys(y£1/2), &g
-”tQ'.Z](y) = wvosinkys(y + l/?.) T12:2] (q) = Tscos kzﬂ(y + 1/2) + Tf_:;ml ( ’ )

where
kg_@ = 20w, with 3=1,2,3... (524)

and Xgp = [@2, un, v2, T3] is the amplitude of the second harmonic. The mean term in granular
temperature is calculated from

o = %, (5.25)
where f,; denotes nonlinear terms and f; are related to linear terms:
far = —L(—uTk-—H‘w}d)T)-k—l—[—k-[”r;b +prT1) v + 2u°k3 (vF + 0.5u3
n 200 1ii1kg T+ ¢€ 1 &Odim ‘3 \PgP1 + P 1)?,1 + 27 kg (3.1 + 0. ul)
+0.5 (1 ®F + w3 TE + 20071 Th) + 2ksur (1S + wrTy) + DA
~0.5 (Dg40% + D TE + 2D5%: 00 Th )] (5.26)
2
_ (

f!' = 2("{ e m (;‘J.UT - 'D!}) ‘ (527)

The modal amplitude of the second harmonic, Xqy = (02,12, v9, Ty), satisfies the following alge-
braic matrix-equation:

i ]
L2, Xy =GB, (5.28)
where
4 ) .
L5 =2(a'® + b D)1 — LP (5.29)
with
0 0 ~ ka3 0
_ k?f”‘g o kg,_i'r"" 1 k;,-j#‘]‘-v
dTH? PTHT T WOH?
Lﬁ g2 ; 5"
kagpy 0  kig(2ut+20) kapt ' (5.30)
HIZT T HETE HIg0
2(py, ~ DY) dkgyu 2hyp" 2 2 &Y 0 0
adim P0dim ~ o0dim ldim (_ IilZJ-J'FQ' + pp — D’I')
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and the nonlinear inhomogeneous terms, G";, = (G;; (‘f; 6;3 G. IH} . are

+13
Goy = —kaorvy, \

28 _ l 1 0 ¥ (0 1
Gy = 3 [ P (ti’ viurhy + o1 + ¢ tﬂl”]) + T ( 2k (uom + g ?;)m

—ky (Hg.ﬁ’f + W TE + 260 Ty ))J ;

a8 1 L 0.2 (o 1 2 2
Goy = 3 a0 (‘-.-f{i’ vi + ¢ d:]l-‘l) - POy (k,-_i (P:,.;,‘P'i + P TE + 'zpt;rf—”ITl)
—-U\‘:'ﬂ (,u:;,:p; + ;#Tl) v — 2&'?, (,\[‘;01 + A%T;) u,)] . (
012
e - (0) 25T 0
(’2‘2‘{ 2” ((‘! vy kg + ¢ ®LT|)—m(m¢;+h !'[)

B

0
Odim ( (p o1 + py Tl) v+ 2;.:"3. (l‘ + 0. 51.']] + 0.5 (;( c,t,bl + ,u?TT] + 2;:07 plT)

+2kj (,uga'n + 1:5’—?‘1) ur + A%%u? — 05 (‘ngz_ﬁf + DY TE + 2'D31\Tf))] :

4

The matrix equation (5.28) can be easily solved to determine the complete solution for the second
harmonic from (5.23) if 2(a'”) + b)) is not equal to any of the eigenvalues of L7,

For the shear-banding mode, the eigenvalue is real (Alam & Nott 1998; Alam et al. 2008), i.e.
b'Y) = 0. This implies that

Loy = [2(«‘“1 +ib )1 — L] - [2@”’1 . L] = Loa, (5.31)

i.e. the linear operators for the second harmonic and the mean-flow distortion are identical. From
(5.9) and (5.10) we have Gy = No(X1:1] 'q ”} = Gy2, and therefore

xlo2 — yl22] (5.32)

for the shear-banding mode. Therefore, the solution to the mean flow distortion, X2 is the
same as in (5.23).

Before moving to the first Landau coefficient. let us compare the analytical solutions for
the second harmonic (5.23) with the same calenlated numerically by discretizing the differential
equations using spectral collocation technique and solving the resulting algebraic equations by the
singular value decomposition as detailed in chapter 3. Figures 5.3-5.6 display such comparisons
between analytical and numerical solutions for the shape of the fundamental and the second
harmonic for mode 3 = 1 and # = 2, respectively, at a mean density of ¢ = 0.15. A similar
comparison for second harmonic with 3 = 1 at a lower mean density of ¢ = 0.05 is displayed in
figure 5.7. In cach panel, the solid line refers to analytical solution and the circles to numerical
solution, and we find excellent agreement between the two.

5.4.2 Solution for First Landau Coefficient

To determine the first Landau coefficient. we consider the equation for the distortion of the
fundamental which appears at the cubic order. Recall that the inhomogeneous terms Gz of this
equation depend on the fundamental (X10), the second harmonic (X??!) and the mean-fHow
distortion (X102, along with base state soluliun Inserting analytical solutions for xa] x(2.2]
and X102 the expressions of Gz = (Gl4. G24, G3,.G1,) are simplified as follows:

(G13.Gly)
(Gf:i' Giy) = 3 (G?;“ G:lj.::a) sin kga(y £1/2) +3 (Gf':l'(d ”) sin ka(y +1/2).

.;((“{;’ C:;J)uryﬁ“ y+1/2) + (c;;,“ c'”)ms kaly £ 1/2).
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Figure 5.3: Comparison between analytical (solid line) and spectral/numerical (circles) solutions for
the fundamental mode (linear eigenfunction) X' with mode 3 = 1: (a) S (B) w1 (e) oMY and
(d) T for ¢° = 0.15, H = 100 and e = 0.8,
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Figure 5.4: Same as figure 5.3 but for mode 3 = 2
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0

-0.1 0.1
ul?2l
(d) .
Y o Y o \
I "I D MR
vi2:2] x 107 T(2:2]

Figure 5.5: Comparison between analytical (solid line) and spectral/numerical (circles) solutions for the

second harmonic X% with mode 4 = 1: (a) 2, (b) wl??, () ol and (d) T1%2 for ¢° = 0.15,
H = 100 and ¢ = 0.8.
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Figure 5.6: Same as figure 5.5 but for mode 3 = 2
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Figure 5.7: Same as figure 5.5, but at a lower density ¢" = 0.05.

473 3 3 B 333 g . :
The y-independent terms G15°, G143°, G13', G5, &, 61 G ui d G¥' are given in
Appendix 5B.

Since we know the analytical form of Gz, we can now find first Landau coefficient from
the solvability condition (5.16) taking the inner product of Gz and the adjoint of the linear
problem X', Inserting the E!.Ildl\«’tl(dl solutions of X1 and X% and the expressions of G 3 in
the numerator and denominator of (5.16), we obtain

/2 1/2
/ Xt Gisdy (qﬂﬂt(*““ + T*G“‘ “) / coskg(y + 1/2) cos kag(y £ 1/2)dy
—-1/2 U

+3 (ﬁ}G"ff:"i + fe:(}"?*:j) / sinkg(y £1/2)sinksg(y £1/2)dy
+3(¢*Gl*“ +Tlcid! ) ] cos® ka(y +1/2) dy
+3 (ﬁ;r(}"ff:i + ﬁ:(:;‘fl) [ sin? ky(y +£1/2)dy

3 .
5(«)(“'“4—)‘6“' I(;fgfl *G‘“) (5.33)
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and

/2 . R 1/2 )
[ xxitay = (et ) [ costiatv 1/2)dy
-1/2 —142

1/2
+ (il +ﬁ}ul)f sin? ky(y £ 1/2) dy
-1/2
1 i I hy ol -
= 3 (@{@l + T11T1 + H{ﬂ. +'U}t’1) . (5.34)
The final expression for the first Landau coefficient (5.16) simplifies to
3(BIGU + HGH + a4+ ol6H)

?=a? 4D = — - : —~
a1 + T Ty + dgun + 90y

(5.35)

Since for the shear banding mode the linear eigenfunction, its adjoint and the second harmonic
are found to be real, the right hand side of the above equation is always real for this mode. This
implies that the imaginary part of the first Landau coefficient is identically zero for the shear
banding mode:

¥ =0, = ?=q? (5.36)
-4 -5
5 - 19 %5015, 4108 M=20 5x '10 M=20
- ©r05 0108 ; M;5O
= (b) a M=100|
0 Or
2@ 4@
-5 -5
-10 20 40 HGO 80 100 ~10 20 40 |_E|30 80 100

Figure 5.8: Comparison of the lrst Landau Cocfficient between analytical (solid line} and spec-
tral/numetical: stars for Af = 20, circles for Af = 50 and squares for A7 = 100, solutions: (a) ¢ = 0.15
and {b) ¢" = 0.05, with e = 0.8, Insct in cach panel shows the variation of growth rate of the least-stable
mode {(inode number 3 = 1) with H.

To compute a'?’ analytically. we need to insert the analytical solutions for the fundamental
mode (5.2) and the second harmonic {5.23) in (5.35). The solution for the first Landau coefficient
[a'?) from (5.35) is shown in figures 5.8(a) and 5.8({b), marked by solid lines, which display the
variations of a!? with Couette gap at two values of mean density ¢° = 0.15 and 0.05, vespectively.

To further ascertain the accuracy of spectral-based numerical method as given in chapter 3
{more specifically, the Gauss-Chebyshev quadrature as detailed in chapter 3), we also caleulated
2'2 by using the numerical solutions for the fundamental mode aud the second harmonic and
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then evaluated the integrals in (5.16) by using the Gauss-Chebyshev quadrature.

The stars, circles and squares in figure 5.8 denote the corresponding numerical solutions for
a'? with Al = 20, 50 and 100, respectively, which agree well with the analytical solution (solid
line in figure). The insets in figures 5.8 (a) and 5.8 (b) show the variation of the growth rate
a'® of the least-stable mode, again caleulated both analytically and numerically with excellent
agreement between the two. Note that the least-stable mode is stable (i.e. a!® < 0) at both
mean densities in figure 5.8, and we will discuss the possibility of subcritical bifurcations in such
cases later in §5.5.3.

To know the quantitative accuracy of the numerical method, we show in table 5.2 the spectrally
calculated values for the least-stable growth rate a!” for four set of control parameters (¢°, H)
at a restitution coefficient of ¢ = 0.8. The second, third and fourth columns in table 5.2 show
spectral solutions with collocation points of M = 10, 20 and 50, respectively, while the last column
shows the corresponding analytical solution. It is clear that with just 10 collocation points the
least-stable eigenvalue a'”) agrees with its analytical solution within an error of less than 0.0001%.

Table 5.3 displays a similar comparison between spectral and analytical solutions for the first
Landau coefficient a(?), with parameter values as in table 5.2. Note that we have not shown
results for Al = 10 since they are way off from the analytical solution; rather we show spectral
solutions with collocation points of M = 20, 50 and 80, respectively, in the second, third and
fourth columns in table 5.3. Even though the spectral solutions for a'®) with M = 50, such as
those in figure 5.8, are very close to analytical solutions (solid line), there is an error of up-to
3% with M = 50 collocation points; to achieve an accuracy of less than 1% we need to employ
more than M = 75 collocation points. The same level of accuracy of the spectral solutions for
a'?) holds at other values of control parameters (¢, H, ).

(0.15, 100)

6.2902898 x 10~

6.9159585 x 10~°

6.2902895 x 10~°

6.9159583 x 109

6.2902895 x 10~

6.9159584 x 10~

(o", H) —a™ (M=10) | -a® (M =20) [ -a™ (M =50) [ —a™ (Analytical)
(0.05,50) [ 3.7516040 x 10~ [ 3.7516039 x 10~° [ 3.7516039 x 10~2 [ 3.75160396 x 10—
(0.05,100) | 7.4113835 x 10~* | 7.4113835 x 10~* | 7.4113835 x 10~* | 7.41138354 x 10~*

6.29028958 x 1077

6.91595832 x 10~°

Table 5.2: Comparison between spectral and analytical solutions for the least-stable growth rate. Spec-
tral solutions with different number of collocation points M = 10, 20, 50 are shown in 2nd, 3rd and 4th
columns, respectively, and the last column represents analytical solution.

5.4.3 Resonance at O(A?): Second Harmonic and Distortion to
Mean Flow

Figures 5.9(a) and 5.9(b) are same as figure 5.8(a)-5.8(b) but for the higher densities, ¢" = 0.5 and
0.3, respectively, where the inset shows the variation of growth rate. The insets of figure 5.9(a)-
5.9(b) show that 3 = 1 mode remains least-stable mode until it crosses the next higher-order
mode at J = 2, after which it becomes least-stable mode which is shown by circles. At some
value of H, successive modes cross each other, beyond which the mode with higher 3 becomes
dominant until the next cross over.

Recall that in the mumerical method we get eigenvalues in one shot compared to analytical
method (Alam & Nott 1998; Alam et al. 2008). As shown in the main panel of figure 5.9(a)-(b)
that the analytical and numerical values of a'?) are well agreed for the range of Couette gap
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L(¢" H)

|

a® (M = 20)

2@ (Al = 50)

2@ (M = 80)

a'? (Analytical) |

(0.05, 50)
(0.05, 100)

(0.15, 50)

(0.15, 100)

1.051184 x 10-°
7.158992 x 100
1.477738 x 10~4

1.802382 x 107+

1.859661 x 105
£.916186 x 109
1.280434 x 104

1.623106 x 10~1

1.848715 »x 10°°
6.887152 % 10~
1.266915 x 10~4

1.601668 = 10~1

1.84161433 x 107
6.86830930 x 10-¢

1.25230414 x 10~4

1.58775650 x 10~4

Table 5.3: Comparison between spectral and analytical solutions for first Landan coefficient. Spectral
solutions with different number of collocation points M = 20, 50, 80 are shown in 2nd, 3rd and dth

columns, respectively, and the last column represents analytical solution.

80 100

100

Figure 5.9: Same as figure 5.8 but for ¢°: (a} 0.5 and () 0.3. The collocation points are used 50.
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before the cross over of modes (see inset). It can be seen from these figures that there is a jump
in a'? for a Couette gap near the cross over of modes 3 = 1 and 3 = 2. What is the reason
of sudden jump or discontinuity in a/® for a specific value of Couette gap in a well posed 4 x 4
matrix problem?

To answer this question and to know more about this discontinuity we have magnified fig-
ures 5.9(a)-5.9(b), corresponding to analytical solution (represented by a solid lines in figures 5.9(a )-
5.9(b)) just beyond the cross over in figures 5.10(a)-5.10(b).

This discontinuity may be explained by looking back to second harmonic equation (5.28). Let
us denote the four eigenvalues of L? operator (5.29) by ¢j for j = 1to 4. If 2(al® + ib'?) is
equal to ¢; for any j = 1 to 4, the homogeneous problem associated to the problem (5.28) admits
eigensolution. Thus the condition,

2(a'” + ib'") = ¢; (5.37)

is the “resonance” condition at O(A?) which arises due to the 1 : 2 discrete wave resonant inter-
action (note that the ratio of wavenumbers is k;3/kag is 1/2). Note that ¢; is not necessarily the
least-stable mode. Therefore, there could be a possibility of mode interactions with fundamental
mode for any mode number /3 with the decaying second harmonic mode at mode number 23. At
resonance points the single mode analysis is not valid. To capture dynamics near these points we
need to include these resonating modes in the expansion to derive coupled Landau equation (see
chapter 9).

It is verified that the condition for resonance (5.37) exactly satisfies for the parameters at
which a'?) diverges which is shown geometrically in inset plots in figures 5.10(a)-5.10(b). In each
inset we have plotted the left hand side of (5.37) i.e. 2a'”) (since b(® = 0) by a solid line and Cj
by a dashed line; their intersection points are shown by arrows. For ¢” = 0.5 resonance occurs at
H =~ 67 and consequently a(?) diverges at this point. Similarly for ¢" = 0.3, figure 5.10(b), a'?)
diverges at H =~ 50.99 where the resonance condition holds, see inset.

=x10
(a) Moo a®
4 N
0.02 PNy S
_ | sec harmonic e »" H-5099
a? WM % | @5 e o smenamone

-0.02 0 ;

004 % ?I_? 75 80 40 45 5£ 55 60

0.04

10

(b)

Figure 5.10: Variation of a'?! with Couette gap using analytical solution for ¢": (a) 0.5 and (b) 0.3. The
other parameters are same as figure 5.9. The inset shows the mean How resonance condition for 3 = 1
where the solid line is 2a'™ and dashed line is the eigenvalue of L7,

As described above that the nonlinear problem encounters resonance, at order two in per-
turbation amplitude, if we employ fixed mode number throughout the range of Couette gaps,
however we know that beyond a certain Couette gap the least-stable mode belongs to a higher
ralue of the mode number. The numerical method does not depend on the mode number rather
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Figure 5.11: Comparison of the first Landau Coefficient hetween analytical (solid line) and spec-
tral/numerical (cireles) solutions: (a) ¢° = 0.5 and (4) ¢ = 0.3 where the sclected mode number
(3) for the analytical results are a mode number which has maximum growth rate over all the 3's.

it provides all leading eigenvalues in one shot (Alam & Nott 1998; Alam et al. 2008).

To compare exactly numerical results with those obtained from the analytical method we solve
the linear eigenvalue problem for several 3 and then choose the leading mode such that it has the
maximum growth rate over all 3 which is shown in the inset plots of figures 5.11¢a}-5.11(b} for
° = 0.5 and 0.3, where the circles are the growth rates from the analytical method and the solid
lines from the numerical method. In the main panels of figures 5.11(a})-5.11(b) we have shown
the variation of a/®) by using the leading mode which is the maximum over all 3. It can be seen
from figure 5.11 that the nunerical and analytical methods yields the same result.

5.4.4 Solution for Higher-order Harmonics: Distortion to Fun-
damental
Recall that at cubic order O{A®) we have two harmonics: the distortion to the fundamental

mode X!'*¥, and the third harmonic X #3], Here we determine analytical solution for X113, The
governing equation for the distortion to fundamental is

Liax!¥ = 2 xily G, (5.38)

Having determined the first Landau coefficient 2 = ¢'?), the right hand side of (5.38) is now
completely known, and hence {5.38) can be solved for X131 The general solution for X' for
any mode number 7 can be written as

I = s cos kasly £ 1/2) + olg cos ky(y +1/2)

a3 = udy sin kas(y £1/2) + uly sin kg(y £1/2) .

11[1:31 = o gin k 1 i 1ot P (039)
= wjysin kga{y £ 1/2) + vf; sin kp{y £ 1/2)

i3]

T7s cos kas(y £ 1/2) + T}y cos ky(y £ 1/2)

wherc

kap = 30n (5.40)
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Figure 5.12: Comparison between analytical (solid line) and spectral/numerical (circles) solutions for
the distortion to the fundamental X" with mode number 3 = 1: (a) ¢/"¥, (b) ul', (¢) v/ and (d)
T3 for ¢ = 0.15, H = 100 and € = 0.8.

with the mode number 2 = 1,2,..., and [¢y, udy, vis, T3]T" and ¢}, ulq, vy, TH]T" represent
unknown amplitudes. Substituting (5.39) into (5.38) and equating sine and cosine terms, we
obtain inhomogeneous algebraic equations for unknown amplitudes that can be easily evaluated.

The analytical solutions (5.39) are compared with the numerical solution of (5.38) using
spectral collocation technique (as detailed in chapter 3) in figures 5.12, 5.13 and 5.14 for two
values of the mean density ¢” = 0.15 and 0.05, respectively. We find good quantitative agreement
between analytical and numerical solutions for each mode shape of X/1#1,

On the whole, the quantitative agreement in figures 5.3-5.14 between the analytical and the
spectral /numerical solutions for the harmonics (of various order) of the fundamental mode as
well as for the first Landau coeflicient ascertains the accuracy of the spectral-based numerical
method for nonlinear stability. One outcome of this chapter is the validation of a numerical
technique (based on spectral collocation and Gauss-Chebyshev quadrature) for nonlinear stability
calculations: our spectral-based numerical code (cf. chapter 3) can be adapted/extended for a
host of granular flow problems for which analytical solutions do not exists.

5.5 Bifurcation, Phase Diagram and Finite-amplitude
Solution

5.5.1 Phase Diagram and Critical Parameters for ‘Linear’ Shear-
banding Instability

For linear stability, the dispersion relation is a quartic in ¢ = ¢ = o9 + b9 (Alam & Nott
1998):
2

(": -+ u‘}:;],l":‘i + (g™ + oqe + g = 0, [-I-)‘-ll)

where «; are functions of the base state density and temperature, the Couette gap and the resti-
tution coefficient. Previous works on linear stability (Alam & Nott 1998; Alam et al. 2008) have
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Figure 5.13: Same as figure 5.12, but for mode 4 = 2.
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Figure 5.14: Same as figure 5.12, but for ¢" = 0.05.
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established that out of four eigenvalues of (5.41), there is a complex conjugate pair, representing
propagating modes, which are always stable; one real eigenvalue corresponds to the temperature
mode which remains the most stable mode for any values of control parameters, and the remaining
real eigenvalue could be unstable depending on base state condition. The approximate analytical
solutions for these eigenvalues using asymptotic expansion for large Couette gaps (H) are given in
Appendix 5D. This real unstable mode has been dubbed shear-banding mode (Alam 2005) since
the corresponding eigenfunctions represent shear-localization and density segregation along the
gradient (y) direction.

Since the shear-banding instability corresponds to a real eigenvalue, the locus of neutral sta-
bility (a'” = Re(c) = 0) is given by ag = 0 which can be simplified to

v
H? = @—;k;‘;. (5.42)
Here kg = 3, with @ = 1,2, ... being the mode number, and ¥ and W5 are functions of base-state
density
f-? 2‘:} fgé {]
Uy = and Vo= —=+—== |5 -2 (5.43)
13 3R )R,

The zero growth rate contour a'® = 0 (i.e. the neutral stability curve) for the shear-banding
mode is shown in figure 5.15 as a thick solid line; the flow is unstable (a'® > 0) inside the neutral
stability contour and stable (a®) < 0) outside. It is seen that, for a given density, there is a
minimum/critical value of the Couette gap,

H, = H(¢".e,8:a™ = 0) = kg\/ U, /¥, (5.44)

depending on ¢°, e and 3, below which the shear flow is stable according to linear theory. On
the other hand, for a given H, there is a minimum/critical density,

o. = ¢"(H. e, 3;a'” = 0), (5.45)

below which the shear flow is stable. While this critical density depends on H, e, and 3, there is
a global minimum density, defined as

¢! = min ¢° (a“” :0) v H, (5.46)

below which the uniform shear flow is always stable to shear-banding instability, irrespective of
the values of e and 3. For the present Navier-Stokes's level constitutive model, this global critical
density is ¢l ~ 0.154.

In the following two sections, we investigate the possibility of suberitical shear-banding insta-
bility in dilute flows ¢ < ¢! from the nonlinear analysis. One goal is to check the feasibility of
finite-amplitude segregated solutions that have been observed in molecular dynamics simulations
of dilute granular shear flow (Tan & Goldhirsch 1997). This constitutes a stringent test of our
order-parameter theory since the same has been predicted from the direct numerical simulation
of continuum equations for the same flow configuration (Nott et al. 1999). We will also determine
finite amplitude solutions for moderately dense flows (¢ > ¢') which are linearly unstable to
shear-banding instability, signaling the possibility of supercritical bifurcations for ¢° > ¢l.

5.5.2 Equilibrium Amplitude and the Nature of Bifurcation

First we discuss about the nature of bifurcation for the appearance of finite-amplitude nonlinear
solutions that would bifurcate from the uniform shear base state due to the shearbanding insta-
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bility as discussed in §5.5.1. This is intimately tied to the concept of equilibrium amplitude (i.e.
finite-amplitude equilibrium solution) and the first Landau coefficient a'?) as we show below.
Let us rewrite the amplitude order-parameter or Landan equation (3.32) as

5= _ 04 @A WA ... (5.47)
dt
which is an infinite series where a") is the growth rate from the linear theory and a'®, o', ...
are nonlinear corrections to the linear growth rate, called Landau coefficients. The above series
(6.11) is also known as Stuart-Landau series (Stuart 1960; Watson 1960). As mentioned before,
in the present work we have stopped at the first nonlinear correction term by calculating only
the first Landau coefficient a'?) which was hard enough.

The stationary solution of (6.11) i.e. the value of A for which § = 0 is called the equilibrium
amplitude A = A,. To determine the equilibrinm amplitude, we truncate equation (6.11) at cubic
order:

dA,

o a4, +adP42=0 (5.48)

which has three possible solutions:

a(0)

a@)’

A, =0 and A, =+\/— (5.49)
The trivial zero-solution, A, = 0, corresponds to the base state of uniform shear, implying that
the uniform shear solution is stable if the two non-zero solutions are unfeasible. It is clear that
the finite-amplitude/nonlinear solutions exists if and only if the following condition holds:

a” and a'? are of opposite sign.
Two situations can arise:
(i) al? >0 and a'? <0 (Supercritical) (5.50)
(i) a <0  and ¥ >0 (Suberitical ) (5.51)

The former/latter condition corresponds to linearly unstable/stable How with positive/negative
growth rates and negative/positive first Landau coefficients, respectively, leading to supercrit-
ical/suberitical bifurcations. In other words, the suberitical bifurcation arises when the first
landau coefficient a'?) has a positive sign and the supercritical bifurcation occurs when a'® is
negative. In either case, there is a new finite-amplitude solution, given by (5.49).

5.5.3 Phase Diagram for ‘Nonlinear’ Shear-banding Instability

As described in the previous section, the sign of the first Landau coefficient a'®' decides the type
of bifurcation: supercritical (5.50) or suberitical (5.51). From the given analytical solution, the
condition for vanishing first Landau coeflicient (5.35) simplifies to

o1Giy" + TIGY' +alGl' + oGl =0, (5.52)

The zero-contour of the first Landau coefficient, ¢?) = a(?) = 0, is superimposed over the neutral
stability contour (a'”) = 0) in figure 5.15 as thin solid lines. The restitution coefficient is set to
e = (.8, with the mode number being /# = 1. The regions of positive and negative a'? are marked
in this figure. Recall that the thick solid line in figure 5.15 corresponds to the zero growth-rate
contour (i.e. the neutral stability contour), to the right of which the uniform shear flow is linearly
unstable and is stable in the rest of the (¢". H)-plane.
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!

Subcritical

20 40 He'o 80 100

Figure 5.15: Phase diagram in the (H.¢} plane: contours of zero first Landau coefficient (thin solid
lines) and the zero growth rate (thick solid line) in (H,$%) plane for ¢ = 0.8 and @ = 1. The flow is
unstable (a'® > 0} to the right of the thick solid contour.

In the following, we discuss the results on the first Landau coefficient and the related bifur-
cations for fincarly stable (¢” < ¢!) and unstable (¢° > ¢L) regimes scparately. We will establish
that the lower part of the neutral contour (enclosed by the zero-line of a{® = 0) in figure 5.15 is
suberitically unstable but its upper part is supercritically unstable.

Linearly Stable Regime: ¢° < ¢!

Focussing on the stable dilute flows {¢° < ¢! ~ 0.154) in figure 5.15, we show the variation
of the first Landau coeflicient with density in figures 5.16(a) and 5.16(b) at two Couette gaps
H = 50 and 100, respectively. The inset in each plot shows the corresponding variation of the
growth rate of the least-stable shear-banding mode (8 = 1); the arrow in each inset marks the
critical value of density, ¢., above which the flow is linearly unstable. For both cases, we find
that the growth rate, a!®, is negative but, the fArst Landau coefficient, a?, is positive for a range
of densities in the linearly stable region (¢” < ¢.), suggesting the existence of finite-amplitude
solutions as per equation (5.51). This is also evident from figures 5.8(a) and 5.8(b) which show
the variations of «{*) (main panel) and a!'® (inset) with Couette gap at two values of the mean
density ¢V < (ﬁfy

The bifurcation diagrams in the (A, ¢° — ¢.)-plane, related to figures 5.16(a) and 5.16(b), are
shown in figure 5.17 for three values of the Couette gap H = 50, 100 and 200, For each case, the
horizontal line with 4. = 0 represents the base state of uniform shear solution which is stable
for ¢° < ¢!, but we also have new unstable finite-amplitude solutions, representing subcritical
bifurcations {also known as inverse bifurcation). For subcritical bifurcations, the higher order
Landau coefficients (whiclh we have not calculated) are needed to identify stable finite-amplitude
solution. The important point to note is that the finite-amplitude unstable branch in figure 5.17
provides a threshold for nonlinear stability: the uniform shear flow is non-linearly stable /unstable
for A < 4. or A > A, respectively. At a given density, this threshold amplitude 4., to reach
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Figure 5.16: Variation of the first Landau Coefficient with density for suberitical Hows: (a) H = 50
and (b) H = 100, with e = 0.8. Inset shows the variation of growth rate of the least-stable mode (mode
number 3 = 1) with density. The solid line represents analytical solutions. The symbols: stars, circles and
squares represent spectral/numerical solutions for collocation points M = 20, 50 and 100, respectively.
Arrows in insets mark the critical value of density, ¢, above which the flow is linearly unstable.
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Figure 5.18: Effect of restitution coefficient on (a) the variation of the first Landau coefficient with ¢,
and (b) the bifurcation diagram in (A4, ¢")-plane for H = 100 and 3 = 1. The inset in panel a shows the
in each case.

related variations of the linear growth rate with ¢ for different e. Note that the bifurcation is subcritical

a stable nonlinear state, is higher for smaller Couette gaps. Apart from its dependence on the

mean density (¢”) and Couette gap (H), A, also depends on the restitution coefficient (e), i.e.
A, = A.(¢", H,e). This is evident from figure 5.18 which shows the bifurcation diagrams in the
(A, ¢" — ¢)-plane for three values of restitution coefficient at a Couette gap of H = 100. Clearly,
the threshold amplitude A, decreases with increasing dissipation (i.e. with decreasing e).

The results presented in figure 5.17 can be replotted as bifurcation diagram in the (A, H)-plane
as in figure 5.19. The mean density is set to ¢° < ¢L = 0.154 (¢" = 0.15 and 0.10 in figures 5.19a
and 5.19b, respectively) and the restitution coefficient to e = 0.8. The finite-amplitude branch
in each panel of figure 5.19 provides a threshold for nonlinear stability, and the magnitude of

this nonlinear threshold decreases with increasing Couette gap. In fact, this branch bifurcates

from infinity, i.e. from H = oc, as we explain below. Let us consider the leading-order analytical
expression for the shear-banding mode (Alam & Nott 1998):

10 [PS(DY + i) — pH(DY + )] K3

2pGu + ¢ {pﬁi(v% ~ 1) — p(DY — IL‘J,)]

a0 = _ -2

+ O(H™).

(

o

5H3)

It has been verified that a(”) is always negative for ¢” < ¢l over which the shear flow is linearly
stable. However, it is clear from (5.53) that ¢!’ — 0 in the limit H — oo, and hence there is a

critical point (a!” = 0) at H = oc. Therefore, the bifurcation point for linearly stable densities
(0" < @) originates from H = oc. This is the origin of the nomenclature for the special type of
bifurcation as depicted in figure 5.19: bifurcation from infinity (Rosenblat & Davis 1979: Alam
& Nott 1998). In fact, this belongs to a more general class of suberitical bifurcations.

From the above discussion, we conclude that the region in the (¢°, H)-plane in figure 5.15,
below the intersection of the zero-contours of a? and a'"), is subcritically unstable. More specif-

ically, in this region (¢” < ¢L) of linearly stable flows, there is a bifurcation from infinity in the
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Figure 5.19: Bifurcation from infinity (H — oc) at (a) o" = 0.15 and (b) ¢" = 0.1 , with e = 0.8.

sense that the bifurcation point lies at H = ~c. In all cases, there exist finite-amplitude nonlinear
solutions, provided the amplitude of perturbation exceeds a threshold for nonlinear stability,

A> A(¢" H,e), (5.54)

which depends on various control parameters.

Linearly Unstable Regime: ¢" > ¢!

Here we consider moderately dense flows with ¢ > ¢l for which the linear stability theory
predicts that the uniform shear is unstable to shear-banding instability if the Couette gap is
sufficiently large; more specifically, we focus on the regime in figure 5.15 which is enclosed by the
neutral stability contour (u{m = ().

Figure 5.20 shows a series of bifurcation diagrams in the (A, H — H.)-plane for six values of
the mean density, ¢ = 0.16, 0.17, (.173, 0.174, 0.18 and 0.2, just above the critical density for
the onset of linear shear-banding instability. The restitution coefficient is set to e = 0.8 as in
figure 5.15. It is clear that the bifurcation-type is not supercritical immediately, even though we
are in the linearly unstable regime (" > (;?i_}l. Rather, we have a window of mean densities,

ol < ¢ < @2,
with ¢¢ € (0.173,0.174), over which the bifurcation is subcritical and is supercritical for larger
densities

¢ > ¢ (5.56)

From figure 5.20 we find that the critical density at which this switch-over between the subcritical
and supercritical bifurcations occurs is about ¢f = 0.1735.

To understand the origin of the above switch-over between two types of bifurcations, we show
the variation of the first Landau coefficient with H at ¢" = 0.17 and 0.18 in figures 5.21(a) and
5.21(b), respectively. In each panel, we have superimposed the corresponding variation of the least-
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Figure 5.20: Bifurcation diagram in the (A, H)-plane for a range of density with e = 0.8. Note that
the bifurcation-type changes from supercritical to subcritical below a critical value of the mean density

¢ € (0.173,0.174).
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Figure 5.21: Variations of the first Landau Coefficient, a'® . and the growth rate of the least-stable
shear-banding mode, a'”, with Couette gap for linearly unstable mean densities ¢° > ¢! ~ 0.154: (a)
@ = 0.17 and (b) 0.18. Arrow in each panel marks the critical Couctte gap H,. above which the shear
flow is linearly unstable (a'” > 0).
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stable mode, a®, denoted by the dot-dash line, and the critical Couette gap, H, = H(e™ =0),
is also marked by an arrow. In the case of ¢” = 0.17 < ¢2, we find a range Couette gaps (inarked
by vertical lines in figure 5.21a) over which a'® < 0 and @'? > 0, which corresponds to subcritical
hifurcations (5.51). On the other hand, for ¢ = 0.18 > ¢$, we have a range of Couette gaps
(marked by vertical lines in figure 5.21b) over which ¢! > 0 and a‘® < 0, signalling the presence
of supereritical bifurcations (5.50).

0.5 — — - x 107

0.4}

0.3
A

0.2¢

0.1

: i : 2
0 05 1 15

c

Figure 5.22: (a) Bifurcation diagrams in the (A, H)-plane and (b) the variations of first Landau coeffi-
cients at larger mean densities, ¢° 3 @L, with ¢ = 0.8. The inset in panel b shows the variations of the
linear growth rate with H.

Even at larger mean densities (¢° » ¢2), the bifurcation remains supercritical as seen in
figure 5.22(a). The corresponding variations of a'® and o® are displayed in the main panel and
the inset of fizure 5.22(h). At both ¢° = 0.3 and 0.5, the condition for supercritical bifurcation
(5.50), a'®* > 0 and o'? < 0, is satisfied. It is seen from figure 5.22(a) that the magnitude of A,
required to reach the nonlinear finite-amplitude branch, increases with increasing density.

In §5.6, we will discuss the possible influence of different constitutive retations and the contact
radial distribution function on the above bifurcation scenario. It may be noted that the direct
numerical simulation of continuum equations [ef. (4.5} (4.8)] for the same problem (Nott et al.
1999) has also identified the above three types of bifurcations.

5.5.4 Finite Amplitude Solutions: Density Segregation and Shear
Localization

Once we know the equilibriumn amplitude, the finite amplitude solutions for the density and the
shear rate are computed from

¢ = ¢+ A", (5.57)
¥ = diy ( 0 + Aeult'—ll) s (5.58)

with leading-order corrections in amplitude O{4). Typical suberitical finite amplitude solutions
for ¢ and + are shown in figures 5.23(a) and 5.23(b), respectively, for mode 3 = 1, with parameter
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Figure 5.23: Finite amplitude solutions for (a) the density, ¢” + A¢!""") and (b) the shear rate, d/dy(u" +
Au“:”). for mode 3 = 1. Parameter values are ¢ = 0.15, H = 100 and e = 0.8
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Figure 5.24: Same as figure 5.23, but for mode 3 = 2.
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Figure 5.25: Finite amplitude solutions for (a) the density, ¢° + A¢!""!) and (b) the shear rate, d/dy(u? +
Aulm]), for mode 3 = 1. Parameter values are ¢° = 0.3, H = H, +2and e = 0.8
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Figure 5.26: Same as figure 5.25, but for mode g = 2.

values ¢° = 0L15, H = 100 and e = 0.8. The analog of these figures for mode 3 = 2 are shown
i figures 5.24(a) and 5.24(b}. For any mode number &, there are two solutions that are mirror-
symmetric which is due to the underlying symmetry of the plane Couette flow. It is clear that the
density and shear rate are non-uniform across the Couette gap (), leading to density segregation
and shear-localization  the shear rate is large/small in the dilute/dense regions, respectively.
Note that the solution profiles depicted in figures 5.23 and 5.24 are “unstable” since they belong
to the unstable “suberitical” bifurcation branch. For subcritical bifurcation, the higher order
Landau coefficients (which we have not calculated) are needed to identify steble finite-amplitude
solutions.

The ‘stable’ finite amplitude solutions for the density and the shear rate are displayed in
figures 5.25 and 5.26, for mode 3 = 1 aud 2, respectively, These correspond te supercritical
bifurcation at ¢° = 0.3 and H = H, + 2, with ¢ = 0.8. Again, the bifurcating solutions show
density segregation and shear-localization that correspond to shear-banding.
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5.5.6 Scaling of First Landau Coefhicient, Equilibriumm Amph-
tude and Bifurcation Diagram

So far we have presented bifurcation diagrams and the first Landau coefficients for mode 5 = 1.
In this section, we will demonstrate that there exists simple scaling for a®), a' and A in terms
of mode number 3 with respect to the Couette gap H. More specifically we will show that the
dependencies of a®®, 2 and A (at a given density ¢°) on 8 can be absorbed by defining a new
length scale: H — H*(H, ). In other words, knowing the variations of &', ¢® and A with
H for any 3 {at a given density), one can determine these quantities at other values of 8 at the
same mean density. (However, there is no such scaling solutions in terms of mean density.) We
will further demonstrate that the phase diagrams in the (H, ¢°)-plane, showing zero loci of a'%
and ¢@, remain invariant under a composite scaling for the Couette gap: H — H*(H, 8, ¢), i.e.
in terms of both # and the inelasticity (1 — €2).

0.02

0.01

-0.01

~0.03 0 05 1 15 2

Figure 5.27: Effects of mode number 8 on the (a} variation of a'® and a'®, and (b) the bifurcation
diagram in the (4, H)-plane. Parameter values are ¢° = 0.3 and e = 0.8.

Figure 5.27(a} shows the effect of mode number § on the first Landau coefficient ¢{#' (main
panel) and the linear mode a!® (inset) for parameter values of ¢® = 0.3 and e = 0.8. The
flow becomes unstable to higher-order mode at larger values of Couette gap, see the inset of
figure 5.27(a). The corresponding supercritical bifurcation diagrams for # = 1, 2 and 3 are shown
in figure 5.27(b) - note that the abscissa has been normalized via H — H,, where H, = H.(5)
is the critical Couette gap as denoted by vertical arrows in the inset of figure 5.27(a). When the
Couette gap is rescaled via H — H/8, the results for various 8 do collapse on a single curve for
each case of a{® (main panel of figure 5.28a}, a(® (inset of figure 5.28a} and A {figure 5.286).

The above scaling of equilibrium amplitude with 2 holds also for subcritical values of mean
density, see figures 5.29(a) and 5.29(b} for ¢® = 0.15 and 0.1, respectively. The inset in each
panel displays the variations of A with H for three values of # = 1,2,3. Such scaling of A with
H/3 holds at any value of restitution coefficient, see rescaled subcritical bifurcation diagrams in
figure 5.30 at e = 0.95.

Next we proceed to analyze the phase diagram in figure 5.31(e¢) which displays the zero
contours of the first Landau coefficient a/® = 0 in the (H,¢")-plane for 3 = 1, 2 and 3. All
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Figure 5.28: Universal scaling with 8 of the variations of {a) a'® and ¢'? and {b) A with H. Parameter
values are ¢" = 0.3 and e = 0.8.
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Figure 5.29: Bifurcation from infinity: {(a} ¢° = 0.15 and (b} ¢° = (.1 at e = 0.6.
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Figure 5.30: Same as figure 5.29, but at e = 0.95.
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Figure 5.31: Scaling for the zero-contour of the first Landau coefficient, @' = 0, in terms of mode
number 3 for e = (.95.
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these contours collapse into a single contour as seen in figure 5.31(b) under the following scaling
of the Conette gap: H — H/J3. Interestingly. these phase diagrams also remain invariant under
a simple transformation in terms of inelasticity: H — H'1 — e2. see figures 5.32(a) and 5.32(b).
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Figure 5.32: Scaling for the zero-contour of the first Landau coefficient, a'*’ = 0, in terms of restitution
coefficient for mode 7 = 1.

At least for the neutral stability contour [@'”) = 0], the above mentioned composite length
scale, H*(H. e, 3), directly comes out from the analysis of linear stability results. From equation
(5.44) we find that the locus of the neutral stability contour (a'?) = 0) is given by H ~ 3/i ~
B(1 - e2)~1/2 since ¢y ~ 1/fY ~ (1 — %), see equation (5.43). Therefore, the neutral stability
contour, @'’ = 0, would remain invariant under the following scaling of the Couette gap:

H— H3 'W(1-e2)=H" (5.59)

It is not clear why the above composite scaling (5.59) should hold for the zero-contour of the
first Landau coefficient a'? = 0. The expression for a'? = 0 in (5.52) can be simplified to (see
Appendix 5C):

— (k_;ﬂ;{. + KK + K3 Ky + kK )
H? = ' : (5.60)
(A-';_‘,K,r, + k2K + kaKr + K,.)

where ky = 73 and the expressions for K, Ko, Kj..., which depend on base state variables
(and hence on restitution coefticient ¢) as well as on the modal amplitudes of fundamental and
second harmonie, are given in Appendix 5C. The dependence of K; on 3 comes via the implicit
dependence of modal amplitudes on # and hence not known a priori. Nevertheless, it appears
that the same composite scaling for the Couette gap (5.59) holds for the zero-loci of the first
Landau coefficient too as demonstrated in figures 5.31 and 5.32.

Lastly, figure 5.33 displays the scaled phase diagram in the (H*,¢")-plane, where H* =
H3 /(1 —¢?) is a new length scale or an instability length scale, delineating the regions of
supercritical and subecritical bifurcations. The gray-shaded region in figure 5.33 corresponds to
a'? > 0 and a'® > 0, and therefore no finite amplitude solution is possible, according to equation
(5.49), in the shaded region. There is suberitical bifurcation in the dilute limit (below the lower
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Figure 5.33: Scaled phase diagrams in the (H*,¢")-plane, where H* = HA3~'\/(1 — ¢?), showing the
zero-contours of the first Landau coefficient, a'*' = 0, and the linear growth rate a'” = 0. The shaded
region in each plot corresponds to a®’ > 0 and a'” > 0.

branch of the neutral contour and to the right of a'®) = 0 contour), and supercritical bifurcation
at moderate-to-large densities.

5.6 Discussion

5.6.1 Influence of Radial Distribution Function

So far we have presented results for a specific choice of the contact radial distribution function,
x(¢), as defined in (2.12) i.e.

1
o) = — (5.61)
\( ) k= (‘:‘/‘I’:uux)us
which was chosen following the previous linear stability analysis of Alam & Nott (1998). Here we
consider a modified form of the well-known Carnahan-Starling radial distribution function, x(¢).
as given in (2.13):

(1—9/2)

X(w} (l = é/(bm):‘

(5.62)
where ¢,, corresponds to the maximum solid fraction at random close packing which is taken
to be 0.65 in the present work. Note that with ¢,, = 1 (5.62) boils down to the well-known
Carnahan-Starling form with its singularity being at ¢,, = 1 that corresponds to point particles.

With constitutive relations as in (4.9) and the Carnahan-Starling radial distribution function
(5.62), we show the scaled phase diagrams in the (H*,¢")-plane, where H* = Hj3™! \/fl —e?)
and ¢ is the mean density, in figures 5.34(a) and 5.34(b), respectively, for ¢,, = 0.65 and 1.0.
Note that the thick solid line in each panel is the neutral stability contour (a!® = 0), to the
right of which the flow is linearly unstable and is stable in the rest of the (H,¢")-plane; the
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Figure 5.34: Scaled phase diagram in the (H",¢")-plane. where H® = H:‘)"l\/ﬂ — e*), showing the
zero-contours of the first Landau coefficient, a®) = 0, and the linear growth rate a'”) = 0; the shaded
region in each plot corresponds to a'® > 0 and a'"’ > 0. Constitutive relations for each plot are the same
as in figure 5.33 (as given in 4.9), except that we nsed Carnahan-Starling radial distribution (5.62) with
(a) @m = 0.65 and (b) o = 1.

thin lines correspond to the zeros of the first Landan coefficient a'®) = 0. The overall features
of both phase diagrams look similar. A contrasting feature of each phase diagram in figure 5.34
with that in figure 5.33 (for which we had used (5.61) as the radial distribution function) is
that the zero-contour of the first Landau coefficient a'®) = 0 crosses the neutral stability curve
a'”’ = 0 at two additional points at large densities. Recall that a crossing of a'® = 0 and
a'’ = 0 signals a switch-over from one type of bifurcation to another. This is clearly depicted in
the bifurcation diagrams in the (H*, A)-plane in figures 5.35(a ¢) where we have employed the
Carnahan-Starling-type radial distribution function (5.62) with ¢,, = 0.65 with other parameters
as in figure 5.34(a). In each panel in figure 5.35, a series of finite-amplitude bifurcating solutions
are displayed against some control parameter, AH* = H*— H (i.e. a renormalized Couette gap),
that measures a distance from its respective neutral/critical point (H* = H}). It is clear that
the nature of bifurcation changes (from suberitical to supercritical or vice versa) with increasing
mean density in each panel. We find three eritical densities at which the nature of bifurcation
changes: (1) from suberitical to supereritical bifurcations at ¢f =~ 0.196. in figure 5.35(a), (2)
from supercritical to suberitical bifurcations at @7 = 0.467 in figure 5.35(h), and finally (3) from
subcritical to supercritical bifurcations at ¢ = 0.559 in figure 5.35(¢). While the first transition
from suberitical to supereritical bifurcation was also found for the radial distribution funection
(5.61), the latter two transitions in the dense limit, supereritical — suberitical — supereritical,
are specific to the choice of the Carnahan-Starling-type radial distribution function (5.62).

We conclude that both the radial distribution functions, (5.61) and (5.62). predict similar bi-
furcation scenario (bifurcation-from-infinity — suberitical — supercritical) at dilute-to-moderate
densities; however. the Carnahan-Starling-type radial distribution function (5.62) is responsible
for the onset of subcritical bifureations in the dense limit, Clearly, the exact form of the radial
distribution function is needed to correctly predict the bifurcation-type (sub or supercritical) and
the corresponding critical density for the onset of nonlinear shear-banding instability.
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Figure 5.35: Bifurcation diagrams in the (A, AH")-plane, where AH™ = H* - H?, showing a sequence
of iransitions from subcritical to supercritical bifurcations and vice versa with increasing density. The
Carnahan-Starling radial distribution function (5.62) with ¢n = 0.65 has been used, with other pa-
rameters as in figure 5.34(a). (a} ¢2 = 0.196, subcritical to supereritical bifurcations; (b) ¢ = 0.467,
supercritical to subcritical bifurcations; (¢) ¢} = 0.559, subcritical to supercritical hifurcations.
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5.6.2 Influence of Constitutive Relations: Disks vs Spheres

Recall that the constitutive expressions for f;(.)’s (dimensionless functions of solid fraction, ¢) in
(2.21), that were used in all calculations, are valid only for spheres. Therefore, the present results
pertain to the granular plane Couette flow in two-dimensions, having a mono-layer of spheres
along the spanwise direction. It is interesting to ascertain whether these predictions about the
onset of nonlinear shear-banding instability and the corresponding bifurcation scenario in different
density regimes still hold if we use constitutive relations for hard-disks.

For hard-disks in two-dimensions (dim = 2), the balance equations and the form of constitutive
relations remain unaltered; however, the expressions for fi(.)'s as defined in (2.21) are different
for disks as define by (2.14) (see chapter 2). In two-dimensions, the contact radial distribution
function, x(¢), is chosen to be of the forms as given by (2.15) (see chapter 2).

Figure 5.36: Scaled phase diagram in the (H",¢")-plane, where H™ = H3™! \/(l — e?), for constitutive
relations for hard-disks (two-dimensions) as in (2.14)-(2.15) with (@) ¢, = 7/2V3 = 0.906 and (b)
dm = 0.82.

Recall that changing the explicit forms of constitutive relations amounts to changing only
the forms of the linear and nonlinear operators, Ly, and Gy, respectively, in (5.6) since the
governing equations (4.5)-(4.8) and the boundary conditions (4.10) are the same for both spheres
and disks. With constitutive relations for hard-disks as in (2.14)-(2.15), we have repeated some
of the nonlinear stability calculations that we briefly discuss here. The scaled phase diagrams
in the (H*,¢")-plane, where H* = H37'\/(1 — €*) and ¢" is the mean density, are displayed
in figures 5.36(a) and 5.36(h) for ¢, = 0.906 and 0.82, respectively. Both phase diagrams look
similar; at closer look at the zero contour of the first Landau coefficient a'?) = 0 and the neutral
contour a'") = 0 near the dense limit (at much larger values of H* ~ 500) ascertains that there is
no cross-over between a'?) = 0 and a'™ = 0, except the one at a moderate density ¢ ~ 0.37. With
parameter values as in figures 5.36(a), a series of bifurcation diagrams in the (A, AH*)-plane are
shown in figure 5.37 for a range of mean densities. For this case, the nature of bifurcation changes
from subecritical to supercritical at ¢ = 0.373. Note in figure 5.36 that the flow is linearly stable
in the dilute limit, and the shear-banding occurs via a “bifurcation-from-infinity” for ¢l < 0.338
(with ¢,, = 0.906) and ¢! < 0.339 (with ¢,, = 0.82). A comparison of figure 5.36 with that
for spheres (figure 5.33) reveals that the region of “bifurcations-from-infinity” is much larger for
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Figure 5.37: Bifurcation diagrams in the (A, AH" )-plane, where AH* = H* — H?, showing a transition

from suberitical to supereritical bilurcation for constitutive relations of hard-disks {2.14)-(2.15) with
&n = 0.906,

hard-disks.

With constitutive expressions for hard-disks as in {2.14}-(2.15), the following sequence of
pitchfork bifurcations, leading to nonlinear shear-banded solutions, holds as we increase the mean
density from the Boltzmann limit: bifurcation-from-infinity — subecritical — supercritical. In
contrast to results for spheres, we do not find subcritical bifurcations in the dense limit for hard-
disks with (2.14)-(2.15). We have verified that the same sequence of bifurcations also holds even
if we allow the shear viscosity to diverge at a faster rate than other transport coefficients.

5.6.3 Granular Plane Couette Flow: a “Microcosm” for Pitch-
fork Bifurcations

Let us now suminarize results on different types of pitchfork bifurcations in granular plane Couette
flow that result from the nonlinear saturation of shear-banding instability. With (5.61) as the
contact radial distribution function and the constitutive relations as in (4.9}, the sequence of
pitehfork bifurcations in the present Aow configuration, with increasing mean density, reads as:

Bifurcation from Infinity : & < qbi =z 0.154
Subecritical Bifurcation : oL < ¢ < ¢t . (5.63)
Supercritical Bifurcation ; #° > ¢ = 0.1735

This prediction is the same as in given in chapter 4 and our previous paper Shukla & Alam
(2009), note that the direct numerical simulation of continuum equations (4.5)-(4.8) (along with
(2.21)) for the same problem (Nott et ol 1999) has also identified the above three types of
bifurcations. By changing the contact radial distribution function to the Carnahan-Starling-type
(5.62), with ¢, = 0.65, and the constitutive relations as in (2.21), the sequence of pitchfork
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bifurcations reads as

Bifurcation from Infinity : #° < ¢l = 0.174 )
Subcritical Bifureation : ¢£ < ¢ < @7 2 0.196
Supercritical Bifurcation : #: < ¢ < 92! = 0.467 5. (5.64)
Suberitical Bifurcation : ¢t < % < 5% 2 0.559
Subpercritical Bifurcation : ¢° > @22

This bifurcation sequence remains intact even when the singularity of the Carnahan-Starling radial
distribution function (5.62) is moved to ¢, = 1; only the critical densitics at which each transition
occurs are quantitatively different: ¢f = 0.218, ¢2 = 0.246, ¢3! = 0.717 and ¢2° =~ 0.842.

It is clear from the above discussion that the sequence of bifurcations (the first three in
(5.63) and (5.64)) remains same in the regime of dilute to moderate densities, irrespective of
explicit forms of constitutive relations for different transport coefficients, however, the nature of
bifurcations at larger densities (especially the appearance of subcritical bifurcations in the dense
limit) crucially depends on constitutive relations and the contact radial distribution function. It
is recommended to employ the exact forms of constitutive relations that are likely to be valid in
the whole range of densities (which can be obtained from particle simulations) so as to make a
fair conclusion about the bifurcation-type and the corresponding critical density for the onset of
nonlinear shear-banding instability in granular plane Couette flow. Such a detailed parametric
study is beyond the scope of the present work and is left to the future.

Figure 5.38 summarizes all possible bifurcation scenario for the nonlinear shear-banding insta-
bility in granular plane Couette flow; note that a single control parameter, the mean density (¢°),
needs to varied to obtain any type of pitchfork bifurcations in this flow. Therefore the granular
plane Couette How serves as a microcesm of pitchfork bifurcations since all three possible types
of pitchfork bhifurcations, as shown schematicaily in figure 5.38, can be realized by just varying
the mean density.

Moving to the well-researched field of Newtonian fluids, we note that a similar type of bifur-
cation from infinity occurs in the plane Couette flow {Nagata 1980); note, however, that there
is no supercritical or subcritical bifurcations in this low since the Newtonian plane Couette flow
is known to be steble according to the linear stability theory (Romanov 1973). For Newtonian
fAuids, the examples of subcritical and supercritical bifurcations can be found in plane Poiseuille
flow (Stuart 1960; Reynolds & Potter 1967) and Rayleigh-Benard convection {(Busse 1978}, re-
spectively, see figure 5.39. We are not aware of any flow which admits all three types of pitchfork
bifurcations, and therefore the granular plane Couetie flow is truly a paradigm for pitchfork
bifurcations.

5.7 Conclusions

In this chapter we have studied the weakly nonlinear analysis of granular plane Couette flow for
the shearbanding instability which leads to shearbands along the flow gradient direction. The
shearbanding instabilities arise due to perturbations which do not depend on streamwise direction.
We have employed amplitude expansion method (Stuart 1960; Watson 1960; Reynolds & Potter
1967) for reducing the system of ordinary differential equations to partial differential equations.
The first Landau coefficient has been calculated from the solvability condition.

We have developed analytical solutions for the second harmonic, the distortion of mean flow
and the first Landau coefficient. The comparison between nurnerical and analytical solutions
constitutes a validation of the spectral-based numerical scheme which is another outcome of
the present chapter. These analytical solutions yield an universal scaling between inelasticity
{1-¢2)"? and the mode number 3. Further we have analyzed the bifurcations (pitchfork) for the
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Figure 5.38: A schematic of different types of pitchfork bifurcations, depicting the whole paradigm, in

granular plane Couette flow. The dashed lines in suberitical bifurcation diagrams represent threshold-
emplitude for nonlinear stability.
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Figure 5.39: A schematic of three types of pitchfork bifurcations in Newtonian finids.

shearbanding instability. From the zero contour of the first Landau coefficient in (H, ¢°)-plane,
caleulated using analytical solution, we have verified the previous result of Shukla & Alam (2009)
that the lower hranch of the neutral stability curve is subcritically unstable and the upper branch
is supercritically stable.

The transition between the bifurcations from suberitical-to-supercritical and supercritical-to-
subcritical depends on the choice of the radial distribution function. From the analysis of the
present chapter we can conclude that the granular plane Couette flow serves as a microcosm of
pitchfork bifurcations as all the three types of pitchfork bifurcations (suberitical, supercritical,
hifurcation from infinity) exist in the flow.
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Appendix 5A. Nonlinear Terms (N, and N;)
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Appendix 5B. Inhomogeneous Terms G,

The y-independent terms of Gy (cf. §5.4.2) are:
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Appendix 5C. Locus of «* =0

The condition for ‘zero’ first Landau coefficient, a'?) = 0, is

il v rie +ulal +ilel =0,

21 43 .
where G13'. G135 .. .. can be written as
131 zm 1
Gl = 2C12+Clo, Giy = 7202+ Cx (5.65)
31 1 i :1 2.0¢
Gz = Cn+Con, Gy = 5202+ Cy
In terms of C'15. Cys. ... the zero-loci of the first Landau coeflicient can be written as

5 = ((,f)ﬁ(-‘m + H.I(‘QQ -+ 'E-‘{C;jz + T‘JIC,]')) )
H = ‘ - (5C.1)
(¢1C1u + u Co + v1C3 + T Cm)




5.7 Conclusions

117

Ci2,C, ...

in terms of a series in ky as

e
f,(,f }
fv(:.: )
f,(:: )

fi

L —
.fa

fi
o o (1 + ) + 0]

_‘,gf[z)_'_* fir 4o
“donl el Tont

nl nl

4 T 1 1,0 4
S 01T+ grgm | 3Hee®

- (%ngf + 3D TE + DgT¢lTl)]
1.

Hence the expressions for Cy; become

Cao

0, o
el el + 62 vkel), ©p
k C(” (1{3) + k3 C'(;g) + kg Céé), Cy

K C{”+k C‘“’+L (578
v 2) 1 0
Ko + ﬁcii, + kg Cf,(,’ +C

can be represented in powers of by, if we write the mean-terms of second harmonic

—l—nl + @0 hm |:_ (P¢9’>| + pTTl) vy + 2wy (,Uwfﬁl + ,!I T])]
1+ S TE + Wi T

A.ﬁc{é)
ks Cig + Csg)
ks c“’+c“”

Inserting these expressions of C'; into (5C.1), we can further simplify (5C.1) as

H? =

— (K3E + k3K + K3 K + k)

(K3Ks + k3K + koK + Ko)

where K, Ko, K5 ... are

K,
Ky
K
Ky

Il

u{c.'g;_’ el + 1j0s, Ky =
ulClD +olcP + T c_ig’, Ky =
TTC‘“ K¢ = TTCEIE,’,
IC{iIJ} + “IC:(!L]J] wt “IC:(“]}) T TTC.(ul))r Ky =

(0) (0
ulCsy’ +vie (m)

3) 3 3
'U‘ICéZ + U;{C"s(z) + T:C;z),
uTC D4 :.:fcé;)

(0)
+ TIT C‘4[1



118

Chapter 5.
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Appendix 5D. Dispersion Relation
As describe in §5.5 the dispersion relation can be written as,
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From the asymptotic analysis for large Couette gap (H) we get two real roots and a complex conjugate pair as
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CHAPTER 6

NONLINEAR STABILITY AND PATTERNS IN
TWO-DIMENSIONAL GRANULAR PLANE
COUETTE FLOW: HOPF AND PITCHFORK
BIFURCATION, EVIDENCE FOR RESONANCE

6.1 Introduction

In this chapter we develop the order parameter theory of two-dimensional patterns that emerge
due to the travelling and stationary instabilities in granular Counette flow using Landau-Stuart
order parameter equation. Following the Stuart-Watson theory (Stuart 1960; Watson 1960,
Reynolds & Potter 1967) and our previcous work (Shukla & Alam 2011) as given in chapter 5,
we develop the order parameter theory for spatially inhomogeneous patterns in two-dimensional
gramular Couette fiow. Note that in chapter 5 we considered only streamwise independent Aow
which is equivalent to the zero-wavenumber {k, = 0} limit of the present problem. The two-
dimensional (kz # ) nonlinear patterns that arise from a variety of linear instability modes in
granular plane Couette fow is probed in this chapter.

This chapter is organized as follows. The Navier-Stokes’ level hydrodynamics equations and
constitutive relations are described in §6.2, along with the steady mean flow of plane Couette
flow. The amplitude expansion method and the modal equations at different orders are briefly
discussed in §6.3; we have identified two types of resonances that are discussed in §6.4, along
with their numerical evidence in §6.7.3. Different measures of nonlinear stability in terms of the
first Landau coefficient as well as the signatures of Hopf bifurcations are discussed in §6.5. A
detailed numerical analysis of various stationary and travelling wave instabilities, their nonlinear
saturation, possible occurrences of nonlinear resonances, effects of mean density, Couette gap and
restitution coefficients are discussed in §6.7. The conclusions are given in §6.8. The organization
map of this chapter is depicted in figure 6.1.

6.2 Governing Equations

We consider a plane Couette flow of granular materials between two parallel moving walls with
speed U/,,/2 in opposite directions, see figure 4.1. For non-dimensionlization we are using the
gap between two walls as the reference length, the difference between the wall velocities as the
reference velocity and the inverse of the overall shear rate as the time scale and the material
density of the particle as the density scale [cf. §4.1 and (4.1)-(4.4}]. The dimensionless balance

121



122 Chapter 6.

Governing Equalions
sec. 6.2

|

Nonlinear Stability: Amplitude Expansion Method
sec. 6.3

{

Nonlinear Resonance Criteria for Mean Flow and 1:2 Resonance
6. 64

'

Analysis of Landau-Stuart Equation, Bifurcation and Disturbance Field
g 6.3
|
Numerical Method and Control Parameters
56c.6.6

Results and Discussion; gec. 6.7 I

Conclusions

e 6.8

Figure 6.1: Road-map of chapter 6.

equations are

e g0+ alon) = 0 (6.1)

¢[§+ué%+v§y]u = _E!ES:J';;?;: [2;1%+,\(g::+g;)]
vy (5 5] 62

[armmle = ~ma a2, (5 5

v |0 (5 )] o
Wy [a g rod]T = 2 (E)+ & ()]
. u>+2ﬂ[(33) (&)

1 /0w dw\? A 2
+3 (8_3; + 0—1> + E(V‘u) ] - D, (6.4)
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with dimensionless constitutive relations as [cf. (4.9)]

p$T) = AT n(d,T) = f[vT, ((6T) = f:sﬁ‘}
Mo T) = ((-gmn). N&T) = fovT, DoT) = [T [

where f;'s are the functions of the mean density and the radial distribution funetion as given
in (2.21). The radial distribution function is defined in (2.12). In the above, H = h/d is the
dimensionless Couette gap (ratio between the wall separation and the particle diameter).

In chapters 4 and 5, we considered one-dimensional streamwise-independent equations which
can be obtained by putting 8/9z(:) = 0 in (6.1-6.4) since our focus was on the shear-banding
instability for which the associated patterns have no variations along the streamwise direction.

We are imposing no-slip and zero heat-flux conditions at walls

(6.5)

dT
u=+1/2, v=0, @:0’ at y=+1/2, (6.6)
which is of course an idealization of the reality. Nevertheless probing instability with such ideal
houndary conditions helps to make a bridge with instabilities in a plane Couette flow with slip-
velocity and non-zero heat Aux boundary conditions as established previously by Alam & Nott
(1998} in the context of linear stability analysis.

The steady, fully developed equations with boundary conditions (6.6) admnit the uniform shear

solution:

f2(¢")
f 5(4’(.» e)‘
for which the shear rate (du®/dy = 1) is uniform/constant, with density and granular temperature
being constants. The lincar stability of (6.7} against two-dimensional perturbations has been
investigated in detail by Alam & Nott (1998). In this chapter we focus on nonlinear saturation

of various linear instability modes using Landau-Stuart equation which is briefly discussed in the
following section for spatially periodic patterns,

W(y) =y, ) =0, ¢"=const., T'= (6.7)

6.3 Nonlinear Stability: Amplitude Expansion Method

In chapter 5 we used the Stuart-Watson theory to develop an order parameter theory for the
nounlinear shear-banding instability (k; = 0) of granular plane Couette flow. The same order
parameter theory is extended to two-dimensional disturbances {(k; # 0) in this chapter.

Here we provide a brief account of the nonlinear theory, mainly pointing out the essential
differences with previous chapter § (Shukla & Alam 2011) as well as deriving the criteria for
possible nonlinear resonances at quadratic order in amiplitude. It may be noted that the present
nonlinear equations boil down to those in chapter 5 (Shukla & Alam 2011) for the special case of
streamwise-independent perturbations (kr = 0).

We start with the nonlinear disturbance equations which can be represented in matrix form

(I%—)C)XINQ{X,X;&)-FN;;(X,X,X} {68)
where 0 8 o &
= e 1 |
‘c*‘c(am'amz*ay'ayvd’ ) (6.9)

is the linear stability operator, X = (¢',u’, v’. T') is the disturbance variables, A3 and A are the
quadratic and cubic nonlinear terins, respectively. The explicit expressions of £ and the nonlinear
terins A2 and Ny are given in Appendix 6A and 6B, respectively.
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The argument ¢ in Ny(X. X:d,) refers to the fact that there are quadratic nonlinearities
that involve time-derivatives of the form ¢'d(u’, o', T") /0t (in momentum and granular energy
equations) and this is a consequence of the fact that the granular fluid is compressible.

The details of the amplitude expansion method are given in chapter 3. The final matrix form
of reduced modal equations for the nonlinear stability analysis is given as

Lk'n ‘)"[k:nf

]

— =X + Gy,

eln=1) = aln=1 4 jpln=1l

Gin = — (mal"="l 4 igbln—ml) xtkm} 4 Byl /(1 + dox) + Fin (6.10)
Lyn = (na'® + ikb'™") I — Ly

Ly = L(ikk,. (ikk, )% d/dy.d?/dy*. ¢°,...)

where X knl = (glkinl ylkn] ylkn] plknhT g disturbance vector, ¢/~ s are Landau coefficients,
L, is a linear operator with Ly—; being the well-known linear stability operator (see (6.15)). and
I is an identity operator. It can be verified that X*" = 0 when k + n is odd and hence ¢!
vanishes for odd n. Note that the nonlinear terms Ey,, = Ej, (X, X) and Fy,, = F;.. (X, X. X)
have quadratic and cubic nonlinearities. respectively. It is worth pointing out that the inclusion
of cubic nonlinearities in disturbance equations is a must for correct computation of first Landau
coefficient ¢?). The Landau equation is terms of real amplitude and frequency is given as [cf.

(3.32)-(3.33)]

A"% a'? + Aa) + 4%22@ 4 . =@M 4", (6.11)
[§

1 1 :
w+ % (r%) = b 4 AbD 4 A% 4 =pm) A", (6.12)

The above system (6.10) needs to be solved at each order of amplitude along with boundary
conditions:
l.l;p{k:nf

ulknl =, el = g,
dy

=0. (6.13)

In the following sections we detail a sequence of governing equations up to cubic order in ampli-
tude.

6.3.1 O(A): Fundamental Mode

Substituting & = n = 1 into (6.10) we recover the linear eigenvalue problem at O(A):

L XU = [(a“” : .".*;(‘”)I—Ll}/\'“‘” = (6.14)
where )
Ly =& (ke k)2 2 g (6.15)
= N, ] s i e~ NI 9 I
' dy dy? J

is the linear stability operator, a!™ + Y is its eigenvalue and X is the corresponding cigen-

vector or the fundamental mode, The above eigenvalue problem (6.14) along with boundary
conditions can be solved numerically. We are using a normalization such that

max [T (y)| = 70 (6.16)
u

where TV is the base state temperature as defined in (6.7).
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6.3.2 O(A?%): Mean Flow Distortion and Second Harmonic

At O{A?), we have two sets of equations: one for the mean flow distortion (k = () and the other
for the second harmonic (k = 2). Substituting £ = 0 and n = 2 into equation (6.10), we get
equations for the distortion to the mean flow

Loy X192 = [2a(°’1 - Ln] xl2 - g, (6.17)

where the linear operator Lg is given by

Lo = Ly(k Lk d d&
o = Li(h: =0) = (I_O’d_y’@?)' (6.18)
It is worth peinting cut that Lg is nothing but the linear stability operator for streamwise-
independent or shear-banding (kr = 0) modes. The explicit functional form of nenlinear terms
Eﬂg in (617) is

Epz = Np( X0, X0 4 Np(x ), X0 (6.19)

which is a real function.

Substituting k = n = 2 into equation (6.10}, we obtain equations for the second harmonic
xl2:2,

Lo X (27 = [2{(:(01 + b — LQ] X2 = g, (6.20)
where the linear operator L is given by
d a2
Lo = £ i2k,, (i2k:). —. — ], 6.21
2 c(;zk (i2k,) i dy_) (6.21)

and the nonlinear term Eqp = Np( X {51 X111y is the product of two fundamentals,

While the second harmonic X[%2] is, in gencral, a complex quantity, the mean-flow distortion
X192 i always a real harmonic. For the special case of shear-banding modes (k, = 0}, it has been
shown Shukla & Alam (2011) that the second harmonic X (%2 is real and X4 = X[22l = x10:2I,

6.3.3 O(A%): Distortion to Fundamental, First Landau Coeffi-
cient and Third Harmonic

At O(A3), we get equations for the distortion to the fundamental mode X1* and the third
harmonic X3!, Substituting & = 1 and » = 3 into (6.10) yiclds:

Ly X8 = [(33(") + b0 — L]] X8 = 2 xit Loy o (6.22)

The dependence of G5 on modal amplitudes X153 is given below

Gl = Nz(xmﬁl,xll;ll) + NQ(X“'-”,X[O‘ﬂ} + Nz{j'llrll,xﬂﬂl)
+NQ{X12;2I,X“‘II) + Na(X[I,ILX[I:ILXII:I])
+N3(X[1:]]._X“‘”,X“:ll) + NS{XH:I],X[l‘.]]‘)?[l,ﬂ]‘ {6.23)
Note that when a{® = 0, L, is identical to L), for which the associated homogeneous problem

and its adjoint (sec below} have eigensolutions and hence the problem (6.22) is solvable if and
only if the inhomogencous part is orthogonal to the adjoint cigenfunction. This is called the



126 Chapter 6.

solvability condition which simplifies to vield the expression for the first Landau coefficient:

| a2 _ (X'sGI-?)
A2 = g2l 4 gpl2l = (X*,—__X“?”)’ (6.24)

with the inner product {-,-} being defined by

2 -
(Fly) el = 2f(y)9(y)dy- (6.25)

Here f(y} and g(y) are two complex-valued functions, and a ‘tilde’ denotes a complex conjugate
quantity. The adjoint eigenfunction X' in (6.24) is obtained by solving the adjoint eigenvalue
problemn

1
‘%— = LT X1, (6.26)

with the adjoint operator £t being obtained from the following definition:
(XU LX)y = (LT XY X). (6.27)

The explicit form of £ is given in Appendix 6A.

Once i is determined from (6.24), the right-hand side of (6.22) is completely known since
G13 is a function of XU, X921 and X122 only as defined in (6.23), and hence we can solve
(6.22) to yield the distortion to the fundamental mode X[t3),

The equation for the third harmonic is obtained from {6.10) by substituting £ = 3 and n = 3:

Ly X139 = [3(a<°’ + O - L;,] XU = Gy (6.28)
where
Ly= .C(:T:}k {13k, )2 4 ﬁ) {6.29)
3= 2y z 'dy’ dy2 .

and the nonlinear terms are

Gag = Nz{X[I:1|'X[‘2;2]) + Nz(X[ZgI,X“"lI) + Ng[X“:l],Xll:ll,X[lil])‘ (6.30)

6.4 Nonlinear Resonance: Criteria for Mean-flow and
1:2 Resonances

The modal equations at quadratic order (6.17) and (6.20) admit two types of resonances: (i)

mean-flow resonance and (ii) 1: 2 resonance, which are analysed below. Since both appear at

O(A?) we call them 'nonlinear’ resonances, and this nomenclature distinguishes them from linear

resonance that occurs when two eigenvalues of the linear stability operator {6.14) are identical.
The system of equations for mean-flow distortion (6.17) is solvable, i.e.,

-1
xl0:2l [2aw>1 - LO] E,, — finite, (6.31)

if the operator (2a{”'T — Ly) is non-singular; this is possible if and only if 2a{? is not equal to any
of the eigenvalues of Ly (which is the linear stability operator for shear-banding modes k; = 0).
The violation of this condition is responsible for the resonance between a tinear mode of the
operator Lg (which is a shear-banding mode) and the mean-flow distortion X2 at k., dubbed
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mean flow resonance. Therefore, the criterion for the mean flow resonance can be written as

2{1;?)“}_} = a;:}(k, =0) and bg:][k, =))'=0, (6.32)

for two modes j; and jy. Here (f.‘_(‘-':) = Re{ (?“_E-lln} is an eigenvalue of the linear stability operator

L, and {a;f} = r_.'?;} is an eigenvalue of the shear-banding operator Ly. Therefore, the interaction
of a linear mode with a shear-banding mode. obeying (6.32), is responsible for the genesis of

‘mean-flow’ resonance. We will show evidence of such resonance in §6.7.3.

The system of inhomogeneous equations for second harmonic (6.20) has a solution, i.e.
=
X220 — [2«““1 g Lg] By = finite (6.33)

if and only if 2¢/?) is not equal to any of the eigenvalues of Ly. Recall from (6.21) that the
second harmonic operator Ly is nothing but the linear stability operator with wavenumber 2k, .
Therefore, the solution for the second harmonic (6.33) becomes indeterminate when 2¢(©) (with
¢!®) being an eigenvalue of L) is an eigenvalue of Ly, leading to a resonance between two modes
with their wavenumber ratio being 1:2. This is referred to as ‘1:2 resonance’, the criterion for
which can be written as
A0 g,y — (0) g,
2¢; " (k) = ¢}, (2k;)
= 20\ (k) = a'D(2k;)  and 2680 (ky) = 010 (2k,). (6.34)

for any positive integers j; and j» that correspond to two different modes. Note that while
('}{]’}(kr) is an eigenvalue of L, (sce 6.15), r:_E_:'){%".,J is an eigenvalue of Ly (see 6.21). Therefore,
the interaction of a fundamental mode with a second harmonie, obeying (6.34), is responsible for
the genesis of 1:2 resonance. We will discuss the possible oceurrence of such resonance in §6.7.3.

In either type of resonances since X192 or X[22| diverges, the first Landau coefficient (6.24),
which is given in terms of an inner product of a nonlinear function Gy3, would also diverge since
(13 in (6.23) is a linear function of X 0:2] and X122, Therefore, the signature of above resonances
would appear as a discontinuity in the first Landau coefficient as we shall demonstrate in §6.7.3. It
is worth pointing out that the mean-flow and 1:n resonances have been uncovered and are known
to play an important role on dynamical transition and pattern formation, via mode-interactions,
for both Newtonian and non-Newtonian fluids in a variety of flows (Mizushima & Gotoh 1985;
Proctor & Jones 1988; Manneville 1990; Suslov & Paolucei 1997; Fujimura & Kelly 1997).

6.5 Analysis of Landau-Stuart Equation, Bifurcation
and Disturbance Field

From the viewpoint of nonlinear stability, the pertinent question is: do the unstable/stable ‘linear’
modes become stable/unstable if we disturb the flow with finite amplitude disturbances? Do we
have supercritical or subcritical bifurcation in each case? The nonlinear terms may saturate the
exponential growth of the disturbance for the bands of wavenumbers where the flow is linearly
unstable due to travelling and stationary instabilities. What is the nature of nonlinear solutions?
The above issues are systematically probed in §6.7 using the weakly nonlinear theory developed
in §6.3. In the following we briefly discuss about different measures of nonlinear stability in terms
of the equilibrium amplitude, the types of bifurcations (pitchfork or Hopf), and the nonlinear
disturbance field.
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6.5.1 Equilibrium Amplitude and Phase Velocity

Similar to chapter 4 and 5 (Shukla & Alam 2009, 2011), we will restrict our attention to the
leading nonlinear correction in the order-parameter theory, namely, the computation of the first
Landau coefficient ¢/?) = a'®) +ib'®) from (6.24). Knowing the growth rate a'?) and the real part
of the first Landau coefficient a'?, the equilibrium amplitude (dA/dt = 0) is calculated from

(6.11) as
[ a0 .
.4,- = _E;f—z}' ({)"15)

Clearly, the equilibrium solution exists if and only if «'" and a/® are of opposite signs. For
linearly unstable flows a'”) > 0 and therefore a'?) must be negative for the existence of any
equilibrium solution- the new stable solution bifurcates from the critical point, leading to super-
critical bifurcations. On the other hand, the existence of any equilibrium solution for linearly
stable [a(") < 0] flows requires a positive value of a'®, leading to subcritical bifurcations.

As explained in §6.3, the nonlinearities also affect the propagation speed of the disturbance,
see (6.12). More specifically, the imaginary part of the first Landau coefficient, b®), changes the
equilibrium phase velocity ¢y, Whose expression follows from (6.12):

. w b(2) A2 "
G =~ = = (6.36)

where A, is given by (6.35), and e, represents the linear phase velocity

b{U)

= (6.37)

Cph = —

with b9 being the imaginary part of the complex frequency ¢/ = o(® +ib!", Note that b'®) = 0
for a stationary instability for which ¢, = ¢pp = 0.

6.5.2 Bifurcations, Limit Cycle and Spirals

Up-to the cubic order in amplitude, the Landau-Stuart equations (6.11-6.12) boil down to

% a9 A + a2 43 ((5.38)
% pO) 4 p2) 42, (6.39)
(

where # is the phase of the perturbation and A is its amplitude. For stationary disturbances,
b'") = 0 for n > 0 and the phase equation (6.39) is identically satisfied. # = 0. Hence the normal
form for pitchfork bifurcations is (6.38) for which the fixed points are simple as given by 0 and A,
in (6.35). In contrast to pitchfork bifurcations for which the linear eigenvalue is real, a complex
cigenvalue ¢ = a/® 4 6" representing an oscillatory mode, leads to oscillatory or Hopf bifur-
cation (Wiggins 1990) for which the normal form equations are (6.38)-(6.39) that we discuss below,

Case I: o'?) < U|

For negative values of the first Landau coefficient (a'?) < 0), we have three situations when
(i) ") < 0: the origin A = 0 is a stable spiral; (ii) a!”) = 0: the origin is a stable spiral with
algebraically fast decay: and (iii) a'? > 0 yields an unstable spiral at the origin and a stable limit
eyele solution at A = /—a!? /a(?) via a supercritical Hopf bifurcation. All the above situations
are schematically shown in figure 6.2(a-c). Figure 6.2(a) shows a state of a stable spiral at the
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am:-,o' a?l<p (b)
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'
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Supercritical

Controi parameter

(d)
a®>0, a?>0

Figure 6.2: Hopf bifurcation and solution trajectories: (a) a'”’ < 0 and o' < 0, stable spiral; (b)
a'” > 0 and a"® < 0, stable limit cycle; (¢) supereritical bifurcation; (d) a'” > 0 and a'* > 0, unstable
spiral: (¢) a'”’ < 0 and a'® > 0, unstable limit cycle; (f) subcritical bifurcation.

origin for a!® < 0, which losses stability as the control parameter increases from its critical
value (when a'® = 0) and gives a stable limit cycle solution which is shown in figure 6.2(h).
The supercritical bifurcation is shown in figure 6.2(¢) where the stable (indicated by arrows) and
unstable solutions are shown by solid and dashed lines, respectively.

ICase IL: o/ > {JI

Similarly for a/® > 0 we have two situations, a/”) > 0 or a/”) < 0. In the former case we have
an unstable spiral at the origin (see figure 1d). If a/? < 0, three solutions exist: a stable spiral
at the origin, an unstable limit cycle at a distance A = \/—a(? /a(2) and a stable limit cycle
corresponding to the higher amplitude branch. This higher-amplitude branch can be obtained by
adding a stabilizing ‘quintic’ nonlinear term to the Landau-Stuart equation:

dA ; =

— =a DA + o A3 + o) 45, (6.40)
dt

This equation has five equilibrium solutions, a zero solution (base state or mean flow) and four
non-trivial solutions, as defined by

—al? £ /(a?)2 — 4a0qa(® .
MJ:iJ — . (6.41)

Among these four solutions two are stable equilibrium solutions and the remaining two are unsta-
ble. Figure 6.2(f) shows the bifurcation diagram for subcritical instabilities where the dotted line
represents an unstable solution which corresponds to an ‘unstable’ limit cycle (dashed cirele in
figure 1e). The solid line in figure 6.2( f) corresponds to the higher-order solution that represents
a ‘stable’ limit cycle with a larger amplitude as shown by the outer circle in figure 6.2(¢)  this
solution corresponds to a'” < 0, @/ > 0 and oV < 0 in (6.40). A disturbance with an amplitude
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greater than the amplitude of the stable limit eycle (outer circle in figure 6.2¢) or an amplitude
in between the outer limit cycle and the inner limit cycle will converge to the ‘stable’ outer limit
cycle as shown by eurved arrows in figure 6.2(e). If the amplitude of the disturbance is less than
the amplitude of the inner (unstable) limit cyele in figure 6.2(¢), the amplitude converges to the
origin that gives a stable spiral at the origin.

6.5.3 Nonlinear Disturbance Field

The nonlinear disturbance flow field X (r.y.t) = (¢', 0/, 0". T") (. y. t). correct up-to the cubic
order in perturbation amplitude O(A*). can be written as

X(z.y.t)

Il

AZx 02 4 [(‘4_\.—“:1]?”; A3 XUBlet0 | 42 x(2:2] 2i0 +A".Y[""3Fr"w) +(,_(‘1
A2X10% 1 24 [ X[ cas(0) - X["sin(9)|
+243 [,\',[.l“q'lt'us(ﬂ) — X!i::ilsin(ﬁ)] +2A% |:_\’,[,2-'2|{“‘0:-i(2()) s X}2:213i11{29)]

+243 [X,[.g"'”(‘{)s(lif)) - X!:i::{]sin(:}ﬁ'}] : (6.42)

Here the subscripts r and i refer to the real and imaginary parts of the complex vector Xldl
and 0 = (kyox + wt) [ef. (3.11)]. Note that X102} j5 the distortion of the mean Alow (that appears
at O(A?)) which is always real. At equilibrium (dA/dt = 0), (6.11) leads to w = (b(?) + b2 A2),
and hence the expression for ¢ is

f=k,r+ (b{m S hm}lz) t=k,(z - {";,ht) | (6.43)
on being given by (6.36).

Knowing the equilibrium amplitude (6.35) and the phase velocity (6.36), now we can calculate
the nonlinear disturbance flow field from (6.42) and (6.43) by using the numerical solutions for
xa xio2 - yi22 x3) and X33 that are obtained from (6.14), (6.17), (6.20), (6.22) and
(6.28). respectively. In §6, we will a make comparison between the linear (O(A)) and nonlinear
(O(A*)) disturbance fields in the (i, y)-plane.

with ¢

6.6 Numerical Method and Control Parameters

The details of the spectral-based numerical method are given in chapter 3. For the present case
with &, # 0, it has been verified that about 30 collocation points are enonugh to obtain converged
eigenvalues (with an ervor less than 1%). For an accurate computation of the first Landau
coefficient, we needed M ~ 50 if the Couette gap is H < 100; for larger Couette gaps H > 100,
we have used A = 100 or more collocation points.

There are four control parameters to deseribe the granular plane Couette flow: (i) the mean
density or the volume fraction of particles ¢". (ii) the Couette gap H = h/d (i.e. the gap between
two walls in terms of particle diameter) and (iii) the restitution coefficient e. For stability, we
have an additional parameter: (iv) the dimensionless streamwise wavenumber

21 A
e =2, with Ap= 22 .4
ko= with A= (6.44)

being the dimensionless wavelength of perturbation. Note that A, sets the streamwise length

(L, = l./h, where I, is the dimensional length of the Couette cell and I is its height) of the
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Couette cell in the sense that for any perturbation with wavelength A, to grow, the system must
be large enough {i.e. L; > A;) to accommodate it.

6.7 Results and Discussion: Hopf and Pitchfork Bi-
furcations, and Resonances

It is known (Alam & Nott 1998) that the plane Couette flow is unstable to shear-banding (k. = 0},
stationary and travelling instabilities with k, # 0 for a range of particle volume fractions (¢°)
and Couette gaps (H) at any restitution coefficient ¢ < 1. Let us focus on the specific case of
H =100, ¢° = (.2 and e = 0.8 for which all the above instabilities coexist. For these parameters
the variations of the growth rate of the least-stable mode, a}o), and its phase velocity ¢, (see,
equation 6.37) are shown in figure 6.3 by the solid and dot-dashed lines, respectively.

0.4

L 200a® [ = M=75
-- - M=10d

S

L.
*Repeseo s

0 0.5 1 1.5

Figure 6.3:  Variations of the growth rate (solid line} and the phase velocity (dot-dash line) of the
least-stable mode for ¢° = 0.2, H = 100 and e = 0.8, with Af = 50 collocation points. The circles and
crosses refer to results with Af = 75 and 100, respectively.

We define the least-stable mode (or, the leading eigenvalue) as the eigenvalue having the
maximum real part for a given wavenumber k,:

a}m = max '™, (6.45)
out of all (43 + 3) eigenvalues of discritized linear operator, where (M + 1) is the number of
Gauss-Lobatto collocation points (momentum and energy equations) and Af is the number of
Gauss collocation points (continuity equation). While the solid and dot-dashed lines in figure 6.3
correspond to results with Af = 50, the circles and crosses refer to results with Af = 75 and
100 collocation points, respectively. This validates the convergence of our numerical results with
M = 50 collocation points; for most computations about M = 75 collocation points have been
used.

In figure 6.3, the phase velocity corresponding to the first peak of the growth rate curve is
zero, which represents a stationary instability. Similarly, the phase velocity for the second peak
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is non-zero and thus the flow is unstable due to travelling waves there. For parameter values of
figure 6.3, the flow is also unstable to the shear-banding mode (k, = 0); moreover, there are other
stationary and travelling wave instabilities at very long wavelengths (k, = 27/A, ~ 0) that we
discuss next in §6.7.1.

6.7.1 Nonlinear Shear-banding (k, = () and Long-Wave (k, ~ 0)
Instabilities

50 100 150

Figure 6.4: Phase diagram for the nonlinear instability of shear-banding modes (k. = 0); the restitution
coefficient is ¢ = 0.8. The thick red-blue contour represents ‘critical line' at which the linear growth rate
is zero, i.e. a'' = 0, and the thin black contours represent zeros of the first Landau coefficient a'? = q;
the grev-shaded region corresponds to a'" > 0 and a'® > 0. The square, star and triangle symbols refer
to points at which most of the nonlinear results with k. # 0 will be presented. The blue-circle is the
degenerate point.

Before presenting results for &, # 0. let us briefly recall nonlinear results for shear-banding
modes (k, = 0) since they eventually give birth to long-wave instabilities. Figure 6.4 presents a
phase diagram in the (¢", H)-plane for a restitution coefficient of e = 0.8. delincating the regimes
of supereritical and suberitical fHows.

The thick contour in figure 6.4 corresponds to the zero growth rate [a!") = 0], representing the
critical line, and the thin contours represent the zeros of the first Landan coefficient [”_{2} =0} In
figure 6.4, a'?) has been calculated that corresponds to the shear-banding mode (k. = 0) having
the maxinum growth rate over all possible gradient wavenumbers (kg = G, with 7 =1.2.3,....
being mode-number; the value of the mode number /7 corresponds to the number of zero crossings,
along y, of the density eigenfunction, see chapter 5 and Shukla & Alam (2011)). The grey-shaded
regions in figure 6.4 correspond to a'" = 0 and a'? > 0, in which there are ‘growing’ nonlinear
solutions at cubic-order, and this calls for higher-order Landau coefficients (not calculated here)
to locate the related stable. if any, solutions. The point at which the growth rate and the first
Landau coefficient are simultancously zero [a'") = 0 = a'?!] is known as the degenerate point,
shown by the blue circle in figure 6.4 at ¢, = 0.1735. The red upper branch of the critical line
above the degenerate-point in figure 6.4 is supereritically stable, and the blue lower branch is
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subcritically unstable. The nonlinear equilibrium solutions of shear-banding-type appear via a
super-critical bifurcation for ¢ > ¢, and via a subcritical bifurcation for ¢" < ¢, below it (see,
chapter 5 and Shukla & Alam 2011).

In addition to the shear-banding instability, there are long-wave (k, ~ () stationary and
travelling instabilities whose origin can be tied to the shear-banding modes (Alam & Nott 1998)
- these long-wave modes might be unstable/stable and might be responsible for supercritical and
suberitical nonlinear solutions as we discuss next.

Long-wave Modes (k, ~ 0) \

The variations of the growth rate of the least-stable mode a}m and its phase velocity (inset
plot) with wavenumber k, are shown in figure 6.5(a). The parameter values are ¢" = 0.2,
H = 100 and e = 0.8, which correspond to the ‘square’ symbol in figure 6.4. The shear-banding
mode corresponds to k, = 0 which is unstable [a'”) > 0 and a'® < 0]. It is seen that the Aow
remains unstable to stationary disturbances with long wavelengths (i.e. k; = 2w/A, ~ 0) up to
a wavenumber of k, ~ 2.1 x 107°, and thereafter to travelling waves (see the inset for phase
velocity). In fact, two stationary modes merge together at k, ~ 2.1 x 107° to yield a pair of
forward- and backward-propagating travelling waves which remain unstable for a range of k.. It
can be verified (Alam & Nott 1998) that the linear eigenvalue problem (6.14) is invariant under
the transformation

(z,y5t) = (=2, =y, 1), [¢, /0T = [¢), —u/, =", T (6.46)
= [, 1, 0, T)(y) exp (c[”)f + .".R'.IJ'-) — [@, —it, =, T|(—y) exp ({?{U}t - :'kx:;')
(6.47)
This implies that a forward-propagating wave (c,n = —b /k, > 0, see eqn. 6.37) always coexists

with a backward-propagating wave (¢, < 0) in the plane Couctte flow.

In figure 6.5(h), we show the variations of the real, a?), and the imaginary, b'?), parts of
the first Landau coefficient for small k,. The sharp jump in each curve of figure 6.5(b) at k, ~
2.1 x 107" indicates a mode-switching between stationary and travelling waves. The variations of
the equilibrium amplitude A, and the equilibrium phase velocity ¢y, are shown in figures 6.5(c)
and 6.5(d), respectively. Note that the bifurcation-type changes from pitchfork (static/stationary)
to Hopf (dynamic/oscillatory) at k, ~ 2.1 x 107" due to the above-mentioned switch-over from
stationary to travelling waves. For the range of k, in figure 6.5, a/® > 0 and a® < 0 for both
stationary and travelling waves, and hence the bifurcations are supereritical in nature for both
cases.

Fixing the Couette gap at H = 100, we now move to the dilute regime of ¢ = 0.05 (the ‘star’
symbol in figure 6.4), where the plane Couette flow is suberitically unstable to shear-banding
instability. Figure 6.6(a) shows the variation of the growth rate of the least-stable mode for
small k,, with the corresponding variation of the phase velocity being displayed as an inset. The
growth rates remain negative for both stationary and travelling waves, and hence the flow is
linearly stable at long waves k, ~ 0 (and we have verified that the flow is stable at any k, for
this parameter set). However, the variations of the first Landau coefficient in figure 6.6(b) clearly
show that a'?) > 0 for a range of k, ~ 0 that represents only stationary waves. Therefore, the
finite-amplitude nonlinear solutions exist for stationary instabilities at long waves, as shown in
the inset of figure 6.6(b). Note that the corresponding nonlinear solutions are unstable since the
underlying bifurcation is suberitical [a'”) < 0 and a'?) > 0]; therefore A, in figure 6.6(b) provides
a threshold for nonlinear stability in the sense that for any finite-amplitude perturbation with
A < A, the uniform shear flow will be recovered, however, with A > A, the flow will reach a new
stable equilibrium solution. To locate this stable finite-amplitude solution we need to calculate
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Figure 6.5: Long wavelength variations at ¢" = 0.2, H = 100 and ¢ = 0.8: {a) linear growth rate and
phase velocity (inset} of the least-stable mode, (b) o'*! (solid line) and 52} (dot-dash line) with ks, (c)

equilibrium amplitude with &, {d) equilibrium phase velocity.
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Figure 6.6: Long wavelength variations in the dilute limit (6" = 0.05): {a) agl” {main panel) and cpa
(inset): (b) @™ and b'® {main panel), and equilibrium amplitude A. (inset}. Other parameters as are

the same as in figure 6.5.
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Figure 6.7: Long wavelength variations for dense flows at ¢° = 0.5 (corresponding to the ‘triangle’
symbol in figure 6.4 at H = 50): {a) aﬁo) {main panel) and cpx, (inset); (b) ',

the second Landau coefficient which has not been pursued in this thesis.

Lastly, we consider the parameter values corresponding to the ‘triangle’ symbol in figure 6.4
(¢* = 0.5 and H = 50) at which the nonlinear shear-banding solutions (&, = 0) are growing since
a® > 0 and @@ > 0. The long-wave variations of a’® and cps are shown in the main panel
and the inset of figure 6.7{a). It is seen that the flow is unstable to stationary and travelling
waves up to a wavenumber k, ~ 0.008, and stable thereafter. The corresponding variation of a2
with k; is shown in figure 6.7(4). Note that a'* diverges and changes its sign at k, ~ 0.008 -
the divergence of at?! is in fact tied to the onset of nonlinear resonance which will be discussed
in §6.7.3. Within the wavenumber band k, ~ (0,0.008), aim > 0 but a'® also remains positive
except over an extremely small range of k; (see the inset of figure 6.7b) just below the mode-
switching point, located at k., = 3.8 x 10~7, at which two unstable stationary modes merge to
yield a pair of unstable travelling waves, Thercfore, at ¢° = 0.5 and H = 50, the flow remains
nonlinearly stable except near k, = 3.8 x 101,

Figures 6.8 and 6.9 show a comparison between nonlinear and linear disturbance patterns
for long-wave stationary and travelling instabilities, respectively, of figure 6.5 - the wavenuinbers
are k, = 107° and 4 x 1075, respectively. The nonlinear disturbance pattern is calculated using
(6.42) which is correct up to cubic order O{A3), and the linear disturbance field is caleulated by
sctting O(A%)- and O(A?)-terms to zeros in (6.42). Figures 6.8(a-f) and 6.9(a-f) corresponds
to nonlinear and linear patterns, respectively: while figures 6.8(a- f) and 6.9(a-f) show the grey-
scale maps of the perturbation density ¢’ and granular temperature T”, those in figures 6.8(e, f)
and 6.9(e, f) display the vector plots of the perturbation velocity field (u', v').

On the grey-scale, the black and white represent minimum and maximumn values, respectively.
The linear eigenfunction of the stationary instability in fgure 6.8(b, d, f) contains two rows
of particle clusters (density maxima) across the gradient direction y (see also the temperature
eigenfunction in figurc 6.8d) this is because the parental origin of this long-wave stationary
instability at H = 100 (refer to ‘squarc’ symbol in figure 6.4) is the ‘mode 2’ shear-banding
instability whose density eigenfunction has two zero-crossings across y (Shukla & Alam 2011).
The corresponding nonlinear equilibrivun solution in figure 6.8{a.c.e) is a modulated version of the
linear eigenfunction in figure 6.8(b,d, f). Note that the temperature is maximum at the location
of minimum density, and the velocity ficld is seen to be changing its direction at the location of
density maxima.

The long-wave travelling solution displayed in figure 6.9 corresponds to a backward-propagating
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Figure 6.8:  Long-wave patterns of (a-b) density, (c-d) granular temperature and (e-f) veloeity field
with k, = 107, Parameter values as in Agure 6.5
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Figure 6.9: Same as figure 6.8, but for long-wave travelling instability at 1 = 0 with k, 1% 10°°
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mode. For this instability, the nonlinear ficlds in figure 6.9(a,c,e) appear to be much more dis-
torted from their linear counterparts in figure 6.%b,d, ). Other features look similar to those for
the stationary mode in figure 6.8.

6.7.2 Nonlinear Results on Stationary and Travelling Instabili-
ties: k, ~ O(1)

T ()
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Figure 6.10:  Variations of (a) the first Landau coefficient o!® and (b) the equilibrium amplitude A.
with wavenumber k;. Parameter values are as in figure 6.3.

We now focus on the instabilities due to the first peak of figure 6.3 - for the wavenumber
band k; ~ (0.5,0.65) in figure 6.3, the phase velocity is zero and the growth rate is positive, and
hence the flow is linearly unstable to stationary waves. The corresponding variation of the real
part of the first Landau coefficient, a!®, with &, is shown in figure 6.10{a); the imaginary part,
), is not shown since it remains zero for stationary waves. It is clear that o' is negative for
k, ~ {0.5,0.65) but a® is positive there, and hence there are stable nonlinear solutions, with
the equilibrium amplitudes as displayed in figure 6.10(b). Because of the stationary nature of the
underlying instability, we have supercritical pitchfork/static bifurcations within the wavenumber
band &, ~ {0.5,0.65} in figure 6.3.

Note that varying k. is equivalent to varying the channel length since the channel length in
terms of particle diameter is given by L, = A, = (2n/k,)H, and therefore the range of channel
lengths in figure 6.10 corresponds to L, € (12.56 — 9.75)H at a fixed Couctte gap of H = 100.

A comparison between the nonlinear and linear patterns of density, granular temperature
and velocity is shown respectively in figures 6.11(a. ¢, e) and 6.11{(b. d, f). On the grey scale in
figure 6.11(a-d) the white represents maximum and the black represents minimum; the vector plot
of the velocity field (u,v) is displayed in figurc 6.11(e, f). The nonlinear density and temperature
fields are seen to be highly distorted from their linear counterparts - the location of the density
maxima for the nonlinear case (compare figures 6.11a and 6.115) shifts away from the walls into
the bulk. With nonlinear corrections, the pockets of dilute and dense zones in figures 6.11(q)
and 6.11(c) are seen to be tenuously distributed in the (z, y)-plane. To ascertain the true aspect
ratio of the plots in figure 6.11, we must stretch the w-axis by a factor of about 2r/k; = 10.72,
since k; = 0.5858 for these plots. A comparison of the linear eigenfunctions in figure 6.11(b,d, f)
with those in figure 6.8(b.d.f) suggests that the structural features of the ‘dominant’ stationary
instability (at k; ~ O(1)) are significantly different from those for ‘long waves' (at k, ~ 0)


http://tho.se

138 Chapter 6.

0.4

0.6 ; = ; 0 0.6

/2, Axizn,

x

Figure 6.11: Patterns of (a. b) perturbation density ¢'(r,y), (¢, d) granular temperature T'(x,y) and
(e, f) veloecity (u',v'), for the dominant stationary mode in figure 6.10 at k, = 0.5858. Panels (a, ¢, ¢)
represent nonlinear patterns, while (b, d, [) represent linear eigenfunction. Other parameter values are
H = 100. e = 0.8 and ¢ = 0.2, as in figure 6.3.

stationary instability.

For the wavenumber band around the second peak in figure 6.3. we show the variations of
erowth rate (solid line) and the phase velocity (dot-dashed line) in figure 6.12(a) clearly, the
flow is unstable to travelling waves. (It may be noted that the growth rates of these travelling
waves at k., = O(1) are an order of magnitude larger that those at long waves k, ~ (., see
figure 6.5.) The corresponding variations of the real (solid line) and the imaginary (dot-dashed
line) parts of the first Landau coefficient are shown in figure 6.12(b). The real part of the first
Landan coetlicient (u.”’) changes its sign from positive to negative at k. =~ 0.926, shown by
an arrow in figure 6.12(b). Since the underlying instability is oscillatory, we have supercritical
Hopf/oseillatory bifurcations within the wavenumber band k., € (0.926.0.99). The corresponding
equilibrium amplitude (solid line) and the equilibrium phase veloeity (dot-dashed line) are shown
in figure 6.12(¢). Note that even though the flow is unstable to travelling waves (i.e. al® =,
see figure 6.12a) over k, € (0.88,0.926), the nonlinear equilibrium solutions do not exist over
k. € (0.88,0.926) since a'® > 0 there.

The cubic Landau-Stuart equations (6.38)-(6.39) have exact analytical solutions:

r['“]flﬁ

A%(t) = ————— . 6.48)
) [al® 4 a®) A2] exp(—2a(0t) — a'? AF (
’ B2 gl 'Y+ a'? A2(1 — exp(—2a'"1)
\ 0) 0 EXPL 10
o) = By +bMt— ey In — T — (6.49)

with @' # 0. where Ay = A(t = 0) and #; = #(t = 0) are initial conditions. At k, = 0.93
and other parameters of figure 6.12(¢), the coefficients of (6.38)-(6.39) are a'® =~ 29711 x 1073,
b =~ 97524 x 1072, a'® = ~1.5185 x 1072 and b? =~ 7.7618 x 10~'. For these parameters.
the equilibrium amplitude is A, = /—a'9 /a(?) ~ 0.4423. We have evaluated the exact solution
trajectories (6.48)-(6.49) for two initial conditions: one with Ay > A, and other with Ay < A,
with #y = 0. These solutions are indicated by solid lines in figure 6.12(d) in the (A,, A, )-plane.
where A, = Acosfl and A, = Asin#. Both spiralling orbits asymptotically approach a limiting
circle of radins A = A, as t — o¢ - this is the limit cyele which is stable for the present case.
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Figure 6.12: Variations with k, of (a) the growth rate, 100a}”, (solid line) and ¢y, (dot-dashed line)
of the least-stable travelling mode, (b) the first Landau coefficient: a'®! (solid line), b'*) (dot-dashed line),
and (¢) A. (solid line) and ¢}, (dot-dashed line); parameter values are as in figure 6.3. (d) Stable limit
cycle and two spiralling orbits in the (A., A,)-plane at k, = 0.93.
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Figure 6.13: Same as figure 6.11, but for the dominant travelling wave at { = 0 with k, = 0.93.
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For the dominant travelling wave instability of figure 6.12 that occurs at k, = 0.93. the nonlin-
ear and linear perturbation fields of density, granular temperature and velocity are compared in
figure 6.13 - this is a backward-propagating mode. To visualise the true aspect ratio of these plots,
we need to stretch the z-axis by a factor of about 27 /k, = 6.75, and therefore the density bands,
for example in figure 6.12(a). are much more clongated than what is seen here. In contrast to the
case of stationary instability in figure 6.11, the nonlinear corrections induce a significant change
in the velocity field (compare figures 6.13¢ and 6.13f): the nonlinear density and temperature
fields have some resemblance to their linear counterparts, even though they are also similarly dis-
torted like the velocity field. In particular, the nonlinear velocity field clearly shows vortical-type
motions (not shown for brevity) if we analyse the total velocity (u,v) = (u" +u', v+ 0').
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Figure 6.14: Variations of (a) u:m (main panel) and e,y (inset), (b) a'?! (solid line) and b'*) (dot-dashed
line), and (¢) A, (dashed line) and ¢}, (dot-dashed line) with k;; other parameters are the same as in
figure 6.3. (d) Unstable limit cyele and two spiraling orbits at k, = 0.215.

The evidence of suberitical instability at moderate values of k, is shown in figure 6.14 for
a range of wavenumbers k, € (0.21,0.22); other parameters are as in figure 6.3. While the
variations of the growth rate of the least-stable mode and the phase velocity (inset) are shown
in figure 6.14(a), the first Landau coefficient is shown figure 6.14(b). These are ‘stable’ [a'") < 0]
travelling waves as seen in figure 6.14(a). Since a® and @' are of opposite signs over k, €
(0.21,0.22), this leads to *suberitical” Hopf bifurcations, with oscillatory nonlinear solutions. The
corresponding variations of the equilibrium amplitude A, and the equilibrium phase velocity ¢,
are shown in figure 6.14(¢) by dashed and dot-dashed lines, respectively. As discussed in §6.5.2,
the equilibrium amplitude in figure 6.14(¢) provides a measure for the ‘threshold’ amplitude for
nonlinear stability since we have calculated only the first Landau coefficient. Figure 6.14(d)
shows the limit eyele (dashed circle) at k, = 0.215 with other parameters as in figure 6.14(c¢).
For these parameters, the coefficients of the Landau-Stuart equations (6.38)-(6.39) are o'V =
—-2.3418 x 1079, b9 2 1,0053 x 107!, a'® = 9.6679 x 10~* and b'* = 7.2967 x 1072 the
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Figure 6.15: Same as figure 6.13, but for the subcritical travelling wave at ¢ = 0 with k, = 0.215 with
parameter values as in figure 6.14(d).

corresponding equilibrium amplitude is A, = /—a® /a(?) =~ 0.4922. The solution trajectories
(6.48)-(6.49) for two initial conditions (one inside the limit cyele and the other outside) are plotted
by solid lines in figure 6.14(d) ~ both orbits spiral away from the limit cycle (dashed circle) as
t — oo, confirming that this represents an ‘unstable’ limit cycle.

With parameter values as in figure 6.14(d), the nonlinear and linear patterns are compared
in figure 6.15(a-f). Recall that this is an ‘unstable’ subcritical travelling wave. Unlike the
supercritical solutions in figure 6.13, the nonlinear suberitical patterns in figure 6.15(a,c.e) have
little resemblance with their linear eigenfunctions in figure 6.15(b.d.f). The structural features
of all perturbation fields in figure 6.15(a,c,e) appears to be elongated and aligned along the
streamwise direction, and the pockets of dilute and dense regions are tenuously distributed in the
(x, y)-plane.

6.7.3 Evidence of Mean-flow Resonance and 1:2 Resonance

We first consider the mean-flow resonance condition (6.32) which represents a resonant interaction
between a linear mode at some value of k, and a shear-banding mode (i.e. a disturbance at
zero wavenumber k., = 0). Focussing on the wavenumber band £k, = (0.26,0.38) with other
parameters as in figure 6.3, we have plotted the variations of the least-stable growth rate and
its phase velocity in figure 6.16(a) and that of a'® (solid line) and b2 (dot-dashed line) with
wavenumber in figure 6.16(b). Note in figure 6.16(b). that a'?) has a kink near k, ~ 0.37 which
is consequence of the mean-How resonance condition being satistied, there as we show below.

Recall from (6.32) that the condition for the mean-fow resonance is 2”{;[1”“'-4‘} = u{';l.i}('k_,. =10)

3 0 : , . . 1 .
with h[m][k_,, = 0) = 0 for any two modes j1 and j2. In figure 6.16(c), the line with open
() corresponds to the least-stable mode
as displayed in figure 6.16a), and the dashed horizontal line represents a real eigenvalue of the
streamwise independent flow (which is not the least-stable eigenvalue at k, = 0 for this parameter
set). Both the growth rate curves intersect at b, ~ 0.3677. as shown by an arrow in figure 6.16(c),

circles represents the variation of 2a'" with k. (where a



142

Chapter 6.

o gr10” 0.1 (b) gx 10"
(a) (c) d o
i
-4l
-na| |
B 0 365 ? 037
a ]l
i 2 ap )
S a"ik =0)
T.---&__"“-—«-. -
=4.2
| k, = 0367755
026 03 03 038

0.3

k

0.34

0.38

®

Figure 6.16: Variations of (a) a:m (main panel) and e, (inset plot) and (b) @' (solid line) and b'%!
(dot-dashed line). Evidence of mean flow resonance at (¢) k, = 0.3677 and (d) k. = 0.00785. Parameter
values are (a-¢) ¢” = 0.2 and H = 100 (same as figure 6.3), and (d) ¢" = 0.5 and H = 50 (same as
figure 6.7).

and this is the point at which the mean-flow resonance condition,

2a'" (k, = 0.3677) = uj.”?(k.i. =) ~ —8.56434 x 10~%, (6.50)
is exactly satisfied. In (6.50), j = 11, implying that the 11th mode (the ordering of modes is done
by arranging them in descending-order of their growth rates) of the streamwise independent flow
(k. = 0) is responsible for the above mean-flow resonance, resulting in a kink on the a/®-curve in
figure 6.16(b). The inset of figure 6.16(c) shows a zoomed variation of the first Landau coefficient
that diverges and undergoes a sign-change at the resonant wavenumber (k. = 0.3677).

We now explain the divergence of a'®) at long-waves in figure 6.7(b). for which the parameter
values are ¢" = 0.5, H = 50 and ¢ = 0.8. The corresponding variations of 2a'"(k,) and
aD(k, = 0) are displayed in figure 6.16(d) by solid and dashed lines, respectively, which are
seen to intersect at k, = 0.00785. (The dashed line in figure 6.16d corresponds to the second

shear-banding mode, u{].“jz{k, = () =~ —2.97079 x 1075, which is stable; note that the ‘leading’

shear-banding mode is unstable at ¢" = 0.5 and H = 50, see figure 6.4.) Hence, there is a mean-
How resonance at k, = 0.00785, which is responsible for the divergence of a'?) in figure 6.7(b).

Iu fact, such a mean-flow resonance (6.32) can occur at multiple locations at various values
of k. for a given set of parameters (¢U, H.e). To demonstrate this, we replotted the growth rate
curve of figure 6.3 in figure 6.17(a) by a solid line - recall that this corresponds to the parameter
values (0" = 0.2, H = 100 and ¢ = 0.8) of the square symbol in figure 6.4. We have also
plotted five real eigenvalues of shear-banding modes (i.e. at k, = 0) whose growth-rates can be
parametrized by wavenumber such that

200 (ke) =aj'(0), ¥V j=123,...,

shown by dashed horizontal lines in figure 6.17. In fact, the upper (thick) dashed line in figure 6.17
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Figure 6.17:

(a) Evidence of mean-flow resonance: variation of the real part of the least-stable mode

[2(1{”](.#‘-.r)] with k. at ¢" = 0.2, H = 100 and e = 0.8, The dashed horizontal lines refer to different shear-
banding modes k; = 0. The intersection points of dashed lines with the solid line denote the locations of
k. at which mean-flow resonance occurs as explained in the text. (b) Divergence of a? (k) for k, > 1.



144 Chapter 6.

0.04

® '. '. '. R
! [ i, ~ A i
b(o)o : o 1 : : : :
1 1 1 ] ] 1
0202 | 0.494' 0.676 | 0.8408 | 1.0518 ! 1,158
o 0.2 0.4 0.6 0.8 1 1.2
o

Figure 6.18: Possible onset of the 1:2 resonance at ¢" = 0.2, H = 100 and e = 0.8: (a) the real part,
a'™ | (b} the imaginary part, 8%, of the least-stable mode with k.

corresponds to the first four modes, a52, 5 4 4(0) = 9.2125 x 1075, 8.28485 x 10~°, 2.72077 x 10-°
and —5.99651 x 10~%, which are very close to each other. as clarified in the zoomed inset. The first
two {almost) vertical solid lines in the inset correspond to the zoomed version of the dominant
stationary wave (SW) of figure 6.17 and the next two vertical lines correspond to travelling waves
(TW). It is clear from this inset that the growth rates of these four shear-handing modes (a'® (k, =
0)) coincide with the growth rates (2a'(k,)} of the dominant stationary and travelling waves,
satisfying the mean-flow resonance condition (6.32) exactly at 16 different values of &, {which are,
of course, very close to cach other). Consequently, there are multiple resonance points at various
values of k-, near the zero crossings of SW and TW. That the first Landau coefficient diverges at
such resonance points can be ascertained from figures 6.10(a) and 6.12(8}. The lower dashed line
in figure 6.17 corresponds to the 11th shear-banding mode [af,-l;)u(k;|t = 0) = —8.56434 x 1079
which is responsible for the mean-flow resonance in figure 6.16{c). Note that in figure 6.17(a) the
flow is linearly stable for large values of &, > 1. However, there are multiple resonance points in
this stable regime too, as implicated by the discontinuities on the curves of a'* and 5'?) at various
values of k., sce figure 6.17(b), where the mean-flow resonance condition (6.32) is satisfied.

Now we discuss about the possible occurrence of the 1:2 resonance condition (6.34) in the
present flow. While the solid line in figure 6.18{a) represents the variation twice of the growth rate
of the least-stable mode, Qa}m{ k), that in figure 6.18(d) represents the corresponding variation of
froquency, QbEU)U\: ). The dashed lines in Agure 6.18(a.b) represent the growth rate aud frequency
curves, parametrized hy a®®(k,) = a{” (2k,) and b9 (k,) = 5" (2k,), respectively. The points
of intersection of the solid and dashed lines in figure 6.18{a) are marked by vertical dotted lines
where the growth rates are cqual. However, the 1:2 resonance condition (6.34) is not satisfied at
these points because while the condition on the growth rate,

2a{"(k,) = a" (2k,),
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is satisfied, the equality of frequencies does not hold, i.e.
26" (k,) # 6" (2ks)

at these points. We have checked a few other paramneter combinations, but could not find the
occurrence of a I:2 resonance in this flow. We note in passing that the 1:2 resonance between
two travelling waves corresponds to a codimension-3 bifurcation point (Golubitsky & Schaeffer
19856; Proctor & Jones 1988; Fujimura & Kelly 1997) and therefore requires an exhaustive search
in the parameter space which was not pursued further in this thesis.

Irrespective of the types of resonance (i.e. tnean fiow or 1:2), the first Landau coefficient is
divergent at the resonance point. In the following sections, we will present results for ' and
b'?) which contain such resonance points as implicated by discontinuities in the first Landau
coefficient.

6.7.4 Dominant Stationary and Travelling Instabilities: Effects
of Density and Couette Gap

We define the dominani eigenvalue as the one having the maximum growth rate over all wavenum-
bers for a specified control parameter combination of (H, #Y, €) - in other words it is the supremum
of all leading eigenvalues, as defined in (6.45), over all k.:

af = sup o, (6.52)

£

The wavenumber corresponding to this dominant mode is referred to as the dominant wavenum-
ber:
k= k(0 = af). {6.53)

For example, in figure 6.3, we have plotted the growth rate of the leading eigenvalue, agm, with &k,
at (H,¢%) = (100,0.2) and ¢ = 0.8. The dominant mede for this parameter combination comes
from the maximum of the growth rate curve that occurs at the first peak at k. == 0.5858, which
is a stationary wave; the second dominant mode corresponds to the maximum of the second peak
at k, =~ 0.9349 in figure 6.3, which is a travelling wave. Recall that the growth rates of these
stationary and travelling instabilities, which appear at k; = O(1}, are an order of magnitude
larger than those appearing at long waves {k, ~ 0, see §6.7.1). So far, we have presented results
on these dominant instabilities at a mean density of ¢" = 0.2 and a Couette gap of H = 100 in
§6.7.2 and §6.7.3. In this section, we probe the effects of varying mean density and Couette gap
on the nonlincar saturation of these dominant stationary and travelling instabilities.

|Eﬁ'ect of Mean Density

In figure 6.19, we show the variations of a}m with &, for 24 different mean densitics ranging
from ¢" = 0.1 to 0.3, with parameter values as in figure 6.3. The dashed and thick solid lines
correspond to ¢? = 0.1 and 0.3, respectively, and the thin solid lines refer to the remaining
equally spaced densities. For each density, the first dominant peak refers to stationary waves,
and the next onc to travelling waves. Note that the locations of both the dominant stationary
and travelling wave peaks move to larger values of k, with increasing density from ¢* = 0.1 to
0.3.

The variation of the growth rate of the above-discussed dominant stationary instability, af,
with mean density is shown in figure 6.20(a), and the corresponding variation of the dominant
wavenumber, &%, is shown in its inset. It is seen that the dominant growth rate is maximum at
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Figure 6.19: Effect of mean density on the growth rate of least-stable mode at H = 100 and ¢ = 0.8.
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Figure 6.20:  Effect of mean density on the dominant stationary instability, corresponding to the first
peak in figure 6.19. (a) af (main panel) and k¢ (inset): (b) supercritical /stable A, (main panel) and a'?
(inset),
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an intermediate value of ¢ ~ 0.3 and decreases in both the dilute and dense limits. Also, the
dominant wavenumber is minimum at ¢" ~ 0.1 and increases in both the dilute and dense limits,
implying that the wavelength (A, = 27 /k,) of the dominant instability is maximum at some
intermediate density but decreases sharply in both dilute and dense limits. Within the density
range over which the dominant stationary instability is unstable (af > 0), the first Landau
coefficient a'?’ is negative as seen in the inset of figure 6.20(b); the imaginary part of the first
Landau coefficient b'?) is zero for stationary waves and hence not shown. (Note that the jumps
in a'¥, marked by arrows in the inset of figure 6.20b, correspond to the mean-flow resonance
condition (6.32) being satisfied at those locations.) Therefore, at H = 100 (refer to the square
svmbol in figure 6.4), the supercritical (and hence stable) stationary solutions exist for a range of
mean densities as shown in the main panel of figure 6.20(h). It has been verified that this range
of ¢Y, over which such nonlinear equilibrium states exist becomes larger in wider Couette gaps
(i.e. with increasing H).

i ﬂlmlﬂf [

Figure 6.21: Effect of the mean density on nonlinear patterns of density (a, ¢, €) and velocity (b, d, f) for
the dominant stationary instability in figure 6.20: (a.b) ¢" = 0.1 (k. = 0.52), (c.d) ¢" = 0.3 (k, = 0.77)
and (e,f) ¢" = 0.45 (k. = 1.39).

With the finite amplitudes as in figure 6.20(b), the corresponding nonlinear stationary patterns
of the perturbation density and velocity fields are displayed in figures 6.21(a, ¢, e) and 6.21(b, d, f),
respectively, for three values of mean density: figures 6.21(a.b). 6.21(¢.d) and 6.21(e, f correspond
to ¢ = 0.1, 0.3 and 0.45, respectively, with dominant wavenumbers k4 = 0.52, 0.77 and 1.39.
These plots should also be compared with figure 6.11(a.e) for ¢” = 0.2. It is seen that the overall
features of density and velocity fields look similar at any mean density. Note further that the
related plots of linear perturbations at ¢ = 0.1, 0.3 and 0.45 (not shown) look strikingly similar
to those at ¢ = 0.2 as in figure 6.11(b,f). Therefore, the overall structural features of both
linear and nonlinear perturbation fields for the dominant stationary instability remain relatively
unaffected by variations in mean density, i.e. whether the flow is dilute (¢" = 0.1) or dense
(0" = 0.45).
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For the dominant travelling wave, corresponding to the second peak in figure 6.19. the varia-
tions of af and ¢, with mean density ¢” are shown by solid and dot-dashed lines, respectively,
in figure 6.22(a). The phase velocity, ¢, of the dominant travelling mode remains relatively
unaffected with changes in mean density, however, its growth rate a.}' is maximum at some in-
termediate density ¢” ~ 0.2 and decreases in both dilute and dense limits. The corresponding
dominant wavenumber kY, shown in the inset of figure 6.22(a), varies non-monotonically with
¢ and is minimum at ¢” ~ 0.1 and increases in both dilute and dense limits, Comparing fig-
ure 6.22(a) with figure 6.20(a) we find that the growth rate and the unstable range of densities
are much smaller for the dominant travelling wave than its stationary counterpart and so is its
wavelength (since A, ~ 1/k?).

-0.04

-0.08

-0.12

Figure 6.22: Effect of the mean density on the dominant travelling wave, corresponding to the second
peak in figure 6.19. (a) al (solid line), its phase velocity (dot-dashed line) and &% (inset); (b) supercrit-
ical /stable A, ¢}, (main panel) and a'™ and a'* (inset): (¢) suberitical funstable A, ¢, (main panel)

(0

and a'" and o' (inset).

The dominant travelling waves in figure 6.22(a) undergo ‘supercritical” and ‘suberitical” Hopf
bifurcations over the density range of ¢” ~ (0.12,0.25) and ¢" ~ (0.317.0.343), respectively, see
figures 6.22(h) and 6.22(c). The variations of the real part of the first Landau coefficient, a'?),
and the growth rates are displayed in the insets of figures 6.22(h) and 6.22(¢), and those of the
equilibrium amplitude A, and the equilibrium phase velocity ¢f, in their respective main panels.
The nonlinear solution branches in figures 6.22(h) and 6.22(¢) are responsible for “stable” and
‘unstable’ limit cycles, respectively, similar to those in figures 6.12(d) and 6.14(d). Corresponding
to an unstable limit eyele such as in figure 6.14(d), there exists a stable limit cycle of larger am-
plitude that requires the knowledge of the second Landau coefficient ¢! (which is not caleulated
here).

The nonlinear travelling patterns (at ¢ = () of the perturbation density. granular temperature
and velocity fields are shown in figure 6.23 - figures 6.23(a, ¢, ¢) and 6.23(b, d. f) correspond
to stable and unstable solutions at ¢ = 0.15 and 0.33, respectively, with other parameters as in



6.7 Results and Discussion: Hopf and Pitchfork Bifurcations, and Resonances 149

04 02 04 06 08

X2, W2k
x

Figure 6.23: Nonlinear patterns of (a, b) density, (¢, d) temperature and (e, f) velocity fields for the
dominant travelling instability in figure 6.22 at two mean densities: (a, ¢, €) ¢ = 0.15 and k, = (.84
(stable); (b, d, f) ¢” = 0.33 and k, = 1.3 (unstable).

figure 6.22. It must be noted that the structural features of stable travelling solutions at any
density over ¢” ~ (0.12,0.23) resemble those in figure 6.23(a,c,e) and the unstable solutions at
any ¢” ~ (0.317,0.342) look similar to those in figure 6.23(b, d, f). It is clear from figure 6.23
that the stable and unstable nonlinear solutions for all three fields are markedly different from
each other. More specifically, the unstable patterns support larger fluctuations in the (z, y)-plane
in all fields than the stable patterns. This may be contrasted with the fact that the underlying
linear fields for either case of supercritical and subcritical Hopf bifurcations look similar, such as
those in figure 6.13(b, d, f).

{Eﬂ‘ect of Couette Gap]

~ The above results, figures 6.19 - 6.23, pertain to a fixed Couette gap of H = 100 over a range
of mean densities ¢” € (0.05,0.5). Here, we fix the mean density at ¢” = 0.2 and probe the
effect of varying Couette gaps on dominant instabilities, along the horizontal arrows in figure 6.4.
Figure 6.24 shows the variation of the growth of the least-stable mode with k, for few values of
H € (25,100). It is seen that the dominant stationary instability at H = 100 (the first peak
on thick solid line) becomes stable for narrower Couette gaps (say, at H = 25, indicated by the
dashed line in figure 6.24). Therefore, there is a minimum Couette gap (H = HZ"') below which
the stationary instability with &, ~ O(1) becomes stable.

For the dominant instability, corresponding to the first peak in figure 6.24, we have shown
the variations of its growth rate a;" with H and the corresponding first Landau coefficient a'? =
0 (with b'® = 0) in figures 6.25(a) and 6.25(b), respectively. The How is unstable to this
instability for H > 35.8: the growth rate aj reaches a maximum at some value of H (~ 70)
and decreases slowly thereafter. The dominant wavenumber k¢ decreases monotonically with
increasing H, see the inset in figure 6.25(a), and hence the corresponding wavelength increases.
In fact, the dominant wavelength A% /d (in terms of particle diameter) increases from 207 to 10007
at H = 25 and 200, respectively, and A%/h from 0.87 to 57 in terms of the Couette gap. The
inset in figure 6.25(h) displays a zoomed version of a'®) over a smaller range of H, and the two
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Figure 6.24: Effect of the Couette gap on the growth rate of the least-stable mode at ¢” = 0.2 and
e = (0.8,

discontinuities in a'?) at H ~ 29 and H ~ 36 correspond to the mean-How resonance condition
(6.32) being satisfied there,

For the dominant stationary instability in figure 6.25(a), the nonlinear solutions appear via
super-critical’ pitchfork bifurcations for a large range of Conette gaps H € (36,100) as shown
in the main panel of figure 6.25(¢). However, the ‘subcritical’ solutions also exist but for a very
narrow range of Couette gaps H € (29, 30) as in the inset of figure 6.25(¢). Note that in the inset
of figure 6.25(h). a'?) is positive for H € (29.30), leading to subcritical bifurcations.

For parameter values of figure 6.25, the stable/supercritical nonlinear solutions at any H €
(36, 100) look similar. This can be verified by comparing a representative stationary-wave solution
for the patterns of density, granular temperature and velocity as displayed in figure 6.26(a.c.e)
at a Counette gap of H = 50 (with other parameters as in figure 6.25) with figure 6.11(a.c,e) at
H = 100. However, the unstable/subcritical solution at H = 30 looks completely different as
shown in figure 6.26(b,d.f). (Note that the height and length ratios between two sets of images
in figures 6.26(a, ¢, ¢) and 6.26(b, d, f) in the first and second column of figure 6.26 have been
set proportional to Hy/Hy = 5/3 and L,y /Lo = kyo/k.1 = 1.75, respectively.) In the latter case
the particle bands/clusters are wavy and aligned primarily along the streamwise direction, which
is in contrast to oblique clusters observed for stable/supercritical solutions in figure 6.26(a.c.e).
The density field in figure 6.26(b) has some resemblance to the sinuous stationary mode found in
particle simulations of Conway et al. (2006). (The solution for the corresponding stable branch,
which requires the second Landau coefficient, is expected to remain similar since it represents a
continuation of the unstable branch, see figure 6.2f.)

The effect of the Couette gap on the dominant travelling instability, corresponding to the
second peak on thick solid line in figure 6.24, has been studied at ¢ = 0.2 for a range of
H € (25,200). but we do not show these results for the sake of brevity. We found that the flow
is linearly unstable to the dominant travelling instability (i.e. af > 0) beyond H = H'" ~
85.5. Here too we have subceritical and supereritical Hopf bifurcations over H € (78.5,85.5) and
H > 85.5, respectively. Over the subcritical range H € (78.5,85.5), the flow is found to be
susceptible to the mean-flow resonance (since this range of H belongs to the stable regime where
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Figure 6.25: Effect of the Couette gap on the dominant stationary instability at ¢ = 0.2 and ¢ = 0.8:
(a) af (main panel) and kY (inset); (b) a'': (e) ‘supereritical’ equilibrium amplitude (main panel) for
H > 36 and ‘subcritical’ amplitude (inset) for H € (29, 30).

the shear-banding modes, which participate in creating the mean-flow resonance, exists, see §6.7.3
at different values of . The patterns of stable/supercritical nonlinear travelling-wave solutions
at H > 85.5 (not shown) look similar to those for H = 100i, as displayed in figure 6.13. In
contrast, the unstable/subcritical nonlinear solution at H = 80, shown in figure 6.27 (compare
with figure 6.13(a,c.e)), looks markedly different from supercritical solution, even though the
underlying linear perturbation fields (i.e. the eigenfunction or the fundamental mode) are similar
in both cases. From the density and temperature contours in figure 6.27(a, b), we find that there
are two additional rows of clusters in the bulk along with wall clusters, and the density bands are
aligned along the streamwise direction.

Effect of Restitution Coefficient on Dominant Stationary Instabilitﬂ

From figures 6.19 - 6.27 we have seen the effect of density and the Couette gap on the dominant
stationary instability for a fixed restitution coefficient of e = 0.8. Figure 6.28 shows the variation
of the growth rate of the least-stable mode, aff with k, for few values of e € [0.5,0.99] for ¢ = 0.2
and H = 100. The dashed and thick solid lines correspond to e = 0.5 and 0.99, respectively. The
flow is unstable due to stationary waves for the full range of restitution coeflicients e € [0.5,0.99].
It is clear from this figure that the range of unstable wavenumbers increases with increasing
restitution coefficient. The flow is always stable in the elastic limit and becomes unstable for
decreasing restitution coefficient.

The variations of dominant growth rate uf., and corresponding wavenumber k:g are shown in
the main panel and in the inset of figure 6.29(a). The growth rate of the dominant stationary
instability and the corresponding wavenumber increases with the restitution coefficient. Since
a'? > 0. sce inset of figure 6.29(b), thus the bifurcation is supercritical pitchfork bifurcation. The
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Figure 6.26: Effects of the Couette gap on the nonlinear patterns of density (a, b), granular temperature
(e, d) and velocity (e, f) for the dominant stationary instability in figure 6.25: (a, ¢, ) H = 50 and
k, = 1.18 (stable solution) and (b, d, f) H = 30 and k, = 2.05 (unstable solution).
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Figure 6.27:  Noulinear travelling patterns (¢ = 0) of (@) density, (b) temperature and (e) velocity field
for the suberitical solution at H =80, o =02, e = 0.8 and k, = 1.1.
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Figure 6.28: Effect of the restitution coefficient on the growth rate of the least-stable mode at ¢" = 0.2
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Figure 6.29:

(inset).

Effect of the restitution on the dominant stationary instability, corresponding to the first

peak in figure 6.28. (a) al (main panel) and k2 (inset): (b) supercritical/stable A. (main panel) and a'?
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variation of the equilibrinm amplitude with the restitution coefficient is shown in the main panel
of figure 6.29()).

6.7.5 Effect of Restitution Coefficient at Large H

So far, we have presented most of the results for a single restitution coefficient of ¢ = (0.8 (except
those figures 6.28 and 6.29), and this was done in continuation of previous linear stability results
(Alam & Nott 1998) and nonlinear shear-banding results (Shukla & Alam 2011) of the same
problem. It is of interest to know how the values of ¢, which is a measure of inelastic dissipation
in a granular fluid, would affect the nonlinear saturation of dominant stationary and travelling
wave instabilities at very large Couette gaps. Here we present brief results at a mean density of
¢ = 0.2 and a Couctte gap of H = 500, focussing on a restitution coefficient of e = 0.95 that
belongs to the quasi-elastic limit (e ~ 1),

For e = 0.95, ¢ = 0.2 and H = 500. figures 6.30(a) and 6.30(b) show the variations with
k. of the least-stable growth rate afm and its phase velocity c¢py,. and the real part of the first
Landau coefficient a'?), respectively. As explained in §6.7.3, the discontinuities on the a'®-curve
in figure 6.30(b) signal the onset of mean-flow resonance (6.32). The first peak on the growth
rate curve in figure 6.30(a) corresponds to the dominant stationary (e, = 0., see dot-dashed line)
instability since the global maximum of u.}“} over all &, belongs to this peak; see, the upper inset
in figure 6.30(c) for a zoomed-view of this peak which is located at k, ~ 0.22. The second peak
of the u}“]—('urw belongs to the dominant travelling (e, # 0) instability. The rest of the growth
rate curve in figure 6.30(a) for even larger values of &k, belongs to travelling waves too. except
for a small window of &, ~ (0.51,0.535) over which the least-stable mode is stationary: see the
corresponding variation of ﬂ}m in the upper inset of igure 6.30(d).

The variations of @/ and the equilibrium amplitudes A, for the above two stationary in-
stabilities are displayed in the main panel and the lower inset, respectively, of figures 6.30(¢)
and  6.30(d). For both cases, we have supercritical pitchfork bifurcations since @' > 0 and
a'?) < 0. The vertical double arrows in figures 6.30(c) and 6.30(d) correspond to k,-values
at which a'® suffers a jump discontinuity due to the mean-flow resonance. From the lower in-
sets of figures 6.30(¢c) and  6.30(d), we find that A, (k, = 0.22) is about five times larger than
Ac(k, = 0.517)  therefore, the nonlinear saturation of the ‘second-type’ stationary instability
(at larger k,) is more likely to occur than the dominant stationary instability (at smaller k)
even though the growth rate of the former is smaller than that of the latter by about an order of
magnitude (compare upper insets in figures 6.30c and 6.30d).

The nonlinear and linear disturbance patterns for the dominant stationary instability, corre-
sponding to the first peak in figure 6.30(a), resemble those in figure 6.11 at ¢ = 0.8 and H = 100,
and hence we do not show them here. However, we focus on patterns for the new stationary
waves in figure 6.30(d) at &, = 0.517 (with maximum growth rate). The corresponding nonlinear
and linear patterns of perturbation density, granular temperature and velocity field are displayed
in figures 6.31(a. ¢, €) and 6.3L(b. d. f). respectively. A comparison between the linear density
cigenfunctions in figures 6.11(h) and 6.31(h) suggests that the latter mode has two additional
rows of particle clusters near two walls, the signature of which is also evident in the temperature
and velocity maps as in figure 6.31(d. f). Therefore, this is a ‘new’ stationary instability which
is structurally different (from that in figure 6.11) and that appears only in wider Couctte cells of
large H. The corresponding nonlinear patterns also look different as seen in figures 6.31(a. ¢, €)
and 6.11{a, ¢, e).

We have checked that this new stationary mode persists at other values of e as long as the
Couette gap H is large enough. More Specifically, reducing the restitution coefticient ¢ leads to the
appearance of this new stationary instability in a system with a smaller Couette gap (H < 500),
with other parameters being fixed as in figure 6.30.
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Figure 6.30: (a-e) Results in the quasi-elastic limit (e = 0.95) for a very large Couette gap H = 500 at
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156 Chapter 6.

With parameters as in figure 6.30(a). the variations of A, for larger values of k, are shown
in figure 6.30(¢) over which supereritical Hopf bifurcations occur, see the corresponding zoomed
variation of a'?7 > 0 in the inset of figure 6.30(¢) and that of @'} < 0 in the main panel of
figure 6.30(b). For these travelling waves too, A, decreases with increasing k,. We show a
comparison between the nonlinear patterns at &, = 0.75 and 1.0 in the first and second columns
in figure 6.32, respectively. Both represent backward travelling waves - note that the lengths of
images in both columns are proportional to ratio of their wavelengths (A, /A9 = koo /k = 4/3).
The patterns of density, temperature and velocity at &, = 1 are more stretched and tenuous
around the centreline compared with those at k, = 0.75, but their structures near two walls look
similar. The overall structural features of the pattern at k, = 1 have some resemblance to the
corresponding dominant travelling wave pattern, see figure 6.13(a.c.e).
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Figure 6.31:  Nonlinear (a, ¢, e) and linear (b, d. f) "stationary’ patterns of (a, b) density, (e, d)
temperature and (e, f) velocity fields in the (r, y)-plane. Parameter values are H = 500, ¢ = 0.95,
¢ = 0.2 and k,; = 0.517 as in figure 6.30(d).

6.8 Conclusions

[n this chapter, we have probed nonlinear stability of two-dimensional granular plane Couette
How which is known to be unstable due to a variety of traveling and stationary waves (Alam
& Nott 1998). having modulations in both streamwise () and gradient (y) directions. The
amplitude expansion method (Stuart 1960: Watson 1960; Reynolds & Potter 1967) has been used
to derive Landau equation. Along with the linear eigenvalue problem, the mean-flow distortion,
the second harmonic, the distortion to the fundamental mode and the first Landau coefficient has
been caleulated using a spectral-based numerical method.

We have studied the nonlinear equilibrinm states and patterns for various bands of wavenum-
bers ranging from long waves to short waves. The bifurcation analysis for travelling and stationary
wave instabilities has been detailed in this chapter. We found that the two-dimensional granular
plane Couette How admits both Hopf and pitehfork bifurcations, that result from travelling and
stationary instabilities, respectively,
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Figure 6.32: Nonlinear patterns of the travelling instability at (a,c,e) k: = 0.75 (first column) and
(bd.f) ke = 1.0 (second column). Parameter values are the same as in figure 6.30.

Our results show that the flow is suberitically unstable to stationary finite amplitude pertur-
bations of long wavelengths (k, ~ 0, where k, is the streamwise wavenumber) in the dilute limit
that evolve from suberitical shearbanding modes (k, = 0), but at large enough Couette gaps there
are stationary instabilities with k, = O(1) that lead to supercritical pitchfork bifurcations. At
moderate-to-large densities, in addition to supercritical shearbanding modes, there are long-wave
travelling instabilities that lead to Hopf bifurcations. It is shown that both supercritical and
suberitical nonlinear states exist at moderate-to-large densities that originate from the dominant
stationary and travelling instabilities for which &, = O(1). Nonlinear patterns of density. velocity
and granular temperature for all types of instabilities are contrasted with their linear eigenfunc-
tions. While the supereritical solutions appear to be modulated forms of the fundamental mode,
the structural features of unstable suberitical solutions are found to be significantly different from
their linear counterparts.

It is shown that the granular plane Couette flow is prone to nonlinear resonances in both
stable and unstable regimes. The signature of such resonances is implicated as a discontinuity in
the first Landau coefficient. Our analysis identified two types of modal resonances that appear
at the quadratic order in perturbation amplitude: (i) a ‘mean-flow resonance’ which oceurs due
to the interaction between a streamwise-independent shear-banding mode (k, = 0) and a lin-
ear/fundamental mode k, # 0, and (ii) an exact *1:2 resonance’ that results from the interaction
between two waves with their wavenumber ratio being 1:2
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Appendix 6A. Elements of linear and adjoint operators
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Appendix 6B. Nonlinear Terms (N, and Aj3)

In the following, the subscript ¢, T, T and y indicate partial derivative with respect to ¢, T, =
and y,lrespectively, and superscript 0 indicates the values being calculated at the base state. For
example
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correspona fo berms from mass, x-momentum, y-momentum and energy equations, respcctwely,
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CHAPTER 7

VORTICITY BANDING IN THREE
DIMENSIONAL GRANULAR COUETTE FLOW

7.1 Introduction

The rapid granular Couette fow undergoes many ordering transitions due to banding instabilities.
The pure spanwise instability leads to segregation of particles, in the form of bands of dense
and dilute regions, along the vorticity (spanwise) direction. Recently, density waves, coherent
structures and vorticity banding have been observed in large-scale MD simulations of granular
Couette flow by (Hopkins ef al. 1992; Conway & Glasser 2004; Conway ef al. 2006). Figure 7.1
shows a snapshot from MD simulation of three dimensional granular Couette How (Conway &
Glasser 2004). Three plugs with different mesoscopic structures in the vorticity direction, leading

o

to vorticity banding, are shown in figure 7.1.
Width

Length i

Figure 7.1: Variations of particle densities in sheared granular Couette flow between moving walls. Three
plugs are shown. The parameters are: I[/h = d/h = 3, ¢ = 0.05, ¢ = 0.6 and H = h/d, = 50 where I, h
and d are the length, width and depth of the system, respectively; d, is the diameter of a particle (see
figure 1.28d in chapter 1). From Conway & Glasser (2004).

In many complex fluids including granular systems, the homogeneous flow is unstable above a
critical applied shear rate or shear stress. The How then separates into coexisting bands of different
internal structures and rheological properties. This phenomenon is known as shear banding. Such
type of banding is known to occur in many complex fuids having structures that relax on slow
time scales, e.g. colloidal suspensions (Hoffman 1972), worm-like micelles (Berret et al. 1997),
lyotropic liquid crystals (Bonn et al. 1998), suspensions of rod-like viruses (Lettinga & Dhont
2004), liquid-liquid biphasic system (Caserta et al. 2008), nano-tube suspensions (Lin-Gibson
et al. 2004). soft glasses (Coussot et al. 2002; Holmes et al. 2004), wormlike (Britton & Callaghan
1997) and lamellar (Salmon et al. 2003) surfactants, side-chain liquid crystalline polymers (Poschel
& Brilliantov 2001). See, for reviews on shearbanding in complex fluids, Fielding (2007), Dhont
& Briels (2008), Olmsted (2008) and Schall & van Hecke (2010).

Depending on the direction of banding, two types of banding instability can be classified:
gradient banding and vorticity banding. When an applied shear rate exceeds a critical shear rate

163



164 Chapter 7.

the flow breaks into alternate regions of low and high shear rates, respectively, and this is known
as gradient banding. In this case the flow separates into bands of different shear rates, connected
by sharp interfaces, along the flow gradient direction, as shown in figures 7.2(a) and 7.2(b). The
regions of high and low shear rates are shown by a top view of banded state in a cylindrical
geometry in figure 7.2(e).

(a) — (b)
H y

< ——

I et

(< m—— x
»——-—-—*

H z
S

Couetie flow between

VY
Y/
I/

rotating cylinders Couette [low between moving plane
() (d)
X! i
4 — W
low 7 ho Fu 72
Shear Rate

Figure 7.2: Schematic diagram of gradient banding in (a) cylindrical geometry, (b) channel geometry. (¢)
Cross section of low in gradient direction showing high and low shear-rate regions and (d) constitutive
curve in shear-stress vs. shear-rate plane.

Similarly if the applied shear stress exceed a critical shear stress, the homogeneous How sepa-
rates into bands of different shear stresses having the same shear rate along the vorticity (span-
wise) direction. The side view of vorticity banding in cylindrical Couette geometry and three-
dimensional Couette geometry are illustrated by schematic diagrams 7.3(a) and 7.3(b), with a
closure view of a slice of banding being displayed in figure 7.3(¢). In this case the regular bands
are formed (because shear rates are same in each band) which are stacked along the vorticity
direction.

Both tvpes of bandings, gradient and vorticity. originate from the multiple branches of the
underlying constitutive curve which is defined as the steady state relation between total applied
shear stress and shear rate (or. the shear-stress vs. shear-rate curve when the system was ho-
mogeneous). In other words the variation of shear stress with shear rate is “non-monotonic”.
The constitutive curves for the gradient and vorticity bandings are shown in figures 7.2(¢) and
7.2(d). respectively. In each figure the solid and dashed lines represent the stable and unstable
branches, respectively. In gradient banding. if the imposed shear rate belongs to the unstable
region, for example 4 = 4, (see figure 7.2(d)), the homogencous flow breaks into two bands of
shear rates ¥ = 4, and § = 95 with same shear stress. Therefore the unstable shear rate demixes
the homogeneous flow into a heterogeneous flow with bands of different rheological properties. A
similar situation occurs in the vorticity banding, if the imposed shear stress lies within unstable
region (dashed line in figure 7.3d), say ¥ = ¥y, the homogeneous flow breaks into two bands
having shear stresses ¥ = ¥ and ¥ = ¥, with the same shear rate.
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P S
Couette flow between moving plane

(c) (d) E:h /
L Low Stress g b2
X

Figure 7.3: Schematic diagram of vorticity banding in (a) cylindrical geometry, (b) channel geometry. (c)
Cross section of flow in vorticity direction showing high and low shear-stress regions and (d) constitutive
curve in shear-stress vs. shear-rate plane.
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7.1.1 Previous Work on Linear Stability

The linear stability analysis (Alam 2006; Gayen & Alam 2006) of three dimensional granular
Couette low shows that the uniform shear flow is unstable due to pure spanwise stationary per-
turbations for ¢! < ¢,. The growth rates of pure spanwise instabilities are much larger than
the two dimensional streamwise independent instabilities (k, = 0, k. = 0 and d/9dy # 0, which
has been discussed in chapters 4 and 5) for densities ¢! > G')Ez},f. Recall that the critical density,
for two dimensional streamwise independent instabilities leading to shearbanding along the gra-
dient direction, is @9, ~ 0.154 > ¢9,. Three dimensional granular Couette flow is unstable due
to streamwise-independent instabilities for moderate densities and due to pure spanwise insta-
bilities in the dilute limit. While the two dimensional streamwise independent instabilities lead
to shearbanding along the gradient direction in granular plane Couette flow, the pure spanwise
instabilities are responsible for banding of particles along vorticity direction in three dimensional
granular Couette flow. Many patterns in the form of streamwise structures, density patterns
and vortices have been predicted from the linear stability analysis (Alam 2006) for dilute and
moderate-to-dense Hows. Such patterns have also been observed in three-dimensional molecu-
lar dynamics simulations of granular Couette flow (Conway & Glasser 2004). One observation,
adopted from Conway & Glasser (2004). of three modulated streamwise rolls parallel to the
spanwise direction, which also corresponds to one density band along the gradient direction, is
shown in figure 7.1 for ¢ = 0.05. Although the sink walls have been used in their simulation,
the existing linear theory (Alam 2006) with adiabatic walls also supports such banding in dilute
limit, originated from pure spanwise instabilities. Irrespective of source or sink or adiabatic walls,
the pure-spanwise instability gives rise to vorticity banding in dilute three dimensional granular
Couette How.

Now the question is: are these instability-induced spanwise banding patterns stable /unstable
for the finite amplitude perturbations? Can we obtain any equilibrium state for vorticity banding
in granular Couette fow. similar to shearbanding in granular plane Couette How (Shukla &
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Alam 2009}7 In this chapter, we are trying to answer these questions using an analytical order
parameter theory for vorticity banding via Landau equation.

7.1.2 Organization of Present Chapter

This chapter is organized as follows. The non-dimensional form of governing equations (balance
of mass, momentum and energy), boundary conditions. base flow and disturbance equations are
given in §7.2. The lincar stability problem and its adjoint problem are discussed in §7.3. The
brief outline of the weakly nonlinear analysis using amplitude expansion method, as explained in
chapter 3, is presented in §7.4. In this chapter, §7.2-§7.4 deal with the general threc-dimensional
granular flow equations (3‘% #0, a% # {0 and 532 # (), whereas later sections are specific to the
pure spanwise How equations (3‘:"; #£ 0, é‘?—x = 0 and % = (). Instability in this flow leads to
banding of particles along the mean vorticity direction.

The analytical linear stability theory for the purc spanwise instability, asymptotic analysis
for finding the cigenvalues, analytical expressions for the linear and adjoint eigenvectors and the
locus of neutral stability curve are discussed in §7.5. The analytical weakly nonlinear theory,
the analytical expressions for the secoud hartnonic, the distortion of mean flow, the higher or-
der harmonics and the first two Landau coefficients are detailed in §7.6. The phase diagram
for nonlinear vorticity banding instability, bifurcation diagrams for subcritical and supercritical
hifurcations and the finite amplitude solutions are shown in §7.7. The organization map of this
chapter is depicted in figure 7.4 where the dashed arrow indicates that §7.5-§7.7 can be read
independently after §7.2.

Continuum equations for 3D
granular Couette flow (GCF). sec. 7.2

¥
Linear problem for 3D -GCF sec. 7.3

i T

Weakly nonlinear analysis for 3D-GCF: sec. 7.4

4

' ___,| Analytical solution for linear stability of
pure spanwise GCF: sec. 7.5

l

Analytical solution for weakly nonlinear analysis of
pure spanwise GCF: sec. 7.6

Results for pure spanwise GCF: sec. 7.7

Figure 7.4: Road-map of chapter 7.
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7.2 Continuum Equations and Boundary Conditions

&~

=l

Figure 7.5: Schematic diagram of 3D-granular Couctte flow between parallel plates. The upper plate
moves with velocity I/, /2 along the positive T-direction and the lower plate moves with the same speed
in the opposite direction.

We consider a plane Couette flow of granular matcrials, consisting of monodisperse inelastic
particles of diameter (fp and material density 7p, between two parallel walls at a distance § = £h/2
with A heing the gap between the walls which move in opposite directions with +07,,/2 velocity
in £E-direction. A schematic diagram of 3D Couette flow geometry is shown in figure 7.5. In
the co-ordinate system I, § and £ refer to the streamwise, transverse (gradient) and spanwise
directions, respectively. We use wall-to-wall gap (k) as the reference length scale, the velocity
difference hetween two walls (U,,) as the reference velocity scale and the inverse of overall shear
rate (h/,.) as the reference time scale (see §4.1 for other related reference scales). The component
forin of non-dimensional balance of mass, imomentum and energy equations without gravity are:
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where D/Dt = 3/0t + V - u is the material derivative, « = (u.v,w) is the bulk (coarse-grained)
velocity, T is the granular temperature and H = h/d, is the dimensionless Couette gap. Here
“dim" refers to the dimensionality of the system: for two-dimensions dim = 2 and for three-
dimensions dim = 3. In (T.1}-(7.5), p, 4, & and D are the pressure, coefficient of shear vxscosmy.
thermal conductivity and the rate of granular energy dissipation, respectively, and A = ¢ — mu
with { being the bulk viscosity. The dimensionless forms of constitutive relations and the radial

distribution function are given by (4.9) and (2.12), respectively.

7.2.1 Uniform Shear Flow

We seek a solution of {7.1)-(7.5) which is steady (8/8¢ = 0), fully developed {0/3x = 0) and
having no variation in spanwise direction {8/0z = 0). Thus we can assume a solution of the form

(6w, 0,0, T) = (6°(y), v®(¥).0,0, T (). (7.6)

Substituting (7.6} into (7.1)-(7.5), we observe that the mass and z-momentuin balance equations
are identically satisfied, and other three equations are,

%.,(“Ud;y) =0
> =0 (7.7)
e (W04 4 0 (4) -1 = o
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With boundary conditions u-“(y) =10(y) = fi‘[r: = 0 at y + 1/2. the base flow system (7.7) has

an analytical solution:
"(y) = const., u'(y)=y and T"(y) = const. = f2(¢")/f5(¢".€), (7.8)

where fy and f5 are given by (2.21). This solution is a uniform shear solution because the shear
rate, ¥ = du/dy = U, /h, is uniform (i.e. shear rate is constant) and the volume fraction and
granular temperature are constants along transverse direction (y). The base flow equations (7.7)
are invariant under the co-ordinate rotation by 180 degree:

y— -y (6% u'(y).T% = (¢, —u’(~y),T°). (7.9)

We would like to investigate the weakly nonlinear analysis of uniform shear flow under three-
dimensional perturbations.

7.2.2 Nonlinear Disturbance Equations

To study the stability of uniform shear flow (7.8) we perturb the flow with small perturbation.
We then write each of the How variables as a sum of base flow and a small perturbation:

2t) =o' (y) + &' (x.y, 2, 1) ulx,y.z,t) =u(y) + o' (z,y, 2, 1)
) = v'(z,9, z,t) w(z,y,z,t) = w'(z,y, 2, 1) ; (7.10)
Tlzys z:t) = Ty) + Tz, p,2:t)

where the superseript ‘0" denotes the base state variables and primes are perturbations,
Substituting (7.10) into governing equations, (7.1)-(7.5), and subtracting base flow equations
(7.7). we obtain the perturbation equations which can be put into matrix form

d
(a-; —E) Xz, y2)=N (7.11)

where £ is the linear operator,

B o 9% 0 9 o 9 (7.12)
- dx’ Or? Oy dy?' dz' 022" ) )

N represents nonlinear terms and X = (¢, u', v/, w’, T') is the perturbation vector. The elements
of linear operator £ and nonlinear terms up-to cubic order are given in the Appendices 7A and 7B.
respectively. The boundary conditions are applied at both walls which have the following matrix
form.

BX(t,xz,y,2) = (l 1 @4 .9

g 5?}) («\v',w', T') =0, aty==+1/2. (7.13)

7.3 Linear Problem

In order to formulate linear stability problem. we neglect nonlinear terms of (7.11), i.e.

3] a o
— — X =0, with BX=(1,1,—,— | (" ¢ 0. T") =0, :
(Ut £) with (l 1 5 r')y) (u' o', w' , T) =0 (7.14)

where the elements of the linear operator £ are given in Appendix TA. The coefficients of the
linear operator (£) and the boundary operator (8) do not depend explicitly on the streamwise
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(x) and spanwise (z) coordinates, this makes (7.14) translational invariant in x and z directions,
In fact, we can seek a nornal mode solution of (7.14),

X(@,y,2,6) = X (y)e'hrrrhostet, (7.15)

where k. and k. are the streamwise and spanwise wavenumbers, respectively; ¢ = ¢, + ic; is
the complex eigenvalue with ¢, and ¢; being the growth rate and frequency of the perturbation,
respectively, and X = (¢, &, ¢,%,T) is the linear eigenfunction or the fundamental mode. The
linear stability of the flow is decided by the real part of c: for negative ¢, the flow is stable and
unstable for c, > 0. The phase velocity of the perturbation is defined as

G

Cph = ——F———. 7.16
TR o

Substituting {7.15) into (7.14) and equating the exponential terms we obtain:
((l-L})X =0 with BX =0, {7.17)

where
d 42
_ . . 2 4 < . Y

L= £ (ke ()%, s 82 ) (7.18)

It can be verified that the linear eigenvalue problem (7.17) is invariant under the co-ordinate
rotation,

T — -, = -y, T -z, w =, ({53 ﬁv i}v tE’v T) - (é} _ﬁs _T}s “?-Ejs T}-

This implies that for every forward propagating mode there is a backward propagating mode with
the same growth rate but having equal and opposite phase speed.

Adjoint Problem

In order to analyze weakly nonlinear stability of the uniform shear flow, we require an adjoint
eigenfunction corresponding to the fundamental mode of linear operator L. As discussed in
previous chapters, the adjoint problem can be defined as

Ltxt =Xt with BixXt=0 (7.19)

where X1 is an adjoint eigenvector, L' is the adjoint operator associated with the L and B is the
adjoint boundary operator (see chapter 3 for details on the adjoint problem). It has been verified
that the adjoint boundary conditions are same as the boundary conditions of linear problem,

B=n8t (7.20)

The clements of adjoint operator Lt are given in Appendix 7A.

7.4 Weakly Nonlinear Analysis

The details of the weakly nonlinear analysis using amplitude expansion method have been given
in chapter 3 {see $3.3) and therefore we are not showing full analysis for the sake of brevity.
However we are rewriting fow important cquations for the completeness of this chapter.

We employ the following transformation from the (i, z, y, z)-plane to the (8, A, y)-plane as
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sugpested by Reynolds & Potter {1967)
G=kx+hkztwt, w=w(A) and A= A(t). (7.21})

If we consider a two dimensional system, this transformation weuld leave the number of indepen-
dent variables unchanged but for the three dimensional motions, this transformation reduces the
dimensionality of the system from four to three, The final reduced form of governing equations
as derived in chapter 3 is

Lin Xt = ~c= X gy, + Gy,
an=1) - al»=1 4 jpln-1
Gy, = —(mal*=ml 4 r'kb[“""]) XU p B /(14 6k0) + Frn 2 (7.22)
| T = (na(m + ikb(o)] I-L,
Ly = L(8/8x — ikk,;,8/0x — dfdy,3/0z — ikk,)

where Lg, is a linear operator, c"=t1s are Landau coefficients, Gy, represents a sum of linear
and nonlinear (quadratic and cubic) terms, T is the identity operator and &, is the Kronecker
delta; for superscript notations see (3.26}-(3.28). The Landau coefficients can be obtained from
the solvability condition (rewriting {3.43)),

/2 i
X'G, dy
. -1/2 n
PRE0 I (S B S CO ”2/ . (7.23)
f_lﬁX Xt dy

Recall from (3.32) and (3.33) that the coefficient "~ "s are related to the Landau equation via

A (‘lj—? = a9+ AaV + A% 1. = 4"a™ (7.24)
dw { dA
Gw fdAY o (03 ¢ AZR2) o .. _ anpln)
w+dA(tdf) 'Y+ AKY + A 4 AN (7.25)

|Pure Spanwise Flow: Vorticity Banding'

In the rest of this chapter (§7.5-§7.8), we study pure spanwise problem for which the pertur-
hations are independent of r and y directions. Note that such pure spanwise perturbations lead

to vorticity banding (i.e. banding of particles along the vorticity direction) in granular Couette
flow.

7.5 Linear Stability Analysis for Pure Spanwise Flow

The pure spanwisc flow is independent of streamwise (@) and gradient (y) directions and thus
we can simplify the lincar and nonlincar problems by substituting 3—‘1{.] = 3—65(.) = { into the
governing equations. The explicit form of linear problem {7.14) for the pure spanwise flow is

cX =LX, (7.26)
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where L is given by

0 0 0 —ik,¢® 0
.2
0 #E o o 0
g2
L= 0 0 f‘,@& 0 0 {7.27)
—ik,p2 e LY BT Nt
e 9 0 R S
2(py~DY) —2ik, " —2xY%2 2(pt— DY)
diom.p 0 0 di:n;; dim’;ﬂe)” + _f:-T:?E"L
The matrix form of the associated adjoint problem is
eXt=Lixt (7.28)

where Lt is the conjugate transpose of L and X! is the relaied adjoint cigenfunction. Both
problems {7.26)-(7.28) can be solved analytically as discussed in following sections.

7.5.1 Asymptotic Analysis and Dispersion Relation

The eigenvalues of (7.27) can be obtained by solving det(cI-L) = 0. In fact, the second and third
rows of L, corresponding to z- and y-momentum equations, respectively, are decoupled from the
other three rows, and, therefore, these two equations of (7.26)-(7.27) can be solved independently.
Thus, from x- and y-momentum equations, we obtain a real eigenvalue with multiplicity two,

c=—plk2 /O H?,

which is negative and hence stable. The other three equations (continuity, z-momentum and
energy equations} give rise to a cubic dispersion relation,

(* + a2e® + arc+ag) =0, (7.29)

where coefficients ag-ap are real which can be expressed in terms of inverse of Couette gap, as
defined below:

aU:agg/H2+a<.4/H", alzalg/H2+a14/H'l and ag=a20+agg/H2,

with a;;'s being the functions of the base state variables:

a2 = 355 (PR(D} - ug)p%) +pF(-D) + ugng]) k2, 1

a4 = %‘—kj‘

a = 2r(2e0+ AO)(DG — u uhkE + LERD + pQR2, (7.30)
a4 = %t&kj, .
o = B8,

= (B4 @0+ X)) K J

There are two possibilities for three roots of cubic dispersion relation {7.29}%: {2} all roots are real,
and (i) one is real and a pair of complex conjugate. It can be verified from the asymptotic analysis
for large Couette gaps (H), using the inverse of Couette gap as a small expansion paraineter,
that one eigenvalue is always real and other two can formn a complex conjugate pair. The real
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eigenvalue has the following approximation for large H:
m _ (“"2 + a2 + “f)““??‘) 1 (1) 2 oq0ir2
el ¢ — =5 +0 (—) , witheg’ = ——fIT%"" <0, (7.31)
25 "1(11}(3‘-’1(3” + 2a) H? ! 30°

where cf,')
2,3 . (2,3
(’ﬁ S T

. where

is the zeroth order approximation. The complex conjugate pair has the form (23 =

1 (2 - “l2) 1 : 1 Ja 1
(2.3) - 20 O l '{.2'3} e ﬂ =S .
G P T + (__H" ) and ¢ 7\ a0 0 ) (7.32)

In the limiting case of H — oo, ¢! — ¢

(1)

and ¢33 — 0, therefore the flow is neutrally stable

for large Couette gaps. In tables 7.1 and 7.2 we compare three eigenvalues for three values of H,
which are the roots of (7.29), obtained from the exact cubie solutions and from the asymptotic
analysis [cf. (7.31)-(7.32)]. In the limit of large Couette gaps the eigenvalues caleulated from the
asymptotic analysis are close to those obtained from the exact solutions as shown in tables 7.1

and 7.2.

[ H ki=kH Asymptotic analysis l Exact solution of (7.29) I
100 0.01 —8.760 x 107! —8.737 x 1071
—5805 x 1071 £1.872x 10727 | —5.897 x 107 £ 1.872 x 1072 ;
1000 0.001 —8.744 x 1077 —8.743 x 1077
—5.805 x 1079 + 1.872 x 1073 ¢ | —5.805 x 1076 + 1.872 x 1079 ¢
10000 0.0001 —8.743 x 1071 —8.743 x 1071
—5.805 x 1075 + 1.872 x 1074 | —5.805 x 10~% £ 1.872 x 10~ %

Table 7.1: Comparison of eigenvalues between asymptotic analysis and exact values for ¢ = 0.2, ¢ = 0.8

and k. = 1.
H k* = k./H | Asymptotic analysis | Exact solution of (7.29) |
100 0.01 —3.806503 x 1071 —3.638395 x 10T
—3.030242 x 102 —3.086597 x 1072
2.234135 x 1072 2.273576 x 1072
1000 0.001 —3.704798 x 1071 —3.703134 x 107"
—2.671994 x 10~* ~2.672464 x 107*
2.592383 x 1073 2.592837 x 10~%
10000 0.0001 —3.703781 x 1071 —3.703765 x 107!
~2.636169 x 10~1 —2.636174 x 101
2.628208 x 10~* 2.628213 x 10~*
Table 7.2: Comparison of eigenvalues between asymptotic analysis and exact values for ¢” = 0.05,

e =08 and k. = 1.

Figures 7.6(a) and 7.6(b) show the real and imaginary parts of three eigenvalues of (7.29) with

@,

(circles, stars and triangles) for kI = k./H = 0.05 and ¢ = 0.8. It is seen in figure 7.6 that

the growth rate, ¢,, of one of the eigenvalues (stars) is real (¢; = 0) and positive for ¢" < 0.1
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and hence unstable. The origin of the vorticity banding instability can be traced to the complex-
conjugate modes (Gayen & Alam 2006) which merge at ¢ ~ 0.1 and give rise to two stationary
modes in dilute regiine as shown in figure 7.6. Figures 7.7 and 7.8 are same as figure 7.6 but for

(a)(lzb
.u»...'
< 0"""""""':;.unsnuumnanaannaaa—assmﬂsssiiiihiiil""k
il
<0.2} o006 SW ) w
(00°°° K;=0.05, €=0.8

_014' ™ ooognN
0.1 0.2 0.3 04 0.5

(b) . : —_

[+]

OAO A auo":go-!ﬂ‘b'a.
. AArR
! !!lﬁsﬂ‘..éﬁ .3.'*885;00000000000000000000
o3 383458
(=]
a

* LAARSAAMA/LA
&&aab,ﬂ
LYY
& 4

0.1 0.2 0.3 0.4 0.5
¢0

Figure 7.6: Variations of three eigenvalues of cubic dispersion relation {7.29) with ¢°, {(a) real part and
{b) imaginary past, for kI = 0.05 and ¢ = 0.8.

k; = 0.1 and 0.2, respectively. It is observed that a narrower band of densities is unstable at
k; = 0.1, but the flow is stable at all densities for &} = 0.2.

7.5.2 Locus of the Neutral Stability Curve

We have established in §7.5.1 that spanwise instability is due to a “stationary”™ mode. Hence the
locus of neutral stability curve is given by ap = 0, i.e. H? = —apa/ago jef. (7.29)-(7.30)] which
can be represented by the following relation:

W3(¢°, )

2 _ pp2 {1 — ey
ki=H .0 {1-e"), (7.33)
where
] (1]
¥, {¢%e) = f—% and '1'3(()50,6} = Llf— ~f5—0¢ — ég—') - L (7.34)
£ s \ S5 L

Here the superscript ‘07 indicates that the functions, fi-fs (2.21), are evaluated at base state
and the subscript ¢ denotes the derivative of these functions with respect to ¢. Note that ¥
remains positive for all ¢° and ¥3 becomes negative beyond a moderate value of ¢°. The critical
density above which spanwise instability disappears can be obtained by solving ¥3; = 0, which
gives ¢34 = 0.1. This critical density ¢, does not vary much with restitution coefficient because
W, is a weak function of e. The values of ¢0, for which ¥; is negative, refer to inadmissible
solutions. The variation of ¥3 with ¢° is shown in figure 7.9{a) where the arrow indicates the
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point ¢4, above which instability vanishes. The contours of zero and positive growth rates in
the (¢% k./H)-plane are shown in figure 7.9(b). The How is unstable inside the zero contour
and stable outside. For densities ¢ > @ ,. the flow is always stable for any value of k./H to
pure spanwise perturbations. It is clear from (7.33) that k. — 0 for ¢ — 1, i.e., the spanwise

1
45 0.1
¥, | \so=0.10035 kH
0.05
-0.5
0o . .

0.2 0.4 0.6 0.15 0.2

Figure 7.9: (a) Variation of W3 with volume fraction. (b) Growth rate contours in (¢, k./H)-plane for
e = 0.8. Flow is unstable inside the zero contour (since the growth rate is positive) and stable elsewhere.

wavenumber, for which the flow is unstable. vanishes in the elastic limit. Thus the flow is always
stable to the pure spanwise perturbations for the perfectly elastic particles.

7.5.3 Analytical Expression for Eigenvectors

Next we proceed to analyze eigenvectors for each eigenvalue. As mentioned before, the eigenvalues
associated with the r- and y-momentum equations are equal which make the eigensystem of
linear problem (7.26) incomplete. In other words the stability matrix (7.27) associated with
(7.26) is a defective matrix because it has only one linearly independent eigenfunction for the

double eigenvalue ¢ = —u"k? /6" H%. Therefore the system (7.26) has an eigenvalue of algebraic
multiplicity two and geometric multiplicity one.
The eigenvector for the double eigenvalue ¢ = —p"k? /6" H? is (0,1.0,0.0), and the eigenvec-

tors for other three eigenvalues are:

-(1,2,3) _ € [ ar
-\ — 1.{}(}. __r']:'_ —-.._{1_2J]—_i:|,l_ {?A{-_])

where [;; are the elements of matrix L (see (7.27)). The superseript (1,2,3) in X refers to the
three eigenvectors corresponding to three cigenvalues 123 Substituting 11y, l51, Isy and ls;
into (7.35) we get

il1.2.3) 2H: [;;.L.’, — DY + plctl 23

koo® " dime® H2e(1:23) — 250k2 + 2(pl), — DY) H?

X123 = 1 0,0, (7.36)

[t is clear from the above expression that for real eigenvalue w123 (4" clement of X 12:3)) ig
I £
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purely imaginary and T11:2:3) (5% _clement, of X{1.2:3) js real,
After some algebra, it can be easily verified that the eigenvector (7.35) is same as

““_cu.&a! £(1,2.3)
£1.23) _141 + _.__?__‘“

X123 _ | q,0,0, , (7.37)
{14 las
which can be further simplified by substituting 14, 14, {44 and 45 from (7.27):
) io(1,23) —p¢ IR [ E2(20 + A0) — (1:23) [2 0]
123 _ (100 X" 22 z . 7.38
X ( [ vO) kz¢0 L] pg—‘ kgp%él) ( )

Again it can be noted from above equation that for the real eigenvalue 123 is purcly imaginary
and 7123) ig rea).

7.5.4 Analytical Eigenvectors for Adjoint Operator

It is known from the definition of the adjoint that the eigenvalues of the adjoint problem (7.28)
are complex conjugate of the eigenvalues of the linear problem (7.26), although the eigenfunctions
are different. Recall that the adjoint operator L' is defined as

L' = L (7.39)

where superscript H denotes the conjugate transpose. In a similar fashion, as we discussed in
§7.5.3, we can classify the eigenvalues of adjoint problem and related eigenvectors. Following
§7.5.3, the adjoint eigenvalues are: (i) a double real eigenvalue, (ii) a real eigenvalue, and (i) a
complex conjugate pair. The adjoint eigenfunction for the double eigenvalue is (0,0, 1,0, 0) and
for other three eigenvalues are:

izglys i o =(1,2.3) -
yH1L23) _ (T5g —&i1-2.31) _ (lag — ¢ )‘ 0.0.1, —E.— . (7.40)
ha (123 — Ig5)

It can be observed that ¢11:2% (1 glement of X 11.23)) and TH1:2:3) (5th element of X 1(1:2.3))
are purely imaginary for the real eigenvalue. Another form of adjoint eigenfunction can be written
w - -
X123 _ b~ it 0,0,1, — 1 7.41
= 223 T (7.41)

At this point, we know the analytical forms of eigenfunctions of the linear (7.26) and the adjoint
(7.28) problems. Subsequently we can evaluate the inner product of linear eigenfunction with its
adjoint, which will be used in later sections for caleulating the solvability condition, as

(X“1~2'3),X(1’2'3)) = Y conj (X1(1,2.3)) x0.2.8) ¢ + it 4 it

fegot] 2.3)
= A |otesls (g, - 123 4 229 !45(!51+_s_4_{“_)
T L | {lgg—cth23Y 44 — € Tia [Py
(7.42)

Note that (X123} X(123)} is purely imaginary. While the bi-orthogonality condition (see
§3.3.5) for the eigenvalues ¢/1:23) jg

(X}“'Q':”'X,!m'a)} = &;, where 4;; is the Kronecker delta, (7.43)
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for the double eigenvalue this condition is (X', X} = 0 which implies that the linear and adjoint
eigenvectors are orthogonal to each other.

7.6 Weakly Nonlinear Analysis for Pure Spanwise Flow

In chapter 5 we have studied the weakly nonlinear stability of the streamwise independent 2D-
granular Couette flow, which leads to gradient banding, using analytical solutions of weakly
nonlinear equations in terms of sinc and cosine waves. The pure spanwise granular Couette flow,
which leads to vorticity banding, differs fromn the streamwise independent 2D-granular Couette
flow in the following manner.

e The streamwise independent 2D-granular Couette flow (i.e. ky =0, % ()#0 and &k, = 0}
depends only on the gradient (—1/2 < y < 1/2) direction and thus the instability due to
streamwise independent 2D-perturbations leads to bands of high and low shear rates in the
gradient direction. Such instabilities are, thus, called gradient or shear banding instabilities.
The gradient direction y is wall bounded and hence the selution has to be found by satisfying
the boundary conditions. Apart from the analytical sclution of the above problem we can
also find the numerical solution as well. The comparison between analytical and numerical
solutions has been detailed in chapter 5.

o Likewise, the pure spanwise granular Couette flow {i.e. k; = 0, c%(‘) =0 and k, # 0)
depends only on the spanwise or vorticity (2} direction (—oc < z < o0) and thus the
instability due to pure spanwise perturbations leads to bands of high and low shear stresses
in the vorticity direction. Such instabilities are, thus, called vorticity banding instabilities.
In this case we have exact expressions of the eigenvalues and eigenvectors of linear and its
adjoint problem as explained in the previous section. With the help of these analytical
golutions of eigenfunctions we can simplify all the weakly nonlinear equations. Moreover
we can give a general solution of these equations at any order of amplitude. In this case we
do not require any numerical method as the full weakly nonlinear problem is analytically
solvable.

The analytical weakly nonlinear analysis for the pure spanwise granular Couette Row is given
below. The form of disturbance equations for pure spanwise flow is given by

a
(a-c) X(t,2) = N = Na + Na + Ns + Ns (7.44)
where N; = (NS(I),JV’;Q)JV’J-(S),N;G),N}&})“ is $** order nonlinear term where the superscripts
(1) to (5) denote the continuity, x, ¥y, z-momentum and energy cquations, respectively. The
explicit expressions for A; for j = 1 to 5 arc given in Appendix 7C.

7.6.1 O(A): Fundamental Mode

Substituting k = 1 = 1 into (7.22) we get back the linear problem (7.26) with L) = ¢”) —L,; where
L, = L (see Eqn. (7.27)). The analytical expressions for the eigenvalues and the corresponding
eigenfunctions (lincar and adjoint} (Eqns (7.35)-(7.41)) are given in §7.5. The eigenfunction of
the linear problem corresponding to the least-stable eigenvalue is the fundamental mode which
generates its harmonics when the disturbance has finite amplitude, The fundamental mode is

normalized such that R
Xil:l] =X = TO (X[I:I]/Til:l]) . (7_45)
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7.6.2 O(A?): Second Harmonic

Substituting k = n = 2 into (7.22), we get the equation for second harmonic
Ly X220 = Ny (x50, Y1) = Gy, (7.46)

where Lgs = 2491 — L, is a linear operator with Ly = L(k, — 2k.) (cf. Eqn. (7.27)) and
Gaz = (Gy,0.0,G3,. G3,)"" is the vector form of nonlinear terms as defined below:

e = =2k pllillwl], )
(;32 — _a!” [ik;d)"{w“"”)2 _‘_{_.['thlb[l;]iwﬂzl]]
~ g [,-_;.._z (pga(@[m]]z + P (T1)2 4 90 gltatl ]
+4k? (;:ga‘)“:l] +p‘—fnT[“]) w4+ 22 (A0plM1) 4 A?-T“‘”) m“‘”} ;
32 = "315 [ikzqﬁ(l,m[l:”'r[l:li +e “J{p[MIT[l:H] 15
+350 [_%ETll:ll(ngqu“:'! + KGTIN) — ik (ph ot + p§ Tt ypltid]
+ (3K (@112 + Jugr (T2 4 prUAITIN) — K2(20 4 X0) (i)
— (3D%,(811)2 + §DY(TI)2 4+ DY olttiTl) |

P

Note that Gy is known since we know the analytical expression of fundamental mode [(7.35)
or (7.37)]. The second and third equations of the system (7.46) which correspond to z- and y-
momentum equations are decoupled from the other three equations. Hence we can reduce (7.46)
to a system of order three by removing second and third rows and the corresponding columns,
and a system of order two corresponding to the removed rows and columns.

Let us write this reduced system of order two as

012 s ; 042 ’
|:‘I.’(.'m‘1 + ;T%] w22 4 pl%2 — and [2('“}} + ‘;12—;;] ul22l =, (7.47)

which yields u!22 = ¢/22] = (. Similarly, the system of order three, which consists of continuity,
z-momentum and energy balance equations, can be written as

2000 6122] | iky. 60uwl?2 = G,
ikaspl k2_(21° + A9) o k2D
[2:2] g0 4 F2: J[2:2] 2PT (22 _ o
FErO [2‘ T HEg ] W g T G2 (7.48)
_2(}“2 _ Dg) - Qiko-p” - 262 2ul. — DY) .
i : A2:2] | |94(0) s h T [2:2) __ 5
Td’l ! + —3('&“ ‘H.l ! + | 2¢ + IHZ00 300 T = 622‘
The matrix equivalent of (7.48) is
11 14 2;2 1
. Ly, Ly O lel _l Gy
Azz}"[?,2| = By, or Lé% Léfi Lég w[z-.z] — 032 ; (}'49)
L3 L3 L3 Ti22 G3,

where L;,_."z is the i7" element of matrix Lys. The solution of Equ. (7.49) can be obtained by using
the Cramer’s rule of basic algebra:

Y122 = (922 32 7122y = det(AL,)/det(Aqy). (7.50)

where AJ, is the matrix formed by replacing the j*-column of Az, by the column vector By,
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7.6.3 O(A?): Mean Flow Distortion

Substituting k& = 0 and n = 2 into (7.22). we arrive at the mean flow distortion equation
Lop X 02 = Np (X1 X1 4 Ny (XTI, XTI = Gy 7.51)

where Lgy = 2a'91 — Ly is a linear operator with Ly = L(k. = 0) and G = (0,0,0,0,63,)7"
denotes the nonlinear term where G, is given by
2

G, = b [_i-k:‘pl]T[l‘H(d_?‘!'u_.glil.]+21.il1]¢[i:1ET|l:Iil + o5

@l!

[

ik @90+ T (~2i0l) + (G0 )2 4 ur (@2 4 2ot

Lok (2u” + Aywltatl gl (D.‘iotc‘)“‘”}? o D%_[Tn:l]lz + .‘m:_?,w[m],rn;::.’] : (7.52)

Note that GJ, is always real which verifies that the distortion of mean flow X%2 is a real
harmonic. The solution of the above system (7.51) vields mean flow distortion:

Gy _
2(ul, —~ DY )
[gu(ﬂ} = J}IED_L]

02 — 02 _ l02] _ 1021 — g anq 7102 = (7.53)

where GJ, is given by (7.52). Note from (7.53) that 71°? is independent of Couette gap.

7.6.4 O(A%): First Landau Coefficient

At this point we know all the analytical solutions up-to second order in amplitude, i.e., the
fundamental mode (X!'!), second harmonic (X #?) and distortion to mean flow (X[""'Zl}, Now
substituting k = 1 and n = 3 into (7.22), we obtain the following equation for the distortion to
fundamental:

Ll:i)‘—[l:.'ﬂ _ __FQZ}){[I:I[ + Glii
Gyg = No(XH x102]) o vy xt0s2] xltaly 4 vy x [ l2:2))
{VQ(‘{’]Q:?}‘ ‘){]I:I]J + -'V.‘i(«?ll; l]. ‘krji,']]‘ J\l]l:lil}

+ f'\'r}(.‘(ll:ll, X’ll:”“\’l;l:]}) L f\f:‘(_\'(]"””‘(“"ll.)(;]:l'l)

Il

-+
—_
=-J
o
N

where Lz = (3a'" + ib'")I — L, is a linear operator with L; = L (see (7.27)). When the absolute
value of growth rate [a!"| = 0 or small, the linear operator Ly = Ly, and hence the first Landau
coefficient ¢!?) can be obtained from the solvability condition of (7.54) (see chapter 3). The
problem of purely spanwise flow is a special problem because the flow is independent of gradient
direction (y) and this simplifies the solvability condition (ef. (7.23)) to a ratio of algebraic terms:

& = O'Gls + @Gy + E1GY + wiGi + TG, (7.55)
otk 4 gfpltad] 4 phplbd] 4 ptelBY i
where X1 = (of, uf ol w'. T is the adjoint eigenfunction. The condition for vanishing first
Landan coefficient can be written as
o'Gl + WGy + 081G, + w'Gl, + TG = 0. (7.56)

We know that the r and y velocity components of the fundamental and its adjoint eigenfunction
are zeros, i.e. ul¥ = oM = 0 and uf = o' = 0 and furthermore ¢!"! = w' = 1 which simplify
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(7.55) to

i = 0!Gl; + w!Gly + TG, _ ¢'Gls + Gi; + T'GY,
Hlolti] 4 @twltll 4 PTGt 4 gltit] 4 Tl

(7.57)

and the locus of zeros of the first Landau coeflicient (7.56) can be written as (_f_)rG{;; + ' Gy +
TG ?3 = 0. It has been verified that for the real eigenvalue G{:i and (& ?3 are real and (¢ "11;4 is purely
imaginary and hence ¢?) is always real for the real eigenvalue. Recall that for real eigenvalue (i)
T is real and (ii) ¢', T and w!'' are purely imaginary.

Distortion of Fundamental

Substituting ¢® from (7.57) into (7.54), we get an inhomogeneous system. The x- and y-
momentum equations, which correspond to the second and third rows of (7.54) are decoupled
from other three equations, give u/13 = /13l = 0. The reduced system of order three can be
written as

| L}Ii L}} 0 él,l::il _(_.(E)G[I;l] +G{3
AV =By or [ L8 L# L || v | = [ —c@ubitl oty | (758)
L3 1ot L i3] -7 4 63,
The solution of (7.58) is
Y3 = (131 431 71181y — det(A7,)/det(A3) (7.59)

where A{;s is the matrix formed by replacing the j”’—collmm of Ay by the column vector Bys.

7.6.5 General Solution of Weakly Nonlinear Equations

So far we have looked at analytical solutions of second harmonic, distortion to mean flow and
distortion to fundamental at cubic order along with the first Landau coefficient. We can generalize
these solutions at any arbitrary order in amplitude which lead to a general analytical solution of
weakly nonlinear theory (see (7.22)).

Depending on the index k of Eqn (7.22), its solutions can be divided into two parts (i) k # 0
and (ii) k = 0. For k # 0, we have u*"l = plknl = ( because z- and y-momentum equations
are decoupled from the other three balance equations. We can represent the remaining equations
(continuity. z-momentum and energy equations) in the following matrix form,

L L 0\ [ ek gy, + ),
Akn}"[k;nl = Bﬁ'”‘. or L?n]r-: L.il;ll Lz?: ('l'r[k::ll = _CIHF Ilu"[]:l]ﬁkl 1 Hi:n
Li}; Li‘.?! Lir_‘::t T lkin] —('[”_”T“:l](ﬁ-l b HEn
(7.60)
The solution of above system (7.60) can be written as
ylknl — (glkinl gplkinl plkinly — det(AL )/det(An) (7.61)

where Ai,_” is the matrix formed by replacing the j'"-column of Ay, by the column vector By,.
For k = 1 the inhomogeneous term By, involves Landau coefficient ¢/"~!l which is given by

{,[n—lr — I’fJTGi" + ?E’TC:IIIH + ’I‘T ;Flin {7 ﬁ2}
otoltal] 4 qptypltitl ¢ T’ .

Similarly, for the case of k = 0, we get the mean flow distortion equation which has the following
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solution: =
1.
G

ETTTG R
ka® — ”Jxrn_ﬁ]

i

3 (6 nl 10: TR
m[ll,u] = ”I”.H| = :n“'"l = ”_Ill.n| = 0 and )("“"" =

(7.63)

7.6.6 O(A"): Higher Order Harmonics for n = 3,4,5

Let us now turn to the explicit solutions of some of the higher order harmonics which are required
for the calenlation of second Landau coefticient. The product of three fundamental modes gives a
third harmonic of fundamental which can be determined by solving the following inhomogeneous
equation

L:g_'px’l:i::i] — G.'H _ J\rﬁ()"[l:li. J"[2;2|'} 4 ‘I.\."g(‘\r[Z?,. ‘X'[l:l|} a7 J\.‘:‘{A'H:l]‘ ‘\'[l:1|1 X|l:l]) (7‘64)

where Lgg = 3¢!'"W1 — Ly is a linear operator with Ly = L(k, — 3k.).

At quartic order O(A*), we have harmonics X ™ and X2 which represent the mean flow
distortion and a correction to the second harmonic at order four. respectively. The governing
equations for X194 and X241 are

Lo X004 = _2o2x1021 4 G, (7.65)

Log X8l = 94020 x 1221 L Gy (7.66)
where Loy = 4a'”T — Ly and Lyy = (4 + 2i09)I — L, with Ly = L(k. — 2k.). The second
Landau coetlicient can be obtained at quintic order in amplitude. The equation related to second
Landau coeflicient can be written as

Ly X 18] = — X0 1 1G5, (7.67)

where the second Landau coefficient can be found from the solvability condition as

0 o' Gl + @Gl + 'G5 + 'Y + TIGE, (7.:68)
Ve mm - = .6
ot ollit] 4 fyltl] 4 gloltat] 4qptwla] o P
which can be further simplified to
il sted L tes
A 9'Gis + w'Gy + T'GY, (7.69)

o (;,_:_,t@[l:H =5 d‘,iwéi:l] + f"iT[l:l]

because @' = ot = u/' = o[ = 0. The solutions of (7.64), (7.65). (7.66) and (7.67) can be
obtained by using the general method of solution as given in §7.6.5 for a particular value of k and
n depending on harmonics. The explicit forms of Gy, Gay and Gy are given in Appendix 7D.

7.7 Numerical Results and Discussion

7.7.1 Critical Parameters for Vorticity Banding: Linear Stabil-
ity
Recall from §7.5.1 that the form of the quintic dispersion relation for the vorticity banding (cf.
Equ. (7.29)) is
1Ok? 2- 3 2
(r‘—l— O”Tv-’) (c” + asc”™ +ajec+ ap) =0
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where a;'s are functions of the base state density (¢%) and temperature (T?), the Couetie gap
{H), the restitution coefficient {e) and the spanwise wavenumber (k. ).

Out of five eigenvalues, there are two real eigenvalues which are always negative and hence
stable, a complex conjugate pair representing propagating modes and one real eigenvalue. Two
propagating modes can join together to become stationary modes {Gayen & Alam 2006) below a
threshold density (¢9,), leading to the onset of pure spanwise instability. This real eigenmode is
referred to as vorficity-banding made {Alam et al. 2005: Gayen & Alam 2008) because this leads
to banding of particles in the worticity direction which segregates the uniform shear flow into
altcrnate layers of dense and dilute regions of high and low shear-stresses, respectively, along the
vorticity direction. 1n this chapter, we arc focusing on this vorticity-banding mode,

Since the vorticity banding instability corresponds to a real eigenvalue, the locus of the neutral
stability curve {a!? = ¢, = 0) is given by eg = 0 [viz. (7.29)]. The zero growth rate contour
a'® = 0 (i.e. neutral stability curve) for the vorticity-banding is shown in figure 7.10 by a thick
solid line (red and green}; the flow is unstable (@™ > 0) inside the neutral stability contour and
stable (a'? < 0) outside. It is seen that there is a minimum/eritical value of the normalized
spanwise wavenumber £; = k. /H,

kio= k(8% e a!™ = 0) = U,/ (7.70}

depending on ¢%, ¢ and H, below which the uniform shear flow is unstable according to linear
theory. On the other hand, for a given k7, there is a pair of critical densities,

{¢clv¢02) = (¢c|~¢cg)(He €, a(U) =0}, (7.71)

between which the uniform shear flow is unstable,

Although this pair of critical densities depends on k] and e, there is a global maximum density,
defined as

¢r =max (@ =0y =3, V&I, (7.72)

above which the uniform shear How is always stable to vorticity banding instability, irrespective
of the value of k7 and e. For our Navier-Stokes's level constitutive model, this global critical
density is ¢¥ = ¢, ~ 0.1. Similarly, a global maximum scaled spanwise wavenuniber can be
defined as

kL = max k(0! =0} V¢, (7.73)
above which the Bow is always stable.

In the following scctions, we investigate the possibility of subcritical and supercritical bifur-
cations from the uniform shear base flow around the linear vorticity-banding instability.

7.7.2 Equilibrium Amplitude and the Nature of Bifurcation

Let us first discuss about the nature of the equilibrium solutions that would bifurcate from
the uniform shear flow due to vorticity banding instability as discussed in §7.7.1. Similar to
shearbanding instability of granular plane Couette flow as discussed in chapters 4 and 5, the
bifurcation is pitchfork (stationary) and hence the Landau coefficients are real. (It may be noted
that there could be Hopf/oscillatory bifurcations in the stable subcritical regime as discussed in
§7.7.5.) The cquilibrium solutions (dA/dt = 0} which give information about the finite amplitude
state of bifurcated nonlinear patterns are explained below.
Let us rewrite the Landau equation (7.24) up-to quintic order as
d4

e a P A+ a'P 43 4 g A5, (7.74)
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where af® is the growth rate, and a'? and a* are the first and second Landau coefficients,
respectively. Note that the vorticity banding mode is real and the bifurcation is stationary and
hence (7.25) is identically satisfied.

In the present work, we have calculated two Landau coefficients which is in contrast to our
previous work {(Shukla & Alam 2009, 2011) where only the frst Landau coefficient was calculated.
The present analysis differs from the previous analysis only in terms of second Landau coefficient
which uses nonlinear disturbance equations which are correct up-to quintic order. We shall discuss
this again in §7.7.8.

The equilibrivm amplitude (or, fixed point'} A = A. is given by dA/dt = 0 which can be
determined by solving

a4, + o 43 4 a4 =0, (7.75)

At cubic order, we have two nontrivial finite amplitude solutions {cf. §5.5.2)

2@
A =+ (7.76)

-3
and a trivial solution corresponding to the uniform base state. The bifurcation is subcritical if
at® > 0 and a!® < 0, and supercritical if a'® < 0 and «® > 0, which has been explained in
$5.5.2. At quintic order, we have four non-trivial finite amplitude solutions

A, = :1:\/2&1{4) (—al? & Vid), whered = (a"¥)? - 4210\, (7.77)
The stability of these solutions (7.77) can be determined from the linear stability analysis of
(7.74) around these steady solutions.

In fact, the sign of the first Landau coefficient decides the bifurcation type, subcritical or
supereritical, and the second Landau coefficient limits the range of these bifurcations. For the
case of subcritical bifurcations, the cubic Landau equation does not provide any stable finite
amplitude solution. In order to get stable finite amplitude solutions we need to consider higher
order Landau coefficients.

7.7.3 Phase Diagram for Nonlinear Vorticity-banding Instability

As described in §7.6.4 and §7.6.6, the conditions for vanishing first and second Landau coefficients
are

MGl +atel, + 7163 =0 and §'Gls + w'Gls + TG = 0, (7.78)

respectively, which we have plotted in figure 7.10. The zerc contours of the first Landau coefficient,
¢ = o = 0 (blue line), and the second Landau coefficient, ¢'*) = ¢'¥ = 0 (black line), in
the {¢°,k:) plane are superimposed over the neutral stability contour (a'”? = 0, red and green
line} in figure 7.10. The restitution coefficient is set to e = 0.8. In figure 7.1Q, the red and green
solid lines represent the neutral stability contour (¢!® = 0) inside which the uniform shear flow is
linearly unstable and stable elsewhere in the ( #°, k*)-plane (cf. figures 7.9(a)-7.9(b})}. The regions
of positive and negative a{®. /2 and a!? are marked in this figure. The zero contour of the first
Landau coefficient (blue line) crosses the ncutral stability contour at ¢ = ¢? ~ 0.085001. The
parts of neutral stability contour which lie below and above ¢t are shown by red and green lines,
respectively.

Depending on the bifurcation type. the density range can be divided into two parts: (i)
supercritical for ¢° < ¢? and () suberitical for @ > ¢%, as depicted in figure 7.10. The

!'For a general vector field & = f(x), the fixed point z* can be obtained by solving flz*)=0.
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Figure 7.10: Phase diagram for the vorticity banding instability [@/3y(.) = 0, 8/0x(.) = 0 and k. # 0]
in (kI.¢")-plane where k2 = k./H. Contours of o' = (0 (red and green line), a/* = 0 (blue line) and
0" =0 (black line) are shown.

uniform shear flow for the parameter values inside the neutral stability curve, corresponding to
the regions between red and blue lines, is supereritically stable [a® > 0 and a(?) < 0], as shown
in figure 7.10. The rest of the neutral stability curve, shown by green line, is subceritically unstable
because a'?’ > 0 within this region. The black line in figure 7.10 represents the zero contour of
the second Landau coefficient which is positive inside the contour. There are various parameters
in (¢", kZ)-plane for which a'® and a') are zeros which is a consequence of (7.78) being satisfied
there, as shown in the upper left portion (left part of red line) of figure 7.10. The extended phase
diagram, showing zeros of growth rate and first Landau coefficient, is discussed later in §7.7.9.

The vorticity banding mode is real for ¢V < @9, (see §7.7.1) which leads to pitchfork bi-
furcations. It has been verified that the first and second Landau coefficients are also real for
@ < @8, (which have been derived analytically in §7.6.4 and §7.6.5), therefore the non-linearity
does not change the character of the stationary bifurcation which is similar to the previous work
on shear-banding instability (Shukla & Alam 2009, 2011) of granular plane Couette flow. There
are “oscillatory” finite amplitude solutions for ¢° > ¢, which will be discussed in §7.7.5 and
§7.7.10.

The sign of the first Landau coefficient changes from negative to positive if we trace the
neutral stability curve from the lower branch with lower density (red line) to the upper branch
with higher density (green line). The point where a(® and a(®! are simultancously zero is known
as a degenerate point (Fujimura & Kelly 1997). In figure 7.10, a point at the intersection of
red, green and blue lines is a degenerate point, marked by the blue circle, which occurs at
(o7 k) = (0.085001,0.121027) on the neutral stability curve.

In §7.7.4, we discuss the underlying bifurcations of the uniform shear flow at the onset of
linear vorticity banding instability. We focus mainly on cubic amplitude solutions in §7.7.4 and
the higher order bifurcation diagrams are shown in §7.7.5.
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7.7.4 Switchover from Supercritical to Subcritical Bifurcation

The possible switchover from supercritical to suberitical and vice versa, using cubic Landan
equation. near the onset of instability is shown in figures 7.11(a) and 7.11(h).

(a)"&{acmma: [ supercritical (b) \ Subtriical
Q‘ ‘_) ' L}
0.6 . 05 Vo e
{0-12.0,08532) \‘ (0.05,0.01414) . (3) \ ]
05 \ 0£0.01 s ' 8
. 0.4}, 4 &
A 0.4 " e A b y
e " “ 1 "
_ (0.1,00007) ' (0.3 0297) 0.3t s ‘\‘ ' Q‘J
0.3 ! @ [ (1) (0.099,0.03
ogf o, ! ozt " A e
e O %, % (4) (0.087,0.1147
(0.06,0.0972) ~~. s | Q208 01L‘~\‘ %y A (5) (0.083,0,1265
0.1 ERETN . N (6) (0.02,0.0703)
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-5 0 35 -0.02 30k. 0.02
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Figure 7.11: Variation of equilibrium amplitude, (a) with scaled density, A¢, in which the quantities
in bracket denote (kZ,d.): (b) with scaled spanwise wavenumber AkI in which the quantities in bracket
denote (¢, kZ,), for lines (1) to (8). The restitution coefficient is set to e = 0.8,

Figure 7.11(n) shows a series of bifurcation diagrams in the (A.. Ag)-plane for five values of
the spanwise wavenumber, k! = (.05, 0.06, 0.08, 0.1 and 0.12, just above the critical density
for the onset of linear vorticity banding instability. The restitution coeflicient is set to ¢ = 0.8
as in figure 7.10. The suberitical and supereritical bifurcations are shown by dashed and solid
lines, respectively. The regions of suberitical and supercritical bifurcations are separated by a
double headed arrow. In figure 7.11(a). the negative and positive horizontal axes are scaled
with critical densities ¢., and ¢., (see Equ. (7.71)), respectively, so that the negative and the
positive Ag-axes represent the stable and unstable uniform shear How due to vorticity banding
instability. respectively. In figure 7.11(a). the bracket represents: (i) (k1. ¢, ) for A¢ > 0 where
Ao = ¢ — &, (supercritical), and (ii) (kI.¢.,) for Ao < 0 where Ag = ¢, — ¢” (subcritical).
From Hgure 7.10, the onset of supercritical and suberitical bifurcations are represented by the red
and green lines, respectively. Consequently, the bifurcation diagrams as shown in figure 7.11(a)
for Ag < 0 and A¢ > 0. correspond to the onset of the linear instability shown by red and green
lines, respectively.

Similar to figure 7.11(u). the bifurcation diagrams for eight values of the mean density
o' = 0.02, 0.05, 0.07. 0.083, 0.087, 0.09, 0.095 and 0.099 in the (A, Ak!)-plane for e = 0.8
are shown in figure 7.11(b). In figure 7.11(b). the horizontal axis is sealed with the critical span-
wise wavenumber kI (see Eqn. (7.70)), i.e. Akl = kI — kI, It is clear that the bifurcation is
not suberitical immediately, rather we have a band of mean densities, ¢ € [0.083,0.087), over
which the bifurcation is supercritical which changes to suberitical for larger densities ¢ > 0.087.
The supercritical bifurcation gives a stable finite amplitude solution (solid lines in figures 7.11(a)
and 7.11(b)). and the suberitical bifurcation gives a threshold amplitude for the finite amplitude
vorticity banding (nonlinear) instability, below which the How is stable and above which it is
unstable (shown by dashed lines in figures 7.11(a) and 7.11(h)).

In this section, we have discussed bifurcation diagrams just above the onset of instability in
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(Ae, A¢) and (A, Ak?)-planes, using thie cubic Landau cquation. While the cubic theo.q‘f g.ives
the stable equilibrium solution for the supercritical case, it does hot give any stable ethhnur.n
solution for the subcritical bifurcation. Therefore, we need to know higher order Landau coeffi-
cients in order to get stable equilibrium solutions. The bifurcation diagrams which include quintic
term of Landau equation {7.74) are discussed in the next section.

7.7.5 Bifurcation Diagrams using Quintic Landau Equation

|Supercritical Bifurcation: ¢" < ¢4

The bifurcation diagrams in (4., A¢ = ¢° — ¢.)-plane for two values of spanwise wavenum-

15 k=01 ,
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A e o0 7/ b 1 ]
& Op——tf---q--c-eqmommmee e 0
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Figure 7.12: The supercritical bifurcation disgram in (A.,¢° — ¢.) plane for {a) k* = 0.05 and ()]
k; = 0.1. The cubic and quintic solutions are marked in each figure. The solid and dashed lines above
and below zerc line denotes the stable and the unstable equilibrium solutions.

bers &7 = 0.05 and 0.1, using cubic and quintic Landau theory, are shown in figures 7.12(a})
and 7.12(b). In these figures, the abscissas have been scaled by the critical density ¢, = ey
with ¢, being the critical density (sce §7.7.1) above which the flow is linearly unstable due to
vorticity-banding instability. The cubic and quintic order equilibrium solutions are caleulated
from (7.76) and (7.77), respectively. While the solid and dashed zero lines represent the stable
and unstable base flow, respectively, the non-zere solid and dashed lines denote the stable and
unstable equilibrium solutions, respectively. The cubic bifurcation diagrams for kF = 0.05 and
0.1 have already been shown in figure 7.11{a). For small values of Ag = ¢%~ ¢, or just above the
onset of vorticity banding instability, the amplitudes from cubic and quintic Landau theory are
exactly same, but they deviate from cach other beyond moderate values of Ag. This deviation
in the amplitude is because of the quintic nonlinear term which plays an important role when
the parameters are slightly away from critical conditions. It is clear from this figure that the
absolute value of quintic equilibrium amplitude is smaller than the eubic amplitude. For the
case of supereritical bifurcations, the quintic theory gives more accurate stable amplitudes for the
paraineters which are away from the critical condition. In any case, the cubic theory is able to
predict the correct picture of primary bifurcation near the onset of instability.

Subcritical Bifurcation: ¢° > qﬁ"Tl
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Figure 7.13: The subcritical bifurcation diagram in the (A, ¢. — ¢™)-plane for (a) k} = 0.05 and (b)
& = 0.1. The cubic and quintic solutions are marked in each figure. The solid and dashed lines above
and below zero line denotes the stable and the unstable equilibrium solutions.

Similarly for the subcritical case (¢® > ¢¢) the bifurcation diagrams for &} = 0.05 and 0.1 are
shown in figures 7.13(a) and 7.13(8} in the (A., ¢. — ¢")-plane. All the four quintic order non-zero
equilibrium solutions, {7.77}, and two cubic order non-zero solutions. (7.76). are shown in these
figures. Here the abscissas are scaled with &, a critical deusity below which the uniform shear
flow is unstable due to vorticity-banding instability.

Figures 7.13{a)-(b) show two backward bending branches of unstable equilibrivm solutions
which bifurcate from the origin (from the uniform shear flow, A, = 0} wlien Ag = 0. While
the two cubic unstable branches (dashed lines) spread along the negative Ag-axis, the quintic
branches turn around. towards positive Ag-axis, and become stable at some Ag = A, where
A, < 0. The followings are a few notable comments about this subcritical /inverted /backward
bifurcation scenario (Strogatz 1994):

o In the range Ag, < A < 0, two qualitatively different stable states coexist, namely the
origin and the large-amplitude equilibrium solutions. The initial condition Ay determines
which equilibriuin solution is approached as t — oa. The origin is stable to small perturba-
tions but unstable to large ones. i.c. the origin is locaily stable but globally unstable,

e The existence of different stable states allows for the possibility of jumps and hysteresis
(associated with “memory” of the system) as A¢ is varied. For an illustration we are again
showing the guintic diagram of figure 7.13(b) in figure 7.14. If we start from the stable
uniform shear state and then slowly increase the parameter A¢ {indicated by an arrow
along the A¢-axis), the flow remains stable until A¢ = 0, or, & = ¢,, at which the
flow loses stability. A slight change in the initial condition will cause the uniform shear
state to jump to one of the large-amplitude branches. If we further incrcases A¢, the flow
remain stable with some amplitude. If A¢ is decreased, the state remains stable {on the
large amplitude branch) even when A¢ is decreased below zero. We have to lower Ag even
further (below Ad,) to get the state to jump back to origin, ie. to get back stable uniform
shear flow. This lack of teversibility as a paramcter is varied is called hysteresis.
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Figurc 7.14: Same as figure 7.13(b} but only showing quintic bifurcation solutions.

e The bifurcation at Ag, is a saddle node bifurcation (limit point) at which the stable and
unstable solutions are simultaneously born as Ag¢ is increased.

¢ The “subcritical” pitchfork {inverted or backward) bifurcation is related to discontinuous
or first-order phase transitions, and the “supercritical” pitchfork bifurcation is related to
continnous or second-order phase transition.

From figures 7.13(a) and 7.13(b), we can conclude that the calculation of second Landan coefficient
is necessary for suheritical bifurcations because it provides the corresponding stable equilibrium
solutions. Similar situations have been studied by Morozov & van Saarloos (2005) for the plane
Couette flow of viscoelastic fluids,

|Supercritical Bifurcation for Dilute Flows: Cubic and Quintic Thmm

Next we show two more examples of supercritical bifurcation in the (Ag, &k}, — k7)-plane.
Figures 7.15{a} and 7.15{b} show the supercritical bifurcation diagrams for two values of mean
density ¢° = 0.01 and 0.05 in the (A, (kI. — kI)}-plane, with k}_ being the critical wavenumber
helow which the flow is linearly unstable. The qualitative features of these hifurcation diagrams
are same as those in figures 7.12(a) and 7.12(b). The quintic solutions give better approximation
of equilibrium amplitudes, for away from critical points.

Subcritical Regime (¢" > 9¢): Hopf Bifurcationl

In this section we show the behavior of the flow in the subcritical regime ¢° > ¢% which is
associated with Hopf bifurcation since the least-stable mode is a propagating mode at ¢¥ > ¢ ~
0.1,

The variations of ¢ (main panclj and 5 (inset) for ¢" = 0.15 and e = 0.8 with &* are
shown in figure 7.16(a). It is seen in figure 7.16(a) that &' is negative and »'® is non-zero
which lead to Hopf (oscillatory) bifurcation. The corresponding a!?, figure 7.16(b), is positive
throughout the range k: € [0.12,0.15] and, o', figure 7.16(c), varics from negative to positive.
There is a kink at &7 2 0.1339 in figurc 7.16(c) where a‘*} {main panel) and b%} (inset) diverge,
and change their signs thereafter. From figure 7.16(c), al® < 0 for &* € [0.12.0.1339) and o'¥) > 0
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Figure 7.15: Bifurcation diagrams showing the supercritical bifurcation in (A, kI, — &I)-plane for ¢
(1) 0.01 and (b) 0.05.
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for k% € [0.1339.0.15]: note from figure 7.16(b), a'® is positive for k2 € [0.12.0.15]. Therefore,
there exists a band of wavenumbers k2 € [0.12,0.1339] between which the flow is always stable in
quintic approximation which is in contrast to the cubic approximation which leads to suberitical
instability in the flow. The quintic amplitude solution exists for k7 € [0.1339,0.15] as shown in
figure 7.16(d).

Next we show results for a fixed kI = 0.1 over the density range ¢ € [0.12,0.15] > ¢!.
The variations of @'” (main panel) and b”) (inset) with density are shown in figure 7.17(a). It is
observed in figure 7.17(a) that a'? < 0 and b'”) # 0, leading to Hopf bifurcation. For this range of
densities we show the corresponding variations of a'?) (main panel) and 5'®) (inset) in figure 7.17(b)
and of a¥ (main panel) and b'*) (inset) in figure 7.17(¢). In figure 7.17(b) an arrow at ¢” = 0.1337
indicates the zero crossing of a'?); similarly an arrow at ¢° = 0.1407 in figure 7.17(c) represents
the zero crossing of a'). Depending on the sign of a”, /) and a'¥), the density range can
be divided into three regions as marked in figure 7.17(d): (i) ¢° = [0.12,0.1337] for a'® > 0
and a' < 0, (i) ¢ = [0.1337,0.1407] for a'? < 0 and @'Y < 0, and (iii) ¢ = [0.1407,0.15]
for a'? < 0 and a'¥ > 0. For the first case, (i), the cubic suberitical amplitude exists but the
higher order Landan coefficient a'*) stabilizes the flow which makes the flow stable and, therefore,
the quintic amplitude solution does not exist. In the second case, (ii), the flow is always stable
because a'®) and o' both are negative. The last case (iii) gives the quintic order subcritical
instability because the quintic order Landau coefficient a*) is positive and hence it destabilizes
the flow. The cubic (dashed line) and quintic (dot-dashed line) order amplitudes are shown in

figure 7.17(d).
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Figure 7.17: The variations of (a) a'® and ' (inset), (b) a'® and 62 (inset), (¢) a™ and b (inset),
(d) cubic (dashed line) and quintic (dot-dashed line) amplitudes, with ¢" for k¥ = 0.1.
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7.7.6 Variation of Amplitude with Density

A similar situation arises for the supercritical case at ¢ < ¢? and k! = 0.14 as shown in
figure 7.18. The corresponding variations of a'® (solid line) and a(® (dash-det line) are shown in
the inset plot. In this case, a'® changes sign from negative to positive and positive to negative
at ¢ = 0.0489 and ¢° = 0.0765, respectively. The densities where a'® = 0 are shown by arrows
in the inset. Hence the equilibrium amplitude (supercritical pitchfork bifurcation), as shown in
the main panel, exists for the range ¢° = (0.0489,0.0765).
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Figure 7.18: Variation of 4. with ¢ for ¢° < ¢ and k% = 0.14. The inset of shows the corresponding
variations of a'” (solid line} and a‘® (dash-dot line) where arrows indicate the location of a'? = 0. The
restitution coefficient is e = 0.8,

The variations of equilibrium amplitude in the {A..¢%)-plane, for four values of k! = 0.05,
0.08, 0.1 and 0.12, are shown in figure 7.19{a) for the density range ¢° > ¢¢ where ¢% is the
degenerate density which is marked by a blue circle in figure 7.10. In this region ¢'® < 0 and
a'? changes sign from positive to negative. As shown in this figure the bifurcation is suberitical
for all values of &; and the threshold amplitude for the instability increases with increasing &*.
In all cases, the amplitude first increases till some density beyond which it decreases and finally
attains a zero value at the density where a!?) changes its sign. The bifurcation is pitchfork for all
values of k7 in figure 7.19(a) which is shown next.

For &7 = 0.12, corresponding to the outer most curve in figure 7.19(a}, variations of ¢! (solid
line) and b2 (dashed line) with densities are shown in the main panel and the corresponding a(®
(solid line) and b'*’ (dashed line) are shown in the inset of figure 7.19(h). It is clearly shown in
figure 7.19(b) that 9 = 62 = (), hence the bifurcation is stationary, i.e. pitchfork. It has been
verified that the bifurcation is pitchfork for all wavenumbers corresponding to figure 7.19(a).

So far we have discussed results for ¢° > ¢¢ (subecritical) and ¢¥ < ¢¢ (supercritical} for
various values of k7 # k19, At &k} = 0.121027 (see the blue circle in figure 7.10), the variation
of A, for the density range containing ¢¢ is shown in figure 7.20. Both ¢'® (solid line) and
a® (dot-dash line) change their signs at ¢? as shown by an arrow in the inset of figure 7.20.
Therefore, the bifurcation type also changes from supercritical pitchfork to subcritical pitchfork
(note that ® = 3 = 0) at ¢¢ which is shown by solid and dashed lines, respectively, in the
main panel. The degenerate point ¢° = ¢%, separating the regions of supercritical and suberitical
bifurcation, is shown by an arrow in the main panel.
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Figure 7.19: (a) Variation of A, with ¢° > ¢?, for k! = 0.05, 0.08, 0.1 and 0.12. (b} Variations of e'»
{sotid line) and &® (dashed line) and corresponding &'’ (solid line) and b'? (dashed line} (in inset) with
¢° for k, = 0.12. The restitution coefficient is e = 0.8.
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Figure 7.20: Same as figure 7.19 but for &} = k;¥ = 0.121027. The inset shows the corresponding

variations of growth rate (solid line) and a'® (dashed-dot linc) and the arrow indicates the point where
a'® = a® =0 at ¢* = ¢ = 0,085001.



194 Chapter 7.

7.7.7 Scaling with Couette Gap

As discussed in §7.7.1, the neutral stability contour can be represented in terins of sealed span-wise
wavenumber kI = &, /H. see Eqn. 7.70.
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Figure 7.21: Stability diagram in (¢°, k:)-plane for & = 25. 100. 200 and 500 and the inset shows the
scaled stability diagram in {¢% k)-plane. The restitution coefficient is set to e = 0.8

Figure 7.21 shows the neutral stability curves for four values of Couette gap, H = 25, 100,
200 and 500. in the (¢". k. )-plane. The flow is unstable inside each contours and stable outside
for each H. It is clear from this figure that the neutral stability contour in (¢°, k. }-plane shifts
towards higher values of spanwise wavenumber, &, with increasing H, and hence the low becomes
more unstable for larger k.. This dependence of the neutral stability curve on H can be removed
if we define a normalized wavenumber as

k' =k,/H. (7.79)

Again all the neutral stability contours (for H = 25, 100, 200 and 500) are shown in the inset
of figure 7.21 in (¢% k})-plane. We get a single neutral stability contour which is same as shown
in figures 7.9(b) and 7.10. Thus the dependence of the linear vorticity-banding instability on the
Couette gap can he removed using a normalized spanwise wavenumber.

The zero contours of the first Landau coefficient for H = 25, 100, 200 and 500 in (¢", k. )-plane
are shown in figures 7.22(a), 7.22(b), 7.22(¢c) and 7.22(d), respectively. The zero contour of the
first Landau cocfficient in {@°. k*)-plane is shown in figure 7.22(e) where we have superimposed all
four figures 7.22(a)-7.22{d) in the (¢".&%)-plane. Note that this figure is the same as figure 7.10
but for an extended range of density and wavenumber: ¢¥ € (0,0.5) and & € (0,0.5}, This
clearly shows that the dependence of H on the first Landau coefficient can be removed with the
scaling (7.79). Therefore, this wavenumber scaling. k! = k./H. holds for the onset of nonlinear
instability similar to the case of neutral stability contour.

7.7.8 Effect of Higher Order Nonlinear Terms

The nonlinear terms at fourth and Afth orders have to be considered to determine the harmonics
of fourth and fifth orders that are subsequently used to calculate the second Landau coefficient.
However, the first Landau coefficient involves nonlinear teris up-to cubic order, and hence the
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Figure 7.22: Contours of a'® = 0 in (¢°, k. )-plane for e = 0.8, (@) H = 25, (b} 100, {c) 200 and (d) 500.
(€) Contonrs of a'? = § in (¢°, &)-plane.

higher order nonlinear terms can be neglected to caleulate ¢2). We establish these assertions in
the following,

Recall that the form of nonlincar disturbance cquations is

(E%-C)X=N=N2+N3+M+---» (*)

where A, for j > 2 represents nonlinear terms at order j. The first and second Landau coefficients
correct up-to cubic and quintic orders, respectively, can be written in the following functiona)
forms:

C[‘Q} = f(Ng.Ng) and CH} -':f(Nz,N3,N4,N5), (780)

where f denotes a function. To check the effect of quartic (fourth) and quintic (fifth) order
nonlinear terms, we define & as

&Y = (N, Ny [Na | [ N6 ), (7.81)

where the boxed quantities, i.e., A and A are neglected while calculating &9,

Now we show the variations of a'¥) (7.80) and &) (7.81) with k* and ¢° to demonstrate
the effect and importance of incorporating higher nonlinear terms in {*). Figure 7.23 shows the
variations of &Y (circles) and a'?) (stars) with &! using cubic and quintic nonlinear terms for
four values of 9" = 0.05, 0.08, 0.1 and 0.15, with the corresponding variations of the growth rate
and the first Landau coefficient being displayed as insets in each plot. It is observed that &Y and
a‘® are very different. Tn fact, in the supercritical regime (¢° < ¢%) for ¢® = 0.05 and 0.08, (¥
and o' have different signs as shown in figures 7.23(a) and 7.23(b). Although in the subcritical
regime for ¢* = 0.1 and 0.15, both @ and a4 have same signs but their numerical values are
vastly different (see figures 7.23¢ and 7.23d).

The variations of 4 and ' with density for two values of k¥ = 0.05 and 0.1 are shown
in figures 7.24(a) and 7.24(b), respectively. Again it is observed that the cubic approximation of
second Landaw coefficient (by neglecting Ay and Ns) gives incorrect interpretation of underlying
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Figure 7.23: Variation of a'* with k; for (a) ¢" = 0.05. (b) ¢” = 0.08, (¢} ¢* = 0.1 and (d) ¢° = 0.15.
Circles and stars denote the cubic and quintic approximations, respectively. The insets of each plot show
the corresponding variations of a'® and a®. Here e = 0.8.
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Figure 7.24: Variation of a'? with ¢° for {a) kI = 0.15 and () k7 = 0.1. Other parameters are same as
in figure 7.23.
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bifurcation.

From figures 7.23-7.24, we can conclude that the second Landau coefficient at the quintic order
cannot be determined by retaining only cubic nonlinear terms in (*). Therefore, for caleulating
the n'"-order Landau coefficient we need to consider nonlinear terms up-to n'*-order in (¥), i.e.,
the correct functional form of n'"-order Landau coefficient is given by

") = f(Na, N3, ..., N,,). (7.82)

th

Therefore n-order nonlinearities NV, must be retained in (*) to correctly calculate ¢™),

7.7.9 Vorticity Banding as a Subcritical Instabilities

Figure 7.25 shows regions of suberitical and supereritical bifurcations indicated by cyan and
purple colors, respectively. The signs of a!”) and a'® are marked in this figure. Depending on
the sign of @!" and a'?), we can classify the bifurcation as deseribed below:

(@) a™ > 0 and «® <0, supercritical bifurcation (purple color),

() a < 0 and a'® >0. suberitical bifurcation (region (1-v, eyan color),
()a” > 0 and a'® >0. white region between ¢ € (0,0.1) and k2 € (0,0.15),
(d)a” < 0 and a® <0, white regions for ¢ > 0.1 and kI > 0.15.

For cases when a!”) and a'?) have same signs (¢ and d), the equilibrium solution does not exist

0.5¢

01 02 +0:3 04 05

Figure 7.25: Phase diagram showing the suberitical (cyan color) and supercritical (purple color) regions.

The amplitude from cubie LE does not exits in the white region.

at cubic order. For the situation as given in (d), the How is non-linearly stable whereas for the
regions described by (¢) we need to caleulate higher order Landau coefficients. The supereritical
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solution js possible for the regions described under condition {@). The regions indicated by (i)-
(iv). which satisfy condition (b}, have subcritical bifurcations. In this case the cubic Landau
equation does not give “stable” equilibrium solution and therefore we need to caleulate second
Landau coefficient to track the “stable” equilibrivm solution. In the following we show that the
suberitical instabilities can oceur via Hopf and pitchfork bifurcations.

The bifurcation around the neutral stability curve for densities ¢° < ¢, and k? < k%, (cf.
7.73) is always pitchfork (stationary), i.c. 6 = 0 for n = 0,2,4,.... However, for parameters
far away from the neutral stability curve the bifurcation may not be pitchfork. It is verified
that there exists subceritical Hopf bifurcation for higher densitics. In the following we show the
evidence of suberitical Hopf bifurcation for two fixed values of k% > k¥,
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Figure 7.26: Variations with density () main panel: a'® (solid line) and % (dot-dashed line), lower
inset: a'® (solid line} and b (dot-dashed line), upper insct: cubic amplitude 4. (#) Variations of

quintic amplitude A, (main panel), ' (solid Yinc in inset) and b (dot-dashed line in inset) with ¢°.
Parameters are kf = 0.2 and ¢ = (1.8,

Figure 7.26(a) shows the variations of a'? (solid line) and 82 (dot-dashed line) in main
pancl for & = 0.2 with densities corresponding to the region (#i) of figure 7.25. In this range
of densities. a'? < 0 {solid line in inset) and @ > 0 and the corresponding imaginary parts
are non-zero. i.e. ™ #£ 0 (dot-dashed line in lower inset) and 5% # 0 (dot-dashed line),
therefore there exists suberitical Hopf bifurcation. The ecorresponding cubie amplitude solution
is shown in the upper inset of figure 7.26(n). In figure 7.26{b) we show the threshold quintic
amplitude solution for the nonlinear stability and the corresponding variations of a™ (solid line)
and b (dot-dashed line) are shown in its inset. While ¢'® is positive for full range of densities
{sce figurc 7.26a), a* changes sign from positive to negative at ¢® = 0.23 as indicated by an
arrow in the inset of figure 7.26(b). It is seen in figure 7.26(b) that thc amplitude is almost
constant for 116 < ¢° < (.2 and then decreases rapidly which implies that the flow is more
stable for 0.16 < ¢¥ < 0.2 (because the threshold amplitude is larger in this region). For this
range of densities, the cubic amplitude solution is not valid hecause the cubic Landau equation
is strictly valid near the neutral stability eurve and therefore the amplitude, as shown in inset
of figure 7.26(a), is not the correct approximation of nonlinear solution. A jump in the second
Landau cocfficient at ¢? = 0.23 which is shown by an arrow in the inset of figure 7.26(6) is dne
to the higher-order resonances: for such cases the single mode analysis is not valid and we need
to consider coupled Landau equations (see chapter 10).

Figure 7.27 is same as figure 7.26 but for k% = 0.27. In this case. the quintic amplitude
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Figure 7.27: Same as figure 7.26 but for &£ = 0.27.

solution, see figure 7.27(b), exists for ¢°

(0.3,0.5) and the bifurcation is Hopf (subecritical).
The threshold amplitude decreases with increasing densitics. Similar observations can be made

from figure 7.28 which is same as figure 7.26 but for k2 = 0.14.
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Figure 7.28: Same as figure 7,26 but for kI = 0.14.

At this point we can compare bifurcations of vorticity banding and gradient banding (cf. chap-
ter 5) in granular plane Couette flow. As discussed in chapter 5 that the gramylar plane Couette
Aow supperts all kinds of pitchfork bifurcations with increasing density from Boltzmann limit,
which lead to banding of particles in the gradient direction, see figure 5.38. All the bifurcations in
the case of gradient banding are pitchfork (stationary) which is in contrast to the vorticity band-
ing. Depending on the spanwise wavenumber the bifurcations which lead to vorticity banding
can be classified into two parts: (i) &7 < k¥ and (i) k7 > k2, (cf. 7.73),
For k] < kY, (cf. 7.73}, the vorticity banding occurs via pitchfork, subcritical or supercritical,
bifurcation for the densities below some critical density, i.e. 90 < ¢., and via subcritical Hopf
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Figure 7.29: A schematic of bifurcation scenario in pure-spanwise flow for ki < k%.

bifurcation for densities ¢ > ¢, as shown schematically in figure 7.29. The transition from
supercritical (purple color region of figure 7.25) to suberitical (region (iv) of figure 7.25) occurs
at ¢! < o,. see figure 7.29. For densities ¢” > ¢, the bifurcation is Hopf bifurcation which is
always suberitical. An example of subcritical Hopt bifurcation for ¢! > @, is shown in hglu{- 7.28
for k* = 0.14 < k2, which belongs to the region (iit) of figure 7.25 corresponding to kI < kI,

However, for k* > kY the bifurcation is always suberitical which can be pitchfork (stationary)
or Hopf (osc 1\1&“}1_\) Examples of Hopf bifurcation for moderate-to-large densities for two values
of wavenumbers k! = 0.2 > k% and kI = 0.27 > kY. are shown in figures 7.26 and 7.27.
respectively,

For large enough wavenumbers (or smaller wavelength), there exists a range of densities in
the dilute limit where the flow admits Hopf bifurcation as shown in figure 7.30(a)-(b) which
verifies the existence of Hopf bifurcation in dilute flows, see region (i) of figure 7.25. However.
for moderate densities, at lar;_;(‘ values of k*. the flow admits pitchfork bifurcation, an example of
which is shown in figure 7.30(¢)-(d).

7.7.10 Finite Amplitude Solutions

The finite amplitude disturbances in density (¢'). spanwise velocity (w') and grannlar temperature
(T") ef. (3.20). (3.29)] up-to quintic order in amplitude are caleulated from

t:}!{:"} _ ‘_1 Hlo:: 2| LA “ll 1] 4 |:(_4r:j|lzl|(_ff! + ___1'.3{:.)[2;'.!](%-‘! + “_1‘.'i{_:]ll::i]r.rﬂ

RO | e 1 2 . (2:4] 218 ET i 1 ( «
[ A3 B 310y A2 (241200 4 A4 4 I]r.m) + [._(._J s (7.83a)
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w'(z1) = AZpl02l | gilod) [(_‘1”‘||;1|f,m b A2pl220200 | 43, 1133) 00
+ARBBlEHO | 422400200 .fi‘-u.'l""'”f-’w) + ('.t"} ; (7.83b)

'f"(z.t) — AQT[”:El + ‘44'1—{!]:-1] i [(AT!l:I]F,u‘? = AQT[2;2|F2EU " .43?—'“:“](’!”
FAPTI3A 310 4 q2p(24] 2160 4 pdp| ':‘llr'hy) + ("L!.J (7.83¢)

where 8 = k.2 + (0% + 82 A% = k(2 - copt) and ef, is the equilibrium phase velocity which
is defined as

===y g =

z z

W plo) b2 42 B2l A2
e : (7.84)

Here ¢y, is the linear phase velocity. At t =0, or, for the stationary instability, we can simplify
(7.83a) as

¢ (2t =0) = A% 4 41619 4 24 | ol llcos (2m2/0,) — c::il"”sin (2mz/ ;)
+2A% [rﬁ"f‘m‘(‘os (dmz/A;) — f.-'}EE"m'sin {4?r3/—\;)]

+2A [Q‘JL' Bleos (2mz/A.) — Q)El"alsiu (2?r:/,\_.)]

4243 [ég‘;slms (6mz/A.) — 0 Psin (()'rr::/)n:)]
+24° [ol,?=4|(-us(.-1m /X)) — 62 %sin (4r 2 ,/,\:)] ‘ (7.85)

where A\. = 27 /k. is the spanwise wavelength. Similarly, we can simplify spanwise velocity (7.83b)

and granular temperature (7.83¢) disturbances.

The shear stress 7 is defined as:
du . ’ : -
T=p-— =p, because e 1 (for the linear velocity profile), (7.86)
Y

where p is the coefficient of shear viscosity. Similar to above expansions (7.83a)-(7.83¢), we can
expand stress (7) and pressure (p) as follows:

r = p=pu+ ;fif,e:-')" + 44T and p=p'+ p';,fs':’ + phT", (7.87)

where ¢ and p are the base state shear viscosity and pressure, respectively, and, ¢’ and 7" are
the disturbances as defined by (7.83a) and (7.83¢), respectively.

Next we are showing variations of stationary and oscillatory finite amplitude solutions as
defined by (7.83a)-(7.83¢) and (7.87) along the scaled spanwise direction i.e. z/A.. We will plot
instantancons disturbance fields (&', w'. T"). shear stress () and pressure (p) at equilibrium using
the gquintic amplitude solution.

‘ Stationary Solutions \

The variations of disturbance density (¢'). spanwise velocity (w'). temperature (17), total
stress (p) and pressure (p) with scaled spanwise coordinate (2/A;) are shown in figures 7.31(a)-
(¢) for ¢" = 0.06, k& = 0.12 and ¢ = 0.8. In this case the flow is linearly unstable and the
bifurcation type is supercritical, see fignre 7.15(b). These patterns are stationary because the
underlying bifurcation is pitchfork: in other words, the imaginary parts of the least-stable mode
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and the Landau coefficients are zeros.
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Figure 7.31: Variations of (¢',w’, T’), g = u®+ g’ and p = p® +p' with z/X,, for parameters: ¢° = 0.05,
k¥ =0.12 and e = 0.8. (a} Density. (b) spanwise velocity, (¢) granular temperature, (d) shear stress and
{e) pressure. See the quintic amplitude branch in fgure 7.15{b).

The stationary disturbance fields, shear stress and pressure corresponding to the unstable
solution at ¢ = 0.091, k¥ = 0.1 and e = 0.8, associated with the lower quintic branch (unstable
solution) in figure 7.13(#), are shown in figure 7.32(a)-(e). Figures 7.32(f) to 7.32(j) are same
as figures 7.32(a) to 7.32{¢e) but for the stable solution (corresponding to upper or stable branch
of bifurcation diagram 7.13(b)).
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Figure 7.32: For ¢° = 0.091, kI = 0.1 and e = 0.8, variations of unstable solutions: (a) ¢, (b) w’, {c)
T, (d) p=p°+4, and (e} p = p” + p’. The flow is lincarly stable and the bifurcation is subcritical. See
the dashed line of quintic amplitude in figure 7.13(b). Figures (f-7) are same as (g-e) but the amplitude
belongs to the stable guintic branch in figure 7.13{b).

It is clear that the density in each of figures 7.31(e), 7.32{a) and 7.32(f) is maximum at the
center of the domain, and the corresponding granular temperature, in cach of figures 7.31(e),
7.32(c) and 7.32(h} is minimum at the center of the domain. The total shear stress (r = p)
and pressure {p) vary significantly along the spanwise direction. Therefore, the vorticity banding
leads to localization in shear stress and pressure along the vorticity direction.

| Oscillatory Solutions ‘
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Figure 7.33: Same as figure 7.32 but for k; = 0.14 and ¢° = 0.15, see figure 7.16. Here @' < 0, a'® >
and & > 0.

Figures 7.33 and 7.34 represent oscillatory finite amplitude solutions (quintic order) for ¢° =
0.15 at k] = 0.14 and 0.135, respectively. For these parameters the flow has subcritical finite am-
plitude instability. It is clear that these solutions which originated from oscillatory bifurcations
are markedly different from the stationary solutions as depicted in figures 7.31-7.32. The bifur-
cation diagram related to these solutions in figures 7.33 and 7.34 has been shown in figures 7.16.
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Figure 7.34: Same as figure 7.33 but for & = 0.135.

7.7.11 Results for Dense Flows at Small Wave Lengths: Linearly
Stable Regime

The variations of a2} (solid line in main panel), 4'* (dot-dash line in main panel}, a‘® (sold
line in inset) and b'% (dot-dash line in inset) are shown in figure 7.35(a). A kink at k¥ ~ 0.3 in
the growth rate curve (solid line), sec inset of figure 7.35({a), represents a mode-crossing where
two traveling modes merge together to give birth to two stationary modes. Due to this mode
crossing, at? (solid line) and b? (dot-dash line) in fAigure 7.35(a) and o'¥ (solid line) and H'¥
(dot-dash line) in figure 7.35(b) diverge at k: ~ 0.3. As shown in figure 7.35(b), a'¥) and b* also
diverge at kI ~ 0.25 which is due to nonlinear resonances (mean flow resonance, 1 : 2 resonance,
etc., as discussed in chapter 6 for the two-dimensional granular Couette flow). The quintic {stars}
order amplitudes are shown in figure 7.35(c}. It is clear from this figure that there is a range of
k; ~ [0.25.0.5] where the quintic amplitude solutions exist.

Similar to figure 7.32, figures 7.36 and 7.37 show the finite amplitude quintic order solutions
at " = 0.5 for two values of spanwise wavemunbers k* = 0.4 and 0.285, respectively. The finite
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Figure 7.35: Variations with k; for ¢° = 0.5 and e = 0.8 (&) a'® {(solid line), b® (dot-dash line),
a!® (solid linc in inset) and $'©’ (dot-dash line in inset), (b} a'® (solid line) and 57 (dot-dash linc), {c)
quintic solution.

amplitude sofutions in figurc 7.36 are stationary and those in figure 7.37 are oscillatory, see the
bifurcation diagramn 7.35(c). Again, it is observed that the oscillatory solutions are different from
the stationary solutions.
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Figure 7.36: Stationary solutions. Same as figure 7.32 but for ¢¥ = 0.5 and & = 0.4, Here o' <« D,
a® < 0and o' > 0.

Figure 7.38 shows the variations of cubic and quintic amplitudes with k7 for ¢° = 0.12 and
¢ = 0.8. The bifurcation is subcritical. The corresponding variations of o(® (dot-dash fine),
a'? {dash line) and a'* (solid linc) arc shown in the iuset which shows that both a® and al?
are positive and hence the flow is unstable. The finite amplitude solutions corresponding to the
stationary quintic amplitude at &* = 0.4, see figure 7.38, are shown in Rgure 7.39

7.8 Conclusions and Qutlook

We have analyzed the nonlinear stability of three dimensional gramtar plane Couette flow, focus-
ing on the pure spanwise instability (Gayen & Alam 2006; Alam 2006) for which the uniform shear
flow degenerates into an ordered state with shear-stress-localization which further induces density
segregation in the form of spanwisc rolls along the vorticity (spanwise) direction. The amplitude
expansion method (Stuart 1960; Watson 1960; Reynolds & Potter 1967, Shutkla & Alam 2011)
has been used to the present nonlinear problem of pure spanwise granular plane Couette flow.
The amplitude expansion method reduces the nonlinear stability problem into a series of linear
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problems: second harmonic, distortion of mean flow, distortion of fundamental and higher order
harmonics. As we have discussed in chapter 5, this is an indirect method to derive Landau equa-
tion as compared to the direct method of ‘center manifold reduction’ which has been discussed
in chapter 4.

The pure spanwise granular Couette flow is blessed by a simplified set of balance equations
since d/dz(.) = 0 and 9/dy(.) = 0. Moreover, two equations of this simplified set, corresponding
to streamwise () and transverse (y) momentum equations, are decoupled from the other three
equations. Therefore, the system of order five can be divided into two parts: the “first” is related
to the = and y-momentum equations which are decoupled from the rest of the equations and
the ‘second’ is related to other three coupled equations. Furthermore, the two components of the
higher harmonics which are related to the ‘first’ system eventually vanish because the correspond-
ing components of the fundamental are zeros. Therefore, we are left with a system of equations
of order three which in turn has a general solution. The first and second Landau coefficients also
have analytical forms. We have shown in this chapter that all nonlinear equations along with
Landau coefficients of the amplitude expansion method for pure spanwise granular Couette flow
are analytically solvable. The general analytical order parameter theory has been developed for
the pure spanwise granular Couette flow.

Our analytical order parameter theory predicts that for k2 < kY. there exists a critical density
¢ = 93, ~ 0.1 such that (i) for densities ¢" < ¢ the uniform shear flow bifurcates supercritically
and gives stable vorticity-bands via a second-order transition, and (ii) for densities ¢” > ¢? the
uniform shear flow bifurcates subcritically and gives unstable vorticity-bands. These unstable
bands which are formed by the suberitical bifurcation of the uniform shear flow could be stabilized
by higher order nonlinear terms. Consequence of this is a first order transition at ¢° > ¢3, in the
linearly stable region.

We have shown that there is a window of densities over which the vorticity bands are super-
critically stable via a second-order phase transition; similarly, there exists a window of densities
over which the bands are subcritically unstable but can be stable via a first-order phase tran-
sition. For the moderate-to-dense flows, i.e. ¢ > ¢}, we found subcritical instabilities for
some range of densities that might cause vorticity banding in moderate-to-dense flows. Not much
MD-simulations have been done for this limit.

In regions away from the neutral stability curve there can be either pitchfork or Hopf bifur-
cation which occurs always via subcritical bifurcation. For sufficiently large wavenumbers there
are transitions from pitchfork-to-Hopf for dilute flows and Hopf-to-pitchfork for moderate-to-
dense Hows. However, for moderate wavenumbers there are transitions from pitchfork-to-Hopf
for moderate-to-dense flows. Therefore, vorticity banding changes from stationary to oscillatory
bifurcations as a function density and spanwise wavenumber which is in contrast to the gradient
banding which occurs only via stationary (pitchfork) bifurcation.

It has been verified that the scaling between spanwise wavenumber and Couette gap hold for
the zeros of the Landau coefficients. The crucial effect of higher order nonlinear terms (quartic
and quintie) for calenlating higher order Landan coeflicients (more specifically, the second Landau
coefhicient) is demonstrated. The variations of disturbance fields along z-direction are also shown,
leading to variations in shear stress and viscosity along the vorticity direction for pure spanwise
perturbations,
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Appendix 7TA. Elements of linear and adjoint operators

Elements of Linear Operator £ = [l;;] (¢f. Eqn. (7.11))
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Appendix 7B. Nonlinear Terms (A, and N;)

The quadratic and cubic nonlinear terms (cf. Eqn. (7.11)) of disturbance equation can be written

in vector forms: Ny = (N3 N2, N3 N3 N3) and N3 = (N, NF, N3, N{, N3) where the super-

seript 1, 2, 3, 4 and 5 correspond to terms from mass, x-momentum, y-momentumn, z
and energy equations, respectively.
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Fourth and fifth order nonlinear terms for pure spanwise flow

The nonlinear terms related to z-momentum and y-mowmentum equations are eventually zero
and the continuity equation contains only quadratic nonlinear terms. Thus the nonlinear terms,
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at order four and five, related to z-momentum and energy equations are given below.
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CHAPTER 8

STREAMWISE INDEPENDENT
THREE-DIMENSIONAL GRANULAR COUETTE
FLOW: PATTERNS AND BIFURCATIONS

In the previous chapter we have studied a special case of banding instability where the distur-
bances depend only on vorticity direction which lead to vorticity banding in three dimensional
granular Couette flow. In this chapter we will discuss about the banding which consists of both
gradient and vorticity bandings along the flow gradient and vorticity directions, respectively, in
three dimensional granular Couette flow using amplitude expansion method.

The general weakly nonlinear analysis for three dimensional granular Couette flow has been
discussed in §7.2-§7.4, thus we wiil start this chapter by focusing only on streamwise independent
flow which leads to banding in gradient as well as vorticity directions.

This chapter is organized as follows. The formulation of linear stability problem for the
streamwise independent Aow, analytical solution and asymptotic analysis are given in §8.1. The
outline of weakly nonlinear analysis is given in §8.2. The symmetries of linear and nonlinear
modes, analytical solutions for second harmonic, distortion of mean flow and first Landau coeffi-
cient are detailed in §8.2.1, §8.2.2, §8.2.3 and 8.2.4. The results are presented in §8.3. The locus
of neutral stability curve is given in §8.3.1; the equilibrium amplitude and bifurcation are given
in §8.3.2. The nonlinear results for moderately dense flow regime, dilute fiow and dense Aow are
discussed in §8.3.4, §8.3.3 and §8.3.5. The bifurcation diagrams and finite amplitude patterns are
described in §8.3.6 and §8.3.7. The conclusions of this chapter are given in §8.4.

8.1 Linear Stability Analysis: Analytical Solution

The linear and weakly nonlinear analyses for the case of general disturbances (5@5(‘) # 0, %{‘] #0

and %(‘) # 0) are given in §7.2-§7.4. In this chapter we focus on perturbations which do not
depend on the streamwise direction (ﬂ'—‘i{.) = 0}, ie. X = X(t,y,2). The form of nonlinear
disturbance equations for the streamwise independent flow can be written as

(%—ﬁ) X[t,y,z}:;r\fg + A, (8.1)

where £ is the linear operator and, A2 and Aj are the quadratic and cubic nonlinear terms,
respectively. In the present problem, £, M, and A are streamwise independent operators which
are given in Appendices 8A and 8B, respectively. The form of general linear cigenvalue problem
(7.17) reduces to the streamwise independent problem as

eX(ty.z) = LX(ty.2). with BX(ty,2) =0, (8.2)

where the linear stability operator L, (7.18}, can he written as

d a2 o 9?
L=l — —= 7 — ik, 5= — (ik)*). .
E(dy dy?’ 8z e 922 (!k")) 83)
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Similarly the adjoint problem, (7.19), can be written as
EXty,z) = L' X (t,y,2), with B'XYiy 2)=0, (8.4)

where the adjoint operator L! is obtained from L by replacing f—y — — d% and taking the conjugate
transpose of the resultant operator, i.e.,

t_gfd_, _4 ]H
L [L (dy dy) ’ (8:5)

where the superscript H denotes the conjugate transpose (Hermitian transpose).

It can be verified that the linear eigenvalue problem, (8.2), has analytical solutions,

(&’,Tﬂf’) = (¢1, T, wn)coska(y £ 1/2)

(8.6)
(&, @) = (w1, v1) sinkgl{y + 1/2)

where ky = A7 with #=1,2,3, ... being the mode number, which satisfies the following boundary
conditions at y = £1/2

o0 _of _
dy By

4=0=0 and 0. (8.7)

Substituting above solution (8.6) into eigenvalue problem (8.2) we get an algebraic eigenvalue
problem

CX1 = AX], [88)
where 4 is given as
( 0 0 —kge? ~ikyp? o \
—kgulul ~ul k% +k2) 0 —kauy
Tt T Yy 0 —HTS
kS ° —({2u” 12k 4Ok Ty —ik o kgip? +30) *%”?E
A _ H!¢»E] HEa" HépH H<g
—ik;pl ik, kg (u®4+20) - (k3 u® k2204000 — iy p2
HI40 0 HIg" Heg? H’d"i
2 0p2 02 02 0 _ ;o
2(ul ul - DY} 1k guu® —2p%k ik, —2x0(k34k3) | 2wy wf DY)
\ FrYy Sm Imat Tim 30 AmET0 T dimgl /

In a similar manner, the adjoint eigenvalue problem, (8.4}, satisfies the following solution

(6,7 w') = (o}, T],w]) coskp(y £ 1/2) 89
(ul,ot) = (ug,v{) sinky(y = 1/2)
with boundary conditions
L Tt
ut=0, v'=0, g 9 0, aty=+1/2. (8.10)

3y~ oy
The algebraic eigenvalue problem corresponding to the adjoint problem (8.4) is

6X1f=AJ'X1' where AT = Af. (8.11)
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8.1.1 Asymptotic Analysis: Dispersion Relation

The dispersion relation for (8.8) is a quintic polynomial in e:
S +byct + b3 +bac + bie+by =0, (8.12)

where b;’s for 0 <1 < 4 are defined below

by = bnﬁ/Hﬁ + bos/H®, by = b /H* +515/H6+'513/Hﬂ-
by = byg/H* +byy/H* + bys/H®. by =bsy/H® + b3y /H?,
b.; = {],10 + I‘}.],QIHE.

In the above, b;;'s are real functions of the base state variables which can be defined as:

2k 43200 2 23 (30 1,0 00 2 _ 32v,.080.0 .0
bos = - T [(k +k 3)(1’0.”7‘ D]‘pqc_,} + {kz - kg)“y (p‘j#T ijl¢)]
bos = —13:0 (k2 + k31RO pf)
L L 0.y0 0 10 0 n 2 0?
bia, = _Tﬁ’_ {:za (k2 + k2)(p2DY. — p3.DY) — ¢%ul’ k (pd,u,,—p,,qunu K3p%u ]
bis = —hr(k?+ k320 [U,? +K2)(2u° (A0 + 2u0)DY. + 2901088, + (450 + 3u0)"” p0)
_z(.\.;’ k2)ul® tO (A0 4 200)40,
[T —-f‘:—,.rlwa:2 - k3 )'le’u"z(,\“ + Zp“)
b = [{LQ ks H]rh“p (DY — ('ZIL,]u&r 19+ (k2 4 k2 )q‘uo( 'Dn + lly pl ))]
by = ;‘j-rg(k'j +k3) I(k? + k2) (10 (2A" + 5u")DY. + 2p° 1Y + (K0 + 3,[10)(25“2;)2)
+u'§f HOKE — K2(2X0 + 50))uf
bag = _ﬁn (k2 + k2200 [3p0(A0 + 2u0) + 26°(200 + 50)]
bl = E” [(H +k2)(2(\% + 4u°)DY. + 2p°p. + 36" p0)
~2ul® (k3(A0 + 2u0) + K2(A + 4p )},ATl
bay = —~,,«;(k‘1 +R2)2(26D (A + 4y + 30 (200 4 50))
biz = F(H + k%) [2,(“ +3(A + 4u0)]
b-;l] = [Dn o ,uIJ }

We have three possihiiitie:s for five roots of dispersion relation (8.12): (i) all roots are real. (ii)
one root is real and two complex conjugate roots and (iii) three roots are real and a complex
conjugate root. From the asymptotic analysis for large H, it can be shown that there are three
real roots and a complex conjugate pair. The real roots have the following approximations for
large H:

2
1 (bgg + ('Ll)b_-;g + (.'((]” b,-;g)

() _ (1) =
Mgl 2 +O(H™),
H? V(565" + dbyg) (8.13)
23) _ 1 ( ~ha Vm) 4
et =
H? 2by h

where

1y
r‘( = 35”fé‘]\/§_'<{]
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The real and imaginary parts of the complex conjugate pair c4% = ) 4 icg“‘s) have the
following asymptotic approximations for large H:

2
1 (92“) + by — bz O(H
H2 2b22 + { )?

(8.14)

In the limit # — oo, these solutions have the limiting form: {1 — c,()” and 2348 0. A
comparison between the eigenvalues caleulated from the asymptotic analysis for large H, (8.13)-

(8.14), and from the numerical solution of the algebraic eigenvalue problem (8.8) is shown in
table 8.1,

H Asymptaotic analysis for large H From Eqn. {8.3)

100 —-8.710527725 < 107! —8.719913447 x 10!
—1.114542234 x 1078 -1.376061879 x 10~3
—1.089433668 x 10~3 —1.089433668 x 1073

—4.454012228 x 103 2 i9.504165561 x 1072 | —4.434318526 x 1073 £ i8.52951028 x 10~2
1000 —B.743609636 x 107! —8.743609675 < 10T
—1.114542234 x 1077 —1.117169689 x 10-7
—1.089433668 x 10~% —1.089433668 = 10~*

—4.454912228 x 10~5 £ {9.50416556 x 1072 | —4.454707390 x 10~ £ {9.504419713 =« 103
10000 —8.743850455 x 10~ 1 —B8.743850465 x 10~ T
—1.114542234 x 10~? —1.114568332 x 10~-%
—1.089433668 x 10~7 -1.089433670 x 10~7

—4.454912228 % 10~7 £ i9.504165561 x 10~ | ~4.454910180 x 10~7 & i9.50416810 x 10~

Table 8.1: Comparison of eigenvalues from asymptotic analysis and exact values for ¢" = 0.2, ¢ = 0.8
and k: = 1.

8.2 Nonlinear Problem for the Streamwise Indepen-
dent Flow

The general form of weakly nonlinear equations using amplitude expansion method is given by
(7.22). Here we are summarizing equations till cubic order in amplitude which we will use in
subsequent subsections in order to get the analytical solutions of higher order harmonics as well
as an analytical expression of the first Landau coefficient.

! Fundamental Mode |

At O(A), we get back the linear problem (8.2) by substituting k = n = 1 into (7.22):
Ly X =0 = LXMW = 0xtl o LY =X, (8.15)

where X[ = X is the linear eigenfunction or fundamental mode and ¢! = ¢ is the correspond-
ing eigenvalue. The flow is linearly stable if ¢, < 0 (real part of ¢} and unstable for ¢, > 0.

| Second Harmonic and Distortion of Mean Flow |

At O(A?) we have a second harmonic and distortion to mean flow. Substituting k = n =2
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into (7.22) we get the governing equation for second harmonic:
Lo X122 = Gyp = Ny(x 1) xlaaly, (8.16)

where Lgy = 2¢("'1 — Ly, with Ly = L(k, — 2k.), and Ga = (GLy, G3,,G3,, G5, G3,) is the
vector of nonlinear terims where the superscripts 1. 2, 3, 4 and 5 refer to continuity, r-momentum,
y-momentum, z-momentum and energy equations, respectively. Similarly, substituting & = 0 and
n =2 in (7.22) we have an equation for the distortion of mean flow,

Loz X198 = Gy = 0.5(Na(X Y, x i1y 4 Ny x 1l gy (8.17)

where Ly = 2¢'"'1 — Ly, with Ly = L(k. — 0). Note that X%2 is a real harmonic.

First Landau Coefficient and Distortion to Fundamental |

At O(A?) we get an equation for the distortion to fundamental mode by substituting k = 1
and n = 3 into (7.22):

Ly X = [(3({“’] + b — LiJ X3 = @ x4 Gyg. (8.18)
where the nonlinear terms Gy can be written as
Gy = f\,rQ(X[n,zr__X[l:ir) + :N'Z(X[(j‘zr.,’([[‘l]) + NQ(X“‘”. X[D.zj) i NQ(X[I:IQ,X-[{].:&])
+Ar2(l€'|1.1]..x|2:2]} 4 A‘-'E{XFZ:‘J]_X[LIU + J\.r&()irﬂ.,i]‘1‘({‘.:”.‘)"v[l:]])
+Ng(X Wl X Xty o N x| x| iy (8.19)

The unknown coefficient ¢/?), the first Landau coefficient, can be obtained from the solvability
condition (cf. Eqn. 3.43) which gives:

12 &
72 X1Gyydy

J-I/E Xt x dy.

—1/2

A2 = o@ 4 pld) = (8.20)

| Third Harmonic |

At O(A®) we get an equation for the third harmonic by substituting k = 3 = » into (7.22)
Las X33 = |3(a'® 4 6O — Ly | X8B3 = Ggg, , (8.21)

where Ly = L(k. — 3k.) is the linear operator and Gsg is the vector of nonlinear terms:

Gy = Np(XP2 XNy 4 Ny x0U x 1220y 4 g xlntl x| xeliaaly, (8.22)

8.2.1 Symmetries of Linear and Nonlinear Modes

The symmetries of linear and nonlinear modes of plane Couette flow have been discussed in
chapter 5. In order to extend the previous analytical weakly nonlinear analysis of 2D plane
Couette flow, as described in chapter 5, to the three dimensional case, here we analyze the
symmetries of linear and nonlinear modes for three-dimensional disturbances. .I

Recall that the base state (7.8) has the following symimetry:

0(—y) = o"(y). w(—y)=—u"(y), T(—y)=Ty), (8.23)
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because the base state equations are invariant under the above transformation. The fundamental
{linear eigenvector) solution satisfies the following symmetry group:

gl (y) = gl (—y)y,  TIMN(y) = 7MY (—y)
, . ' , ) , , , (8.24)
uly) = —ul Mgy, o) = —ulNil(oy) il = Wty
and
¢y} = —plit(—y), THY(y) = T (_y)
Wltitly) = all(—y), o) = W(—y), wW(y) = —wlM(—y) } '

From the base state (8.23) and fundamental symmetries (8.24}-(8.25), we can observe the sym-
metry of second harmonic. For example, the second harmonic satisfies the following symmetry:

$23A(y) = g2 (—y),  TA(y) = TR (—y)
u[?ﬂi(y) = _uii'.?](__y)' Ui2:2|(y) — _viﬁl'zl{_y)’ wi?:?](y) = w[‘2:2](_y) } .

(8.25)

(8.26)

Note that the distortion of mean flow X192 has the same symmetry as the second harmonic.
Now using the symmetries (8.23)-(8.26), we get the following symmetries for the distortion of
fundamenta) (X [3):

() = o (—y),  TV(y) = TH(—y)
. 8.27

W' y) =~ B(g), ol y) = oy, wliy) = wl'Sl(—y) o2
and

ol'3(y) = ~¢ll(-y), TIW(y) = —T1)(—y)

W) = og), ) =y, bl = by [ O
and for the third harmonic (X %)

¢ w) = 6Ny, TPN(y) = TR () 8.9

uB(y) = —ul3(—y),  WPH(Y) = B (—y), W) = WPy [’ %29
and

RE PR | 7= PR (3:3) () = I3y _

¢ y) = -l =y TH(y) T (-9 _ (8.30)

uPSl(y) = ¥ (—y), 0Bl = B (—y), Wbl () = WSy

8.2.2 Second Harmonic: Analytical Solution

The analytical solution of fundamental mode (sce §8.1) is given in (8.6) where X = X1, Sub-
stituting the analytical solution {8.6} into the right hand side of {8.16), i.e. G2, and rearranging
the terms of sines and cosines we get

(Gh.G%,Ghy) = (GégaGé’g‘Gs‘i)coskza(yi1/2)+(f«§z1fé‘z,fz52)} (8.31)
(G%,,G3,) = (GQQ,G;)mkzﬁ{yi1/2).

where kp;s = 207, with 8 = 1,2.3,. =[G, G20 G338 G, and Zay = (fha fa 150
represents nonlinear mean tormq Corl‘ebpondlllg to the continuity, z- momentum and energy equa-
tions. The explicit forms of 022 and Z;; are given in Appendix 8C. It has been verified that the
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second harmonic has the following analytical solution:

(0122 w22 T2y () = (g, wa, To) cos kog(y + 1/2) + (022, w22, T?22) (8.32)
(w2 22 (y) = (w2, va)sinkop(y + 1/2) '
where
Xo = [¢2, uz, va, wa, To] ™" (8.33)

is the modal amplitude of the second harmonic and
22 22 221Tr i
}m == 1':')”! Wy s ’Im (8‘34}

is the vector of nonlinear mean terms. Here the density solution contains a mean term ¢7; which
depends on spanwise coordinate z. For the two dimensional flow ¢2? = 0 and w = 0, and thus
the above second harmonic solution reduces to the analytical solution for the second harmonic of
2D-plane Couette flow, see chapter 5.

The governing equation for the modal amplitude X, can be obtained by substituting the
analytical solution (8.32) and the analytical expression of Ggp (8.31) into (8.16) and equating the
sine, cosine and constant terms from both sides of (8.16). For sine and cosine terms we get:

3y a4
L5y X5 = Gy, (8.35)
where _
LY, = 2(a® + ) — A(kg — 2kg, k; — 2k.). (8.36)
For the constant terms we get
}/m = ZQ?': (8.37}
where L3, is a linear operator:
0 —ikz. 0" 0
1 01 s j
. ika.p k2 (204 A0 ik s
[;52 = 2{?“” g 1 0 — - HJQ,:,n' i {lee,,,: ) - ~'H25.§& (838)
0 0 1
2y —Dy) ik p 2 (=x"%,
dima? ~ Fimg? dimg? ( AT + - D?‘)

where k. = 2k..

Note that if 2¢'9) is equal to any of the eigenvalues of the linear operator Alkg — 2kg, k, —
2k.), the system (8.35) is not solvable. This is the case of 1:2 wave resonance, and consequently
the Landau coefficients cannot be defined at such resonance points.

8.2.3 Distortion of Mean Flow: Analytical Solution

In a similar manner we proceed for the analytical solution for the distortion of mean How X102,
Substituting the analytical solution of the linear problem (8.6) into the right hand side of (8.17)
(i.e. Ggz) and rearranging the terms of sines and cosines we get

(Gler G Gm}—(cﬂ,:.d; Go3) coskag(y = 1/2) + (0, [, 5,) p_—
(Gl Giy) = (G35, G33) sin kaa(y + 1/2) '

i T = Dl with 3 — 1 ¢ A 28 o3d AT
where kog = 2kg, with 3 = 1,2,..., ;“2 = [Gya, Goa, G s (_'”2 Gprl'", and Zog = [fd,, [5]™"

represents nonlinear mean terms corresponding to the z-momentum and energy equations. The
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explicit form of Gl and Zpy are given in Appendix 8D. It can be verified that the distortion of
mean flow has the following analytical solution:

¢ (y) = doa coskag(y £ 1/2)
(%2, w192 () = (ugz, vo2) sin kos(y £ 1/2) (8.40)
(w®2 T2y () = (wog, Toz) cos kaply + 1/2) + (w2, TO?)

e

where
Xoz = [doz. Moz, Yoz, Wo2, Tozl (8.41)

and
Yol = iy, T (8.42)

m:?*

is the vector of nonlinear mean terms. Substituting (8.6) and (8.40) into {8.17) and equating the
coefficients of sine, cosine and constant terms, we get two sets of equations. For sire and cosine
terms we get:

Ly Xoz = Gy (8.43)
where
L =229 — Ak — 2kg, k. —0). (8.44)
For the constant terms we get:
L3 Y% = Zog (8.45)

where L, is a matrix operator

I 0 0 0
Li, = 2"V ( ) - ( . )
02 ¢ 01 0 dilﬁ(b" (ﬂ'g‘ - D[]]') (8 46}

Since the above system (8.45) is decoupled and hence the mean terms w%? and T2 are

4 5
oz _ _Jo2 d 7= I e
?.Um 20(0} an m 20(0} _ X”‘ZTqbﬁ {”{% _ -D%) ‘ ( 47)

If 2¢!? is equal to any of the real cigenvalues of linear operator A(ks — 2kg,k: — 0), the
above system (8.43) is not solvable. This is the case of mean flow resonance and the first Landau
coefficient cannot be determined at such resonance points. At such points the pure span-wise
modes interact with the streamwise independent mean flow.

8.2.4 First Landau Coefficient

Substituting the analytical solutions of X!U!, X2 and X2 into (8.19) and equating the
coefficients of sine and cosine terms, we get the following analytical form of Gy3,

(Gl5. G5, G) = (G:Ef.cigj;g?gggfosksa(yi1/2)
(G, G5 G eos kply £ 1/2) (8.48)

(G13,6G35) (G253 Gy sin ksply £ 1/2) + (G153, G5 ") sinkg(y + 1/2)

73 183 208 303 183 503 1 181 201 381 Bl 551
where Gﬂs = 1? G 'Glg Gy =Glf3 ]Tr and G?a =[G le:'Lij 1Glg leg Gy )T are
nonlinear terms. From the solvability condition, the analytical expression of the first Landau



8.2 Noulinear Problem for the Streamwise Independent Flow 223

coefficient (8.20) can be written as

Tt r131 .zn 331 A Pascl 51
) = o® 4 gyl - $i6is +EIGh G +iGy TG (8.49)
q‘;{'qbl + u.[u] 54 urm + wlfw; + T! T,

where G}5', G¥' G¥', G and G} are given in Appendix 8E. Since we know the form of

G13. the analytical solution fur xual (8 18) is given by:

(673, wiy, Tiy) cos kag(y + 1/2)
+(¢, W Tl mbkg(qi 1/2) . (8.50)
(uyy o3 ) sinkas(y £ 1/2) + (uls, v} ) sinkg(y + 1/2)

(o[l:3| ; w[l::l[' T[I:!i] ){y)

(ul¥] pl3l) (y)

il

33 93 03 83 83 31Ty i1 A1 a1 B1 BTy :
where X175 = [ofs, ufy oy, wis  TE)T and X[y = (o), uly, v}, wil, TETT are modal ampli-

tudes w}u(h can be obtained by substltutmg the above solution (8.50) into (8.18) and equating
the sine and cosine terms from both sides. We get two mhomogeneom: systems of equations for
X3 and X7 which in matrix form are:

LX) = Gy
il 41 2) r 31 ? (8'51)
L3 X5 = —e® (¢, 01,00, wy, Th) + Gia
where
73 = (30 + D) — A(ks - 3kg, k; — k) )
L3 = (3a'9 + b)) — A(ky — ka, k. — k.) '

are linear operators.

8.2.5 Third Harmonic

Substituting the analytical solutions of X"l and X2/ into (8.22) and equating the coefficients
of sine and cosine terms we get

{ ’H‘GH' ?i)

(G““ (ﬂ“ "'“)(‘mk;;(q‘b 1/2)

+(G‘é;l G”l G cos ks(y + 1/2) . (8.53)
(G5 Gl) = (G2, ) sin kya(y £ 1/2) + (G35'.G33" ) sin ks (y £ 1/2)
where Gf IGIM' ;333~ ;:;:s G-:!'H (.wiiJr. and (nii {G;i;-;”.Gif'.(}gfl G'i‘:l.G;f:I]Tr are

nonlinear terms.

It has been verified that the analytical solution of X33l is

(05, w3, T ) - = (045, weg, T cos kaly + 1/2)
+(oy, why , T cos kg(y + 1/2) (8.54)

(.*1‘,_{; (':;)wnhe(rji 1/2) + ( u‘“ U”)smﬁﬁ +1/2)

I

[u[.'i;.'i]? t_‘[3:."‘[}['.‘1,”

5 g3 93 3 13 9 A1 81 Bl A1 Pl
where X5z = |53, ufs, vhe, why, T2] and Xiy = [053.uly. vhs, wiy, Tay] are the modal ampli-
tudes of {hv third harmonic.

The unknown modal amplitudes X‘n and X} are obtained by substituting the above solution
(8.54) into (8.21) and equating the sine and cosine terms from both side:

43 43 1 481 A1
L“)&“ = Gy, and L,‘,f)i“—(?gﬂ.
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where

8.55
L5} = 3(a® + b)) — A(kg — ks, k. — 3k.) (8:55)

In the following sections we present nmumerical results, bifurcation diagrams and patterns using
these analytical solutions.

L33 = 3(a'® + b)) — A(kg — 3k, k. — 3k;)}

8.3 Results and Discussions

8.3.1 Linear Theory: Locus of Neutral Stability Curve

The locus of the neutral stability curve can be given as by = 0, i.e. H* = —byg/bps [see (8.12)]
which can be simplified to
L Wa(9% ks, kp)

2
B = T Wa(o o ) (8.56)
where
Uy (@0 ksokg) = (K2 + k3) 00 S8
0 2
V(¢ koo ko) = 2 (K2 4 R3)246° 17 — 1887 24)

2 2
#5502 0” (st - 1115 )]

Here y° = x(¢°) is the radial distribution as given by {2.12). It can be scen from the above
expression (8.56) that H — oo for e — 1, i.c. the flow is stable for elastic particles.

0 5% 107 x10™*
(b)

0
{0} (0) {0)
¥ -0.02 "o ’

=02,k =1
z p=112[ s{ 4] 5]6

0.0 100 160 200 T80 100 150 200 RA) 100150 200

Figure 8.1: Variations of growth rates of modes § = 1 to 6 for three valucs of densities (a) ¢? = 0.05,
(3) ¢° =02and (¢) 9" =05 for k. =1and e = 0.8

Figures 8.1{a), 8.1() and 8.1(c) show the variations of the growth rates of first six successive
modes (3 = 1 to 6} with the Couette gap for three values of densities @0 = 0.05, 0.2 and 0.5,
respectively, where the spanwise wavenumber is set to k, = 1 and the restitution coefficient. is
e = 0.8. As seen in figure 8.1{a) the growth rates of dilute flow #? = 0.05 are negative for all
modes (8 =1to 6) at k, = 1 and thus the flow is linearly stable. However for inoderately dense
{¢" = 0.2, see figure 8.1b) and dense flows (¢° = 0.5, see figure 8.1c) the higher order modes
become unstable after some eritical value of Couette gap. It is seen in figures 8.1(b)-(¢) that for
every mode 3, the growth rate starts with a negative value, increases with H until some value of
H and decreases thereafter. There is a range of Couette gaps between which a particular mode
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remains least stable and beyond that the next higher-order mode becomes least stable until the
next crossover. Throughout the analysis we are using the maximumn growth rate over all mode

numbers:
a” = max a'?(g).
6 —
(b)
4
k
z
2
0.5
| F———v=0s
GO 500 1000 0 50 100 i 150 200 250
H

Figure 8.2: Stability diagram for the uniform shear flow in the (H, k. )-plane for streamwise independent
modes (3/dr = 0): (a) dilute flows for ¢" = 0.01, 0.02, 0.05 and 0.09; (b) moderate-to-dense fows for
#" =0.2,0.3, 0.4, 0.5 and 0.6. The coefficient of restitution is set to e = 0.8,

Figure 8.2(a) shows four neutral stability contours (a'”? = 0) in the (H, k. )-plane for dilute
flows, ¢” = 0.01, 0.02, 0.05 and 0.09; the coefficient of restitution is set to e = 0.8, Similarly
for moderate-to-dense flow regimes, five neutral contours in the (H, k.)-plane for ¢° = 0.2, 0.3.
0.4, 0.5 and 0.6 are shown in figure 8.2(h). The growth rate is positive inside each contour
and negative outside; thus, the flow is unstable inside each contour and stable outside. For
dilute flows, figure 8.2(a), the flow is unstable to a range of k., and this range of unstable k.
increases with Couette gap (H). The origin of this instability can be tied to the pure spanwise
perturbations (Alam 2006; Gayen & Alam 2006) as discussed in chapter 7. It can be observed
from figure 8.2(a) that the growth rate is negative at k. = 0, i.e. the How is stable for the
two-dimensional streamwise perturbations (k, = 0 and k. = 0) in the dilute limit. For a fixed
Couette gap (H), the range of unstable wavenumbers increases with increasing density until some
critical density. On further increase of density the range of unstable wavenumbers shrinks to zero
and this spanwise instability vanishes completely at ¢ > ¢9, ~ 0.1. Consequently, there is a
window of mean densities ¢, < ¢° < ¢3,, where ¢3, = ¢! = 0.15 and #94 = 0.1, for which the
flow is always stable (linearly) to streamwise independent perturbations (ky = 0), [ef. (5.46) and
(7.72)].

For densities ¢° > ¢, the flow is unstable to two-dimensional streamwise independent per-
turbations (i.e. pure transverse perturbation: 9/dy(.) # 0 and k, = k. = 0) as discussed in
chapters 4 and 5. Moreover, the flow remains unstable for a range of spanwise wavenumbers
beyond a minimum Couette gap as shown in figure 8.2(b). As seen in this figure, the growth
rate of this instability is maximum at k. = 0 and decreases with increasing k.. Furthermore. the
range of unstable wavenumbers first increases with density for a fixed Couette gap until a critical
density, beyond which the range of unstable wavenumbers decreases with increasing density. This
implies that the flow is more stable in the dense limit.

To see the effect of restitution coefficient, we have shown nentral stability contours for three
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Figure 8.3: Stability diagram for ¢" = 0.05 in (a} (H, k.)-plane for e = 0.8, 0.95, 0.99, (b) (H T — 2,
k. }-plane for e = 0.8, 0.95, 0.99.
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Figure 8.4: Same as figure 8.3 but. for ¢" = 0.2,

values of ¢ (0.8, 0.9 and 0.95) for two mean densities ¢° = 0.05 and ¢° = 0.2 in figures 8.3(a)
and 8.4(a), respectively. These figures show that the flow becomes more stable with increasing
restitution coefficient. From (8.56), we can write the locus of neutral stability as

#? _ yg2 2y _ ‘1'4{‘?(]?3‘7:»%} _ 0
H" =H (1—3)—m—f(¢,kukﬁ}- (8.57)
Therefore, the Couette gap H can be scaled with e such that H* = Hv/1 — 2. With this scaling,
we replotted figures 8.3(e) and 8.4(a) for all values of e but in the (H* &.)-plane as shown in
figures 8.3(b) and 8.4(b), respectively. Clearly we get only one neutral contour inside which the
flow is unstable and stable ontside.

Figure 8.5 show the neutral stability curve in the (¢, k,)-plane for threc values of H = 100,
500 and 1000. The flow is unstable (a!® > 0) inside cach contour and stable (a'?? < 0) outside. It
is seen from figure 8.5 that the range of unstable spanwise wavenumbers increases with increasing
Couette gap and, hence, the low becomes more unstable for increasing Couette gap. For given
H and e, there exists a pair of critical parameters (¢°, k.) = (¢%, k..) above which the fow is
linearly stable.

8.3.2 Equilibrium Amplitude and Bifurcation
The cubic Landau equation can be written as

dA

7 = DA+ o' A3, (8.58)
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Figure 8.5: Neutral stability curve in {¢, k.)-plane for three values of Couette gaps H = 100, 500 and
1000. The restitution cocfficient is e = 0.8.

where a® is the growth rate and a®® is the first Landau coefficient. The equilibrium solution
of this eqnation can be obtained by solving d.4/d¢ = 0, which gives a trivial zero solution which
represents the uniform shear solution and two non-zero solutions which are finite amplitude

solutions at cubic order (see §5.5.2):
{ al0} .
Ae =% —E(——Q—)‘ (809)

Depending on the sign of ¢'” and a® we get suberitical (®® < 0 and a/® > 0) and supercritical
bifurcations {a® > 0 and a'¥ < 0).

In the following sections, §8.3.3, §8.3.4 and §8.3.5, we discuss results based on first Landau
coefficient and the related bifurcations for three flow regimes: dilute flows (¢° ~ 0), moderately
dense flow (¢% << ¢,,) and dense flow (¢? ~ ¢,,} where @,, is the maximum solid fraction at
random close packing (¢, = 0.65).

8.3.3 Dilute Flows

As described in §8.3.1, the instabilitics in dilute Rows are due to the streamwise independent
three-dimensional modes which are originated from the pure spanwise modes. These instabilitics
are stationary ({*) = 0). In this section we focus on dilute flows and related bifurcations,

For k, = 40, the variations of a!” (circles) and a'® (stars) are shown in figure 8.6(a) for a range
of Couette gap near the neutral stability curve. 1t is clear from this figure that of® is positive
and @) changes sign from negative to positive at H 390, leading to a suberitical bifurcation.
The bifurcation diagram for this suberitical instability is shown in the inset of figure 8.6(a). A
sharp jump in a'®, see figure 8.6(a), near the zero growth rate at H =~ 390 signals a possibility
of resonance,

Since we are dealing with cubic order Landau equation, it is important to check the validity
of the second harmonic (8.16) and the distortion of mean flow (8.17}). Let us rewrite (8.16) as

Lyp X2 = Gge = Np(x DY, Tty (8.60)
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Figure 8.6: Variations with H of (a) a'" (circles), a'? (stars) and A, (inset), (b) @' (solid line in main
panel), a?) (lower inset) and ja'" (k. = 0) (dash-dot line in main panel and in upper inset) where an
arrow at H = 390.841 indicates a resonance point. Parameters are set to be & = 0.09, k. = 40 and
e = (.8.

where Lgs = 2¢(9T — Ly (see §8.2 for details). Note that if 2¢”) is equal to any of the eigenvalues
of Ly, then the left hand side of (8.60) is identically zero. therefore we cannot solve the above
equation directly because we have eigensolutions of the associated homogeneous problem of (8.60).
From the Fredholm alternatives, the solution of the problem (8.60) exists if and only if the
solvability condition is satisfied. This is an unsolvable case of 1:2 wavenumber resonance (Fujimura
1992).

In addition to 1:2 wave resonance, there exists another unsolvable case related to the mean
flow distortion (8.17) (Mizushima & Gotoh 1985):

Lo X102 = Ggp = 0.5(No(X 1Y, X1y 4 Np(x It xeltdlyy (8.61)

where Lyg = 2a'"T — L. Again if 2¢'") is equal to any of the eigenvalues of the operator Ly, we
cannot solve this equation. We can summarize the above two resonance conditions:

1 1
Ok) = 5 (La) = 3¢ (ke — 2k2). (8.62)
1 1 .
”HJ) - E‘I{gmfl‘h‘):E"'_(;‘“J{A.: ZU). {8.63}

where f‘{j”']{Lg) and r-[jm(Ln) represent the '™ eigenvalue of the linear operator Ly and Ly. respec-
tively, where j denotes a positive integer.

It has been verified that the discontinuity in a'? in figure 8.6(a) is due to mean flow resonance.
To show this resonance graphically, we have plotted a'" (solid line) at k. = 40 and %r:{“" associ-
ated with Ly operator at k. = 0 (dash-dot line in main panel and upper inset) in figure 8.6(b).
1t is clearly seen in the main panel of this figure that the resonance condition (8.63) is exactly
satisfied at H = 390.841 which leads to a discontinuity in the first Landan coeflicient as shown
in figure 8.6(a) and the lower insct of figure 8.6(b).

Figures 8.7(a)-(b) and figures 8.7(c)-(d) are same as figures 8.6(a)-(b) but for densities oV =
0.05 and 0.02, respectively. Figures 8.7(a) and 8.7(¢) show the variations of a") (cireles), a'?
(stars) and A, (inset) for ¢ = 0.05 and 0.02. respectively. For oV = 0.05, the mean flow resonance
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Figure 8.7: Same as figure 8.6(a)-(b) but for (a)-(b) ¢" = 0.05, (¢)-(d) ¢" = 0.02.

occurs at H = 284.9 which is shown by an arrow in figure 8.7(b) where the solid line represents
a'" and the dash-dot line (in main panel and inset) denotes 5a'% at k. = 0 (see the description of
figure 8.6(b)). Similarly for ¢° = 0.02, the mean low resonance occurs at H = 572.944 as indicated
by an arrow in figure 8.7(d). The bifurcation is subecritical for ¢ = 0.05 and supereritical for
¢ = 0.02.

From figures 8.6 and 8.7 we can conclude that for sufficiently large spanwise wavenumbers,
there is a transition from supercritical to suberitical bifurcations:

Supereritical — Suberitical — Suberitical . 8.64
pereritic e ( )
»U=0.02 A =0.05 G =0.09

The variations of a'? (circles), a'?) (stars) and A, (inset) for three values of densities ¢° = 0.02,
0.05 and 0.09 with spanwise wavenumber k. = 5 and ¢ = 0.8 are shown in figures 8.8(a), 8.8(b)
and 8.8(c), respectively. The flow admits supereritical bifurcations for densities ¢ = 0.02 and
0.05 and subecritical bifurcation for density 0.09. Therefore, the transition from supercritical to
suberitical bifurcation occeurs between ¢ = 0.05 and 0.09.

Supercritical — Supercritical — Suberitical . (8.65)
ey 5 5 s £ it Cainaav)
#I=0.02 P0=0.05 #0=0.09

Note that the transition from supereritical to suberitical bifurcations for k. = 40 (ef. (8.64))
occurs between ¢” = 0.02 and 0.05 (see figures 8.6 and 8.7).

In brief, for dilute Hows the threshold density for the transition from supercritical to suberitical
bifurcations decreases with increasing spanwise wavenumber, or, in other words, the threshold
density decreases with decreasing spanwise wavelength.
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Figure 8.8: Variations of ™ {(circles). a'* {stars) and A, (inset) with H for k. = 5, e = 0.8 and density
(a) ¢° = 0.02, (b) 9" = 0.05 and (c) ¢° = 0.09.

8.3.4 Moderately Dense Flows
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Figure 8.9: Variations of {a) a'”, (b} &'® and {¢} A, with H. For parameters ¢" = 0.2, k, = 2 and
e =03

in this section we focus on the moderately dense flow regime (¢” = (1.2). The stability diagrams
for moderate-to-dense flow regimes are shown in figure 8.2(b). The instability in this flow regime
is originated from the pure transverse mode as explained in §8.3.1. For ¢® = 0.2 and k. = 2, the
variations of a!®, a'? and A4, with H are shown in figure 8.9(a), 8.9(b) and 8.9(c), respectively.
The kinks in @', a'? and A, correspond to the crossing of modes 3 = 3, 4, 5 and 6. (Recall that
the mode number 3 denotes the zero crossings of deusity or temperature cigenfunctions along the
transverse direction y.) It is clear from figures 8.9(a) and 8.9(b) that a'? is negative and a®
varies from negative to positive, Therefore the equilibrivim amplitude exists for the range of H
for which o'® > 0 and ¢'? < 0. We have magnified figure 8.9 and replotted a{® {solid line),
a'®) {dashed line) and A, (inset) in figure 8.10{a) for the range of Conette gap H € {130,135).
In figure 8.10(a) an arrow, at H = 132.6, indicates the point where o'® changes sign. Since ¢®
is negative, the bifurcation is supercritical (sec inset of figure 8.10a). Fignure 8.10{h} is sane as
8.10(a) but for ¢ = 0.93. Note that in both cases the hifurcation is supercritical.

To see the scaling of Couette gap with restitution coefficient we have plotted bifurcation
diagram in the (A., H*}-plane for three values of restitution coefficient ¢ = 0.6, 0.8 and 0.95 in
figure 8.10(c}. It can be seen from figure 8.10(c) that the Couetle gap scaling with restitution
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Figure 8.10: For ¢” = 0.2 and k. = 2, variations of a'? (solid line), a'® (dashed line) and A, (inset)
with H: (a) e = 0.8 and (b) e = 0.95. (¢) Bifurcation diagram in (A., Hv/1 — e?)-plane for three values
of restitution coefficient: e = 0.6 (stars), 0.8 (solid line) and 0.95 (circles).

coefficient, H* = Hv/1 — ¢2, for the equilibrium amplitude agrees well near the critical point
(H ~ 79.5).

8.3.5 Dense Flows

For ¢° = 0.5, k, = 2 and e = 0.8, the variations of a'”), a®) and A, are shown in figures 8.11(a)-
(¢). The bifurcation is suberitical for the range of H where a!”) < 0 and a/?) > 0. Similar plots
for ¢ = 0.95 are shown in figures 8.12(a)-(¢). The bifurcation remains subcritical for e = 0.95

too.
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[2] ] e
oy Tosst o, '
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0.9 ‘.‘
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& \
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Figure 8.11: Same as figure 8.9 but for &Y = 0.5.

The variations of ¢!V, a'?, A, and 3 with H* for three values of restitution coefficients
e = 0.8 (circles), 0.95 (stars) and 0.99 (squares) are shown in figure 8.13(a-c). It is seen from
figure 8.13(a) that the scaling holds for the zero crossing of the growth rate and for the mode
numbers (see inset of figure 8.13a). Figure 8.13(¢) shows that the Couette gap scaling agrees well

for equilibrium amplitude.
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8.3.6 Bifurcation Diagrams

Figure 8.14(a) shows the bifurcation diagrams in the (A., H — H.)-plane for a series of densities
¢ = 0.1, 0.2, 0.24, 0.25, 0.3, 0.4 and with k, = 2 and ¢ = 0.8. The solid and dash lines represent
the stable and unstable equilibrium solutions, respectively. This figure shows that there is a
transition from subcritical to supercritical between ¢° € {0.1,0.2) and supercritical to subcritical
between ¢° € (0.24,0.25). The abscissas are scaled with the critical Couette gap, H., to shift the

- (@) o016
~.. 025
0.02p-. "~
= 03 0.24
A, ¥ A,
0.008
0.01

3

Figure 8.14: Bifurcation diagrams in the {A., H — H.}-plane for moderate-to-dense regime where k. = 2.
{a} e = 0.8 and (b} e = 0.95. Solid and dash lines represent stable and unstable solutions, respectively.

origin of bifurcation diagrams for each density to zero.

Similar bifurcation diagrams are shown in figure 8.14(b) for densities ¢° = 0.2, 0.24, 0.25, 0.3,
0.4 and 0.5 where the restitution coefficient is set to ¢ = 0.95. The transition from supercritical
to subcritical for e = 0.95 is same as that for e = 0.8, i.e. between H € (0.24,0.25) but there is no
transition for subcritical to supercritical between ¢° € {0.1,0.2) because the flow is non-linearly
stable (a'® < 0 and a!? < 0) for ¢° < 0.2 with k, = 2.

Next we show the bifurcation diagrams for subcritical bifurcations in the (4., H — H_.}-plane
in dilute flow regime for two densities ¢° = 0.02 and 0.05. From figure 8.15, it is observed that
the threshold for the subcritical instabilities, above which the uniform shear How is unstable and
below which it is stable, is higher at lower densities.

8o far we have seen the bifurcation diagrams in the (4., H — H.)-plane; now we will show the
bifurcation diagrams in the (A., k; — k,.)-plane, where k.. is the critical spanwise wavenumber.
A series of bifurcation diagrams in the (A., k, — k..)-plane for H = 200 is shown in figure 8.16{¢)
for densities ¢° = 0.2, 0.23, 0.24, 0.3, 0.4 and 0.5. The transition density from supercritical to
subcritical lies between ¢ = (0.23,0.24). Figure 8.16(b) shows the variation of a® with wave
number k, for ¢° = 0.1. It is seen in this figure that the ‘2 is positive and decreasing with
increasing wavenumber. For this range of wavenumber, a® is negative as shown in the lower inset
of figure 8.16(b); thus the bifurcation is subcritical. The corresponding variation of equilibrium
amplitude is shown in the upper inset of figure 8.16(b).

Figures 8.17{a} and 8.17(b) show the bifurcation diagrams for a series of densities as marked
in the panel and for a Couette gap H = 400 in the (4., k, — k..)-plane for the dilute and
moderate-to-dense flows, respectively, It can be seen from figures 8.17{a} and 8.17(b) that there is
a transition from subcritical to supercritical between ¢° = (0.06,0.65) for dilute flows and again
supercritical to subcritical between ¢9 = (0.22,0.23) for moderate-to-dense Aows.

The effect of density at # = 500 and &k, = 50 is shown in figure 8.18 where we have plotted
the variation of a'®’ with densities ¢° € (0.01,0.6) in the main panel and the growth rate in the
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Figure 8.15: Bifurcation diagrams for dilute flows for densities ¢” = 0.02 and 0.05. Other parameters
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al?! (main panel). a'” (lower inset) and amplitude (inset) with k. for ¢” = 0.1. ¢ = 0.8 and H = 200.
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Figure 8.17: (a, b) Bifurcation diagram for H = 400 in the (k. — k..)-plane for various densities as
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Figure 8.18: Variation of a'?, a'” (inset) and A, (inset) with density for H = 500, k. = 50.
coeflicient of restitution is e = (.8,
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upper inset. Since a® is positive for all densitics and «'® changes sign from positive to negative
near ¢° = (.15 (see upper inset), there is a subcritical bifurcation. The equilibrium amplitude is
shown in the lower inset of figure 8.17(h).

8.3.7 Finite Amplitude Patterns
The disturbance fields up-to cubic order in amplitude can be written as
Xy zt) = A2X12 4 [(AX“‘”e*"+ AZX (2216200 | 43 y (13130
+A3X|3;3]e3“9) + c.c.] , (8.66)

where X = (¢/, v/, v/, w', T") is the disturbance field, A is the amplitude and @ = k. z + wt, with w
being the real frequency (cf. Eqn.(3.11}}. At equilibrium {(dA4/dt = 0), A(t) = A. (i.e. amplitude
is independent of time) and w = b0 + b2,

In the present problem (streamwise independent flow) the instability is stationary, i.e. 9 =
b2 = 0, and hence w = 0. Therefore, at equilibrium the disturbance vector (8.66) is written as:

X(yp2)= X(y2,t) = AZXP2 404, [X,[.I‘I]COS (@rz2/x;) — X sin (272 /,\,.,)]
+2A? [X,F*?lcos (4rz/A.) — XPFsin (47 /Az]]
+24. [XL' eos (2r2/2,) — X sin (zm/,\z)]
+243 [X,I,3=3lcos 672/2.) — XP¥sin 672/, )} , (8.67)

where A, = 2n/k, is the spanwise wavelength and the subscripts r and i refer to the real and
imaginary parts of a quantity, respectively. The streamwise vorticity component is defined as
'

YT 8y 8r

(8.68)

Using (8.66) we can write the derivatives of w' and ¢’ with respect to y and z as given below

ow' 12 i) 6 13) ,if 12] . 2i¢ 13| 340

3_y = Azw![;o ] + 24 Real [w!l’,l Ugit | Azw_Ll et 4 Awi’\,2 220 4 Agw!f' 313 ] ,
¥

g—"; — 24 k. Real [i (X“'»”e*'*’ + A2X B0y o g y(22) 28 4 3A2X|3‘3|e3“’)] .

Figures 8.19 - 8.22 show the comparison between the linear and nonlinear disturbance patterns
in (z, y)-plane. In following figures, the z-coordinate is normalized with the spanwise wavelength
{X;) and therefore each figure has to be streiched by a factor 27 /k. in the spanwise direction
to get the true aspect ratio of each pattern. In each figure, 8.19 - 8.22, the patterns in the first
column (panel (a)-{¢)) are linear and those in the second column {panel (f)-(7)) are nonlinear.
The first (a and f), second (b and g), thivd {e and h}, fourth {4 and i} and fifth (e and j) rows of
each figure represent the disturbance patterns of density (¢'}, vector plot of perturbation velocity
(v, w"), streamwise velocity (u'), temperature (T') and streamwise vorticity (£1;), respectively.
On the gray scale, the white and black reprezent maximum and minimum values, respectively.

The unstable disturbance patterns for two values of Couette gap H = 140 and 180 with
$° = 0.5, k. = 2 and e = 0.8 corresponding to figure 8.11 are shown in figures 8.19 and 8.20,
respectively. Figure 8.19(a) shows four rows of density clusters along the transverse {y) direction
since the associated linear eigenfunction corresponds to mode § = 4. Figure 8.19{e} shows the
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Figure 8.19: Linear approximation of disturbed flow (a)-(¢) and cubic approximation (f)-(j). (a) and
(f): contours of density; (b) and (g): (v, w) velocity field, (¢) and (h): contours of streamwise velocity;
(d) and (i): contours of temperature; (e) and (j): streamwise vorticity contours (£1.) in (z,y) plane. For
H =140, ¢" = 0.5, e = 0.8, k. = 2 and 3 = 4 (cf. figure 8.11(¢)) In gray scale white denotes maximum
and black denotes minimum. for these parameters flow has subcritical instability.
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four counter-rotating vortical structures. The contours of streamwise velocity, figure 8.19(¢),

(aps

Figure 8.20: Same as figure 8.19 but for /{ = 180 and 5 = 5. See figure 8.11(¢)

look similar to streamwise vorticity contours, figure 8.19(¢), which show that the streamwise
velocity is maximum at the location of minimum vorticity. The (v, w) velocity vector plot. see
figures 8.19(b), shows that the magnitude of velocity is low at dense clusters and the velocity field
changes its direction at the region of density maxima. The corresponding granular temperature
pattern in figure 8.19(d) depicts that the granular temperature is maximum at the region of low
density.

The subcritically unstable nonlinear patterns corresponding to figure 8.19(a)-(€) are shown in
figure 8.19( f)-(j). While the distorted nonlinear velocity (v. u). streamwise velocity (u). temper-
ature (T) and vorticity (£2,) look similar to the its linear analogue, the density field is distorted
significantly. As seen in figure 8.19( f). there are three dense clusters, one appears at the center
of the domain and two near the two walls, along the transverse direction: note that the linear
density pattern has four dense clusters, see tigure 8.19(a).

The overall structure of these patterns remains similar if we increase the Couette gap to
H = 180 as shown in figure 8.20. We observe that the density pattern in figure 8.20(a) has five
dense clusters along the transverse (y) direction which corresponds to mode 7 = 5. whereas the


http://streamwi.se

%.3 Results and Discussions B - ) ) 239

density pattern for H = 140 in figure 8.19(a) has four dense clusters which corresponds to mode
3 = 4. For the description of other patterns see the related text of figure 8.19.

0.4 HZLzO'e

Figure 8.21: Same as figure 8.19 but for H = 135, ¢" = 0.2 and 8 = 3. These patterns are stable and
the supercritical equilibrium amplitude is A, = 0.001416,

For ¢" = 0.2, H = 135 and ¢ = 0.8, the linear and nonlinear patterns are shown in figure 8.21.
For this parameter values the flow admits supercritical bifurcation, see the inset of figure 8.10.
The nonlinear supercritical density pattern in figure 8.21(f) show two dense clusters along the
transverse direction, one at the top wall and other near the lower wall. However, the linear density
patterns in figure 8.21(a) contains three dense clusters (since 3 = 3) along the transverse direction.
The linear and nonlinear velocity and temperature ficlds are look similar. The temperature is
maximum at low density region. The supercritical vorticity contours, as shown in figure 8.21(j),
are stretched along the streamwise direction as compared to its linear analogue.

The linear and nonlinear patterns in dilute limit for ¢ = 0.05, H = 90 and e = 0.8 are shown
in figure 8.22. The density and vorticity patterns are seen to be highly distorted from their linear
counterparts, see figures 8.22(a, f) and 8.22(e. j). while the nonlinear velocity and temperature
patterns look similar to its linear analogue.



240 ] Chapter 8.

06 08

4
S Y2h
z

Figure 8.22: Same as figure 8.19 but for H = 90, ¢ = 0.05 and 3 = 1. These are unstable patterns
(originated from the subcritical bifurcation).
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8.4 Conclusion

In this chapter we have analyvzed the nonlinear stability of streamwise independent three-dimensional
granular plane Couette flow. The streamwise instabilities in three-dimensional granular plane
Couette How lead to banding in the transverse and spanwise directions. Due to this banding the
uniform shear flow breaks into bands of different rheological properties (different shear stresses
and shear rates) along the transverse and mean vorticity directions. We have used the amplitude
expansion method for reducing the nonlinear problem into a sequence of linear problems. The
analytical solutions of these problems have been derived using sine and cosine functions. The
results for all flow regimes have been shown in this chapter.

Our analysis shows that the transitions from supercritical-to-subcritical and subcritical-to-
supercritical bifurcations occur for varying density and spanwise wavenumber. In the dilute flow
regime we have found the presence of mean flow resonance. The equilibrium amplitude follows the
Couette gap scaling with restitution coefficient. The comparison of linear and nonlinear suberitical
and supercritical patterns has been discussed in this chapter. The density and vorticity patterns
are seen to be more distorted from their linear counterparts than the corresponding velocity and
temperature patterns.
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Appendix 8C. Analytical Expressions for Second Har-
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3 [_Q_:U' {#°kst1 T + ik, Th) + O T\ }

+ Zrag T {- g (k3 + k2)rS01 + x$TOTL ~ (08¢ + PRT1)(kgor + ikzwr)
+200 30t - k2wi) + (3al, 0% + 2;,,“:2 +pptn T )

+2kp (31 + W TOw — pP(—kiv] + kGwf - ‘2§k2kﬁvlw1) + p0k? + k3)ud
+X0 (k303 - kZw? + 21k,k501w|) (4D%,6% + 4P4,TE + DT ) }

% [— 31!1' {lﬁo{—kBU]Tl + ik Ty + C{m@lTl}
+ g {- # -%kf(x 1+ k37T — (P51 + pY T1)(kav + ikowy)
+2,u°(k3vl ] + (2P¢¢¢2 QFTTT]_Q + ﬂ‘tTﬁblTl)

+2kﬁ(g¢,¢1 + 43 :mu. + p0(—k2v} + Khwi — 2ik.kgriwy) + pO(—kE + k3 )u?

20 (K203 kgwf+2lk;k3v1w1) — (300,43 + 108, T + D3 Th) ]

If we substitute k; = 0 and w = 0 in the above expression we get the inhomogeneous terms of second harmonic
for stream-wise plane Couette flow problem which are given in §5.4.1,

Similarly

18 2 8 A8 A8y KO0 (18 20 438 a3
SGn.Ggg‘Ggg'Ggg. 221 - {G’n‘Gn‘Gn‘D,Gn}J.

30 2D

kz—O wr={}

(f32. J32. 132) (0.0, fr1) .
N St
3D 2D
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Appendix 8D. Analytical Expressions for Distortion of
Mean Flow

Gl]]'r; = =kghin +eor )
4 ~ , - - - -
G = 4 [—glrr {#° kvt —ikcundn) + ¢y01 + Vi }
-k {2k§(pg¢1 + 6§ TOE +ka(pSy 0191 + phr T Ty + plr o Ty + ul 1 T1ds )}] +ee
G = d [ (U - ikswin) + €01 )

+ 542 {ka (P‘$¢¢1031 +%: T+ 2pﬂ,r¢:f‘1) — kv (1561 + p3T1)
~2kp(kger + itkiw J(ALHL + ,\gj‘l)} ] +ce

G = k[~ {00 hanrte) - ko) + 8000} — gobzr (Wl + BITU ket + K300 + e
G = 3i-% {050(!:;391?1 — thewy T1) + 5‘“’*‘:""6‘} [
+ gt {' FRETL(G + 5T — (301 + D3 T1) (kpin — ik, 1)
+240 (vn'nkﬁ + kfwgﬁn) + pOui k3 + (%ﬁ?wﬁblqal + 34T+ “gT‘mT‘)
+2(u3¢n + T kgt ~ w0 (M + kjwidh — 2ik:kgvion) - kZptu
A (KZv1 81 + 2wy iy — 2ikkgviihy) - (%Dg',mc& +ipd,nh + D3T¢l'f']) }] +ce
G = g [9°(—kgvidy — ikswpin) + 806y ] +co
ff?z _ % [—;15 {Qﬁo{—kﬂvlf‘l _ ikzwlfw])+5(0)¢l'i"l} + d——.—l.r‘.::w {—{pg(ﬁ] +pg~T1 ){kﬁﬁl — ik )

+2u° (v|ﬁ1kf-,. + kfwlti’l) + #oﬂlﬁlk% + (%ugd,(ﬁlél + %HUTTTl'fI + #gq—él'f'l)
+Aplor + u)Tidksin + pOk2vidy + KRwidn — 2k kgviain) + k2l il
+AO(kury + K2un by — 2ikkavid)) — (%‘ng,m&q + 109, T + ’DngT’l)}] +ee

In two-dimensional limit

10 A28 38 mdd dd,  ko=thw=0XTlYeRe 1§ ~20 =30 a3
(Goz. Goz- Goz+ Goz+ Coz) - Gy, G33,05;,0,G53) -

aD 2D

. ) ko =0,w=0X11gR,
Similarly (/. f&2) 702 SR 200, fun).
M o, e’

K1n 2D
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Appendix 8E. Analytical Expression for G,

Consider G as follows
Giy = N-}(X[EQ;, "r[i;l]) = Arz(‘\"[l'.lil_\-['l;'ﬂ}_'_ ‘er{‘\-:n;'z]y'\-|l;1]} g ‘a\,r‘.!{'\-il'.l]"\'[U'.'.’|)
TRLAS B dURID L PEENG S DS () BN i R

where Gg = ((;%:‘.G%:, :“ Cl‘, (;';’3) which has an analytical expression in terms of sine and cosine function

(G5, 6%.8%) = (@8 (:{‘;:‘ G )eos kyaf + {c;;‘a“ c:i*;' G35 Veos k38
(B3:G) = (G153.GLa % sin ks +(G15) []Mﬂ,\ 40
where 8 = y + 1/2 and kg3 = 3k3 with 3 = 1,2.. .. being the mode number. In vector notation
Gy = G (coskysh, sinkyyh. sinkyz. cos kygh, cos ka6)

+G'"£-i (cos kb, sin kafl, sin k30, cos kil cos kaf)

where GT: = ((;}}im. "’“ LG f’;r‘ (;";:';1 }‘l";a} and ('m = (("1 83 G‘fd“ C'Hl G:‘,“ 'E””} are functions which do
not dependent of y,
(G165 = Na(Xa2.X1) + N2(X1. Xa2) + Na(Xoz, Xi1) + Na( X1, Xoz)

(1) (2)
+ N3(X 1. X0 X1) + N3(X1. X, Xy ) + Na(Xy, X X))

(3)
= (N NG + (MBS MEY + (e, )
~ o v ey
(1) (2) (3

Or we can write {G‘f ,‘f;} = (’\"'*] + Mf‘ - (‘“ r']‘, + M; : + ‘”) In 20 case. X is real and Xgo = 2.Xo,
this simplify expressions of Gy as (G ]“i C'm] = 3[Na(Xo, X1) + Na( Xy, Xa) + 4+ Na(Xy, Xy, X))

Continuity equation

[Gt;‘ig‘ciiri] _ (A,Iil i ”1 81 ('I i1 VL]:}H M”i +(‘|¢3)

"\r:l."t“ = - % ks(drva + drd) + ik (drws + I!"|rflg)]
v"\":lﬁn = = % kg(diva — ¢ty ) + ik (@rws + U'-‘l‘:n"-.a)] — ik (w22 + i 022) — koo
M = — 1 [ksa(@1v02 + vidne) + ik (d1wo2 + widnz)]
."Ifll."“ = —% [ caldvoe — Guavr) + ik (O woz + u'|'f=||'.!)] ik d’lh"‘,",j'
(.1;’f:1 - 0 =

[T
clat =

x-momentum equation
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NZ3 = 3 [-— : {‘Er“”éuu + & Wity + drva + dab)
o (kagtrug + kguaity + 2iksiinug — ikswoity )}
+ gz { (k2 = k3 = kiakag) (10 + W Ta)in
~(2K2 + ko + kakap) (S 1 + p Th)uz
~kga (1l 0102 + pGr T Ta + 17,01 To + p T 02)}]

Ny = 3 [_é {2"(0}‘51"2 — &0 gty + prva — b2ty
+d0(—kagiiua + kgvaity + 2ik.biuz — ikswain)}
+ vz 1 (k5 = k2 — kakag) () do + pG T2)in
— (k3 + 2k% — kgkoy) (O b1 + piTh Juz
—kp(pd 0102 + pg oy TiTa + pQp 1 To + uggrf‘l@'z)}]
—Jp (6022 + ¢35y — ik, " wiin)
gtz [(k3 4+ K2) (U002 + T2
~kp (12,0261 + W T2Ty + WG 03T + 13, T3261 )|

M = 3 [—Elrr {2a'" b1 upz + ¢rvoz2 + eV uidoz + vidoz

+¢% (kagviuos + kguyvoz + ikugwoz) }

+goigr { (k3 + kakag)uoa(uQr + u§T1)

—(kgkag + k3 + k2)ui (n8doz + n§Toz)

—kag(pd 00201 + plfp Toa T + phpdo2Ti + ugTTnz‘m)}]
ﬂ'ffﬁiﬂ = % [—glrr {20"”051 upz + orves — ¢ Durdoy — vigos

+0%(—kogriue: + kguyver — thouywoz)

+ i { (k3 + Kgkag)uoa(ulor + u§Th)

+(—kakog + k5 4+ k2 ur (n8 ooz + p-Toz)

—ka (S 00201 + pp To2 Ty + pdp 02Tt + gy Toaon )}]

; ; 02 ; ; 3
—ikswptuy — ol [;:‘.}‘k.f,ul + k(e T+ pl o) + kfp(-_f-.m]

le;igm = “ﬁn [k;i(ﬂf_’l’l?u + @1 Druy + Gropiin) + ik (Gwiug + drdyug — ¢|wlﬁ|)]
+ 550 [—(kﬁ +k2) (é;:‘,;,,,,qbl(z&m + i) + SpGp Ty (2T uy + Tyiy)
+uS (1T + o1 Thuy + mTlﬁn))
‘-1:"9 (#g,,,,,,é?e;] + W TET + 1 g7 @1 (201 T + o1 Th) + plpp Ti (200 Th + Tm"n))
—k?q (ugd,m(ﬁm + 2ur @) + php Tr (1 Ty +2uyTh)
+2udp (101 Ty + w o Ty +wn T }) + k2 (ud 07 + 1pr TE + 2101 T )]

203 _ ~2P1
Cily” =03

y-momentum equation
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c 13

! [— 1 L2608 0y + #W oy + 0O (kaprva + 2ikzibyvy — ik )} )
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—2kghagin (oo + pTe) — 2kgks ua(pl)d) * Hy T )

—kag( Al b2 + My Ta)(katy — k=) — kag(AQor + AQ T ) (kaavs + 2k w2)

+ik;{;1§_},r3*1 + Ty ) (2ikvn — kagwa) — ik (S da + p)To) ik 01 + kg 1}]

% [— :Jh— 2c(M G — #Wepaiy + 0 (—kgiyva + ik v + ik waiy ]}
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—ikkag(pl o1 + p T hwoz + iks(plidoz + pG Toa)(ik-vy — Kk )}]

1 [— gln- {2a! ¢ 02 + D ooy + 0% (kyzrivey + ikzwozvy) }

[— ;lrr {20 py 092 — D goguy + ¢ (—kgvivoe — ik woavy) }
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i 3 i
ik wO2v) + g [_253?,;:‘;«“ — (K3y + ikokguw )AD

m

1
2
+

+k_..;(p'$¢7'1 +php@n) + thep(ikavy — kgun )]
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%‘h‘- (Pgw(b"fél + 00 TET1 4 90,061 (201 Ty + 01 T) +p0 7 T (200 Ty + 01 Th ))
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z-momentum equation



8.4 Conclusion

249

433
Niy

403
M3

Aflli:fl

I

;13 [—;fn 26D érwy + &0 oiy + ¢ (kagiywa + ket +t'k,1ir|u.rg]}

+oopz ks (00102 + P T T + 61 Ta + 90y Tio2)

—2k? (M#f,!,én + p Ty ywg — (1 + ji.[;-Tz}!fq)

+iks (u“ br+ ApT1) (kagva + 2ikzwa) + (A da + ApTa) (ki — ak-rm)
+kag ((.Ud,@ + pf T1)(2ikzv2 — kogws) + [;t + p o) (—ik. ) — k;ur;)) }]

';' [' ﬁﬁ 201wy + &M eginy + ¢ (—kysiiwe — kgvaty + ik wz}}

+gr | ks (PS,P102 + Py TiTa + pYp 1 Ta + pYp Tid2)

—2k2 (2(un + n Tr)wa — (kY + W Ta)in )

+iks (A é1 + M) T ) (kagva + 2ikew) + (Add2 + AL T2)(kgin — ik:fﬂi))

i (W91 + u§T0)(2ik-vz — kguwz) — (b2 + p Ta)(~ik. o1 — kyin)) }]

- 315 [ik,—_qﬁuiﬁl w22 4 26 g w2 4 E'(U}(bf,'ftill]

gt [~iks (Pood163 + PR TR + pr i T3 + 13y Ti637)

—2k2w2? { (.u @1+ 1o Tl) + (’\gcbl + Al f‘l)}

+2k? (p. $22 + ud.T22 ) Wy + ks (,\“qb?,? + A9 T”) (ks — ik, y)
(;I¢¢m kS ;12-.'1"3?) (—ikz kavi — k|_3ul1)]

4 [—;‘ﬁ {20 ¢ wo2 + M oowy + ¢ (kagviwoz + kavozun + ik:wozw)}
+ e {—r‘k (P P0201 + PlpTo2Ty + plypoo2Ti + Py Tozdn)

ikxkoy g’ Y1+ A9 T1) vnz — kagkag (uc,tm + Tx) wo2

-'Zk?(;l do2 + p Toa)un + ik (A doa + M) Toz) (kavr + ihzwi)
+kaa(pd oz + plf Toz)(iksvr — kgwy )}]

1 [ "I'!' {2(1(0}63[“’{]2 + rmJ(‘)ngml qb“(—kg,r_-}ulmug — kgvozw + ik;wozun )}
+;n1;’: {1»\ kaa(AD g1 + AQ T )vor — kakos (o1 + 1Ty Jwoz

—ik: (P.w!ﬁnze‘n +PT~,-TE)27| + 1! Tq‘)ule + P¢T7‘uz¢|)

—2k2 (ufpo2 + pyToz)wy + iks (A Gz + A9 Tm)(k,,vl +ikowy )

—kﬁ(ﬂ-‘»cﬁnz + .l.i ) The ) iksvy — ﬁwl}}] vy [2u“”¢51 + ik: ¢”wl)

12
+33f;}g [—lk;{pTTT] +p0pt1) - 2k3,ug.u.-, + ik AD. (kgvy + ikzwy)

+ulkglikzo — k,-mrl)]




0 Chapter 8.

A v 7 = — . - 1 3
C :;,” = —ﬁﬁ 'tk:énuf + ks ((.‘51 i + ¢y + 91 i’lu'l)] + 02 [

e {30811 + SO+ lron (T + B Ty) + s Ts (0Th + 700 )
+2k2 {”:’sc’“’l (%H_PIG’I = u-'la:u) + plp T (}Etf'lTl —unTy

+igy (ﬁ‘lél'ﬁ — w1y — u']lbl'f"a)} +ik-ky {AL.',GJO‘H (&r‘w: + Hlf.\;-'l)

+A T (%ﬂl'ﬂ + 1!|f1) + Ag.r (F’lfbl'ﬂ + & T + xrl'f"n.a])}

+k2 {/\',;,L.,W (%"_-‘lc-"l - u-‘wrn) + A T (%ff'l.'rl - 'fl‘if'r)

+A% 7 (*?'1 Ty —wion Ty — mlm:f:)

~Bikks {,,gﬁm (%m«.. —vid1) + Ty (ST — o)

+ihy (fuc')]Tl — o Ty — Pm‘u’f])}

—:1!::23 {;sgma (%ii‘lﬁm + 'U’I'?sl) + upT (%!f-'lTl + u'tT‘"l)}

+eh (tf-‘adJ;Tl +uy Ty + !!-'1¢1'f‘1) }]

(_."1"."‘” = —ﬁrr [3ik;a‘5|wf — kg ('31"1 wy + 01wy + @y “7‘1)] + _lzi,'ﬂle’." [
—3ik {480,,9801 + 300 T + Wyr (01710 + 23T ) +lrr (i + 47201 }
+6k? {.“t,;@"ﬁ'l (:;'-,_ﬁq:b-. - u'm‘h) + 1 Th (%Ii‘-]’r], - usl'f‘;)
+ulr (?E'u.bl’fi —un gy Ty — u-'lmf‘})} + Jik: kg {)\g¢ (%t"uﬁ? + "1&91(51)
+)‘EII"I‘ (%fxﬂ'f + 111T1'f"|) + .\g,r (flirmT] + g Ty + mf‘ﬁll)
+3k2 {Ag",‘ (%ti‘[{b? - wm":ltm) + g (%ﬁu'ﬁ"‘ —un T T})
+A% ('f-':c‘ii'ﬂ —un Ty — 'HJ1¢|'J'_"|)} — tkakaty (%.ug,,,d)f + %p?-—r'f'f‘ + ugrm'ﬂ)
+ikskgm (;;‘q}w_m& + iy T Ty + (b1 Th + fl))
K (58t + Sy TR 4 o)
k2w (Jlg,p@bw'_’: +pu T T+ !"E;I,';-(';:’]Tl + o Ty })]
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CHAPTER 9

THEORY FOR MODE INTERACTION:
COUPLED LANDAU EQUATIONS

9.1 Introduction

Examples of mode interactions due to linear resonance are shown in figure 9.1. The variation
of growth rate with Couette gap H is shown in figure 9.1 for mode numbers @ = 1, 2, 3 and 4.
The circles represent points where two modes cross each other and beyond that a higher mode
becomes least stable mode until next crossing. For parameters denoted by circles, the single

x 10"

20 40 ] 60 80 100

Figure 9.1: Variation of growth rate with scaled Couette gap for # = 1,2,3 and 4 with ¢" = 0.3 and
e = (.8, The mode crossing are shown by circles. The Carnahan-Starling radial distribution function
(2.13) for ¢pmaer = 0.65 are used.

Landau equation deseription is not valid. Near such resonance points we need a theory for mode
interactions leading to coupled Landau equations.

Davey & Nguyen (1971) have shown that the Watson's method encounters mean flow resonance
in suberitical conditions. Later Mizushima & Gotoh (1985) resolved this problem by considering
coupled Landau equations using the amplitudes of the fundamental mode and the mean flow
distortion. Another kind of resonance, e.g. 1:2 wave number resonance, between waves of
different wave numbers are also possible as discussed by Fujimura & Mizushima (1985), Proctor
& Jones (1988) and Fujimura (1992).

This chapter begins with a general derivation of coupled Landau equations, §9.2.1, related
to two non-resonating waves having growth rates of two modes close to zero. It was shown in
chapters 5 and 6 that the granular Couette flow admits various types of resonances, namely, 1:2

253



204 Chapter 9.

wave resonance and mean flow resonance. Sections §9.3 and §9.4 cover the topics of 1:2 and mean
flow resonances in detail (Knobloch & Guckenheimer 1983; Coullet & Spiegel 1983; Guckenheimer
& Holmes 1983; Mizushima & Gotoh 1985: Dangelmayr 1986: Proctor & Jones 1988; Fujimura
1992; Dawes & Proctor 2008; Guba & Worster 201)).

The weakly nonlinear theory for the streamwise independent flow using the analytical solution
of linear problem has been discussed in chapter 5 (Shukla & Alam 2011). In the framework of
previously derived analytical solutions for streamwise independent flow, we derive the analytical
‘expresstons for the coefficients of coupled Landau equations in §9.5 for non-resonating modes.

This chapter is organized as follows. The expansion formalism and derivations of coupled
Landau equations for interactions of non-resonating waves are given §9.2. The derivation of
coupled Landau equations for interactions of resonating modes having the wavenumbers ratio 1:2
is given in §3.3. The mean flow resonance interaction and the corresponding coupled Landau
equations are derived in §9.4. Analytical solutions for mode interactions {non-resonating) of the
streamwise independent 2D granular plane Couette flow are developed in §9.5. The conclusions
are given in $.6.

9.2 Interaction of Non-resonating Waves

9.2.1 Expansion Formalism

The nonlinear disturbance equations can be written as (cf. Egns. (3.6) and (4.14)):

(%—C)X=N2+N3+M+N5- (9.1)

The disturbances can be decomposed as a linear combination of the critical modes, ®, corre-
sponding to two interacting modes {for example, interactions of pure spanwise disturbances with
the one dimensional shearbanding modes) and infinitely many noncritical inodes, ¥, as defined
below:

X{z,y,t) = ®(z,y,t)+ ¥z, ut) (9.2)
From the linear stability theory we can define & as (cf. Eqn. (4.26))
¢ = AWEXU () +AOEY! () + e, (9.3)

where X[51! and Y111 are the eigenfunctions (fundamental modes) of the linear problems asso-
ciated with two interacting modes which satisfy the following eigenvalue problems:

LX) = o xU0  and L YIWY = oy (9.4)

respectively, with ¢; and ¢ being the corresponding eigenvalucs. Here E; = e*s1*+e1t and E, =
ethstert (Fgn. 9.3) are the exponential contributions of the critical modes. Recall from §4.3 that
the fundamental mode is the eigenfunction associated with the least stable eigenvalue.

Similar to the single mode analysis as discussed in chapter 4, (§4.3), we can express solution
X in terms of generalized Fourier series:

X@pty= Y (X”"’E‘{‘+Y““E§)+ S ZWEE] e, (9.5)

k=—nc i,j20,i=3#0

where X®) = X® (), YIB = Y&)(y) and 2 = ZO9(y) represent complex valued functions
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originated from the interactions of fundamentals of interacting modes. The pure interactions of
first mode with amplitude % and the second mode with amplitude 2% are represented by series
X™ and Y®), respectively. The interactions of fundamentals of X*) and Y¥ generate mixed
type modes which are represented by a serics Z¥). Hereafter we refer modes related to X ™)
Y} and ZU9) by X, Y and Z modes, respectively, ’

Substituting above ansatz (9.5} into equation (9.1) and equating the like-order, E™, terms,

we get:
d
(3 — C]) .ﬂ’lx{l:”

Ma(X W, X Oy 4 A(XO, X} Mp(XD, X3y

FARXD, XM 4 A1) Y0 4+ A (YO, x ()

FAR(ZUD PO p AP, 2000 4 Ay e 2(1-1))
+N'2(2(1'1)‘2(l}) +N3(X{l},X“}, th)}

FA (XL XWXy L A xD gy (9.6)
Ny, YO + M (YD, Yy D)y 4 A7 (0, ¥ 3

d
i raginl
(dt 02) 2¥

+NR(Y P, 7)) 4 MY ), XO) 4 Ap(X O, vty

FN(ZUD, X 4 N (XD, Z00) 4 A(x D, 241Dy
FAR(Z0I0, X 4 Ar ), YD)y ()

ANGY D YOy 4 Ay v yDy 4 (9.7)

1]

d
(EE - C) Wiy, t)
The first two equations (9.6)-(9.7) are the evolution equations for the critical mode ®, and the

last equation (9.8) for the noncritical /passive modes, ¥, is called enslaved or passive equation [cf.
{4.30}, (4.31)] (Carr 1981; Shukla & Alam 2009).

nonlinear tertns. (9.8)

In order to reduce the above set of equations, (9.6)-(9.8), into ordinary differential equations
and subsequently to reduce the dimensionality of the system, we use center manifold theorem
(Carr 1981; Wiggins 1990) which states that the dynamics in the neighborhood of the critical
conditions is governed by a low dimensional systemm which can be obtained by projecting the
infinite dimensional non-critical modes onto critical modes. Therefore all noncritical modes,
which are represented by ¥, can be written as a function of critical modes, j.e. ¥ = ¥(&).
Following theorem 3 of Carr (1981), we can approximate noncritical modes as Taylor series as
given below:

XO@,t = laf (X0 +laf X0 + .. ‘

XWgty = ah (XUN() + oA X0 )+

XDty = o (XRA) + Al X) + )

YO =l (YOU) + s YOI + ... )

Y(,t) = @ (YIN) + 1l YIS + . )

v = e (YEAQ) + P YR - ) . (99)

AR
Z="(y,1)

ity (203 + 1) 200 () + 198 200 () +

a1 (220 + 11 200 ) + 19 2% () + g

Z0%y,ty = o (| 2 () + 1ol Zlghy) + .
ZOy 6 = & (JAl 2NN + A 2

2000 = e (250 + 1l 2w + 1l 25w+ )
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where the subscripts X and Y refer to mean flow contributions from X and Y modes, respectively.
In the notation Z["” 1 the subscripts i and j denote the powers of Ey or & and E; or &,
and the superbcnpt m represents the sum of the powers of amplitudes of X and Y modes. The
definitions of pure and mixed modes are given in figure 9.2.

Pure Mode Mixed Mode

X{rl) o Mﬂlm [k—uiy[n;k} l

Z(um,’l ~ ‘Qfl”dzmlm Ik—u—mzfﬂﬂfl:kl

nmX

Y{n} ~ %nl%lk-ny[r!;k] |

[ Z(nm} ~ ‘Q{lﬂ‘d‘;u|ﬂ%|k—n-mz["+ﬂl:kl

nmy’

(e} [T, J 1T 35T T
Z0mY o o oty 7! |

nmne

Figure 9.2: Definition of Fourier modes X™®, Y*) and zn™),

Now substituting {9.9) into (9.6) and {9.7) and simplifying the resulting expression in terms
of like amplitudes, we get:

(% —a)anxtil
(d_t — (,‘2) Q’QY“ 4

where
Gl

12
6'13

21
Gl3

22
GIS

I

li

G| P + GHah| ol +

Nz[X[O‘QP‘X“‘”) + Ng(xll;ll‘x[ﬂﬂl} + N2(j[l:1}'x|2;2|}

+ N2 (X3, XINUy 4 Np X610 x 16 el

FNG (XL I X161y 4 g x (6 x (61 g1ty
[N,_,(x[l'li ylo2ly 4 Nyeviozl x4 NQ(Z[”} ity
+N2(Y“ A 212 '3\] + Ng (Z’lﬂ 2 Yin ”)+N2[Y[1 A, ZW '21}
+ Ny (X (11 yll I, yitily 4 N3(X|‘ Ayl yli lI)

+ Nyl X[l l] Rth 1]) + Na(Yitd] YI‘ 1) x[l 1])
+N3()"{l-.11,x(lxll‘yll‘.li) + Ns{}'»'[l'.ll'yu;lj,x{l-.l})
[Ng(yh-l X121y 4 Ny(XI02) Yty 4 (222 gy
+N2 (X0, 2883 1 (2103 iy 4 Ny x 1,z
+N3(Y|1 i1 Xll 1 X{l 1}) + Na(y[l B Xll 1] X[l 1])
+N3{X[' 1] Yyl X[l ||} + N3{X[1 ]] X[l 1] Y[l ]])
+N3();r|1;1]'Xl1:1|'y[l;1f) + Ns()'(|1;l|‘Y[l;u,xn;u)J
[N,_,{Ylmi_yil-i]) + No(YIBU, y0:2ly 4 NPl yizg)
+Nﬂy[2;2]|?[l;!l) + Na(?ll;ll‘yll;ll‘y[lqll}

+Na(y Lt pival ylly Ns(yll'.]]’yll;ll‘}'/[l:l])]

9.2.2 Coupled Landau Equations

Gié&f] 1&?’1 |2 + G{%Wl iﬂgP + ... }

(9.10)

o

(9.11)

The coupled Landau equations can be derived by taking the inner product of Eqn. (9.10) with
the adjeint lincar ecigenfunctions related to X mode and ¥ mode:

dovy
dt

st
dt

W

1) + A [ P+ Aaah a2,

280y + A1 o\ | + dpp sl

(9.12)

(9.13)
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O(«) OF*)  o@?

X]U.ZI, yio2 ~N Y13yt
X[l;ll’ylml_) lel’ylz%zl - [+3)

\ _ or »
Z1%1 7122 /

-1 2

{1;3]
ZOI,\'

Figure 9.3: Sketch of nonzero functions for coupled Landau equations at different orders where arrows
indicate the dependence of these functions on other functions.

where

A (XLGW /0, Xy gy = (X1, GI3/(XT, XYy (9.14)
A = (YLGE/(YTL Yy ag = (Y GV YIBYY, (9.15)

Here X* and YT denote the adjoint eigenfunctions corresponding to X' and Y11Y, respectively.
From equation (9.11) we see that G1}, G5, G3} and G¥3 are functions of higher order harmonics
(xto2) x22 yo2 ylz2l Zﬁﬂl and ZP_;QI]) of interacting modes (enslaved modes) which can
be obtained by substituting (9.9) into (9.8) and equating different order equations:

Of|an {2} : (2¢1r — Log) X103 = No(XWsU X1y 4 N X1 xiudly )
O{&(]‘Z) . (2¢; — Lza)_\d?;?] = NQ(_\'II:I],X[I:I})

Oletel?) : (2cr — Looj¥12 = No(YBN I 4 Np (PN, YN

O(a7f) (209 — Loa)¥Y (2 = Np(YIs ylit))

Olaf a%) : (@ +e2) = LaZOF = Ap(yh, XUty 4 N (R0, y Ity

O ah): (e &) - L2y = Np(VIL XEH) 4 Np(x sl pintly 3 (9.16)
O a2) (fer + e2) — L) 2372 = Na( XU Yy 4 Ny 1], x (st

O@a)?) : ({er+2e) — LigpX 81 = —a x4 Gl

Olaalaal?) . ({ea + 2020) = Lon)Y I3 = oo ¥ Uil 4 632

O(s#ilatl?) s ((en +2¢2) - Lin)Zley) = =AnpXxUl4 6l

Olahlai|?) :  ((e2 + 20}~ Lo)Zyyy = —Am YW 4 G2L

where L., = £{(8, — i(mky, + nks,), 0/0y — d/dy). We have used (9.12) and (9.13) to derive
the above equations. The non-zero harmonics and distortions, which are needed to calculate the
coefficients of coupled Landau equations (9.12)-(9.13), are shown in figure 9.3 where the arrows
direct to the higher order harmonics and distortions.

9.3 Theory for 12 Wave Resonance

In §9.2 we considercd the interactions of two non-resonating modes. Let us now consider the case
where 1:2 wave nunber resonance occurs.
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9.3.1 Resonance Condition for [:2 Resonance

We consider two modes at wavenumbers k., and k., and proportional to e« +eit and ethrarreat
where ky, > K, e and ez are complex eigenvalues whose real parts represent growth rates. The
condition for 1 : 2 resonance is:

i % and ::—Lz__—, (9.17)

9.3.2 Derivation of Amplitude Equation for 1:2 Resonance

We follow the same procedure as described in the last section for non-resonating modes. Eqns. (9.1)-

(9.5) are common for both cases (resonating and non resonating). Substituting (9.5) into (9.1)
and equating the like powers of E} and Ey we get:

(% = rl) an X1 = A, Oy L AG(X'D, X)) 4 AR X, X123
.
+N-:2{J\-[23“\'—<1])+N2(_\-{1'|_’.‘|’[II} +-I\|-2“v(:1]“\—t!])
+A‘.‘2(Z(ll|‘}'v{l}}+_|\|-'2(Y'tll_zilll'] +.-\"‘;a{?l'“]‘2.’-”_l})
+N2(ZO7D oy ) L N, Yy 4 A (Y, X
e (9.18)

(% B {_2) GHBYIH = ARy y ) 4 N (YO y (1)) 4 AP, y(2))

fl
FM (YL PO L NGy ™, X0y 4 AG (X, y ity
FN2(Z2100 XY N (X, ZU0) 4 A (XD, 2(-1)
FANZ(Z5ID XU N (X x My (9.19)

(&) wan

The underlined terms of (9.18) and (9.19) are due to the resonance (1:2). Owing to these extra
terms, the amplitude equation has additional nonlinear terms at quadratic order. The Fourier
coefficients X, Y and ZU7) are given in terms of Taylor series as given by (9.9).

Now substituting equation (9.9) into (9.18) and (9.19) and simplifyving the resulting expression
in terms of amplitude up to cubic order, we get

nonlinear terms. (9.20)

(‘—"‘ - r'l) XMW = Gld | |? + Glieh | a|? + Gl oo, (9.21)

d M1
(5 cx) v

The explicit expressions for G, G112, G2L and G?2 are given in (9.11) and the nonlinear terms
P I 13: 13, U3 13 : :

related to quadratic terms in Eqn. (9.21)-(9.22). i.e. G} and G#3, are given below:

G|t |* + Gaa| | + GE 2. (9.22)

G13 = Np(XIHU yt) and G2 = Np(x 11, x 01y, (9.23)

Taking the inner product of above Eqns. (9.21)-(9.22) with adjoint eigenfunctions X' and YT,
respectively, we get coupled amplitude equations (cf. Eqns. (9.12), (9.13)):

ls = - =

% = ol + g | + Aadh|ah|? + \as b, (9.24)
f

I’L".Sf-_g ' ) f 2 o o
5 = Co iy + Aoy o | |7+ Aga o] aa|™ + Aoy, (9.25)
(]

where A5 and Asy are additional coefficients at quadratic order due to 1:2 wave number resonance
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as defined below:
Az = (XU,GRy/(Xt, Xy agy = (Y, GE)/(XT, YN, (9.26)

Here X1 and YT are adjoint eigenfunctions of two interacting modes corresponding to X1 and
Y11 respectively; the other coefficients are given by equations (9.14) and (9.15). The equations
for higher order harmonics can be obtained by substituting (9.9) into (9.20) and equating the
coefficients of like powers of amplitude:

O(H2) : (2¢1 — Lag) X4 —Ma X 1 4 Np(x Tl x [ty
O( ) : (@1 +c2) — Loi)Z02 = —agylill + Np(Yittl Xty 5. (9.27)
+N2(X[1;1]_. y|t:l])

We make use of Eqns. (9.24)-(9.25) to derive Eqn. (9.27). In the case of 1:2 resonance, we have to
solve solvability condition at order two (see Eqn. (9.27)). On the other hand, for the non-resonant
interaction, the solvability condition appears only at cubic order. In the absence of resonance,
A1z — 0 and A3 — 0 and therefore all the governing equations of the previous section can be
attained.

In a similar manner we can derive coupled amplitude equations for 1:3 resonance case. In this
case the extra terms appears at cubic order:

. -

}-t-‘i = oo + A\ | ) + M || + Ao oty (9.28)

b _ oty + Ay s |2 + Az s s + Aag (9.29

T Coily + Mg @ | ) |° + Aaa || + Aaa ey, 29)
In general, if 1:n resonance occurs for n = 2,3.4, ..., the coupled amplitude equations contain

some extra terms at order n (in addition to standard nonlinearities for non-resonant interactions).
For a general theory of 1:n resonance, see Dangelmayr (1986), Proctor & Jones (1988) and Dawes
& Proctor (2008).

9.4 Theory for Mean Flow Resonance

9.4.1 Resonance Condition

Let us consider two modes at wave numbers k,, and k., = 0 and proportional to e’*=17+e1t and
e“2t: ¢) and ¢ are the complex eigenvalues whose real parts represent growth rates. The condition
for the mean flow resonance is

2¢1, = 09. (9.30)

Here ¢y is real that corresponds to shearbanding mode (k,, = 0). For instance, in a single mode
analysis using a mode with wave number k., , the governing equation for the second order mean
flow distortion can be obtained by substituting & = 0 and n = 2 into Eqn. (3.39):

[2(1“” - Lu] X102 = noxil xaly 4 o (xal xlvaly (9.31)

where Ly is the linear operator at k, = 0 and a!” = ¢;,. If ¢; is one of the real eigenvalues
of operator Ly, the homogeneous problem associated with the above equation has eigensolutions
and therefore we need to solve solvability condition (cf. Eqn. (3.44)). This is called mean flow
resonance because the fundamental mode with nonzero wave number k,, interacts with the mean
How distortion mode.
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9.4.2 Derivation of Amplitude Equation

In contrast to Eqn. (9.5), the only change for the mean flow resonance is that the amplitude
related to second interacting mode A, is real. The expansion in this case simplifies to

oG a0 s ol
X(wyt)= Y XWEF+ ): R Y, ZWE tcel. (9.32)
k=—mc k=—ac,k#0 i jz0i=j 20

Substituting (9.32) into equation (9.1) and separating the equations at each order in amplitude
we get:

(;_-; _(,l)m_\';l;ll = AB(XM, X)) £ A(XO, XD 4 ALK, X @) 4 AB(X@, (1)
i

+',\.-'2L\'il:‘yf2l)+(,\,f2(}rr'2}_x(1})+’.\‘.-2(z|1|;.,-:l]}
FN2(Y D, 21y 4 AR XM, XM x () 4 A (x 1) X1 x (1))

FAN XY, X XUH L AL vy L ALYy ), Xy (9.33)
(;—i—ng),cfa}'ll‘ll = No(¥YD ¥y 4 N (YR, vy 4 Ay, X0 L AL (XD vl
+Na {JHIJ ‘&IH]—F}\ {\il] 1““)4— \,2{\(1] zl Hl )+ \ (Z{ 11) \i]]}
NGV, Y, yi) + MG (), v ) 4 Ny (XD, Xy, (9.34)
((Tjr —C) ¥ = nonlinear term. (9.35)
F;

The underlined terms of Eqns. (9.33) and (9.34) are due to the mean flow resonance. The complex
coefficients of series (9.32) can be written as

XO(yt) = 1.c!|?(‘('|":2]+|9:/1|2X[”:"|+ ) \

XOyt) = ‘:/(’(“ Ut e X1 4.

XO(yt) = of (XA 4o xB 4 )

YO (y,t) = ab (YN +a2Y18l(y) +..)

Y (yt) = of (YRA+ a2y (y) + ... L (9.36)
£0st) = (R

ZO0(yt) = o (|l Z..‘li'+|csa| 253 +

20ty = aiats (212 + | 230 + /'fi;‘] +. )

20y, t) = chth (297 +1n 2% + o220 + )

Substituting (9.36) into (9.33)-(9.34) and after rearrangement we get:

G| |2 + GL2ah 2 + G s, (9.37)

e
e"i.l;-__
|
~—
&
-
|

(_‘i_ . .r_-g) YW = GRan| o |® + G + Gl |? + Gy, (9.38)
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where the nonlinear functions are

gl = [:'\'-z(i’“’”',)f["'i'z')+NQ{A\'[Q‘QI,.\“(““?)+N:;{X’“"L.\""‘”.X“il]) 1
+N3(t\'ll:l_1.X:_l;l]__\'[l:ll) +N3(x[1:l|?'\'il:l].j|1:l|}]
63 = [Na(z, yiun) 4 Ny(viny, 2857

+N2(Z[2;i2i,yll"1]) + l.l\‘rQ.“f[l:H‘Z:21'v2]] + N;-](;Y[]:”,}'_[l;”.Y[l;lij
+Na{y}1;l!‘X[[:IL}'[I:!;) +‘|\,':i{).'][l:1].y[l;li“\'|l:1]}]

G%j —_ sz-\'glzl].y[l;lh ‘
GH = [Na(yDs, X2 4 Np(xi22) yinitl) 4 Np(2[3, X)) & (939
+;\,'2(_s{'[1-.1|_3[1;'-2]] + Ng(zl_“ﬁ],X“”l) . Nz(.-‘(“?”,z{_”ﬁ]}
+N3(}'|1-.1].X[I:l].x[l:l,’.} + Na(y“:l],X[l:l[,xlll’l])
+;'\a'3(X[1,-||_}.-{1:1]__‘;[1;”) +Ar3{_\-§];1]”\"|lzl]‘y{l:l]]
+N3(“"{]:11.“'il:ll‘yfl:l]} 4 N:j(_\‘f[l:]]. Yll:l],X“:”]
ij — {Nﬂy[z:z].}.-[m]] +N2(¥[1:l]_}>i2;2]} 4 N3f_Y|l:1],Y l:l]‘Y[l-.lj]]
Gfg = Nz{x[l:l]“\'[l:i[} + N‘g{.\'[]“'ll,xll:”) (;%3 = Ng(}-‘[l;l]..y[l‘.l])

In order to get coupled Landau equations we take the inner product of (9.37) and (9.38) with the
adjoint eigenfunctions X' and Y1 corresponding to XV and Y151 respectively. We get

d.o

" - & G+ A1 | AP+ Mo Ay + Mg oy s, (9.40)
.o 3 ;
d_fz = o + a\gl.ﬁ"2|.c.’v”1|2 + /\ggﬁ’fz‘i -+ /\23|—Qf[r2 = 1\24-93f22. (941)
where the A;;'s are:
_ (X6 _ X6 o, (X1GE)
Il = (_‘QT__X[]:lU. 12— <X‘?‘_‘!{[111l), 13 <X’=T.Xll‘]})
(Y1, G2 (v'.eh (Vt,6H (Y1, G
Agp = ————13L ) e 9 e 4= e,
(}‘1'y[1;1i) (}T‘}’[l:l]> <y1.y[1:1]) (yt,y[1;1]>
Substituting (9.36) into (9.35) and equating the equations at each order we get:
P ALE (2c1 — Lop) X021 = —AaY0l 4 G2 A
O(32) : (2e1 — Lag) X% = Ngp(xl, .\'ll:'ﬂ}
U(u’;} ; (205 — Luz)}'“:zl = —Ayvittly G‘lz‘%
O(@hah): (@1 +e) - Loa)Z% = Na(y 1l R 4 Np(R 04, y it
Oty ) : ((c1 +e2) — L) 2122 = —Apxiil 4 gi3 \ (9.42)
O 2): ((er + 2e10) = Lig) X = —ap x4 gl
O(a) : (32 — Lop)Y 11 = —AnYihl + G
O(haf): (a1 +2e2) — Li0)Zlyy = —AnpXlil4Gl3
(| [2): ((e2+2e1,) — Lon)ZN\Y = —Ag Yt 4 G2

These inhomogeneous equations are solved to obtain higher harmonics.

9.5 Analytical Solution for Non-resonating Mode In-
teractions: k, =0

For the case of streamwise independent (%(.) = () 2D granular Couette flow, we have found
analytical solutions for “non-resonating” mode interactions. These solutions are deseribed in this
section.
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9.5.1 Linear Problems: O(/) and O(.)

The linear eigenvalue problems for two interacting modes (cf. §9.2.1, viz (9.4)) are:
LipX™ = ¢ x4 and Ly Y = gy 111, (9.43)

where Ly and Lmlare the streamwise independent linear operators, and Xl = (0‘)_[.! :”, ul—m l. 1-‘LHJ. TJLI"” )
and YU = {gb.[yl:”._ uLl:”, le:t]. TL[,I:”)T" are the eigenvectors corresponding to eigenvalues ¢; and

o, respectively. Note that for the streamwise independent fow L = L,,,, = £(9,(.) = 0.9/dy —

d/dy) which is given by Eqn. (4.15). Reecall that the eigenvalue problems Eqn. (9.43) can be

solved analytically in terms of sine and cosine functions (Alam & Nott 1998):

(Q‘?i—ll‘l]-r}{_-lll]) = {{3'1(1';”-Tl{r“}("[)Sk-"‘H‘ ((} 44)

(u.,'[rl:”, ul.’”l} = {n{l"”, nim)sin ks, AN
where kg = gm. 3=1,2,...and 6 = y £+ 1/2 and

(@) = (@, 7)coskat, .

( (1] [1:1] _ (e} | (e)y oo g, {9‘4‘])

uy vy ) o= (uy vy )sinkab,

where k, = am, a = 1,2,.... We use the superscript ‘(7)" and ‘(a)’ for representing the modal
amplitudes of X' and Y"1 modes, respectively.

9.5.2 Second Harmonic: O(%?*), O(#) and O(o <)

The governing equation for the mixed second harmonic at O().%%5) (see Tth equation of (9.16))
is

[(c1 +e2)I — L] 222 = Ny(x 1 ylitly 4 Ny i, x40y = Gy, (9.46)
where Zﬁ:?] = (Q?i?i‘.u_l:?ﬂ!‘t_,?:?!_ﬂ?:EI)T;- is the second harmonic at O(@/.¢%) and Gg. =

(GY,..G3,.. G35, . G4, )" represents the nonlinear terms as given below:

; Ha+d) ~dla+s La—3) ~dla—03
{621!22 * Gé}!z} = (GZLZ.: N 2 H] GQ{Z': 5 ) cos k(\"h‘]g =F> (G.Z!:J‘:‘ ; )‘ G2{2(.‘: : } €os 'I"a —;'*9 (() _17)
v : - 8) ~3la+d), . 2(a—B) ~3(a—@), . ’ L
(G2,,:Ga;) = [Gg.(;:+ J.Ggi;? }}:-;111 korgl+ (G‘jg; '”._ G;g; ' }) sin k30
where the analytical forms of Gég;i"” for j = 1,2,3,4 are given in Appendix YA,

The form of Gil.[g‘:i’” for j = 1 to 4 are functions of modal amplitudes of fundamentals of

s v 3 i 3) Al b ' cx ) { F .
interacting modes, [rP{|J }-. *1{1 H f'& ].11[’”} and {q‘){,"], ug 2, f-'& M T1[ 1},l. This suggests an analytical

solution for Z%z;:;!; = (q.fiizzl'z]. ulf:'z]. 1'?"2]. T:!E:Q])T" as
(G.LZ:2|.TZ|2:'.!|) - {f_-’)é“L'.ﬂ.T;tl-l-"ﬂ){'flﬁ-i\',-,hj{’)'+ {r,-‘sz"_:ﬂ_T;“_;”)(‘Uﬁ A.“_;ig (918)
(u,_z‘z:.Z]‘ 1.:_:'2:3]) _ {_”I{zn +.‘”. pg’v-——l‘i} ) sin k“ ;.,-1!9 1 (“gl ; J). f'én — 1) ) sin ;1_“ .I.“g . 3

Substituting Eqn. (9.48) and the inhomogeneous terms Eqn. (9.47) into Equ. (9.46) and separating

the coeflicients of sine and cosine we get following equations associated with the unknown modal
amplitudes of the mixed second harmonic mode:

. a+3 - g dla+3 2 3 e 3 Ao+ dTe

(er +e2)] - Ly™7| X377 [(;2,‘22* }'Gz'l_;:+ }-G-z-{z:'+ J'('Q'Ez:+ o

a—i3 ra—13 (=03 +2(a—d 3o —i4 loa—=3) vy

(s +eli- I 0| X5 — [l aie® ai A weopre

(9.49)
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i 8 a+d oA\ Tr -3 -3 a—f3  a—f qa—B\Tr
where X537 = (9577, a5 P, 007 T and X277 = (6577 uy ™7, vp P T8?)T" are modal
. . 2;2
amplitudes related to the mixed mode Z L !

The governing equations for second harmonic at O(/?) and O(&%) (see 2nd and 4th equations
of (9.16)) can be written as:

X mode: [2a]— L1 XZ2 = Ny(xIB xIhtly (9.50)
Y mode: [2e] — L)Y1#2 = pNy(y[El y il (9.51)

where
X|2:2] — (¢L2:2| : u[f:;ﬂ ! UEJ:Q]- TJI.?Q]) and Y['E:?] — (¢L2:2[, u‘[u2:2] : ,”LZ;EZL T}E‘Zl}) (952)

The analytical solution of second harmonic has been detailed in chapter 5. In short, the explicit
forms of second harmonics (see chapter 5) are:

@22 1% = (8P, T4 )cos kap + (0, Titran) e
22) 22y (a) Ay ; (9.53)

(urve™) = (uy ' vy )sinkegh

s B r“")t~r)~kzﬁe+ (0, T ;
(2:2]  [2:2]y _ n) a) . (9.54)

(g oy ™) = (uy )sin ko, 0

where ka3 = 2k5 and ko, = 2k,. The distortion of mean flow is related to second harmonic
(Shukla & Alam 2011): X2 = 2X[22 and Y2 = 2y22  Recall from chapters 4 and 5
that the least stable eigenvalue and associated eigenfunction are real (shear-banding mode) and
therefore the second harmonic of fundamental and the distortion of mean flow are real functions.

9.5.3 First Landau Coefficients: O(&|%4|?) and O(a%| %)

At cubic order, we have two coupled equations (see 10th and 11th equation of (9.16)):

(1 + 2¢2r) — Lio) 2Ly = —AieXWV 4 613, (9.55)
((c2 +2c1r) — Loy)Z0Y = —auyitl 4 G2, (9.56)

where G13 and (_'fd are the nonlinear terms. For simplicity we are using the notation H for G}%
and Hy, for (_' 13 now onwards.

From the analytical solutions of fundamentals and second harmonics of pure and mixed modes,
it can be easily verified that the nonlinear terms Hy, and Hsy, are:

(H112‘Hi|2) - (Hl{2n+ i) Hl(20+i )(Ubkga+,1ﬂ+{Hl(ln -(3) H«\(?n J}}Coskuu_ﬂlﬁ 3\
+(H P, H”‘“)ms 50

(HYHY) = (HP, B33 yo0s kon g + (HA2* P 3B Nye0a Kipn. 10 e
+(HED | HE Yeos ks J

(9.57)

(HY, HY) = (H2et2) H;{Q"J””)wsk-z,,,-,,;ﬁ F(Hy2 P HY 2P Neos kipe g0 )
+(Hp\?, Hy\ ™ Ycosks0

(HZ, HY) = (HECD g3R20+Myeosko. . 50 + (HE2D HIC*Meos kipy_ g6 e
+HENA, H,{ﬂ}whk 30

~

(9.58)
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From (9.14)-(9.15), the expressions for the first Landau coefficients are:

_ (X6l (X H) IR VIR VAl (1Y

=73 = = d dp == = _
Atz (Xt Xy (X, x i an 21 WYy ety (9.59)
where the inner product is defined as
1/2
-1/2

Substituting (9.57)-(9.58) into (9.59} and using (9.60) we get analytical expressions for the coupled
Landau coefficients as given below:

SO g UBY | A 23 | (8 pp3(B) |, (B A
(¢’1 Hiy ' +& Hp ' +8 " Hpy +T1(]H12( })

A2 = = - . , (9.61)
¢(lﬁ}t¢(lﬂ) _l_ﬁ(lﬂ) u(lﬂl + ﬁ{B)TU{H) +T‘(5)le(ﬂ)
~iey lal N -
\ (¢(l “Hzll(a} + uga) Hgia) + Uga)ng{n) ¥ Tl(u)i H;{a}) 062 .
2 = - - .
T @ L g ) G @ | @
9.5.4 Bifurcation Analysis
Coupled Landau equations can be written as
dof
Ttl = ad + | P+ A |2, (9.63)
d.
dt2 = oo + Ao | |? + AapAz) Aol (9.64)

Substituting o} = {@/|e'®! into above equations and separating the real and imaginary parts we
get

d|2A |

@i [ (c1r + Air 2 + Ayzr|@2]?) (9.65)
d|.o%
KL = bl (e + Mk + Aol ) (9.66)

In the present case (streamwise independent flow), both the least stable eigenvalue and cor-
responding eigenfunction are real and it can be verified that the Landau coefficients are also real
(Shukla & Alam 2011) (i.e. Ay, Arz, Az) and Agg are real). The equilibrium solutions of (9.65)
and (9.66) arc discussed below:

(3} trivial solution (base flow), |&#| = Jak| = 0,

(i) pure mode X, |a%| = 0 and {#|2 = —¢1-/A11r > 0,
(#if) pure mode Y, |#1| = 0 and |@%|? = —car/ Azer > 0,
{(iv) coupled modes,

CarA -—CIAQQ- C/\ — Cop A
|‘Q”1|2— 2r A1y r " 0 and |_Q"2|2—— irA21r 2rAllr

T Airdoze — A2 A1y T Alirdaze — Arzedonr

>0 (9.67)

To find the stability of equilibrium solutions (9.67) we linearize the system (9.65-9.66) around
this solution and find the Jacobian matrix as given below:

err + 201 | A + Aigel [ Arze o Ap

J=
Aoy car + A2 [0 |% + 2A22r |22 |*

(9.68)
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The eigenvalues of the above matrix can be obtained by solving equation,
A% — (Jii + Jo2)A + (Jida2 — Jiadnn) = 0. (9.69)

The explicit expressions of two eigenvalues can be written as:

1
A = 5 [Ju + Joz £ V(I + J22)? — A — J12J21)] )

where J;; is the {jth elernent of matrix J. The negative (/positive} real part of A implies that
the mixed mode is stable {/unstable).

9.5.5 Limit of Single Landau Equation

In the limit of single mode analysis, i.e. A2, Az; — 0, equations (9.63)-(9.64) reduce to the
following equations,

d.ofy
d—t‘ = o+ And|a )P (9.70)
d.ef,
- = adhtiadlal, (9.71)
Similarly, the amplitudes reduce to
1=/ 2 and feh] = /22 (9.72)
)‘Ilr A2‘2‘."‘

Thercfore we get back the single cubic order Landau equation and its equilibrium solutions as
discussed in chapters 4 and 5.

0.5.6 Preliminary Numerical Results

Table 9.1: Numerical values of growth rate at various values of Couette gap. Qther parameters are same

as in figure 9.4,

[ 7 ] €1 <2 |
40.0841683 | 1.80492 x 10-T | —1.86532 x 10~
20 —1.92286 x 10~* | —1.20865 x 102
50 1.41351 x 10~ 1.58747 x 10~

] H

/\11

A1z

Az

Ao

40.0841683
20
50

—2.12943 x 1077
—2.10300 x 10~*
1.58327 x 10~

7.89940 % 103
-3.09284 x 1071
6.24264 x 101

283102 x 107
1.43298 x 10~
2.65205 x 103

—1.31451 x 107
—2.17263 x 102
—1.03568 x 1073

Table 9.2: Numerical values of coeflicients of coupled Landau cquation. Other parameters are same as

in figure 9.4.

1

Lo . . . ;21 .
The variation of second harmonic across the channel, related to mixed mode, i.c. Z{ F
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Figure 9.4: Variation for Zﬁizl for e = 0.8, ¢" = 0.3, H = 40.08416833 and (3, v) = (1.2).

shown in figure 9.4 for modes 3 = 1 and a = 2 near the zero crossing. Sample numerical values
of growth rate and coeflicients of coupled Landau equations are given in tables 9.1 and 9.2,
respectively, for three values of Couette gap. A detailed numerical analysis will be carried out in
future.

9.6 Summary

Two types of resonances are possible in the present case of granular Couette flow which should
be dealt with coupled Landau equations. The coupled Landau equations have been derived for
two cases: the mean flow resonance and 1:2 resonance. Similar analysis has also been carried out
for two non-resonating mode interactions.

The analytical solutions for the coefficients of coupled Landau equations have been derived
for non-resonating mode interactions in two-dimensional granular plane Couette flow (&, = 0).
The detailed numerical results are deferred to a future work.
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Appendix 9A. Nonlinear Terms of Eqn. (9.47)

C';é:ﬁ” _ _w (_“il;a’[lzl: i '-’52"3’5”)
i = B (6 o)
gHetd  _ L[ o) @ Kaks oo ) | on)y (@)
22z 2[ avy u — g uedy +urTy )y
e [_A-;e.mg;,q»g“ AT
=" (H¢.¢.¢m 53 4 0 Ttl;TuJ (.NT‘I’I”TBJ i T(i]‘ﬁ(Z} ]]
% [ ka (2}!‘(11! ¢3;:(; ﬂtb[lz’ + IT{”M“]
(;" (w PO ERY AL m) " ﬁ[ 2(u80(D + uOTP)u{V
—kg (.H,,,,;,c?mém +“2TT1:217{1} +J'-‘-.‘:'T¢IZJT“} 31-?"1‘2}‘?’{1")]]
B = Ll 1 Kok 00 g
- q% (uzdamuﬁz) + uﬂg&i”r'{iz}) + pryTEl [—kﬁ(ggqﬁsl) +;1”TT|(”)UEQ}
i (“c:-o@:” ((2) +H T(I;Tu; +N¢.r¢mT‘2}“‘F‘%TT:“&E})”
+% [k” @, ;:;:f;( (2) +MT[”) (1
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—ky (1t¢o¢m (H+ rrTme-ﬂuﬂ d,{]mTlm 8 T‘2’¢(")]]
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CHAPTER 10

COMPLEX GINZBURG LANDAU EQUATION
FOR GRANULAR COUETTE FLOW

The granular Couette How is unstable to disturbances of finite wavelengths in the form of traveling
and stationary waves (cf. chapter 6). The wave numbers corresponding to the most unstable
modes, where the growth rates are positive for a small band of wave numbers, form an envelop
of waves which moves with a group velocity. The analysis of aperiodic/disordered patterns is
typically carried out via Ginzburg-Landau equation (Eckhaus 1965; Newell & Whitehead 1969;
Stewartson & Stuart 1971; Benney & Maslowe 1975; Benney 1984; Craik 1985; Deissler 1987;
Manneville 1990; Guba & Worster 2010).

In this chapter, a cubic complex Ginzburg Landan equation (CGLE) has been derived for
the nonlinear stability of plane Couette flow of granular material for non-periodic waves. It was
shown by Stewartson & Stuart (1971) that the slow variation in the amplitude of a non-periodic
disturbance wave satisfies a Ginzburg-Landau equation. Following Stewartson & Stuart (1971),
we have employed the multiple scale analysis to derive CGLE for the most unstable mode of the
linear theory near criticality. The present derivation is a generalization of the previous derivation
of Landau equation using amplitude expansion method (cf. chapter 3) as it considers both time
and space dependence of order parameter.

This chapter is organized as follows. The temporal and spatial development of wave system
is given in §10.1. The derivation of Ginzburg Landau equation using multiple scale analysis is
detailed in §10.2. The summary is given in §10.3.

10.1 Temporal and Spatial Development of a Linear
Wave System

In the linear stability analysis, we seek a normal mode solution in which we study only a single
mode, the least stable mode. The positive growth rate of this mode predicts an instability in
the flow. The amplitude of the disturbance is an exponential function of time. This theory is
restricted to a monochromatic wave and does not hold for the development of a wave system
(packet) moving with a group velocity. From the weakly nonlinear analysis we will derive an
amplitude equation (Ginzburg-Landau equation) using multiple scale analysis that holds for a
wave system in two-dimensional granular plane Couette flow.

10.1.1 Linear Problem for Wave Systems
We start with the linearized disturbance equations of the following form

£I) 4 e —
(Ma — E) X(x,y,t) =0, (10.1)

- I i . ' 02 o« 2 L . .
where X = (¢', v, ¢, T") is a disturbance vector, £ = C[r)-,.()j._r)u.t);. ...) is a linear operator
and M is a positive definite operator. The boundary conditions are

BX =0at y = +1/2, (10.2)
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where B is the boundary operator (for example no-slip and zero heat flux boundary conditions).
The disturbance X is a smooth function of » and y at { = 0 (initial condition) and X vanishes
at |r| — oc at all time.

The solution of above linear system can be obtained by using Fourier-Laplace transform:

e 0
X(yikpow:H) = / e *"dt/ e~ *T X (t, &, y; H)du, (10.3)
] —o

where H is the control parameter (e.g. the gap between two walls). The inverse transform of X
is

) l ™0 - 8 b o e % )
Xz, yiH) = —= / e* Tk, / X(y: ke w: H)e*tdw, (10.4)
5 ol 1 S Jy—ing

where the line w, = 4 lies to the right of any singularity of X. The solution X depends on the
branch points of outer integrand of (10.4) and poles of inner integrand. Now substituting (10.4)
into (10.1), we get an eigenvalue problem with eigenvalue w:

L(k;, H)X = (wMy, — Li,) X =0, (10.5)

where My and L, can be obtained by replacing @/dx by ik, in matrix operators M and L.
For subcritical parameters H < H,, the real part w, of eigenvalue w = w, + iw, is negative
for each k.. When H > H., w, becomes positive and the maximum value of the real part of w
oceurs at k, = k., (see figure 10.1) where k., — k.. as H — H.. For H > H, and k, ~ k... we
can write
wikz) = —ikemCm + 101, (ke = kem) — G2(ke — kam)? + .-+ (10.6)

where e,,, = ¢,,,, +ic;,; and a; are complex numbers and a,, is a real number. It has been verified

o,

Hﬁf}f H":H‘, H>H,

Figure 10.1: Schematic diagram for the variation of linear growth rate with wavenumber for three values
of control parameter H. Wy, is the maximum growth rate at k. AL H = Ho  wem = 0and for H < H,.,
Wi < 0. The dynamics of system is dominated by the modes between (ki k2) for H = H.. These modes
form a wave packet which moves with group velocity rather than the phase velocity.

that ¢,,; is proportional to (H — H,) as H — H,. as shown in figures 10.3(c. [, i). and the real
part of ay is positive as H ~ H,., 1.e. @z, >0 as H ~ H.. We assume that the residue of integral
(10.4) is a regular function and hence can be expanded as a power series around maximum wave
number k,,,.
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The residue of X at a pole gives the eigenfunction as defined below:

" 2mi

~ 4 icx
Res(X) = F 1/ X(y: kpyw; H)dw. (10.7)
¥

—x

Similar to (10.6) we can assume the form of eigenfunction ' = Res(X) as

RCE‘!{X) = Fly: k. H) = Fll(y: H) + (k.r = kgm )T (s H) + (Ar = ':‘717;1)‘2112(3}: H) +.y (108)

where I',,)’s with n = 0, 1,2,... are complex functions of y which are independent of wave number
k.. We can write X in terms of residue F' as:

1

_ 1 il L i ;
s € Fy; ky, H)dk, (10.9)

—

At (H..k;.). w, = 0 and the eigenfunction X,(y) is X; = limy_ g, Io(y) which satisfies (cf.
Eqn. 10.5)
Lk, H )X = [iwi My, — Ly, | X1 =0, (10.10)

where Ly, = L(0; — thye, 02 — —k3., 8,02, H,).

We assume that (k, — k,.) and (H — H,.) are small and double power series expansion is valid
near the critical condition for both eigenvalue w and eigenfunction F'. Thus we can write

DY, = AR e = W) ST = Boa) F s F BT S E s (10.11)
F X1() + (k= kac) X10(t) + (H = H)X11 () + (ke — kze)2X12(8) + .- -, (10.12)

where X;g, Xq1 and X3 are complex functions and independent of (k, — k..) and (H — H,.) and
as and d; are complex numbers. Note that F satisfies (10.10). From the definition of Taylor
series we can write

JOF aF 19°F
Xm = % ( 11 = (,).‘?|‘ and .)(12 = Em C, (1013)

where the subscript ‘e’ refers to the fact that the quantity is being evaluated at the eritical point.
Now using L{k,., H.)F = 0 and (10.13), we get

Lgf | B - %f‘ = LX19 = —L1oX1, (10.14)
Lg—; ,. = - %F“- = LX) = -Ln Xy, (10.15)
% | = = z% g:: + ;%‘F = LX) = %1—2mem ~LuXil, ([10.16)
where
Ly = ;ii"-h +w(f}3:" - (iﬁ* (10.17)
Ly = %Mr +u.r0£;’;‘ - d;f__} ‘ (10.18)
Ly = %m £ 2(;? d{;‘;‘: i wdi;l‘;* ~ d;f; (10.19)
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From equation (10.11) we can write

1 3w dw

= i1, = —iC, § W = —>, ﬁ =
z le [

o | di, (10.20)

where ¢, is defined as group velocity. This is the velocity of propagation of slow modulation
(envelop of waves) of a wave system. At the critical condition (k; = k.., H = H.} the growth
rate is zero which gives a real group velocity. In general the group velocity is complex.

Substituting (10.20) into {10.17), (10.18) and (10.19}, we get
M, 0L,

Lo = —1694"4'!]‘-: +wa_k3_- k. . , (1021)
_ _ oM,  OLi,
L“ = dlﬂ’fk_,. + w oH W C, (10.22)
oM., PM., Ly,
Liz2 = -—2a9My, — 2icq ok, + w ak% - akg ) {10.23)

For the present case M = M;_ = I is an identity operator. Substituting M, = J into (10.21),
(10.22) and (10.23), we get

Ly,
k, |,’

8Ly,

&L
9H |’ L2 = —2a9f - =

k2

Lm = —‘ngI — Lll = dlf -

(10.24)

(o

The inhomogeneous equations (10.14)-(10.16) contain the same operator L as in linear stability
(10.10) and hence the solvability condition has to be satisfied. This implies that the solutions of
(10.14)-{10.16) exist if and only if the inhomogeneous parts of (10.14)-(10.16) are orthogonal to
adjoint eigenfunctions corresponding to linear stability operator L.

The solvability condition yields expressions for ¢4, d, and a2 as given below:

8L
X!, ——*a] X
i< ! [3"‘ (ke

= . A= cbre , 10.25
“ (x], X1} ' (x} x0 (10:2%)
2
(ot (s [55],,.. )
o = - (Hetre) . (10.26)
(xT.x)
where X f is the adjoint eigenfunction which satisfies
Lt (kee, Ho)X] = 0, (10.27)

with adjoint boundary conditions (no-slip and zero heat flux at the walls). The clements of LY
are given in Appendix 10B. The system of adjoint equations can be derived via integration by
parts using an inner product as defined below:

1z
(f.g)= /_ e fady, (10.28)

where tilde denotes a complex conjugate.
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10.1.2 Preliminary Linear Results

Figure 10.2 shows the neutral stability curve in (H, k,)-plane for ¢ = 0.2 and ¢ = 0.8. In the
panel SW denotes stationary wave instability, and TW1 and TW2 represent travelling waves
instabilities. The flow is unstable inside the neutral stability curve and stable outside. It is seen
from this figure that there are ranges of wavenumbers between which the flow is unstable due to
stationary and travelling waves.

W

X9 ™2

100 200H300 400 500

Figure 10.2: Neutral stability contour in (H, k¢ )-plane for ¢° = 0.2 and e = 0.8. §W, TW1 and TW?2
are the contours representing standing waves {SW) and travelling waves (TW1 and TW2). Flow is
unstable inside this contour and stable cutside.

We have magnified three loops at the onset of three instabilities, SW, TW1 and TW2, and
replotted them in figures 10.3(a), 10.3(d) and 10.3(g), respectively. The stable and unstable
regions are shown in each panel. In figure 10.3, the first, second and third rows correspond to
SW, TW1 and TW2 wave instabilities, respectively. Figures 10.3(b), 10.3(e) and 10.3(h) show
the variation of growth rate with wavenumber for three values of Couette gap: H < H,, H = H,
and H > H,. It is seen from figures 10.3(}), 10.3(e} and 10.3(h) that at (i) H < H, all modes
are stable, (i) H = H_ one mode becomes neutrally stable, and (iif) H > H, there exists a
band of unstable modes. These modes, corresponding to the unstable band of wavenumbers, lead
to spatio-temporal patterns in the flow. The assumption of monochromatic perturbation waves
is no-longer valid for simultaneously growing modes. Therefore, we need to consider aperiodic
perturbations in the flow in order to study natural development of a wave system from some
initial conditions.

The variations of growth rate of the least stable eigenvalue with |H — H,| with H, being the
critical Couette gap (for SW, TW1 and TW2, the critical Couette gap H, is equal to ~ 35, 84
and 131, respectively), for H > H, {circles) and H < H,. {stars} are shown in figures 10.3(c),
10.3(f) and 10.3(:) It clearly seen in these figures that the maximum growth rate is proportional
to i — H,. near the critical condition. The inset in each panel is the log-log plot of the main

panel.
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Figure 10.3:  Panels: (a), (b), (¢) correspond to SW: (d). (¢), (f) correspond to TW1, and (g). (h), (i)
correspond to TW2, of figure 10.2. (a, d, g) Neutral stability contour in (H, k.) plane. (b, e, h) Variation
of growth rate for H = H., H < H, and H > H.. (e, f. i) The maximum of growth rate w,,, = ¢}, vs
H — H,. for H > H (circles) and H < H, (stars), where the inset in each panel shows the log-log plot.
Other parameters are same as in figure 10.2.
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10.2 Nonlinear Problem: Complex Ginzburg Landau
Equation

We use the method of multiple scales as described in Stewartson & Stuart (1971) and Fujimura
(1989). The nonlincar disturbance equations (3.6} can be written in operator form:

8 L )
(IE - c) X =)"N, (10.29)

j=2
where A; = (AGFU‘AG@,NJ.(:”,M‘”) are the nonlinear terims at jth order. The superscripts 1, 2,
3 and 4 in N refer to continuity, z-momentum, y-momentum and energy equations, respectively.

Consider a perturbation from a linear neutral state (k., H) = (ky., H.), where |H — H/| <<
1 holds for a slightly supercritical or a suberitical state. Let us consider the case of slightly
supercritical, i.c., H > H. and define 2, a small paraneter, as
&2
e = d,H-H|, H=H.+ T {(10.30)
Ir

Stewartson & Stuart (1971) considered that the timescale at which nonlinear interactions affect
the evolution of fundamental mode is of order (lincar growth rate)~! (slow time scale) and the
linear growth rate is of order 2. We are using two time scales (7, t) such that

T o= &t (10.31)
The slow length scale is defined as
€ = €(T—cyi}, (10.32)

where ¢, is the group velocity. Using above transformations, the derivatives with respect to time
and sireamwise direction can be written as

8  ,0

a
- 5 = <ope t€5m (10.33)
9 0 a
a _3; + E&‘ (10.34)
Now we write the solution in terms of perturbation series around the base state:
X(zoyt) = e XV p. 6,70 + EXP 0,670+ EXP (2, g, 61 t) + ... (10.35)

We substitute (10.30), (10.33), {10.34) and (10.35) into (10.29) and equate the coefficients of like
powers of € in order to extract equations of different order.

10.2.1 Of(e): Linear Problem

At O(e), we get a linear problem:

(I—g? - c) X0 = o (10.36)



276 Chapter 10.

The solution XV of above equation can be written as

XWp oy t.&,1) = SE&7)X (y)eFetet 4 e, (10.37)
where w is a complex [requency (i.e. eigenvalue from the linear theory), «/(£,7) is a slowly
varying complex amplitude of the disturbance which depends on both time and space, and X,

is the eigenvector from the linear problem. The exponential term of (10.37) corresponds to fast
length and time scales.

10.2.2 O(¢?): Second Harmonic and Mean Flow Distortion

At o(€?) we get:

0 (2) ox'? (1) L AL (D) (1)
I —£) X® = egl=g + Leay XD + Ap(X. X ), (10.38)

where Lg,, is a linear operator which consists of partial derivatives of slow (€) and fast (& and
y) variables. The solution of above equation is

. . . . i
Xz, y,t,6,7) = ?E2 X2 (y) + | P X1 (y) + (',_)—gEX“’QI{y} +ee., (10.39)
G

X I 1 . . . . e
where E = ¢'f««*«!_ The first and second index of superseript in the notation X '"/! correspond

to powers of exponential and e, respectively. Substituting (10.39) into (10.38) and equating the
coefficient of &/?E?, |/|? and % E, we get equations for X22l, X102 and X2l The explicit
forms of these equations in matrix notation are

(2wl — Lo, ) XZ2 = Ny(Xy, X)) (10.40)
(20sd — Lo) X2 = Nu{Xy X))+ MoKy Xy) (10.41)
ol = L JREE = o %+ & [d;;} X, (10.42)

= 1| dk,

The derivation of above three equations (10.40)-(10.42) is given in Appendix 10A.

Comparing equation (10.42) with (10.14) we get
(k= L JX8 = aaXi (10.43)

This implies that X, = i X112l This shows the relation between the nonlinear analysis of this
section with the linear analysis for wave system described in the previous section. Note that
-(2;2] 10:2] are the sec . ie s he distorti an fl espectively. X [1:2]
X and X are the second harmonic and the distortion to mean flow. respectively.
represents the term due to slow spatial variation in flow direction. The left hand side of (10.42)
has the same operator as in the linear eigenvalue problem: the solution X' is possible if the
inhomogeneous part is orthogonal to adjoint eigenfunction which gives ¢, (see §10.1.1).
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10.2.3  O(€*): Solvability Condition and Complex Ginzburg Lan-
dau Equation

At o(e?) we get:

; ax(2) L axn oL
(Ié—i—ﬁ)xm = (r *LEJ'U) x@  OX 7 1 Ok vy pixt)

e ar di, OH
FN(XD, x4 AGXD Xy 4 A (x (), x (1) x(1)y
FNEOw (X, x (1), (10.44)

where f(X) is a function of XV, Now we expand X*) as
X ey t,&7) = EXu(y61)+ E Xg(y,6,7) + ... (10.45)

Note that X3 depends on y and the slow variables. Substituting expressions (10.45), (10.37) and
(10.39) into (10.44) and equating powers of E from both sides, we get

1 Ly, o
(wl— Ly, ) X1z = ﬁ: oH X, — 3

0%/ 1 [OLy, [l _ 0 15,k :

where (13 is the vector of nonlinear terms,

X1+ G13|W|2-‘3‘7

Gis = Na(Xy, X122 + Np(X 122, Xy) + Ny( Xy, X1%%)) + Np(X 102, Xy
+N3(X1, X1, X1) + Na(X1, X1, X1) + Na( X1, X1, X)) (10.47)
Note that A i
(cq + - { o; D X2l = —_p,x02, (10.48)
h i

It is obvious from the right hand side of (10.46) that X3 contains terms which depend on &,

o |2, %2 and TF ‘j ’d

The Gaf.?.i.zbmy~£rznda'u equation can be derived from the solvability condition of equation
(10.46):

do/(E,7)  d 0% (@) o 12 o
S =i aL & + az oe? + '\ oA | (10.49)
where
t 9Ly,
B u (o = Xi,Cra) (10.50)
(X,,X.> (x], %)’
and )
xt (e xiti2) 4 L [Ohug | xiti2] _ L "".!L,’W X,
ay = < I ( [ ] ’ [ o } )> (10.51)

(+1.%)

Here ¢!2) is the first Landau coefficient. The form of as. (10.51), is same as given by (10.26). This
can be verified by substituting X' = —i X, into (10.51).

Let us define new variables X = (r — ¢,t) and & = e La/jetduct/dir | Substituting the above



278 Chapter 10.

transformation into (10.49) and eliminating the wave speed part of d; /d,,.,

1 1y,
BU 1 4=t (10.52)
d'“ l‘ilr
we get another form of CGLE:
0. . 2 o) i ;
5 = €+ ay e + PP, (10.53)

10.3 Summary

Using the multiple scale analysis the complex Ginzburg Landau equation has been derived for
aperiodic patterns in two-dimensional granular Couette fow. The linear stability problem for
the development of a wave system has been detailed in §10.1. The integral expressions of the
group velocity (¢,) and other coefficients (d, and a;) have been derived from the linear theory of
wave systems which are the coefficients of linear terms in CGLE. Furthermore we have rederived
integral expressions ¢y, d; and a; from the nonlinear analysis of wave systems. We have shown
that expressions of ¢,, d; and a; derived from the linear and nonlincar theories are exactly
same. The first Landau coeflicient is derived using solvability condition. The above derivation
is a generalization of Stewartson & Stuart’s (1971) work since we are considering four balance
equations rather than a single equation. The detailed numerical results are deferred to a future
work.
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Appendix 10A. Outline of Derivation

In this appendix, we will derive eqns. (10.40), (10.41), (10.42) and (10.46). We will start with x-momentum
equation and will give all necessary details of the weakly nonlinear analysis using multiple scales as described in
the previous section. The other disturbance equations, continuity, y-momentum and energy, can be derived in a
similar manner.

We substitute (10.33)-(10.34) into (10.29). The resulting r-momentum equation is given hy

((‘J d+ a)i'-‘rru(d+f})u'+u“tl’

— — 42— )u' 4+ —

o Y Th ar o v

i

d i o
7 (s g )+ won tuue + oty | ¢

__L(‘__ 2¢2
o \HZ ~ H3d,,

1 /1 2¢? o wovifl 82 9082 a? ) 0@ o 8%1,
. A AN VY S N,
&0 (H?. Hadl,.) [(2‘” T )(a-ﬂ ez T “ogoe) THugy TH dﬁ] "

1 /1 2¢2 o f 0 a U( a\ 8],
{H”(£+td—£)+f,ﬂ ) ;)_3-+ &)—'

T 99 \H2  HEdy,
0 i) d : ;
[—p'} ((— + E(—) ug s, + gy 1y + pguly —| T’ =N§2] +M—;2}.
T

B (L _ 2
@ \H? ~ H3d,, ay
Step 2

We substitute (10.35) into disturbance equations obtained from step 1 and equate like order terms. At O{e?)
the form of x-momentum equation is

du'?) +uwau12?

1 ] a
+uful? - . ( ;'J.)— +ul g, + uh, +ugu[,j )¢f‘2]

at or oV H?2
I 0,400 | 00 #?1 @ _ 1 9 0y 9% 1.2
_m[(z_u. +A)d‘£2+,uu~—i~,udz i —m ,u Y or + (Y A)m v
1 . 0 09 (2) o OulV) du'V
-~ [-pTE + uu,uTy +ul y,u-‘.— + ,u-ruyd il ' % eq i
1 o dott) I 0 . o, B7ult) 1 o vt .. vy %l
- - — ——— [2(2p° + X —| = +(u” + A
S H? [ Po "¢ somz |2 Vowoe |~ womz [P e T T
! g oTV (2) (1) w(1)
_E;”_H? [—PT € =N2 (20, X,
Next we separate the terms related to fast and slow variables:
B poxwy o GO g0k, L -py pet
ot T aE F g H?2 e
1 0 0, ?ulV ! o vt 0 0y &0tV
+——— |2(2u" + A + - + + A ) ——
S H?2 [ (@p }amag GiHz Mg K W
1 o OT! (2) 4 (1) y(1)
+¢ln—H§ { PT 0& + M_, (XN X )

where Rz - X2 is the inner product of the second row of linear matrix £ with X%,

We substitute (10.37) and (10.39) into equations which are obtained from the step 2 and equate the coefficient
of W2E2 |o/|? and W E.

O(2E?) . 2wul??l - Ral g o, xEA = NPx xy)
O #)?) : 2wpul? - Rsp . X020 = N (X K) + NP (R X))
O E) : wull?] - Fa'g|:_}.[;7__m_I X3 = r'yul —uuy + _nlﬁﬁ ( p”c)l) + ;ﬁlﬁ?z(‘,!po + Ak ug

b (.u“il +(u® +)\“}i',.L) + 3 1H (—p'}-’f])
i r,,m + [da_“ daga, dasy, dazy] - X
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. [OLy ; : 3, T : A
where da,,; are the elements of matrix [ﬁ&] as given in Appendix 10C. The full matrix form of above equations
i x
can be written as

(I — Lk, ) X122 = Ny(Xy, Xy)
(2w X = L) X021 = Np(Xy, m + No( X1, Xy)
@I-Le ) XU = ourxy + 4 [Tke] Xy
Note that, N and N, for j = 1.2,..., 2 are the vector form of nonlinear terms containing partial and ordinary

d(’l‘l\ﬂtl\"l—"‘a rPspecnvvi\ Thus, Pqu‘ltz()m (10.40), (10.41) and (10.42) have been derived.

In order to derive (10.46), we repeat step 2 for O(e?) to get

du' — Ry x(3) = Aul?) gu'l) llau"z-'

Gu = _ Bu Butsl 2 () of, .0 0 i (1)
a sl ar o€ oHId,, [ Poor T Uy (F‘w T g ﬂy)] ¢

i 0néa (1] U 1) _ 2 (] lj ] 1] JX
a“H‘d [(2‘“ +A )d:- ty gy ttH ] ul FUFTEF [3 yoe T (A )E‘.'ray] Vi
2.12)

é (2)
—'arrm':[ P%*f"ﬂ* (ﬂrﬁﬂ%f )]T“’+—n—:[ P"—“"—]
+ 2(2}-'(] s ‘\lJ) .-)rd.f + (2;..!” i i .\U)U u ] A [“(r: o' +(.u +'\“)”iyag
+¢ ”.‘ Pl-f dT“‘}] + \,’[2’(\'{1) \H]}+NEJ)M{2, \11]) M—(ll{\m X x)y

Substituting (10.37), (10.39) and (10.45) into above equation and equating the coefficient of £ we get:

n——-rk Xz =

i A 4 o )
[1'2F.—£g— — U —u Oyl 21——-_;— —n-—3T [ p Jiky + u“ (”oy + #‘,1 r;q)] oy

- HJ - —(2u9 + AV)k2 +”:}a€, +;“ i = . }-:&fh, [ (0 ¥ /\n) ] Wi
] 9% o
_“_3_.: TEETe —pf iky + u (pbiy +,u, By )] 9Ty + m,‘- ( p¢¢,|I 2]) ,.Ef-r

wuyy — H2| 6

Cglt

+ "n'—:r ['2“'\1-(2_1:” + ANyl 4 (2,0 4 a\n)u|l —,—-:;‘( (-
au a2t { a?
+o"HE ["‘[s’r"[l At 0+ 2% ‘du ] ot + —n—:r{ prT!) B.sd?
- [Nf’(xml.,?lj + NS (K, X122 4 N (1021, x,) 4+ N2 (x5, X102)
+ NP (X, X1, X ) + NP (XL X X)) + NP (L X 1)] o | |2 ]
The above expression, in the matrix notation, can be written as
Ral X a1, dbas, dbas, dbay) - o X ou
wjy — R i WXy = dbyy . dbss. dboy, dlbay] - A X| — —u
14 2l i, Xis a4, dbar. b, dboy, dbz 1= U
[ : ’
+ BE‘Q [r",‘, ulli?] 4 ;l_-ir.{ﬂ;gl‘dﬂ.gg,dagg,d{lz.” cxing
1 .
—§fn, daly;. 0.0] - .1(,] + Ghael |o)?
where da,,, da}, and db,, are the elements of matrices [ ] [E;i] and [%‘] and given in Appendix 10C.
The complete matrix form including continuity, y-nmmt’nt.llm and energy equations can be written as
1 aLy A
wl — L, ) X2 — =@ Xy - —X
¢ kel 418 d, oH ~ T e !

i -11:2] 1 l"”.kl [1:2| i f)‘- R ) . 5
+ 052 (!‘g-x -+ : [r’)k,- X 2 a"? X1 )| + Gl |*ed

which is same as equation (10.46).
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Appendix 10B. Adjoint Matrix Elements L' = [lf]

t
!H

1
I-li

la

Here D = d/dy.

Il

1

, P o ik, pl ulu?
ikzu" z'u = an—tfr + gz (¢ — ' D)

llc u' ;( 0 ]
HT + r:.“mf (6"D — o)
234’ 02 _poy 2kl 7Y _
r,fan dim X {tﬁ“H)! dum(mI = "D"'D)
ik:é{l
a0 ke 4at)
ikeu" — "LIT"‘T'_,;‘ = + -—3-—” ] [ 'l.r!__q‘!” - p“rp'!f_y

(II

+(¢n“u _ 2®UHII)D + 00 D2 4 2¢ 5[

-;n-;hy [(1° + A ("D — 60) + ¢"ul)]

Elk“
@ dl:‘n (i )E dim [d) ('H HOD-‘—‘U U u ) (DUH_U“U]
(!’UD

”;} [.(10+A”)(¢“D _ fﬁ(}) +¢|]’\ﬂ]
ikeu® —,;-, + TEW [—(218 + AD)el — (26° + A")eY,

+ (022068 + A9) = 200 (210 + A0)) D + ¢0(2u° + A0)D? 4 =
drkppu'u
_T:;l ¢n :{I"ly + 0"“1 (fltn [pn{(’”i) ({Dg} + ¢0ng
kx
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CHAPTER 11
SUMMARY AND OUTLOOK

11.1 Introduction

In this thesis, we have studied the nonlinear stability of granular plane Couette flow, focussing on
various instabilities induced by shearing (Alam & Nott 1998; Alam 2005, 2006; Alam et al. 2008)
which lead to spatially heterogeneous structures of macroscopic dimensions. The main objective
of the present thesis is to describe shearbanding (gradient and vorticity bandings), stationary
wave and traveling wave patterns of granular plane Couette flow using an order parameter theory
via Landau equation and Ginzburg-Landau equation.

Moderate Flow
d" =03

> X

Tan & Goldhirsch 1997 Alam 2003 Alam 2003

Figure 11.1: Three snap-shots from MD-simulations for ¢" = 0.05, 0.3 and 0.8 showing the gradient
banding in granular plane Couette flow. Taken from Tan & Goldhirsch (1997) and Alam (2003).

One typical instability in granular shear flows is shearbanding instability which leads to band-
ing of particles. The banding transitions have been observed in molecular dynamic simulations of
eranular plane Couette flow. The MD-simulation results of granular plane Couette flow of Tan &
Goldhirsch (1997) showed the existence of gradient bands even in dilute lows. Figure 11.1 shows
three snap-shots from MD-simulations for three values of densities in dilute (¢ = 0.05), moderate
(0.3) and dense (0.8) flow regimes. In this figure a- and y-coordinates refer to streamwise and
gradient directions, respectively. The gradient banding can be seen in all low regimes. Depend-
ing on the banding directions. the banding transition can be classified as “gradient banding” or
“vorticity banding”. If the bands of different shear-rates extend along the gradient direction, the
banding is known as gradient banding, and if the bands of different shear-stresses accumulate
along the vorticity direction it is referred to as vorticity banding. In other words, gradient and
vorticity bandings represent shear-localization and stress-localization in the flow, respectively.

Apart from the shearbanding transition, the granular plane Couette How supports various
types of stationary and traveling wave instabilities (Alam & Nott 1998). The earliest MD-
simulations of Hopkins & Louge (1991) identified travelling-wave patterns in the form of oblique
bands, aligned along the compressional axis of the shear flow for a range of densities.

This thesis started with a brief introduction of patterns in rapid granular fows driven by vi-
bration, gravity and shear, e.g., standing wave patterns and convection rolls in a vibrated granular
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system, density waves in gravity driven granular Poiseuille How, fingering in chute flow, shear-
banding in shear flow, ete. We then reviewed the pattern forming order parameter models such as
coupled complex Ginzburg-Landau model, Swift-Hohenberg model and continuons coupled map
model, ete. in §1.3. The MD-simulation and experimental observations of shearbanding patterns
in granular plane Couette How has been discussed in §1.4. The basic hydrodynamic equations
along with few widely used constitutive models for the inelastic hard-sphere and hard-disk Huids
have been described in chapter 2.

11.2 Development of Nonlinear Theory

The overview of existing nonlinear stability theories is given in §3.1. In the first part of chapter 3,
a general weakly nonlinear stability analysis using amplitude expansion method of Stuart and
others (Stuart 1960; Watson 1960; Reynolds & Potter 1967) has been deseribed in detail. Using
this perturbation method, the nonlinear stability problem has been reduced to a sequence of
linear inhomogeneous differential equations for the fundamental mode (linear eigenfunction) and
its harmonics and the related distortions of the base How and the fundamental at various order.
The amplitude expansion method constitutes an indirect method to arrive at the Landau equation,
and the related nonlinear corrections, the Landau coeflicients, are determined from the Fredholin
alternative or the solvability condition at the cubie/higher order in the perturbation amplitude.
We have adapted this amplitude expansion method for the present nonlinear stability analysis of
granular plane Couette How.

Concurrently, we have developed a numerical method in chapter 3, based on Chebyshev spee-
tral collocation technique and Gauss-Chebyshev quadrature (Canuto et al. 1988), to solve the
inhomogeneous differential equations at each order in perturbation amplitude.

While the amplitude expansion method is physically appealing and easy to adapt the present
method differs from several direct methods of nonlinear stability analysis, for example the center
manifold reduction (Carr 1981: Shukla & Alam 2009) and multiple scale analysis (Newell et al.
1993) wherein the Landau equation is derived directly from the noulinear perturbation equations
which is in contrast to the amplitude expansion method where the order parameter equation is
postulated based on physical arguments about possible time evolution of the linear mode.

In the case of the center manifold reduction, the nonlinear analysis is carried out via a spectral
decomposition of fast and slow modes (Shukla & Alam 2009); the relevant order parameter
equation is derived by taking inner product of the evolution equation of the slow mode with its
adjoint eigenfunction and the Landau coefficients are subsequently picked up from the coefficients
of nonlinear terms of various order. We have shown that both direct and indirect methods lead
to the same expression for the first Landan coefficient which is the first nonlinear correction to
the well-studied linear theory. Therefore, up-to the first Landau coefficient, both the amplitude
expansion method and the center manifold reduction are equivalent for the present problem of
granular plane Couette How.

11.3 Gradient Banding in Granular Couette Flow

Figure 11.2 shows the neutral stability curve (left plot) along with density eigenfunctions in its
inset: the How is unstable inside the neutral contour and stable outside. Therefore, according
to linear theory. the non-uniform solutions are not possible in dilute limit because the uniform
shear flow is stable there. This is in contrast to MD-simulations of Tan & Goldhirsch (1997) who
found non-uniform solutions in dilute limit as shown in the right picture of figure 11.2. Thus the
linear stability analysis is not capable to explain shearbanding patterns in dilute granular plane
Couctte How.
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Figure 11.2: Comparison of linear theory and MD-simulation.

In the first problem of present thesis, a weakly nonlinear theory, in terms of the well-known
Landau equation, has been developed to desecribe the nonlinear saturation of shear-banding in-
stability in rapid granular plane Couette flow. The shear-banding instability corresponds to
streamwise-independent perturbations (0/dz(-) = 0 and d/dy(-) # 0. where o and y refer to
How and gradient directions, respectively) of the underlying steady uniform shear flow which
degenerates into alternate layers of dense and dilute regions of low and high shear-rates, respec-
tively, along the gradient direction. The nonlinear stability of this shear-banding instability is
analyzed using two perturbation methods, the center manifold reduction method (chapter 4) and
the amplitude expansion method (chapter 5)

In chapter 4, we have derived Landau equation using center manifold reduction method. The
first Landau coefficient has been calculated using an spectral-based numerical method. Our results
on the first Landau coefficient suggest that there is a suberitical finite-amplitude instability for
dilute Hows even though the dilute flow is stable according to the linear stability theory. We
have shown the equivalence between amplitude expansion method and center manifold reduction
method in chapter 4.

An order-parameter theory for the same shear-banding instability in the granular plane Cou-
ette flow using the amplitude expansion method has been developed in chapter 5. For the shear-
banding instability, the nonlinear modes are found to follow certain symmetries of the fundamental
mode and the base state solution which have helped us to discover analytical solutions for the sec-
ond harmonie and the distortion to the fundamental mode. It is shown that the second harmonic
and the base state distortion at the quadratic order are equal to each other for this instability.
The present analytical solutions for nonlinear modes have been used to evaluate the first Landau
coefficient exactly which complements and verifies our previous numerical solution of the same
problem in chapter 4 (Shukla & Alam 2009). These analytical solutions further helped to iden-
tify universal scalings for the first Landau coefficient, the equilibrium amplitude, and the phase
diagram in the (H,¢")-plane in terms of the mode number 3 and the inelasticity (1 — ¢2)'/2 as
detailed in §5.5.5. Uncovering the analytical solution for the nonlinear shear-banding instability
in granular plane Couette flown constitutes one outcome of the present thesis.

The quantitative agreement in figures (5.3)-(5.3) between our analytical and the spectral so-
lutions for the fundamental mode and its harmonics (of various order) as well as for the first
Landau coefficient ascertains the accuracy of our spectral-based numerical method which has
been developed in chapter 4. This constitutes another outcome of this thesis: the validation of
a numerical scheme for nonlinear stability calculations, via its comparison with our analytical
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solutions, which can now be adapted to other types of granular shear flows. o

Analyzing the zero contour of the first Landau coefficient in the (H, ¢")-plane, where H = h/d
is the ratio between the Couette gap and the particle diameter and ¢! is the mean volume fraction
of particles, we have reestablished our previous prediction which is documented in chapter 4 and
(Shukla & Alam 2009) that the lower branch of the neutral stability curve (i.e. the zero’ growth-
rate contour) in the (H,¢")-plane is suberitically unstable. The related threshold-amplitude for
nonlinear stability has been determined, leading to the possibility of shear-banding-type solutions
in dilute Hows via suberitical bifurcations. In contrast to the predictions of nonlinear theory,
the dilute flows are known to be stable according to the linear stability theory. Irrespective of
the nature of bifurcation. the predicted nonlinear solutions indicate that the uniform shear-flow
undergoes an ordering transition into alternate layers of dense and dilute regions of low and high
shear rates, respectively, parallel to the flow-direction.

Plane Couette —s U, =1/2
Flow ETR

™3y
Bifurcation From L—
Infinity

Plane Poiseuille _ y=1/2

Flow [_\.

Subcritical
Bifurcation : l f 2

Rayleigh-Benard cold
Convection T,

Supercritical
Bifurcation

Taylor Couette
Flow

Supercritical
Bifurcation

Figure 11.3: Various Newtonian flow configurations and associated bifurcations: plane Couette How,
plane Poiseuille flow, Rayleigh-Bénard convection and Taylor Counette flow.

Our order-parameter theory predicts that the nonlinear shear-banding instability leads to dif-
ferent types of pitchfork bifurcations (see Figure 5.38) as we increase the mean density (¢°) from
the Boltzmann limit: (i) bifurcation from infinity in the Boltzmann limit (¢ < ¢'), (ii) suberit-
ical bifurcations over a small window of moderate densities {(bf_ < ¢ < ¢F), (iii) supercritical
bifurcations at moderate densities (¢f < ¢ > o;‘_' ). (iv) suberitical bifurcations in the dense limit
(03! < ¢ > ¢2), and finally again to (v) supercritical bifurcations near the close packing limit
(0" > ¢35 ~ o,,), Note that the ‘bifurcation from infinity” can be considered as a generalized
suberitical bifurcation wherein the bifurcation point originates from infinity (H = ). The crit-

ical density at which a transition occurs from one bifurcation-type to another (¢!, of, ¢! and

e @
&%) depends on the detailed forms of constitutive relations as well as on the choice of the contact
radial distribution function. We have found that while the first three sequences of bifurcations
(i iii) appear to be independent of the choice of constitutive relations. the last two bifurcation
sequences (iv v), especially the appearance of suberitical bifurcations in the dense limit, depend
on the choice of the contact radial distribution function. Since all three possible types of pitchfork
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bifurcations can be realized in this How by just varying the mean density, we conclude that the
granular plane Couette flow truly serves as a microcosm of pitchfork bifurcations.

Let us have a quick glance at various prototypical problems of Newtonian fluids and their
related bifurcations in figure 11.3. A similar type of bifurcation from infinity occurs in the plane
Couette flow (Nagata 1990) but there is no suberitical or supercritical pitchfork bifurcations be-
cause the plane Couette flow of Newtonian fluids is stable according to linear theory (Romanov
1973). Another example is the plane Poiseuille fow of Newtonian fluids which admits subcritical
bifurcations (Stuart 1960; Reynolds & Potter 1967). Note that this bifurcation is not stationary
and this is a case of subcritical-Hopf bifurcation rather than pitchfork. The Rayleigh-Bénard con-
vection (Busse 1978) and Taylor Couette flow are examples of supercritical pitchfork bifurcations.
As per our knowledge no other flow admits all types of pitchfork bifurcations, and therefore the
granular plane Couette flow is truly a paradigm for pitchfork bifurcations.

11.4 Two-dimensional Patterns in Granular Couette
Flow

We have developed an order-parameter theory to deseribe the nonlinear periodic patterns in a
two-dimensional granular plane Couette flow which is known to linearly unstable to a variety of
stationary and travelling instabilities, having modulations in both streamwise (x) and gradient
(y) directions in chapter 6. This is the first nonlinear study of its kind in the literature of gran-
ular fluids for spatially inhomogeneous two-dimensional patterns. The related order-parameter
equation, the Landau-Stuart equation, has been derived using the amplitude expansion method
(Stnart 1960; Watson 1960) of nonlinear stability theory, extending our previous work (chapters 4,
5, and Shukla & Alam 2009, 2011) on one-dimensional shear-banding instability. The nonlinear
stability of two classes of modes (in different regimes of streamwise wavenumber k) in granular
plane Couette flow has been studied in detail using the present order-parameter theory. The
numerical results, obtained by employing a spectral-based numerical method, are presented on
the first Landan coefficient, the equilibrium amplitude, the equilibrium phase velocity, the limit
cycle and the nonlinear perturbation fields. The supercritical and suberitical regimes of both
pitchfork /static and Hopf/oscillatory bifurcations have been identified, and the first evidence of
two-dimensional nonlinear equilibrium states for stationary and travelling waves has been found
in granular plane Couette flow.

In addition to the well-known shear-banding instability (k, = 0) whose nonlinear saturation
has been studied recently by us (Shukla & Alam 2009, 2011), there are long-wave (k, ~ 0)
stationary and travelling instabilities in granular plane Couette flow. For such long-wave modes,
we have uncovered nonlinear equilibrium states of stationary waves in the dilute limit (where
the How is known to be stable to the shear-banding mode) and of both stationary and travelling
waves at moderate-to-large densities. While the nonlinear solutions in the dilute limit appear via
a suberitical pitchfork bifurcation, those at larger densities via supercritical pitchfork and Hopf
bifurcations. From a comparison between linear and nonlinear perturbation fields, we found that
the origin of nonlinear states at k, ~ 0 is tied to the corresponding ‘suberitical’/‘supercritical’
nonlinear shear-banding solutions (k, = 0).

There are stationary and travelling instabilities at moderate values of wavenumber k, ~ O(1)
whose growth rates are larger than those at long-waves by an order-of-magnitude or more - these
are referred to as ‘dominant’ instabilities (see, for example, two dominant peaks at k, ~ 0.6 and
k. ~ 0.95 in figure 6.3) in granular plane Couette How. For the dominant stationary instability, we
found that the nonlinear solutions appear via supercritical pitchfork bifurcations (figures 6.20 and
6.25) over a range of mean densities (¢") at sufficiently large Counette gaps (H > H?") and this
range of unstable ¢" increases with increasing H; in the linearly stable regime (H < HZW) there
could be suberitical bifurcations (figure 6.25). The nonlinear stationary patterns have density
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bands that are located at some oblique angle to the streamwise direction (figure 6.21)  similar
oblique density bands have been observed in particle simulations (Hopkins & Louge 1991: Tan &
Goldhirseh 1997). The structural features of supercritical stationary solutions look similar at any
value of ¢" and H, but the related unstable suberitical solutions are markedly different (having
density bands parallel to the streamwise direction) from their supereritical counterparts, even
though the linear eigenfunctions are similar for both cases.

For the dominant travelling instability, the How is linearly unstable for a range of mean den-
sities if the Couette gap is sufficiently large (H > HT"™ > HW), and there are subcritical
nonlinear travelling waves at H < HIW at a given ¢". For H > HTW | there are supercritical
and suberitical Hopf bifurcations at small and large values of ¢ (figure 6.22), respectively  the
latter finding of suberitical travelling solutions at moderate-to-large densities is in contrast to
supercritical solutions for dominant stationary mode. The supercritical and suberitical solutions
look structurally different for the dominant travelling waves too. In addition to dominant travel-
ling wave instability, there are linearly stable travelling waves at k, ~ O(1) which could also be
unstable with respect to finite-amplitude disturbances (figure 6.14).

The effect of restitution coefficient on the nonlinear saturation of dominant instabilities was
studied. We found that the structural features of the nonlinear stationary and travelling wave
solutions remain unaffected by the level of inelastic dissipation as long as the underlying linear
eigenfunctions are similar. We have uncovered a new stationary instability in a very wide Couette
cell (H = 500) which seems to persist at any restitution coefficient (e # 1), and the equilibrium
amplitude A, required to attain this mode is much smaller than the corresponding ‘dominant’
stationary instability. Apart from providing the first evidence of a variety of two-dimensional
nonlinear patterns in granular plane Couette flow. we hope that the present work will inspire large-
scale particle simulations to detect such stable and unstable nonlinear states in plane Couette
flow.

By analysing the modal equations at quadratic order in perturbation amplitude, we have
identified two types of nonlinear resonances: (1) the ‘mean-flow’ resonance and (2) the ‘1 :2’
resonance. The former occurs due to the interaction of least-stable mode at some k, # 0 with
a shear-banding mode (k, = 0) mode, obeying the following condition on growth rate [a!")] and
frequency [BO]: 20 (k,) = n.f,;n(k;,, = 0) and bg}](kﬂ, = 0) = 0, where @ and 3 refer to two
interacting modes. The 1: 2 resonance oceurs due to the interaction of two modes a and /3,
obeying 2(‘.-.i,U}(k_,) = aff}(%'rj and 2.’)5."’(11‘;} = bfi})(ri). with their wave-number ratio being 1:2.
The signature of either type of resonances is implicated by the divergence of the first Landau
coefficient at specific values of wave-number k, where the resonance takes place. Our numerical
results in §6.7.3 have clearly demonstrated the existence of mean-flow resonance in granular plane
Couette flow, however, the existence of 1:2 resonance remained illusive in the present flow. Note
that the 1:2 resonance points, being codimension-3 bifurcation points, require an exhaustive
search in the parameter space to locate them which was not pursued in this thesis.

11.5 Nonlinear Stability of 3D Granular Couette Flow

11.5.1 Vorticity Banding in Granular Couette Flow

The vorticity banding in three-dimensional granular plane Couette flow has been investigated
via nonlinear stability analysis in chapter 7 of this thesis. We have started this chapter with a
preamble containing a review on gradient and vorticity bandings and then we have written down
all necessary theoretical background for the nonlinear stability analysis of three dimensional
granular plane Couette How.

We mainly focussed on pure spanwise instability in this chapter. Due to the pure spanwise
(foe(.) =0,0/dy(.) = 0,0/0z(.) # 0) instability, the uniform shear How breaks into regions of
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high and low shear stresses along the mean vorticity direction - this is known as vorticity banding,.
For such pure spanwise instabilities, an analytical order parameter theory has been developed.
The general solutions of the nonlinear equations (distortions of mean flow and fundamental, and
harmonics of fundamental) and Landau coefficients (§7.6.5) have been derived at any arbitrary
order in amplitude. We have calculated first (7.57) and second (7.69) Landau coefficients analyt-
ically. The bifurcation analysis has been carried out for all flow regimes. Our analysis suggests
that the vorticity banding appears via supereritical pitchfork bifurcation for density ¢ < ¢ and
via subecritical pitchfork bifurcation for density ¢ > ¢, where ¢ is the mean density and ¢ is
the critical mean density for the transition from supereritical to suberitical bifurcations as shown
in figure 7.10. The first (see figures 7.12 and 7.15) and second (see figure 7.13) order transitions
at the onset of pure spanwise instabilities have been investigated using cubic and quintic order
Landan equations. Our analysis shows that the cubic and quintic order amplitudes are almost
equal near the critical point, but they deviate from each other away from the critical point. The
subcritical Hopf bifurcation has been found for large spanwise wavenumbers in moderate-to-dense
flows which has been shown in figure 7.25.

The present analysis suggests that for parameters far away from the neutral stability curve
there exist both Hopf and pitchfork bifurcations (see schematic figure 7.29). The crucial effect of
higher order nonlinear terms while caleulating higher order Landau coefficients has been demon-
strated in figures 7.23-7.24. It has been concluded that the n'® order nonlinearities must be
retained while calculating n'* order Landau coefficient. The variations of perturbation fields,
pressure and shear viscosity have been shown which verified shear-stress localization in the flow
due to vorticity banding

11.5.2 Gradient and Vorticity Bandings

In chapter 8, the gradient and vorticity bandings in three-dimensional streamwise-independent
granular plane Couette How have been probed via analytical solutions of weakly nonlinear analysis.
Such streamwise independent instabilities lead to bands along gradient and vorticity directions.
The analytical expressions for the distortion of mean flow, second harmonic and first Landan
coefficient have been derived in terms of trigonometric functions. The bifurcation analysis for
these instabilities has been carried out. The comparison between linear and nonlinear finite
amplitude patterns for density, temperature, velocity and vorticity has been made.

The bifureation analysis shows that the transition can oceur from subcritical-to-supercritical
and supercritical-to-subcritical bifurcations in different flow regimes. The streamwise and trans-
verse 3D-structures have been observed from the disturbance patterns. The subcritical and su-
percritical density and vorticity patterns have been found to be more distorted than their linear
patterns. The corresponding velocity and temperature fields are found to be relatively unaffected
by nonlinearities.

11.6 Order-parameter Theory using Coupled Landau
Equations

One limitation of a ‘single’ Landau equation is that it cannot deal with situations that involve
possible interactions among different modes which might oceur either (i) due to a linear resonance
among two or more modes or (ii) due to two or more non-resonating modes having growth-rates
that are arbitrarily close to each other.

In chapter 9, we have developed a general theory of mode interactions for both non-resonant
and resonant interactions. We have used center manifold reduction method to derive Coupled
Landau equations. The analytical weakly nonlinear solutions for the streamwise independent 2D-
granular plane Couette flow has been extended and the coupled Landau equations for situations
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of mode crossing (witlout resonance, see figure 9.1) have been derived. Preliminary numerical
results for the interaction of modes # = 1 and 2 have heen discussed. The detailed numerical
analysis for all densitics and other cases of mode interactions are left for future work.

11.7 Complex Ginzburg-Landau Equation

Tsimring & Aranson (1997) proposed a phenomenological order parameter model, the Ginzburg-
Landau equation coupled with an effective mass conservation equation, to theorctically study
the patterns in a vibrated granular bed {squares, stripes. hexagons. oscillons, ete, see figure 1.5).
Note that their model is “phenomenological” in the sense that it has not been derived from the
governing equations of granular Auid and the coefficients of this model have to be found from
cither experiments or simulations.

In chapter 10, following Stewartson & Stuart (1971}, we have been derived a complex Ginzhurg
Landau equation for two dimensional granular plane Couette flow. We have used multiple scale
analysis to derive complex Ginzburg Landau cquation. The detailed numerical analysis for ape-
riodic spatio-temporal patterns is left to future work.

11.8 Future Work

In weakly nonlincar stability studies, one important issue is the convergence of the Stuart-Landau
series (3.32)-(3.33) which can he checked by determining its radius of convergence provided we
know higher-order {second, third, etc.) Landau cocfficients. Such works have heen carried out for
incompressible shear flows of Newtonian fluids (Herbert 1980; Newell ef al. 1993) by calculating
the frst ten or more Landau coefficients, and then finding the nearest singularity from Domb-
Sykes plots (Hinch 1991} to estimate the radius of convergence. It should be noted that the
procedure to caleulate the higher-order Landau coefficients seems to non-unique {Herbert 1980)
in shear flows of Newtonian fluids.

For the present problem of granular plane Couette flow, we have calculated only the first
Landau coefficient, except for the pure spanwise granular plane Couette flow problem (in chapter 7
for which we have calculated both first and sccond Landau coefficients) and therefore we are
unable to make any conclusion about the range of validity of our nonlinear solutions in the
parameter space {away from the neutral contour). It is necessary to calculate at least the second
Landau coefficient te determine the stable solution branches for subcritical bifurcations for all
cases. It has been shown in chapter 7 that the n*® order Landau coefficient requires n'* order
nonlinear terms to be retained in the nonlincar perturbation equations in order to get correct
bifurcations. In principle the higher-order Landau cocfficients can be calenlated, however, the
related analysis and algebra hecomes messy and tedious due to the nonlinearities inherent in
the transport coefficients of granular fluids. Such an cxercise would Iurther help to establish
a detailed term-by-term cquivalence between the amplitude expansion method and the center
manifold reduction for granular plane Couctte flow. These issues should be looked into in future.

Although we have focussed on granular plane Couctte flow in this thesis. our analysis is in
no way limited but can be easily extended to analyze patterns in various other granular flow
configurations. Our spectral-based numerical code can be adapted to such cases to analyze the
uonlinear stability in a host of granular Aow problems: granular Faraday waves (Umbanhower
et ol 1996; Tsimring & Aranson 1997), granular Rayleigh-Bénard convection {Hayakawa et al.
1095: Khain & Meerson 2003: Eshuis et al. 2010), grannlar Poiseuille flow (Liss et al. 2002; Alam
et al. 2010}, inclined chute Alow (Forterre & Pouliquen 2002; Mitarai & Nakanishi 2004), ete.,
see figure 11.4. To investigate these flows using the present order parameter theory, first we
need to incorporate realistic boundary conditions (for example, slip velocity and non-adiabatic
walls, etc.} instead of our choice of no-slip and zere heat flux conditicns. Even thongh this
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issue of realistic boundary conditions was not addressed in this thesis, this can, in principle, be
incorporated to derive the relevant order-parameter equation and the resulting problem has to
be solved numerically to determine the Landan coeflicients. This work is left for future.

Various nonlinear resonances and spatially-extended patterns in rapid granular Hows can be
studied using coupled Landau equations and Ginzburg-Landau equation. Such theoretical studies
are needed to uncover various pattern forming phenomena as observed in the experiments and
particle simulations of rapid granular flows.

Standing Wave Patterns Oscillons

Granular Taylor
Vortices

Kelvin-Helmholtz Instability

Granular Poiseuille Flow

Figure 11.4: Various patterns in granular flows.
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Nothing puzziles me more than time and space; and yet nothing troubles

me less, as [ never think about them.
*Charles Lamb

I don't consider this algebra, but this doesn't mean that algebraists can't
do it.
**Garrett Birkhoff
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*taken from Turbulence an introduction for scientists and engineers by P.A.Davidson.
** taken from Artin Algebra.
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