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Abstract
A layer of fluid with a free-surface which is initially supercritical (local Froude

Fr > 1), displays a near discontinuity in film-thickness at a location where the

Froude number becomes unity. This is better known as the hydraulic jump and

has attracted the attention of civil engineers for a very long time (Bidone [1819]).

The circular analogue of this was first noticed by Rayleigh [1914]. The phenomenon

is robust and occurs in laminar and turbulent flows. It also manifests itself in the

form of tidal bores in rivers where the height discontinuity front travels with a

certain speed, and is thus referred to as a travelling jump.

The objective of this thesis is to study the laminar standing hydraulic jump

in planar and circular geometries. The thesis is divided into seven chapters. The

work and the results pertianing to each of the chapters are as follows:

• In Chapter 1, we present a one hundred year literature survey of circular

jumps with some discussion on planar jumps as well. A series of questions

are posed and we record our comments on every reference that is discussed.

These comments summarise the significance of the work and limtations, if

any.

• We study weak hydraulic jumps in Chapter 2. We review the shallow-water

assumption and the vertical averaging approach that is traditionally used to

study hydraulic jumps and provide a criticism of latter. We then propose

instead an exact approach, involving a transformation of the boundary-layer

shallow-water equations (BLSWE). The equations are derived in this coor-

dinate system for planar and circular geometries. The solution procedure

is novel and it involves solving the governing partial differential equation as

a parametric ordinary differential equation. This provides jump-like transi-

tions in the neighbourhood where the Froude number is unity. In the limit

of high and low Froude number, the equation admits similarity solutions

vii



of different kinds. An analysis of this equation reveals the inadequacy of

shallow-water theory in the jump neighbourhood. We obtain multiple so-

lutions downstream of the jump, one with a separated profile and another

with an attached profile. The separated profile becomes increasingly unre-

alistic downstream. Instability of the separated profile is conjectured to be

the reason for the reattachment, and for the transition to the later solution.

Preliminary stability studies conducted by [Ramadurgam, 2010] are in agree-

ment with this conjecture. The results are compared with experiments and

vertically averaged models. Our results show an improvement over the verti-

cally averaged models in the near-jump region and downstream. In the near

jump region, dispersive effects may not be neglected.

• In Chapter 3, we study jumps in planar geometries computationally and

analytically. It is found that even for a weak jump, the BLSWE is inadequate

in the near-jump region. The full Navier-Stokes equations are integrated and

an equivalent depth-averaged equation is derived. Using this equation and we

find that for a strong jump in the near-jump region, at the two lowest orders

in an appropriate expansion, no terms from the shallow-water equation enters

the governing equation. In this region, the dominant terms come from viscous

and disspative terms from the vertical momentum equation. In the region

upstream of the jump, the BLSWE si found to be a good approximation.

For the region downstream of the jump, if a flat region occurs, the BLSWE

is found to describe this well. A train of downstream waves are found to

appear at high Reynolds numbers and a model equation is proposed for the

same. Downstream boundary condtions are found to have a weak influence

on the jump location if the domain is sufficiently long. Increasing viscosity or

gravity pushes the jump upstream while making it steeper. Rayleigh’s shock

criterion works well for weak jumps but underpredicts the jump height for

strong jumps.

• In Chapter 4, we present computational results on circular jumps. It is shown

that circular jumps without separation are possible. contradicting Tanis hy-

pothesis about the mechanism of jump formation Tani [1949]. We present

qualitative results on the circular jump. Surface-tension is found to have a

strong influence on the jump structure but a negligible influence on its radial



location. The downstream boundary condition can significantly affect sepa-

ration underneath the jump but its location is found to have a mild influence

on the jump radius. Time-evolution of jump formation reveals that in the

absence of viscosity, wave-breaking continues unabated. A paradox related

to Rayleigh’s shock criterion in a circular geometry is discussed.

• In Chapter 5, we study the effect of momentum-flux on the circular hydraulic

jump. The existing scaling relation proposed by [Bohr et al., 1993] does

not contain any dependence of momentum flux on the radius of the jump.

Using physical reasoning we motivate why momentum flux can affect the

jump radius. The experiments reported here are conducted in collaboration

with Dr. Vishwanath Shastry and Prof. K. R. Sreenivas. The experimental

results show that momentum flux can significantly influence the jump radius.

Using a combination of data obtained from Navier-Stokes simulations and

experiments, we attempt to obtain an empirical relation for the jump radius

in terms of the impingement Froude and Reynolds number. This relation

shows a definite dependence of the jump radius on the momentum flux.

• In Chapter 6, we study surface-tension driven jumps at small-scales in the

absence of gravity. Vertically averaged shallow-water equations including

surface-tension are derived and for certain initial conditions, a divergence in

height is predicted. This singularity is analogous to the one obtained from

depth-averaged models of gravity-driven jumps. The motivation for this work

arises from experimental finding of cup-shaped structures formed out of so-

lidification of impinging molten-metal droplets on a substrate. The analytical

results are consistent with the observations. We also present some analyt-

ical results for droplet spreading which are a generalisation of the models

available in literature.

• Chapter 7 - A code has been developed to implement the Volume-Of-Fluid

(VOF) method used for simulating free-surface flows. A detailed description

is provided for the implementation of the interface reconstruction algorithm

LVIRA Puckett et al. [1997]. We also describe the implementation of the

advection algorithm. Standard benchmark tests for validating the code are

presented. This chapter is written to assist anyone who is interested in a

numerical implementation of these techniques.
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CHAPTER 1INTRODUCTION AND LITERATURE REVIEW
1.1 Introduction

Hydraulic jumps have a very old history. They were perhaps first described by

Leonardo Da Vinci in the 16th century [Hager, 1992]. They have now persisted

in hydraulics literature for almost two centuries (see e.g. [Bidone, 1819]) and are

known to occur in myriad forms and geometries. In nature one can see jumps

which can be standing or travelling (bores), laminar or turbulent, radial or pla-

nar, weak or strong, undular or smooth, circular or polygonal, with or without

surface rollers etc. A collage of pictures in figure 1.1 created from numerous on-

line resources serves as a pictorial illustration of the ubiquity and complexity of

this phenomenon. In what follows, the acronyms PHJ and CHJ refer to planar

hydraulic jump and circular hydraulic jump respectively.

Hydraulic jumps are frequently described as shocks [Stoker, 1992] and like

shocks they are strongly connected to nonlinear waves. The mathematical analogy

between a hydraulic jump and a shock arises from the possibility to transform the

inviscid equations of compressible flow to those of the shallow-water theory. In

the one-dimensional unsteady case, this transformation seems to be have been

first found by Riabouchinsky [1932] and in the two-dimensional steady case by

Preiswerke [1938, 1940]. Just as shocks in compressible flow can be either station-

ary or travelling (with respect to, say, the lab frame of reference), both stationary

and travelling jumps can be easily seen under natural conditions. The traditional

textbook approach [Stoker, 1992] treats the travelling and the standing jump as

arising out of the same basic physical mechanism viz. nonlinear steepening of

finite-amplitude waves. This mechanism and how it leads to a travelling jump, is

reasonably well-understood in quantitative terms. In contrast the effect of nonlin-

ear steepening on the formation of a standing jump is at best only qualitatively

understood and we return to this point later.

In order to appreciate these physical mechanisms better, it is useful to review

1
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Figure 1.1: A collage of pictures of hydraulic jumps obtained from various online resources available freely on the internet.
Starting from the first image at the top left corner and reading from top to bottom, the first image is obtained from
Wikipedia [2010] and shows a tidal bore. The next seven images are obtained from Thandaveswara [2010] and these are
illustrations of standing jumps in planar geometries. The next two images are of jumps over obstacles obtained from
experiments reported in Shapiro [2008]. The next image is that of a circular jump obtained from the experiments of
Vishwanath [2010]. The last two images are those of polygon and butterfly-shaped jumps obtained from Aristoff [2010].
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two basic concepts related to wave propagation viz. nonlinearity and dispersion.

We will discuss these two effects in context of how they influence the “shape” of

a wave. An understanding of these two concepts in turn leads us to a physical

picture of how and why travelling jumps arise. This in turn can provide a qualita-

tive understanding of the physical mechanism of formation of a standing hydraulic

jump. We start with a discussion of nonlinear and dispersive effects on a surface

gravity wave. For simplicity, we ignore surface-tension effects through most of this

thesis. We will however study its effect on gravity-driven jumps in Chapter 4. A

study of jumps driven by surface-tension alone will also be reported in Chapter 6

of this thesis.

1.1.1 The shape of a wave

Linear nondispersive waves

We start with the one-dimensional unsteady, inviscid, shallow-water equations.

The horizontal (x) component of velocity is u and the depth of the film is h.

ht + hux + uhx = 0, (1.1)

ut + uux + ghx = 0,

Any constants, u = U0 and h = H0 are solutions of these equations. We perturb

these uniform states such that

u = U0 + û(x, t), (1.2)

h = H0 + ĥ(x, t),

Substituting equations 1.2 in equations 1.1 and neglecting all nonlinear terms in û

and ĥ, we obtain the system

ût + U0ûx + gĥx = 0, (1.3)

ĥt +H0ûx + U0ĥx = 0,
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Equations 1.3 have linear operators with constant coefficients acting upon û and

ĥ. These operators commute and hence one can eliminate either û or ĥ to obtain

a higher order partial differential equation in either of the independent variables.

We eliminate û to obtain the system

ĥtt + 2U0ĥxt +
(
U2

0 − gH0

)
ĥxx = 0, (1.4)

Equation 1.4 is a linear wave equation. It is hyperbolic for all values of U0 and can

be solved using the standard method of characteristics. We define a transformation

ζ = x− (U0 +
√
gH0)t, (1.5)

φ = x− (U0 −
√
gH0)t,

Using these transformations from equation 1.5 in equation 1.4, it reduces to

h̄φζ = 0, (1.6)

which can be integrated to obtain

ĥ = f1

(
x− (U0 +

√
gH0)t

)

︸ ︷︷ ︸
Downstream propagating component

+ f2

(
x− (U0 −

√
gH0)t

)
,

︸ ︷︷ ︸
Upstream propagating component

(1.7)

This predicts that any initial disturbance can split into two parts, one of which

propagates upstream with a speed
√
gH0 with respect to an observer moving with

the speed U0 and another downstream with the same speed with respect to the

same observer. The functions f1 and f2 are determined from initial data. We

observe that the “shape” of f1 and f2 do not change in time and the profiles

just get translated in space. To understand why the “shape” of f1 or f2 doesn’t

change, it is useful to look at the dispersion relation of equation 1.4, which predicts

that all Fourier modes travel with the same speed irrespective of their wavelength.

The physical consequence of this is easily understood. Since all Fourier mode

travel with the same speed, they maintain their relative phases with respect to

each other thus adding up to produce a resultant profile which as a whole merely

translates with a given velocity. Thus in nondispersive linear wave equation, the

shape of the profile does not change, due to the absence of nonlinear and dispersive
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effects. The inclusion of dispersive effects in the linear wave-equation alters this

situation. (It is well-known see e.g. [Stoker, 1992], that dispersive effects arise from

the deviations of pressure from hydrostatic). In a dispersive linear wave equation,

while the individual Fourier modes still travel undistorted, their superposition gives

the impression of a wave-form whose shape changes with time. This is because

each mode travels with its own unique speed and thus their relative phases keep

changing with time. As a consequence, in a linear dispersive system at long times,

the individual Fourier modes tend to disperse i.e. separate out. Additionally,

dispersion also causes the rear part of a localised elevation to steepen. To see this

physically, we take the example of a deep-water wave - here the dispersion relation

predicts that long waves (with gentle slopes) travel faster while short waves (with

steep slopes) lag behind. The presence of waves with gentler slopes at the front

and steeper slopes at the rear causes the sum of the Fourier modes to develop steep

slopes in the rear when compared to the front. It should be noted that in a linear

dispersive medium, the individual Fourier modes do not change shape. Due to

different velocities for each mode, the summation of the modes gives the impression

of a waveform whose shape changes as it travels. The solution of the initial-value

problem of water-waves for the evolution of an arbitrary initial disturbance in a

dispersive medium (e.g. in deep water) is known as the Cauchy-Poisson problem

and the interested reader is referred to [Debnath, 1994] for a discussion. In a

manner similar to dispersion, nonlinear effects can also change the shape of a wave

albeit in an opposite sense. We next see the effect of nonlinearity in a nondispersive

system.

Nonlinear nondispersive waves

Instead of perturbing the flow about a constant state as in the previous section,

we instead rewrite the governing equations 1.1 using the transformation c =
√
gh

([Stoker, 1992])

ut + uux + 2ccx = 0, (1.8)

2ct + cux + 2ucx = 0,
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Adding and subtracting equations 1.8, we obtain in characteristic form

[(u+ 2c)t + (c+ u)(u+ 2c)x] = 0, (1.9)

[(u− 2c)t + (c− u)(u− 2c)x] = 0,

Using the method of characteristics [Stoker, 1992], the system 1.9 can be numer-

ically solved and the conclusions are well-known. The main effect of nonlinearity

is a progressive deformation of the inital wave-profile. If we start with a localised

elevation, then the higher parts of elevation travel faster than the lower parts and

the waveform thus progressively deforms into a discontinuous step-like profile as

shown in figure 1.2. Mathematically, this corresponds to an intersection of two or

more characteristic curves of the the same family on the x − t plane, leading to

multivaluedness in the independent variable. This phenomenon is popularly known

as nonlinear steepening and is the basic physical mechanism through which trav-

elling jumps or bores are understood to form. Nonlinear effects can thus be used

to account for some of the observed phenomena like wave-breaking etc. It should

be noted that as steepening proceeds to produce an infinite slope in the height-

profile, the governing equations themselves become invalid in the near vicinity of

the step-like profile. In this local neighbourhood, dispersive effects become rela-

tively important and thus need to be considered. We have thus seen that dispersion

and nonlinearity, both affect the shape of a wave. Nonlinear effects can progres-

sively steepen the front of a localised elevation while dispersive effects can produce

a steepening of the rear. Give this physical picture, it is perhaps not surprising

that a balance between these two competing effects can be reached. The resulting

waveform represents a nonlinear dispersive wave whose shape remains fixed while it

just translates in space, in an manner analogous to the linear nondispersive wave-

form that we saw earlier. The well-known KdV equation represents such a balance

between weak nonlinearity and weak dispersion. Expectedly, it admits solutions

which are waves which translate unchanged in shape and are known as cnoidal

waves [Benjamin & Lighthill, 1954].

We have a rough physical understanding of how a travelling jump or a bore

arises. For such a jump, in the near jump region, dispersive effects (neglected

elsewhere in the domain) become relatively important and the structure of the

jump itself can represent a balance between dispersive smoothening and nonlinear
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Figure 1.2: A pictorial illustration of how a travelling jump arises - As the waveform
propagates from left to right, it steepens into a step like profile shown in the right,
due to nonlinear effects. The velocity of propagation of the step like profile can be
calculated from the shock criterion of [Rayleigh, 1914].

steepening (Dispersive shock waves have a large literature and continue to be a very

active area of research. A good summary/pedaogical article by Hoefer & Ablowitz

[2009] is available freely online). In the next section, we start with a discussion

of the connection between travelling and standing jumps. The ideas of nonlinear

steepening and dispersion and how they are traditionally thought to be related to

a standing jump will become clearer through this discussion.

1.1.2 Relating the travelling and the standing jump

There are two ways in which one can think of travelling and standing jumps as

being one and the same phenomenon. The first approach is mathematical while

the second approach uses physical arguments. We describe them in detail below.

Approach 1 - Galilean Transformation

The first approach is a mathematical one that relies on a Galilean transformation

from a lab frame of reference to a jump/bore attached frame. This approach is

very standard and is used in many textbooks as a classical explanation for the

equivalence between standing and travelling jumps [Stoker, 1992]. It is intuitively

evident, but is instructive to describe, as is done briefly here. Consider in figure 1.3

a travelling hydraulic jump/bore modelled as a mathematical discontinuity which

propagates unchanged in shape with a velocity U . The fluid velocities upstream

and downstream of the bore u1, u2 as well as the velocity of the bore itself U , are

all measured with respect to the bottom wall. It was shown by Rayleigh that mass
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Figure 1.3: A travelling hydraulic jump also known as a bore. The illustration
indicates a bore moving with constant velocity into still water with a velocity U
with respect to the bottom wall.

and momentum conservation equations written across the bore can be satisfied

simultaneously but energy cannot be conserved [Rayleigh, 1908, 1914]. Mass and

momentum will provide two independent equations and we have five unknowns

u1, u2, U,H1 and H2. Thus if we treat any three of these as independent variables,

the other two are determined by mass and momentum conservation. We take for

our purpose H1, H2 and u2 to be specified. This corresponds to the case of a

tidal bore of fixed depths upstream and downstream moving into stationary water

ahead of it (u2 = 0). Thus u1 and U are determined by the mass and momentum

equations. We write these equations in the frame of reference attached to the

bottom wall. We restrict ourselves to inviscid shallow-water theory implying that

we assume hydrostatic pressure and neglect viscosity

(u1 − U)H1 = (u2 − U)H2,

(u2 − U)2H2 +
gH2

2

2
= (u1 − U)2H1 +

gH2
1

2
, (1.10)

Equations 1.10 are the mass and momentum flux relations written across the dis-

continuity. We treat H1, H2 and u2 as independent variables, set u2 = 0 and thus

obtain

U =

√

g
H1

H2

(
H1 +H2

2

)
,

u1 = U

(
1 − H2

H1

)
, (1.11)
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Figure 1.4: The travelling hydraulic jump of figure 1.3 becomes a standing hydraulic
jump due to a Galilean transformation to a frame where the bore is stationary. Fru

and Frd represent the upstream and downstream Froude number respectively. It is
seen that in this frame of reference, the travelling jump has Fru > 1 and Frd > 1.
The flow in this coordinate frame is from right to left, but the direction of flow
through most of the thesis will be from left to right.

We now do a Galilean transformation and go to a frame of reference moving with

velocity U with respect to the bottom wall. In this frame, the the bore appears

stationary and the velocities ahead and behind the bore are U and U −u1 with the

directions as indicated in figure 1.4. Although we have depicted H1 > H2 in figure

1.3 and 1.4, this fact has not been used as yet in deriving equations 1.11. If we

assume now that H1 > H2, then by a slight rearrangement, we have the following

U =
√
gH2

√
1

2

H1

H2

(
1 +

H1

H2

)
,

⇒ Fru ≡ U√
gH2

=

√
1

2

H1

H2

(
1 +

H1

H2

)
> 1, (1.12)

where Fru is the upstream Froude number. Similarly, we have

U − u1 = U

(
H2

H1

)
,

⇒ Frd ≡ U − u1√
gH1

=

√
1

2

H2

H1

(
1 +

H2

H1

)
< 1, (1.13)

where Frd is the downstream Froude number. It is seen from figure 1.4 that the

Galilean transformation reduces the travelling jump to a stationary jump. As seen

from equations 1.12 and 1.13 that upstream and downstream of the jump, the re-
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spective Froude numbers Fru and Frd are greater and less than unity respectively.

1.1.3 Approach 2 - Wave trapping

The second approach is more of a qualitative description and does not rely on a

Galilean transformation to begin with. We go back to the solution 1.7. Let us

imagine a uniform flow which by some inviscid mechanism (e.g. geometry) is able

to transition from being supercritical (Fr > 1) to subcritical (Fr < 1). In the

supercritical part of such a flow, we see from solution 1.7, that both upstream and

downstream propagating parts of any surface disturbance get swept downstream

with respect to the wall. This is because for Fr ≡ U0/
√
gH0 > 1, both U0 +

√
gH0

and U0 −
√
gH0 are positive quantities. However, in the subcritical part of the

flow i.e. Fr < 1, U0 +
√
gH0 is positive while U0 −

√
gH0 becomes now negative

implying that this component of the disturbance now propagates upstream with

respect to the wall. Thus the upstream propagating component of any disturbance

created anywhere in flow, gets trapped at the critical Fr = 1 location, during a

supercritical to subcritical transition. If we reverse the flow scenario and repeat the

above argument for a flow transitioning from subcritical (Fr < 1) to (Fr > 1), we

find that no such wave-trapping occurs for such a transition. This wave-trapping

mechanism has been used many times to explain why a jump forms, and yet the

arguments are very qualitative. On could think of many obvious questions which

merit attention. How is this wave-trapping related to formation of a stationary

jump? Can this wave-trapping mechanism provide the equivalence that a Galilean

transformation provides between the travelling and standing jump i.e. can we

show that wave trapping also occurs in a travelling jump? These are difficult and

still open questions and we know of no study where such questions have been an-

swered in a quantative and altogether satisfactory manner. A qualitative answer

to the former question usually goes like this (see e.g. Rhines [2010]) - The trap-

ping of waves at the critical location gives an indication that “smooth” transition

through the critical Froude number is unlikely. The trapping leads to piling of

upstream propagating waves until the wave amplitude becomes large compared to

the depth, and non-linearity then deforms it into a step-like profile. The absence of

this wave-trapping mechanism for subcritical to supercritical transition lends some
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more weight to the argument, as these transitions are known to occur smoothly.

Returning to the second question of equivalence between travelling and standing

jumps in this wave-trapping approach, it is possible [Stoker, 1992] to show wave-

trapping even for a travelling jump. We return to the travelling jump of figure

1.3 and examine two linearised disturbances - one of which is created behind the

jump and one ahead of it. The disturbance which is created ahead of the bore is

created in still water. It thus splits into an upstream and a downstream component

both of which move in opposite directions with the speed
√
gH2. We are interested

in the component which moves in the positive direction (left to right) and it is

easy to see from equation 1.12 that the bore overtakes this disturbance because

with respect to the wall, the bore moves with a speed U which is greater than
√
gH2. Similarly, downstream of the bore there is a positive fluid velocity u1 given

by equation 1.12. Any disturbance created here splits into two components. The

upstream propagating component’s behaviour is not predictable without specifying

the values of H1 and H2. We are more interested in the downstream propagating

component’s behaviour and whether this component moving with a speed u1 +
√
gH1 can catch up with the bore which is moving with a speed U , both speeds

being measured with respect to the wall. It can be shown that for H2/H1 > 1,

the ratio (u1 +
√
gH1)/U is also > 1. We thus have a situation where any left to

right moving disturbance created ahead of the bore moves slower than the bore and

a similar disturbance created behind the bore, moves faster than the bore. Thus

disturbances created behind the bore catch up with it while the bore itself catches

up with any disturbance created ahead of it. In other words if one does a Galilean

transformation and goes to a frame where the bore is at rest, we will see that the

disturbances ahead and behind the bore all getting focussed onto the bore. This

is the equivalent of the wave-trapping mechanism discussed for a standing jump as

applicable for a bore.

Having examined the physical consequences of nonlinear steepening and how it

relates to hydraulic jumps, it is also useful to examine the consequences of disper-

sion. If we imagine the standing jump as an upstream propagating nonlinear wave,

trapped at the critical Froude location, the question arises as to what counteracts

non-linear steepening. Indeed if the profile were to steepen indefinitely, then the

step-like shape would be unstable as the slightest perturbation would cause it to
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topple over and break. This is where dispersion becomes important. As we saw

in earlier sections dispersion can counteract nonlinear steepening and produce a

solitary wave. Similarly in hydraulic jumps, dispersion can locally become impor-

tant in the near jump region and play a role in arresting any further steepening

of the wave profile. With the rough picture that emerges from this discussion we

conclude our discussion of the hydraulic jump from a wave point of view.

1.2 Literature review of circular hydraulic jumps

We next perform a literature review. An enormous literature exists on planar stand-

ing jumps and reviews of known results have appeared periodically ([Rajaratnam,

1967],[Chanson, 2009]), also see lecture notes of Thandaveswara [2010]). Until the

early part of the twentieth century, almost all theoretical studies of hydraulic jumps

used inviscid, irrotational, long-wave equations. It was only much later that viscos-

ity began to be explicitly included in the governing equations, and the importance

of the same appreciated. We are not aware of a corresponding review of circular

hydraulic jumps, so we take it up in some detail in this chapter. The circular hy-

draulic jump was probably first mentioned in the literature by Rayleigh [1914] and

has attracted renewed interest and attention in recent years. It is visually simple

and one can see it readily in a kitchen sink. Despite its apparent simplicity and

ease of reproducibility, the physics of the circular hydraulic jump has proved hard

to understand and analyse. There are many questions that can be asked regarding

jump formation. Many of these questions are relevant for planar jumps as well.

We list some of them below not in any particular order, and these should help the

reader to appreciate the literature review better. This thesis has been influenced by

this list of questions, some of which are partially or fully answered in later chapters.

1. The circular hydraulic jump is known to be associated with a surface and/or a

bottom separated eddy. This bottom eddy has been suggested as a necessary

condition for jump formation [Tani, 1949]. Is the bottom eddy the cause of

the jump? Can we obtain obtain a steady circular hydraulic jump without

any separation at the bottom or at the free-surface?

2. The analogy between a planar hydraulic jump and a shock suggests that

jump formation owes its origin to non-linear steepening of waves. This is
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supposed to happen at a location where the Froude number goes through

unity (transitioning from Fr > 1 to Fr < 1). Can such a Froude number

criterion be obtained for the circular hydraulic jump as well? Is it possible

to explain the physical mechanism by which jumps form from a nonlinear

steepening perspective in quantitive terms? Why can the inviscid transition

from Fr > 1 to Fr < 1 not happen smoothly? What is the role of viscosity

in this transition?

3. Scaling relationships have been proposed in literature [Bohr et al., 1993],[Chang

et al., 2001] which predict the radius of the circular hydraulic jump in terms

of experimentally controllable parameters. How accurate are these? Are im-

provements over these possible? Are there additional parameters which have

not been considered and which can strongly influence the jump radius?

4. Are there any qualitative differences between planar and circular jumps or

between travelling and stationary jumps?

5. Can we obtain a steady circular hydraulic jump or a planar hydraulic jump

from purely inviscid equations? Can non-linear steepening be counter-balanced

by dispersion to give a steady jump-like profile without invoking any viscos-

ity? Do the jump relationships given by Rayleigh for planar jumps work for

viscous jumps?

6. Shallow-water theory is widely used for describing jumps. Is shallow-water

theory suffcient for describing these jumps? In other words, is hydrostatic

pressure ever a good assumption for the entire flow? Can any theory which

neglects streamline curvature account for a phenomenon which needs stream-

line curvature to arise?

7. What is the role of the wall-vorticity in jump-formation? In experiments

it is reported that the boundary-layer reaches the free-surface upstream of

the jump and theoretical work uses this as a guide [Godwin, 1993] to locate

the jump. Is this a necessary condition? Is there a parameter regime where

there exists a steady circular hydraulic jump and the boundary layer has not

reached the free-surface at the jump location?

8. Most theoretical studies in recent years assume a fully viscous film. In such



14 Introduction and Literature Review

a viscous film, there is neither so distinct a “boundary layer” nor any “outer

inviscid irrotational flow”. The traditional idea, of a boundary layer separat-

ing under the influence of an adverse pressure gradient imposed by the outer

flow, does not directly apply here. How does one then conceptually think of

separation occuring in such thin film viscous flows [Bowles & Smith, 1992]?

9. What is the role of downstream boundary conditions in the formation of the

circular hydraulic jump. Controlling the outer depth sometimes causes the

jump to lose its circular symmetry [Bohr et al., 1996]. The outer depth also

affects the size of separated eddy at the bottom / top and the radius of the

jump. Why does the outer-boundary influence the jump structure and its

radius so strongly?

10. What is the role of the air boundary layer above the jump (see [Sreenivas

et al., 1999])? Does it have a strong influence on the circular hydraulic jump,

its radius, its structure?

11. The traditional approach of vertical averaging of viscous shallow-water equa-

tions leads to ordinary differential equation governing the evolution of film

thickness. The solutions of these evolution equations behave unphysically in

the jump neighbourhood, predicting singularities in the derivative of the film

height instead of a jump. Why do these singularities arise? Do they arise

due to truncation of terms in the Navier-Stokes equations or are they due

to accompanying assumptions? Can we identify the neighbourhood of the

singularity as the location of the jump? How can the region downstream of

the singularity be described in this framework?

12. What is the role of surface-tension in the circular hydraulic jump [Bush &

Aristoff, 2003]? Can surface-tension play an analogous role to gravity at small

scales and cause a hydraulic-jump? Can capillary waves steepen to produce a

shock like discontinuity? Is separation possible at small-scales as well? What

is the role of geometry at these scales?

13. How well is the structure of the flow in the near-jump region and the region far

upstream and downstream, known? Are results from numerical simulations

available in plenty?
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In the literature survey that follows, it will become clear that attempts have

been made to answer many of these questions. In some cases, the answers are fairly

clear while in other cases the conclusions remain unclear and debatable. In this the-

sis, we will concern ourselves with obtaining at least partial answers to some of the

outstanding questions. Despite the renewed focus on studying circular hydraulic

jumps in recent years, known results on circular hydraulic jumps have not been

systematially reviewed in the literature. So as mentioned earlier, we start with a

summary of studies on circular hydraulic jumps . Every attempt has been made

to make the literature survey exhaustive. However, in a few instances references

could not be accessed due to their not being published in easily accessible journals

or due to other constraints, and we list these references as well. A few references

on planar hydraulic jumps have also been reviewed because the conclusions and

techniques are relevant for the circular case as well.

In what follows, studies are listed in a chronological order starting with the

earliest while restricting our attention mostly to laminar circular jumps. At the end,

we will try to summarise known results for the circular hydraulic jump. Whenever

we qualify a reference as “the first to...”, this should be taken with the caveat that

this claim is only to the best of our knowledge.

1. [Rayleigh, 1908, 1914]:

The 1914 paper is the first place in literature where the circular hydraulic

jump finds mention, although no analysis was presented. The focus in both

the papers was on planar jumps and to treat the same as a mathematical

discontinuity in height and obtain relations for flux of mass, momentum and

energy on either side of the discontinuity using inviscid shallow-water as-

sumptions. The main conclusions were the impossibility of energy flux being

continuous across the jump and the impossibility of a negative jump.

Comments:

The 1908 and the 1914 work introduced the well-known Rayleigh shock cri-

terion. This criterion is used extensively even in recent literature in shock-

fitting techniques. The validity of this criterion becomes suspect in the case

of strong jumps where streamline curvature effects are large and hence hydro-

static pressure might not be appropriate. Additionally, there is a discontinu-

ity in energy flux, which is partially a result of neglecting viscous dissipation
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through work done at the wall by wall-shear. The impossibility of a negative

jump as shown in this paper is a valid conclusion as negative jumps are gen-

erally never observed (see Gribbon & Cope [1963]). There was a mistake in

the energy flux expression in the 1908 paper which was corrected in the 1914

paper. Applying the Rayleigh shock criterion to a circular geometry leads to

some unexpected results and these will be discussed in Chapter 4.

2. [Tani, 1949]:

This is mainly a theoretical work with a small experimental part. The main

results are:

• Introduced and analysed the boundary-layer shallow-water equations

independently on the same lines as was done earlier by Kurihara [1946].

• A first order ordinary differential equation for height and radius was

obtained by vertically averaging of the boundary-layer shallow-water

equations (BLSWE). The solution to this ordinary differential equation

gives height-profiles which were spirals. No jump-like height profiles

were obtained. Introduced the idea that circular hydraulic jumps occur

due to boundary layer separation at the wall.

• In another approach to solving the BLSWE, the author uses an assump-

tion that the slope of the streamlines varies linearly from being 0 at the

wall to h′ at the free-surface (for a steady flow). Using Weirstrass el-

liptic functions, the resultant equations are solved and height profiles

obtained. No vertical averaging is performed here. The results obtained

in this approach are qualitatively similar to those obtained from verti-

cal averaging and the solution fails at the location of separation. Some

experimental results are also reported for a comparison of predictions of

the location of separation (taken to be the jump radius) to experimental

jump radius. Forty percent deviations are reported and the author does

not analyse the reasons for this in detail.

Comments:

This work is important in that it introduced the boundary-layer shallow-water

equations. We will study these equations in great detail in Chapter 2. How-

ever, one of the principal conclusions of this work is incorrect. The cause
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of hydraulic jumps is attributed to flow-separation, thus implying that the

physical mechanism of jump formation owes its origin to separation. As we

will see in later chapters, the standing hydraulic-jump in planar and circular

geometry is a standing shock which does not rely on flow-separation for its

existence. The existence of jumps without separation has been hinted at in

literature for some time, see e.g. Craik et al. [1981]; Watanabe et al. [2003].

We will also study the BLSWE in great detail for both circular and planar

geometries in Chapter 2. It is perhaps not surprising that both the approaches

described above lead to qualitatively similar answers because it can be easily

shown [Watanabe et al., 2003] that assuming a self-similar velocity profile

is also equivalent to the assumption that the slope of the streamlines varies

linearly from the wall to the free-surface.

3. [Benjamin & Lighthill, 1954]:

This is not a direct study of hydraulic jumps. The authors propose that

the wave-train which appears downstream of a standing/travelling jump, are

cnoidal waves which can be modelled using the KdV equation. It is argued

that the loss of energy which occurs across a Rayleigh shock can be explained

by the energy needed to create downstream waves. However this net energy

loss is found not to become exactly zero even in the presence of downstream

waves. The appearance of downstream undulations are governed by the roots

of a cubic in the KdV equation. It is argued that only when the cubic contains

three real roots, can a train of waves can appear downstream of the jump.

Comments:

While the steady KdV equation can be integrated in terms of elliptic functions,

these authors offer an alternative approach to the solution. The equation is

expressed as the kinetic and potential energy of a particle of total energy

zero, trapped in a potential well with a cubic potential. The number of real

roots of this cubic determine an oscillatory solution while a repeated real root,

determines a solitary wave.

4. [Gribbon & Cope, 1963]:

This is an experimental study where liquid helium is pushed from below

through an orifice into a horizontal plate. A hydraulic jump seems to be

formed although the illustrations in the paper make it seem like a negative
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jump (Hydraulic drop).

Comments:

Although the authors do not discuss much about jumps, we record this refer-

ence here because this is the first experimental study of hydraulic jumps with

liquid helium. A similar and more detailed study of the circular hydraulic

jump with a liquid helium impinging jet was done many years later in Rolley

et al. [2007].

5. [Watson, 1964]:

A theoretical study with a small experimental contribution. Both laminar

and turbulent flows are studied, the later using eddy viscosity. Planar and

circular geometries are studied. The flow (including the impinging jet) is

divided into different regions as following:

• A region close to the impinging jet, where the presence of the free-surface

is not felt and Homann’s similarity solution is valid [Homann, 1936].

• A region where the boundary-layer thickness is very small and the Bla-

sius similarity solution is valid. Here too the free surface is not felt.

• A region far-away from the jet but much upstream of the jump, where

the boundary layer has already reached the free-surface. In this region

a similarity solution without gravity was obtained. The velocity profile

can be expressed in terms of a Jacobian elliptic function and it is found

that the height profile is h = π√
3
ν(x + l)/Q where l is a constant of

integration. This is equivalent to

h′Re ≡ dh

dx

Q

ν
=

π√
3
' 1.8128, (1.14)

where Re = Q/ν. Similarly, in a circular geometry the film thickness is

predicted as h =
(
2π2/3

√
3
)
ν(r3 + l3)/Qr which gives

Re(h′ + h/r) ' 1.8128 (1.15)

where Re ≡ Q/2πrν.

• Since gravity is neglected, it is no surprise that no jump-like solutions

are obtained for h, which grows monotonically with streamwise distance
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for both planar and circular geometries.

• The location of the jump is given by two implicit formulae - One which

assumes that the boundary layer reaches the free-surface before the jump

and another which assumes that the boundary layer reaches the free-

surface after the jump. Both these formulae depend on the outer depth.

The experiments were conducted to check the implicit relation proposed

and these show considerable scatter.

Comments:

This was the earliest attempt at modelling the flow by dividing the flow into

multiple regions. The existence of a similarity solution in the absence of

gravity is an important result. Note however that no jump-like transitions

were obtained for the height-profile. The two implicit relations for quantities

across the jump were later improved upon by Bush & Aristoff [2003]. The

gravity-free similarity solution is indeed realized at high enough local Froude

numbers as we will see later in our simulations.

6. [Olsson & Turkdogan, 1964]:

An experimental study of the circular jump where the effect of surface-tension

is highlighted. If the water falling over the edge of the plate under gravity is

treated like a projectile, then the shape of the surface created by the falling

water all around the plate is expected to be parabolic. It is shown that this

is not so and the difference is ascribed to surface-tension. Using high-speed

photography of around 2000 frames/sec, remarkable for that time, it was

concluded that the surface velocity is a constant upto the hydraulic jump. It

is also claimed that the radius at which the boundary layer reaches the free-

surface as predicted by Watson [1964], is incorrect. The fraction of kinetic

energy lost to surface-energy is claimed to be large.

Comments:

This was one of the earliest works to highlight the effect of surface-tension on

the circular hydraulic jump. One of the conclusion, that the velocity of the

free-surface is a constant, was found to be incorrect in later experiments by

Stevens & Webb [1992] and Watanabe et al. [2003].
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7. [Hsieh, 1967]:

A theoretical study of the vertically integrated Navier-Stokes equations. The

aim of this report is to provide an explanation for the role of viscosity in

the supercritical to subcritical transition. The author however neglects some

terms in a rather heurisitic fashion. The resultant ordinary differential equa-

tion is analysed for its fixed points. It is shown that a subcritical flow is stable

and a supercritical flow is unstable in the presence of viscosity. The author

uses this as a physical motivation for why a supercritical flow transitions to

being subcritical. There are other results in this report on shocks and vortex

breakdown which we do not discuss here.

Comments:

This is an interesting work, which due to its not being published, has never

been cited before in the hydraulic jump literature. We are happy to bring

to attention this reference here. Hydraulic jumps are studied here only in a

planar geometry. The method of vertical averaging that we follow in Chapter

3 of this thesis, is borrowed from this work. The author had used this method

to obtain an approximate equation for the height profile, but we rewrite the

complete Navier-Stokes equations in terms of an evolution equation for the

height profile.

8. [Koloseus & Ahmad, 1969]:

A theoretical and experimental study. The main findings are:

• The height profile in the “width” of the jump is assumed to be linear

and pressure to be hydrostatic. Using mass and momentum equations, a

relationship is derived relating the depth ratios, the radius ratios before

and after the jump and the incoming Froude number. This expression

becomes identical to the criterion of a planar Rayleigh shock for a cir-

cular jump with zero width.

• Adding a head loss term to the energy equation, an expression is derived

relating the head loss ratio to the incoming Froude number and the

depths after and before the jump. Assuming the width of the jump

to be zero, here too we recover the planar expressions for head loss as

derived by [Rayleigh, 1914].
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• The “width” of the jump is obtained as a function of incoming Froude

and radius ratios from experimental data. This width is reported to be

much smaller for circular jumps when compared to planar jumps.

Comments:

This work is of civil engineering interest. The aim is to derive relationships

for a circular jump analogous to a planar jump and compare them between

the two geometries. Our numerical simulations also show that circular jumps

are usually steeper than planar jumps and thus have a smaller width.

9. [Arbhabhirama & Wan, 1975]:

This is an experimental and semi-analytical study. The main results are:

• Expressions for momentum, energy flux across the jump and height pro-

files are obtained for laminar and turbulent jumps. As in all the work

discussed so far, except Hsieh [1967], these make the assumption of hy-

drostatic pressure. The finite width of the jump assumes the height

profile to be linear. An empirical expression is obtained from experi-

ments for height-profile in the near-jump region.

• The validity of these expressions are checked by comparsion with exper-

iments. Comparisons are also made with the results of Watson [1964].

Comments:

This work builds up on the earlier discussed work of Koloseus & Ahmad

[1969]. There are some free-surface velocity measurements reported in this

reference.

10. [Labus, 1977; Labus & DeWitt, 1978]:

These are numerical and experimental studies on jets impinging on finite

diameter plates in free fall i.e. nearly zero gravity. The experiments were

conducted in a drop-tower. This has some relevance for the circular hydraulic

jump because far upstream of the jump, where the local Froude number is

very high, the flow locally can be aproximated as a zero-gravity problem,

where the similarity solution of [Watson, 1964] is relevant. The main results

reported are:
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• An order of magnitude estimate of the terms in the Navier-Stokes equa-

tion is used to provide a criterion for deciding when viscous effects can

be neglected in the impingement region. This criterion depends on the

non-dimensional ratio of jet diameter to plate radius.

• Experiments are reported where a liquid jet impinging on a plate is ob-

served inside a drop tower. Three flow regimes are identified depending

on the jet velocity viz. inertia dominated, surface-tension dominated,

and transitional where both effects are important.

• The inviscid, irrotational Euler’s equation without gravity are solved

numerically with and without surface-tension to obtain the free-surface

shape.

• Good match is reported in the inertia dominated regime between nu-

merical and experimental results. No quantative comparisons could be

obtained in the surface-tension regime because the experimental results

did not reach a steady state. However qualitative similarities are re-

ported.

Comments:

Though this was not a direct study of the circular hydraulic jump, this work

is relevant to discuss here, since a drop-tower was used later by Avedesian &

Zhao [2000] to study the effect of lowering of gravity on the circular hydraulic

jump. Morever the impingement region is of interest.

11. [Ishigai et al., 1977]:

An experimental work on the circular jump. The jump is categorised into four

different types based on the upstream Froude’s number Fr. The classification

is reproduced below.

A. Fr < 2 B. 2 < Fr < 7 C. 7 < Fr < 15 D. 15 <  Fr 

Comments:

This study has a sentence in the opening paragraph where it is claimed that

“the hydraulic jump occurs by the interference of the film flow with the water

at the periphery of the plate”. This statement is not always true. In high
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speed photography experiments conducted by us to study the transients lead-

ing to the formation of the circular hydraulic jump, we found that the jump

forms and even reaches a steady radius much before the fluid reaches the plate

edge. This paper was one of the earliest which, although briefly, examined the

interactions of two hydraulic jumps and categorised them into different types

based on the inter-jet distance. This work was built upon and continued later

in the study by [Kate et al., 2007a]. The jump of type A represents an undular

jump in a circular geometry and the existence of this type of jump has been

doubted in Craik et al. [1981]. Also see Thorpe & Kavcic [2008]. This was

also one of the first studies which doubted Tani’s hypothesis that separation

was the cause of the jump although the reasoning followed by the authors to

arrive at this conclusion appears hazy.

12. [Nakoryakov et al., 1978]

This is an experimental and theoretical study. The main results relevant to

hydraulic jumps are:

• The theoretical study divides the flow on the lines of Watson [1964] and

obtains formulas for friction factor etc.

• Demonstration of separated flow and subsequent reattachment under-

neath the jump by making measurements of wall-shear stress using an

electrodiffusion method.

• Dependence of the radius of the jump on the edge conditions of the

finite plate. The location of separation was experimentally shown to be

sensitive to whether the plate edge was rounded or sharp.

• Experimental evidence that the average flow speed is close to the inviscid

wave speed near the jump.

Comments:

This was the first experimental confirmation of flow-separation and reattach-

ment underneath the circular hydraulic jump.

13. [Craik et al., 1981]:

An experimental study. Film thickness measurements where made using a

ligh absorption technique. The main findings are:
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• The depth of fluid as it exits the plate is externally controlled. The cir-

cular jump becomes non-axisymmetric and unstable as this outer depth

is increased.

• Experimental confirmation of a separated eddy underneath the jump.

• The separated eddy underneath the jump shortens and vanishes as the

outer depth is increased. Increasing the outer depth also triggers an

instability causing the jump to lose its axisymmetry and stability and the

jump radius starts decreasing until it eventually “closes” and disappears.

• The onset of the oscillatory instability of the jump is associated with

the disappearance of the eddy.

• The oscillatory instability of the jump causes it to sometimes have a

distinct azimuthal wave-number.

• A critical local Reynolds number of around 147 was identified for the

onset of instability.

Comments:

This was one of the early works to doubt Tani’s hypothesis [Tani, 1949] that

the jump was due to flow separation. However, no experimental evidence of

circular jumps without separation was presented. The shortening of the eddy

length as the outer depth was increased is posed as an unanswered question.

14. [Lawson et al., 1983]: A combination of theoretical and experimental work.

Some of the main results reported are:

• An equation is derived for the depth ratio upstream and downstream

of the jump, from mass and momentum conservation assuming a linear

height profile in the jump-width. An empirical friction-loss term is added

to this equation. It was found that the empirical form of the friction used

can significantly influence the jump location. This equation is solved to

obtain the depth ratios before and after the jump, for given values of

the radius ratio and the downstream Froude number.

• Experimental results are compared with the theoretical results obtained

above. The authors report that the assumption of a linear height profile
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in the width of the jump compares favourably with experiments. It is

also reported that the width of the jump is independent of the upstream

Froude number.

Comments:

This builds upon the earlier work of [Koloseus & Ahmad, 1969] and, like

[Koloseus & Ahmad, 1969], also takes a civil engineering perspective with an

aim of coming up with design charts for the circular hydraulic jump. Note that

the theoretical analysis and the experiments correspond to a upward facing jet

discharging into an orifice on a plate. This is in contrast to impinging jet ex-

periments which are typically used to produce a circular hydraulic jump. The

authors model the upstream region of the jump as being of constant thickness.

Other works including our axisymmetric Navier-Stokes simulations reported

in Chapter 4, find that this is not strictly true.

15. [Azuma & Hoshino, 1984]:

This is a three-part experimental, and partly theoretical study of thin-film ra-

dial flows and hydraulic jumps. Two kinds of thin-film flows are studied - one

formed by an impinging jet and another formed by a jet hitting a plate from

below. In the first part, the stability and transition to turbulence is stud-

ied. The second part consists of film-thickness measurements and the third

comprises velocity-profile measurements. The three parts are summarised

below:

• In the first part of this study, the experiments use a jet impinging on the

upper surface of a plate and an inverted jet hitting the lower surface of a

plate. The resulting transition to turbulence in radial film flow is stud-

ied. Surface waves are categorised qualitatively as roll waves, Rayleigh

Taylor waves, ripple waves, lattice shaped waves, sandpaper-like waves

etc. A detailed qualitative description of the transition to turbulence is

provided. Data is reported for the variation of dimensionless transition

radius versus Reynolds number, the transition local Reynolds number

etc.

• The second part of the study measures the film thickness for the exper-

imental setup described earlier. The measured profiles are compared to

the predictions of Watson [1964] and Ishigai et al. [1977].
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• Velocity profiles are measured using a Laser doppler Velocimeter. Alu-

minium powder is used as scattering particles. It is claimed that the

velocity profile in the region upstream of the jump where the boundary

layer is growing is modelled well by a fourth-order polynomial. In the

fully viscous part of the film, the velocity profiles gradually approaches

the gravity-free similarity solution of Watson [1964].

Comments:

This is one of the early studies on the circular hydraulic jump where velocity-

profiles were obtained experimentally. This is also among the first experimen-

tal studies of the transition to turbulence in a thin liquid film in the context

of hydraulic jumps. The study of transition to turbulence in the context of

hydraulic jumps was later carried out also by Cholemari [1998].

16. [Vasista, 1989]:

An experimental study designed to test the theoretical predictions of [Watson,

1964]. In the few experimental results reported, very limited agreement is

said to have been obtained with the predictions of Watson [1964]. Part of

the disparity is reported to be due to the flow becoming turbulent upstream

of the jump and due to the appearance of upstream waves.

Comments:

The experiments reported in this thesis were carried forward in the subsequent

extensive experimental study by Liu & Lienhard [1993]. The description of

the experiment in Liu & Lienhard [1993] where it is described very briefly, is

given in greater detail in this thesis.

17. [Thomas et al., 1990]:

This is a numerical study of the boundary-layer shallow-water equations us-

ing vertical averaging and modelling the skin-friction term. Although the

unsteady term is retained in the momentum equation, the numerical proce-

dure uses pseudo-transients and hence time evolution to the steady state is

not time-accurate. Both planar and circular geometries are studied, in the

latter case the effect of a solid body rotation is also added. Some of the main

results are :
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• Due to the analogy between compressible flows and shallow-water the-

ory, the numerical technique used to solve the governing equations is

borrowed from compressible flow. A downstream boundary condition is

imposed in the form of Froude number being equal to unity.

• For simulations with gravity, a hydraulic jump is found to occur some-

where in the domain in both geometries. In the case of zero gravity, it

is found that the flow remains supercritical throughout the domain and

no jump is obtained.

Comments:

Although a solution of the the initial value problem for jump formation has

been presented, the data regarding the time-evolution to steady-state should be

interpreted with caution. This is not a full numerical solution of the unsteady

boundary-layer shallow-water equations and the governing equations are only

quasi-steady.

18. [Rahman et al., 1991a]:

This is a computational study of turbulent jumps and we describe it briefly

here. Two kinds of numerical studies are reported viz. (a) Simulation of the

Reynolds averaged Navier-Stokes equations with the k − ε model for turbu-

lence modelling (b) Vertical averaging of the BLSWE assuming a uniform

profile (as turbulent flows are being modelled) and assuming a model for

the friction factor, an unsteady momentum equation is derived which is then

solved using the MacCormack predictor-corrector method. Some artificial

viscosity is added to damp numerical oscillations occuring near the jump.

The simulations are carried out for both planar and circular geometries and

comparisons are made between the simulations and some earlier experimen-

tal data. Good match is reported for the simulations. For certain parameter

ranges, the averaged solution predicts a radius/location of the jump which is

substantially larger than the ones seen in simulations. Some velocity profiles

upstream and downstream of the jump are also provided.

Comments:

Although the authors include time-dependence in their vertically averaged

model, this is only a quasi-steady calculation. Due to vertical averaging the

film thickness and the average velocity appear in the continuity equation and
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the authors neglect the time variation of the film-thickness compared to that

of the average velocity.

19. [Rahman et al., 1991b]:

This is a theoretical study of laminar jumps in both planar and circular

geometries. Equations for the evolution of height with radius are derived as-

suming a uniform velocity profile and a friction factor, or a parabolic velocity

profile. The main results are:

• In the absence of gravity, the film thickness may increase or decrease

depending on the friction factor and the solution is single-valued at any

radius.

• In the presence of gravity, the solution is multi-valued at any radius - one

solution is supercritical (Fr > 1) while the other is subcritical (Fr < 1)

• The solution has a singular point beyond which there is no solution.

Comments:

As is usual, the technique of vertical averaging assuming a parabolic velocity

profile leads to multiple solutions at a given spatial location, but no jump-like

transition between these is predicted.

20. [Gharangik & Chaudhry, 1991]:

This is a numerical study of hydraulic jumps in rectangular inclined channels,

using the Boussinesq equations. The authors solve the partial differential

equation governing the evolution of film-thickness in space and time. This

Boussinesq terms are the non-hydrostatic terms for pressure. Three different

numerical schemes viz. a second order accurate and two fourth order accurate

ones, with and without Boussinesq terms, are tested. The initial conditions

are chosen to be such that the flow is supercritical throughout the domain and

the initial-value problem is solved numerically. The outer depth is controlled

in these simulations and it is found that the jump originates downstream and

moves upstream until it reaches its steady-state location. Some oscillation

about the steady-state location is reported. Experiments are conducted to

compare with the height profiles obtained from the numerical solutions. Good

agreement is reported for the fourth order model.
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Comments:

The authors correctly recognise the importance of the Boussinesq terms (dis-

persive terms) for calculating the near-jump profile. However, the effect of

the Boussinesq term on the jump radius is found to be negligible. This ob-

servation is consistent with the fact that shallow-water models can be used to

obtain reliable estimates of the jump radius despite the fact that most of these

models do not do a good job in predicting the near-jump height profile. The

near-jump region is not studied in detail in this reference.

21. [Khalifa & McCorquodale, 1992]:

The authors report simulations of the radial jump in a diverging sector. The

wall-shear is modelled and a technique known as the strip-integral method is

used. This technique splits the flow into three parts and vertical averaging is

then used to simplify the governing equations into a set of ordinary differential

equations. Additionally, the mean flow is also modelled. Some results from

these simulations are compared with experiments e.g. the depth ratio before

and after the jump, surface-velocities, the length of the jump etc. and good

agreement is claimed.

Comments:

This was one of the early turbulent simulations of the radial jump. Note

however that this is not a Navier-Stokes simulation in the sense that there

is modelling involved, of the wall-friction terms. Additionally pressure is

assumed to be near hydrostatic in the sense that it is decomposed into a lam-

inar hydrostatic part and a non-hydrostatic part due to turbulent fluctuations

alone.

22. [Stevens & Webb, 1992]:

An experimental study of impinging liquid jets with very limited relevance

towards hydraulic jumps.

• Two sets of experiments are conducted - one with the jet impinging on

a vertical plate (parallel to gravity) and another on a horizontal plate

(perpendicular to gravity). The difference between the two experiments

helps to identify those regions of the flow where gravity is important

from those reigons where it is not. At small radii after impingement,

gravity is found to be insignificant.
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• Mean free-surface velocities before and after impingement are reported.

For the impinging jet, the mean free-surface velocity increases from being

zero at the nozzle exit to almost the centerline velocity as the jet falls

downward. The distance over which this transition happens is reported

and it is found that for small jet Reynolds numbers (based on the nozzle

diameter), this transition is rapid.

• The mean free-surface velocities after impingment normalised by the

average jet velocity is plotted against the radial distance nondimension-

alised by the nozzle diameter. It is found that this data collapses into a

single band which can be approximated as a parabola and a straight line

for different ranges of r/d. The measured free-surface velocity data is

compared to the analytical predictions of [Watson, 1964] and it is found

that the free-surface velocity differs from the centerline jet velocity be-

fore impingment and does not become constant with radial distance, as

was assumed earlier by [Olsson & Turkdogan, 1964].

• Some calculations of the depth-profile are reported assuming an parabolic

velocity-profile.

Comments:

This work does not strictly pertain to laminar jets (and jumps) as the jet

Reynolds number is O(50000) and turbulent fluctuations are significant. How-

ever, some of the results e.g. about the mean free-surface velocities remain

valid for laminar jets as well.

23. [Varella, 1992]:

This is an analytical study of wave evolution on radial film-flows. Although

not a direct study of the circular hydraulic jump, it bears a strong connection.

• The initial-value problem for the radial shallow-water equations are

solved numerically and jump formation is reported.

• Stability of long waves including dispersive and surface-tension effects

is analysed.

• An equation is derived which governs the evolution of nonlinear, disper-

sive, long wavelength waves in a radial geometry. This is a rich equation



1.2 Literature review of circular hydraulic jumps 31

which contains many other well-known equations as its subsets. This

equation admits cnoidal and solitary wave solutions.

Comments:

This is an unpublished work which to the best of our knowledge has not been

cited before in literature. We are grateful to Prof. Peter J. Schmid (LadHyX,

France) for bringing this work to our attention. This is one of the earliest

studies on wave evolution on radial film flow. The initial-value problem of

perturbing a supercritical flow is numerically solved using a shock-capturing

scheme. However, the authors seem to report formation of a steady jump-like

transition in the numerical solution to the initial value problem invoving the

radial shallow-water equations. This does not seem to be correct because the

steady, inviscid, irrotational radial shallow-water equations do not admit a

jump-like transition.

24. [Liu, 1992; Liu & Lienhard, 1993]:

An experimental study of the circular jump. The focus is on studying the

deviations of circular jumps from planar jumps. The main conclusions are:

• The classical Rayleigh shock criterion between the upstream and down-

stream depth, which is used extensively for planar jumps is shown to be

invalid for circular jumps at high upstream Froude numbers. It is argued

that the failure of this relation is due to dominance of surface-tension

in thin-film flows rather than due to axisymmetric geometry. It is also

argued that the same phenomenon should be observed in planar jumps

if the film-thickness is made small.

• Categorisation of the jump based on steadiness, number of rollers, Weber

number etc, instabilities.

• An attempt is made to express the non-dimensional radius of the jump

as a function of other non-dimensional paramters but the functional

form is not investigated.

• A subtype of Type II jump is reported (see figure 1.5)

Comments:

This is one of the early classifications of the different types of hydraulic jumps
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based on non-dimensional parameters. The authors report an extensive para-

metric study of the different types of jumps based on the jet Reynolds, jet

Froude, Weber number based on the film thickness after the jump and. The

data reported here can be very useful for guiding numerical simulations of the

circular jump.

Figure 1.5: Pictorial illustration of Type IIb “double ”jump. Reproduced from
[Bush et al., 2006]

25. [Bowles & Smith, 1992; Gajjar & Smith, 1983]:

These are analytical studies of jumps in both planar and circular geome-

tries. Both studies are related and we summarise them together here. In the

first reference, the authors deal with the problem of a developing boundary-

layer for an O(1) incident Froude number. The second reference studies the

case of an incident fully developed flow for an O(1) incident Froude num-

ber. Assuming that the length-scale over which the flow re-adjusts is long

compared to its depth, these authors provide a derivation of the BLSWE in

primitive variables. These equations are interactive in the sense that the pres-

sure is not prescribed but has to be determined as part of the solution. For

large incident Froude numbers, the length-scale of interaction shortens and

streamline curvature and surface-tension effects neglected earlier, now be-

come important and new governing equations are derived. The authors solve

a linearised forced-interaction problem for flow over an obstacle. Finally the



1.2 Literature review of circular hydraulic jumps 33

complete nonlinear free-interaction problem for large incident Froude num-

bers and short length-scales of interaction, is solved numerically and some of

the results are compared with experiments.

Comments:

These were among a series of studies which looked at hydraulic jumps using

interactive boundary layer equations, instead of using the vertical averaging

technique. The original work was primarily motivated by the some of the ex-

perimental findings of [Craik et al., 1981]. The basic conclusion of all these

studies is that the hydraulic jump is a kind of viscous-inviscid interaction

forced by downstream conditions. Here viscous inviscid interaction refers to

the interplay between hydrostatic pressure changes generated by the displace-

ment of the free-surface and viscous effects at the wall. When the downstream

conditions are explicitly included in the solution, it becomes a forced inter-

action problem otherwise it is labelled as free-interaction. Also see the first

section of Bowles & Smith [1992] for a very nice and crisp summary of the

work done in all of these references. Note that the assumption of shallow-

water conditions becomes suspect when Fr ∼ O(1).

26. [Bohr et al., 1993]:

This is an important analytical work with a small experimental part at the

end. The main conclusions are:

• Inviscid shallow-water equations cannot be used to obtain a scaling re-

lationship for the radius of the jump.

• The vertically averaged viscous shallow-water equations with a self-

similar velocity assumption lead to a first order ordinary differential

equation. Some of these solutions are identified as inner solutions and

others as outer solutions. The outer solutions show a negative infinity

in slope at a certain radial location and this radius is identified as cor-

responding to the plate edge in experiments where the fluid falls off the

plate.

• The solutions cannot be continued to arbitrary radius for any initial

condition. Further, the solutions to this ordinary differential equation

spiral around to a critical point, so the height profiles do not show any

jump-like transitions.
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• By fitting a Rayleigh shock, between the inner and outer solutions, the

radius of the circular hydraulic jump is predicted to scale as Q
5
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This happens to the radial length scale of the critical point of the ordi-

nary differential equation discussed earlier.

• Experiments are conducted to validate the scaling relationship predicted

for the jump radius, and reasonable agreement is obtained at high flow

rates. At low flow-rates, corrections are discussed.

• The problem of lack of asymptotic solutions to the vertically averaged

equations is shown to be cured when non-hydrostatic effects of pressure

are added.

Comments:

The first reliable scaling relationship for the jump radius was obtained in this

work. The lack of asymptotic solutions at large radius for the solutions of

the ordinary-differential equation was proved rigorously in this study. The

discontinuity in the radial momentum-flux was first pointed out in this work

and we discuss this in greater detail in Chapter 4.

27. [Stevens & Webb, 1993]:

An experimental study of the thin-film flow formed from an impinging jet.

Velocity-profiles measurements are made for the thin-film using laser-Doppler

velocimetry. Some comparisons are reported with previously known analyti-

cal results. The Reynolds number for these experiments based on the average

jet velocity and jet diameter is O(50000). Nozzle diameters of various sizes

are used and the ratio of the impingement height to the nozzle diameter

is maintained constant for all experiments with one exception. The main

conclusions are:

• For r/d << 2.5, where d is the nozzle diameter and r is the radial coor-

dinate, the maximum of the velocity occurs closer to the wall rather than

to the free-surface. This maximum shifts towards the free-surface with

increasing values of r/d. Additionally, the velocity above this maximum

is not uniform.

• At small values of r/d, the experimentally calculated profiles show sub-

stantial deviations from that of Watson [1964], a parabolic, cubic or
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a quartic. At large values of r/d, due to the thinness of the film, a

sufficiently large number of data points were not obtained.

• Film-thickness measurements are made and compared with the analyti-

cal predictions of Watson [1964] in laminar and turbulent flow and good

agreement is reported at small values of r/d. Turbulence intensities are

reported across the film. It is observed that these intensities are higher

near the wall and grow with radial distance.

Comments:

Velocity profile measurements are very difficult for thin-film flows and there

are not many studies in literature on hydraulic jumps which report measure-

ments of velocity-profiles with a high degree of accuracy. Some of the as-

sociated difficulties associated with these measurements are discussed in this

work.

28. [Siwon, 1993]:

An experimental comparison of films formed by a gas-liquid spray jet / liquid

jet impinging on a plate. The central focus of this work is not the circular

hydraulic jump. However some film thickness measurements are made which

are relevant for jumps. These measurements are made using a flush mounted

conductance probe which is reported to be especially suitable for gas-liquid

jets. The main conclusion are:

• No film thickness measurements are made in the impingement region

because of experimental set-up limitations.

• The film thickness away from impingement point for a gas-liquid spray

is an order of magnitude less than that of a liquid jet.

Comments:

It is not clear whether a circular hydraulic jump is formed from an impinging

gas liquid spray. The author reports the formation of circular hydraulic jump

only for a liquid jet and height profiles for a gas-liquid impinging spray do

not show any jump. It is not immediately clear why this should be so but it

could be due to reduced gravity effects in the latter.
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29. [Godwin, 1993]:

Viscosity is claimed to be a crucial ingredient for jump-formation. Predicts a

scaling relationship for the radius of the jump based on a postulate that the

jump happens when the boundary-layer reaches the free-surface. the basis for

this postulate is not discussed, but this has been used by others later. The

scaling relationship for the radius of the jump rj is predicted as Q
1
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terms of volume flow-rate Q, kinematic viscosity ν and nozzle radius a. The

radius of the jump is predicted to be independent of gravity. Using some

heuristic dimensional reasoning. the authors also argue that the radius of the

jump is independent of fluid density.

Comments:

The radius of the jump being independent of gravity is an erronous conclusion.

Experiments conducted by Avedesian & Zhao [2000] showed that lowering

gravity pushes the circular hydraulic jump radially outward. Our results too

show a delayed and weaker jump with lower gravity. The conclusion that

the jump happens where the boundary layer reaches the free-surface has been

shown to be incorrect later by Watanabe et al. [2003]. The scaling with the

other parameters too is not in line with Bohr et al. [1993]

30. [Chippada et al., 1994]:

This is a numerical simulation of turbulent planar jumps using the Reynolds

averaged Navier-Stokes equations and the k−ε model for closure. The down-

stream boundary height is imposed as obtained from Rayleigh’s shock cri-

terion by specifying the inlet Froude number. Hydraulic jumps with inlet

Fr = 2 and Fr = 4 are simulated with undeveloped and fully-developed

profiles at the inlet. Jumps with and without downstream undulations are

reported.

Comments:

The authors make the remark “the nature of the hydraulic jump is mostly

dependent on the upstream conditions and the effect of downstream boundary

condition is mostly on the location of the jump”. In our simulations too,

we find that the downstream boundary conditions affect the location of the

jump. When the downstream boundary condition is imposed in the form of an

obstacle, it influences the height-profile downstream of the as well as the jump
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location. Note however that in our simulations the presence of the obstacle is

not necessary for the existence of the jump. For certain inlet Froude numbers,

it is reported that no steady state was reached. It is interesting to note that the

authors report simulation of jumps without separation in a planar geometry.

31. [Buyevich et al., 1993; Buyevich & Ustinov, 1994]:

The analytical study of the circular hydraulic jump is common between the

two references and hence they are reviewed here together. The second work

contains some additional heat transfer studies which are of engineering sig-

nificance. This is an analytical study of the circular hydraulic jump using the

vertical averaging method. The region with a growing boundary layer and

the region of the full viscous flow are modelled using the Karman-Pohlhausen

technique assuming a cubic velocity profile. Separate equations are derived

for the two regions. These equations govern the evolution of boundary layer

and film thickness with radial distance. Their numerical solutions show a

singularity at a finite radial distance. Shock fitting technique is used to con-

nect “inner” and “outer” solutions using mass and momentum conservation

relations. An approximate viscous solution for the impingement region is

proposed. The effect of increase of the radius of the plate/disk on the radius

of the circular hydraulic jump is discussed.

Comments:

Although the authors clearly mention in the opening section of the paper that

the physical mechanism which causes the appearance of a jump remains un-

clear, they later seem to incline towards the Tani [1949] point of view, that

separation is the cause of the same, as seen from later remarks.

32. [Middleman, 1995]:

This is a book on axisymmetric free-surface flows. The circular hydraulic

jump is one of the problems considered in Chapter 5. The approach here is

more in the spirit of explaining some of the known results in greater detail,

especially those of Watson [1964], rather than presenting new results. Some

experimental data is reported for comparisons with the theoretical predic-

tions.

Comments:

Chapter 5 of this book gives a good introduction to the problem. Some of the
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analysis reported here could be related to the work of Errico [1986] although

this reference was inaccessible for us.

33. [Rao & Arakeri, 1998; Rao, 1994]:

A experimental and analytical study using integral methods for radial film

flows formed by impinging jets on axisymmetric surfaces like flat plates, cones

and spheres and on planar surface. The main results are:

• In the region upstream of the jump, where the boundary layer has not

reached the free-surface, expressions for evolution of film and boundary-

layer thickness are derived. These assume a cubic velocity profile with

constant coefficients.

• In the region where the boundary-layer is fully developed, assuming a

variable coefficient cubic velocity profile, the integral momentum equa-

tion is solved as an initial value problem for a given jet Froude to de-

termine the evolution of velocity profile and the film-thickness. The

derivative of the height-profile displays a singularity at separation.

• A downstream edge boundary condition is proposed based on the min-

imisation of energy. This leads to a critical Froude at the edge which

is used as a boundary condition for the flow downstream of the jump.

Using this boundary condition, the energy integral equation is solved

downstream of the jump as a two-point boundary-value problem. Here

the velocity-profile considered has constant coefficients.

• As in earlier work, the solutions upstream and downstream of the jump

do not transition smoothly from one to the other and a discontinuity is

fitted to locate the jump. The location of this discontinuity is taken as

the location of separation.

• Momentum balance across the jump generalises the approach of [Rayleigh,

1914] to include the work done by the wall-shear.

• Experiments are conducted for the circular hydraulic jump. Radius,

height-profile and separation-length are reported. Results are presented

for the effect of plate radius and edge conditions, nozzle height, volume

flow-rate on the jump radius. The jump radius displays a small sensi-

tivity to the plate radius but is found to display negligible sensitivity
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to the nozzle height. It also shows a very strong sensitivity to the edge

conditions. The length of the separation bubble is reported to increase

with increasing volume flow-rate. These waves are found to be affected

by both surface-tension and gravity.

• The results obtained from integral methods with an assumed velocity

profile agree reasonably well with experimental results upstream of the

jump. The match in the downstream region is reported to be poor.

• Experiments are conducted to study the wave structure in the laminar

turbulent transition. It is found that downstream of the jump, the ratio

of average wavelength (spatial average) to the average depth of the fluid

lies in between the shallow and deep water limit. The phase speed of the

waves downstream of the jump depend on the wavelength, and hence

these waves are dispersive. Upstream of the jump, no waves are seen for

flow rates less than 4 litres/min. For higher flow rates, concentric waves

are reported upstream which owe their origin to a Rayleigh instability

of the jet (see [Cholemari, 1998]). An alternative surface wave route

for transition to turbulence (different from T −S waves) is found which

involves a breakdown of surface waves. This transtion happens through

formation of radial streaks.

Comments:

This is one of the most detailed experimental studies of different aspects of

the circular hydraulic jump (similar to the extensive experimental parametric

study by Liu & Lienhard [1993]). Since the problem in its laminar steady

state offers enough theoretical difficulty, there has not been much focus on

studying the stability and transition to turbulence in the circular hydraulic

jump. This is also one of the few studies (another and an earlier study being

that by Azuma & Hoshino [1984]), where this aspect of the problem has been

looked at. Wave evolution on a radial flowing film has also been studied earlier

by Varella [1992].

34. [Lemos, 1996]: This work is not directly related to the circular hydraulic

jump but is reviewed here because it uses the Volume-Of-Fluid (VOF) method

to simulate travelling hydraulic jumps/bores using the 2D Navier-Stokes

equations. The volume-of-fluid method provides an accurate technique for
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modelling interfacial flows. Three interfacial flows are simulated for evaluat-

ing the abilities of four different computational schemes viz. the evolution of

a solitary wave, the formation of an undular bore and the development of a

travelling jump which displays wave-breaking at the propagating front. The

work then focusses on numerical issues and we do not discuss them here.

Comments:

All Navier-Stokes simulations reported in this thesis use the Volume-Of-Fluid

method for simulating hydraulic jumps. In Chapter 7, we provide a detailed

description of the technique.

35. [Higuera, 1994, 1997]:

A numerical solution of the boundary-layer shallow-water equations (BLSWE).

The first reference discusses this in a planar geometry while the second ref-

erence extends the analysis to a circular geometry. The main results are:

• As we discuss in Chapter 2, it was perhaps first recognised in this work

that the height-profile upstream of the jump, is not affected by grav-

ity. Watson [1964] had provided the zero-gravity similarity solution

earlier (Fr → ∞) but it was recognised here for the first time that this

similarity-solution is indeed manifested in the solution upstream of the

jump.

• The ellipticity of the BLSWE (despite the boundary-layer assumption)

was pointed out. It was therefore argued that the prescription of a down-

stream boundary condition is essential, and determines the dynamics.

The numerical solution to the planar BLSWE shows the presence of

jumps with and without separation at the wall. An asymptotic analysis

is carried out for a high Froude number to describe the inner structure

of the jump. The near jump flow structure is split up into five parts and

each part is analysed separately.

• A similar asymptotic analysis is carried out for strong jumps in a cir-

cular geometry in the limit of large upstream Froude number and large

Reynolds number. The numerical solution to the BLSWE in a circular

geometry is compared to the analysis and good match is reported. Some

comparisons with experiments are also reported.
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Comments:

This study builds upon the analysis of Bowles & Smith [1992] (who studied the

flow structure at the leading edge of the jump labelled here as the interaction

region) and extends the analysis to the region downstream. This was an early

attempt at solving the BLSWE using a procedure different from the usual ver-

tical averaging procedure. We will discuss this work and compare our results

with the the ones obtained here in Chapter 2. This is also the only reference

we know of where the author has reported a Type-II jump (without separation

at the wall) in a planar geometry. The author also presents a boundary con-

dition at the edge of the plate where the boundary-layer approximation breaks

down and the flow becomes critical. The critical boundary condition has also

been used in other studies like Bohr et al. [1993] etc. We show in Chapter 2

that the BLSWE may be solved locally, and the solution does not depend on the

downstream boundary condition. This is one of the very few studies where the

flow-structure of the jump is analysed. More near-jump studies through ana-

lytical and numerical methods are necessary to resolve the dominant physics

in the near-jump region. We make such an attempt in Chapter 3 using the

method of vertical averaging for the complete Navier-Stokes equations.

36. [Blackford, 1996]:

This work continues from [Godwin, 1993]. Using a control-volume approach

and a drag coefficient, an evolution equation for the film thickness is derived.

However, this evolution equation does not have a jump-like solution. Instead

a jump-like profile is obtained by artificially increasing the drag coefficient

once the boundary-layer reaches the free-surface.

Comments:

In all these models where it is hypothesized that the jump occurs where the

boundary-layer reaches the free-surface, no physical reasoning is provided.

37. [Murtuza, 1996]:

This is an analytical and experimental study of evolution of waves on radial

flows. It builds upon the earlier work by Azuma & Hoshino [1984] and Rao

[1994]. The main results are:

• Vertically averaged mass and momentum equations are derived (includ-

ing surface-tension) with the assumption that the local film-thickness
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does not vary significantly due to the radial geometry and thus can be

assumed constant. This makes the analysis local. These equations are

perturbed about the local state, linearized for the disturbances and a

dispersion relation is derived assuming normal modes. This relation pre-

dicts amplification for waves of certain wavelength, which for the range

of experimental parameters reported here, is of the order of 1 m. The

dispersion relation predicts the phase speed for infinitely long waves to

be twice the surface-velocity of the film.

• An inviscid nonlinear analysis is carried out to look for waves of perma-

nent form in a radial geometry. Solitary (inverted hump) and cnoidal

solutions are reported. Here too, the analysis is local and the effect of

radial geometry is not considered.

• An unsteady equation for the evolution of film-thickness is derived from

the vertically averaged mass and momentum equations.

• The flow is perturbed using a drop-weight mechanism which generates

pressure impulses to the jet and thus generate waves in the radial thin

film. Experiments are conducted to meaure wave-speeds and wave-

profile. Measurements are reported on the ratio of wave-speed to the

surface velocity predicted by Watson [1964] and some agreement is ob-

tained. It is found that the phase speed of the observed waves are 3− 4

the mean flow speed at the surface. The solitary-wave solution predicted

theoretically was not observed in experiments. The wavelength of waves

observed in experiments lie in a range which make them capillary rather

than gravity waves.

• Flow visualisation shows that two waves are formed for every impulse to

the jet. The reason for this is not understood. The waves becomes non-

axisymmetric as they travel outwards and this transverse breakdown is

believed to lead to turbulence. This transition may happen upstream or

downstream of the jump depending on the flow-rate.

Comments:

Prior work on the evolution of linear/nonlinear waves on a radial film flow

include that of Azuma & Hoshino [1984]; Rao [1994]; Varella [1992]. The

possibility of solitary waves in a radial thin-flim flow or the appearance of
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a cnoidal wave-train downstream of a circular jump are interesting problems

which need further study. We present and discuss a new radial KdV-like

equation in Chapter 4.

38. [Avedesian, 1996; Avedesian & Zhao, 2000]:

Experiments on the circular hydraulic jump at low gravity conducted using

a drop-tower. The main results are:-

• Reducing gravity pushes the jump dowsntream.

• Jumps become gentler at low gravity.

• The fluid depth at the exit of the plate is called the outer-height and this

is varied during experiments. There seems to be no effect of changing

the outer height on the radius of the jump, at low gravity. A heuristic

explanation is provided for this using a balance between viscosity and

inertia.

• Some measurements of the radius of the jump are reported at low and

normal gravity, and comparisons are made with the predictions of [Wat-

son, 1964]. For normal gravity, the experimental results agree more with

Waton’s predictions of a developing boundary-layer. For low gravity, the

agreement is closer to the predictions of a developed boundary-layer.

Comments:

In our Navier-Stokes simulations reported in Chapter 4, we too find that de-

creasing gravity makes the jumps gentler and pushes them downstream. The

scaling relation of Bohr et al. [1993] predicts the jump radius to become ar-

bitrarily large at zero gravity. This prediction is consistent with the experi-

mentally observed trend in the current work. Also see Phillips [2008] for a

related study.

39. [Bohr et al., 1996; Ellegaard et al., 1996]:

The main results are

• This study experimentally categorises circular jumps as Type I and Type

II (see figure (1.6) and (1.7). By changing the outer depth of the fluid

a transition and a breakage of circular symmetry was observed using a

viscous fluid like ethylene glycol. Type I jumps correspond to having a
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separated eddy underneath the jump. Type II jumps correspond to hav-

ing an additional surface eddy as well. The transition to Type II jump

from Type I is thought to be akin to wave-breaking. This transition is

reported to be reversible and free from hysteresis.

• A simulation of axisymmetric Navier-Stokes equations is also attempted

although the free-surface was not computed, but instead determined

from experiments and held fixed. The authors report simulations of

both Type I and Type II jumps in this way. The boundary conditions

used are that of a stress-free interface.

• Some surface velocity measurements are also reported experimentally

for Type-I jumps. Before the jumps the surface-velocity is found to

decrease linearly with radial distance.

Recirculation Bubble

Externally Controlled Height Externally Controlled Height

Figure 1.6: A cartoon of a Type-I jump

Externally Controlled Height Externally Controlled Height

Recirculation Bubble

Figure 1.7: A cartoon of a Type-II jump

Comments:

The authors include a simplified discussion of the Goldstein singularity at
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separation. Type-I and Type-II jumps are both associated with separation

(see figure 1.6 and 1.7). We will see in Chapter 4 that circular jumps without

separation are also possible, which we label as Type-0.

40. [Bloom, 1997]:

The author studies the circular hydraulic jump theoretically and experimen-

tally.

• The theoretical study solves the ordinary differential equations (for evo-

lution of film-thickness) derived earlier by Bohr et al. [1993] and Black-

ford [1996] and discusses the solutions in some detail. Some heuristic

mathematical reasoning for flow separation that occurs underneath the

jump is provided. A simplified stability analysis is also attempted to

understand the loss of azimuthal symmetry of the jump when the flow

rate is increased. The author also discusses the model of [Watanabe

et al., 2003].

• In the experimental part, comparisons are made between experimentally

obtained results and the radius predictions of Godwin [1993] and Bohr

et al. [1993]. The author concludes that the radius predictions of Bohr

et al. [1993] agree better with the experiments than those of Godwin

[1993], although neither fit appears to be too good. Some film-thickness

measurements are also reported.

Comments:

This is a part of an undergraduate study. The work has not been published

and is freely available online. In the experimental part of the work, the author

reports having unsuccessfully attempted Navier-Stokes simulations of the jump

but the reasons for failure are not discussed. Attempts made to measure

velocity profiles were not successful and the author discusses the details of the

problems associated with the experiments.

41. [Hansen et al., 1997]:

An experimental and theoretical study.

• Experiments are conducted to validate the scaling relationship of Bohr

et al. [1993]. It is reported that the exponent of volume flow-rate in the
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scaling relationship for the radius varies from 0.77 to 0.72 with varying

viscosities of the working fluid. The authors observe an effect of the

nozzle radius on the jump location but report it as being small. We will

discuss this is greater detail in Chapter 5.

• The laminar standing hydraulic jump becomes unstable and starts oscil-

lating as the flow rate increases. At high flow rates, the oscillating jump

acts as a source of waves. The power spectrum of the height fluctuations

due to surface-waves is measured experimentally. The spectrum shows

an interference pattern when a reflector is inserted downstream of the

jump. The amplitude of interference oscillations decreases with increas-

ing frequency caused mainly due to viscosity. The hydraulic jump is

modelled as a spatially uncorrelated broadband source and this helps in

interpreting the interference pattern observed.

• A dispersion relation is derived for damped capillary-gravity waves.

Comments:

Some results reported in this work are discussed later in Chapter 5 in terms

of the effect of momentum-flux on the radius of the circular jump. These

authors too observed such an effect but did not quantify it. The appendix of

this reference contains a derivation of the dispersion relation for linearised

viscous capillary-gravity waves. A similar relation albeit for linearised gravity

waves is also derived in Johnson [1997]. These viscous dispersion relations

can be useful to formulate the definition of Froude number for a viscous flow,

where the distinction between supercritical and subcritical flow (from a wave

propagation perspective) is not apriori clear (also see Watanabe et al. [2003]

for a discussion on this.).

42. [Bohr et al., 1998]:

A combined theoretical and experimental study. Height profile measurements

are made using the contact method. The main results are:

• If the mass and momentum equations (boundary-layer shallow-water

equations) were to be non-dimensionalised using vertical and horizontal

scales such that the equations become independent of Q, ν and g, then

the horizontal length scale would be Q
5

8 ν
−3

8 g
−1

8 . It is argued that this
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is the scale for the radius of the hydraulic jump.

• In the earlier works [Bohr et al., 1993; Ellegaard et al., 1996] the inability

to integrate the boundary-layer equations (assuming a hydrostatic pres-

sure gradient) through the point of separation was a major impediment

to obtaining jump-like profiles. Here, an averaging model is suggested

which can be taken through the point of separation without encoun-

tering Goldstein-type singularities. This model is discussed in detail in

later references [Bohr et al., 1997; Watanabe et al., 2003].

Comments:

The transition from Type-I to Type-II jumps happens through a wave-breaking

mechanism discussed in this reference. Wave-breaking even otherwise was

also observed in some of our low Reynolds number simulations of planar

jumps, although we have not observed formation of Type-II kind of jumps

in a planar geometry (see the last section in Higuera [1994] where a Type-II

like jump is reported in a planar geometry). In our case, the wave breaking

gives rise to an unsteady flow which is periodic in some cases.

43. [Ellegaard et al., 1998, 1999]:

The experimental discovery of polygonal hydraulic jumps. The authors report

that for a highly viscous fluid the circular hydraulic jump breaks its circular

symmetry and deforms into stable polygons when the externally controlled

height at the edge of the plate is increased. The main findings are:

• A phase diagram is obtained for the number of sides of stable polygons

plotted for external height versus nozzle height and volume flow-rate.

Polygons upto 10 sides are reported in the phase diagrams. The obser-

vation of multiple stable polygons for the same values of flow parameters

is reported.

• A heuristic model is proposed for the polygons although details of the

model are not discussed here (see [Hansen et al., 2002]). The roller

is statically balanced horizontally by the difference between the hydro-

static pressure forces from the two sides and shear from the main flow.

Assuming a simple line-tension model for the circumference, and treat-

ing the problem as one of minimisation of circumference, some of the
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features observed in experiments are reproduced by the model E.g., the

azimuthal variation of width of the roller is inversely proportional to the

azimuthal variation of mass flux through the roller. For more details of

the model see [Hansen et al., 2002].

Comments:

The discovery of symmetry-breaking in circular hydraulic jumps has infused

new interest into this century old problem. Despite many papers being pub-

lished since this work, a satisfactory theory which explains every aspect of

polygon formation has not been obtained so far. One of the probable reasons

for this could be the lack of simple mathematical models for Type-II jumps

from which polygonal jumps are known to arise. It is now known that the

symmetry-breaking is related to surface-tension [Bush et al., 2006]. The study

cited above [Hansen et al., 2002], where the line-tension model is discussed,

is written in Danish and hence we were unable to understand the details of

the model.

44. [Putkaradaze, 1997] :

This is a PhD work and the first two chapters are relevant for circular hy-

draulic jumps. These are described below:

• the first chapter gives an introduction to boundary-layer theory and dis-

cusses the Goldstein singularity at separation. A brief description of the

solution of the boundary layer equations which do not become become

singular at the point of separation (marginal separation) is provided. A

brief description of the Karman-Polhausen integral method is given.

• The author provides a brief description of the experiments including

polygon formation. The Tani-Kurihara equations and their solution

alongwith the scaling of Bohr et al. [1993] is also reviewed. The remain-

ing part of this Chapter contains an expanded version of the methods

and the results contained in Watanabe et al. [2003].

Comments:

The results and analysis contained in Watanabe et al. [2003] is explained in

greater detail in this thesis. The author also makes an attempt at developing

a model for the Type-II jump.



1.2 Literature review of circular hydraulic jumps 49

45. [Dingwei et al., 1998]:

This work is a numerical analysis and builds upon the study of Stevens &

Webb [1992]. The authors report that they solve the axisymmetric Navier-

Stokes equations (see comments below). The main results reported are:

• The jump radius is found to be an increasing function of the impinge-

ment height. It is also reported that that a change of nozzle radius has

no effect on the radius of the jump.

• A scaling relation is obtained numerically for the jump radius (rj) and its

dependence on the Reynolds number (Rez) defined using the jet velocity

and the nozzle height. This dependence is given as rj ∼ 1.5103Re0.0037
z .

• Some comparisons between the results of [Buyevich & Ustinov, 1994;

Watson, 1964] and the present computations are reported.

Comments:

The computational technique used for the simulations is not explained in great

detail. The authors report some effect of the nozzle height on the jump radius

wihch is presumably a momentum flux effect. However, no attempt is made

to explain this dependence. We explore this in more detail in Chapter 5 where

we study the effect of momentum flux on the circular hydraulic jump.

46. [Cholemari, 1998; Cholemari & Arakeri, 2005]:

These works build upon the earlier studies by Murtuza [1996]; Rao & Arakeri

[1998, 2001]; Rao [1994]. Some of them are not direct studies of the circular

hydraulic jump but are relevant for studying the stability and transition to

turbulence occuring in the context of hydraulic jumps. The authors perform

a local stability analysis by neglecting the effects of the radial curvature and

assuming the flow to be locally planar. Theoretical and numerical results

obtained are compared with experiments and a good match is reported. The

main results are:

• The boundary-layer shallow-water equations are vertically integrated

and a single unsteady partial differential equation is derived relating the

mean velocity to the film-thickness. This equation is supplemented by

simplified boundary-conditions which include surface-tension. The mean

velocity and the film-thickness are assumed to be slowly varying in the
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streamwise direction and a temporal stability analysis is performed using

normal modes.

• The slowly-varying mean flow is taken to be the gravity-free solution of

[Watson, 1964].

• It is found that the phase speed of normal modes is strongly affected

by surface-tension. Radial geometry, gravity and viscosity are found to

have very little effect.

• The waves are mostly unstable and the radial geometry is found to have

a dominant effect on this instability. Surface-tension and gravity have

mild stabilizing effects and viscosity is mildly destabilizing.

• Experiments are conducted for measuring wave speed and amplitude.

The waves are formed from perturbations introduced on the jet. Measur-

ment are made for a single isolated and for periodic perturbations. The

former shows good agreement while the latter shows moderate agree-

ment with the theoretical predictions.

Comments:

There are not many detailed studies in literature on the stability of the radial

film-flow in the jump. The strong variation of the mean-flow in the stream-

wise direction indicates that non-parallel effects are very important and need

to be considered. Due to the lack of extensive Navier-Stokes simulations in

the literature, the mean flow is not known well-enough. In Chapter 2, we

hypothesize that the instability of the separated profile at the jump is a key

reason for the reattachment of the flow downstream. A verification of this

conjecture requires a global stability analysis.

47. [Naraghi et al., 1999]:

This is mainly an experimental study with a brief theoretical part. The effect

of variation of nozzle diameter and nozzle impingement height on the radius

at impingement and the jump radius is studied. Some of the main results

are:

• The ratio of the radius of the jet at impingement to the nozzle diameter

approaches a constant value for large enough values of the ratio of nozzle
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height to nozzle diameter. The value of this constant depends on the jet

Reynolds number.

• The nozzle height has an effect on the jump radius and so does the

nozzle diameter. Increasing the nozzle height increases the jump radius.

• The analytical model follows the standard vertical averaging approach of

the BLSWE to derive equations for evolution of film thickness. These use

cubic velocity profiles with constant coefficients and predict a singularity

at a finite distance in the height profile.

Comments:

This study is very relevant to the results presented in Chapter 5. However the

authors do not provide any physical motivation for the observed dependence of

the radius of the circular hydraulic jump on the nozzle height and diameter.

This effect can be explained using the idea of momentum-flux as we do in

Chapter 5.

48. [Sreenivas et al., 1999]:

This is not a study of the circular hydraulic jump but of a phenomenon

which occurs in the presence of one. A new observation is reported where

liquid drops can be levitated on the top of circular jumps. The effect of the

air-boundary layer is crucial here. The main results are:

• Large drops of liquid can be supported on the air film created above a

hydraulic jump within the jump radius. These drops are locally stable

and their weight is supported by the bearing pressure created in the thin

air boundary-layer.

• The drop is itself in a state of internal motion due to the shear-stresses

exerted by the air-film. The surface velocity of the drop can be estimated

by balancing the dissipation inside the drop to the rate of external work

done on the drop. The estimate compares favourably with experiments

• The shape of the drop is determined by an interplay of large number

of factors like inertia, gravity, surface-tension and viscosity. Drops of

alcohol could not be levitated due to their high solubility and high rates

of evaporation.

• It is proposed that only a thin film can suppport drops.
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Comments:

This the only study in the circular hydraulic jump literature that pays atten-

tion to the air boundary layer above the jump. The effect of this air boundary

layer on the structure and mechanics of jump formation is an unexplored area

as yet.

49. [Brechet & Neda, 1999]:

An experimental and theoretical study. The experiment predicts the expo-

nents for the power law governing the radius of the circular hydraulic jump

as Q0.703ν−0.295. Other results are:

• A scaling relationship for the radius of the jump is proposed using both

viscous and inviscid analysis.

• For inviscid jumps, imposing a discontinuity and balancing momentum

across the discontinuity, the radius of the circular hydraulic jump is

predicted to go as 4Q2
√

π2gd
8Q2 + 1

A4/ (π2gH2). Here Q is the volume flow-

rate, ν is the kinematic viscosity, g is the acceleration due to gravity,

A is the nozzle-diameter, H is the outer-depth after the jump, d is the

nozzle-height.

• For viscous jumps, the radius of the jump is predicted to scale as

Q
2

3d
−1

6 ν
−1

3 g−1/6. This scaling relationship is obtained by imposing the

constraint that the boundary layer reaches the free-surface at the loca-

tion of the circular hydraulic jump. Some comparisons with experiments

and the scaling relationship of Bohr et al. [1993] are also reported. Noz-

zle height is reported to have a negligible effect on the jump radius.

• The authors propose a heuristic model which treats the jump as an

instability of the flow.

Comments:

Note that the exponent of Q is not very different from the value 5/8 predicted

by Bohr et al. [1993]. Both Godwin [1993] and this work make the same

assumptions that the jump occurs where the boundary layer reaches the free

surface and yet they obtain a different scaling relation for the radius of the

jump. The difference between this work and that of Godwin [1993] is that the

Fr = 1 criterion is used by the presents author but not by Godwin [1993].
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Thus, gravity does not enter the scaling relationship of Godwin [1993]. Addi-

tionally, Godwin [1993] takes the film thickness h ∼ 1/r whereas the present

author takes it to be h ∼ r2. As seen in the later dimensional analysis by

Ray & Bhattacharya [2007], neither of these assumptions are necessary if one

uses the global mass conservation constraint rUavh = constant. Note that any

scaling relationship for the jump needs two more constraints other than the

global mass in order to eliminate Uav and h from the relation.

50. [Moncada et al., 1999]:

This is an analytical and experimental study. The authors define an imper-

fect jump and ascribe this nomenclature to the region of recirculation that is

formed at the free-surface. In this particular kind of jump that the authors

study, the jet is submerged under the fluid due to the presence of a weir at

the outer edge of the plate, which causes a reverse flow to be generated. The

experiment is characterised by various external parameters and the authors

derive a relationship between these by applying inviscid, shallow-water con-

ditions and mass and momentum conservation for a annulus-shaped control

volume. Experiments are conducted to check the validity of these relations

and good agreement is reported. Using the same control volume, a relation

is also derived for the energy loss across the jump. Again a moderately good

match is obtained with experiments.

Comments:

This is a study from a civil engineering perspective to the problem similar

to earlier works like Khalifa & McCorquodale [1992]. Being of engineering

interest, the range of parameters studied here mostly correspond to turbulent

circular jumps.

51. [Yokoi & Xiao, 1999]:

One of the very few Navier-Stokes simulations of the circular hydraulic jump

available in literature. The main results are:

• Capturing the transition from Type I to Type II jumps and the im-

portance of non-hydrostatic pressure and the role of surface-tension in

this transition. A heuristic physical reasoning is provided explaining the

role of surface-tension and the observed pressure rise behind the jump,

in causing the transition from Type-I to Type-II jumps.
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• Partial validation of the Bohr scaling relationship [Bohr et al., 1993]

Q
5

8ν
−3

8 g
−1

8 for the radius of the jump. Power-law fits obtained from

simulation data are presented only for the exponents of Q and ν, but

not for g. The exponent of Q and ν are reported to be close to 5/8 and

−3/8 respectively.

• Numerical evidence that the radius of the jump is independent of the

density of the working fluid.

Comments:

An earlier attempt made in Bohr et al. [1996] simulated Type-II jumps, al-

though the simulations did not allow for the coupling between the interface

and velocity-field,as the former was held fixed. This was the first axisymmet-

ric Navier-Stokes simulation of Type-II jumps and the transition from Type-I

to Type-II. The present simulation solves for both gas and liquid phases and

surface-tension is implemented using the standard Continuum Surface Force

model. The outer depth is controlled in these simulations. The importance of

surface-tension effects for Type-II jumps was later reinforced by the discovery

that surface-tension plays a crucial role in the formation of polygonal jumps

which are found to arise only from Type-II jumps [Bush et al., 2006].

52. [Yokoi & Xiao, 2000a]:

Axisymmetric Navier-Stokes simulations of the jump without the jet. Type

I and Type II jumps were simulated and the transition between the two in-

vestigated. Dynamic pressure is proposed to be significant for the transition.

Comments:

The role of dynamic-pressure is usually not adequately highlighted in the

standing hydraulic jump literaure (see [Bowles & Smith, 1992; Higuera, 1994]).

Dynamic pressure is associated with streamline curvature and hence it is im-

portant even for Type-I jumps. We discuss this effect in detail in Chapter 2

and 3.

53. [Yokoi & Xiao, 2000b]:

This is a numerical study performed using axisymmetric Navier-Stokes com-

putations. The effect of dynamic pressure on the surface roller formation in

case of a Type-II jump is studied. It is found that there are two regions
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of high dynamic pressure straddling the surface-roller. The second region of

high dynamic pressure is reported to be due to surface-tension. For a Type

I jump, there is only one region of high dynamic pressure. The reverse tran-

sition from a Type-II to a Type-I jump is simulated and it is found that the

secondary region of high-pressure gets progressively weaker in time as the

jump moves towards its Type-I state.

Comments:

This is the first simulation of Type-II jumps using axisymmetric Navier-

Stokes equations. No systematic mathematical models for Type-II jumps using

simplified equations exist in the literature.

54. [Hansen, 2001]:

The first part of this thesis concerns sand ripples and is not directly relevant

to the present discussion. The second part of this thesis studies polygonal

hydraulic jumps experimentally and models the geometry of the observed

polygons. A phase diagram obtained from experimental data is presented,

which depicts the various stable non-axisymmetric shapes that jumps can

deform into, for a given nozzle height and an externally imposed height at

the edge of the plate. For the same value of these parameters multiple stable

polygonal shapes are observed ranging from two-gons to a pentagon, thus

showing time history-dependant behaviour. The geometry of the polygons is

studied in detail and it is observed that the circumference and area of the

polygons is independent of the number of corners of the polygons. Similarly

shapes of the corners of the polygons is also reported to be independent of

the number of corners. A nondimensional number P is defined and called

the geometry number. It is found that P depends only on the externally im-

posed height but not on the nozzle height. A simple model is proposed which

generates polygons by accepting as input the number of sides, the area and

the circumference of the polygon. This model approximates the side of the

polygons using a second order polynomial. The model shows good agreement

with the experimentally observed structures. This model also sucessfully re-

produces the experimentally observed feature that the shape of the corner of

the polygon is independent of the number of sides.
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Comments:

This was one of the early studies of polygonal jumps. This is a phenomological

study of the polygons and attempts to model their geometrical features. Some

important findings are the universal features of these polygons.

55. [Chang et al., 2001]:

This is a theoretical and experimental study. The main results are:

• This study discusses experiments on jumps where the outer height is not

controlled.

• Hydraulic jumps without separation are reported experimentally al-

though the method used for detection of separation doesn’t seems so-

phisticated enough to decide conclusively whether separation is indeed

absent.

• Two different mechanisms of formation of jump are proposed - For

jumps with separation, it is concluded that separation is the cause of

the jump. For jumps without separation, it is concluded that capillary

back-pressure is responsible for jump formation.

• A scaling relationship for the radius of the jump is proposed as

r′j ∼ Re1/3Λ−1/8 where Re ≡ Q/(aν) is the Reynolds number, Λ ≡
(ga3/ν2)Re−7/3 is referred to as the “modified Froude number” and r′j ≡
rj/(aRe

1/3) is the nondimensional radius of the jump.

• The axisymmetric BLSWE are numerically solved and the height profile

is compared to the estimates of Azuma & Hoshino [1984] and good

match is reported. The calculated wall-shear stress is compared with

the measurements of Nakoryakov et al. [1978]. Note that the numerical

solution does not provide a jump-like transition.

• An analysis is presented for estimating the jump radius. This is done

by perturbing the flow about the self-similar solution of Watson [1964].

The jump radius in this case is estimated from the radius of separation

and comparisons of this estimate with the jump radius with experiments

show some deviations.

Comments:

This is one of the few studies which discusses the possibility of circular jumps
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without separation at a radius where the boundary-layer has not yet reached

the free-surface. However, the jumps reported without separation were de-

scribed to be triggered by a capillary back-pressure mechanism. In our ax-

isymmetric Navier-Stokes simulations discussed in Chapter 4, we show con-

clusive evidence that such jumps indeed exist. However the mechanism of

formation of these jumps obtained by us does not depend on the presence of

surface-tension.

56. [Rao & Arakeri, 2001]:

This is an experimental investigation of the wave structure in a radial film

flow. This study is also relevant for transition to turbulence. Some of the

observations are:

• The scaling relationship for the jump radius proposed by Bohr et al.

[1993] shows good agreement for glass plates of various diameters, but

plate edge conditions can cause deviations for Perspex and Aluminium

plates with edges chamfered etc. The length of the separated bubble

underneath the jump is reported to increase with increasing volume-

flow rate.

• Photographs are used to study the evolution of waves upstream and

downstream of the jump. At low flates (less than 4 litres per minute of

filtered water) no waves are visible. At higher flow rates, transition to

turbulence can occur upstream or downstream of the jump.

• For low flow rates, waves are not observed only downstream of the jump.

The average wavelength of these waves decreases with increasing flow-

rate. These waves are reported to be capillary-gravity waves and their

origin is not clear.

• For flow-rates greater than 4 litres per minute, waves were observed

upstream of the jump as well. It is proposed that the origin of these

waves lie in the Rayleigh instability of the impinging jet.

• An alternative route to turbulence in thin film flows is proposed. This

transition occurs due to breakdown of surface waves and is distinct and

different from the transition due to T-S waves reported earlier by Azuma

& Hoshino [1984]. The transition starts at some radius in the form of
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radial streaks. Data is presented for variation of the radius of appearance

of these streaks with flow-rate.

Comments:

Some of the experimental results presented here were also discussed earlier in

Rao [1994]. Although the main focus of the study is on transtion to turbulence,

there are many useful experimental results reported here e.g. measurements

of the length of the separation bubble. The bubble shrinks in length as one

raises the outer boundary (see Craik et al. [1981]) and this was studied by

Bowles & Smith [1992].

57. [Yokoi & Xiao, 2002]:

This continues upon the preliminary results reported in [Yokoi & Xiao, 2000b].

Using axisymetric Navier-Stokes computations, the transition from Type I

and Type II jumps was simulated. An attempt is made to provide a rough

physical mechanism of appearance of two regions of high dynamic pressure

near the free-surface for a Type-II jump. Surface-tension is thought to be a

crucial ingredient for the rise of this secondary region of dynamic pressure.

Comments:

A 3D simulation of the circular hydraulic jump was also reported in Fer-

reira et al. [2002] but those simulations did not contain surface-tension. It is

interesting to see that it is possible to simulate Type-II jumps without surface-

tension.

58. [Pelzer, 2002]:

This is an experimental investigation. A jet impinges on a plate with a hole

drilled in the center and the effect of the diameter of the hole on the jump

radius is experimentally obtained. The height after the jump is reported to

be independent of the diameter of the hole. A linear relationship between

jump radius and flow rate is obtained.

Comments:

The author tries to argue/show in this work that the radius of the circular

hydraulic jump is independent of the radius of the impinging jet. In Chapter

5 of this thesis, we will present experimental evidence to the contrary and

provide physical arguments for the same. It is very interesting to note that
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these experiments and the ones reported in [Silverstein, 2002] were carried

out by two high-school students.

59. [Silverstein, 2002]:

An experimental work on hydraulic jumps formed from vertical jets impinging

on inclined surfaces. Elliptic jumps were observed, but it is not completely

clear as to whether the ellipse is complete, i.e., whether a well-defined jump

exists in the region downstream. The angle of inclination is reported to

linearly affect the major radius while the minor radius is relatively unaffected.

Flow rates are reported not to affect the ratio of the two radii.

Comments:

Due to the presence of gravity, the effect of impingement of a vertical jet on

an inclined surface is different from that of an inclined jet on a horizontal

surface. The qualitative nature of the flow is dependent not only on the rel-

ative angle between the jet and plate but also the inclincation of the jet with

respect to the gravity vector.

60. [Ferreira et al., 2002]:

The first three-dimensional Navier-Stokes simulation of the circular hydraulic

jump known to us. The simulations include the impinging jet and hence

are the closest possible to the real problem. The simulations were carried

out using a code named GENSMAC which is based on the marker-in-cell

method. A comparison between the analytical solution by Watson [1964] and

the Navier-Stokes solutions are made. The aim of this work was to benchmark

the capabilities of the code by simulating Type I and Type II jumps. There

are a lot of computational details in this study which focus on numerical

algorithms and we do not discuss them here. There is no surface-tension in

these simulations.

Comments:

Navier-Stokes simulations of laminar jumps in both circular and planar ge-

ometry are very sparse in literature. Bulk of the results available in literature

are either experimental or obtained from modelling. From our own Navier-

Stokes simulations, it becomes clear that there are two preliminary difficulties

associated with such simulations viz. an accurate representation of the inter-

face, especially near the jump, and the imposition of downstream boundary
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conditions. Certain phenomena like Type-II jumps and polygon formation

completely rely on the ability to model the outflow conditions accurately and

we have found that a poor knowledge of these boundary conditions can be

a major stumbling block in these simulations. It is perhaps not surprising

that to date no study has successfully managed to simulate the formation of

polygonal jumps using Navier-Stokes simulations. Also note this work reports

simulations of Type-II jumps without any surface-tension.

61. [Pacheco, 1999, 2003]:

This is a numerical work where a new technique is proposed to solve the radial

shallow-water equations alongwith an assumed wall shear stress. Three test

problems are attempted, the last one being relevant for the current discussion.

When the downstream height is imposed, a jump is obtained in the simula-

tions. The numerical results obtained are compared with the experimental

results of Ahmad [1967] and a good match is reported in the supercritical

region while a moderate match is obtained in the subcritical region.The dif-

ference in the subcritical region is attributed to turbulence present in the

subcritical region in experiments.

Comments:

The numerical technique developed in this work utilises the hyperbolicity of

the shallow-water system with an assumed wall-shear, that is studied here.

Thus, the direction of information propagation in the flow determines the

boundary-conditions that are needed for different domains of the flow.

62. [Bush & Aristoff, 2003]:

An experimental and theoretical study of the effect of surface-tension on the

Type-I circular hydraulic jump. The main results are:

• The effect of surface-tension force due to an azimuthal force is accounted

for and used to improve the estimate of jump radius of [Watson, 1964].

• The new expression for the jump radius is seen to be in better agreement

with experiments reported.

• The correction due to surface-tension is found to be overall not large

but most siginificant for jumps of small radii.
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Comments:

The effect of surface-tension on the circular hydraulic jump has been a subject

of numerous studies. In chapter 6 we present a gravity free hydraulic jump

from shallow-water theory. We also discuss this in Chapter 4 of this thesis

where we present results from numerical simulations of axisymmetric Navier-

Stokes equations. As expected, it is found that the “shape” of a circular

hydraulic jump can strongly depend on surface-tension.

63. [Mikielewicz, 2003]:

This is a theoretical work and the author establishes an analogy between the

averaged equations governing the evolution of an inclined jet impinging on

a plate (the jet being normal to the plate) and those governing two phase

downward flow in a vertical pipe. These equations have a critical point and

the author describes the analogy through this.

Comments:

In Chapter 2, we present an analytical solution of the vertically averaged

BLSWE in the neighbourhood of the critical point.

64. [Ozar et al., 2003]:

An experimental study of thin film flows formed due to impinging jets on

a rotating disk. This study is not directly connected to circular hydraulic

jumps and we only discuss the results pertaining to the circular jump. For

impingement on a stationary disk with a circular hydraulic jump present, the

film thickness after the jump is reported to be an order of magnitude larger

than that before the jump. The effect of rotation of the disk is to wash away

the jump from the disk. Film thickness measurements are made using a laser

light reflection technique and three regions are identified on the film formed

on a rotating disk - a) An inertia dominated region b) A rotation dominated

region where cetrifugal forces are important and c) a transition region where

both effects are important.

Comments:

The effect of Coriolis force on the circular hydraulic jump needs to be studied

carefully. It is not clear apriori how would the jump and its structure get

affected when the time scale of rotation becomes of the same order as the con-

vective time-scale. This is an interesting open problem for both experimental,
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theoretical and numerical study. The physical relavance of this problem is

in industrial situations where impingement cooling of rotating disks can be

necessary.

65. [Bohr et al., 1997; Watanabe et al., 2003]:

This is a theoretical study which focusses on two problems viz. (a) The

circular jump and (b) flow down an inclined plane. We discuss only the

former and the main results are as follows:

• The authors use a vertical averaging approach in which they use the

BLSWE alonwgwith a cubic profile having variable coefficients. The

resultant system reduces to two coupled ordinary differential equations

for the evolution of the film-thickness and the coefficients of the velocity-

profile with streamwise distance. This system is solved as a two point

boundary-value problem and jump-like transitions are obtained.

• An asymptotic analysis of the model is presented and analytical results

are derived for the height-profile upstream and downstream of the jump.

The solution downstream has a singularity which seem to be a generic

feature of all shallow-water models. In the near jump region, using this

model, a generalization of Rayleigh’s shock relation is obtained.

Comments:

This work represents a significant progress amidst a large body of literature

that use the vertical averaging technique for obtaining a height profile for hy-

draulic jumps. Until this study, all related works, where the vertical averaging

method was used, failed to obtain realisitic solutions of the height-profile near

the jump, obtaining instead of a jump a spiral or similar behaviour with a

singularity in the derivative of height. This was the first study where the au-

thors were able to obtain a jump including separation, without encountering

singularities. This model however does not capture Type-II jumps. The cubic

profile assumed by this model may provide a good aproximation to observa-

tions, but the BLSWE does not support a cubic term in the velocity profile, as

we show in Chapter 2. The technique of using variable coefficients velocity-

profiles was used earlier by Arakeri & Rao [1996] but no jump-like transition

was obtained.
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66. [Aristoff et al., 2004]:

This is the experimental discovery that the symmetry breaking of hydraulic

jumps can lead to not only polygonal shapes but also a new class of asymmet-

ric shapes like cat’s eyes, three- and four- clovers, sunflowers in viscous jumps

etc. It was also experimentally demonstrated that surface-tension plays a cru-

cial role in the symmetry breaking. Addition of a drop of surfactant led to

resoration of the circular shape of the jump.

Comments:

It should be noted that such symmetry breaking has been observed in only

viscous fluids like glycerol-water solution etc. Hydraulic jumps obtained using

low viscosity fluids like water do not display any symmetry breaking.

67. [Mikielewicz & Gumkowski, 2005]:

This is an analytical and experimental study. The authors add a head-loss

term to the Bernoulli’s equation and extend the Rayliegh’s shock criterion

including energy loss. Relations are also obtained for the nondimensional

jump-radius (scaled by nozzle diameter) expressed in terms of the nozzle

Froude number and a Weber number. The validity of these expressions is

checked against experiments and moderately good match is obtained.

Comments:

The model presented here is extended for jumps formed from an air-water

spray in Gumkowski [2008]

68. [Singha et al., 2005]:

This is an analytical and experimental study of planar hydraulic jumps. Al-

though this survey excluded many planar jump studies, the work of Singha

et al. [2005] is discussed because it is very relevant to this thesis. The authors

extend the Rayleigh shock criterion by including viscosity in their equations.

This is done by including a boundary-layer of constant thickness (less than

the film-thickness) in the momentum balance written across the discontinu-

ity. Inside the boundary layer a self-similar velocity profle is assumed and it

is found that the height ratio downstream and upstream the jump (H2/H1)

assumes a value greater than unity even when the upstream Froude number is

unity. The authors view this as a shift from a second order transition to a first
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order transition in the presence of viscosity. These authors also study the ver-

tically averaged BLSWE using shock-fitting techniques and predict the jump

location to scale as (Q/L)5/3ν−1g−1/3 where L is the channel width and all

other parameters have their usual meaning. This scaling relation is obtained

in two independent ways - firstly by shock fitting and secondly by arguing

that at the jump, the diffusive times scale matches the convective time scale

and the local Froude number is unity. Some experiments are also reported

to validate the scaling relationship for the jump location/height-profile and

a good match is reported.

Comments:

The analytical solution of the planar vertically averaged BLSWE shows a

sigularity in the slope and an unrealistic turning around of the height pro-

file, rather than a jump. This was the one of the first studies where time

dependence in the viscous shallow-water equations are studied. The authors

perturb the volume-flow rate and study the evolution of the resultant perturba-

tion. The time scale of decay of a perturbation is estimated from this analysis

and this time scale happens identical to the viscous diffusive time-scale. This

procedure is also extended to a circular geometry where a more detailed anal-

ysis is carried out. We refer the reader to the discussion of reference Ray &

Bhattacharya [2007] which follows later.

69. [Gradeck et al., 2006]:

An experimental and computational study of the circular hydraulic jump

formed from an impinging jet on a horizontally moving surface. A range of

experimental results are reported with the velocity of the surface varying from

2.65m/s to 0.51m/s. Due to the motion of the surface, the shape of the jump

resembles a parabola. A dimensional analysis is performed to express the

non-dimensional radius of the jump as a function of other non-dimensional

parameters. A power-law relationship is assumed and the exponents are de-

termined. Computational results obtained from solving the Naveri-Stokes

equations with a VOF model for resolving interfaces are reported. A non-

linear k − ε model is used to resolve near-wall turbulence. Reasonably good

agreement is reported for the position and the shape of the jump and the au-

thors note that the choice of the near-wall turbulence model affects answers
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significantly.

Comments:

Formation of a jump from a jet impinging on a moving surface causes an

“open jump” and this is somewhat reminiscient of simlar “open” jumps which

form on normal jets falling on inclined plates (see [Silverstein, 2002; Thif-

feault & Belmonte, 2010]). However, the formation of an “open” jump is later

debated by Kate et al. [2009]. The present work is mostly of industrial rele-

vance where cooling using a jet impinging on a moving surface is frequently

used.

70. [Bush et al., 2006]:

An experimental investigation into the cause of symmetry breaking of the

circular jump as reported earlier by Ellegaard et al. [1998]. The main results

are:

• Numerous nonaxisymmetric stable shapes of the jump in addition to

those reported by Ellegaard et al. [1998] are reported e.g., oval, cat’s

eye, bowtie, butterfly and clover-shaped jumps. These can be obtained

by varying the nozzle size and using highly viscous working fluids like

glycerol-water solution.

• As before, the symmetry breaking and the formation of stable polygonal

jumps is shown to be related to a capillary instability of the circular

jump by adding a surfactant which decreases the surface-tension and

restores the circular symmetry. It was also found that reducing the

surface-tension makes the jumps gentler.

• An extensive parametric study is conducted in the space of four nondi-

mensional numbers - Reynolds number Re ≡ Q/νa, Bond number Bo ≡
ρga2/σ, Weber number We ≡ ρQ2/(σH3) and a/H where Q is the vol-

ume flow rate. ν is the kinematic viscosity, H is the outer depth, ρ is the

density, a is the radius of the impinging jet at the nozzle outlet and g is

the acceleration due to gravity. The different nonaxisymmetric shapes

are classified in this parameter space.

• The expression for the jump radius that was proposed earlier in Bush &

Aristoff [2003] is now tested for non-axisymmetric jumps as well. Here
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the jump radius for a nonaxisymmetric shape is defined as the radius of

a equivalent circle which has the same length of the circumference as the

non axisymmetric shape. Some scatter is observed in the experimental

data and this is ascribed to non-hydrostatic effects of pressure which is

known to be important for Type-II jumps (which are the only ones that

give rise to symmetry breaking) and neglected in the calculation of the

present expressions.

• A rough physical reason is provided for the occurence of symmetry-

breaking only in Type-II jumps. The jump is thought to be like the

inner-portion of a torus, whose axisymmetry is broken by a capillary

instability akin to the well-known Rayleigh-Plateau capillary pinch-off.

Comments:

This is one of the first attempts at understanding the physical mechanism gov-

erning the symmetry-breaking in the axisymmetric jumps leading to polygonal

shapes. The present physical mechanism is related to a capillary instabiltiy.

It is interesting to note that a different mechanism of polygon formation has

also been reported in Dressaire et al. [2009].

71. [Rolley et al., 2007]:

This is predominantly an experimental study of hydraulic jumps formed from

liquid helium at temperatures above and below the critical temperature at

which superfluid transition occurs.

• Experiments are done above the critical temperature. The depth of the

fluid before the jump, and the jump radius are measured. Capillary

effects are siginificant and the surface-tension corrected model of [Bush

& Aristoff, 2003] predicts the jump radius better than the model of

[Watson, 1964]. The scaling relationship of [Bohr et al., 1993] is found

not to work well for jumps of small radii.

• The radius of the jump hardly shows any change when the temperature

is changed through the critical temperature. An explanation is provided

for this by arguing that even below the critical temperature, superfluid

helium has a viscosity when its speed being greater than a certain crit-

ical value (see comment below). Additionally the flow is reported to
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develop many stationary ripples below the critical temperature. These

ripples are modelled as planar capillary gravity waves and using their

wavelength and the corresponding dispersion relation, the local fluid

depth is estimated.

• The stability of these ripples is studied by considering the flow as lo-

cally being planar and doing a stability analysis on a parallel mean

flow assumed to be a parabolic Poisseuille flow. Surface-tension appears

through the boundary conditions on the Orr-Sommerfeld equations. At

temperatures above the critical temperature, the spatial growth rates

estimated from these calculations differ from the ones observed in ex-

periment by about 20%. At temperatures below the critical temperature

larger deviations are reported. Some heuristic explanation is provided

for this by splitting up the fluid into its normal and superfluid component

and imagining the oscillations to be those of the superfluid component.

Comments:

Liquid helium experiments below the critical temperature are interesting be-

cause they can be used as a check on phenomena which rely on viscosity for

their formation. This is the second study of hydraulic jumps using liquid he-

lium. The first one was in [Gribbon & Cope, 1963]. As the radius of the

hydraulic jump is predicted to be strongly sensitive to viscosity [Bohr et al.,

1993], it is very intriguing to note that the radius of the jump shows hardly

any change across the temperature at which the viscosity of liquid helium is

expected to sharply reduce. A partial explanation may be that even below the

critical temperature, the fluid can have an effective viscosity if it flows above

a certain critical speed. This reference explains that the mechanism of why

this viscosity arises is a quantum effect and is not well-understood.

72. [Ray & Bhattacharya, 2007]:

An analytical study of the circular hydraulic jump using unsteady boundary-

layer shallow-water equations. This study builds upon the previous work

reported in Singha et al. [2005] and applies it to a circular geometry. The

main conclusions are:

• A linearised stability equation is derived starting from the boundary-

layer shallow-water equations. The perturbation is in the volume-flow
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rate. The stability of perturbations upstream and downstream of the

jump is studied by treating a perturbation as a standing wave and as-

suming a Fourier mode in time. It is found that a standing wave down-

tream of the jump is damped by viscosity and the decay of the amplitude

of the perturbation suggests a time scale. By matching this to the con-

vective time scale and imposing the additional constraint that Froude

number is unity, the scaling relationship of Bohr et al. [1993] is repro-

duced.

• The perturbation is also treated like a travelling wave and it is found

that any upstream travelling wave is amplified in the subcritical region

and gets damped in the supercritical region. This is used to conclude

that no upstream propagation is possible from the subcritical to the

supercritical region.

• The circular hydraulic jump becomes unstable as the flow rate is in-

creased beyond a certain critical value [Hansen et al., 1997]. The au-

thors provide an estimate of the critical flow rate by equating the power

dissipated in a mode at the jump location to the total energy input and

obtaining the frequency of the mode from experiments of Hansen et al.

[1997].

Comments:

This is one of the very few studies on the circular hydraulic jump which

include explicit time dependence in their equations. Time dependence in a

stability study was also earlier included in Cholemari [1998]. It is interesting

to see that the scaling relationship obtained by Bohr et al. [1993] by fitting

a Rayleigh shock can also be obtained by intuitive dimensional arguments as

done here. However some questions still remain unclear. For instance the au-

thors obtain the radial location of the jump by equating the viscous time-scale

obtained from a perturbative analysis to the convective time-scale. This vis-

cous time scale is identical to the diffusion time-scale for vorticity. Thus one

can also think of this time scale as an estimate of the time it takes for vortic-

ity to diffuse throughout the entire fluid film. This is equivalent to assuming

that the radial location of the jump coincides with the place where the growing

wall boundary-layer reaches the free-surface. However, as shown by Watan-



1.2 Literature review of circular hydraulic jumps 69

abe et al. [2003] for typical experiments, the jump in fact occurs not where

the boundary-layer reaches the free-surface, but much further downstream.

73. [Kate et al., 2007a]

This is an experimental study of hydraulic jumps formed from two impinging

jets and their interactions. Visibly the most significant phenomenon that

occurs when the flows from two impinging jets meet each other is what is

known as the fountain formation. A sheet of water rises up in the air (shaped

like a fan) formed out of the collision of two oppositely directed radial thin

film flows. This interaction region can significantly alter the shape of the

hydraulic jump that each jet produces. Experiments are reported for jets of

equal and unequal strength i.e. depending on whether the jets are exactly

identical or different in terms of diameter and average velocity. The main

conclusions are:-

• Equal jets - The interaction between the flow formed from two imping-

ing jets strongly depends on the distance between the two jets. The

authors identify two length scales here. When the inter-jet distance is

greater than a certain critical distance (Sc), there is no interaction and

no fountain formation. Sc is found to be an increasing function of flow-

rate and constitutes the first length-scale. The second length scale is

R, defined as the average of the two hydraulic jump radii formed from

the two impinging jets. When the inter-jet distance is less than Sc but

greater than R, the authors report formation of a dome shaped fountain.

When the interjet distance is less than both Sc and R, the shape of the

fountain is more like a thin vertical sheet.

• Unequal jets - The main difference here is that the fountain formed

here is not vertical but curved towards the weaker jet.

Some experiments are also reported in this paper on interactions between

a wall and a jet. The thin film is allowed to hit a wall and it rises up

the wall and forms a fountain

Comments:

Apart from some fundamental appeal, this work has a certain amount of in-

dustry relevance where multiple impinging jets are frequently used for cooling.
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A detailed understanding of the interaction between two impinging jets can

be useful in cotrolling heat transfer rates. The flow generated by a Vertical

Take-off and Landing (VTOL) aircraft involves upwash formation due to two

impinging air jets striking the ground with ambient air all around. However

as pointed out by the authors, the current flow is very different from this

mainly due to the entrainment that occurs for the air jets and the lack of

formation of a hydraulic jump there.

74. [Kate et al., 2007b]:

A experimental and analytical study of jumps with inclined jets. The main

results are:

• Due to obliqueness of the jet, elliptic jumps are obtained upto a certain

critical angle. For jet inclinations less than the critical angle, jumps

with corners are reported.

• The boundary-layer shallow-water equations are vertically averaged and

a self-similar profile is assumed for obtaining closure. This procedure

leads to an ordinary differential equation for the average velocity. The

solutions of this ordinary differential equation display a singularity at

a critical radius. By identifying certain solutions as ‘inner’ solutions

and others as ‘outer’ solutions, a discontinuity can be fitted using the

Rayleigh shock criterion. This gives a scaling relation for the jump

radius, which reduces to the predictions of [Bohr et al., 1993] for a

vertical jet. The ratio of the major to minor diameters of the elliptic

jumps is predicted to be independent of the jet velocity at the nozzle.

• Comparisons with experiments of the scaling relationship show good

agreement.

• Jump-jet interaction is proposed as a reason for the formation of jumps

with corners, at low values of the jet inclination agle. These jumps

with corners are further categorised as Type-I, II and III depending

on their shapes. These shapes in turn depend on the jet velocity An

analogy is drawn from shock-wave iteractions in compressible flow to

give a phenomenological explanation of these varied shapes.
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Comments:

The formation of elliptic jumps can be intuitively anticipated from the fact

that the radius of the jump is known to depend on the volume-flow rate which

in turn shows an azimuthal dependence for inclined jets. The formation of

jumps with corners is however difficult to explain intuitively. This is explored

more in [Kate et al., 2007c].

75. [Kate et al., 2007c]:

The authors build upon their discovery of jumps with corners for inclined jets

[Kate et al., 2007b]. It was found earlier [Kate et al., 2007b] that for inclined

jets when the inclination angle becomes less than 250 the jump no longer

remains elliptic/oblate but instead develops sharp corners, which the authors

ascribe to jump-jet interaction. This is an experimental and analytical study

of this phenomenon. The main results are:

• An analytical expression is derived for the critical angle using the ex-

pression for a Rayleigh shock and the flow geometry. This expression is

checked against experiments and reasonable agreement is reported.

• A comparison is made between shock wave interactions and the jumps

with corners studied here. A phase diagram is obtained from exper-

iments to categorise the different kinds of shapes of jumps that are

obtained.

Comments:

The generalisation of the scaling relationship by Bohr et al. [1993] to hydraulic

jumps formed from inclined jets needs calculation of the azimuthal variation

of the mass flow-rate. The authors here use the expression derived by Hasson

& Peck [1964]. There is an interesting study by Taylor [1966] on this topic.

76. [Rai et al., 2008]:

An analytical study of the circular hydraulic jump for generalised Newtonian

fluids. The authors use a shear-stress model for a generalised Newtonian

fluid and extend the anlysis of [Bush & Aristoff, 2003; Watson, 1964] for this

model. Expression are derived for the evolution of film-thickness (extension

of the zero-gravity solution of Watson [1964]). The surface-tension correction

of Bush & Aristoff [2003] is extended for a generalised Newtonian fluid.
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Comments:

Experiments on the circular hydraulic jump using non-Newtonian fluids have

not been reported elsewhere in the literature. It is not clear if this aspect

can bring qualitative changes for the circular jump. We have conducted some

experiments using CMC (although no measurements were made) and we did

not observe any qualitative changes due to the non-Newtonian property of the

working fluid.

77. [Kasimov, 2008]:

This is an analytical work which builds on the earlier work of [Bohr et al.,

1993; Tani, 1949]. The vertically averaged equations derived by [Bohr et al.,

1993; Tani, 1949] have no asymptotic solutions downstream of the jump and

additionally they display a negative singularity in the derivative of height at

a certain location downstream. In this study an attempt is made to remove

some of these issues. The main results are:

• The author models the bottom topography in order to improve the ac-

curacy of the downstream solution of Bohr et al. [1993]. By modelling

the plate using realistic profiles, it is shown that the resultant ordi-

nary differential equation has a second critical point in addition to the

original critical point in the equation of Bohr et al. [1993]. The radial

location of this second critical point is used as a measure of the plate

radius and the resultant radius of the circular jump is computed numer-

ically using shock fitting by Rayleigh shock criterion supplemented by

surface-tension. The resultant location of the jump is sensitive to the

plate radius and is found to decrease with increasing plate radius.

• The role of surface-tension explored in the earlier work of [Bush &

Aristoff, 2003; Bush et al., 2006] is carried forward. It is found that

a critical value of surface-tension exists above which Rayleigh’s shock

criterion has no solution. This is used to argue that for high enough

surface-tension values an axisymmetric jump cannot exist and hence

symmetry breaking is inevitable. It is also found that the critical value

of surface-tension comes down with viscosity, a trend which is consistent

with the experimental observation that symmetry breaking is observed

for only highly viscous fluids.
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Comments:

The author argues that for an infinite plate, no steady-state circular jump

should be observable. However in high-speed photography of jump formation

done by us, we were able to observe formation of a well-defined steady circular

jump long before the fluid reached the edge of the plate. The effect of plate size

on the jump radius was also studied experimentally in Rao [1994]. However,

their experimental data shows some non-monotonic behaviour and hence no

clear trend can be observed.

78. [Thorpe & Kavcic, 2008]:

This is the first experimental study of internal circular hydraulic jumps. Such

jumps in planar geometries are well-known (see e.g. the theoretical and ex-

perimental work in Yih & Guha [1955] and more recently see Holland et al.

[2002]) and the authors report the discovery of the same in a circular geom-

etry. A theoretical foray is also made in this study.

• The occurence of circular jumps is reported for a jet submerged into a

fluid of lower density. The jet has two orientations - upward and down-

ward facing. Some undulations are reported downstream of the jump

and the wavelength of these undulations decrease with increasing radius.

The authors provide an explanation for this by equating the phase speed

of surface-gravity waves to the local flow speed and assuming that the

height downstream of the jump is practically a constant. This is also

used to provide an estimate of the height immediately downstream of

the jump.

• Far upstream of the jump the authors use Watson’s gravity-free similar-

ity solution [Watson, 1964].

• A modification of the Rayleigh shock criterion is proposed for jumps of

finite width by assuming pressure to be hydrostatic.

Comments:

As correctly remarked by the authors, the fact that internal jumps should be

possible in circular geometries is not surprising. Altering the density ratio of

the two fluids is a way of varying the effective gravity that the hydraulic jump

experiences. The theoretical model downstream of the jump makes one major
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assumption i.e. the flow is irrotational and hence can be treated as inviscid.

This is not a good assumption because the incoming flow just upstream of the

jump is entirely vortical and it is not clear where this vorticity disappears while

transitioning through the jump. The authors model the flow downstream of the

jump as an uniform flow and provide a solution of the Laplace equation here.

As we shall see in Chapter 4, in our simulations we too find a few undulations

behind the jump in the absence of surface-tension and the wavelength of these

decrease with streamwise distance.

79. [Gumkowski, 2008]:

The authors make a theoretical study and a limited comparison with experi-

ments for jumps formed from an impinging jet of gas-liquid spray (aerosol).

The theoretical part has been discussed earlier in Mikielewicz & Gumkowski

[2005] in context of a single-phase jet and we discuss only the experimental

part here. Experiments are conducted using a two-phase air-water jet. Data

is reported for comparisons between the jump radius formed from a single

phase jet and an aerosol jet. The jump formed by an aerosol jet is reported

to be larger compared to the one formed by a single phase water jet for the

same mass-flow rate of water in both the cases. Some other related results

are also reported for aerosol jets.

Comments:

An experimental study of an impinging gas-liquid spray was earlier reported

by Siwon [1993], although this work is not cited in the present reference. This

work is more detailed and contains both experimental and analytical results

and comparisons between the two.

80. [Kate et al., 2008]:

An experimental study of jumps formed by inclined jets. The main results

reported are:

• For large angles of jet inclinations, elliptic jumps are obtained. For per-

pendicular jets, circular jumps are obtained. For circular jumps, some

comparisons are reported with previous height-profile measurements of

[Rao & Arakeri, 1998; Rao, 1994] and the radius versus flow rate com-

parisons with the scaling of [Bohr et al., 1993].
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• Stagnation point pressure at the impingement point is measured. It

is found that the ratio of the stagnation point pressures for a inclined

jet to a circular jet depends on the inclination angle but is practically

independent of the flow-rate.

• The ratio of the area of a circular jump to an elliptic jump is found to

be dependent on the inclination of the jet but is observed to be almost

independent of the mass flow rate.

• For inclined jets, the film thickness shows an azimuthal dependence.

Comments:

The variation of film-thickness with the azimuthal coordinate is to be ex-

pected. This is because for an inclined jet, the mass flow rate through a small

azimuthal section depends on the azimuthal orientation of the section. Since

mass flow-rate affects the film thickness, an azimuthal variation of the film

thickness is thus expected. The problem of determining the azimuthal thick-

ness of the film formed from an inclined impinging jet on a horizontal plate

was attempted by [Taylor, 1966] where it was argued that the determination

of the azimuthal dependence of the film thickness is not possible from mass

and momentum considerations alone. Also see [Michell, 1890].

81. [Kluwick et al., 2009]:

This is a study of planar jumps generated by an obstacle downstream. The au-

thors study the case where the incoming Froude number is very close to unity

and the asymptotic analysis presented corresponds to Fr−1 << 1, Re→ ∞.

The flow structure in the near-jump region is found to have a triple-deck

structure. For ε ≡ Re−1/9, the flow is divided into three parts - (a) A lower

deck of thickness O(ε4), a main deck of thickness O(ε3) and an upper deck of

O(1) thickness. The response of the incoming undeveloped flow upstream of

the obstacle takes a form in which viscous perturbations are confined to the

lower-deck, the main-deck represents an inviscid displacement of the remain-

ing part of the boundary-layer and the outer inviscid flow also undergoes a

similar displacement. Due to the fact that Fr − 1 is assumed to be a very

small parameter, resonant conditions prevail and hence this necessitates a

non-linear study. The authors restrict themselves to a study of the steady

state for the nonlinear problem. For the corresponding linear problem, time
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dependence is also included.

Comments:

This is essentially a study of nonlinear, viscous gravity waves propagating

on a near critical flow (Fr ∼ 1). This study builds upon earlier studies

([Gajjar & Smith, 1983], [Bowles & Smith, 1992], Higuera [1994]). In fact

the assumption of Fr− 1 << 1 introduces a new pressure-diplacement law in

the equations studied earlier by Bowles & Smith [1992] (who studied the case

of large incoming Fr) and the authors study this.

82. [Kate et al., 2009]:

This is a theoretical and experimental study of hydraulic jumps formed from

normal and inclined jets on surfaces moving with a constant velocity. The

main results are:-

• An inclined jet impinging on a surface moving with constant velocity

can be treated as an equivalent jet impinging on a stationary surface

with a different angle of inclination and a different jet velocity. The

equivalent angle of inclination and jet velocity is calculated from the

vector sum of the actual jet velocity and the velocity of the moving

surface. The equivalent inclined jet is treated using the methods of Kate

et al. [2007b] and a scaling relation for the radius of the elliptic jump is

obtained. For normal jets impinging on a moving surface, “open” jumps

were reported in Gradeck et al. [2006]. It is clarified here that these open

jumps are actually part of ellipse shaped jumps. Some comparisons with

experiments, the simulations of Gradeck et al. [2006] and the theoretical

predictions are made.

• It is argued that it is possible to obtain a circular jump using an inclined

jet on impinging on a moving plate, if the horizontal component of the

jet velocity is cancelled by the horizontal velocity of the moving surface.

Comments:

This work builds upon the earlier work of Gradeck et al. [2006] which studied

jumps formed from normal impinging jets on a moving surface. Like the work

of Gradeck et al. [2006] the present study is also very relevant for industrial

applications where inclined impinging jets might be frequently encountered,
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83. [Dressaire et al., 2009]:

This is an experimental and semi-analytical work on the formation of polygo-

nal hydraulic jumps on micropatterned surfaces. The thin film thickness and

roughness amplitude of the micropatterns are of the same order of magnitude.

The main results are:

• By modifying the micron-scale surface topography, the symmetry of

the circular hydraulic jump can be broken and stable polygonal jumps

can be obtained. By further varying viscosity and surface-tension, the

stability of these polygonal structures is not affected. This suggests that

the polygonal jump formation may not always be due to a capillary or

inertial instability but rather controlled by the geometry of the surface

topography.

• The micropatterned surface is characterized by arrays cylindrical posts

of height H , radius R and lattice distance D. Polygons are visible only

for large flow-rates. The average radius of the polygons increases with

flow-rate. For a given flow-rate, the average radius decreases with in-

creasing H or decreasing D. the authors rationalise this by postulating

that increasing H or decreasing D has the effect of decreasing the ef-

fective mass flow-rate through the thin film above the posts, due to

“leakage” of some part of the flow through the micropatterned texture.

• A model is proposed for this by dividing the flow into two parts one

though the microtexture and a thin-film flow above it. The presence of

the microtexture introduces a slip boundary condition for the thin-film

above it. Results obtained from this model are in good agreement with

observations.

Comments:

The occurence of polygonal jumps for smooth surfaces has been traditionally

thought to arise from a capillary instability Bush et al. [2006]. This is an

interesting demonstration that there might be alternative routes to symmetry-

breaking too.

84. [Andersen et al., 2009]:

This study focusses on the importance of separation in pattern-formation
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at moderate Reynolds numbers. The circular hydraulic jump is cited as an

example where separation plays a strong role. In Type I jumps, the model of

[Watanabe et al., 2003] can be integrated through the point of separation. In

case of Type-II jumps, no such simple model exists. There are other examples

discussed in the paper which involve flow separation but those are not directly

relevant to the circular hydraulic jump.

Comments:

Flow-separation can be a unifying theme for many flows and can be an im-

portant ingredient of pattern formation, as this work tries to illustrate and

highlight. A relevant example here is the symmetry breaking of Type-II jumps

resulting in formation of stable polygons. The existence of the surface roller

seems to be a crucial element for this pattern formation as Type-I jumps have

never been observed to break into polygons.

85. [Mikielewicz & Mikielewicz, 2009]:

An experimental and theoretical study. A model for calculating the radius of

Type-I and Type-II jumps is worked out taking into account the existence of

two separate eddies. The main results are:

• A head loss term is added to Bernoulli’s equation and this term is split

up into two parts. One loss is said to be because of the presence of

eddies and another loss is due to sudden expansion at the jump. The

first term is estimated by assuming a solid body rotation. A parameter

P is introduced which takes the values of 4 or 8 depending on the number

of eddies being modelled. A relation is derived which relates the heights

before and after the jump to the upstream Froude number. However,

this relation does not reduce to the Rayleigh shock criterion even when

the eddy losses are not considered, although at high values of upstream

Froude numbers both the relations start giving similar answers. An

expression in derived to relate the non-dimensional radius of the jump

(scaled by the nozzle diameter) to the upstream Froude number and this

includes surface-tension contributions.

• Experiments are conducted to validate the relationships obtained. The

predictions for the ratio of heights upstream and downstream of the

jump, show reasonable agreement. The agreement for the prediction of
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the location of the jump in terms of the upstream Froude number is

moderate and the experimental data shows scatter.

Comments:

Although very heuristic, this is the only published attempt in modelling Type-II

jumps. A series of earlier numerical studies by Yokoi & Xiao [1999, 2000a,b,

2002] had focussed on the importance of surface-tension and nonhydrostatic

pressure effects for the existence of the Type-II jump.

86. [Bonn et al., 2009]:

This is an experimental and theoretical study of jumps in a planar geometry.

The experimental part studies planar jumps occuring from jets impinging in

a thin channel of width varying from 0.4 − 1.2cm and length 100cm. Film

thickness measurements are made using a depth micrometre. Another set of

experiments are performed using a sheet of water emerging from a slit and

impinging upon a plate and where rhombus shaped jumps are obtained. Here

too depth measurements are made. Some of the main results are:

• The height profile upstream of the jump is linear as is to be expected

from Watson’s gravity free similarity solution (Watson [1964]). However

the slope obtained from experiments is an order of magnitude higher

than that predicted by [Watson, 1964]. Additionally, the slope is found

to be independent of the volume flow-rate Q unlike Watson’s theory

which predicts otherwise. The authors explain this by showing that the

channel-flow is turbulent due to the presence of side-walls. An enhanced

eddy viscosity model is proposed to explain the much higher slopes seen

in experiments. The mixing length is taken to be proportional to the

height of the liquid layer and the resultant eddy viscosity is directly

proportional to the volume flow-rate. Using this model, good match

with experimental data is reported. It is also pointed out that the

experimental height-profile of Singha et al. [2005] is also an order of

magnitude higher than the value predicted by laminar theory and a

similar reasoning is offered for this deviation.

• The theoretical part uses a two dimensional vertically averaged model

and a velocity profile whose shape is allowed to change only in the near

jump region. The viscosity is replaced by the eddy viscosity obtained
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earlier and different eddy viscosity models are used upstream and down-

stream of the jump. Fixing the shape of the velocity profile allows the

solutions upstream and downstream of the jump to be determined which

are then connected using a shock and good match is reported with ex-

periments. In the near jump region, the authors use a cubic profile with

streamwise evolving coefficients to obtain jump-like transition. However,

the match of the near jump height profile to the experimental profile is

reported to be not very good. Some measurements on rhombic jumps

are also reported.

Comments:

The theoretical part of this study where the velocity profile is allowed to change

shape, extends the methods presented in Watanabe et al. [2003] to jumps

occuring in a horizontal planar geometry.

87. [Khavari et al., 2009]:

This is a computational study of the circular hydraulic jump using the VOF

method. The authors report simulations of Type-I jumps and simulations of

jump formation. Computational results are compared with the approach of

Bush & Aristoff [2003]; Watson [1964]. The computed radius of the jump

agrees reasonably well with the experimental measurements of Errico [1986].

The effect of change of outer depth (controlled) is shown to cause a decrease

in jump radius, consistent with well-known experimental results.

Comments:

The downstream boundary conditions which are very crucial in Navier-Stokes

simulations are not discussed in adequate detail here. The authors report that

they control the outer depth but the pressure boundary condition at the exit

is not discussed. The Type-IIb jumps reported in Liu & Lienhard [1993] and

also in Bush et al. [2006] is simulated. Some 3D simulations and visualisation

is reported but the details are not discussed.

88. [Rojas et al., 2010]:

This is a theoretical study and the authors derive equations which include

inertia as a small parameter in a lubrication model. Although this is not a

direct study of the circular jump, the authors report simulations of the jump
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using their model and hence we discuss this reference here. In the limit of

small Reynolds numbers, the lowest order equation for the evolution of the

interface is derived, which contains the effects of inertia. The steady state

version of this equation is then solved as a boundary-value problem and Type-

I jumps are reported. The calculated radius of the jump is compared to the

experimental results of Hansen et al. [1997] and a good match is reported,

especially at high values of flow-rates.

Comments:

Hydraulic jumps have been traditionally studied under the boundary-layer or

Re → ∞ approximation. This is only study we know of which looks at hy-

draulic jumps in the other limit of Re→ 0.

89. [Pirat et al., 2010]:

This is a study of the oscillations described by a levitating drop on a jump

formed on an inclined plate. The pendulum-like motion of the levitating

drop is studied analytically and experimentally and a gyroscopic instability

mechanism is proposed for these oscillations. An approximate criterion is

presented for the condition when the lowest point on the drop’s trajectory

ceases to be a stable equilibrium point.

Comments:

This study extends the observations of levitating drops reported earlier in

Sreenivas et al. [1999] and studies their dynamics in greater detail.

90. [Thiffeault & Belmonte, 2010]:

This is an analytical and experimental study of jumps formed from impinging

jets on inclined plates. In such situations open jumps are formed and the

principal aim of this work is to obtain the dependence of the height of rise

of the fluid on the inclination angle. The authors use the approach of Bohr

et al. [1993] using vertical averaging of the BLSWE to obtain a prediction

for the height of rise of the fluid up the incline. This expression is tested

against experimental data and good agreement is reported for high flow-rates

and small angles of inclination. The theory fails for low flow rates where

poor agreement with experiments is reported and for large angles (close to

π/2) where an unphysical non-monotonicity in the dependence of the height

of rise, on the plate inclination angle is obtained.
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Comments:

Jumps formed from inclined jets have been studied earlier by Silverstein [2002].

However, determining the dependence of height of rise of fluid on the volume

flow-rate and the plate inclination angle have not been addressed earlier. The

author is grateful to Mr. Anubhab Roy for bringing this reference to his at-

tention.

91. [Jannes et al., 2010]:

This is a theoretical study. The authors make some exotic analogies between

a hydraulic jump and a white hole. We will not discuss this analogy but

focus instead on some experimental results which are relevant for the present

study. The main observations are:

• Measurement of the jump radius with volume flow-rate is presented and

a linear relationship between the two quantities is reported although at

low flow rates deviations are observed.

• The authors report the observation of a Mach cone when a disturbance

is introduced upstream of a jump. Using the simple classical shock

relation for a Mach cone, the cone angle is obtained experimentally at

various radial positions. It is shown that this angle is less than π/2 in

the supercritical region and becomes almost exactly π/2 at the jump

and downstream of the jump, no Mach cones are obtained.

Comments:

A power-law relationship for the radius of the jump in terms of flow-rate is

discussed in Chapter 5 although we shall also see in Chapter 4 that the jump

radius really does not scale like a power-law. The author is grateful to Mr.

Sumesh P. T. for bringing this reference to his attention.

1.3 List of references which could not be accessed

92. [Kurihara, 1946]:

The first attempt at including viscosity in the shallow-water equations. This

reference is in Japanese.
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93. [Shen, 1961]:

This is a technical report on radial bores.

94. [Larras, 1962]:

This is writen in French.

95. [Saddler & Higgins, 1963]:

There are experimental results in this work.

96. [Ahmad, 1967]:

A part of this work is available in [Koloseus & Ahmad, 1969] and has been

reviewed earlier in this section.

97. [Nirapathdongporn, 1968]

This work apparently contains a good literature survey of the circular hy-

draulic jump until 1968 (see [Avedesian & Zhao, 2000]).

98. [Gachechiladze, 1970]

This is a study which approaches the problem from a civil engineering per-

spective.

99. [Khalifa & McCorquodale, 1979]

100. [Bouhadef, 1978]

This reference is accessible and is written in French.

101. [Nettleton, 1983]

This is a Master’s thesis from University of Windsor.

102. [Errico, 1986]:

This is a PhD thesis from Univsersity of Calfornia at San Diego on jet im-

pingement.

103. [Stevens, 1991]:

This is a PhD thesis of experimental work on jet impingement.

104. [Hansen et al., 2002]:

This is written in Danish and is freely available online.
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105. [Phillips, 2008]:

This is an AIAA conference report. The circular hydraulic jump was ex-

perimentally simulated aboard a NASA microgravity research aircraft. The

abstract is reproduced below:

• The behavior of the circular hydraulic jump has been studied, under

conditions of reduced gravity aboard the NASA C-9 microgravity re-

search aircraft, for Reynolds numbers based on jet diameter between

27000 and 58000 and Weber numbers between 1000 and 4600. The

steady-state jump radius was observed to increase under conditions of

reduced gravity, relative to its magnitude during hypergravity at the

same flowrate. The measured jump radius achieved a steady-state value

in approximately 3 to 5 s, which corresponded to the time for the es-

tablishment of steady reduced gravity conditions during each parabola.

Jump radius in reduced gravity increased in a nearly linear fashion ver-

sus jet flowrate. Comparisons with available theories were incomplete

due to unsuccessful attempts to measure the upstream and downstream

jump depths.

1.4 Discussion

With the literature survey now complete, one can take a bird’s eye view of how

much understanding has been achieved in roughly one hundred years of studying

laminar standing jumps, especially in circular geometries. We believe that theoret-

ical attempts at understanding the jump can be broadly classified into two major

categories viz. (a) The now classical vertical averaging approach (b) Asymptotic

analysis in the form of higher-order boundary-layer theory.

Both the approaches have had their share of successes and deficiencies. The ver-

tical averaging approach aims for a mathematically simpler description, provides

useful scaling relationships which agree well with experiments and many times re-

veals the physics of the problem using equations which mostly are simple ordinary-

differential equations. On the flip side this approach has not been very successful in

providing a good understanding of the near-jump flow structure and/or the dom-

inant physics there. Results obtained from these methods are frequently plagued
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Approximate Experiments Navier-Stokes simulations
Theory Numerical methods Laminar Turbulent
Rayleigh, 1908 Tani, 1949 Tani, 1949 Dingwei, 1998 Rahman, 1991
Kurihara, 1946 Watson, 1964 Gribbon, 1963 Yokoi, 1999 Chippada, 1994
Tani, 1949 Koloseus, 1969 Watson, 1964 Yokoi, 2000a
Benjamin, 1954 Arbhabhirama, 1975a Olsson, 1964 Yokoi, 2000b
Watson, 1964 Arbhabhirama, 1975b Koloseus, 1969 Yokoi, 2002
Hsieh, 1967 Labus, 1977 Arbhabhirama, 1975 Ferreira, 2002
Nakoryakov, 1978 Nakoryakov, 1978 Labus, 1977 Gradeck, 2006
Gajjar, 1983 Lawson, 1983 Ishigai, 1977 Khavari, 2009
Lawson, 1983 Rahman, 1991a Nakoryakov, 1978 Present work
Varella, 1992 Rahman, 1991b Lawson, 1983
Bowles, 1992 Gharangik, 1991 Azuma, 1984
Bohr, 1993 Khalifa, 1992 Vasista, 1989
Godwin, 1993 Varella, 1992 Stevens, 1992
Buyevich, 1993 Gajjar, 1984, Bowles, 1992 Liu, 1993
Rao, 1993 Bohr1993 Bohr, 1993
Higuera, 1993 Buyevich, 1993 Stevens, 1993
Blackford, 1996 Rao, 1998 Siwon, 1993
Murtuza, 1996 Higuera, 1994, 1997 Rao, 1994
Bloom, 1997 Blackford, 1996 Murtuza, 1996
Hansen, 1997 Bloom, 1997 Avedesian, 1996,2000
Bohr, 1998 Bohr, 1998 Ellegaard, 1996

Table 1.1: A compilation and classification of the literature on hydraulic jumps with strong bias towards the circular jump.
Note that this is only a representative list and not an exhaustive classification. Many references have both experimental
and numerical contributions and hence are listed more than once.
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Approximate Experiments Navier-Stokes simulations
Theory Numerical methods Laminar Turbulent
Putkaradaze, 1997 Cholemari, 1998 Bloom, 1997
Cholemari, 1998 Chang, 2001 Hansen, 1997
Hansen, 2001 Pacheco, 2003 Bohr, 1998
Chang, 2001 Bush, 2003 Ellegaard, 1998,1999
Bush, 2003 Watanabe, 2003 Cholemari, 1998,2005
Mikielewicz, 2003 Kluwick, 2009 Naraghi, 1999
Bush, 2003 Rojas, 2010 Sreenivas, 1999
Watanabe, 2003 Present work, 2010 Brechet, 1999
Mikielewicz, 2005 Moncada, 1999
Singha, 2005 Hansen, 2001
Ray, 2007 Chang, 2001
Kate, 2007b Rao, 2001
Kate, 2007c Pelzer, 2002
Rai, 2008 Silverstein, 2002
Kasimov, 2008 Bush, 2003
Thorpe, 2008 Ozar, 2003
Gumkowski, 2008 Aristoff, 2004
Kluwick, 2009 Mikielewicz, 2005
Kate, 2009 Singha, 2005
Dressaire, 2009 Gradeck, 2006
Mikielewicz, 2009 Bush, 2006
Bonn, 2009 Rolley, 2007
Rojas, 2010 Kate, 2007a,b,c
Pirat, 2010 Thorpe, 2008
Thiffeault, 2010 Gumkowski,
Present work, 2010 Kate, 2008,2009

Dressaire, Mikielewicz, Bonn, 2009
Pirat, Thiffeault, Shastry, 2010

Table 1.2: continued from table 1.1
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by singularities in the near-jump region and thus one has to be content with repre-

senting the jump as a mathematical discontinuity, which clearly it is not. The only

successful attempt in curing this has been in Watanabe et al. [2003] albeit under

the shallow-water approximation. A second disadvantage of the vertical averaged

models is that they are frequently derived not from an asymptotic procedure, but

from physical intuition. This procedure introduces an element of subjectivity and

thus it is not always obvious how one could improve such models. The higher-order

boundary layer analyses on the other hand suffer from the obvious disadvantage

that they are only asymptotically correct. This can lead to discrepancies when

results obtained from such analysis are compared to experiments. For instance in

Kluwick et al. [2009], Re−1/9 is a nominally small-parameter. If this quantity is

taken to be actually small, let’s say 0.1, this implies a Reynolds number of 109, a

value astronomically high and never possibly realized in experiments. Nothwith-

standing such drawbacks, higher-order boundary-layer methods have succeeded in

making some progress in obtaining an understanding of the flow structure for the

hydraulic jump. We classify the literature depending on the contribution it makes,

in table 1.1 and 1.2.. The first thing to be noticed in this table is the paucity

of Navier-Stokes simulations. In this thesis, we hope to take a first step towards

bridging this gap.

In the opening paragraph of the previous section, we had asked a series of

questions. In the light of the literature survey presented, it is useful to summarise

to what extent and how many of these questions are answered. These are presented

in the same order in which the questions were posed at the begining of this chapter.

• Separation is definitely not the cause of jump-formation. This is true for both

circular and planar geometries. In a circular geometry, this was hinted at in

the experiments of Chang et al. [2001]; Craik et al. [1981]. In simulations

we show conclusive evidence of this in Chapter 4. For a planar geometry,

while our simulations have not produced a jump without separation, we re-

fer to studies in the literature survey which have reported such jumps either

through simulations e.g. Chippada et al. [1994] or using approximate numer-

ical methods e.g. Higuera [1994].

• The physical mechanism of jump formation from a waves perspective is still

an open problem. There are only qualitative explanations and there is no
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realistic quantitative model which shows how non-linear steepening of waves

leads to the formation of a stationary jump. In this aspect, travelling jumps

are much better understood compared to their stationary counterpart. The

Froude number unity criterion works for circular jumps as well. In fact the

inviscid Froude criterion seems to be a robust definition, even in the presence

of viscosity as we find in our simulations. The impossibility of smooth transi-

tion from Fr > 1 to Fr < 1 is an experimental fact. Viscosity playes mutiple

roles in this transition. Firstly, it is the agent which can cause a supercritical

flow to become subcritical. Our near-jump analysis of Chapter 3 also shows

the importance of the viscous terms in the neighbourhood of the jump.

• The scaling relationship obtained by Bohr et al. [1993] seems to be the most

accurate till date. However, momentum flux provides a correction to it and

we discuss this in Chapter 5.

• There are not many qualitative differences between the CHJ and a PHJ.

However, there are plenty of quantitative differences and some of these are

summarised in Chapter 4. There has been no comprehensive study on com-

parisons between travelling and stationary jumps and thus this is an answered

question. The traditional explanation that the two are related by a Galilean

transformation works only for an inviscid flow and it is well-known that for

stationary jumps on thin-film flows viscosity is not negligible, at least in the

near-jump region. Additionally, a stationary jump can arise only on a flow

which is varying in the streamwise direction and this introduces difficulties

in relating the travelling jump to the stationary jump.

• Obtaining stationary jumps from purely inviscid equations is unlikely. There

is an extensive literature on dispersive shock waves (Hoefer & Ablowitz [2009])

which arise due to non-linear steepening being counterbalanced by dispersive

effects. However even for such dispersive waves, a small amount of viscosity is

needed in order to achieve stationary solutions (Genady et al. [2006]). There

are many shock capturing numerical schemes which can simulate stationary

jumps using purely inviscid equations. These however provide a very poor

approximation to the near-jump region.
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• This is a question that we take up in some level of detail in this thesis. In-

clusion of dispersive effects has not been reported in the vertical averaging

approach of studying hydraulic jumps. In Chapter 3, we derive the complete

vertical averaged equation without any assumptions and this includes disper-

sive terms. It is found that these terms increase the order of the equation.

We also show that at the lowest order, no term from the shallow-water equa-

tions is important in a neighbourhood of the jump. The inadequacy of the

shallow-water assumption is discussed in detail in Chapter 2 and 3.

• This is an unanswered question. The role of wall-vorticity is not clear. How-

ever this is not a necessary condition for jump formation. The interactive

boundary-layer analysis of Gajjar & Smith [1983] studies jumps occuring on

an undeveloped flow.

• The idea of how separation arises in these viscous thin-film flows has been

made clear in the works of Bowles & Smith [1992]; Kluwick et al. [2009].

The basic idea of self-induced separation is that a viscous layer near the wall

generates its own adverse-pressure gradient by a mechanism which depends on

the displacement of the layer itself, as a response to downstream conditions.

Understanding the physics of how this separation occurs requires a detailed

interactive boundary-layer analysis.

• The role of downstream boundary condition is something that we discuss in

detail in this thesis. Here we argue that downstream boundary conditions are

not an essential ingredient of jump formation. In fact on a horizontal plane,

a supercritical flow has to invariably become subcritical at some location

downstream due to viscous deceleration. We provide heuristic arguments

that this transition cannot happen smoothly, thus hinting at formation of a

jump. In this the downstream boundary condition has no role. However, the

downstream boundary condition does have a influence on the jump location,

its structure and the solution downstream of the jump.

• The role of the air-boundary layer and its influence on the jump is still largely

an open area of research. Till date there have been only two studies which

have looked at the air-boundary layer viz. Sreenivas et al. [1999] and Pirat

et al. [2010]. These studies however did not focus on the effect of the air



90 Introduction and Literature Review

boundary layer on the jump.

• It is understood now that the singularities in the vertical-averaged mod-

els mostly arise due to the self-similar assumption on the velocity profile

(Watanabe et al. [2003]). An improvement over this method for the BLSWE

is suggested. The drawbacks of vertical averaging are discussed further in

Chapter 2 of this thesis. We also discuss the validity of the vertical averaged

models in different regions of the jump.

• The role of surface-tension in gravity driven circular jumps is mostly well-

understood. The same cannot be said with equal confidence in case of polyg-

onal jumps and this continues to be an active and open area of research. In

chapter 6, we discuss the possibility of surface-tension driven jumps in the

absence of gravity. Understanding these jumps from a wave persepctive is

still an open problem.

• The flow-structure of the hydraulic jump is not very well-understood. Nu-

merical simulations of laminar standing jumps are also sparse in literature

and this contributes to the gaps in understanding.

In the following chapters, we will make an attempt to elucidate on some of

the above questions. This thesis is organised as follows - In Chapter 2, we study

weak hydraulic jumps under the shallow-water and boundary-layer approximation.

In Chapter 3, we study planar hydraulic jumps computationally and analytically.

Chapter 4 is a computational study of circular jumps. In Chapter 5, we study

the effect of momentum flux on the circular jump experimentally. Chapter 6 is

an analytical study of surface-tension driven jumps at very small length scales.

Chapter 7 explains an implementation of the Volume-Of-Fluid algorithm used to

simulate free-surface flows.



CHAPTER 2WEAK HYDRAULIC JUMPS: ASEMIANALYTICAL STUDY
Remarks:

A condensed version of this chapter has been published in Dasgupta & Govindara-

jan [2010].

2.1 Shallow-water assumption

Hydraulic jumps both standing and travelling have been traditionally studied un-

der the assumption of hydrostatic pressure, also known more popularly as the

shallow-water assumption. It is well known (see eg. [Stoker, 1992]) that assuming

hydrostatic pressure in an unsteady gravity-driven free-surface flow is equivalent to

assuming that the wavelength of any propagating surface wave is long compared to

a corresponding vertical scale (say the undisturbed depth of the fluid over which

the wave propagates). Correspondingly, in a steady free-surface flow, the hydro-

static pressure assumption is tantamount to assuming that the vertical acceleration

experienced by a fluid parcel as it moves from once place to another is negligible.

In other words, this is equivalent to neglecting the effects of streamline curvature.

From physical reasoning, it is clear that such an assumption which neglects the ef-

fects of streamline curvature is going to be bad, at least in the near vicinity of the

jump where streamlines abruptly curve upwards. The more abrupt the jump, the

worse the assumption. Despite this obvious limitation, many recent studies [Bonn

et al., 2009; Kasimov, 2008] continue to use the hydrostatic assumption, even near

the jump. There can be more than one reason attributed to this. As discussed in

the first chapter, inviscid theory treats a hydraulic jump as being analogous to a

gas-dynamic shock wave, the basis for this analogy being in the transformation of

the inviscid unsteady shallow-water equations into their gas dynamic counterpart.

This mathematical analogy holds good only under the shallow-water assumption,

thus providing a reason for its continued its usage. An additional reason is the

accompanying simplicity obtained by using the hydrostatic assumption. Without

91
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the hydrostatic-assumption, the height of the free-surface h, which is an unknown,

appears either in the boundary conditions or as a limit of integration in the integral

version of the global mass conservation equation, and nowhere else in the governing

system of equations. This can render the resulting system computationally very

unwieldy. The hydrostatic assumption introduces this unknown into the governing

equations, greatly simplifying the computational procedure. In this chapter we

will study standing hydraulic jumps using the shallow-water assumption. This will

thus restrict us to “weak-jumps” where the transition in height happens gradually

rather than abruptly with streamwise distance. To make the idea of a weak jump

more precise, we refer to figure 2.1.

H2

H1 H0

Xj

X

δ

Z

Figure 2.1: By definition, H0 ≡ (H1 + H2)/2. δ is a measure of the “width”
of the jump while H0 is a measure of the jump height. Thus for a weak jump,
ε ≡ δ/H0 ∼ O(1).

This chapter is organised as follows - we start by reviewing the well-known

inviscid, irrotational, shallow-water equations in planar and circular geometries

and their solutions. The inadequacy of these solutions and the inability to obtain

hydraulic-jump like solutions from them is used to motivate the inclusion of viscous

terms in these equations. This leads us to viscous shallow-water equations of the

boundary-layer type. We then discuss the traditional vertical averaging technique

used for these equations and point out deficiencies in the technique. There is

no immediate resemblance between the viscous and the inviscid solutions and we

study the relation between them. We also find a new analytical solution to the

vertically averaged viscous equation in a circular geometry. The main contribution

of this chapter then follows, in a new transformation that we propose to the viscous
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shallow-water equations. Analytical solutions to these transformed equations in the

limit of high and low Froude number are obtained. These transformed equations

are then numerically solved for both planar and circular geometries and hydraulic

jump-like transitions are obtained when the local Froude number is of the order

unity. Downstream of the jump, we report multiple solutions to the governing

equations The chapter concludes with a comparison of our solutions with those

obtained from vertically averaged models, experiments, other recent models and

numerical solutions available in literature.

2.2 Inviscid shallow-water equations

2.2.1 Planar

The one dimensional, steady, inviscid, shallow-water equations in a planar geometry

are integrated to obtain

u2

2
+ gh = C, (2.1)

uh = Q, (2.2)

where Q and C are constants of integration and physically correspond to energy per

unit mass and volume flow rate per unit transverse depth respectively. Elimating

u from the two equations, we obtain the cubic equation for height

2gh3 − 2Ch2 +Q2 = 0, (2.3)

Note that Q and C are positive constants. We are interested in only real roots of

the cubic and there are three distinct real roots if C > 2
3
g

2

3Q
2

3 . It is easy to see from

the form of the cubic that all three roots are not of the same sign. Additionally

since Q > 0 two roots are always positive, corresponding to actual solutions for

the heights, and one always negative. If we define Froude number as Fr =
Q

gh
3

2

,

then the height at which Froude becomes unity is given by hc = Q
2

3g
−2

3 . One can

easily show that one of the positive roots is subcritical (Fr < 1) and the other

supercritical (Fr > 1), see figure (2.2). The condition C < 2
3
g

2

3Q
2

3 is of no interest

since this corresponds to only one real root and that root is always negative. The
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Figure 2.2: Roots of the cubic equation (2.3) for Q = 1.0m2/s, C = 7.0m2/s2, g =
9.8m/s2. There are two constant height solutions for the same value of C and
Q. However, the equation predicts no transition between the two solutions. A
supercritical flow (Fr > 1) remains supercritical and subcritical flow (Fr < 1)
remains subcritical at all downstream distances. The dashed line in green is the
negative unphysical solution.

particular value C = 2
3
g

2

3Q
2

3 corresponds to a repeated root and to Fr = 1.

2.2.2 Circular

In a circular geometry, the counterpart of equation 2.1 are,

u2

2
+ gh = C, (2.4)

uhr = Q, (2.5)

where Q and C are constants of integration and physically correspond to energy per

unit mass and volume flow rate respectively. Elimating u from the two equations,

we obtain a cubic which can be solved to obtain

r =
Q

h
√

2(C − gh)
, (2.6)
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Figure 2.3: A plot of equation 2.6 for Q = 1.0m3/s,C = 1.0m2/s2 and g = 9.8m2/s.
At large radii, two heights are possible in analogy with the planar case, one with
Fr > 1 and another with Fr < 1. Note however that unlike the planar case, there
are no real solutions below a certain radius for any value of Q and C [Bohr et al.,
1993]

Note that unlike the solution of equation (2.3), here h depends on the coordinate

r. The solution of this equation [Bohr et al., 1993] is plotted in figure 2.3.

Again there are two possible solutions for film thickness at a given spatial

location, but no transition between the two is predicted. It is clear from figure

2.2 and 2.3 that while the inviscid shallow-water equations provide the basis for

treating hydraulic jumps as shocks, they do not explain why a hydraulic jump

should necessarily occur. Thus all that we may predict from inviscid shallow-water

theory is that if a jump were to be assumed at a given location, the Froude number

must go through unity there.

2.3 Viscous shallow-water equations

In order to explain a hydraulic jump, it has therefore traditionally been considered

important to include the effects of viscosity. In the typical range of experimental

parameters, it has been found [Watanabe et al., 2003] that the near-wall vorticity

diffuses across the entire film-thickness well upstream of the jump, so viscous effects
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are likely to influence the jump dynamics substantially. The study of viscous effects

dates back to Tani-Kurihara [Kurihara, 1946; Tani, 1949] who included a boundary-

layer type term in the shallow-water equations. These equations are called the

boundary-layer shallow-water equations referred to hereafter as BLSWE. They have

been studied extensively in literature although mostly through the procedure of

vertical-averaging [Bohr et al., 1993; Kasimov, 2008; Rao & Arakeri, 1998; Rao,

1994; Singha et al., 2005; Tani, 1949; Watanabe et al., 2003]. This procedure

while providing some useful predictions, gives a very unreal height profile near the

jump: In a circular geometry, it turns around to form a spiral and in a planar

geometry it just turns around. Before we delve into a discussion of the origin of

this unrealisitic behaviour, we start with a discussion of the BLSWE in planar and

circular geometries.

2.3.1 Planar

The BLSWE with the simplified boundary-conditions and the local and global

continuity equations in a planar geometry are respectively

uux + wuz = −1

ρ
gh′ + νuzz, (2.7)

uz|z=h(x) = 0, u|z=0 = w|z=0 = 0, p|z=0 = 0,

ux + wz = 0,

Q =

∫ h(x)

0

udz,

Here u and w are the respective velocity components in the coordinates x and z,

h′ ≡ dh/dx, ν is the kinematic viscosity, g is the acceleration due to gravity andQ is

the volume flow-rate per unit transverse depth (m2/s). The boundary conditions

are of a stress-free interface and no-slip, no-penetration at the wall. Note that

the boundary-condition of zero pressure at the interface has already been used to

replace the pressure gradient term in the x momentum equation.
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2.3.2 Circular

The BLSWE with the simplified boundary-conditions in a circular geometry is

uur + wuz = −1

ρ
gh′ + νuzz, (2.8)

uz|z=h(r) = 0, u|z=0 = w|z=0 = 0, p|z=0,

(ru)r + (rw)z = 0,

Q = 2πr

∫ h(r)

0

udz,

Here u and w are the respective velocity components in the coordinates r and

z, h′ ≡ dh/dr, Q is the volume flow-rate (m3/s) while all other parameters and

boundary-conditions remain the same as in the planar case.

It can be argued that equation (2.7) (and correspondingly equaton (2.8)) fol-

lows from Navier-Stokes equations from assuming that streamwise variations are

small, i.e., h′ << 1, and ∂/∂x << ∂/∂z. Consequently, the shear-stress bound-

ary condition appears in its simplified form and non-hydrostatic contributions to

pressure are neglected.

2.3.3 Derivation of the BLSWE from the Navier-Stokes equa-

tions

Equations (2.7) and (2.8) can also be derived from the corresponding Navier-Stokes

equations and the exact boundary conditions using a rational asymptotic proce-

dure. The scalings are not new and were first obtained in [Bowles & Smith, 1992].

We reproduce it here for completeness. It is sufficient to present it in a planar

geometry. We introduce non-dimensional variables as ũ = uH1

Q
, w̃ = wH1

Q
, h̃ = h

H1
,

p̃ = p
ρgH1

, x̃ = x
H1

and z̃ = z
H1

where Re = Q
ν

and Fr = Q
gH1.5

1

. Here H1 is the

depth of the flow at some location upstream and L can considered the “width”

of the jump (see figure 2.4). We drop the tilde over the nondimensional variables

to obtain the non-dimensional Navier-stokes equations with the exact boundary

conditions.
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L

H1

Figure 2.4: Schematic of a planar hydraulic jump where the flow is from left to
right. The film thickness is H1 at some upstream location. L can be thought of as
the length-scale of interaction [Bowles & Smith, 1992]. The near-wall vorticity has
diffused across the entire film in the location where the film-thickness is H1

uux + wuz = − 1

Fr
px +

1

Re
[uxx + uzz] (2.9)

uwx + wwz = − 1

Fr
pz −

1

Fr
+

1

Re
[wxx + wzz]

ux + wz = 0∫ 1

0

udz = 1

p|z=1 =
2Fr

Re

[
h2

x − (uz + wx)hx + wz

1 + h2
x

]

z=1[
2(ux − wz)hx + (uz + wx)(h

2
x − 1)

1 + h2
x

]

z=1

= 0

u = w = 0|z=0

We now assume that in the limit Re → ∞ and Fr ∼ O(1), the length L is of

O(Re) (this automatically restricts us to weak jumps). Thus the x-scale is O(Re)

and since the flow is fully developed z ∼ O(1), u ∼ O(1). Local continuity implies

w ∼ O( 1
Re

). We thus introduce new rescaled variables defined as : x̄ = x
Re

, z̄ = z,

ū = u, w̄ = w
1/Re

, h̄ = h, p̄ = p. It is now understood that as Re→ ∞, F r ∼ O(1),

all quantities with a bar are of O(1). With this transformation, we obtain from
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equation (2.9)

1

Re
ūūx̄ +

1

Re
w̄ūz̄ = − 1

FrRe
p̄x̄ +

1

Re

[
1

Re2
ūx̄x̄ + ūz̄z̄

]
(2.10)

1

Re2
ūw̄x̄ +

1

Re2
w̄w̄z̄ = − 1

Fr
p̄z̄ −

1

Fr
+

1

Re

[
1

Re3
w̄x̄x̄ +

1

Re
w̄z̄z̄

]

ūx̄ + w̄z̄ = 0∫ 1

0

ūdz̄ = 1

p̄|z̄=1 =
2Fr

Re





1

Re2
h̄2

x̄ − (ūz̄ +
1

Re2
w̄x̄)

1

Re
h̄x̄ +

1

Re
w̄z̄

1 +
1

Re2
h̄2

x̄





z̄=1



2

Re2
(ūx̄ − w̄z̄)h̄x̄ + (ūz̄ +

1

Re2
w̄x̄)(

1

Re2
h̄2

x̄ − 1)

1 +
1

Re2
h̄2

x̄





z̄=1

= 0

ū = v̄ = 0|z̄=0

Retaining only terms of O(1), we obtain the system

ūūx̄ + w̄ūz̄ = − 1

Fr
p̄x̄ + ūz̄z̄ (2.11)

p̄z̄ = −1

ūx̄ + w̄z̄ = 0∫ 1

0

ūdz̄ = 1

p̄|z̄=1 = 0

ūz = 0

ū = w̄ = 0|z̄=0

By integratintg the equation p̄z̄ = −1 and using the simplified boundary-

condition on pressure, one can obtain the hydrostatic pressure assumption. Us-

ing this we thus recover the system of equation (2.7) from (2.11). A similar set

of scalings can be followed to obtain the system of equation (2.8) from the corre-

sponding axisymmetric version of Navier-Stokes equations and the exact boundary

conditions.
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2.3.4 Vertical averaging of the BLSWE

The BLSWE (2.7) and (2.8) constitute a closed set of equations in the unknowns

u, w and h. There are three independent equations for three unknowns and hence

this system can be solved numerically. However, the traditional technique used in

literature [Bohr et al., 1993; Kasimov, 2008; Rao, 1994; Singha et al., 2005; Tani,

1949; Watanabe et al., 2003] has been to vertically average these equations to

obtain an evolution equation for the height-profile. The main contribution of this

chapter is a new transformation of the equations (2.7) and (2.8) into a form more

amenable to obtaining analytical and numerical solutions. Since we are going to

compare our results to those obtained from vertical averaging, we roughly outline

here the procedure used for deriving evolution equations using vertical averaging.

In the process, it will also become clear to the reader as to what the problems are

with the vertical averaging procedure. These problems are seldom if ever discussed

in the literature.

Closure problem and other inconsistencies

We take the closed system of equations (2.7) and integrate them vertically. In-

tegrating the local continuity equation from 0 to y and using the no-penetration

boundary condition, we obtain

w|z=h(x) = −
∫ z

0

uxdz (2.12)

Substituting the expression of w from (2.12) and integrating the momentum equa-

tion in (2.7) we obtain

∫ h(x)

0

uuxdz +

∫ h(x)

0

(−
∫ z

0

uxdz)uzdz = −g
∫ h(x)

0

h′dz + ν

∫ h(x)

0

uzzdz (2.13)

⇒
∫ h(x)

0

(u2)xdz − U(x)

∫ h(x)

0

uxdz = −ghh′ − νuz|z=0

(2.14)
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where U(x) stands for u(x, h(x)) and the no-slip boundary-condition has been used.

Using Leibniz rule for differentiation of an integral, this can be simplified to

d

dx

(
< u2 >

)
= −ghh′ − νuz|z=0 (2.15)

where < u2 >≡
∫ h(x)

0
u2dz. The global continuity equation is

< u >= Q (2.16)

We now have more unknowns than equations, unless we can relate < u2 > to h and

uz|z=0. To do this, and thus close the system, we must resort to modelling, which

can be done in different ways. The traditional approach to close the system is to

make a self-similarity assumption on the velocity profile i.e. to express u as

u = V (x)f ′ (η) . (2.17)

where η = z
h(x)

, f ′ ≡ df/dη where f is a non-dimensional streamfunction, and

V (x) has the dimensions of velocity. This assumption leads to the closure for the

system when one assumes a form for f [η]. It is common to assume a polynomial

form for f [η], parabolic being the usual choice because the three coefficients of the

parabolic form can be determined from the boundary-conditions and global mass-

conservation without needing any more assumptions or fitting parameters. The

qualitative nature of the solution of the evolution equation that is derived from

the self-similar mode of obtaining closure, does not however depend on whether we

choose a quadratic, a cubic or any higher-order polynomial [Watanabe et al., 2003].

These evolution equations generically predict unphysical height-profiles near the

jump irrespective of the order of the polynomial used to obtain closure. In a recent

attempt at improving this deficiency [Bonn et al., 2009; Watanabe et al., 2003]

have proposed a model which still uses vertical-averaging but does away with the

assumption of self-similarity. Instead it allows the “shape” of the velocity-profile to

evolve with streamwise distance. This model is an interesting one which gives useful

answers which agree reasonably well [Watanabe et al., 2003] with experiments.

However, this model also has drawbacks and we will discuss them when we compare

our results later in the chapter with those obtained from experiments and models.

We now show an inconsistency in the entire procedure of obtaining closure
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using a self-similar velocity profile. For ease, we stick to planar geometry and

equation (2.7). We remind the reader that a self-similarity assumption on the

velocity profile is not sufficient in itself for achieving closure and we also need

to assume a particlular form for f ′ (η) in equation (2.17). If however instead of

assuming a form for f ′ (η), we derive an equation for it from the governing equation

(2.7), we obtain (
1

Re

)
d3f

dη3
+

{(
df

dη

)2

− 1

Fr2

}
h′ = 0 (2.18)

where Re is as defined earlier and Fr2 = Q2/gh3. Here we have used a self-similar

assumption of the form in equation (2.17) where V (x) = Q
h(x)

. One can now easily

see the discrepancy in equation 2.18. While we had assumed f to be only a function

of η, equation 2.18 tells us that this assumption is inconsistent with the governing

equation as equation 2.18 has coefficients viz. h′ and Fr2 ≡ Q2/gh3 which are

functions of the streamwise coordinate x. This thus shows that the self-similar

assumption is inconsistent except under certain limits. In the limit of Fr → 0

and Fr → ∞ however, equation 2.18 becomes variable-separable and thus admits

a similarity solution. The high Froude number similarity solution was reported

earlier by Watson [1964]. He set gravity to zero in the BLSWE (2.7) and obtained

a closed form similarity solution, and the condition h′Re = π/
√

3 = 1.8137. Further

f ′ was expressed in terms of a Jacobian elliptic function. The above procedure also

shows that such a self-similar solution is to be expected in the limit of high Fr.

Thus the reader is reminded that although (2.17) is crucial for obtaining closure,

its not necessarily a good option. The drawbacks of this closure model will further

become apparent in the next chapter where we study strong jumps and examine

the consequences of this assumption. Presently, we still follow the self-similar

assumption on the velocity profile. Assuming a parabolic form for f ′ [η], we obtain

using the no-slip and zero-shear boundary conditions

u = U(x)
[
2η − η2

]
(2.19)

where U(x) is as defined in equation (2.14). Using global continuity, we find

U(x) =
3Q

2h(x)
(2.20)
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Figure 2.5: Solution of equation (2.21) for Q = 1m2/s, g = 9.8m/s2, ν = 1m2/s
and C = 0.6757. The curve ‘turns around’ when it reaches the critical height

hc = (6Q2/5g)
1

3 where Fr2 ≡ Q2/gh3 = 5/6

Substituting (2.19) in equation (2.15), we thus obtain our final evolution equation

dh

dx
=

15νQ

6Q2 − 5gh3
(2.21)

which can be integrated to obtain

x =
6Q2h− (5/4)gh4 − 15Qν

C
(2.22)

where C is the constant of integration. This solution was earlier obtained by [Singha

et al., 2005]. A similar vertical averaging procedure with a self-similar parabolic

velocity profile can be used to obtain an evolution equation in circular geometry.

dh

dr
=

5πν
Q
r2 − h

r − 10π2g
3Q2 r3h3

(2.23)

This equation was obtained and analysed in Tani [1949], Bohr et al. [1993] although
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Figure 2.6: Solution of equation (2.23) for Q = 33 x 10−6m3/s, ν = 14 x 10−6m2/s,
g = 9.8m/s2. The curve ‘turns around’ when it intersects the critical height curve

hc = (3Q2/10π2g)
1

3 r
2

3 . Unlike the planar case where hc is a constant, in the circular
case hc varies with radius.

no analytical solutions to it have been reported in literature. The analytical solu-

tion (2.22) and a numerical solution of equation (2.23) are plotted in figure 2.5 and

figure 2.6 respectively. In the planar case, the height is a mutivalued function of

distance and there are no solutions beyond a certain distance as the curve ‘turns

around’. In the circular case, the height profile spirals around a point where
dh

dr
is

of the form
0

0
. We label this point as the critical point of the system (Incidentally

notice that the origin is also a trivial critical point of the system). It is interest-

ing that equation (2.23) is unchanged under the transformation (r, h) −→ (−r, h)
implying that the solution in the positive h and negative r plane is a mirror image

of the solution in the positive h and positive r plane. Some care needs to be taken

in the numerical solution of equation (2.23). Firstly, note from figure 2.6, that the

spiral winds more and more tightly as we approach the critical point and we have a

very frequent divergence of its slope. We work around this numerical difficulty by

repeatedly exchanging the dependent and the independent variables. Thus where
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dh/dr is large, dr/dh is small and there we treat r as the independent and h as

the dependent variable and solve equation 2.23. The reverse procedure is followed

where dr/dh is large. Secondly, since all initial conditions spiral onto the critical

point, it is important to ensure accuracy by decreasing the step size as we approach

the critical point.

2.3.5 Viscous to inviscid transition of the vertically averaged

solution

While the solutions in figure 2.5 and figure 2.6 have been well-studied [Bohr et al.,

1993; Singha et al., 2005; Tani, 1949], the relation of these solutions to their inviscid

counterparts in figure 2.2 and 2.3, has never been discussed before to the best of our

knowledge and we discuss it briefly here. For understanding the viscous to inviscid

transition in the planar case, see figure 2.7. It is seen that every curve turns around

when it reaches the critical height hc (ie. the height where Froude becomes unity.)

Every curve has two arms, the lower arm corresponding to Fr2 > 5
6

while the

upper arm corresponds to Fr2 < 5
6
. As the viscosity is decreased, the x-location at

which the turning around occurs, goes to ∞ and thus we recover the two constant

height solutions of (2.2). Note however, that here the constant height solution will

correspond to Fr2 > 5
6

and Fr2 < 5
6

instead of Fr > 1 and Fr > 1 as in the

inviscid case. This is due to the parabolic velocity-profile assumption compared to

the inviscid case whereas the inviscid velocity profile is uniform.

Understanding of the viscous to inviscid transition in the circular case is more

involved. The invscid solution in the shallow-water case is a horizontal U-shaped

curve in figure 2.3 while the viscous solution is plotted in figure 2.6. To understand

the relation between these two solutions which look very different, we rewrite equa-

tion (2.23) in nondimensional form as

dh

dr
=

(
5π

Re0
)r − h

r

1 − (
5

6Fr2
0

)r2h3

, (2.24)

where r and h are dimensionless having been nondimensionalized by r0 and h0

respectively, characteristic radial and vertical scales at some upstream location.
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Figure 2.7: Plots of equation (2.22) for different values of viscosity ν. Q = 1,
g = 9.8 and C = 0.6757. The curve for ν = 0.01, turns around at a large value of
x not shown in the figure.

The initial Reynolds and Froude numbers are defined as Re0 = Qh0

r2
0
ν

and Fr2
0 =

Q2

4π2r2
0
gh3

0

. The critical point (as defined earlier) is located at

rc = 0.364Re
3

8

0Fr
1

4

0 , hc = 2.083Re
− 1

4

0 Fr
1

2

0 , (2.25)

Equation (2.24) is solved numerically for Fr0 = 2 and different values of Re0

and plotted in figure 2.8 and 2.9. With Re0 → ∞, the lower part of the spiral

“unrolls” and goes to ∞ giving rise to the inviscid lower arm (see inset of figure

2.8). The upper arm of figure 2.9 looks like the inviscid upper-arm and at first

sight it may seem from figure 2.9 that the upper-arm is qualitatively unaffected by

viscosity and just like the inviscid upper arm, it also extends to arbitrary radius

while asymptotically tending to a costant value. It was however argued by Bohr

et al. [1993] that such an asymptotic behaviour is not possible. This was verfied

numerically for different initial conditions and for every initial condition that we
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Figure 2.8: The rolling away of the critical point with Fr0 = 2, as Re0 → ∞. As
we approach the inviscid limit we recover the lower arm of the horizontal U-shaped
curve of figure 2.3 also shown in the inset.

tried, it was found that the upper arm drops into the negative h plane at a certain

radius as can be seen from the inset in figure 2.9. For many initial conditions, the

upper arm can decay extremely slowly and in one case tried, the upper arm contin-

ues upto a radius of 1010 and then sudenly drops down. This is consistent with the

argument of [Bohr et al., 1993] that for any given initial condition, equation (2.24)

has no solutions which extend upto infinite radius. As we increase the Reynolds

the radius at which the upper arm drops into the negative h plane, tends to ∞
thus recovering the inviscid solution. Also note that for a given initial condition,

no viscous spiral extends upto arbitrary small radius. This lack of solutions at

small radius is not a viscous effect but a carry-over from the corresponding invis-

cid solution shown in figure 2.3 where too for a given initial condition there are

no solutions at arbitrarily small radius. This completes our understanding of how

does the inviscid U-shaped curve arise from the spirals as we increase the Reynolds

number.

We conclude this section by presenting an analytical solution in the neighbour-
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Figure 2.9: The upper arm of the viscous spiral resembles the upper arm of the
inviscid solution, but unlike it cannot continue to infinity, as seen in the inset.

hood of the critical point. Scaling the height and radius by the coordinates of

the critical point hc and rc, translating our origin to that location, and linearising

equation (2.24) about the critical point values, we have

dh̄

dr̄
=

s− 2

3s+ 2
, (2.26)

with s ≡ h̄/r̄, r̄ = r/rc − 1 and h̄ = h/hc − 1. This may be solved to give

r̄ =
K√

3s2 + s+ 2
exp

{
− 3√

23
tan−1

[
1 + 6s√

23

]}
(2.27)

where K is the constant of integration. This is a modified logarithmic spiral, which

collapses very sharply into the critical point. The unphysical nature of the near-

jump behaviour like the slope of the height-profile diverging, the profile ‘turning-

around’, no solutions at arbitrary large streamwise distances etc. seems to be a

generic feature of vertically averaged models using the self-similar assumption to

obtain closure. This is partly due the fact that these equations have been derived
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with the restriction h′ << 1 and thus solutions where h′ → ∞ are in a domain

where the underlying governing equation itself is invalid. The other reason is the

self-similar assumption which leads to the dropping of higher-order derivatives in

the streamwise direction, which are quite large in the near-jump region even for

a weak-jump. Thus while vertical averaging itself is not an invalid mathematical

procedure, we know of no easy, unique or consistent way of obtaining closure which

does not suffer from the problems outlined above. To circumvent these problems,

we propose a transformation of the BLSWE in the next section. This transforma-

tion converts the BLSWE into a system which lends itself to analytical solutions in

different limits and make it more amenable to numerical treatment. Further, with-

out taking recourse to any modelling we are able to obtain jump-like transitions

from our solution of the BLSWE.

2.4 Transformation of the BLSWE

2.4.1 In a planar geometry

The basic idea here is to use the streamfunction to reduce the number of indepen-

dent variables in the equations (2.7) and (2.8). An additional benefit is that the

global mass-conservation equation becomes a very simple equation. We use incom-

pressibility to replace the velocity components with the streamfunction ψ and this

is then non-dimensionalised as

ψ = Qf [η, ζ ], η =
z

h(x)
, dζ =

dx

h(x)Re

so that u = Q
h
fη, w = Q

h
[ηh′fη−fζ ]. Here h′ ≡ dh

dx
. For convenience the independent

variable in the slope h′ of the interface is retained as the dimensional x, while ζ is
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used everywhere else. We then have the following

u =
Q

h
fη

w =
Q

h

[
ηh′fη −

fζ

Re

]

ux =
Q

h2

[
fηζ

Re
− h′fη − ηh′fηη

]

uz =
Q

h2
fηη

uzz =
Q

h3
fηηη

uux + wuz =
Q2

h3

[
fηfηζ

Re
− h′f 2

η − fζfηη

Re

]

Substituting these in equation (2.7) we thus obtain

fηηη − h′Re

[
1

Fr2
− f 2

η

]
= fηfηζ − fηηfζ (2.28)

f(0, ζ) = 0, fη(0, ζ) = 0, fηη(1, ζ) = 0. (2.29)

Here Re ≡ Q/ν and Fr2 ≡ Q2/gh3. Equations 2.28 is going to be our central

equation. At first glance equation (2.28) seems to have two unknowns viz. f and

h′. However, it should be remembered that apart from respecting the boundary

conditions (2.29), this equation must also satisfy the condition f(1, ζ) = 1, which

is the nondimensional form of global mass conservation. It will be seen that this

provides a constraint using which we may determine h′Re. Hereafter, we will

refer to these as the BLSWE and instead of the original equations 2.7 in primitive

variables. Equation 2.28 is the BLSWE written down in coordinates which lend it to

solution as successive ordinary differential equations in ζ and η and to simplification

at various limits. Firstly, notice that the Reynolds number, which is constant for a

given flow, merely causes a rescaling of x, and can be scaled out of equation 2.28.

Secondly, since the additional constraint of global mass balance must be satisfied,

h′Re is not a free parameter. In fact, given a Froude number, this quantity is

completely determined, since only select values of h′Re will satisfy f(1, ζ) = 1.

Thus, given a starting Froude number, equation 2.28 may be solved not only to

obtain the velocity profile at a given streamwise location, but to evolve the height

profile of the film downstream. Since we obtain local velocity profiles and slopes,
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we may march either downstream or upstream to get the height profile.

2.4.2 Analysis and numerical results - Planar Geometry

Let us now discuss the high and low Froude number limits of equation 2.28. For

Fr >> 1, the first term within the square bracket in equation 2.28 may be dropped.

We have seen that h′Re depends on the Froude number alone. With the Froude

number no longer present in the equation, h′Re in this limit is a constant. Setting

the right hand side of equation (2.28) to zero would reduce it to the similarity equa-

tion of [Watson, 1964]. Upon solving this and imposing the mass flux condition,

it is found that h′Re = 1.8138 (see Figure 2.11), as in the gravity-free solution of

Watson [1964]. Thus the height increases linearly at high Fr, qualitatively con-

sistent with experimental findings [Bonn et al., 2009; Singha et al., 2005], and the

Froude number Fr = Q/(g1/2h3/2) decreases as x−3/2 with the downstream dis-

tance. The decrease of Froude number is also intutively seen if we remember that

Fr ≡ Uav/
√
gh and that viscous dissipation causes Uav to come down and due to

global continuity h increases, thus causing Fr to come down monotonically. Thus

the solution inevitably takes us towards Fr = 1, where a jump is seen. At very

low Froude numbers on the other hand, the second term in the square bracket in

equation 2.28 is negligible compared to the first. Since there is no x-dependant pa-

rameter in the problem in this limit, the right hand side can be set to zero. Thus we

may obtain another self-similar solution in the form of a parabolic velocity profile,

since the equation reduces to

fηηη =
h′Re

Fr2
, h′Re = −3Fr2 Fr → 0. (2.30)

The expression for h′Re is obtained by integrating the first equation above in η

and using the boundary conditions. Thus the height shows a slight downstream

decrease at low Froude numbers.

The complete solution to equation (2.28) is now obtained at a given streamwise

location. The approach is based on the fact that the BLSWE is derived by neglect-

ing the non-hydrostatic pressure terms, which amounts to neglecting second and

higher-order derivatives in ζ and retaining only the first derivative. This means we

may treat the right hand side as a function of η alone, i.e., fηfηζ − fηηfζ ≡ φ(η),

since for example, fζζ being negligible implies that fζ = fζ(η). If φ(η) were known,
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then (2.28) would be just an inhomogeneous ordinary differential equation in η.

Since we do not know it apriori we obtain φ(η) iteratively. The solution procedure

uses three embedded iterative loops I1 to I3, and the outermost loop I3 is designed

to obtain φ(η), as discussed below. As a first approximation at the beginning of

the computation, we set φ to 0 at every η. The middle loop I2 is meant for arriving

at the correct interface slope h′. We assume an h′Re and begin at the innermost

loop I1. At ζ = 0, we specify the starting Froude number Fr0. We guess a slope

for the velocity profile, fηη at the wall, and integrate the equation up to the film

surface. By the Newton-Raphson technique, we iterate our guess for fηη(0, ζ) un-

til the stress-free boundary condition fηη(1, ζ) = 0 is satisfied at the film surface.

We next enter loop I2, where we obtain, again by Newton-Raphson technique, the

correct h′Re which ensures the satisfaction of global mass conservation. Loop I3 is

approached differently. We go to an incrementally downstream location ζ+∆ζ , use

the same right hand side φ, and repeat loops I1 and I2. With the two neighbouring

velocity profiles, we compute a new φ(η), which is usually a better approximation

than the previous guess. Repeating this procedure until the right-hand side con-

verges forms loop I3. We now have a local solution, as well as a knowledge of the

slope of the height, which enables us to proceed downstream or upstream as we

wish by performing a quadrature in ζ . The entire height profile, as well as the

velocity profiles at each location, may be obtained to excellent accuracy in a few

seconds on a small computer.

At high Froude numbers only one solution is obtained, which is denoted here

by P since it is of positive h′, as seen in Figure 2.10. The slope of the height goes

through a sudden increase in the neighborhood of Fr = 1, which is the critical

value for a jump in the inviscid case. Further, the unphysical turning around of

the height profile is absent. Downstream of the jump, in the regime of Fr < 0.71,

equation (2.28) admits two solutions. In addition to the P solution, we have an N

solution, labelled thus to denote that the slope of the height profile is negative in

this case. These two are shown in figure 2.11 in terms of h′Re versus the Froude

number.

We now examine which of these solutions will be manifested. Up to Fr = 0.71,

the P solution is the only possibility. It appears at first glance that the P solution

would be sufficient at lower Froude as well. However, at low Froude numbers, the

P solution constitutes a highly separated velocity profile. The separated region at
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Figure 2.10: Variation of film height h with downstream distance of the P solution
of equation 2.28. Notice the well-known [Bonn et al., 2009] linear increase in height
upstream of the jump. At x < 22, Fr > 1 and downstream, Fr < 1. hi is the film
height at the inlet.

a Froude number of 0.73 is seen in figure 2.12 to be quite large. As the Froude

is further decreased, i.e., as one moves downstream, the separated region becomes

larger and larger. The P solution is however not separated at Froude numbers

above 0.8, i.e., at the jump and upstream of it, indicating a connection between

the jump and flow separation. Profiles at various other Froude numbers are shown

in the same figure. Figure 2.12 also underlines that the assumption of self-similar

velocity profiles is only reasonable for Froude numbers above 1.5 or so. The N

solution on the other hand is seen to be unseparated. It is better and better

approximated by a parabolic profile as Fr decreases. Figure 2.13 shows the shear

stress at the wall of the P and N solutions as functions of the Froude number.

The rapidly increasing severity of separation in the P solution below Fr = 0.8 is

evident. Given their inflexional nature, profiles with large separation are likely to be

unstable. We therefore surmise that at some location downstream of the jump, the
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Figure 2.11: The slope of the film height as a function of the local Froude number.
Thick black line: P solution of equation (2.28), thick red dashes: N solution for
Fr < 0.71. The pink squares are the analytical solution (2.30) at low Fr. The line
in green with symbols is obtained from Higuera’s simulations, Figure 2 of [Higuera,
1994], for his case S = 2 where S is the inverse of Froude number. At high Fr,
h′Re ' 1.8138 in agreement with [Higuera, 1994]. The thin blue lines are obtained
by setting the right hand side of (2.28) to zero. The line in poison green and cyan
are obtained from the self-similar solutions of 2.21

P solution becomes untenable, and the flow switches to the N. This is in analogy

with the Falkner-Skan equations for adverse pressure-gradient boundary layers,

which displays, for adverse pressure gradient, two such solutions, one separated and

very unstable, and the other not, and much less unstable. For the present solutions,

a stability study is underway, and initial results indicate that the P solution is

extremely unstable at low Froude numbers. Given the highly non-parallel nature

of the flow, that study is cumbersome and will be presented separately.

The predictions above are consistent with experimental observations, where

the flow usually reattaches downstream [Higuera, 1994; Watanabe et al., 2003].

Moreover, downstream of the reattachment point, the slope of the height profile

is usually small and negative. The Froude number thus rises again downstream
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Figure 2.12: Velocity profiles for various Froude numbers, as listed. The curve for
Fr = 0.62 is taken from the N solution, and is practically parabolic. Note the
difference between the parabolic profile and the self-similar one at high Froude.

although slowly, as per the behaviour of solution N. We compare our results with

those obtained in the numerical simulations of [Higuera, 1994]. Shown in green and

blue respectively in Figure 2.11 and 2.13 are the slope of the height profile and the

wall-shear stresses that we derive from [Higuera, 1994], as functions of Fr. The

extreme right of the curve of Higuera corresponds to the most upstream location,

and x increases monotonically as one moves along the green/blue line from this

point. For the P solution, the height is a monotonically increasing function of x,

and so Fr = Q/(g1/2h3/2) decreases monotonically. Higuera’s curve with increasing

x thus traces the P solution from right to left. For the N solution on the other

hand, h′ < 0, so the simulated curve turns around and traces it from left to right

for increasing x.

Notice in Figure 2.11, that downstream of the jump i.e., at Fr < 1, the solution

of [Higuera, 1994] transitions from the P solution to the N solution. The agreement

with Higuera in the upstream and downstream regions is a check of our prediction

that the slope for a given solution depends on the Froude number alone. It also
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Figure 2.13: Wall-normal derivative of streamwise velocity at the wall, fηη(0, ζ),
as a function of local Froude number. Solid black line: P solution. Red dashes: N
solution. The vertical line at Fr = 1 is provided to guide the eye. It is seen that
the P solution flow separates downstream for Fr < 1. Fr is inversely related to x
and hence the separated region is downstream. The line in blue with symbols is
extracted from [Higuera, 1994], Figure 2, case S = 2.

supports our argument that away from the immediate neighborhood of the jump,

the slope may be obtained locally. There is a sudden rise in the slope of the height

profile near Fr = 1 in the numerical results too, but the quantitative behaviour is

different. The switching from the N to the P solution, and the detailed behaviour

in the region of this switching cannot be captured by the BLSWE. The local solu-

tion of the BLSWE thus fails in the immediate vicinity of the jump, whereas the

numerical procedure of [Higuera, 1994] is able to go through, presumably because

of numerically introduced effective higher-order derivatives which are barred in the

BLSWE. The question now is whether the complete physics in the immediate vicin-

ity of even a weak jump is contained in the shallow water theory. The present work

indicates a negative answer, but does not constitute a proof, since it is possible

that more solutions of the BLSWE exist. In the next chapter it is argued from the
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Figure 2.14: Comparison of the P and the N solution with the height profile ob-
tained from Navier-Stokes simulations. Note that the waves occuring downstream
of the jump cannot be predicted by a shallow-water theory [Benjamin & Lighthill,
1954]

complete equations that shallow-water theory is untenable in this region. In fact it

turns out that in a narrrow vicinity of Fr = 1, gravity and inertia are unimportant

and the dominant terms all arise from the vertical momentum equation. The di-

vergence of the N solution as it reaches Fr ∼ 0.7 in Figure 2.11 is consistent with

the singularity in the downstream boundary condition of [Higuera, 1994; Watanabe

et al., 2003], where the local Froude number is around unity. Note that both the

analytical and the numerical solution reach a Froude number between 0.7 and 0.8

at the most downstream location, where the height rapidly decreases, and its slope

appears to diverge in the negative direction. To our knowledge, this is the first

time the existence of multiple solutions downstream of the jump is reported, along

with its consequences, including the finding that a self-similar parabolic profile is

a good assumption at very low Froude numbers.
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Figure 2.15: Comparison of velocity profiles obtained from the planar BLSWE with
those obtained from Navier-Stokes simulations. The simulations are explained in
greater detail in later chapters and are characterized by the inlet Reynolds Rei

and inlet Froude Fri numbers. The velocity profile is obtained from a simulation
with Rei = 125 and Fri = 6 and corresponds to a location where the local Froude
Fr2 ≡ Q2/gh3 = 3.067. The BLSWE velocity profile is obtained from a location
where Fr = 3.06 and this corrresponds to the P solution. Note that the profiles
almost lie on top of each other confirming that far upstream of the jump, the
BLSWE is a good approximation to the full Navier-Stokes equations.
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Figure 2.16: Simulation parameters, Rei = 125 and Fri = 6. The streamwise
location corresponds to a local Froude Fr2 ≡ Q2/gh3 = 1.305. The BLSWE ve-
locity profile corresponds to a location where Fr = 3.06. This profile corrresponds
to the P solution. Notice that the difference between the simulation profile and
the BLSWE profile grows larger as one approaches the jump. This highlights the
inadequacy of the BLSWE as one approaches the jump.

To estimate how much the right hand side of equation 2.28 affects the answers,

a solution with the right hand side set to zero is shown in the same figure. Except

for minor differences in the vicinity of Fr = 1, we find good agreement. Note that

since h′Re and Fr vary with x, a neglect of the right hand side does not imply

that the solution is self-similar. Thus, although we have no need to take recourse

to it, the solution upstream and downstream of the jump may be obtained to good

approximation by a homogeneous ordinary differential equation. In figure 2.14, the

height profile of the P solution is compared to a profile obtained from Navier-Stokes

simulations. These simulations are described in a later chapter in great detail and

it is seen that upstream of the jump, the P solution is a good representation.

Downstream of the jump, we often find undulations which incidentally cannot be
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Figure 2.17: Simulation parameters, Rei = 125 and Fri = 6. The streamwise
location corresponds to a local Froude Fr2 ≡ Q2/gh3 = 0.716 which is down-
stream of the jump. The BLSWE velocity profile corresponds to a location where
Fr = 0.72. Notice that the P profile has a much larger reverse velocities when
compared to simulations. In the simulations the profile would re-attach somewhere
dowsntream whereas the P solution of the BLSWE does not smoothly transition
to the N solution which has an attached profile.

described by the shallow-water equations (Benjamin & Lighthill [1954]). In figure

2.15, 2.16 and 2.17, we present comparisons of the velocity profiles obtained from

the BLSWE to those obtained from Navier-Stokes simulations. One can notice

from these figures that as the jump is approached the BLSWE solution becomes

inadequate.

We saw that although the BLSWE is a partial differential equation, it is in

effect a parametric ordinary differential equation, providing local solutions for a

given Fr. Since the solution for a given Froude number is completely specified,

this means in particular that we do not need boundary conditions in the streamwise

direction. Now, it is well-known that downstream conditions can affect the location
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of the jump and other behaviour upstream, so we must discuss how this may affect

present predictions. In most experiments, an obstacle of a certain height H is

placed at some downstream location L, which determines the maximum Froude

number possible there as Frm = Q/(g1/2H3/2), since the height of the fluid interface

there must be at least H . In simulations too, [Higuera, 1994] sees an effect of

the prescribed downstream condition. If one could make the low Froude number

assumption everywhere downstream of the jump, and we impose Frj = 1 at the

jump location xj , we would have, from equation (2.30)

L− xj '
Q5/3g−1/3ν−1

12
(Fr

−8/3
L − 1), (2.31)

where FrL ≤ Frm. Since the velocity profile is parabolic in the low Froude number

limit, (2.31) is unsurprisingly just the scaling of [Bonn et al., 2009; Singha et al.,

2005]. If the obstacle height H is large, (2.31) would demand a long distance

between xj and L, so the jump may be pushed upstream if L is inadequate. When

L is long enough and H is not too intrusive, we expect the present predictions to

hold, i.e., the downstream conditions not to have a significant effect. In this case, if

the downstream solution involves a sharp turning around, the N solution predicts

an FrL ∼ 0.7.

2.4.3 In a circular geometry

In a circular geometry, following a similar transformation for equation (2.8) and

non-dimensionalising the streamfunction as

ψ =
Q

2π
f [η, ζ ], η =

z

h(r)
, dζ =

dr

h(r)

so that u = Q
2πrh

fη, w = Q
2πrh

[ηh′fη − fζ ]. Here h′ ≡ dh
dr

. For convenience the

independent variable in the slope h′ of the interface is retained as the dimensional
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r, while ζ is used everywhere else. We then have the following

u =
Q

2πrh
fη

w =
Q

2πrh
[ηh′fη − fζ]

ur =
Q

2πrh

[
−fη

r
− h′fη

h
+
fηζ

h
− ηh′

h
fηη

]

uz =
Q

2πrh2
fηη

uzz =
Q

2πrh3
fηηη

uur + wuz =
−Q2

4π2r2h3

[
h

r
f 2

η + h′f 2
η + fζfηη − fηfηζ

]

Substituting these in equation (2.8) we thus obtain

fηηη − h′Re

[
1

Fr2
− f 2

η

]
+
hRe

r
f 2

η = Re(fηfηζ − fηηfζ) (2.32)

f(0, ζ) = 0, fη(0, ζ) = 0, fηη(1, ζ) = 0. (2.33)

Note that here Re ≡ Q
2πrν

and Fr2 ≡ Q2

4π2r2gh3 . Equation 2.32 also is constrained by

the global mass condition f(1, ζ) = 1

2.4.4 Analysis and numerical results - Circular geometry

There is an additional parameter now, namely the radial location for a given Froude

number. We fix the upstream Froude number as 100 and examine the solution

for different upstream radii, scaled by the height there. The solutions for the

slope of the interface, and the wall shear stress are shown in figures 2.19 and 2.18

respectively. The N solution for the slope h′ is not shown since, given that Fr is

small and r is large, it looks very much like the planar N solution. The overall

behaviour of the P solution too is qualitatively the same as the planar case. Some

non-monotonic behaviour is possible for the P solution in the circular case when

the starting radius is small. This is evident when the Froude number is large, where

Re(h′ + h/r) = 1.8, so at r = h/(1.8Re) we must have h′ = 0, i.e., a minimum

in the height. Upstream of this radial location the height is a decreasing function

of the radius. For small Froude numbers and large radii ie. downstream of the
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jump, equation 2.32 also admits a similarity solution like its planar counterpart

viz. fηηη = h′Re/Fr2. Using the boundary conditions 2.33 and the globas mass-

conservation f(1, ζ) = 1, this reduces to h′Re = −3Fr2 analogous to the planar

case. A crude prediction of the jump location can now be made by integrating this

downstream solution. If the height at the location of the jump rj is hj , the height

at a certain downstream location re is controlled and is he, then we obtain by the

criterion that Fr = 1 at rj that hj = Q
2
3 g

−1
3

4
1
3 π

2
3 r

2
3
j

. Using this we have

h′Re = −3Fr2

⇒ dh

dr
=

−3νQ

2πrgh3

⇒
∫ he

hj

h3dh =
−1.5νQ

πg

∫ re

rj

dr

r

⇒ 6νQ

πg
ln

(
rj

re

)
+

(
Q

8

3 g
−4

3

4
4

3π
8

3

)

r
−8

3

j = h4
e (2.34)

Equation 2.34 can be used for obtaining crude estimate of the jump radius knowing

the imposed downstream conditions. Figure 2.18 and 2.19 contains comparisons of

the slopes and wall-shear for the circular and planar (2D) geometries. As seen from

figure 2.18, separation occurs for a lower value of Fr in the circular case compared

to the planar geometry. Also as seen from figure 2.19, the maximum value of h′Re

is greater in the planar case than in the circular case, so in general the planar case

produces slightly steeper jumps.

2.5 Comparison with results from self-similar pro-

files, Pohlhausen profiles and Experiments

It is instructive to compare predictions obtained from the vertically averaged equa-

tions with the self-similar assumptions to the present, more realistic, ones. We

return to equation 2.21 and rewrite it as

dh

dx
=

15/Re

6 − 5/Fr2
(2.35)
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Figure 2.18: The shear stress at the wall in circular geometry. Flow separation
is slightly delayed as compared to the planar case.The legend indicates the initial
radial location at a Froude number of 100.

Comparing equation 2.35 with equation (2.28), in the limit of high Fr, we observe

that equation 2.35 gives h′Re = 5/2 whereas the planar BLSWE (2.28) predicts a

value of 1.813. Thus both approaches predict a linear height profile far upstream,

with different slopes. This is of course due to the fact that equation 2.35 uses a

parabolic velocity profile upstream whereas we have seen earlier that the self-similar

solution upstream is not parabolic. Similarly equation (2.24) for the axisymmetric

case is rewritten as
dh

dr
=

5
2Re

− h
r

1 − 5
6Fr2

, (2.36)

which gives Re(h′ + h/r) = 5/2 for high Fr. This quantity is again 1.813 in the

circular BLSWE (2.32). In the other limit of low Froude number and large radius,

both equations give h′Re = −3Fr2, similar to the planar case of equation 2.30. In

a region of low Froude number and large radius, moreover, a parabolic profile is a

very good assumption. Note that the limiting case corresponds to the N solution
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Figure 2.19: The slope of the film height as a function of the local Froude number
in the circular case. The legend indicates the initial radial location at a Froude
number of 100.

whereas in our numerical procedure we are able to obtain a P solution as well for

quite small Froude numbers. However, in a real flow, the Froude number may never

become too small, since as one proceeds well downstream of a jump, the Froude

number increases again. Far downstream, we have seen that both the spiral solution

and the present one will give qualitatively the same behaviour: of a sudden and

sharp decrease in height at some radial location.

In figure (2.20) the solution of the circular BLSWE (2.32) is compared to the

experimental observations of [Craik et al., 1981]. The solution from the vertical

averaging procedure is shown as well. The initial condition for both equations was

obtained from the experimental data in the figure. The solid lines in black and red

are our P and N solution respectively. The shape of the jump is reasonably close

to the experimentally observed one, so the present solution does better than the

spiral in this region. Downstream, our N solution does a good job of matching the

experimental profile but unlike in the experimental profile, no smooth transition

between the P and N solution is achieved. In addition, since we cannot predict
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Figure 2.20: Comparison of the P and N solutions of equation (2.32) with the
experiments of [Craik et al., 1981] and the vertically averaged solution of [Bohr
et al., 1993; Tani, 1949]. The experimental data extracted from Craik is for the
case Q = 18 ml/s obtained with dyed water as the working fluid. The line in green
is the vertically averaged solution obtained from equation (2.36).

where the transition should occur, we have chosen a location which matches well

with the experiment. Note that the N solution in figure 8 has a very small negative

slope. We note that the same experimental data of [Craik et al., 1981] was compared

by [Bowles & Smith, 1992] to their theory. That comparison focussed on the precise

shape of the jump itself with the jump height as input parameters. The present

study on the other hand focusses on the regions away from the jump. In the next

chapter, we will have the occasion to look at the near jump region.

We have mentioned that [Bonn et al., 2009; Watanabe et al., 2003] assume the

velocity profiles to be cubic polynomials in η with streamwise varying coefficients.

Due to this assumption, the solution obtained does not directly satisfy the govern-

ing equations, but only their moments [Watanabe et al., 2003]. While the averaged

equations, admit cubic profiles with variable coefficients, we will show below that
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the governing equations themselves do not admit a cubic term in its solution. Writ-

ing the streamfunction in the BLSWE as a power series in η whose coefficients are

functions of ζ , as

f [η, ζ ] =
∞∑

j=0

aj(ζ)η
j,

substituting into the BLSWE (2.28), and equating coefficient of each power of η,

we have:

a0 = a1 = 0

a3 =
h′Re

6Fr2
, a4 = 0

The remaining coefficients may be obtained from the recursion relation

n(n− 1)(n− 2)an =
n−3∑

p=2

pap[(n− p− 1)
(
a′n−p−1 − an−p−1h

′Re
)
−

(p+ 1)a′n−p−2]

All an for n ≥ 5 may be written in terms of the hitherto undetermined coefficient

a2, and h′Re/Fr2. The global mass balance may now be used to obtain a2. Note

that since a4 = 0, the BLSWE does not admit a cubic-term in the velocity profile.

2.6 Conclusion

In this chapter, we have pointed out deficiencies in the technique of vertical av-

eraging alongwith the origin of the unrealistic behaviour in the near-jump region.

We have then cast the BLSWE as a parametric ordinary differential equation at a

given streamwise location, and a novel solution method is used to obtain jump-like

transitions. The only parameters are the local Froude number Fr and a product

h′Re of the interface slope and the Reynolds number. The second parameter is

completely dependent on the first and may be obtained by imposing global conti-

nuity. This enables us to obtain the velocity profile at a given Froude number, and

having the obtained the interface slope, march either downstream or upstream to

obtain the height profile for a weak hydraulic jump. The jump is shown to occur at

Fr ∼ 1 even in the viscous case. Downstream of the jump, for Fr < 0.71 two solu-
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tions are obtained and we show evidence from numerical simulations of [Higuera,

1994] to support our surmise that there is a switch from one solution to the other

at a Froude number below 1. Instability of the separated profile is suggested as

a reason for this switch. The exact nature of the switch, and the behaviour in

its vicinity is beyond the reach of the BLSWE. We also compare our results with

experiments and find reasonably good agreement. It is also seen that our solution

improves over the vertically averaged model. By comparing the velocity profiles

obtained from the BLSWE far upstream, near and far downstream of the jump, to

those obtained from Navier-Stokes computations, we support out hypothesis that

the BLSWE might be inadequate even for a weak-jump in the near jump region.



CHAPTER 3COMPUTATIONAL AND ANALYTICALRESULTS ON THE PHJ
3.1 Introduction

In the chapter 2, we discussed the regions upstream and downstream of the jump.

It was also discussed that in the near jump region, the vertically averaged BLSWE

gives unphysical results. A significant improvement of the solution in the near-jump

region was obtained by Watanabe et al. [2003] and Bonn et al. [2009]. The main

difference compared to previous studies was the relaxation of the self-similarity

assumption, which led to realistic jump-like transitions. For practical purposes,

this model is often sufficient, although it assumes pressure to be hydrostatic. The

validity of this assumption in the near-jump region is one of the questions we

examine later. It is thus seen that there is no simplified approach that can handle

the near-jump region. One way to understand this region would be through direct

numerical simulations. However, despite this being an active area of experimental

and theoretical research, there is an acute paucity of full Navier-Stokes simulations

of laminar standing hydraulic jumps, especially so in a planar geometry. The

reason, as we believe and discuss below, is the treacherous nature of the downstream

boundary conditions. In planar geometry, simulations of turbulent jumps exist

which have relevance for civil engineering (see. e.g. [Rahman et al., 1991a] and the

RANS simulations of Chippada et al. [1994]). Yokoi & Xiao [1999] reported laminar

simulations for circular jumps. Their main focus was to study the transition from

the Type-I to Type-II jumps, and the role of surface-tension and non-hydrostatic

effects in causing this transition. Simulations of the circular jump have also been

reported by Ferreira et al. [2002] where the focus of the work was to validate the

capabilities of a code using the hydraulic jump as a benchmark problem. The

latter is the first 3D Navier-Stokes simulation of the circular hydraulic jump (also

see Khavari et al. [2009]). The complete absence, to all appearances, of simulations

of laminar planar standing jumps is a gap we aim to bridge in this chapter.

We show that the jump in a long enough domain is not very sensitive to the

129
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length of the domain. If an obstacle is placed at the outer boundary, the jump

is stronger and is pushed upstream. The viscous simulations agree with inviscid

shallow water theory on two points. (i) It is found that a local Froude number

Fr = 1 is a reliable criterion for locating the jump in a viscous flow too. (ii) The

Rayleigh shock criterion provides a reasonable estimate of the post-jump height.

We find that the strength of the jump, measured in terms of the slope of the

height profile, varies inversely with the Reynolds number and inlet Froude number.

The laminar planar hydraulic jump is found to be rather gentle. However, non-

hydrostatic effects of pressure are large in the jump and undular regions.

We then derive a general depth-averaged equation for the evolution of the height

profile. The process transforms the Navier-Stokes equations into a new equation

which contains the film-thickness as an independent variable. This equation con-

tains as subsets many well-known equations eg. the KdV equation, the KDB

equation [Johnson, 1972] etc. Expectedly it also contains as subsets the vertically

integrated BLSWE and also the previously derived vertically averaged equations

of Singha et al. [2005]. A theoretical study of the near jump region is carried out

using this equation. The validity of the assumption of hydrostatic pressure has

been discussed in the circular hydraulic jump literature [Yokoi & Xiao, 1999]. As-

suming pressure to be hydrostatic is equivalent to neglecting vertical accelerations

experienced by a fluid parcel as it follows a streamline. Thus it is expected that the

neglect of streamline curvature is not justified near the jump. This has often been

remarked on for travelling jumps (see e.g. Genady et al. [2006]). In the standing

jump literature, dispersive effects have been included in the interactive boundary-

layer analysis e.g. Bowles & Smith [1992], Higuera [1994]. These studies focus on

the structure of the flow in the neighbourhood of the jump and Higuera [1994] gives

a description of the leading edge of the separated bubble, among other things etc.

However, the dominant balance of terms which dictate the height-profile in the near

jump region has not beeen studied earlier. Studies which focus on this region e.g.

[Bonn et al., 2009; Watanabe et al., 2003], have done so under the shallow-water

approximation. It is shown here that the shallow-water equations predict, with

fair accuracy, the upstream region and the far downstream region of the flow, but

are inadequate in the near-jump region of even the weakest of hydraulic jumps.

Assuming that the jump occurs over a narrow width, we derive using our complete

depth-averaged equation, the simplest equation which can describe the jump re-
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gion at the lowest order. It is shown that none of the terms in the shallow water

equation appears at the lower order in the neighborhood of the jump. We instead

obtain a balance between dispersive and viscous terms both arising from the ver-

tical momentum equation. In the limit of weak jumps no simplification is possible

and one has to solve the full Navier-Stokes equations. Finally, a subset of this

equation is used to model the undular region seen immediately behind the jump.

3.2 The geometrical model and the simulations

3.2.1 Numerical Method

Numerical simulations of planar hydraulic jumps are performed using an open

source code, GERRIS [Popinet, 2010]. Gerris is a Navier-Stokes solver augmented

with the Volume of Fluid algorithm for two phase flows [Popinet, 2003, 2009]. We

describe briefly the algorithm it employs. A second-order accurate staggered time

discretisation has been used for the velocity, volume-fraction/ density and pressure

fields. Using a time-splitting projection method the discretized equations can be

written as [Popinet, 2003]:

ρn+ 1

2

[
u?−un

∆t
+ un+ 1

2

· ∇un+ 1

2

]
=

∇ ·
[
µn+ 1

2

(Dn + D?)
]

+ (σκδsn)n+ 1

2

, (3.1)

c
n+1

2

−c
n−

1
2

∆t
+ ∇ · (cnun) = 0, (3.2)

un+1 = u? − ∆t
ρ

n+ 1
2

∇pn+ 1

2

, (3.3)

∇ · un+1 = 0. (3.4)

Here, u is the velocity field, p is the pressure field, D is the deformation rate tensor

and c is the void-fraction field, being defined as the ratio of the volume of fluid

in a computational cell to the volume of the cell itself. By definition, c is zero for

the gas, unity for the liquid and takes a value between 0 and 1 at the interface.

Equation 3.1 is the discretized Navier–Stokes equation with the terms on the left-

hand side representing temporal and convective terms and the right hand terms

are descretized viscous forces and surface tension. In the projection scheme used,

the pressure terms are not included in the momentum equation but are used for
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correcting the velocity field (see equation (3.3)) such that the resultant velocity field

is solenoidal (Equation 3.4). Equation (3.2) is the advection equation for the void-

fraction field. The subscripts indicate the time step at which the variables have been

evaluated. The subscript ∗ indicates the auxillary time step. Convective terms are

evaluated at the fractional time-step (n+ 1/2) using the Godunov procedure [Bell

et al., 1989]. Using equation (3.3) and the incompressibility condition (equation

(3.4)), the Poisson equation governing the pressure field can be written as

∇ ·
(

∆t

ρn+ 1

2

∇pn+ 1

2

)
= ∇ · u?. (3.5)

The Poisson equation (3.5) for the pressure and the discretized momentum con-

servation equation (3.1) are solved efficiently using a quad/ octree-based multigrid

solver with an underlying linear solver [Popinet, 2003]. The viscous terms are

discretized using a second–order accurate unconditionally stable Crank–Nicholson

scheme. The velocity, pressure and void-fraction are all collocated at the center of

the computational finite-volume cell. The velocity and pressure fields are decou-

pled using an approximate projection method for the spatial discretization of the

pressure correction equation and the associated divergence of the auxiliary veloc-

ity [Popinet, 2003]. The volume fraction field is advected using an operator-split

algorithm and the velocity field obtained above [Li, 1995]. The volume flux for

advection is computed geometrically to avoid numerical diffusion. The liquid-gas

interface is reconstructed at each time step and the interface normal is computed

using a mixed-Youngs-Centered (MY C) method [Aulisa et al., 2007]. The surface

tension force (σκδsn)n+ 1

2

is calculated using a balanced-force surface tension cal-

culation [Francois et al., 2006]. A second-order accurate estimate of the curvature

is obtained using the Height-Function technique [Popinet, 2009]. Details of the

implementation are available in Popinet [2003, 2009]. The quad/oct tree mesh in

Gerris allows efficient mesh refinement and adaptation procedure. We use adaptive

mesh refinement in our simulations by defining the vorticity and the gradient of

the void-fraction variable as the cost function [Popinet, 2009].
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Figure 3.1: A pictorial representation of the computational domain. Fluid enters
the domain through the a part of the domain labelled S1 and exits through S4.
Note the obstacle of height Ho placed well downstream of the jump. The obstacle
is useful for obtaining steeper jumps, but we can obtain jumps without obstacles
too. The utility of the ‘pit’ downstream of the jump is discussed in the text.

Table 3.1: Boundary conditions for computational domain in figure 3.1
Side on velocity on pressure

S1 free-slip, no penetration except for inlet jet Neumann condition
S2 No-slip, no penetration Neumann condition
S3 Free-slip, no penetration Neumann condition
S4 Neumann Outlet condition, Dirichlet
S5 Free-slip, no penetration Neumann condition
S6 Free-slip, no penetration Neumann condition

3.2.2 Computational Domain and Boundary Conditions

Figure 3.1 shows the computational domain. The hashed sides represent walls

where a no-penetration condition has been imposed. The boundary conditions are

given in Table 1. In most of our simulations, we place a thin rectangular obstacle

just ahead of the outflow boundary, although this is not strictly necessary. The

effect of the obstacle on the free surface morphology is discussed later. Pressure is

generally prescribed at the outflow boundary where for velocity a Neumann bound-

ary condition is used. In cases involving gravitational acceleration and two-phase

flow, the imposition of a constant pressure field at the exit or even a constant hy-
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drostatic field leads to fictitious upstream flow of the liquid. For example, in this

flow, it might have seemed natural to truncate the domain at S3′, and prescribe

a classical outflow boundary condition there. Such a prescription, however, led to

spurious reflections from the outer boundary. Thus to avoid imposing an artificial

condition on S3′, we introduce a “pit” ( see figure 3.1) and impose the classical

outflow boundary condition (Dirichlet in pressure and Neumann for the velocity

field) along the horizontal boundary S4. The introduction of this boundary con-

dition makes the simulations much more reliable, eliminates many cases of severe

wave-breaking and other convergence issues, and most important, is able to give

grid independent results. The dependence on the outer boundary of the location of

the jump and the shape of the height profile is also minimised if the outer boundary

is placed far enough. A very long computational domain ending in a pit is thus

advocated for such simulations.

The simulations reported here have been performed without surface-tension.

For the simulations shown, the height Ho of the obstacle is fixed at twice that

of the film thickness H at the inlet. The other dimensional parameters in the

problem are the average velocity Uav at the inlet, the length L from the inlet to the

obstacle, kinematic viscosities of the inlet fluid and the ambient fluid, νw and νa

respectively, and their respectives densities ρw and ρa. The non-dimensional ratios

that characterize the flow behavior are the Reynolds number Re, which is constant

across the flow, the inlet Froude number Fri, the domain length L∗ = L/H , Ho/H ,

νa/νw and ρa/ρw. The Reynolds and inlet Froude numbers are defined as Re ≡
UavH/ν and Fri = Uav/

√
gH. In the simulations that are presented here, we fix

νa/νw = 10 and ρa/ρw = 0.001, to be representative of a water-air system, while

varying Re, Fri and the non-dimensional domain length L∗. The initial condition

for all these simulations comprise of a layer of pre-wetting fluid upstream of the

obstacle. As the simulation is started, the fluid layer, due to its initial velocity,

flows over the obstacle and into the pit. An example of the very early stages of a

simulation is shown in figure 3.2.

3.3 Results from simulations

Table 3.2 summarises the Navier-Stokes simulations that have been performed.

These are unsteady simulations which have been allowed to proceed long enough
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Figure 3.2: Very early stages of a simulation with L∗ = 290, F ri = 6, Re = 125.
The fluid due to its initial velocity topples over the obstacle and flows into the
“pit”.

L∗ = 90 L∗ = 150 L∗ = 215 L∗ = 230 L∗ = 290 L∗ = 300
Fri Re Fri Re Fri Re Fri Re Fri Re Fri Re

4 125 4 62.5 4 31.25 6 62.5 6 125 6 125
5 62.5 4 62.5 6 31.25 6 125 - - - -
6 31.25 6 31.25 6 62.5 - - - - - -
6 62.5 6 50 6 125 - - - - - -
6 125 6 56.25 10 12.5 - - - - - -
6 187.5 6 56.25 15 31.25 - - - - - -
8 31.25 6 68.75 20 12.5 - - - - - -
10 31.25 6 100 - - - - - - - -
- - 6 125 - - - - - - - -
- - 6 187.5 - - - - - - - -
- - 6 212.5 - - - - - - - -
- - 6 250 - - - - - - - -
- - 8 12.5 - - - - - - - -
- - 8 187.5 - - - - - - - -
- - 15 31.25 - - - - - - - -
- - 20 12.5 - - - - - - - -

Table 3.2: Simulation parameters - for meanings of symbols refer to figure 3.1. All
simulations have been performed fixing the height of the fluid film at the inlet at
H = 0.25 and the height of the obstacle as Ho = 0.5.
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to ensure that steady state is attained. The simulations have been conducted for

at least 10L/Uav, i.e., ten times the time it takes for an average fluid particle to

traverse the entire domain. Given that we work with long domains, we see that the

time scale for achieving steady state is thousands of times slower than the typical

flow time scale T = H/Uav. At very low Reynolds numbers, less than 12.5, no

steady state was attained anywhere, since wave-breaking occurred very close to

the inlet and interfered with the downstream, so these cases are not listed in the

table. We present only a few of the simulations. The main purpose in exploring a

much larger parameter set was to ensure that the trends we report are general.

We begin by estimating how much of the flow is dictated by the outer boundary

and the obstacle. It is well-known that the outer boundary can have a very strong

effect on the jump, but it is not clear whether one can ever obtain jumps whose

location and shape do not depend on the outer boundary conditions. In experi-

ments, a downstream height is almost always imposed, and in circular jumps, an

increase in the height of the obstacle can cause a dramatic loss of axisymmetry

leading to polygon formation (see e.g. Ellegaard et al. [1998]). In planar geome-

tries too, the traditional wisdom is that the solution depends on the downstream

boundary conditions. To evaluate this effect, we examine separately, (i) the length

of the domain, and (ii) the obstacle. We show in figure 3.3 the effect of domain

size. Beyond a certain length of domain, the downstream boundary is seen to

have only a small effect on the location of the jump. Note that the jump moves

slightly upstream as the dowstream boundary is moved away. The reason for this

is unclear at this time. The change in the detailed shape of the undular region

is far more significant. In the rest of the computations presented, care has been

taken to use a long enough domain, where we believe the flow, especially the jump

location and strength, is not qualitatively dependent on the outer boundary. For

shorter domains than those we show here, the outer boundary does have a much

stronger effect, and in some cases determines whether a jump may be achieved or

not. In fact in most planar jump experiments a tall enough obstacle is crucial for

jump formation. A working definition of a jump Froude number would be useful to

locate the jump. In inviscid shallow water theory, the flow speed being greater or

less than the small-amplitude, long wave speed
√
gh, provides a natural distinction

between super and subcritical flows. In the presence of viscosity however, it is not

immediately obvious where this distinction may be made [Watanabe et al., 2003].
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Figure 3.3: Effect of change of domain size - All simulations have Fri = 6 and
Re = 125. The jump moves upstream because of the increase in domain size.

In figure 3.4, a typical height profile from our simulations is shown. The height

where the Froude number, defined as Fr = Uav/
√
gh, is unity is shown by the

dashed line. It is seen that Fr = 1 can be used as a reliable criterion for locating

the jump. Moreover, the Froude number does not go through unity again anywhere

downstream (except at the outlet, where the fluid falls into the pit). This is true of

all our simulations. This working definition can be refined, if required, by a precise

knowledge of the velocity profile.

The time evolution of formation of a jump is shown in figure 3.5. It is seen

that the initially uniform height gradually develops a steep front which propagates

upstream. The undulations too grow stronger with time. This is reminiscient of the

process of nonlinear steepening of the fore of an upstream propagating wave leading

to shock-formation. There is virtually no difference between the height profiles at

t/T = 1500 and t/T = 2000, indicating that a steady state has been attained for



138 Computational and analytical results on the PHJ

0 10 20 30
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

h(
x)

Figure 3.4: The Froude number reaches unity where the height profile intersects
the dashed line. The parameters are Re = 187.5, F ri = 6 and L∗ = 150.

this configuration in approximately ten times the time it takes for a typical fluid

parcel to travel from inlet to exit. Figure 3.5 is thus a numerical solution of the

initial-value problem of jump formation.

We would now like to examine the effect of the non-dimensional parameters Re

and Fr on the jump. We will be making comparisons with the results of shallow

water theory. It is useful therefore to first review what is expected from that theory.

This will help in understanding where shallow water theory works, and where and

why it fails.

3.3.1 Comparisons of the simulations with shallow water theory

The shallow water theory assumes that we may neglect dispersive effects, i.e.,

consider pressure to be hydrostatic. This is considered to be a good approximation

in regions of small slope. In such regions, moreover, the viscous shallow-water

equation may be reduced to its boundary layer form. In a transformed coordinate

system defined by η = y/h(x) and dζ = dx/[h(x)Re], the boundary layer shallow
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Figure 3.5: Time evolution of jump formation - The simulation is started with an
uniform thin film and the downstream obstacle forces an upstream travelling wave-
like structure whose front steepens as it moves upstream, as seen in the picture.
The legend gives the value of t/T for each plot. The simulation parameters are:
Re = 125, F ri = 6, L∗ = 290.

water equation (BLSWE) is [Dasgupta & Govindarajan, 2010]

fηηη − h′Re

[
1

Fr2
− f 2

η

]
= fηfηζ − fηηfζ (3.6)

f(0, ζ) = fη(0, ζ) = 0, fηη(1, ζ) = 0. (3.7)

where the streamfunction is nondimensionalised as ψ = Qf [η, ζ ]. Note that the

dimensional variable x is retained in the definition of the slope, i.e., h′ ≡ dh/dx.

Without resorting to vertical averaging or any further assumption, the above equa-

tion was solved as a parametric ordinary differential equation earlier in Chapter 2.

Two observations about the BLSWE will prove useful for the present comparisons.

(i) The Reynolds number merely rescales the streamwise coordinate x and other-

wise plays no role. (ii) When combined with the global continuity equation, (3.6)
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Figure 3.6: The effect of inlet profile on the upstream slope. The profile with
h′Re = 2.149 has an uniform velocity at the inlet while the other profile has a
parabolic profile at the inlet which gives the same mass flow-rate. L∗ = 215, Re =
125 and Fri = 6.

provides a unique value of the slope h′ for a given Froude and Reynolds number.

Global continuity in fact appears as an additional boundary condition f(1, ζ) = 1,

to satisfy which, we must use the correct h′Re. For Fr >> 1 and Fr << 1, the

BLSWE admits similarity solutions. Far upstream of the jump, i.e., at high Froude

numbers, the first term in the square bracket in (3.6) may be neglected, so there

is no x-dependence in the problem. The right hand side therefore vanishes, giving

a similarity solution for the velocity profile. It follows then that far upstream of

the jump, the slope must be a constant. We obtain h′ = 1.81838Re for Fr >> 1,

which, as it should be, is the value of the slope in the gravity-free solution of Wat-

son [1964]. A solution of the BLSWE shows that the slope remains close to this

value for most of the upstream region, i.e., from Fr = ∞ to Fr ∼ 2 [Dasgupta

& Govindarajan, 2010]. This solution, which originates far upstream and proceeds

downstream to very low Froude numbers, is denoted as the P solution, since it

has a positive slope. In figure 3.6 we show the slope in the upstream region ob-
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tained from numerical solutions. It is seen that the height increases practically

linearly up to a height h ∼ 2hi, where Fr ∼ 2. This value will depend on other

flow conditions, as we shall see. Secondly, an effect of the inlet velocity profile

is noticed. It is no surprise that viscosity has a greater effect on a uniform inlet

velocity profile, giving a larger h′. A parabolic inlet profile on the other hand has

an h′Re closer to the BLSWE value of 1.8. This is to be expected, since a parabolic

profile resembles the similarity velocity profile more closely than a uniform profile

does. Incidentally, the similarity profile is not parabolic, as discussed in Dasgupta

& Govindarajan [2010]. The downstream displacement of the jump is due to the

higher inlet momentum-flux in the case of the parabolic profile. Since there is no

qualitative difference between the two, unless otherwise specified, we have used a

uniform inlet profile in the results presented.

It is appropriate at this point to return to the question of domain size, and

ask how long a domain should be for a jump to occur spontaneously, i.e. with-

out the help of an obstacle or other edge conditions. Both the BLSWE and the

simulations show that upstream of the jump the height increases monotonically,

so the Froude number decreases monotonically, with a slope of 1.8/Re or larger.

In fact in turbulent flow, the slope is often an order of magnitude larger (see e.g.

Bonn et al. [2009]). Thus a flow whose inlet Froude number is greater than 1 must,

if the domain is long enough, inevitably reach a Froude number of unity. Most

experimental planar channels are too short for this. For example, in figure 1 of

Chanson [2009], both the flows would require channels hundreds of metres long for

the Froude number to reach unity, even with a turbulent profile. The channels are

however no longer than 20m. An imposed downstream height, or an obstacle, thus

serves to bring the jump forward, sometimes by a large amount.

A comparison of a typical simulation with the P solution of equation 3.6 is

shown in figure 3.7. While there is a fair comparison ahead of the jump, the P

solution is seen to always overpredict the location of the jump and always produce

a jump that is much weaker than that obtained in the simulations. This might be

explained by the fact that our simulated jumps are made steeper and brought up-

stream by the obstacle placed downstream. There is however another discrepancy

in the near-jump region, in that the P solution consists of an unrealistically large

separated region. Worse, the extent of this separated region in the wall-normal

direction keeps increasing downstream (see figure 2.12 in Chapter 2). A stability
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Figure 3.7: Comparison of the simulated height profile with the P solution from
shallow water theory. The parameters for the Navier-Stokes solution are Re =
125, F ri = 6, L∗ = 215. The inlet profile is specified as parabolic.

analysis of these velocity profiles is being conducted (Ramadurgam [2010]), and

shows that such a profile is extremely unstable. Since the P solution is the only

one we have found which satisfies the BLSWE in this region, we may conjecture

that the shallow water theory is inadequate in describing this region. Note that the

slope is in fact small everywhere in this flow including in the jump region. (The

x-coordinate has been scaled by the Reynolds number in this plot). In spite of

this, the shallow water theory does not work well. This argument may be put on

a firmer footing, as seen in the next section.

Downstream, in addition to the P solution, we expect equation (3.6) to support

another solution, which will reduce to the similarity solution mentioned earlier for

Fr << 1. In that limit, we have, from equation (3.6), that h′Re = −3Fr2 for

similarity. In line with our expectations, for Fr < 0.82, we obtain another solution

for the BLSWE, which is labelled as the N solution due to its negative slope. A

simulation where we obtained a sizeable extent of a non-undular height profile
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Figure 3.8: Comparison of the N solution, and the downstream similarity solution
with the downstream profile obtained from simulations. The N solution has been
obtained by using a starting Froude number of 0.421 at x = 40.347. The dashed
line is obtained by integrating h′Re = −3Fr2, choosing a constant of integration
h = 1.503 to match the simulations at x = 40.347. For this simulation L∗ = 215.

downstream is chosen in figure 3.8 for comparison with the N solution. It is clear

that while the P and N solution work well upstream and downstream of the jump,

the near-jump region is poorly described, and the undular region is not predicted at

all. Also, there is no transition prescribed from the P to the N solution, which lends

support to our contention that near the jump, equation 3.6 is a poor approximation

to the full Navier-Stokes.

The BLSWE is able to provide a qualitative assessment of the effect of the

Reynolds and the Froude numbers on the jump location. The Reynolds number

in the BLSWE merely rescales the x-distance, i.e., a higher Reynolds number only

means a proportionately smaller slope. Similar reasoning shows also that a higher

initial Froude number results in a delayed jump. Since the constant slope solution

is valid for most of the upstream region, we may write a scaling for the jump

location xj using h′ ∼ 1.8/Re, and prescribing the jump Froude number as unity,
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as
xj

hi

=
Re

1.8

[
Fr

2/3
i − 1

]
(3.8)

where the subscript i refers to the initial location x = 0. In figures 3.9 and 3.10, the

effect of varying the Reynolds number and the inlet Froude number can be seen.

Both Reynolds and Froude number, as they increase, have the effect of pushing

the jump downstream. These effects could also have been anticipated on physical

grounds as follows. Consider two flows with identical initial conditions but different

viscosities. The higher viscosity flow would be decelerated more and hence produce

a thicker film for the same mass flow rate. A thicker film implies a smaller Froude

number, so this fluid would need less streamwise distance to reach Froude unity,

and thence to jump, as seen in figure 3.9. The flows in figure 3.10 are prescribed

to differ only in the numerical value of gravity, so they have the same initial film

height and other conditions. Due to this, the flow with the smaller gravity, i.e., of

higher initial Froude number, will take a greater streamwise distance to reach its

critical height. Intuitively too, since the jump is fundamentally driven by gravity,

it is to be expected that a smaller gravity will result in a delayed and weaker jump.

The experiments of Avedesian & Zhao [2000] confirmed this for a circular jump.

It is also seen from figure 3.9 that decreasing the inlet Reynolds number makes

the jump steeper. The BLSWE would predict a steeper jump as well, due to the

rescaling of x, but the scaling in the full equations are different. Changing the

Reynolds number also has an effect on the downstream undulations. Note that

the BLSWE predicts that the inlet Froude number should have no effect on the

steepness of the jump. This is contrary to what is observed in figure 3.10. We will

return to these points later in the paper.

In a few of the low Re and low Fri simulations, we observed some local wave-

breaking despite waiting for 3000T . For example, in figure 3.9 the profile in the

region of unsteadiness is shown in an average sense by a dashed line. In the small

streamwise neighbourhood indicated, a wave would grow and break periodically,

but the rest of the flow remains time-invariant.

Armed with these results, we are able to form a physical picture of this flow. We

may divide the flow into four regions: (i) region P, well upstream of the jump, where

the Froude number is greater than 1 and the slope of the height profile is positive.

(ii) Region J in the immediate vicinity of the jump, where the Froude number goes

through a value of unity. (iii) The undular region U, which could either comprise the
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Figure 3.9: The effect of change of Reynolds number. Undulations appear down-
tream of the jump as the Reynolds number increases. The slope in the near-jump
region becomes larger with decreasing Reynolds number. The broken line repre-
sents some local unsteadiness in the form of wave-breaking. The jump however has
reached a steady state. L∗ = 150 for these simulations.

entire post-jump flow or a portion of it. (iv) Region N of slowly decreasing height

far downstream. The schematic shown in figure 3.11 represents the qualitative

features observed in a simulation of a planar jump. Dividing this flow into various

regions was attempted earlier, e.g., by Watson [1964], but the focus was on the

upstream portion, and the regions different from those laid out here. A systematic

attempt at providing equations governing the dominant physics of every region

has not been made, to our knowledge. We attempt this in the next section. We

have shown that the first and last regions, namely P and N respectively, where the

slope of the height profile is small, are fairly accurately described by shallow water

theory. To show the relative magnitudes of the non-hydrostatic and hydrostatic

contributions to pressure in the J and U regions, we present figure 3.12. Though

the jump is weak, the streamwise variation of dynamic pressure is larger than

the streamwise variation of hydrostatic pressure, except in the region upstream

of the jump. Since it is the gradient of streamwise pressure that appears in the
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Figure 3.10: Effect of change of Froude number. Note that the jump becomes
steeper as inlet Froude decreases. The dashed line indicates some wave-breaking
and unsteadiness downstream of the jump but this was checked to have no influence
on the location or structure of the jump upstream. For these simulations L∗ = 90.

x-momentum equation, the static and dynamic contributions to this quantity are

plotted in the figure rather than the pressure itself.

We have hitherto discussed on the slope h′ of the height profile, but not the

change in total height that is achievable across the jump. For this, it is simplest

to consider the inviscid problem first.

3.3.2 The change in height and the Rayleigh shock criterion

In inviscid flow the jump may be treated as a discontinuity, and Rayleigh [1908,

1914] had shown using shallow-water theory that if mass and momentum flux are

continuous across the jump, then energy flux cannot be continuous as well. The

change in energy having to be negative due to dissipation, the height must increase.

The ratio of the final to the initial height (refer to the discontinuity in figure 3.13),
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Figure 3.11: A schematic of the different regions of the jump. Far upstream and far
downstream, we have two solutions labelled P andN . The depth-averaged equation
3.10, is used to study the near-jump region. The downstream undulations (when
they are present) are modelled by a viscous KdV equation.

is predicted to be
H2

H1
=

−1 +
√

1 + 8Fr2
1

2
. (3.9)

Given that the height at a given location is related to the Froude number by a

power of −2/3, the above criterion may be used to express the downstream Froude

number as just a function of that upstream, and this relationship is shown in figure

3.14. The presumption that both upstream and downstream heights are constant is

not meaningful in a viscous case. In spite of this, equation (3.9) is still frequently

used [Bohr et al., 1993; Bonn et al., 2009; Singha et al., 2005] and hence it is

worthwhile to examine whether it is representative of our full simulations. There

is of course some subjectivity in what we define as Fr1. From figure 3.15, where

the downstream variation of Froude number for two different Reynolds numbers

is shown, we see that the P solution is followed upto a certain Froude number,

where the flow deviates from BLSWE, and near-jump behaviour sets in. We term
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Figure 3.12: The gradients of dynamic pressure is larger than the gradient of static
pressure in the vicinity of the jump. The inset shows the height profile from which
the pressure data has been extracted. For this simulation Re = 125, F ri = 6 and
L∗ = 215.

Figure 3.13: The jump was modelled as a discontinuity by Rayleigh [1914]. Using
inviscid shallow-water theory he derived the relation (3.9) between the upstream
and downstream conditions.
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Figure 3.14: The relationship of downstream Froude number to that upstream
according to this shock criterion.

this Froude number as Fr1. We notice that Fr1 is greater for a lower Reynolds

number. A heuristic explanation for this may be given as follows: as the Froude

number decreases towards unity, the combined intertial and gravity terms from

the BLSWE become smaller. Viscous terms can match this small term at a larger

Froude when the Reynolds number is smaller. Thus, it follows from Rayleigh’s

criterion that a smaller Reynolds number should produce a taller jump. Since the

Rayleigh criterion assumes that momentum flux is constant between points 1 and

2, we must relate points which are as close to each other as possible on either side of

the jump. Fr2 is therefore chosen to be that of the location just downstream of the

large change in height. Figure 3.16 shows the height profiles of the cases discussed

in figure 3.15, along with the predictions by Rayleigh’s criterion. In figure 3.17, we

show the strongest jump we have been able to obtain, with the slope in the near

jump region being approximately h′ ∼ 1.1917. The predictions may be said to be

reasonable, given the grossness of the assumptions made, including the fact that

for a wide jump, the constancy of momentum flux may be called into question. It

can be checked that when a momentum reduction is permitted between points 1

and 2, the height ratio decreases.
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Figure 3.15: Variation of Froude number with streamwise location for Re = 62.5
(solid line) and Re = 125 (long dashes). The inlet Froude number is 6 in both
cases and L∗ = 215. Shown by the symbols for comparison is the result from the
P solution, without any fitting parameters.

In effect thus, a very modest jump is predicted in a planar flow. In other studies

of laminar jumps too, we have been able to find only modest jumps. For example,

the experimentally obtained jumps of Binnie & Orkney [1955] do not exceed an

H2/H1 of 2.02, and in the computations of Chippada et al. [1994], the highest value

of this quantity is around 4.78.

We however define the strength of the jump in terms of the slope h′. By control-

ling downstream conditions, we may make this quantity large, even while H2/H1 is

modest. We return to our discussion of this quantity in the near-jump region. Tak-

ing the pressure to be hydrostatic, as done in the BLSWE, and therefore in most

hydraulic jump studies, was seen not to be reasonable in the jump neighbourhood,

and most often in the post-jump flow as well. Although it has been known for a

long time that streamline curvature should be important in the near-jump region,

the failure of shallow water theory to predict even the weakest of jumps has not

been discussed. Hitherto, we have thus considered a vastly simplified theory, and
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Figure 3.16: The height profiles for figure 3.15, with the corresponding Rayleigh
shock predictions. H1 in both the profiles is chosen to be that point in figure 3.15
where the curve local Froude number departs from the P solution. Note that the
height-profile with Re = 62.5 has not yet reached steady state. However, this
does not affect our qualitative conclusions here because as time progresses, the
maximum height downstream will increase thus increasing the average height. For
relatively steep jumps, Rayleigh’s criterion underpredicts H2. For these simulations
L∗ = 215.

we would like to generalise it to include the neglected effects. This is easiest done

by depth-averaging.

3.4 The depth-averaged Navier-Stokes equation

To gain some insight into regions J and U, we derive the depth averaged Navier-

Stokes equation. Such an equation describes the downstream evolution of height.

The vertical averaging procedure has hitherto been employed [Bohr et al., 1993;

Kasimov, 2008; Singha et al., 2005; Tani, 1949] on approximations of the Navier-

Stokes equations, e.g., the BLSWE. The procedure for the complete Navier-Stokes

equation is more involved. We first employ the transformation described in the
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Figure 3.17: Rayleigh shock predictions for a weak jump and a moderately strong
jump. The dashed lines in red are the places where the local Froude number goes
through unity. For the simulation with Rei = 12.5, L∗ = 150 while for the second
simulation L∗ = 215. Note that the second simulation has a parabolic inlet profile.

context of equation 3.6, this time on the two-dimensional Navier-Stokes equations.

We then follow the approach outlined by Hsieh [1967], who worked with a much

simpler equation by making several approximations including the arbitrary neglect

of several terms. We however make no assumptions. In particular we use the

complete nonlinear free-surface boundary conditions whereas all earlier workers

made a significant simplification by using linearised free surface conditions. We

arrive at equation 3.10, which is the most general height evolution equation valid

for any two-dimensional film flow. The derivation of equation 3.10 is lengthy and

we provide it at the end of this chapter.

I + G + VBB︸ ︷︷ ︸
BLSWE

+D + Dζ + B + Bζ + V + Vζ = 0 (3.10)
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The expressions for the operators are available at the end of the chapter. I stands

for the inertial terms from the x-momentum equation, G is the gravity term, VBB

are the viscous boundary terms included in the BLSWE, D + Dζ stands for disper-

sive terms from the vertical momentum equation, B + Bζ are the terms evaluated at

the boundaries and V + Vζ represents viscous terms not included in the BLSWE.

All terms with a subscript ζ , contain a ζ derivative in the velocity profile, i.e.,

where the departure from similarity appears explicitly whereas those without this

subscript contain only η derivatives. The first three terms of the above equation

are just the BLSWE integrated across the film thickness. The vertical momen-

tum equation contributes many additional terms, including the dispersive effects

D + Dζ from the non-hydrostatic portion of the pressure. As discussed, these ef-

fects are usually neglected in equations of height evolution for the hydraulic jump

[Bonn et al., 2009; Watanabe et al., 2003]. Expectedly, the well-known first order

ordinary differential equations of Bohr et al. [1993]; Singha et al. [2005]; Tani [1949]

are subsets of this equation. The equation also contains as its subset the Korteweig

de Vreis (KdV) equation.

Transforming the momentum equations into a height evolution equation has

the following advantages. First, vertical averaging brings the unknown indepen-

dent variable h from the boundary-condition into the governing equation of motion.

This is a considerable simplification in some situations. Additionally, pressure is

eliminated from the equations, which is helpful in prescribing boundary conditions.

Despite its apparent utility, verticaly averaging is not without pitfalls. The prin-

cipal drawback is the closure problem that arises as a result. While the original

Navier-Stokes equations are closed, equation (3.10) is not, and thus requires mod-

elling of the velocity profiles so as to be solved.

A numerical solution of equation (3.10) is not attempted because it can be

harder than solving the Navier-Stokes equations in their usual form, which anyway

has already been done. Also it cannot yield any extra information. The objective

here is to use the equation to extract the lowest order physics in the J and U

regions.
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3.4.1 The near-jump region J

We begin by noting that in the neighborhood of the jump, the sum of the inertial

and gravity terms in the shallow water equation is small. A solution of the BLSWE

shows that when Fr = 0.78 we in fact have I +G = 0. In the neighborhood where

this sum is small, it is not reasonable to neglect other terms in comparison. In other

words, to balance the viscous term in the BLSWE, there must be other effects that

become O(1) relative to this term in this vicinity. This brings us to the conclusion

that even for the weakest of jumps, the BLSWE is not sufficient to describe the

neighborhood of Fr = 0.78. In fact, for steep jumps, i.e., if h′ >> 1, we can go

further to say that no term from the BLSWE is important in a low order balance

in the jump neighborhood. It is the dispersive and viscous effects coming from

the y-momentum equation that form the dominant balance here. The following

discussion demonstrates this.

We non-dimensionalise h and x in equation (3.10) by a characteristic height hj

of the jump, but for ease of writing, continue with the same symbols. We analyse

it in the near-jump region using the WKB ansatz

h = eS(x) ≡ exp

[ ∞∑

l=0

Sl(x)ε
l−1

]
, (3.11)

where ε is a small parameter related to the width of the jump. A similar expression

may be written for the streamfunction, except that the variation in η must be

included. To account for the difference in scales, and to allow f to change sign, we

define

f = g(η) exp

[ ∞∑

l=0

Rl(εη, ζ)ε
l−1

]
. (3.12)

Substituting the above ansatz into equation 3.10, we see that the largest terms

on the left hand side of the equation are O(ε−3). The largest terms on the right

hand side are of order Re−1ε−4. These may or may not be of the same order as

the largest effects on the left hand side. If they are, we have ε ∼ Re−1, or in other

words, an extremely strong jump. Since the planar jump is most often not strong

at all, the more realistic limit is ε >> O(R−1). Upon collecting terms of order ε−3

and performing some algebra, we see that only terms containing ζ-derivatives of
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the velocity profile from among the dispersive terms survive. We thus have

S ′
0(x)

h

∫ 1

0

2η2(g′2 − gg′′)R2
0ζ exp

[
2R0(εη, 0)ε−1

]
dη = 0. (3.13)

The above equation contains only terms from the lowest order subset of Dζ . Since

the velocity profile must be modelled in this formulation, this equation merely gives

us a condition which the profiles must obey, and is needs some kind of modelling to

solve. At the next order in 1/ε, we must again make a choice, either ε ∼ Re−1/2, or

is much larger than this order. In the first case, we have a balance between a low-

order subset of D + Dζ and a low-oder subset of V + Vζ . The choice that viscous

terms are even smaller would result in an even smaller subset. Our simulations

suggest that the latter choice is better.

To establish our main point in this subsection, we do not need to solve equation

(3.13) and its higher-order counterparts. We only need to observe that none of the

terms appearing at the lowest orders in the J region of a steep jump appears in

the shallow water equation. In fact the lowest order equations arise primarily

from the vertical momentum equation, which is consistent with a region of high

streamline curvature. This means that the shallow water equation is not relevant in

the near-jump region, except at higher orders, and except in the form of boundary

conditions at either end in x. The importance of the latter effect can be very

large, however. The necessity to match the lowest order solutions to the P solution

of the BLSWE at low x and to the N solution (often via a U region) at high x,

means that gravity plays an important role in deciding not only where the jump

begins, but also the total change in height. The next equation in this hierarchy

too contains no shallow water term. As model equations in the near jump region,

one may write down (not shown) and solve various reasonable subsets of the lowest

order equations, and by patching with the P and the U or N solutions on either

side, obtain jump-like profiles. In fact we are able to match any of the near-jump

profiles obtained from the simulations. Given the freedom in both the model and

the boundary conditions, this is not surprising, so we do not show them here.

The above analysis is for small jump widths. Laminar planar jumps, as pre-

dicted by our simulations, often too weak to fall under this category. Nevertheless,

obstacle-assisted jumps may be made as steep as one would wish. Also circular

jumps are rather strong, even when spontaneous.
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Figure 3.18: A viscous undular jump. The flow is from left to right. The simulation
parameters are Re = 125, Fri = 6 and L∗ = 290

Figure 3.19: Streamlines of a viscous undular jump whose height profile is shown
in figure 3.18 - Note the separation bubble underneath each undulation.

3.4.2 A model for the undular region U

The undular region U seen just behind the jump is prominent at the higher Reynolds

numbers in our simulations. This region can be quite long, and often encompasses

most of the post-jump domain. At low Reynolds numbers, these undulations are

damped out at a downstream location. As seen from figure 3.19, each of these un-

dulations is associated with a separation bubble undeneath. For a uniform velocity

profile, there is no variation of f with x. Setting these terms, as well as viscosity

to zero in equation (3.10), and scaling by some characteristic height hi we have

h3h′

Fr2
i

− h′ +
1

3

(
h2h′′′ − 2hh′h′′ + h′3

)
= 0, (3.14)
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The coefficients C1 and C2 for a uniform velocity profile have been appropriately

replaced by 1 and 1/3 respectively. The inviscid flow in this region may be described

by a KdV equation, see e.g. Benjamin & Lighthill [1954]. The complete inviscid

equation I+G+D = 0 can support periodic solutions which are descriptive of the

undular region, this being a region of the flow where gravity, inertial and dispersive

effects are all important. This may be integrated twice to yield

h′2︸︷︷︸
K.E.

+

(
3

Fr2
i

)
h3 + 6a1h

2 + a2h− 3

︸ ︷︷ ︸
P.E.

= 0, (3.15)

where a1 and a2 are the constants of integration. Equation (3.14) is equivalent to

the steady-state KdV equation [Hsieh, 1967] and is known to have two kinds of

solution - periodic solutions which are the cnoidal waves of Benjamin & Lighthill

[1954], and their limiting case: the solitary wave. The former is descriptive of the

undular region. Benjamin & Lighthill [1954] had interpreted equation (3.15) as the

sum of kinetic (K.E.) and potential energy (P.E.) of a particle whose total energy

is zero. Thus the oscillatory solutions to equation 3.14 are related to the real roots

of the cubic potential, and become possible when the cubic admits three real roots.

A solution of equation 3.14 is shown in figure 3.20.

In a region where the slope of the height profile is of O(1), it is not possible to

pare down the viscous terms in equation 3.10 by any formal means. Merely for the

purpose of demonstration, however, we write down a model viscous KdV equation

including only two viscous terms.

hh′

Fr2
i

− h′

h2
+

1

3

(
h′′′ − 2h′h′′

h
+
h′3

h2

)
=

1

Re

(
ah′′2 − bh′4/h2

)
, (3.16)

This equation is only a slight modification of the equation of [Johnson, 1972], who

had introduced a second derivative viscous term to obtain undular shapes which

decay with downstream distance. Since fourth derivative term could become more

important in regions of high slope, we choose two of these. A variety of undular

profiles may be obtained depending on the model. One sees, from figure 3.20 how

a height profile with decaying undulations appears in our simulations.
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Figure 3.20: The inviscid flow in the undular region may be described by a KdV
equation, which support periodic solutions, an example of which is shown by the
dashed line. The solid line is the solution of the model viscous equation 3.16, which
shows decaying oscillations.

3.5 Conclusion

In this chapter, we have looked at planar hydraulic jumps computationally and

analytically. The main conclusions are summarised here. Planar jumps are usu-

ally weak, in the sense that h′ is usually not much greater than 1. Even for the

weakest jumps, the BLSWE is not a valid approximation in the near-jump region.

Further, for a strong jump at the two lowest orders in an appropriate expansion,

no term from the shallow-water equations enters the governing equation. In this

case, the important near-jump effects arise out of dispersive terms, which are en-

tirely neglected in the BLSWE, and viscous terms not included in the BLSWE

either. A new depth-averaged equation is derived from the full Navier-Stokes along

with the complete nonlinear boundary conditions at the free-surface. This equation

has no assumptions and is the most general for a two-dimensional film flow. The

near-jump region is studied using this depth-averaged equation. Far upstream, it is
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shown that the BLSWE (P solution) is a good approximation to the Navier-Stokes.

Far downstream of the jump, if a flat region occurs, a second (N) solution of the

BLSWE works well again.

In the region immediately behind the jump, a long train of downstream undu-

lations appear for high Reynolds numbers but were damped out at very low values.

The BLSWE fails in this undular region as well. We justify this again by arguing

that non-hydrostatic effects must be important near the undulations. We propose

a model equation to describe the downstream undulations.

We study the effect of the downstream boundary condition and find that if the

domain is sufficiently long, the location of the jump is not very sensitive to its

length. The effect of increasing gravity or viscosity is to push the jump upstream

while making it steeper. The Rayleigh’s shock criterion is found to work well for

weak jumps but under-predicts the post-jump height in the case of even slightly

strong jumps.

3.6 Depth averaged Navier-Stokes equation

In this section we provide a derivation of equation 3.10. The approach we follow

here was laid out in [Hsieh, 1967]. The two dimensional incompressible, steady

Navier-Stokes equation in a planar geometry, local and global mass conservation

equations alongwith the exact stress-free boundary conditions are:-

uux + wuz = −1

ρ
px + ν (uxx + uzz) , (3.17)

uwx + wwz = −1

ρ
py + ν (wxx + wzz) ,

ux + wz = 0,

Q =

∫ h(x)

0

udz,

p|z=h(x) =
2µ

1 + h′2
[
wz(1 − h′2) − h′(uz + wx)

]
|z=h(x),

[
(uz + wx)

(
1 − h′2

)
− 4h′ux

]
|z=h(x) = 0,

Here h′ ≡ dh/dx. We use the incompressibility assumption to define ψ = Qf [η, ζ ],

η ≡ z/h(x) and dζ ≡ dx/h(x) and Q is the mass flow-rate per unit width. In-

tegrating the z-momentum equation from z to h(x) to obtain an expression for



160 Computational and analytical results on the PHJ

pressure

p

ρ
=

∫ h(x)

z

(uwx + wwz) dz +
p

ρ
|z=h(x) + gh− gz − ν

∫ h(x)

z

(wxx + wzz) dz, (3.18)

Substituting the expressions for ψ for the velocities in equations 3.18 we obtain,

p

ρ
=

(
Q2

h2

)[
−
(∫ 1

η

fηfζζdη

)
+ h′

(∫ 1

η

ηfηfηζdη

)
+
(
hh′′ − h′2

)(∫ 1

η

ηf 2
ηdη

)

+

(∫ 1

η

fζfηζdη

)
− h′

(∫ 1

η

ηfζfηηdη

)]
+

{
2νQ

h2(1 + h′2)

}[
− fηζ − h′2fηζ + h′fη

+h′3fη − hh′h′′fη − h′2fζ + h′fζζ

]

η=1

+ gh− gz

+

(
νQ

h2

)[
− 3h′

(∫ 1

η

fζζdη

)
− (hh′′ − 2h′2)

(∫ 1

η

fζdη

)
+

(∫ 1

η

fζζζdη

)

−3h′
(∫ 1

η

ηfηζζdη

)
− 3

(
hh′′ − 3h′2

)(∫ 1

η

ηfηζdη

)
+ 3h′2

(∫ 1

η

η2fηηζdη

)

+3h′
(∫ 1

η

η2fηηdη

)
− h′3

(∫ 1

η

η3fηηηdη

)
+
(
6hh′h′′ − 6h′3 − h2h′′′

)(∫ 1

η

ηfηdη

)

+

(∫ 1

η

fηηζdη

)
− 2h′

(∫ 1

η

fηηdη

)
− h′

(∫ 1

η

ηfηηηdη

)]
(3.19)

Integrating the x-momentum equation from z = 0 to z = h(x), we obtain another

expression for pressure

1

ρ

∫ h(x)

0

pxdz = ν

∫ h(x)

0

(uxx + uzz) dz −
∫ h(x)

0

(uux + wuz) dz (3.20)

We substitute into the left and right hand side of equation 3.20, the expressions

obtained from equations 3.19 and the form of velocities respectively and using the

following theorem (generalized from the one stated in [Hsieh, 1967])

∫ h(x)

0

zn ∂

∂x

{
f(x)

(∫ 1

z/h(x)

g (t, ζ) dt

)}
dz = hn

[(
fh′ +

hf ′

n+ 1

)(∫ 1

0

gηn+1dη

)

+
f

n+ 1

(∫ 1

0

gζη
n+1dη

)
, (3.21)



3.6 Depth averaged Navier-Stokes equation 161

we obtain the final equation (3.10)

I + G + VBB︸ ︷︷ ︸
BLSWE

+D + Dζ + B + Bζ + V + Vζ = 0

where the individual terms are

I =

(
1

h2

)[∫ 1

0

fηfηζdη − h′
(∫ 1

0

f 2
ηdη

)
−
∫ 1

0

fζfηηdη

]
(3.22)

G =
ghh′

Q2
(3.23)

VBB =

(
1

h2Re

)
[fηη(0) − fηη(1)] (3.24)

D =
1

h2

(
h2h′′′ − 2hh′h′′ + h′3

)(∫ 1

0

η2f 2
ηdη

)
(3.25)

Dζ =
1

h2

[
h′
{∫ 1

0

(
η(fηfζζ − fζfηζ) + η2(f 2

ηζ + fηfηζζ − fηηζfζ − fηηfζζ

)
)dη

}

+
(
hh′′ − h′2

){∫ 1

0

η2(3fηfηζ − fηηfζ)dη

}
+

(∫ 1

0

ηfζfηζζdη

)
−
(∫ 1

0

ηfηfζζζdη

)]

(3.26)

B =

(
2

Re

)[
3h′2h′′

h(1 + h′2)
− 2h′4

h2(1 + h′2)
− 2h′4h′′

h(1 + h′2)2
+

h′3

h2(1 + h′2)

]
fη(1, ζ)

−
(

2

Re

)[{
h′′2

1 + h′2
+

h′h′′′

1 + h′2
− h′2h′′

h(1 + h′2)
− 2h′2h′′2

(1 + h′2)2

}
fη(1, ζ)

]
(3.27)

Bζ = −
(

2

Re

)[ −2h′

h2(1 + h′2)
− 2h′h′′

h(1 + h′2)2
+

1

h2(1 + h′2)

]
fηζ(1, ζ)

−
(

2

Re

)[
2h′h′′

h(1 + h′2)
− 2h′3

h2(1 + h′2)
− 2h′3h′′

h(1 + h′2)2
+

h′2

h2(1 + h′2)

]
fηζ(1, ζ)

+

(
2

Re

)[
h′′

h(1 + h′2)
− 2h′2

h2(1 + h′2)
− 2h′2h′′

h(1 + h′2)
+

h′

h2(1 + h′2)

]
fηζ(1, ζ)

−
(

2

Re

)[
h′h′′

h(1 + h′2)
fηζ(1, ζ)

]

−
(

2

Re

)[{
2h′h′′

h(1 + h′2)
− 2h′3

h2(1 + h′2)
− 2h′3h′′

h(1 + h′2)2

}
fζ(1, ζ) +

h′2

h2(1 + h′2)
fζζ(1, ζ)

]

+

(
2

Re

)[{
h′′

h(1 + h′2)
− 2h′2

h2(1 + h′2)
− 2h′2h′′

h(1 + h′2)2

}
fζζ(1, ζ) +

h′

h2(1 + h′2)
fζζζ(1, ζ)

]

(3.28)
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V =

(
1

h2Re

)[(
3

∫ 1

0

η3fηηdη

)(
2h′4 + h2h′′2 + h2h′h′′′ − 6hh′2h′′

)

−
(∫ 1

0

η4fηηηdη

)(
3hh′2h′′ − h′4

)

+

(∫ 1

0

η2fηdη

)(
−18hh′2h′′ + 6h′4 + 5h2h′h′′′ + 6h2h′′2 − h3h′′′′

)

−
(

2

∫ 1

0

ηfηηdη +

∫ 1

0

η2fηηηdη

)(
hh′′ − h′2

)
+ (hh′′ − 2h′2) + (hh′′ − 4h′2) (fη(1, ζ)− 1)

−h′2 {fηη(1, ζ)− 2(fζ(1, ζ) − 1)}
]

(3.29)

Vζ =
1

h2Re

[
− 3

{(
hh′′ − h′2

)(∫ 1

0

ηfζζdη

)
+ h′

(∫ 1

0

ηfζζζdη

)}

−
{(
h2h′′′ + h′3 − 4hh′h′′

)(∫ 1

0

ηfζdη

)
+
(
hh′′ − 2h′2

)(∫ 1

0

ηfζζdη

)}

−h′
(∫ 1

0

ηfζζζdη

)
+

(∫ 1

0

ηfζζζζdη

)

−3

{(
hh′′ − h′2

)(∫ 1

0

η2fηζζdη

)
+ h′

(∫ 1

0

η2fηζζζdη

)}

−3

{(
3h′3 + h2h′′′ − 6hh′h′′

)(∫ 1

0

η2fηζdη

)
+
(
hh′′ − 3h′2

)(∫ 1

0

η2fηζζdη

)}

+3

{(
2hh′h′′ − h′3

)(∫ 1

0

η3fηηζdη

)
+ h′2

(∫ 1

0

η3fηηζζdη

)}

+3
(
hh′h′′ − 2h′3

)(∫ 1

0

η3fηηζdη

)

−h′3
(∫ 1

0

η4fηηηζdη

)

+
(
6hh′h′′ − 6h′3 − h2h′′′

)(∫ 1

0

η2fηζdη

)

−h′
(∫ 1

0

ηfηηζdη

)
+

(∫ 1

0

ηfηηζζdη

)

−2h′
(∫ 1

0

ηfηηζdη

)

−h′
(∫ 1

0

η2fηηηζdη

)
−
(∫ 1

0

fηζζdη

)
+ 3h′

(∫ 1

0

fηζdη

)

+2h′
(∫ 1

0

ηfηηζ

)]
(3.30)



CHAPTER 4COMPUTATIONAL RESULTS ON THE CHJ
4.1 Introduction

In this chapter, we study circular hydraulic jumps computationally. The circular

jump was probably first recognised by Rayleigh [1914]. The early approaches to

the problem were mostly inviscid, using the radial shallow-water equations until

it gradually became clear that the analysis needed viscosity to be included (Bohr

et al. [1993]; Tani [1949]) without which very obvious quantities like the radius of

the jump could not be predicted. The role of viscosity in the formation of a circular

jump however, has been a source of debate and confusion in the literature. While

it is recognised that estimating the radius of the jump from an inviscid theory

is not possible (Bohr et al. [1993]), the main debate has been about the physical

mechanism of jump formation. The analogy between the inviscid shallow-water

equations and their gas-dynamic counterpart brought the original idea that the

jump is a shock (see Dasgupta & Govindarajan [2010] and the references therein,

for a discussion on the analogy). An alternative interpretation was offered by Tani

[1949]. He included viscosity in his analysis of the shallow-water equations and

hypothesized that the circular jump owes its existence to flow-separation happening

underneath it. To quote his precise words “Closer examination reveals, however

that the thickening of layer is due to separation of flow, the separated flow getting

Figure 4.1: Experimental realization of a laminar circular hydraulic jump - Cour-
tesy Vishwanath K. P.
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over a standing vortex ring....”. While Tani himself did not offer experimental

evidence of the presence of a separated bubble, subsequent experiments [Craik

et al., 1981; Nakoryakov et al., 1978] detected such a bubble and this lent much

support to Tani’s hypothesis. Although Tani’s work has been an important starting

point for the analysis of the boundary-layer shallow-water equation, his hypothesis

has also been a cause of debate in the literature. e.g. subsequent workers like Craik

et al. [1981]; Ishigai et al. [1977] have doubted this hypothesis and the possibility

of a circular jump without separation has been hinted at in the mathematical

model developed by Watanabe et al. [2003]. At the same time many studies treat

the circular jump and separation as phenomena which are intimately tied to each

other (Rao [1994]).

As discussed earlier, while the idea that separation is probably not the cause

of jump formation is not new, concrete evidence for the same in form of circular

jumps without separation obtained from direct numerical simulations does not exist

to the best of our knowledge. Nevertheless, using mostly visual methods, circular

jumps without separation have been very sporadically reported in the experimen-

tal literature (Chang et al. [2001]; Ellegaard et al. [1998]; Liu & Lienhard [1993]).

Here it needs to be emphasized that while visual methods like dye-injection can be

useful in showing the existence of a separated region, they are not always adequate

for settling the inverse question viz. is separation indeed absent? This is because

under typical experimental conditions, the film-thickness in a circular jump is so

small that being absolutely sure that there is no separated bubble, no matter how

small, requires experimental techniques more sophisticated than the usual visual

methods. An example of one such method is the measurement of wall-shear done

by Ishigai et al. [1977]. In this work, the authors studied jumps experimentally

and categorised them into different kinds, but jumps without separation were not

reported. Jumps without separation have been so rarely reported in the literature

that the now standard classification of circular-jumps completely ignores their ex-

istence. The broad categorisation of circular jumps divides them into two types

- Type-I and Type-II (Bush et al. [2006]; Ellegaard et al. [1996]). An illustration

of these types is provided in figures 4.2 and 4.3. It is seen that both kinds are

associated with a wall-eddy. A study by Chang et al. [2001] attempts to resolve

the confusion by reporting two different and independent mechanisms for jump for-

mation - one jump which is created due to boundary-layer separation and another
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jump without separation which is triggered by capillary back pressure.

To resolve some of the above issues, it is clear that direct simulations of the

Navier-Stokes equations would be useful and important, as would sophisticated ex-

periments. The literature on the circular hydraulic jump, while being extensive, has

surprisingly very few published studies of direct numerical simulations. Some sim-

ulations have been reported in Dingwei et al. [1998]; Ferreira et al. [2002]; Khavari

et al. [2009]; Yokoi & Xiao [1999]. In the simulations by Dingwei et al. [1998],

the effect of change of impingement height and nozzle radius on the radius of the

jump was reported. The numerical simulations of Yokoi & Xiao [1999] were used to

study the transition between a Type-I to a Type-II jump and it was reported that

a region of high dynamic pressure was created for the Type-II jump which owed its

origin to surface-tension. The numerical simulations of Ferreira et al. [2002] while

being the first three-dimensional simulations of the circular jump, were focussed

on using the circular hydraulic jump as a benchmark problem for comparing the

capabilities of various codes. The study by Khavari et al. [2009] simulated the

various types of jumps (Type-I, IIa, IIb etc.).

Thus it is seen that none of these studies addresses the issue of whether indeed

jumps without separation can be obtained. The present study intends to make a

first attempt towards bridging this gap as well as using these simulations to under-

stand other related issues pertaining to circular jumps. This chapter is organised

as follows - The first section describes the numerical details, computational domain

and the initial and boundary conditions. We then show computational simulations

of jumps with and without separation. The jumps without separation are obtained

without any surface-tension and thus do not correspond to the capillary backpres-

sure mechanism proposed by Chang et al. [2001]. This is followed by a discussion

of the effect of downstream boundary conditions on the jump. We next discuss the

effect of variation of viscosity, gravity and surface-tension on the structure of the

jump. A discussion on the applicability of the Rayleigh shock criterion to circular

jumps follows. We conclude with a discussion of the initial value problem of jump

formation. The role of viscosity in preventing wave-breaking is pointed out by

doing some inviscid simulations.
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Recirculation Bubble

Externally Controlled Height Externally Controlled Height

Figure 4.2: Type-I jumps (classification by Ellegaard et al. [1996])

Externally Controlled Height Externally Controlled Height

Recirculation Bubble

Figure 4.3: Type-II jumps (classification by Ellegaard et al. [1996]). Note that
both Type-I and Type-II jumps are associated with a wall eddy.

4.2 Numerical Modelling

The axisymmetric Navier-Stokes equations are solved using the free-surface module

of GERRIS [Popinet, 2010]. This has already been described in Chapter 2. Shown

in figure 4.4 and 4.5 are the two kinds of computational domains used. The need

for the Domain B in figure 4.5 arose because we wanted to control the outer depth

close to the exit. Merely placing an obstacle near the exit and imposing a Dirichlet

pressure boundary condition at the outlet caused the simulations to fail. This

problem was circumvented by modifying Domain A to Domain B with the “pit”.

A similar device was also employed in our simulations of planar jumps reported

in Chapter 3. The fluid flows into the pit where an outflow condition is imposed.

The hashed sides represent impermeable walls. For the computational Domain A

shown in figure 4.4, the variables in the problem are the velocity Uav at the inlet

(taken to be a uniform profile), the height of impingement H , the nozzle radius
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Table 4.1: Boundary conditions for figures 4.4 and 4.5

Side on velocity on pressure

S1 No-slip, no penetration Neumann condition
S2 (Domain A) Neumann condition Dirichlet condition
S2 (Domain B) Free-slip Neumann condition
S3 (Domain A) Neumann condition Dirichlet condition
S3 (Domain B) Free-slip, no penetration Neumann condition

S4 Free-slip, no penetration Neumann condition
S5 Free-slip, no penetration Neumann condition

Axis of symmetry Reflective condition Neumann condition

rn, the domain length D, kinematic viscosities of the inlet fluid and the ambient

fluid, νw and νa respectively, and their respective densities ρw and ρa, acceleration

due to gravity g and surface-tension coefficient σ. These lead to non-dimensional

ratios nozzle Reynolds number Ren ≡ Uavrn/ν, nozzle Froude Frn ≡ Uav/
√
grn,

D/rn, rn/H , νa/νw, ρa/ρw and Bond number Bo ≡ ρgr2
n/σ. In all simulations we fix

νa/νw = 10 and ρa/ρw = 0.001 which roughly corresponds to an air-water situation.

For Domain B simulations, we have an additional non-dimensional ratio O/rn.

Simulations with Domain B were primarily conducted for obtaining qualitative

answers and in this chapter we will mostly focus on simulations done with Domain

A. Table 4.1 lists down the boundary conditions that were used for these simulations

and table 4.2 lists all simulations carried out. Shown in figure 4.6 is the initial

condition for all the simulations. Since GERRIS does not have a contact-line model,

we were unable to simulate the more realistic case of a jet impinging on a dry plate.

This problem was bypassed by pre-wetting the plate with a thin layer of fluid as an

initial condition. The jet was given an initial velocity while the pre-wetting fluid

on the plate was kept initially stagnant. It was verified that the final steady state

obtained was independent of the latter initial conditions, by performing another

simulation with exactly the same set of parameters but this time, with the pre-

wetting film having an initial velocity. Both initial conditions were checked to

produce the same eventual steady state solution.
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D/rn = 48 D/rn = 64 D/rn = 80
FrN ReN FrN ReN FrN ReN

7.58 100 7.58 225 7.58 225
7.58 150 15.16 450 - -
7.58 175 - - - -
7.58 225 - - - -
7.58 350 - - - -
7.58 450 - - - -
7.58 550 - - - -
15.16 100 - - - -
19.79 100 - - - -
22.62 100 - - - -
28.28 100 - - - -
33.94 100 - - - -
39.59 100 - - - -

Table 4.2: Simulation parameters for Domain A - For meanings of symbols refer to
figures 4.4 and 4.5. These simulations are all done for rn/H = 0.0625. Although
not listed here in the table, a few simulations with D/rn = 24, 32 and 40 were also
conducted during the early part of this study.

Circular Hydraulic Jump

D
S1

S2

S3

H

rn

Figure 4.4: Schematic of computational Domain A - the outlet height is not con-
trolled. These are axisymmetric computations and hence the equations are solved
only for half of the domain and the complete solution is obtained by reflection
about the axis of symmetry viz. the dotted line.
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O

D

Circular Hydraulic Jump

S1

S2

S3

S4

S5

H

rn

Figure 4.5: Schematic of computational Domain B - the outlet height is controlled
using an obstacle O.

Figure 4.6: A typical initial condition used for simulating the circular jumps re-
ported in the present study - A jet with some initial velocity impinging on a stag-
nant film. Similar initial conditions were used for both Domain A and B simula-
tions.
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4.3 Computational Results

We start this section with trying to answer the first question discussed in the

introduction, viz. are jumps possible without any separation at the wall? In figures

4.7 and 4.9 we show two kinds of jumps - one with a separated bubble and another

without any bubble. The corresponding streamlines are depicted in figures 4.8 and

4.10. It may appear from the streamline patterns in figure 4.10, that there could

be a small separation bubble near the wall. The near-jump velocity profiles are

hence plotted in figure 4.11 and it is seen that there is no region of reverse velocity

near the jump. The height profile in figure 4.12 shows the near-jump region and

the dashed lines indicate the radial locations from where the velocity-profiles are

taken in figure 4.12. A valid objection to this result would be that we do not

have sufficient grid resolution to capture the separated bubble. To be sure, we

repeated some of these simulations with a finer grid and the results were found not

to change. No separation bubble appeared with finer grids. The important point

here is that we now have convincing evidence that Tani’s hypothesis (Tani [1949])

was incorrect, since if it was true, our inability to resolve the separation bubble

in our computations would have prevented the jump also from forming. The fact

that we get one effect without the other, provides strong evidence that the physical

mechanism of jump formation does not rely on separation. To the best of our

knowledge, jumps without any separation at the wall in a circular geometry have

not been reported in Navier-Stokes simulations before and we label these as “Type-

0” jumps. Note that the jumps without separation reported by Chang et al. [2001]

rely on a capillary back-pressure mechanism for their existence. The simulation in

figure 4.9 is however done without any surface-tension and thus these jumps are

not caused by capillary effects. We emphasize that separation is not the cause of

the jump.

We have not attempted any study with the aim of determining those regions

of the parameter space where Type-0 jumps might be expected. This is primarily

due to the fact that a large number of non-dimensional parameters are involved

in these simulations, due to which the parameter space is rather large. However

some trends were observed. Keeping all other parameters fixed, larger nozzles gave

Type-0 jumps while smaller nozzles would produce Type-I jumps. For low enough

values of Ren, if the fluid height at the exit was not controlled, it would produce
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Figure 4.7: A simulation of a circular jump with separation. The simulation param-
eters are - Domain A, Ren = 450, F rn = 15.16, D/rn = 64, rn/H = 0.0625, Bo =
1.0877.

Figure 4.8: Streamlines of the jump in figure 4.7 indicate the presence of a separa-
tion bubble at the wall.

Figure 4.9: A simulation of a circular jump without separation. The simulation pa-
rameters are - Domain A, Ren = 100, F rn = 7.58, D/rn = 48, rn/H = 0.0625, Bo =
∞.
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Figure 4.10: Streamlines of the jump in figure 4.7 without separation. We call these
as Type 0 jumps.
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Figure 4.11: The velocity-profiles in the near jump region for the jump in figure
4.10. Note that there is no region of reversed flow in the near jump region.

Type-0 jumps. Seen in figure 4.13 is a Type-0 jump where the outer boundary is

not controlled (Domain B simulation without an obstacle). An obstacle is then

slowly raised at the outer boundary and this causes the jump to become steeper

and develop a wall-vortex as seen in figure 4.14. Given the myriad states that

these circular jumps display (Type-0, Type-I, Type-IIa, Type-IIb etc.), it should

be an experimentally challenging task to classify the conditions under which each

subtype is expected.
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Figure 4.12: The height-profile for figure 4.11. The dashed lines represent the
radial locations where the velocity-profiles have been extracted and correspond to
the legend of figure 4.11.

Figure 4.13: Domain B simulation. The parameters are Ren = 250, F rn =
5.36, D/rn = 17.6, rn/H = 0.125 and Bo = 4.35. The simulation is initially con-
ducted without placing any downstream obstacle and we obtain a Type-0 jump.
Although the streamlines close to the wall seem to curve downwards, it can be
checked from the velocity profiles that there is no separation bubble and no nega-
tive velocities.
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Figure 4.14: The simulation of figure 4.13 is carried forward by placing an obstacle
at the outlet. The ratio O/rn = 0.6. Note that the picture shown is not at steady-
state. Raising the obstacle leads to a wave-breaking transition and in this particular
simulation, led to the formation of a Type-II jump. Our numerical procedure of
resolving the wave-breaking is not accurate and hence we do not show this here.

4.3.1 Effect of gravity, viscosity and surface-tension

In figure 4.15, the height profiles are obtained for various values of nozzle Reynolds

number Ren. It is seen that decreasing viscosity increases the steepness in the near

jump region and produces stronger jumps. The same remains true for increasing

gravity as seen in figure 4.16, this being consistent with the experimental observa-

tions and theoretical predictions of Avedesian & Zhao [2000] and Bush & Aristoff

[2003]. Note that we define the strength of the jump in figures 4.15 and 4.16 based

on the slope of the near-jump profile. This is in contrast to the usual inviscid defi-

nition of strength based on the ratio of upstream and downstream heights H2/H1.

This description neglects the jump-width and treats it like a discontinuity. In fig-

ure 4.17, we see the effect of surface-tension on the radius and structure of the

jump. It is seen that surface-tension has a negligible effect on the radius of the

jump (Bush & Aristoff [2003]). Note however that it retains a significant influence

on the jump structure, completely damping out the post-jump oscillations (see the

height-profile in figure 4.15 corresponding. to Ren = 550). These observed trends

for the influence of gravity, viscosity and surface-tension are qualitatively the same

for planar jumps as well.
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Figure 4.15: The effect of increase of nozzle Reynolds Ren on the radius and the
near-jump structure. The dashed lines in green are obtained from a linear fit to
the near-jump profile and the value of the slope is denoted by h′. It is seen that as
the Reynolds number decreases, the jumps become steeper with increasing values
of h′. This observation is consistent with the experimental findings of Avedesian
& Zhao [2000] and the predictions of Bush & Aristoff [2003]. The parameters are
Frn = 7.58, rn/H = 0.0625, D/rn = 48 and Bo = ∞.

4.4 Comparisons

In this section we compare planar jumps to the circular ones. We also compare our

Navier-Stokes results to those obtained from the solution of the radial BLSWE,

discussed in Chapter 2.

4.4.1 Comparison between planar and circular geometries

In this section we make comparisons between planar and circular jumps. The most

noticeable difference in our simulations was the occurrence of steep jumps in a

circular geometry but rather gentle jumps in planar geometries. In figure 4.18

and 4.19, we compare the steepest jump obtained in our planar simulations to the
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Figure 4.16: The effect of increase of nozzle Froude number Frn on the radius and
the near-jump structure. The solid lines in purple are obtained from a linear fit to
the near-jump profile and the value of the slope is denoted by h′. It is seen that as
the Froude number increases, the jumps become steeper with increasing values of
h′. The parameters are Ren = 100, rn/H = 0.0625, D/rn = 48 and Bo = ∞.

steepest jump obtained in circular geometries. The reader is reminded that our

definition of steepness is based on the slope of the near-jump region. It is seen

from figures 4.18 and 4.19 that circular jumps are far steeper than their planar

counterparts. The location at which Fr1 is chosen is the place where the height-

profile displays an abrupt change in slope. It is interesting to observe that although

both have almost the same Froude number Fr1, the circular jump is a much stronger

jump. It is seen that Rayleigh shock criterion cannot predict anything about the

slope h′ of the near jump region.

Rayleigh shock criterion

Shown in figure 4.20 is an azimuthal section of a discontinuity in a circular geometry.

Due to a circular geometry, a constant height is not a solution of the inviscid

problem. We take the height to be varying, with the left-hand limit of the height
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Figure 4.17: The effect of surface-tension on the jump radius and structure. The
parameters are Ren = 175, F rn = 7.58, D/rn = 48, rn/H = 0.0625. Note that
surface-tension has practically no effect on the radius of the jump.

to be H1 and that right hand limit to be H2. Just like in a planar geometry, mass

and momentum flux conservation relations are written across this discontinuity

assuming uniform velocity U1 and U2 upstream and downstream of the discontinuity

respectively. For a radius rj of the discontinuity and assuming hydrostatic pressure,

H1U1 = H2U2 ≡
Q

2πrj
,

πrjg
(
H2

1 −H2
2

)
= Q(U2 − U1). (4.1)

Combining the two equations in 4.1, one can obtain equation (4.2), where Fr1 ≡
Q/2πrj

√
gH1.

H2

H1
=

−1 +
√

1 + 8Fr2
1

2
. (4.2)

Equation (4.2) is identical to its planar counterpart studied earlier in Chapter 3.

This equation has been derived in Bohr et al. [1993]; Liu & Lienhard [1993] and in

many other studies discussed in Chapter 1.
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Figure 4.18: The steepest steady planar jump that was obtained in our simulations.
We define Fr1 to be at that point where the height-profile shows an abrupt change
in slope. this is determined by visual inspection. The line in cyan is a linear fit to
the near-jump region with the slope h′ = 1.592. The broken line represents some
local wave-breaking.

A paradox in circular geometry

It is interesting to discuss an apparent paradox related to the Rayleigh shock cri-

terion of equation (4.2) which arises only in a circular geometry. Equation (4.2)

was derived by insisting that the net momentum-flux should be counterbalanced by

hydrostatic pressure forces on either sides of a height discontinuity in a circular ge-

ometry shown in figure 4.20. Indeed this procedure is nothing more than applying

Newton’s second law of motion to a control volume containing the discontinuity,

and then taking the limit of the control volume shrinking to zero in such a way

that the discontinuity is always contained inside the control-volume. This leads to

the following quantities being conserved on either side of the jump

UiHi = C1,

QUi + πrjgH
2
i = C ′

2,

⇒ 2U2
i Hi + gH2

i = C2, (4.3)
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Figure 4.19: The steepest circular jump obtained from simulations. The near jump
slope here is much larger than the steepest planar jump in figure 4.18. The line in
cyan is a linear fit to the near-jump region. The parameters are Frn = 7.58, Ren =
100, rn/H = 0.0625, D/rn = 48 and Bo = ∞.
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Figure 4.20: An inviscid circular jump represented as a shock discontinuity. Mass
and momentum flux relations written across the axisymmetric discontinuity con-
stitute the extension of Rayleigh shock criterion to a circular geometry.
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Figure 4.21: A control volume centered on the discontinuity.

where C ′, C are constants, C ≡ C ′/rjπ and the subscript i = 1, 2. Until now, every-

thing discussed has been exactly identical to a planar geometry with no qualitative

changes. However, if we now write down the inviscid shallow-water equations for

a circular geometry, a discrepancy becomes apparent. These equations are:

UrH =
Q

2π
,

U2

2
+ gH = M, (4.4)

where Q is as before and M is a constant having dimensions energy per unit mass.

Combining the two equations 4.4 one can obtain a conservative form (Bohr et al.

[1993]),
d

dr

[
rH

(
U2 +

gH

2

)]
=
gH2

2
(4.5)

Refer to figure 4.21, we integrate equation (4.5) from r = rj − a to r = rj + a and

then take the limit a→ 0. This thus gives

lim
a→0

[
rH

(
U2 +

gH

2

)]rj+a

rj−a

=
gH2

2

2
− gH2

1

2

⇒ H2

(
U2

2 +
gH2

2

)
−H1

(
U2

1 +
gH1

2

)
=

(
1

rj

)[
gH2

2

2
− gH2

1

2

]

⇒ Hi

(
U2

i +
gHi

2

)
6= Constant (4.6)
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It is evident that left hand side of both equations 4.3 and 4.5 contain the quantity

2U2
i Hi+gH

2
i . However, while equation (4.3) predicts that this is a conserved quan-

tity across the discontinuity, equation (4.5) tells us that it is not. This paradox

was first noticed by Bohr et al. [1993] although these authors did not comment

elaborately on it while choosing to use equation (4.2) for fitting a shock and esti-

mating the jump radius. This is an important point of departure of the applica-

bility of Rayleigh’s shock criterion for a circular geometry. In a planar geometry,

Rayleigh’s criterion predicts that flow through a mathematical discontinuity can

conserve mass and momentum flux but not energy. In case of a circular geome-

try, even momentum-flux is not conserved across a discontinuity, as the governing

equations show above. Despite this apparently paradoxical result, equation (4.2)

has been extensively used in the circular hydraulic jump literature. In an experi-

mental study by Liu & Lienhard [1993], the validity of equation (4.2) for circular

jumps was examined, and it is reported that poor agreement was obtained. These

authors attributed the poor much to surface-tension rather than a radial geometry.

Shown in figure 4.22 are the predictions obtained from equation (4.2). It is seen

that equation (4.2) overpredicts the outer height H2. Notice however that the sim-

ulation reported in figure 4.22 has no surface-tension and hence it becomes clear

that the inadequacy of equation (4.2) is not just due to surface-tension effects. We

take the view that the not so good prediction by 4.2 is due to the fact that in

an axisymmetric geometry, the inviscid shallow-water equations do not support a

discontinuity. This is readily understood if we observe that both equations (4.3)

and (4.5) are two different ways of writing Newton’s second law of motion and

hence should give the same answer if a discontinuity were supported, as it does in

a planar geometry. The fact that it leads to different answers when applied at a

discontinuity shows that inviscid, shallow-water theory does not support disconti-

nuities. The inadequacy of the estimate of H2 in figure 4.22 is further evidence to

this argument.

4.4.2 Comparison with BLSWE

In Chapter 2, we had seen that the boundary-layer shallow-water equations admit

a similarity solution at large values of local Froude (see equation (2.32) in Chapter

2). This solution is Re(h′ + h/r) = 1.8 which can be integrated from an initial
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Figure 4.22: Comparison of predictions of equation 4.2 with Navier-Stokes simu-
lations. The simulation parameters are Domain A, Ren = 100, Bo = ∞, F rn =
7.58, rn/H = 0.0625, D/rn = 48. The choice of H1 is somewhat arbitrary and
made by visual inspection. The Froude numbers Fr1 at the height indicated as H1

is 4.1. Note the H2 is overpredicted by the relation 4.2. One should compare this
to planar geometry in figure 4.23 where comparatively much better predictions for
H2 are obtained by using the same relation.

location r1, where h1 is known, to the radius of the jump rj, to obtain rj.

Re(h′ +
h

r
) = 1.8

⇒ Q

2πν

(
h′ +

h

r

)
= 1.8r

⇒ d

dr
(rh) =

3.6πν

Q
r2

⇒ rjhj − r1h1 =
1.2πν

Q
(r3

j − r3
1) (4.7)

(4.8)

where hj and h1 are the film thicknesses at rj and ri respectively. Imposing the

constraint that Frj = 1, we further obtain hj = Q2/3/
(
16π2gr2

j

)1/3
. Thus equation

(4.7) can be used to obtain an algebraic relation for rj knowing r1, h1 and in terms
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Figure 4.23: Prediction of equation 4.2 for a planar jump. The predictions are H2

are much better than those for in a circular geometry shown in figure 4.22. The
dashed red line is the location where the local Froude is unity.

of Q, ν and g, which is

(
Q2

16π2g

)1/3

r
1/3
j − 1.2πν

Q
r3
j +

1.2πν

Q
r2
1 − r1h1 = 0 (4.9)

In a circular geometry, the variable r is not a quantity that may be translated

at will like the x in a planar geometry, and so we need a reference radius. It is

convenient to choose this as the radius rm where the height hm is at a minimum.

If this point is at a high Froude number, then we have from the similarity solution

hm

rm
= 1.8Re (4.10)

Choosing r1 = rm, h1 = hm, writing r̃j ≡ rj/rm and dropping the tilde for conve-

nience, we may re-write equation (4.9) in non-dimensional form as

4−1/3Fr2/3
m r

1/3
j − 1

3

(
r3
j − 1

)
= 1 (4.11)
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where Rem ≡ Q/(2πrmν) and Fr2
m ≡ Q2/(4π2gh3

mr
2
m). Notice that due to choosing

of rm as our origin, the Reynolds number has been scaled out of equation (4.11).

In figure 4.24, we plot the radius calculated from equation (4.11). It is seen that

equation (4.11) gives a good estimate of the jump radius. Also note that equation

this is an algebraic equation and its general solution will not give a power-law

scaling relation for rj. This is in contrast to the frequent power-law assumptions

that are made in literature about the scaling relation for the radius of the jump.

We discuss this more in Chapter 5. The counterpart of equation 4.9 for planar

flows can also be easily obtained using the high Froude number limit of equation

3.6 in Chapter 2. This is h′Re = 1.8 and thus obtains integrating from x1 to xj ,

and using the Fr = 1 criterion which gives hj = (Q2/g)1/3

xj

h1
=
Re

1.8

[
Fr

2/3
1 − 1

]
+ 1 (4.12)

where Re ≡ Q/ν. In figure 4.25 we provide comparisons between the solution of the

BLSWE and a Navier-Stokes simulation. It is seen from the figure that upstream

of the jump, the P solution agrees very well with the simulations. Downstream,

we see that the comparison with the N solution estimates the slopes well but

overpredicts the height. The radius of the jump is also somewhat overpredicted by

the P solution.

4.4.3 Effect of downstream boundary conditions

As remarked earlier, the downstream boundary conditions are crucial in these sim-

ulations. It has been reported in experiments by Rao [1994] for example that the

radius of the jump is sensitive to the radius of the plate, as well as conditions

at the edge (e.g. whether the edges are sharp or rounded). It is very difficult

to mathematically formulate the pressure boundary condition for a rounded edge

compared to a sharp edge and hence validation of this was not possible. However,

we find computationally that the radius of the jump can be made fairly insensitive

to the location of downstream boundary, provided one chooses a boundary which

is much larger than the jump radius. In figure 4.26, we show this insensitivity to

the location of the downstream boundary. All the three simulations have the same

exit boundary condition and it is only the place where this boundary condition
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Figure 4.24: The simulation parameters are Domain A, Ren = 225, Bo =
∞, F rn = 7.58, rn/H = 0.0625, D/rn = 48. The initial conditions chosen are
rm = 0.465, hm = 0.029. The dashed line in green indicates the calculated radius
from equation (4.11) and the dashed line in red indicates the curve of Fr = 1. The
radius where the red curve intersects the height profile is the Fr = 1 location.

is applied which is varied between the three simulations. Figure 4.27 shows that

similar to a planar geometry, moving the end of the domain downstream moves

the jump location upstream although the extent of change is much less than in a

planar geometry.

4.5 Undular jumps - Radial KdV like equation

In Chapter 3, we had used the process of vertical averaging to derive an ordinary

differential equation which contained the KdV equation as a subset. Here we repeat

the exercise for a radial geometry, but only for the inviscid equations. We have the
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Figure 4.25: A comparison of the P and N solutions of the BLSWE with Navier-
Stokes simulation. The simulation parameters are Domain A, Ren = 550, Bo =
∞, F rn = 7.58, rn/H = 0.0625, D/rn = 48.

following governing equations

(ru)r + (rw)z = 0, (4.13)

Q = 2πr

∫ h(r)

0

udz, (4.14)

uur + wuz =
−1

ρ
pr + ν

[
urr +

1

r
ur + uzz −

u

r2

]
, (4.15)

uwr + wwz =
−1

ρ
pz + ν

[
vrr +

1

r
vr + vzz

]
, (4.16)

with the boundary conditions

p|z=h(r) = 0,

uz|z=h(r) = 0,

u|z=0 = w|z=0 = 0. (4.17)
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Figure 4.26: Effect of domain size on the radius and structure of the jump. All
three simulation have the parameters - Domain A, Ren = 225, F rn = 2.68, rn/H =
0.125, Bo = 4.3509. Note that the upstream height profile and the radius of the
jump is practically unaffected by the location of the downstream boundary. How-
ever, the height profile downstream of the jump is affected although far less than
in the planar case. For improved readability, the figure does not show the entire
length of the jet used in the simulation.
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Figure 4.27: The near-jump region of figure 4.26. Note that the jump moves
slightly upstream as the domain length is increased qualitatively similar to what
was observed for planar jumps, albeit to a much smaller extent.
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As we had done in Chapter 3, we also assume here

ψ =
Q

2π
f

[
z

h(r)

]
=

Q

2π
f [η] , (4.18)

which thus gives

u =
Qf ′

2πrh
,

w =
Qηf ′h′

2πrh
,

uwr + wwz =
−Q2ηf ′2

4π2r3h3
, (4.19)

where f ′ ≡ df/dη . Integrating the vertical momentum equation from z to h(r),

and using the simplified boundary-conditions we obtain

p

ρ
= gh− gz +

∫ h(r)

z

[uwr + wwz] dz,

⇒ p

ρ
= gh− gz − Q2

4π2r3h2

(
rh′2 + hh′ − rhh′′

)(∫ 1

η

ηf ′2dη

)
, (4.20)

Similar to Chapter 3, we differentiate this expression and integrate it from 0 to h

and use the identity 3.21 in Chapter 3, to obtain

h′

Fr2
− C1

[
h

r
+ h′

]
+ C2

(
h′3 + 2

hh′2

r
− 2hh′h′′ +

3h2h′

r2
− 3h2h′′

r
+ h2h′′′

)
= 0,

(4.21)

where Fr2 ≡ Q2/4π2r2gh3, C1 ≡
∫ 1

0
f ′2dη and C2 ≡

∫ 1

0
η2f ′2dη. We term equation

4.21 as the radial KdV or the r-KdV equation. Shown in figure 4.28 is a sample

result of the r-KdV equation, compared to the result of the KdV for the same initial

conditions. A slight reduction in the amplitude of the oscillations is noticed. More

significant however is the reduction in wave-length that is evident downstream.

Viscous effects would be much larger at lower wavelengths, and we would expect a

viscous quenching of the oscillations downstream. Thus the undular region behind

a planar jump may be expected to be longer than in a circular jump, which is

indeed evident on comparing figures 4.29(a) and 4.29(b).
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Figure 4.28: Sample solution of the r-KdV equation (solid line) compared to the
periodic solution of the KdV (symbols) for the same initial conditions.

4.6 Some other qualitative studies

4.6.1 Initial-value problem of circular jump formation

In this section we show an interesting process through which a Type-0 jump is

eventually formed. We study the transients of jump formation and find a rich

variety of states during the transients. Shown in figures 4.30(a), 4.30(b), 4.31(a)

and 4.32 is the time evolution of formation of a Type-0 jump. The instantaneous

streamline patterns reveal that the jump undergoes different kinds of transitions

before reaching a steady-state. The repeated appearance and disappearance of

the wall-eddy is particularly interesting and the physics of these transients are not

clear at the moment. The non-dimensional time-step T ∗ is defined as tUav/(H+D),

where t is the dimensional time. Note that (H +D)/U is the time-scale on which

a fluid particle introduced at the nozzle inlet reaches the domain outlet.
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Figure 4.29: (a) Downstream undulations in a planar jump. The simulations
parameters are Re = 62.5, F ri = 6, L∗ = 220. (b) Downstream undulations
of a circular jump. The local Reynolds and Froude numbers are calculated
at the minimum radius rm. In the circular case, the undulations rapidly de-
cay downstream, compared to the planar case. The simulation parameters are
Ren = 550, Bo = ∞, F rn = 7.58, rn/H = 0.0625, D/rn = 48.

(a) (b)

Figure 4.30: (a) Instantaneous streamlines during the formation of a circular hy-
draulic jump. The parameters are - Domain A simulation, Ren = 225, F rn =
2.68, Bo = 4.35 and D/rn = 24 and rn/H = 0.125. Note that since this is in the
transient stage, the interface is still changing shape and hence streamlines need not
be tangential to the interface. The fluid in blue is the ambient fluid and eddies are
created in this too. This picture is is at T ∗ = 7/8 and looks like a typical Type-II
jump. (b) At T ∗ = 1.25. Note that the wall-eddy has vanished and now this is
a jump without separation. These kinds of jumps have been observed earlier by
Ellegaard et al. [1998].
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(a) (b)

Figure 4.31: (a) T ∗ = 1.875 - The surface-eddy shortens in radial extent and the
jump has also steepened (b) T ∗ = 2.5 - Surface eddy has vanished and now the
wall-eddy has re-appeared. At this stage this looks like a simple Type-1 jump.

Figure 4.32: Domain A simulation: T ∗ = 3.75 - Final steady state and a Type-
0 jump. Note that there is no surface roller and no wall-eddy. Although this
simulation has surface-tension, we have seen also earlier in figure 4.10 that jumps
without separation can happen without surface-tension.

4.6.2 Inviscid wave-breaking

In figures 4.33(a), 4.33(b) and 4.33(c) we show the effect of viscosity in forming

stationary structures. These simulations were done by setting viscosity to zero

and making the walls free-slip. A numerical solution to the initial-value problem

which otherwise would have produced a stationary jump, now instead led to wave-

breaking, beyond which the simulations failed. Although very heuristic, this gives

us an idea about the role of viscosity and wall-vorticity in formation of the jump.

4.7 Conclusion

In this Chapter, we have studied the circular hydraulic jump using numerical simu-

lations and we have compared the results with the analytical results obtained. It is

shown clearly from simulations that separation is not the cause of jump formation
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(a) (b) (c)

Figure 4.33: (a) Initial condition and wave breaking at later stages. The progress of
time is from left to right. As the simulation progresses, a “blob” of fluid progresses
downstream unless the fore part of this fluid parcels, displays something akin to
wave-breaking. The same simulation run with viscosity and the no-slip condition
led a Type-0 jump without any wave-breaking.

and jumps without separation can indeed occur. It is seen that increasing viscos-

ity and/or gravity pushes the jump upstream and makes it steeper. The effect of

change of domain size is found to be very minor. Surface-tension has a strong effect

on the shape of the jump but not on its radial location. We have compared our

results with those obtained from the BLSWE and found good agreement upstream

and downstream of the jump. It is seen that in a circular geometry, Rayleigh’s

criterion does not work very well unlike in the planar case. The reason for this has

been explored and a possible explanation offered. We also study the initial-value

problem of jump formation numerically and find that during the transient stage,

the streamline pattern goes through a complex series of steps. The undulations be-

hind the jump are modelled using a radial KdV equation and this shows a decay in

wavelength downstream. Finally, the effect of viscosity in inhibiting wave-breaking

is pointed out.
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5.1 Scaling laws for the radius of the CHJ

There have been numerous attempts in the literature to obtain a scaling relationship

for the radial location of the circular hydraulic jump. Many of these attempts were

based on simplified models with adhoc assumptions. In table 5.1 we reproduce the

different scaling relations for the circular hydraulic jump that have been proposed.

We have omitted the radius predictions of Watson [1964] and Bush & Aristoff [2003]

from this table, because these are not scaling laws. Among the scaling relationships

in 5.1, the most reliable and accepted is that of Bohr et al. [1993]. The radius of the

jump is predicted to scale as Q5/8ν−3/8g−1/8 where the mass flow rate is Q, ν is the

the kinematic viscosity and g is the acceleration due to gravity. This work builds

upon the analysis of Tani [1949] and the approach of Rayleigh [1914]. Equation

(2.23) is used for this analysis and reproduced below for convenience.

dh

dr
=

(5πν/Q) r2 − h

r − (10π2g/3Q2) r3h3
(5.1)

A rough outline of the method for obtaining the scaling relationship is given in

figure 5.1. For any initial h and r, we obtain a solution of equation (5.1) which

spirals into the critical point (defined as the point where dh/dr is of the form

0/0) as shown. The solutions at small values of the radius are labelled as inner

solutions and the ones at large radius are termed as outer solutions. For each

pair, one notices an overlap region. A discontinuity is fitted in this region using

the Rayleigh shock criterion [Rayleigh, 1914]. The location of the critical point

in equation (5.1) scales as Q5/8ν−3/8g−1/8 [Bohr et al., 1993]. The location of the

fitted shock lies very close to the location of the critical point of equation (5.1) thus

providing the required scaling relation. Additionally, the scales for the horizontal

193



194 Effect of momentum flux on the CHJ

Scaling laws for rj

Bohr et al. [1993] Q5/8ν−3/8g−1/8

Godwin [1993] a4/3V 1/3ν−1/3

Brechet & Neda [1999] Q2/3h−1/6ν−1/3

Chang et al. [2001] r′j ∼ Re1/3Λ−1/8

Hansen et al. [1997]; Ray & Bhattacharya [2007] Exponent of Q = 0.5 for large Q

Kate et al. [2007b]
[

a2

2
sin3φ

(1+cosφcosθ)2
V
]5/8

ν−3/8g−1/8

Table 5.1: Various scaling relationships for the radius rj of the circular hydraulic
jump. Here Q is the volume flow rate, ν is the kinematic viscosity, g is the accelera-
tion due to gravity, a is the nozzle radius, V is the average velocity of the jet at the
nozzle outlet, h is the nozzle height, φ is the inclination angle for an inclined jet, θ
is the azimuthal angle, Re ≡ Q/(aν) is the Reynolds number, Λ ≡ (ga3/ν2)Re−7/3

is referred to as the “modified Froude number” but is more like a Grashof number
scaled by Re−7/3 and r′j ≡ rj/(aRe

1/3) is the nondimensional radius of the jump,
rj being the corresponding dimensional jump radius.

and vertical coordinates of the critical point have the property that scaling r and

h by them, makes equation (5.1) independent of Q, ν and g. This scaling relation

Q5/8ν−3/8g−1/8 was also obtained by a scaling and dimensional analysis in Ray &

Bhattacharya [2007]. The validity of this scaling relationship has been the subject

of many experimental studies see e.g. [Bohr et al., 1993; Hansen et al., 1997; Rao,

1994]. This formula displays agreement with experiments which can vary from

moderate to good depending on the range of flow parameters.

An intriguing aspect of the scaling relationship of [Bohr et al., 1993] is the ab-

sence of any effect of the nozzle-diameter / nozzle height on the radius of the jump.

Experiments conducted by [Hansen et al., 1997] to validate this relationship did

find a dependence of the jump radius on the nozzle radius but the dependence was

reported to be weak and not investigated further. Effect of nozzle diameter and

nozzle impingement height was also studied brielfy in Naraghi et al. [1999] although

the physical reason for why these parameters should influence the jump radius was

not pointed out. In the next section, we make physical arguments and use experi-

mental and numerical evidence to show that these two parameters can significantly

affect the jump radius. We relate these two parameters to the momentum-flux

of the thin film upstream of the jump and provide a physical reason as to why

the momentum-flux can significantly influence the jump radius. A brief study of
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Figure 5.1: Solutions of equation (5.1) for Q = 33x10−6 m3/s, ν = 14x10−6 m2/s
and g = 9.8m/s2.

the effect of nozzle diameter and nozzle impingment height was also conducted

in Naraghi et al. [1999]. These authors reported that increasing the impingement

height lead to an increase in the jump radius. A numerical study by Dingwei et al.

[1998] concluded that increasing impingment height leads to an increase in the

radius of the jump while a change of nozzle diameter has no effect.

5.2 Momentum-flux

An intuitive understanding of the effect of momentum-flux can be obtained from

figure 5.2. It is a common experience that keeping the volume flow rate constant

if we squeeze the tip of a garden-hose, the jet shoots farther. This is due to the

fact that squeezing the tip increases the momentum of the fluid. In the context of

hydraulic jumps, increasing the nozzle height or decreasing the nozzle diameter has

a similar effect: an increase in the momentum-flux of the liquid in the thin film. It

is intuitively evident that for a given mass flux, a fluid film with a larger momentum

will have a smaller thickness. We have seen computational results earlier that the

Froude number (defined as Uav/
√
gh) goes through unity at the jump and can
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Figure 5.2: Effect of squeezing the tip of a jet. Note that both the tanks have
the same head and the same orifice diameter. However, in the tank to the right,
the pipe coming out from the orifice has a constriction at the end. Assuming that
this constriction does not create a large back-pressure, mass flow rate in both the
tanks is the same. However, the jet emanating from the right tank shoots further
because of increased momentum-flux due to the constriction.

be used as a reliable measure of the jump location. Morever, the upstream slope

is only a function of the Froude number Fr for a given Reynolds Re and for a

sufficiently high Froude this slope is practically constant. So a film which has a

higher momentum-flux has a higher initial Froude, so it takes much more distance

to reach Fr unity compared to a film with a lower momentum-flux. In the case of

circular hydraulic jumps, the dependence of the radius on momentum-flux brings

in an additional length-scale into the problem.

5.2.1 Dimensional analysis

We begin with a simple dimensional analysis for a circular jet impinging on a

horizontal flat plate and spreading radially outwards in an axisymmetric fashion.

Neglecting surface tension, there are four quantities which should completely deter-

mine the jump radius, viz. the average jet velocity Ui just before impingement, the

jet radius ri just before impingement, the kinematic viscosity ν and the acceleration

due to gravity g. We have here made the assumption that the precise shape of the

velocity profile within the jet at the point of impingement does not influence the
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jump radius. We also assume that the surface at impingement is smooth and the

losses at the turning are a function only of the impinging jet parameters and inde-

pendent of the surface properties. These assumptions may require re-examination.

Since all the quantities are in terms of length and time, from the Buckingham-Pi

theorem, we arrive at three non-dimensional groups, which are the jump to im-

pingement radius ratio, the impingment Reynolds number and the impingement

Froude number, defined respectively as

r∗j =
rj

ri
, Rei =

Uiri

ν
, and Fri =

Ui

(gri)0.5
. (5.2)

The solution of the Navier-Stokes equation will provide a functional relationship be-

tween the three non-dimensional groups. We assume that a power law relationship

holds,
rj

ri
= aReb

iFr
c
i (5.3)

Note that the continuity equation gives Q = πr2
iUi which connects Ui to ri. It

follows from equation (5.3) that the quantity Qb+cν−bg−c/2r1−b−2.5c
i has the dimen-

sions of length for any real value of b and c. For b = 3/8 and c = 1/4, we recover

the scaling relation of [Bohr et al., 1993]. It is also clear that if b + 2.5c = 1,

then the length-scale ri drops out of the scaling relation and does not influence

the jump radius. The values b = 3/8 and c = 1/4 are one such pair which satisfy

this equation. We treat this length-scale ri as a measure of momentum-flux. For

a given mass flow-rate, the influence of both nozzle radius and nozzle height are

contained in ri (also see Naraghi et al. [1999]).

If the velocity at the nozzle outlet is U , volume flow rate Q, the velocity at

impingment is Ui, nozzle radius is rn and the nozzle height is H , then we obtain

the following from mass conservation and Bernoulli’s equations

U2

2
+ gH =

U2
i

2
, (5.4)

πUr2
n = πUir

2
i = Q, (5.5)

ri =
Q0.5

π0.5
(

Q
πr2

n
+ 2gH

)0.25 , (5.6)
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We thus obtain a single length scale ri which contains the effect of both nozzle

impingement height H and nozzle radius rn, being directly proportional to the

former and inversely proportional to the latter. This length scale can be related to

the momentum-flux at impingement as Mi ≡ QUi = Q2/πr2
i , so momentum-flux at

impingement Mi is inversely related to the impingement radius ri. We have argued

earlier that keeping everything else fixed, if Mi is increased, it should increase the

jump radius. Hence we anticipate that the exponent of this length scale ri should

come out negative in the scaling for the jump radius. In order to demonstrate that

the exponent of ri has a non-zero negative value.one has to take recourse to either

experiments or data obtained from simulations. We perform both to obtain these

exponents. In the experiments ri is obtained knowing rn and H and assuming an

inviscid relationship between the two quantities (see equation 5.6). In simulations

the radius at impingement is known, as the jet is a part of the simulation.

5.2.2 Experiments

Two sets of experiments are performed - a) radius measurements b) film thickness

measurements. In both sets of experiments, the initial momentum flux is varied in

two ways viz. by changing the nozzle diameter and by varying the nozzle height.

Description of the setup

A schematic of the experimental set up is shown in figure 5.3. It consists of a

reservoir, constant head setup, nozzles of various diameters, circular glass plate,

flow meter and an overhead tank. The glass plate of diameter 497 mm and 10

mm thickness is placed on the adjustable stand which enables height adjustment

[Vishwanath, 2010]. Horizontal levelling of the glass plate is ensured by adjusting

the leveling screws in the stand using a spirit level. A glass plate is placed on a

height-adjustable stand. A nozzle is mounted on a specially fabricated stand and

oriented vertically. The water from the nozzle impinges on the glass plate, spreads

out radially and then falls into a tank. the nozzle is attached to a constant head

setup using rubber tubes, a flow control valve, a stop valve and a flow meter. The

flow control valve is used to vary the flow rate from the constant head setup. The

constant head setup consists of two coaxially placed cylindrical tanks. The diame-

ter and height of the inner tank is 127 mm and 210 mm respectively. The height
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Figure 5.3: Schematic of the experimental setup for radius and film-thickness mea-
surements

of the outer tank is 350 mm with a diameter larger than that of the inner tank.

Water is pumped from a reservoir of 100 liters to the constant head setup. The

stop valve is opened and the flow control valve is adjusted to a particular position

so that the water flows out of the nozzle and impinges on the glass plate forming

a circular hydraulic jump. Radius measurements are made using the shadowgraph

technique and film-thickness measurements are made using the contact method.

For radius measurements, two length scales with least count one millimeter are

attached to the glass plate at right angles to each other. Light from a circular

fluorescent source around the nozzle casts a shadow of the jump on the scale. This

shadow is deflected by a plane mirror, placed under the glass plate at 45 degrees

inclination, onto a camera. The photographs of the shadow of the jump formed on

the translucent screen are captured and these raw images are then transformed into

binary images using the image processing toolbox in Matlab. In some cases the

center of the jet might not coincide with the center of the glass plate which in turn
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(a) (b)

Figure 5.4: a) Raw image of the jump b) Binary image of the jump

might cause an error in measurement of radius. To minimize this error, four values

of the shadow of the jump, π/2 apart in phase, are obtained. These are used to fit

a circle, which depicts the jump, by the method of least squares [Kasa, 1976]. A

typical photograph of the shadow of the jump and its corresponding binary image

are shown in figure 5.4.

To measure the height of the fluid film a horizontal traverse stand is used. This

traverse stand consists of a digital micrometer of measurement range 0−25mm, and

least count 1 micron that can be moved horizontally and vertically. A scale on the

traverse with a least count of 1mm measures the distance covered along the radius.

The height measurement is based on the method of contact. An electrical circuit

that consists of the micrometer, a special probe in order to maintain the electrical

continuity during the rotation of the shaft of the micrometer, and a multimeter is

rigged up. The micrometer and the multimeter, whose battery is the power source,

are connected in series. The open end of the wire connected to the multimeter is

brought in contact with the water close to the edge of the glass plate. Salt is added

to the reservoir in order to increase the conductivity of water. The micrometer is

lowered at a very slow pace towards the surface of the glass plate. When the probe

attached to the micrometer comes in contact with the water, the circuit is closed

and a reading on the multimeter is obtained. The height ‘h1’ displayed by the

micrometer is noted and the micrometer is further moved until the probe touches

the surface of the glass plate. The height ‘h2’ displayed by the micrometer is again

noted. The difference between the two heights “h2 − h1” gives the thickness of the
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fluid film at the particular radius. The above procedure is repeated for various

radial locations by using the horizontal traverse. The net height for various values

of the radius is tabulated for different flow rates and nozzle diameters.

5.3 Simulations

Axisymmetric Navier-Stokes simulations are also carried out. The simulations are

performed using GERRIS (see [Popinet, 2010]) as described in detail for a circular

geometry in Chapter 4. For simplicity we have set surface-tension to zero in these

simulations. We believe that this does not influence our conclusions as surface-

tension has a very small effect on the radial-location of the jump (although it can

strongly influence its shape)[Bush & Aristoff, 2003].

5.4 Results and Discussion

In this section, we present results obtained from experiments and numerical sim-

ulations. Figure 5.5 shows the radius of the jump for different nozzle impingment

heights and while figure 5.6 shows the same for different nozzle diameters. The in-

crease in jump radius with increasing momentum flux at the point of impingement

is evident from figures 5.5 and 5.6. For a constant volume flow-rate, the radius of

the jump can be increased by almost a factor of 2 by varying the momentum-flux,

provided one chooses the flow regime carefully.

The effect of momentum flux can also be observed on the radial film thickness

as shown in figures 5.7, 5.8 and 5.9. It is seen that increasing the momentum-

flux decreases the local film thickness at a particular radial location causing the

local Froude number at that location to increase. Thus for a film with a higher

momentum-flux, it takes more radial distance to reach Fr = 1 and consequently

increasing momentum-flux causes the jump to move downstream.
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Figure 5.5: Jump radius rj versus volume flow rate Q for different nozzle heights H
and a nozzle radius rn = 4.6 mm. For a given value of Q, the jump radius increases
with increasing nozzle height displaying the effect of momentum-flux.

5.4.1 Determining the exponents

We use data obtained from numerical simulations and experiments to obtain the

exponents a, b and c in equation (5.3). Shown in figures 5.10 and 5.11 are the

height-profiles obtained from numerical simulations and the symbols indicate the

location where Fr is unity. Data obtained from these simulations and experiments

are used to obtain exponents of the power law 5.3, using Mathematica′s in-built

function named FindF it. This function uses the least-squares criterion to generate

the best fit. In the space of rj/ri, Rei and Fri, equation (5.3) represents a surface,

and the exponents generated by Mathematica give the best power-law fit to it.

As seen in figure 5.12(b) and 5.12(a), the data shows little scatter and hence the

exponents may be considered reasonably good fits. The values of a,b and c are

shown in Table 5.2. As we had predicted from physical arguments, the exponent of

ri viz. 1− b−2.5c, indeed comes out to be a non-zero quantity. It is also satisfying

to note that both experiments and simulations predict the same sign (negative) for
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Figure 5.6: Jump radius rj versus volume flow rate Q for different nozzle radii rn

and a nozzle height H = 7 mm. For a given value of Q, the jump radius increases
with decreasing nozzle diameter thus showing the effect of momentum-flux.

this quantity as is physically expected. However, there is considerable difference in

the values of these quantities obtained from experiments and those obtained from

simulations. In figure 5.13(a) and 5.13(b), we plot the simulation data using the

exponent obtained from experiments and vice-versa respectively. The slopes do not

seem to be very different but the intercepts are. Although we have tried to analyse

the reasons for these differences (like analysing the effects of surface-tension present

in experiment but absent in simulations, the downstream boundary condition at

the edge of the plate whose precise form is difficult to impose numerically), we

have not been able to find a specific reason for this. There are of course many

differences between the experiment and the simulations e.g. The velocity profile

at the nozzle outlet would be a full-developed profile whereas we use an uniform

profile. The losses at the impingement region could be very different between the

experiments and the simulations because whereas the later is axisymmetric the

former will surely have azimuthal effects in the impingement region. It should also

be remembered that we have very few data points from numerical simulations due

to computational limitations and hence this could be an important source of error
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Figure 5.7: Effect of variation of nozzle radii on film thickness with Q = 13 ml/s.
The nozzle height H = 7mm is held constant for both the profiles. Note the
decrease in film thickness with increased momentum-flux. For a given mass-flow
rate, the film-thickness can be thought of as being determined by a competition
between convective effects, an increase of which makes the film thinner, and viscous
dissipation, an increase of which makes the film thicker, so that global mass Q
is preserved. Momentum-flux is one of the quantities which can influence the
convective effects, there being other parameters like gravity which too can do this.
This is analogous to the boundary-layer thickness over a zero-pressure gradient
flat plate where too the boundary layer thickness is estimated by equating the
convective time-scale to the diffusive time-scale.

in determining the exponent of the power law in equation (5.3).

5.5 Comparisons with previous experiments

In this section we try to compare our results with those obtained by earlier workers

(Bohr et al. [1993]; Hansen et al. [1997]; Tani [1949]). The exponent of Q is a

quantity for which data is most easily available and we show in figure 5.14, the

exponents obtained from the experimental data of Bohr et al. [1993]. Similar plots
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Figure 5.8: Effect of variation of nozzle radius rn on the shape of the jump with
Q = 13 ml/s. The nozzle height H = 15mm is held constant for both the profiles.
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Figure 5.9: Radial film thickness for nozzles of various radii rn and heights H at
Q = 13 ml/s
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Table 5.2: The constants a, b and c determined from experiments and numerical
simulations. Also shown are the exponents of [Bohr et al., 1993]

.

Simulations Experiments Bohr et al. [1993]
Power law fit a = 0.440 a = 0.035 a = 0.47046
aReb

iFr
c
i b = 0.414 b = 0.682 b = 0.375

c = 0.322 c = 0.302 c = 0.25
Exponent of ri −0.219 −0.437 0
1 − b− 2.5c

are also obtained from the data of Hansen et al. [1997] in figures 5.15 and 5.16.

For comparison, we also provide plots obtained from our experiments in figure 5.17

and 5.18. It is seen from these figures that the range predicted for the exponent of

exponent of Q is 0.429 to around 1.079. Also it is seen that a linear-fit works well

in many cases, see e.g. figures 5.15 and 5.16. This implies that a fit almost as good

can be obtained by changing the exponent somewhat. This ambiguity is general for

any data set where we try to fit a power law with a decade or less of data. Therefore

without having access to a wider range of experimental data, it is a difficult task

to make this range any narrower. However, the main task that we had set for

ourselves in this chapter was not to achieve a more accurate scaling relationship

for the jump, but to demonstrate that the exponent of ri cannot be zero i.e. that

momentum-flux is an additional parameter which can strongly influence the jump

radius. Figure 5.16 is another independent evidence for the same obtained from

the data of Hansen et al. [1997]. The power-law relationship depicted in figures,

5.17 and 5.18 also shows a similar momentum-flux dependence. The fact that the

exponents show a wide range can also be attributed to the assumption that there

exists a power-law relationship of the form in equation 5.3. As we saw earlier in

Chapter 4, this may not be true. Irrespective of whether a power-law is a good

assumption or not, this analysis is expected to convince the reader of the strong

effect that momentum-flux can have on the radius of the jump.

5.6 Conclusion

In this chapter, we have established using experiments, numerical data and dimen-

sional analysis that inlet momentum-flux is a quantity which can have a strong

effect on the radius of the circular hydraulic jump . The physical reason for why it



5.6 Conclusion 207

0.8 1 1.2 1.4 1.6 1.8 2
r

0.05

0.1

0.15

0.2

h(
r)

100
150
225
350
450
550

Figure 5.10: The effect of varying nozzle Reynolds number Ren ≡ Urn/ν on the
height profiles obtained from axisymmetric Navier-Stokes simulations for a nozzle
Froude number Frn ≡ U/

√
grn = 7.58. Here U is the uniform velocity-profile at

the jet, rn is the nozzle radius and ν is the kinematic viscosity. These axisymmetric
simulations and the accompanying boundary and initial conditions are described
in greater detail in Chapter 4 (Domain A simulations). Note that increasing Ren

pushes the jump downstream. The cross symbols indicate the location where the
local Froude Fr is unity. Although not shown here, the simulations include the jet
and we use the impingement radius ri from the simulations to define Rei, Fri and
to non-dimensionalise the jump radius. The legend indicates the value of Ren.
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meanings of the cross symbols, see figure 5.10. Note that some small wavelength,
undulations arise upstream of the jump as the nozzle Froude number is increased.
We have taken these simulations for adequate number of time-steps such that a
steady state is reached. There is no surface-tension in these simulations.
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Figure 5.12: a) Scatter for experimental data. b) Scatter for simulation data. Note
that due to computational limitations, we have very few data points available.
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Figure 5.14: Data extracted from experiments reported in [Bohr et al., 1993] and
Tani [1949]. The symbols are the experimental data points and the solid lines are
power law fits obtained by us.

should be so is also given from a consideration of the effect of momentum-flux on

the local film thickness and the corresponding local Froude number. Momentum-

flux enters the scaling relation as an additional length-scale whose effect on the

jump radius has not been systematically taken into account in earlier works.
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Figure 5.15: Power Law for [Hansen et al., 1997] from their paper. The symbols
are the experimental data points and the lines are power law fits obtained by us.
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5.6 Conclusion 211

10 12 14 16 18 20

Q (cm
3
/s)

0.8

1

1.2

1.4

1.6

1.8

2

r j (
cm

)

r
n
 2 mm

r
n
 4 mm

r
j
∼  0.1675Q

0.756

rj ~ 0.153Q
0.759

Linear fit
Linear fit

Figure 5.16: Power Law for [Hansen et al., 1997] from their paper. This work
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by us.
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CHAPTER 6SURFACE TENSION DRIVEN JUMPS
Remarks:

A condensed version of this chapter has been published in Mathur et al. [2007].

The experiments reported here were carried out by N. R. Selvi, Dr. N. S. John in

collaboration with Prof. G. U. Kulkarni, CPMU, JNCASR, Bangalore.

6.1 Introduction

Until now we have concerned ourselves with gravity driven jumps at macroscopic

length scales. In this chapter we go on to small length scales to study the possibility

of surface-tension driven jumps. The driver here is surface tension at the liquid-air

(or liquid-vacuum) interface, and jumps may be expected to occur when relevant

length scales are submicron for impinging molten metals. This theoretical study

was prompted by experiments showing that molten metal droplets impinging on a

solid substrate display such a jump, solidifying into cup-shaped containers of fem-

tolitre capacity. The droplets are created by laser-ablation of a solid metal target.

Femtocups of different metals on various substrates are formed under optimized

conditions of laser energy and substrate temperature. Outside this narrow range

of parameters, the droplets solidify to form lumps on the substrate, as one would

normally expect. The ability to make, and subsequently leach out, these metallic

femtocups at will has potential applications ranging from nanoscale synthetic chem-

istry to single cell biology. We first discuss what causes a gravity-free hydraulic

jump from an impinging sub-micron scale axisymmetric jet. The unsteady case

of an impinging droplet (more relevant to the reported experiments) is discussed

briefly later.

6.1.1 Analysis for a jet

Consider a steady axisymmetric jet of fluid of radius a impinging on a solid plate

placed normal to it. The fluid then spreads radially outwards within a relatively

213
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thin film, the dynamics within which is described by the axisymmetric shallow-

water equations including the effect of surface-tension and supplemented by the

local and global continuity equation.

uur + wuz = νuzz − gh′ +
σ

ρ

d

dr

[∇2h+ h′3/r

(1 + h′2)3/2

]
, (6.1)

ur +
u

r
+ wz = 0, (6.2)

Q = 2πr

∫ h(r)

0

udz (6.3)

where ∇2 ≡ d2/dr2 + (1/r)d/dr, r and z are the radial coordinate and the coor-

dinate perpendicular to the solid wall respectively, with origin on the solid surface

at the centre of the impinging jet. The respective velocity components are u and

w, and h(r) is the height of the film. A prime denotes a total derivative with

respect to r, while the subscripts denote partial derivatives. The density of the

surrounding medium is neglected. The parameters in the problem are the accel-

eration due to gravity, g, the surface tension coefficient, σ for the liquid-air or

liquid vacuum interface, and the density ρ and the kinematic viscosity ν of the

impinging fluid. Note that equation (6.1) assumes pressure to be hydrostatic plus

a surface-tension contribution due to the curvature of the interface thus implying

p = pa + ρg(h(z) − z) + c, where pa is the atmospheric pressure assumed to be

constant (zero) at the interface and the term c arises due to the curvature of the

interface and surface-tension. In the parameter range of our interest in this chapter,

gravity is unimportant as we shall see.

Similar equations were studied earlier in Chapter 2. However the main difference

here is the inclusion of surface-tension, which causes the pressure on the fluid side

of the interface to be different from that on the gaseous side. This is the last term

in equation (6.1). As in chapter 2, we follow the procedure of vertical averaging

of equations 6.1, 6.2 and 6.3 to derive an ordinary differential equation for the

evolution of film-thickness h. To resove the closure problem, we assume a parabolic

radial velocity profile, satisfying the no-slip condition at the wall (z = 0) and the

zero shear stress condition at the free surface (z = h).

u(r, z) = ζ(r)(z2 − 2h(r)z), (6.4)
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but any reasonable profile will give qualitatively similar results. Using continuity

in its global and local form and the kinematic condition w = Dh/Dt = uh′ at

z = h, equation (6.1) integrated over z from 0 to h becomes

b

[
h

r
+ h′

]
=

2r

Re
+
r2h3h′

Fr
− r2h3

We

d

dr

[∇2h + h′3/r

(1 + h′2)3/2

]
(6.5)

where all lengths are scaled by the inlet jet radius a, and the O(1) positive constant

b is 2/5 for a parabolic profile. The left-hand side of (6.5) represents inertia,

and the terms on the right hand side appear due to viscosity, gravity and surface

tension respectively. The relative importance of the inertial term to each of these

is quantified respectively by the Reynolds number Re ≡ uja/ν, the Froude number

Fr ≡ u2
j/(ga), and the Weber number

We ≡ ρu2
ja/σ (6.6)

uj is a characteristic inlet jet velocity. In large-scale flows surface tension has been

shown [Bush & Aristoff, 2003] only to make a small correction to the jump location,

so the last term is unimportant. This is as expected, since Fr in the kitchen sink

is of order unity, while We ∼ 10 − 100. In contrast, consider uj ∼ 10m/s and

a ∼ 10−7m, so Fr ∼ 108 and We ∼ 10−2. Here surface tension determines whether

and where a jump will occur, whereas it is the gravity term that may be dropped

entirely.

In general in a jump, the pressure gradient becomes increasingly adverse as

the flow proceeds downstream, and attains a magnitude large enough to counter

the relevant inertial effects. Such an adverse pressure gradient may be created by

gravity, or surface tension, or both. With gravity alone, equation (6.5) reduces to

h′ = (2r/Re− bh/r) / (b− h3r2/Fr). (6.7)

Equation (6.7) was analysed ealier in Chapter 2 and it was seen that the denom-

inator goes to zero at some r where the slope of the local film-thickness diverges.

In the neighbourhood of this divergence point, shock fitting techniques have been

used to obtain a scaling for the jump-radius which is Q5/8ν−3/8g−1/8 (Bohr et al.

[1993]). A similar qualitative behaviour can also be observed with surface-tension

terms alone. A crude prediction of a similar singularity in height can be made by
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assuming the height upstream to be slowly varying in r, i.e., |h′| << 1, and thus

setting h′′ = h′′′ = 0. We may then rewrite equation (6.5) as

h′ ' (2r/Re− bh/r) / (b− h3/We). (6.8)

A divergence of slope in equation (6.8) occurs when the denominator goes through

a zero. Also note that the second term in the denominator appears due to radial

spreading, i.e., surface tension alone cannot give rise to a one-dimensional jump like

a tidal bore, under the small slope approximation. It is thus seen that equations

(6.7) and (6.8) are qualitatively similar. The inviscid limit of equation (6.8) admits

an analytical solution similar to equation (2.6) in Chapter 2. As Re→ ∞, equation

(6.8) can be integrated as follows

dh

dr
=

−bh
r

b− h3

We

⇒ dr

dh
+
r

h
=

−rh2

bWe

⇒ r =
K

h
e

h3

3bWe (6.9)

A solution of equation (6.9) is plotted in figure 6.1. We compare this with the

U-shaped curve (studied earlier in Chapter 2) inviscid solution of equation (6.7).

It is seen that unlike the inviscid gravity solution, the “upper-arm” in figure 6.1

does not asymptote to a constant value but instead keeps growing monotonically.

The inviscid “lower-arm” retains the same qualitative behaviour and goes asymp-

totically to zero as radius increases. Similar to the gravity solution, there is a

minimum radius below which there are no inviscid solutions and this radius can

be estimated by setting dr/dh = 0, which gives rmin = Ke1/3/(bWe)1/3. Also note

the presence of multiple solutions at a given radius. Numerical solutions to equa-

tion (6.7) which are spirals which converge to a critical point in the h − r plane

where dh/dr = 0/0, have been discussed earlier in Chapter 2. Shown in figure 6.2

is a numerical solution to equation (6.8) for different initial conditions. It is seen

that these are also spirals all of which converge onto a single point in the h − r

plane where dh/dr is of the form 0/0. The viscous to inviscid transition is shown

in figure 6.3. We can also obtain an analytical solution to equation (6.8) in the

neighbourhood of the critical point, similar to what we had done in Chapter 2 for
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Figure 6.1: The inviscid solution of equation (6.9) - K = 1,We = 10. The “upper-
arm” increases monotonically without any bound.

equation (6.7). For this it is useful to scale out Re and We from equation (6.8) by

using the following re-scalings

r̄ =
r

r0

h̄ =
h

r0
h0 = We1/3b1/3 (6.10)

r0 = 0.50.5b2/3Re0.5We1/6 (6.11)

thus obtaining

dh̄

d̄r
=

r̄ − h̄
r̄

1 − h̄3
(6.12)

Note that the scales used in equation (6.10) and 6.11 are the coordinates of the

critical point of equation (6.8) and thus in equation (6.12), the critical point has

the coordinates (1, 1). Using shock-fitting techniques, Bohr et al. [1993] had esti-
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Figure 6.2: A solution of equation (6.8) with Re = 100 and We = 10 and with
different intial conditions. The spiralling around to the critical point is reminiscient
of the behaviour of the solution of equation (6.7). The “upper-arms” of the spirals
do not continue to ∞ but instead drop down at a finite radius and go into the
negative h plane.

mated the radius of the circular jump to be identical to the radial location of the

critical point of equation (6.7) leading to a scaling relation which in dimensional

terms is Q5/8ν−3/8g1/8 where Q is the volume flow rate and Q = πa2uj. A sim-

ilar length-scale is given by equation (6.11) which in dimensional terms gives us

u
5/6
j a2/3(σ/ρ)1/6ν−1/2.

We translate our orgin to the critical point r′ ≡ r̄ − 1, h′ ≡ h̄− 1 and linearise

about the critical point to obtain

dh′

dr′
=

h′ − 2r′

3h′(1 + r′)
(6.13)

which admits an analytical solution. By moving over to polar coordinates h′ =

L sin θ, r′ = L cos θ, we can show that the solution of equation (6.13) is a modified

logarithmic spiral (analogous to what we had seen for equation (6.7) in Chapter
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Figure 6.3: The viscous to inviscid transition of the solution of equation (6.8). All
solutions have We = 10 and intial condition r = 1.1, h = 0.22 The dashed line is the
corresponding inviscid solution 6.9 where the constant K has been calculated with
the same intial-condition. Note that unlike the gravity solution, the y coordinate
of the critical point of equation (6.8) is not affected by viscosity. As the Reynolds
number is increased, the lower arms of the spirals unrolls and the radial coordinate
of the critical point goes to ∞ thus approaching the inviscid solution.

2). This spiral in the neighbourhood of the critical point has the form

L = L0

√
1 + tan2 θ

3 tan2 θ − tan θ + 2
e

−3 tan
−1

[
6 tan θ−1

√

23

]

√

23 (6.14)

where L0 is the constant of integration.

We now return to equation (6.5) and solve it as an initial value problem begin-

ning at some location ri and marching downstream. A fourth-order Runge-Kutta

algorithm is used. An initial radius ri somewhat larger than a is chosen, where it is

assumed that a parabolic profile has been attained. The initial conditions in h and

its derivatives are not known exactly for this complicated problem, and numerical

studies are being done to understand the flow in this vicinity. We have repeated
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Figure 6.4: Typical solutions of equation (6.5), with Fr = ∞, containing a singu-
larity at r = rj . For demonstration, properties of molten silver (ρ = 5000 kg m−3,
viscosity µ = 0.005 Nsm−2 and σ = 0.9 Nm−1) are used, and a = 5µm, Solid line:
uj = 5 cm/sec; dashed line: uj = 80 m/sec. The axes are nondimensionalised by
a.Values typical of tin show similar behaviour.

the computations with varied initial height profiles, and a range 1.2 < ri < 5 and

0.2 < h < 1, and the results did not change qualitatively. A typical solution is

shown in figure 6.4. At a particular radial location r = rj , there is a singularity

in the height of the fluid layer. Note that as we approach rj the shallow water

equations are no longer valid, even approximately, so the present analysis cannot

tell us anything about the actual shape close to or after the jump. The dependence

of the jump location on the Reynolds number is not monotonic, as seen from fig-

ure 6.5. The Reynolds number Re is varied by changing the inlet velocity, so the

Weber number increases as Re2, from 3×10−9 to 90. For very low Re or very high

We, jumps are unlikely to form within the available radius, i.e., inertia and surface

tension must be in the right balance. The Reynolds and Weber numbers are now

varied independent of each other (figure 6.6). In the regions shown in red and

blue, rj > 50a and rj ∼ a respectively, so jumps are not predicted. Gravity-free

hydraulic jumps may be expected in the relatively narrow patch of intermediate
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Figure 6.5: The location rj (nondimensionalised by a) of the singularity as a func-
tion of the Reynolds number. For Re between 0.01 and 90 (uj = 0.02 − 180m/s),
the jump radius in the demonstration computations is O(10−6) m. Here We/Re2 =
0.01.

Figure 6.6: Contour plot of jump location in the Re−We plane. In the dark blue
regions rj < 1, while in the red regions rj > 50. Jumps are expected in the region
of intermediate color.
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Figure 6.7: AFM image (right) and height profile (left) of a silver blob on silicon
substrate kept at room temperature.

color when Re < 100, which is seen to lie in a linear fashion. The boundaries of

this patch are given by 0.3 < We/Re2 < 300. Using this criterion, given all other

parameters we can estimate the jet-radius a. For typical values corresponding to

silver or water, the order of magnitude estimate of a ranges from 10−8m to 10−11m.

Since, the ratio We/Re2 is independent of the inlet velocity uj, this implies that

(a) the existence of a jump does not depend on the inlet jet velocity, and (b) that

both for molten silver and for water, gravity-free hydraulic jumps can occur when

the inlet jet radius is in the range of a few nanometers (although in this limit other

physics will enter) to a few microns.

6.1.2 Analysis for a drop

Although we have discussed the theoretical possibility of a steady jump formed

from an impinging jet, our experimental flow displaying height discontinuities in

spreading droplets of molten metal is transient in nature. Though we do not aim

to solve the full transient problem here, we argue that a similar jump could occur

in low We and high Re flows early in the droplet spreading process. In the early

stage of droplet spreading [Fedorchenko & Wang, 2004; Fedorchenko et al., 2005],

i.e., when the time after impact τ << D/U , where D and U are the diameter and

velocity of the approching droplet respectively, a thin film of fluid emanates from

the droplet. Scaling analysis reveals that surface tension effects are significant at

early times for We << 1, downstream of a location r0(t) to be specified below.

The sheet flow equations of [Fedorchenko et al., 2005] may be rewritten, assuming
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|hr| << 1 as

ut + uur = (σ/ρ)(∇2h)r + V (6.15)

(hr)t + (uhr)r = 0.

The viscous effects are represented by a very small term V, neglecting which we

obtain

u = r/3t (6.16)

h = At−2/3 − σr4/(144ρt2) + Cr2t−4/3. (6.17)

where A,C are constants. The form of u is as in [Fedorchenko et al., 2005] while the

expression for h is a new result. Matching with the solution of [Fedorchenko et al.,

2005] at r = r0(t), where convective and capillary time scales become comparable,

r3
0ρ ≡ σt2, setting A = 0, and since the second term on the right hand side of

the equation for h in (6.16) is negligible compared to h(r0) for our parameters, we

have C = 3
2
U4D3(ρ/σ)8/3. For small viscosity µ and a parabolic velocity profile

[Fedorchenko et al., 2005], the viscous term in (6.15) may be written in terms of

the inviscid solution for u and h as V = −3µu/ρh2. A viscous solution constructed

as a linear perturbation on the inviscid one becomes singular at h = 0, i.e., at the

radius rj = (144σC/ρ)1/2t1/3. We thus obtain a jump condition at τ << D/U for

droplet impact analogous to the steady case, but the jump here moves downstream

with time. A tiny non-zero viscosity is necessary. While the jump is close to

the contact line here, we found that in a steady jet a surface-tension driven jump

occurs in the bulk. The present predictions thus need to be checked numerically,

with emphasis on the dynamics near the contact line, which will also determine

features like the shape of the blob downstream of the jump [Fedorchenko & Wang,

2004]. Numerical studies are also required because as in the steady case, in the

vicinity of the jump, the sheet-flow equations fail. Thus the above criterion only

indicates the likelihood of a jump when flow parameters are in the right range.

Incidentally jumps in droplet flow at larger scale are known [Chandra & Avedisian,

1991].

In the experiment, a Q-switched frequency tripled Nd:YAG laser (λ = 355 nm,

repetitive frequency, 10 Hz) is focused with pulse energy Ep on a rotating metal disc

in a vacuum chamber (10−7 torr) and the resultant plume received at a distance
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Figure 6.8: Microscopy analysis of metal cups (a) SEM image of femtocups of silver
on a silicon substrate obtained at Ep = 100 mJ/pulse and Ts = 1173K. A few blobs
exist, see arrows.(b) Typical height profile of a cup from AFM analysis. (c) Tilted
field emission SEM image of a tin cup on silicon.

of 4 cm on a clean vertical substrate held at a temperature Ts, for a duration of

20 min [John et al., 2006]. The resulting metallic structures on the substrate are

studied by scanning electron microscopy (SEM), atomic force microscopy (AFM)

and energy dispersive X-ray analysis (EDAX). Over most of the range of Ep and

Ts, we expect, and obtain, ill-shaped blobs of solidified metals, see figure 6.1.1.

However, for a small range of these parameters, there is a strong preference to

form cup-like structures of outer diameters ∼ 300nm to 10µm, with side walls

∼ 100nm high, and capacity ∼ 1fL (fig. 6.8). The jump diameter is around

half the total diameter. Height profiles associated with atomic force micrographs

(figure 6.8b) as well as EDAX spectra [John, 2007] confirm that the central region

is raised from the substrate and contains metal. Interestingly, pulsed-laser ablation

has been used extensively to produce a variety of structures [Terrones et al., 1997],

but femtocups have not been reported, although we notice stray instances of similar

structures in other studies [Henley et al., 2003]. Cups have however been obtained

by lithography, electrospinning or layer-by-layer assembly [Rondelezl et al., 2005].

This surprising structure is consistent with the proposed dynamics.

To confirm that these cups are formed purely due to fluid dynamics and not due

to chemistry, we repeat the experiment with a variety of materials. By optimising



6.1 Introduction 225

the laser energy in each case, and by maintaining the substrate a few degrees

below the melting point of the metal ebing used, we obtain femtocups of gold,

silver, copper, tin and niobium of repeatable statistics on glass, silicon and graphite

(HOPG), see examples in figure 6.12 and in [John, 2007]. The solid surface being

vertical and the length scales small mean that the effect of gravity is negligible.

Inertia however is considerable, since velocities are high. We estimate uj from

earlier measurements [Chrisey & Hubler, 1994] to be in the range 1-100 m/s. The

laser fluence determines scales and speeds in the incoming jet, and therefore the

range of Re andWe.The number of well-defined cups drops sharply with Ep lowered

below 100 mJ/pulse (compare figures 6.8a and 6.9a). At higher Ep, cups do form

(fig. 6.9b), but the throughput is lower, consistent with similar experiments at

very high laser fluence [de Riet et al., 1993]. When the substrate is hotter than the

metal’s melting point Tm, the cup may form initially but cannot solidify and liquid

flows back into it, so the final object is ill-formed (fig. 6.9d) With Ts far below

Tm, the tendency to form cups is much reduced (figure 6.9c), probably because

rapid solidification at the contact line intervenes. Optimal conditions are thus Ep

(∼ 100 mJ/pulse for silver) and Ts close to but below Tm. Outside this range,

blobs form rather than cups. That the jump is directly related to droplet dynamics

is confirmed by varying the substrate orientation with respect to the incoming

jet (Fig. 6.10). With increasing inclination, the structures become increasingly

elliptical, in accordance with the azimuthal variation of Re and We. Since the

experiment includes additional complexity in the form of solidification, we estimate

relative time-scales of jump formation tj and solidification of a droplet tc. For the

experimental values of substrate thickness, tc ranges from ∼ 3×10−4 sec on silicon

to ∼ 10−2 sec on glass (taking into consideration conduction, radiation and latent

heat), while tj << rj/uj ∼ 10−6 sec. Despite this disparity, local freezing at the

contact line can be very rapid [Schiaffino & Sonin, 1997], and even dictate dynamics

in the late stages of droplet spreading. We do notice a dependence on the substrate

of the size distribution of cups (figure 6.12) and also some visual differences in

shape. An ongoing numerical study, including a non-uniform temperature profile

and its effects, is therefore aimed at a better representation of the experiments.

Also being addressed are the experimental finding of radial striations, and the

theoretical finding of undular jumps (see figure 6.11), under certain conditions.
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Figure 6.9: SEM images of Ag on Si. (a) Ep = 60 mJ/pulse. The number-density
of well-formed cups is small. (b) Ep = 200 mJ/pulse. (c)Ep = 100 mJ/pulse,
Ts = 773K much less than Tm = 1234K. The cups are not well-formed. (d)
Ts = 1273 K > Tm. Only patches are observed.

Figure 6.10: Elliptical cups with inclined jets. Inset: Sample SEM image of tin at
θ = 40 ± 1.5◦, defining a and b. The major axis is parallel to the maximum flow
(dashed arrows).
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Figure 6.11: An undular jump.

Figure 6.12: Histograms and SEM images of tin femtocups on (a) glass and (b)
silicon, deposited simultaneously.
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6.2 Conclusion

To the best of our knowledge, this is the first demonstration that in the absence

of gravity, shallow-water equations driven solely by surface tension can display a

singularity. Just as the gravity driven shallow-water equations behave unphysically

near the jump, our equations too display an unphysical singularity instead of a

well-resolved jump. It is again expected that these singularities will be cured by

addition of neglected terms in the full Navier-Stokes equations. Experimentally

we find structures consistent with such jumps in submicron high inertia droplets

of molten metals spreading radially outwards on a substrate. The detailed shape

close to the jump and the transient problem including solidification and the full

transient problem of drop impingement, are a very good subject for future study.



CHAPTER 7THE VOLUME-OF-FLUID METHOD
Remarks:

The simulations in this thesis have been conducted using GERRIS (Popinet [2010]).

In addition an in-house code by the volume-of-fluid method was developed during

this doctoral tenure, and is in a mature stage of development. It is described in

this chapter. The author is grateful to Dr. Murray Rudman, CSIRO, Australia for

assisting with queries and for sending some useful references.

7.1 The Volume-Of-Fluid(VOF) method

Many daily-life fluid flows are “free-surface” flows. In such flows and other similar

moving boundary problems, the location of the interface/boundary changes with

time and has to be determined at every time-step. Apart from the desire to see the

evolution of the interface in time, a knowledge of the location of the interface at

every time-step is also necessary in many cases so as to be able to apply boundary

conditions. In these situations, we end up with the following - The motion of the

interface causes the velocity field to change in time and the changing velocity field in

turn causes motion of the interface. The Volume-of-fluid (VOF) method originally

proposed by Hirt & Nichols [1981], is an algorithm for finding the interface location

at every instant of time and to move it with the underlying velocity field. There

are different algorithms for implementing the VOF technique and in this chapter,

we describe the implementation of one of these, viz. the one proposed by Pilliod &

Puckett [2004]. A computer code implementation of the VOF technique is a coding

intensive activity that involves many algorithmic details. This chapter is designed

to assist the reader who wishes the implement the VOF method for tracking free-

surface flows.

7.2 The Basic Steps in VOF

We start by defining a quantity called volume-fraction denoted by the symbol F

for every cell in the computational domain. F is defined as the ratio of the fluid in

229
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Figure 7.1: An illustration of the F−field on a 3x3 block of cells. The dotted line
encloses a blob of fluid and is surrounded by vacuum. Note that the values of F
are for illustration and are not obtained from actual calculations.

the cell to the volume of the cell itself. Thus cells with F = 0 would be empty cells,

F = 1 would indicate completely filled cells and 0 < F < 1 would indicate cells

which contain the interface. For incompressible flows the volume of a fixed mass

of fluid does not change as it travels from one place to another. Thus moving with

a parcel of fluid in an uniform grid, the value of F does not change. This leads to

an evolution equation (7.1) for F

Ft + (~u.~∇)F = 0. (7.1)

where ~∇ = ( ∂
∂x
, ∂

∂z
) and ~u = (u, w). Given an F -field at time t = 0 and an

underlying velocity-field, equation (7.1) governs the evolution of F in time with the

underlying velocity field. One could now attempt at tracking the time evolution of

the interface by a numerical solution of equation 7.1 using e.g. finite differencing to

evolve the F -field in time and then using an algorithm to reconstruct the interface

knowing the F -field. However, this scheme runs into problems as the accuracy is

compromised due to the “smearing” of the F -field near the interface (Hirt & Nichols

[1981]). An alternative way of resolving the problem is to use the VOF method

which, simply stated, is a graphical way of solving equation 7.1. As mentioned

earlier, in a real fluid flow problem, there exists a coupling between the interface

evolution and the temporal evolution of the velocity field. In what follows, we

decouple the two and describe the technique used for moving an interface with

a prescribed velocity-field. As it will be seen, this in itself is a computationally

difficult task. The VOF method consists of two basic steps:



7.3 LVIRA - An interface reconstruction algorithm [Pilliod & Puckett, 2004] 231

• Take the initial distribution of F . This “F field” would contain the value of F

for every cell in the grid. Using this as an input, re-construct the interface in

those cells where 0 < F < 1. This step is known as Interface Reconstruction.

• Use the underlying velocity field to evolve the F -field in time and calculate

the new F -field at the next time-step. This step is called advection. Go back

to the previous step and re-construct the interface for the latest F -field.

7.3 LVIRA - An interface reconstruction algorithm

[Pilliod & Puckett, 2004]

As mentioned in the previous section, reconstruction involves drawing the interface

in every cell for which 0 <F< 1. The basic difficulty with reconstruction arises due

to the fact that given an F -field there is no unique way to reconstruct the interface

and mutiple representations are possible. Hence there are many algorithms availabe

in the literature for reconstruction e.g. SLIC, PLIC etc.. Each of these algorithms

introduce additional constraints to make the reconstruction unique. LVIRA or

Least-Squares-Volume-Of-FLuid-Interface-Reconstruction-Algorithm is one such

algorithm which was proposed by Pilliod & Puckett [2004]. LVIRA is a piecewise-

linear approach (PLIC) which represents the interface using a straight line (in 2D)

and a plane (in 3D) using the F distribution information of a 3x3 block of cells

centered at the interfacial cell. The constraint that it uses is that if the original

interface happens to be straight-line/plane, LVIRA is able to reproduce it exactly.

We implement LVIRA in two dimensions and the basic steps are listed below:

• Locate a cell with 0 <F< 1. Such a cell is called an interfacial cell.

• Take the 3x3 block of cells centered on the interfacial cell and calculate an

initial guess of slope, from the given distribution of F in the 3x3 block.

• With this guessed slope, draw a straight line in the interfacial cell.

• Move this straight line parallel to itself inside the cell in such a way that it

subscribes an area numerically equal to the area of the fluid occupying the

cell.
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• Calculate the perpendicular distance of this straight line from the cell cor-

ner. The cell-corner chosen for drawing the perpendicular depends on the

orientation of the normal and this will be explained later in detail.

• Extrapolate this line to a 3x3 block of cells, centered on the interfacial cell.

• Calculate the F -field using the area subscribed by this line for each cell in

the 3x3 block.

• For each cell, in the 3x3 block, calculate the square of the difference between

the F -field thus calculated using the area subscribed by the line and the F -

field supplied initially. By construction, this difference will be zero for the

central cell with coordinates (r, c) .

• Sum the above squares of differences, for each cell in the 3x3 block.

• Rotate the straight line by a small amount to obtain a new value of slope.

Repeat all the steps above to obtain a new value of sum of squares. Keep

doing this till a minimum value of sum of squares is found. Ensure that the

minimum is a global one.

• The slope and the perpendicular distance of the fitted line corresponding to

the global minimum are the desired values and the fitted line is the desired

aproximation to the interface for cell (i, j).

In what follows, each of the steps mentioned above are described in detail. Before

this, it is useful to choose a few conventions.

• The unit vector n̂, normal to the line, always points in a direction away from

the fluid.

• The components of n̂ in the x and y directions are nx and ny respectively.

• The angle θ is always measured with the positive or negative direction of the

x-axis.

• P is the perpendicular distance of the straight line from one of the cell corners,

as described in figure 7.2.



7.3 LVIRA - An interface reconstruction algorithm [Pilliod & Puckett, 2004] 233

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

A

B

C

D

θ

θ

θ

θ

P
P

P P

Figure 7.2: The four possible orientation of the normal to the interface. The normal
is drawn at the cell-center and the hashed region indicates the region filled with
fluid. Note that the cell-corner that is chosen for drawing the perpendicular line of
length P, depends on the quadrant into which the normal n̂ points to.

It is seen from figure 7.2 that the normal to the interface can point towards any one

of the four quadrants depending on the orientation of the fluid. For the remainder

of this chapter, we will present formulae, only for a normal oriented towards the first

quadrant. The results for the other three quadrants can be recovered by rotation

by π/2 at a time.

7.3.1 Step A - Intial guess of slope

The initial guess of the slope for the line to be drawn in an interfacial cell is

calculated fom the Green-Gauss gradient by the following formula obtained from

Gerlach et al. [2006]. For meaning of symbols in equations (7.2) and (7.3), refer to
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r+1,c

r,c−1

r−1,c

r,c r,c+1

r+1,c−1

r−1,c−1 r−1,c+1

r+1,c+1
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Figure 7.3: A 3x3 block of cells centered on the interfacial cell with coordinates
(r, c). Here r stands for row and c for column. The task is to draw a straight line in
the interfacial cell (r, c) using the F -field information from its 8 neighbours shown
here.

figure 7.3.

nx = − 1

4x (Fr+1,c+1 + 2Fr,c+1 + Fr−1,c+1 − Fr+1,c−1 − 2Fr,c−1 − Fr−1,c−1) (7.2)

ny = − 1

4y (Fr+1,c+1 + 2Fr+1,c + Fr+1,c−1 − Fr−1,c+1 + 2Fr−1,c + Fr−1,c−1) (7.3)

The signs of nx and ny determine the quadrant into which n̂ points. We use nx

and ny to calculate θ, refer to figure 7.2 for the definition of θ. Equation (7.4) gives

the formula for calculating θ,

θ =
π

2
− tan−1

(
ny

nx

)
(7.4)

7.3.2 Step B - Fit a Straight line

Knowing the orientation of the line (from knowing θ), we need to draw a line at

this angle inside the cell and for this we need to calculate P . There are an infinite

number of straight lines inside the cell which have the same value of θ having

different values of P . To fix P uniquely, we determine the “shape” of the region

filled with fluid. Figure 7.4 shows the three different shapes possible. Note that
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Figure 7.4: The various shapes possible for a piecewise linear re-construction. The
shaded region contains fluid. The various shapes are (A) Triangle (B) Trapezium
(C) Complement of a triangle. The multiple criteria for each shape in equation 7.5,
is for the case θ < π/4 and θ > π/4.

this classification is possible knowing only F(r,c), the volume-fraction for the cell.

F(r,c) ≤
tan θ

2
or F(r,c) ≤

1

2 tan θ
→ Triangle (7.5)

tan θ

2
≤ F(r,c) ≤ 1 − tan θ

2
→ Trapezium (7.6)

1

2 tan θ
≤ F(r,c) ≤ 1 − 1

2 tan θ
→ Trapezium (7.7)

Else → Complement of a triangle (7.8)

7.3.3 Step C - Calculate the perpendicular distance

Once the shapes are identified, geometrical formulas can be used to calculate P ,

the perpendicular distance. These relations are easy to calculate from elementary

geometry. Note from figure 7.2 that that the cell corner used for defining P depends

on the orientation of the normal n̂.

7.3.4 Step D - Extrapolate line and calculate sum of squares

The constructed line is extrapolated into the 3x3 block as shown in subfigure A

of figure 7.2. The area subscribed by this line can be used to define a volume-

fraction for each of the 8 other cells in this block, denoted by Fnew while the

old volume fraction fields are denoted by Fold. For obtaining the best linear fit
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for an interfacial cell (r, c), we minimise the quantity
∑

r,c

(Fold − Fnew)2 where the

summation is performed over the 8 cells in the 3x3 block centered on the interfacial

cell. In order to minimise the aforementioned quantity, we need to rotate the line.

7.3.5 Step D - Rotate line

To rotate the line, we add incremental amounts to the components nx and ny of

the unit vector n̂. This causes the unit vector n̂ to rotate by a small amount dθ

clockwise or anticlockwise, depending on the signs chosen for the increments. In

this new configuration, we repeat all the above mentioned steps to calculate the

quantity
∑

r,c

(Fold − Fnew)2. This process of rotation of the line is continued until

the minimum of
∑

r,c

(Fold −Fnew)2 is found. Note that this should be a global min-

imum. The slope and perpendicular distance corresponding to the angle where the

global minimum occurs, completely determine the line. This line represents the

interface for the chosen interfacial cell.

The process described above generates a straight line for every interfacial cell.

These lines are expected to represent the interface with sufficiently high degree of

accuracy on a sufficently fine grid. In figure 7.5, we reconstruct a circle from exact

volume-fraction data calculated analytically. It is found that the reconstructed

circle represents the actual circle very well for a 30x30 grid resolution.

7.4 Advection

Having reconstructed the interface, we now have to move the interface using equa-

tion (7.1). This is once again done using a geometrical technique (see details from

Puckett et al. [1997]). This step involves geometrical flux calculations for each cell

wall as shown in figure 7.6. From this figure, it is seen that knowing θ and P , one

can calculate that the amount of fluid A leaving through the left hand wall of the
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Figure 7.5: Re-construction of a circle. The F− field is obtained by drawing a grid
on the circle and calculating the values of F for each cell. The resultant F−field is
given as an input to the re-construction code and the reconstructed circle is shown
here.

cell is:

A =

(
2P

cos θ
− u4 t tan θ

)
u4 t for u4 t ≤ P

sin θ

A =
P 2

sin 2θ
for u4 t ≤ P

sin θ
(7.9)

The two criterion in equation 7.9 are the ones which decide whether a partial or the

entire amount of fluid present in the cell in figure 7.6 goes into the neighbouring

cell. Once the fluxes are known, a numerical solution of equation 7.1 helps in

calculating the new values of Fr,c for every interfacial cell.

7.5 Benchmark tests

We report here results from some standard benchmark tests which have been per-

formed. Apart from this, the code was thoroughly tested for many cases of interface

orientation. The three standard benchmark tests well-known in the literature (see
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Figure 7.6: An illustration of the method for flux calculation for an interfacial
cell. The interfacial cell is effluxing into its left neighbour with the wall-velcocity
U . Here the “shape” of the fluid parcel is a triangle and only a part of the fluid
present in the cell is effluxed to the neighbouring cell on the right. This region is
represented in blue. The amount of efflux depends on the velocity at the cell-wall,
the size of the time-step 4t and the “shape” of the fluid-parcel present in the cell.

Gerlach et al. [2006]) are: (a) Translation test (ux = wz = 0) (b) Solid-body

rotation test (ux 6= 0, wz 6= 0) (c) Shear test.

7.5.1 Translation test

Figures 7.7 and 7.8 show the results of translation of a circle using the following

underlying velocity field

u = w =
1

30
(7.10)

In this test, the circle is expected to translate without deforming. It is seen from

figure 7.8 that this condition is satisfied.

7.5.2 Solid body rotation test

The solid body rotation test is designed to check the ability of the interface to

handle a constant vorticity. Figures 7.9, 7.10 and 7.11 show the results of solid

body rotation of a square by an angle of 2π. The underlying velocity field is
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Figure 7.7: A circle being advected by a uniform velocity field u = w = 1/30 at
T = 0. The motion of the circle should be parallel to the diagonal of the square
domain.

Figure 7.8: The circle gets advected like a rigid body along the diagonal of the
square domain.
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Figure 7.9: Solid body rotation at t = 0.

specified as the following:

u =
yπ

30
− 1.5

w =
−xπ
30

+ 1.5 (7.11)

Note that the quantities 30 and 1.5 appear in equation 7.11 due to domain size. It is

seen from figure 7.10 that shape of the square is approximately preserved although

the corners appear to become rounded in contrast to the sharp right angle at T = 0.

The latter is to be expected because of the discontinuity in the derivative at the

four corners.

7.5.3 Shear test

The vortex test is designed to test the ability of the interface to get deformed and

is the most demanding of the three bechmark tests produced here. The underlying
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Figure 7.10: Solid body rotation at t = T/5 where T is the amount of time taken
to rotate by an angle of 2π. Note the smoothening and slight deformation of the
corners.

Figure 7.11: Solid body rotation at t = T .
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Figure 7.12: Shear test - t = 0. The underlying velocity field is given by equation
(7.12).

velocity field is:

u = − sin
(πx

30

)
cos
(πy

30

)

w = cos
(πx

30

)
sin
(πy

30

)
(7.12)

Note that the factor 30 appears in equation (7.12) due to the domain size of figure

7.12.

7.6 Coupling the interface with Navier-Stokes

Until now, we have only discussed how the interface responds to advection while

the effect of the interfacial motion on the fluid velocity-field has been suppressed.

This however does not correspond to a real situation where the flow-field is coupled

to the motion of the interface and vice-versa. There are two ways in which this

coupling can be achieved numerically. We can either solve for a single fluid in

which case the effect of the “outer” ambient fluid enters through the boundary
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Figure 7.13: Shear test - t = T/2 whetre T is the time taken for a 360 degree turn
around the center of the domain.

Figure 7.14: Shear test - t = T . Note that the circle becomes tear-drop shaped as
it gets advected along.
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conditions at the interface. Alternatively, we could also solve for both the fluids

simultaneously. Both methods have their advantages and disadvantages. In case

of the former, the main difficulty lies in applying the boundary-condition at the

interface. This is because at every time step, we have to apply the boundary-

condition on a surface whose shape is evolving with time. This is especially difficult

when simulating problems like the hydraulic jump, due to the large deformation of

the interface at the jump. The exact non-linear boundary conditions at the interface

for the continuity of tangential and normal stresses are substantially complicated in

themselves and applying these on a curve/surface whose shape changes with time

is a difficult task. Many recent VOF models bypass this difficulty by solving for

both the fluids simultaneously. This has the advantage that one does not need to

prescribe boundary conditions at the interface but only at the domain boundaries,

which can always be chosen as per convenience. However, the primary difficulty

here lies in dealing with the density discontinuity at the interface. This severely

restricts the range of density-ratios which can be solved for numerically. This

difficulty is not there in the one-fluid model. Despite its limitations, the two-fluid

VOF model has gained popularity in recent times. The interested reader is referred

to Flow-3D [2010] for a discussion on this. GERRIS, the code that was used for

the simulations reported in this thesis, is based on the two-fluid VOF model.

7.7 Conclusion

In this chapter, we have reviewed in some detail, the Volume-Of-Fluid (VOF)

method. An implementation of the LV IRA algorithm for interface reconstruction

was discussed in detail. The details for the advection algorithm were also presented.

Standard benchmark tests have been performed to validate the code and these

results are reported here. In future, we plan to couple this code to a Navier-Stokes

solver in order to be able to simulate interfacial flows.
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