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Abstract

In this thesis, vortex shedding from fixed and inline oscillating rectangular cylinders is inves-
tigated for the first time to our knowledge. This is a numerical study, and the Lattice Boltzmann
method has been used for simulations. Grid stretching was employed to reduce computation
time. Cylinders of different aspect ratios, defined here as the ratio of height to width, namely:
1, 2, 4, 6 and 8 have been used in this study. Critical Reynolds numbers (Re.,) for fixed rectan-
gular eylinders in uniform flow have been calculated, and it is shown that Re,., decreases slightly
with increasing D/h. It is also shown that the growth rates of disturbance in the wake varies
linearly with (Re— Re.,) for rectangular geometries too when Re is close to Re,, as predicted by
Landau (Landau & Lifshitz 2005a) and later confirmed by the experiments of Sreenivasan et al.
(1987) and Provansal et al. (1989) on a circular cylinder. The variation of Strouhal number (St)

with Re has also been discussed for different rectangular cylinders.

In flow past a fixed cylinder, the mode of vortex shedding is always antisymmetric, named
the Karman street. However, with the cylinder oscillating in the streamwise direction, the
mode of shedding can be either antisymmetric, symmetric or chaotic depending on the forcing
parameters. Previous stndies by Barbi ef al. (1986) and Ongoren & Rockwell (1988) have
found different antisymmetric and symmetric modes in these kinds of flows. Chaotic flow in the
wake of an inline oscillating circular cylinder received renewed attention after its rediscovery
by Perdikaris et al. (2009), who attributed it to mode competition between antisymmetric and

symmetric modes, but the data presented by them do not indicate this.

[n this thesis, we have reproduced all the symmetric modes reported in the literature, and
also discovered a new symmetric mode, named S-I11. To our knowledge, this is the first munerical
study to report the S-IT mode of vortex shedding. A study of occurrence of different modes for
varying forcing [requency at fixed e and A/ D has been done, and it shown that different modes
of shedding (antisymmetric, mixed, S-I, S-1I, S-IT1) exist in different geometries. A physical
mechanism based on ‘ground effect’ has been propoesed to explain the S-1I and S-TII modes of
shedding in tall cylinders. We also report chaotic flow for certain values of forcing frequency
and amplitude, and show clear evidence that this is due to mode competition in the sense of
Ciliberto & Gollub (1984), who were the first to report mode competition leading to chaos in

another context.

Also, a Fourier-Spectral code developed to study the merger of vortices has been validated

using existing results in the literature and some preliminary results have been presented.
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Chapter 1
Introduction

1.1 General

Vortex shedding from fixed cylinders has been extensively studied since at least the time of
Vincenc Strouhal. An extensive survey of studies on vortex shedding from fixed circular cylinders
can be found in Williamson (2000). Understanding the stability of offshore structures was one
of the main motivations for these studies in the 1970s. Vortex shedding in the case of a uniform
flow past a fixed cylinder is always antisymmetric; and the stability of this spatial arrangement
of vortices was analytically studicd by Theodore von Karmdn for the case of point vortices in
an infinite domain. A particular lateral spacing of vortices was found to be the only stable
configuration. The flow in the wake of the cylinder is characterized by two time scales: that of
the flow and that of the shedding of vortices from the cylinder. The cylinder experiences both
drag and lift forces, the latter being the result of formation of low pressure zones on the ‘top’
and ‘bottom’ surfaces alternately. Both drag and lift Auctuate about a mean value, which is
nonzero for the former and zero for the latter.

The flow pattern changes with the Reynolds number (Re}, which is defined as the ratio of
inertial to viscous forces in a given flow. It is given by: Re = UD/v, where I/ and D are velocity
and length scales in the problem respectively and v is the kinematic viscosity of the fluid. In
the case of a circular cylinder, the flow is steady for Re < 48 with two bubbles always attached
to the cylinder. As Re is increascd beyond this critical value, the flow in the wake nndergoes
a Hopf bifurcation, with an expouential increase in the amplitude for short times {Sreenivasan
et al. (1987), Provansal et al. (1989)). This regime is governed by the Landau equation (Landau
& Lifshitz (2005a)):

— - =AW= ol A + O(| A)P). (1.1)

Here, {A(t)] is the amplitude of the disturbance, 4 is the growth rate and o (> 0) is the
Landau constant. For very short times |A| >> |A|°, and hence the growth is exponential.
However, for longer times, one has to take terms of higher order into account. In the limit of
t = oo, the amplitude of the disturbance saturates, and is given by |Amer| = +/27/a (Landau
& Lifshitz (20054)). ~ is a function of only Re, and for small deviations of Re from RHe..,
we may write ¥ ~ (Re — Re..}, where Re. is the critical value of Re for which the cylinder
starts shedding. The growth rates obtained from experiinents can be used to determine the Re,..
(Sreenivasan et al. (1987), Provansal et al. {1989)). The flow remains two-dimensional for upto
Re = 200 (Williamson (2000)).

When the cylinder is forced to oscillate iu the streamwise direction or when there is an
oscillating flow at the inlet, the antisymmetric mode need not be the only mode of shedding.
Experiments carried out by different investigators have shown that different symmetric modes
exist in the above case. Awnother interesting phenomenon reported is that of lock-on. This
refers to the entrainment of shedding [requency by the frequency of cylinder oscillation. The
shedding frequency cau either lock-ou'to the frequency of oscillation or on to its sub-harmonic,
and whether, and to which frequency lock-on takes place strongly depends on the osciilation
frequency. In this numericul study, different inodes of vortex shedding, their competition and
effects of Lhis competition on the flow have been investigated.

dA{t)|
t
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1.2 Vortex shedding from inline oscillating cylinders

Griffin & Ramberg (1974) were oune of the first to study vortex shedding from a streamwise
oscillating circular cylinder placed in a uuiform Aow. The experiments were carried out at
Re = 190. The two other non-dimensional numbers relevant to this study are the frequency
ratio and the reduced velocity. The former is defined as the ratio of excitation frequency (f,)
to the froquency of shedding in the fixed eylinder ease {f,}), and the latter is defined as the
ratio of free stream velocity (L) to the velocity amplitude of oscillation of cylinder {f.I}). Two
different. regimes of synchonization were found when the frequency ratio was varied with the
remaining two parameters fixed. In regime-I the frequency of vortex shedding was locked onto
the frequency of cylinder oscillation, and in regime-II it was locked onto half the frequency of
cylinder oscillation. The spatial arrangement of vortices was complex in regime-I, and in regime-
Il it resembled the arrangement in the wake of a cylinder oscillating in the transverse direction.
Also, for f. close to 2f, the streamwise spacing between the vortices was found to decrease with
increasing f..

Barbi el ol. (1986) studied vortex shedding and lock-on in oscillatory flow past a fixed circular
cylinder. The occurrence of lock-on was clearly demonstrated in their experiments. Power
spectra for the cases of increasing frequency of cylinder oscillation showed that the shedding
frequency is gradually entrained by the oscillation frequency. This study also reported the
symmetric shedding mode, in which two vertices are shed at the same instant during a cycle,
and frequency of vortex shedding coincided with the oscillation frequency.

Ongoren & Rockwell (1988} carried out a systematic study of vortex shedding from circu-
lar cylinders oscillating at an angle o (0° < « < 90°) to the freestream velocity. The non-
dimensional amplitude was fixed at (.13 and the non-dimensional frequency was varied from
0.5 — 4. Four different types of antisyinmetric shedding modes, named as A-I, A-II, A-1IT and
A-IV, and a symmetric mode, named as S, were identified. The numbers indicate the number
of vortices shed during a cycle of cylinder oscillation. A-1 closely resembled the Karnnan street,
and one vortex was shed at each end during each cycle. The frequencies of shedding in A-II,
A-U11 and A-1V modes were same as the oscillation frequencies of the cylinder (lock-on). A-III
and A-IV involved pairs of counter-rotating vortices. In the § mode, two vortices were shed
at the same instant during one period of cylinder oscillation. A-ITI, A-IV and 5 modes were
observed only for a £ 90°. Competition between antisymmetric and symmetric modes leading
to switching of modes during an experiment was observed. Figure 1.1 shows different modes
obtained for different frequency ratios at Re = 855, A/D = 0.13 and f,/fo = 0.5 - 4.

Xu et al. (2006) discovered a new symmetric mode, named S-1I, in their experiments on flow
past an inline oscillating circular cylinder. Two pairs of binary vortices were shed during each
cycle of cylinder oscillation at the same instant, and the frequency of shedding was locked onto
the frequency of oscillation. There was considerable reverse flow in the systein which aided the
formation of secondary vortices on the eylinder surface. These experiments were carried out at
high values of Re, A/D and f./f,. The lift force on the eylinder during symmetric shedding is
zero doe to the symmetry present. Figure 1.2 shows this new mode of symmetric shedding for
Re =500, A/D=05and f/f, = 1.714,

In their experiments, Konstantinidis & Balabani (2007) lound that the symmetric arrange-
ment of vortices is, at least for small amplitudes, always unstable; and always gives way to an
antisymmetric pattern downstream. Their study used an oscillatory fiow at the inlet. Their
spectra confirmed the occurrence of lock-on in symmetric shedding as previously reported by
Barbi et al. (1986). '

Comparatively fewer studies have been carried out using square cylinders. Mineswitsch et al.
{1994) studied this problem using numerical simulation. Their results are for Re = 200. They
identified three snbregimes within the antisynunetric regime: 1. regime of superposition (low
frequencics and amplitueles, and very ligh Freqencies); 2. the lock in regime (1.6 < fo/f, <
2.4); 3. the transition regime beyond lock in (large wnplitudes and frequencies). [n the first
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Fiovne 2. Preferred modes of near-wake structure for various ratios of excitation frequency f, of
rylinder to vortex shedding freq 'y /2 from cor ling stationary cylinder. All photos taken
it instant when eylinder is in maximum upstrenm position during osecillation eyele.

Figure 1.1: Different modes of vortex shedding obtained by Ongoren & Rockwell (1988) for
Re = 856, A/D = 0.13 and f./f, = 0.5 — 4. The frequency ratio is increased from 0.5 to 4
as seen in the photos. The mode of shedding changes from antisymmetric (f./f, = 0.5) to
symmetrie (fe/f, = 3). (Reproduced with permission from the Cambridge University Press)
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Ficvre L Sequential photographs of a symmetne binary vortex sireet at £/ f, = 1.74,
Re =500 and A/d =05

Figure 1.2: The S-II mode of vortex shedding discovered by Xu et al. (2006) for Re = 500,
A/D 0.5 and f./f, = 1.74. Diflerent phases during one period of eylinder oscillation are
shown in the photos. As clearly seen, a pair of binary vortices is shed at the same instant during

one period of oscillation. (Reproduced with permission from the Cambridge University Press)
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regime, there was no interaction between voriex shedding and cyfinder oscillation; the vortex
shedding frequency was same as that of the corresponding fixed cylinder case. The vortex
shedding frequency in the second regime adjusted itself such that f; = f./2. In the third
regime, symmetric structures were observed close to the cylinder. However, they were found to
give way to antisymmetric street further downstream.

Table 1.1 lists the studies which have found symmetric shedding, and the list is not exhaus-
tive.

Researchers Re e/ ks AjD
King et al. (1973) 5-15x10° 2-42 0-02
Barbi et al. (1986) 40000 0.7 0.2
Couder & Basdevant (1986) 200 2 0.42
Ongoren & Rockwell (1988) 855 0.5 -4 0.13
Detemple-Laake & Eckelman (1989) 152 14-17 NA
Okajima et al. (2000) 9000 2.4 0.08
Xu et al. (2006) 500 1.74 0.5
Konstantinidis & Balabani (2007) 1180 & 1240 3—-4 002 &0.04
Rao et af. (1992) 1000, 4000 2.5 0.2
Zhou and Graham (1992} 400 — 600 1.5-25 (.32 -048

Table 1.1: Some of the studies {experimental and numerical) that have reported symmetric
shedding {partly from Konstantinidis & Balabani (2007}). The first eight are experimental
studies and the last two are numerical simulations.

In their numerical study on oscillatory flow, with no mean flow imposed, around a circular
cylinder Vittori & Blondeaux {1993} reported chaotic flow, and they found that the route to chaos
in their case was quasiperiodic. The two non-dimensional numbers, the Keulegen-Carpenter
number (K¢ = U,T/2a) and the Reynolds number (Re = 2all,/v), were varied between 15.7 —
157 and 50 — 500 respectively. U, is the velocity amplitude of inflow, T is the time peried of
inflow and a is the radius of the cylinder. For He < Re.;, two bubbles were found attached
to the cylinder during either half of the oscillation period. On further increase of the Re, the
top-bottom symmetry was broken with the attached bubbles being of different strengths, When
Re > 250, a “transverse sheet” mode was observed in which large vortex structures generated
during each half cycle were found to move in a direction perpendicular to direction of mean flow.
A secondary frequency was generated in this regime, which slowly increased in value with Re,
and locked on to the primary frequency for 340 € Re < 370. The flow was found to be chaotic
for 370 < Re < 380. On further increase in Re to 400, the flow was found to be primarily
periocdic again, but with spots of chaotic motion.

In a recent study, Perdikaris et al. (2009) found chaos in the wake of an inline oscillating
circular eylinder in a uniform flow. Their computations were carried out for Ke = 400 and
Re = 190, but only the results in the former case were discussed. The cylinder underwent forced
oscillations at the fixed Strouhal frequency with amplitude of oscillation being varied. The flow in
the wake was chaotic for 0.18 < 4/ < 0.23, with antisymmetric shedding on either side of this
range. Based on the spectra obtained, they surmised that the route to chaos was quasiperiodic
and reason for the chaotic Row was competition between antisymmetric and symmetric modes of
vortex shedding. However, the dath was not conclusive to support their hypothesis that chaotic '
flow resulted due to mode compelition. In chaos driven by mode competition, one would have
intuitively expected that antisymmetric and symmetric modes wonld be dominant on either side
of the chaotic window, but this was not observed. Counversely, the pattern was antisymunetric
on either side of the chaotie window, which is not suggestive of mode competition. Tn lact all
their spectra indicated antisymumetric shedding,
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Fravne 2 Optical-intensity patterns for the (4, 1) and (7, 2) mocdes, respectively
The first index gives the oumber of angular maxima
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Figure 1.3: Mode competition in parametrically forced surface waves (Ciliberto & Gollub
(1985)). A column of water was excited using sound waves from below, and different pat-
terns formed were observed. Figure 2 in the photo shows the two different dominant modes,
and Fig. 3 shows the chaotic window sandwiched between these two modes. (Reproduced with
permission from the Cambridge University Press)

Chaos due to pattern competition is a general reason in many systems for the flow to be-
come chaotic. This was discovered by Ciliberto & Gollub (Ciliberto & Gollub (1984), Ciliberto
& Gollub (1985)) in their experiments on forced surface waves, where they observed chaotie
windows sandwiched between two dominant modes. Water in a eylindrical container was sub-
jected to small vertical oscillations. Chaos was found to occur at the intersection of stability
curves of two different stable spatial patterns. Period-doubling bifurcations were observed, but
the results were not conclusive enough to support this. Figure 1.3 shows these modes and the
chaotic window.

1.3 Motivation and objectives of the study

The main motivation for this study is to nnderstand the How around an aceelerating body,
Sinusoidal variation of veloeity is one of the simplest forms of acceleration, and this is the form
used in this study. Inline oscillating rectangular cylinders are studied for the first time to our
knowledge in this context. It is shown that the geometry has nontrivial effects on the How
field. This study is a first step towards understanding how the fluid flow changes when a body
accelerates through it. This study has applications in tracking of submarine hodies.

In this study, vortex shedding from cylinders fixed in uniform and oscillatory Hows has been
studied numerically. The lattice Boltzmanu equation is solved to obtain the flow parameters.

and this numerical technigue will be discussed in the next chapter. Dilferent modes of vortex
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shedding have been reproduced, and a new symmetric mode has also been discovered. A kine-
matic mechanism to explain the S-11 mode in rectangular eylinders is proposed. It is shown that
chaotic flow in the wake of a streamwise oscillating eylinder is indeed due to mode competition
in the sense of Ciliberto & Gollub.






Chapter 2
The Lattice Boltzmann Method

Although the Lattice Boltzmann method {LBM) is available in a large volume of literature,
the basic idea is sketched out here with the primary aim of making this thesis self contained.
This discussion will hopefully provide important concepts regarding the LBM to a beginner.
However, an expert on LBM may skip this chapter entirely.

2.1 The Lattice Boltzmann Method

LBM is one of the techniques used to simulate How of a real fluid numerically. The lattice
Boltzmann equation (LBE} is the discretized form of the discrete Boltzmann equation. Here,
the discrete Boltzmann equation refers to the discrete set of velocities used in the Boltzmann
equation; and the discretized form is the one in which both space and time have been discretized
in the latter equation. The Boltzmann equation has been treated in great detail in the book
by Harris (2004), and in the first chapter of “Physical Kinetics” by Landau-Lifshitz (Landau &
Lifshitz {1981)). Discussions on LBM can be found in the books by Dieter A. Wolf-Gladrow
(Wolf-Gladrow (2000)} and Sauro Succi (Succi (2008)), and in Chen & Doolen (1998). The LBE
is an evolution equation for the velocity distribution function (f), with streaming and collision
being the processes responsible for changes in f. Macroscopic flow quantities like density, velocity
and energy can be obtained by taking appropriate moments of f. It will be deseribed briefly in
this chapter how the Navier-Stokes equation {NSE) is recovered from the LBE, with the BGK
(Bhatnagar-Gross-Krook) approximation, in the limit of low Knudsen (Kn = A/L) and low
Mach numbers (Ma = v/c,). Here, A is the mean free path, L, v are the relevant length and
velocity scales in the problem and ¢ is the speed of sound.

There are advantages of solving the LBE over solving the NSE, the first one being the
abgence of nonlinearity in the convective term in the LBE. The velocity distribution in LBE is
convected with particle speeds, which are constant. The equation is of course still nonlinear,
but the nonlinearity is hidden in the approximate form of the collision integral. The second
advantage is the ease with which an LBM code can be parallelized. And the third advantage is
that the pressure is a local quantity in the LBM as the flow is weakly compressible, unlike in
the incompressible NSE where pressure is a global quantity and a Poisson equation needs to be
solved for it.

2.2 Liouville equation, BBGKY hierarchy and the Boltzmann
equation

Statistical physics is the study of systems with very large degrees of freedom, usually ~ 1023, In
classical statistical physics, all molecules which mnake up the macroscopic system are assuined to
obey Newton's laws of motion. So, if we know the compiete state of the system (positions and
velocities of all molecules) at some initial time, then we can in principle determine the state of
the sysiem at some other time ifstant in future. However, as this involves solving a system of
N, where N ~ 102, second order differential equations, this approach becomes impractical.
The state of a given system is advantageously described by representing it by a point in phase
spacc or [-gpace. This has 6N axes representing 3N spatial coordinates (¢, 1 = 1,2,..., N) and
3N velocity components (;_Ji, i=1,2,..,N). Here, g; and p; are the position and velocity vectors

th

of the i** particle. As the molecules move about in time, the phase point moves about in Ehis
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phase space. To calculate the time average of a quantity one has to follow the system’s behaviour
in time, which can be impractical. To simplify this, an 5 number of different micropscopic states
(ensembles) which give rise to the same macroscopic state are considered, and these fill the phase
space of the system. The positions and velocities of the particles in these n systems change with
time, and to obtain the time-averaged value of a quantity one needs to find the average with
respect to these n states (ensemble average). This is the idea behind the Gibbs Ensemble.
The density of these states in the phase space is decribed by a normalized density distribution,
Sv(q,p,t), which is the number of molecules per unit phase-space volume normalized by the
total number of molecules. This distribution obeys the normalization condition:

/fw(gqgﬂ qusrim = 1. (2.1)

Here, ¢ = (q1,92,---qn) and p = (p1,p2,...,PN)-

The description of microscopic motion is not inherently probabilistic, but as we work with
incomplete information (initial conditions) to begin with, the description becomes probabilistic
(Landau & Lifshitz (2005b)). Now, the advantage of using the ensemble is that to calculate the
average of a quantity of the system one need not follow the evolution of system in time, but
needs to consider the different microscopic states which would give rise to the same averaged
value of the quantity. This is due to the ergodic hypothesis.

T
<g>= fin 1 [ a0~ [g0)fy(a.p.)dadp (2)
T—o0 T J0

Liouville equation describes the evolution of this probability density in phase space. It has a
form similar to that of the continuity equation of fluid dynamics, but with the velocity replaced
by the velocity of phase space coordinates. Liouville equation is:

N

df; of; : of, A4 9p, ‘
6—:’+v.(gfw)= 8!\’ + (Z G Zpl :) + fn (Z % ’dei) =0. (23)

Here, w is the velocity in phase space. The motion of the particles of the system is governed by
Hamilton's equations which are given by
JH . OH

Pi= o—

; = ——, 24
=2 EJ&' =% dq; (24)

H(q,p) is the Hamiltonian of the system. Using these equations in eqn. 2.3 we get,

N . N P
Ofn Z Afn Z . Ofn
e e i+ = u. 2.!
ot ) ( I—P“ Ay * = B Ip; ) ¢ (2:5)

=

Equation 2.5 is the simplified form of Liouville equation. This equation contains more informa-
tion than needed to describe the system at the macroscopic level, and the parameters of interest
depend only on far fewer degrees of freedom. Hence, we make use of reduced distribution
functions. An R-particle (R < ) distribution function is defined as:

N
, N _
I (N R / In(quy e gn s Ly, pas f) r[ dyidp;. (2.6)
) : i=R+1
The factor N!/(N — R)! vepresents the ways in which /7 pacticleg can be chosen from N particles.
h, is 1h:= probability distribution in 6R dimensions in the '-space. Now, mulliplying eqn. 2.5
[[ ey Hyidp and integrating we obtain, after some algebra, the equation:
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r i O o= iy Ofn Oir1 Ofnn
LS = An AR N_R d ODiRy1 R-H .
ot ; m’ Oy !JZ= A 03;, ( )/ Th+1 ; g Bp; (2.7}

It is assumed that intermolecular forces between two molecules ¢ and J can be represented
using a two-particle potential ¢y;. So, p; = E”n \ -3—1- Equation 2.7 is called the BBGKY
hierarchy of equations. These equations govern the evolution of an R-particle distribution func-
tion. However, these equations are not closed for a given R, and involve distribution functions
of higher order as evident from the right hand side of eqn. 2.7. To solve for the R-particle dis-
tribution function one needs to know the {(R+1)-particle distribution function and so on. The
Boltzmann equation is a single-particle distribution function, and is obtained from the BBGKY
equations by putting R =1 in eqn. 2.7. As mentioned before we have F; on the right hand side.
The closed form of this cquation was first obtained by Ludwig Boltzmann in 1872 by making the
stosszahlansatz (molecular chaos assumption), according to which any two molecules entering a
collision are not correlated before the collision, but are after it. Boltzmann used this to explain
irreversibility in Nature, and through his famous H-theorem he showed that entropy of a system
would always tend to increase. The Boltzmann equation was later derived more systematically
from the BBGKY equation by Grad (Harris (2004)). The formal derivation of Boltzmann equa-
tion can be found in textbooks of Harris (2004) and Landau & Lifshitz (1981). The Boltzmann
equation is:

a
o, .

a
Here, vl,vz and vy, v are the velocities of molecules involved in inverse and direct collisions
respectively, dw is the collision cross-section, v,q = lvg — v]| is the relative speed of molecule 2

with respect to molecule 1 in the inverse collision. The conditions under which eqn. 2.8 is valid
are (Harris (2004}):

0f [dwdl’2vrel(f(f Ul: [" U?:t] f(ﬁs”_lrt)f(ﬁtﬁs t)) (28)

o The gas is dilute, so that only binary collisions may be considered important.

¢ The properties of the gas depend slowly on spatial coordinates, so that the collisions can
be considered as local events in physical space.

¢ The range of intermolecular forces is very small for the first two conditions to hold.

Maxwell obtained the equilibrium velocity distribution function hased on isotropy arguments,
and Boltzmann showed that Maxwell's distribution satisfied his equation {eqn. 2.8) and also
that it is the only steady-state solution. The distribution is given by

Ry
f ez, t) = thp(—(—%ﬁ%)- (2.9)

Here, pis the density of the fluid, K (= kp/m) is the gas constant, kg is the Boltzinann constant,
T 13 the local temperature, D is the number of dimensions of space, v is the velocity of a particle
and u is the macroscopic velocity of the fluid. If a system is not in local equitibrium, then the
collision events bring the system back to local equilibrium. To simplify eqn. 2.8, Bhatnagar,
Gross & Krook (Sucei (2006}}) approximated the collision integial to: —(f — f*) /7, where f
and f7 are the nonequilibrium and equilibrinm distribution functions respectively and 7 is the
collision time-scale. So, the Boltzinann equation with the BCK approximation reacs: '

()f af _ e :
dt __ - .__(f fon, {2.10}

Equation 2.10 seems linear, but the nonlinearity is hillden in 9. The macroscopic variables are
given by the following formutae:
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pla,t) = ff(ﬁ,g,n@: (2.11)
pla, tyu(z, t) = ].f(ﬁnﬂ‘flﬂffﬂi (2.12)
pz.telet) = [ fa - wide (2.13)

2.3 The Lattice Boltzmann Equation

If one uses a discrete set of velocities, eqn. 2.10 can be re-written as:

Ofi | Ofi 1. eqy o ; p
o gy = =(fi— £ i=012,..8 (2.14)

Here, S is the number of discrete velocity sets used. We choose U, L and n, as the appropriate
velocity. length and number-density scales in the problem. The convective time-scale then is
L/U and let the collision time-scale be 7., Non-dimensionalizing equ. 2.15 using these scales, we
have t' = tL/U, |v}| = |ui|/U, |2'| = |a|/L, 7" = 7/7,, V' = LV and f! = fi/n,. An important
point to note is the different time scales used to non-dimensionalize the advection and collision
processes. Using these we get,

.ryz + .ﬁ_f: = _._1_

o L og 7' Kn
Kn (= 7.U/L) is the ratio of the mean-free path to the characteristic length scale in the problem.
In the continuum regime, Kn — 0. Here it is treated as a small parameter as we are interested
in the continuum regime. Let |Az’| and At’ be the non-dimensional grid-spacing and time step.
If one chooses the particle velocity to be v/ = Au//At', the left hand side of eqn. 2.15 can
be written as the total derivative along a characteristic line. This form can be discretized and
written as

(f: = f:”‘l); i= 011121"'!“’" {215)

! ! At, e e "
filg + T_»‘iilf- J+A) — fllg,t) = —m(f: = f: LS (2.16)
Using the form of K'n. we finally have
T TUATSR 1 teor At ' Ieq
Lilel + v At F + At) — fia,t) = ‘?(f;' ot i B (2.17)

Here, At and 7 are dimensional quantities. Kquation 2.17 is called the lattice Boltzmann equa-
tion with the BGK approximation.
Now. for D = 2, we can write the equilibrium distribution 2.9 as

2 In! ).
B Pies o @ mge (B Noeon B -Zg-'_u-) 5
J& ) = g P (gﬁ’;-)‘-"l} (_—_‘zm' : (2.18)

Assuming the low Mach number limit, the last term on the right hand side of 2.18 can be
expanded in Taylor series to upto O(u?) (He et al. (1996)). This gives

2 g 22
. Pt v v (v u =
MNat) = ———=exp — | — l+ =+ ——— - . 2.19
F ) = momry o (21?1 ) ( RT " 2(RT)? 2RT &4
[f one uses a nine-velocity model in two dimensions, it is called the D2QY (dimensions-2 and
velocities-9) model. The velocities in a Cartesian co-ordinate system are given by
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Y= e(cos (i — L)m/2,sin (i — l)r/QJ; =183
V2¢(cos (i — 5)m/2 + m/4,sin (i — 5)7/2 + w/4); i=5,6,T,

In the D2Q9 model, one has evaluate integrals of the form:

0o

Ewi= / exp (—a%)a™du, (2.20)
-G

for calculating different moments of f, which give the macroscopic variables. In integrals of the

form 2.20, z is a function of particle speed i.e., x = g(v;), and these can be evaluated using third

o

order Hermite polynomial (He et al. (1996)). For an integral of the general form

I = / exp (=) f(x)dz, (2.21)
the polynomial approximation is given by
5 3
Ip = / exp (—22) f(z)dr =~ Lw,-f(:r.,-). (2.22)
—00 i=1

Here 2;'s are the roots of the third order Hermite polynomial (Hy) and w;'s are the coefficients
which are given by

antinl/m
W= ————75,; =23 (2.23)
(Hn-{—l(-'ri)]z
The third and fourth order Hermite polynomials are given by
Hy(z) = 82% — 120; Hy(z) = 162" — 482° + 12. (2.24)
Solving these we get: x; = —+/3/2, 13 = 0, 23 = /3/2, wy = J7/6, wy = 2y/7/6 and

w3 = /7/6. Using these values and after a lot of algebra, f{? for the D2Q9 model can be
written as

. 2
£ =% (1 - gi‘j) i=0; (2.25)
y 1 e 0(_@{}2 3 u? ; & 3 s
ff’Zﬁ”(‘”? 3 a2 ) =LA @)
" 1 cwe  9(uwc)? 3u? .
fi'“':E”(l”?*i g g ) FLE (2:27)

Here, RT = ¢ = ¢2/3. ¢ is speed of integration and ¢, is the speed of sound.
s : I

2.4 Euler and Navier-Stokes equations from the Lattice Boltz-
mann equation (LBE)

The Euler and Navier-Stokes, equations can be recovered from the LBE by carrying out a
multiple-scale analysis. A more detailed derivation can be fonnd in the book of Woll-Gladrow
(2000). In this method, the nonequilibrinm distribution function (f) is expanded in powers of
Kn, which is treated as a small parameter. The leading-order term (f“?) is the equilibrium dis-
tribution function and the higher order terms represent departures from the eqnilibrium state.
The time seales and length scale are also separated in terms of “fast time-secale” and “slow
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time-scale”, where the former represents the streaming motion of particles on very short time
scales and the latter represents processes like convection and diffusion which happen on large
time scales. After separating the time and length scales, terms of the same order in Kn are
equated which gives the Euler equation at the first order, and the NSE at the second order. The
method is briefly described below.

The perturbation expansion of f is given by:

Fi= O+ efM 4+ 25 4 3508 4 o). (2.28)

The expansion 2.28 is called the Chapman-Enskog expansion. Here, f,-[") is the equilibrium

distribution function, fI*. The _f_.( Is, (k=1,2,3,...) represent departures from the equilibrium
and do not contribute to the mass, momentum and energy as these quantities are collisional
invariants. So, we have

Zf}“’ - Zef-kf}“ =0k=1,2.3,... (2.29)
k k

Now, expanding the left hand side of the eqn. 2.17 in Taylor series we have

af;

2 r 2 a2
d{z At s dfz Af () f; (A” d f, {A!‘J - ) ()f

2 At fea
oz B2 3 T ogop Wl g tligypg (A7 +O(BP = (f, £,

(2.30)

Introducing two different time-scales, t| and ty and length scale z,

0 _, 0 a0 0 P

i (}t] df,g' i fa_l— (2.31)
Using 2.31 and 2.28 in eqn. 2.30 gives us (term by term):
% =€ (f,f;) + € (%}E F a{j::) + O("); (2.32)
vi ?)L =i (v, %) 4 (r_(i{:_i]) + O(€%); (2.33)
a;,ﬁ' =€’ ( a;f?—) + O(e); (2.31)
;_%% — ¢ (z_%j{l) b O(e). (2.36)

Using these in eqn. 2.30 gives

9 eq 9 fe . ) (1) ) eq 9 el
eAt (EL— + t,i> b e2At (('f 1 o/, i t.',-.(__"!‘ |

vty — dry ZI8) oty — dny
25 r ) {-,}Jrq:rr
% o S el e ‘ (f')u At ¢ g (2)
;2 f‘)' ‘ i 5V U ——— T —— 2 )
AR | S g b — - (e, 12+ o).

Clomparing terims of O(¢), we have
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I

= 1 _
E| = o + v drl f (2.37)
The condition of conservation of mass is imposed by requiring that 3" B = 0, which gives
f)f:q ()f [§))] f)p 3puk
Z ( 6t; U Gyr + - f =3 B = 0. {2.38)

i

Equation 2.38 is the continuity equation. f,-“) dees not contribute to the mass by definition.
Equation for momentum conservation can be obtained by taking the first moment of E, with
respect to v, ie., 3 Eyvy = 0. So,

eq
S (G rug e 1) -0 (239)

i

The first term gives '%%‘l and the form of f;? is needed to evaluate the second term. This is
where the form of equilibrium distribution becomes important as it leads to the correct form of
{2, Bviyvue £

momentum flux density tensor. The second term can be written as =

form of f{7 is given by

=B (s Bt + e (gt - 2) ) (2.4

Here W;’s are the weights as found in the subsection 2.3 and j is the macroscopic momentum
per unit volume. We now evaluate the contribution of second part term by term:

. The general

2
P P [ PoC” o pC
_,0,-, E!: Wiviatig o ( 3 ctﬁ) 3 Oaf p{say) (2.41)

The contribution of the second term is zero as it involves summation over an odd number of
terms in v, i.e., 3, Witialigiy. 50, Po = 0. Now, the term gives

T

1 m \? kT 2
-P3 zpp_DkBTkBTZwvacxvzﬁvwvuiu?ué 2 (kBT) (—'ITL ) UTU5T(,;3.’,5. (242)

Tosvs = Oopdys + Baydgs + Sasbsy is the fourth order isotropic tensor. Using this to evaluate the
above expression, we ohtain

Py = Dalbog + pucus. (2.43)
Similarly, evaluating the last term we get Py = —gfnzﬁag. Adding all the Fj's, we get the
contribution as:

Fos = Plap + ptiatis. (2.44)

Hence, the momentum equation in this case becomes:

v Opw) | Olpua)  Op '
f)h (")LE”‘. B a:,t'-”. (215)

Equation 2.45 is the Euler equation which governs the motion of an ideal fiuid. Now, to derive the
correction to the stress tensor, one has to take the departure from equilibrium into consideration.
All terms of O(u?) have been neglected in f? when evaluating the terms below. Hence, the
below analysis is valid for only small Me. Collecting all terms of O(¢?) in eqn. 2.37 gives
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aopll) o pEq o ey 02 peq 42 req eq
af; Jdf, af, At (0*f, o f; d af, ) 1 2 =
+ ;. et L S + 2v;. = —— [, 2.16
( ity ¥ ity F g ¥ 2 c')ff ey PUn ot O iy rf' ( )

Again, evaluating the first moment of the eqn. 2.46 term by term, we have

=y My Oty

(1) o PEG i
S U g § Ve L), (2.47)

r)jeq
Zlm w‘m- (2-43)

i

(1)

To evaluate the above term, the relation obtained for f; ' in terms of derivatives of f/ in eqn.

2.37 is used. After some algebra, one obtains

Z ”m"wa 1,6 - ((j.lilj f)tl (Zf!u'w’f ) (‘)J ” ()xh (Z‘m”lﬂ“ﬂf )) . (249)

t

dPuﬁ

Considering the next term and noting that —5—“1 ~ Tz, WE obtain

At bl i At OPap At D '
5 : Um—(.}'r?— = —75}'1—2 T ST PO (2.50)
The above term, using the continnity equation is simplified to
At QT Ate® 8 0 _
> ‘- L.‘"T)?f— =33 o H‘Th(pun,)‘ (2.51)
Similarly, the remaining two terms give
At 3 of* At a9 0
= = 7 2.52
) l ViaVigViy 75— df{‘”; (-)rh ()‘“ , (3.131-:, Z!’m"—lﬁiﬂf ( 5 )
9] r’f 2
At 1 4Vi U, 2.53
met > Afdi[ ().5113 <)rm df[ (Z “ ”?f ) \%:88)

Adding all these terms and using the same analysis used in deriving the Euler equation ( and a
little algebra too). one obtains

N prug ) ( Ar)ri( 9l U(pu,.,-)i () r‘)[puu)) (2.51)
— A S — e - e A . e

ot 2 2 3 dx lex dr 13 ?);."1 a o 13

Adding the O(¢) and O(c?) terms, one gets the full Navier-Stokes equation.

d(pu)  O(puu) dp X L'( 9% pu d o (p ”))

: T = e ol (2.55)
i i du . rh rh
Here, v = (7 - 5') §. and the shear and bulk viscosities are the same. In the present code
At l and ¢ L. so v = l; (T -- l,) The code is stable only when 7 > 0.5, which ensures

positive kinemalic viscosily,



Chapter 3
The Code and Its Validation

In this chapter the following aspects of the numerical code are briefly discussed: grid generation,
equations solved, boundary conditions used and code validation. A nonuniform grid was used for
computations, and as the LB method is for uniform grids some interpolation scheme is required
to obtain the values of distribution functions at the nodes of the nonuniform grid. The algorithm
for this can be found in He & Luo (1997).

3.1 Computation domain and grid generation

A domain size of 75D x 75D, where D is the height of the cylinder, with nonuniform grid was
used for all cases. In this study the aspect ratio of a rectangular cylinder is defined as D/h,
where h is the width of the cylinder. The number of grid points used is close to a million in most
of the cases, and these numbers were arrived at after carrying out grid and domain independence
studies. Schematics of the domain and grid used are shown in figs. 3.1{a) and 3.1(b).

The nonuniform grid is generated in the following way: The number of grid points per unit
length is taken as N.pe and the number of points on each side of the cylinder is calculated as
L x Nepar, where L is D or h as appropriate. The uniform grid spacing is given by Az = Ay =
1/N.nar- Four layers of uniform grid are generated on each side of the cylinder with the values
of Ar and Ay calculated above. The following variables are used:

o N; and Nj, the total number of grid points in x- and y-directions respectively.

e (z1,4) and (xq,¥2), the coordinates of the bottom left and top right corner points of the
rectangular cylinder.

(%14, 14) and {F24,Y24), the coordinates of the bottom left and top right corner points of
the computation domain.

oz, =1y — 44z, 2 = 22 + 4Azx, y, = 11 — 4Ay and g = y2 + 4Ay, the points upto which
uniform grid is generated.

Ny and Ny, the number of grid points in the bottom left part of the domain.

r and Ar, stretching parameters. Here » > 1.

The following equation is solved iteratively to obtain the x-coordinates of the grid points:
2@)=x(i — 1) —r(x(i+2) —x(i+1)); i=N; -3, N —4,.., 1. (3.1}

The above equation reduces to: x(i) = (i — 1) + rAx. The value of r is arbitrarily assumed in
the beginning and is corrected to ensure that there are N, grid points in the region of interest.
The correction is done using the relation: » = » - 0.001 x {Ar/N,). As v > 1, one obtains grid
stretching as one moves awdy from the cylinder. The same algorithm is used for other régions
of the doinain too. The total number of gridl points used is fromn 3 x 10% {for a square cylinder)
to =2 108 (for rectangular cylinder of D/h = 8).

17
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Figure 3.1: (a) Schematic of the domain used in the simulations. Time signals are stored at the
monitor points A, B and €, located at (2h,0), (h, D) and (2.25D, 0.5D) respectively (not to
scale). (b) The grid nsed.
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3.2 Equations and boundary conditions

The lattice Boltzmann equation given by:

ME+ bt )= fat = —2(fi- [ i=012,..8 (3.2

is solved for the How, The above equation is lincar in f;, but the nonlinearity is hidden in ffq‘
This equation is supplemented by the equation for ffq. which is given by:

4 3 ul _ .
f;—eq=§ﬂ(1—§c—g)§ 1=0 (3.3)
e 1 we | 9ze)® 3u?y
= go(14 9%+ 3 - Gi) s -t (3.4)
1 we 9(we? 34t .
f:q = BE,() (1 + 30—2 § - ~ EC_J ; 1=15,6,7,8, (3.5)

The macroscopic variables, p and u, are found from f;’s as discussed in the last chapter.
The following boundary conditions were used:

o u=u,+ Ausinwt at the inlet and top and bottom surfaces of the domain.

. % = ga—‘; = () at the outlet.

e u = ( on the cylinder.

In the LBM, the boundary conditions have to be applied via f;. For the no-slip houndary
condition, the bounce-back scheme is used, and for the slip condition the reflective boundary
condition is used.

3.3 Code Validation

The code was validated for both fixed and oscillating cylinder cases. A square cylinder was used
for validation as previous results for the same geometry are available in the literature.

3.3.1 Fixed Cylinder

For flow past a fixed square cylinder, Stroukal nutnbers, defined as St = f,D /U which is nondi-
mensional frequency of shedding, obtained from the code were compared with the Strouhal num-
bers obtained from Okajima’s (Okajima (1982)) experiments and Ansumali et al’s (Ansumali
et gl. (2003)) numerical simulations. Figure 3.2 shows the comparison. As evident the results
are in good agreement with experiment and with another numerical simulation.

The drag cocfficients obtained for the fixed square cylinder case were compared with the drag
coefficients obtained from Okajima ef af (1997) and Sharma & Eswaran (2004). The results
obtained are in cxcellent agreeinent with Okajiina’s results for moderate He. The comparison is
shown in fig. 3.3. Also, the length of recirculation region, L, for the square cylinder is compared

with those obtained by Sharma & Eswaran (2004). The comparison is shown in 3.4.
" L]

3.3.2 Inline Oscillating Cylinder

For the case of an iuline oscillating square cylinder, the frequency response ebtained from the
present cocle was compared with that of Mineswitseh ef al. (1991). The dominant frequencies in
the spectrwn tor the wall normal velocity y, at a typical location obtained lroin our simulations
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Figure 3.2: Comparison of Strouhal numbers obtained from experiment and numerical simu-
lation. Squares: present study; circles: experimental data from Okajima (1982); and crosses:
numerical simulation by Ansumali et al. (2003).
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Figure 3.3: Comparison of 'C; obtained from experiment and numerical simulation. Squares:
present study: diamonds: experimental data from Okajima ef al. (1997); and circles: numnerical
simulation by Sharma & Eswaran (2004),
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Figure 3.4: Comparison of length of recirculation region behind the square cylinder for 20 <
Re < 40 with Sharma & Eswaran (2004). The values obtained are clearly in good agreement.

agree very well with the spectrum for the lift coefficient obtained by Mineswitsch et al. (1994)
for this goemetry. This is shown in fig. 3.5. Also, as done in Mineswitsch et al. (1994), the
frequency ratio was fixed at f./f, = 1.6 and A/D was varied from 0.15 - 0.4 in steps of 0.05. The
quantities fe, fo, A and D have been defined in the beginning of the first chapter. In excellent
agreement with Mineswitsch et al. (1994), the lock-on window between 0.15 < A/D < 0.4, where
Jfs = 0.5 f, is reproduced.
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Figure 3.5: Comparison between the spectra obtained from Mineswitsch et al. (1994) (dashed
line) and the present code (solid line) for Ke = 200, A/D = 0.25 and [, = 0.32U~/D. The
present spectrum is obtained from the time signal of w, at monitor point A in fig. 3.1(a). The
power spectrum of Minewitsch et al. is that of their lift coefficient, and has been arbitrarily

scaled.



Chapter 4
Results

In this chapter, results obtained for the cases of fixed and oscillating rectangular cylinders are
discussed. In the first section, the method used to calculate the critical Reynolds number is
briefly discussed. The results obtained are in agreement with linear stability theory, which
predicts a linear scaling between the disturbance growth rate, v, and (Re — Re..) ie., v ~
(Re — Re,,) when this difference is not too large. Also, Strouhal numbers, St, are obtained for
different. Re for two different. geometries.

The second section contains discussions on different modes of vortex shedding, chaotic flow
in the wake and different routes to chaos in the present problem of flow past an inline oscillating
rectangular cylinder. The results of the parametric study are presented showing the occurrence
of different modes of shedding for different forcing parameters. The S — I and S — II modes
found in previous experiments have been reproduced here, and this is the first numerical study
to report the S — I mode. Also, a new symmetric mode, S — I'[I, has been discovered, and
is discussed in detail. It is also shown that the flow in the wake becomes chaotic for certain
range of forcing parameters, and the routes could be competition between antisymmetric and
symmetric modes of shedding or the well-known Ruelle-Takens route. An integrated quantity is
used to ‘quantify’ the chaos in the system.

A part of the study has been accepted for publication in the Physics of Fluids.

4.1 Results

4.1.1 Fixed cylinders

For Re < Re,., the How behind a fixed eylinder is steady and a recirculation bubble can be seen
attached to the cylinder. This is shown in fig. 4.1. The length of this recirculation region, L, is
defined as the distance from the rear of the cylinder to the saddle point in the wake region. In
the case of a circular cylinder, the bubble becomes unstable and assumes a time varying wavy
shape when L/D > 2. However, in the case of rectangular cylinders the bubble is stable even
for L/D > 3 and becomes unstable only at higher L/ D values. This indicates that the geometry
of the body plays an important role in the stability of the attached bubble, and that L/D =~ 2
is not a universal value after which the instability in the wake sets in. Figure 4.2 shows how the
bubble size varies with Re for cylinders of different aspect ratios. The values obtained for the
square cylinder are in excellent agreement with the results of Sharma & Eswaran (2004).

Similar to the case of a circular cylinder, a Kérman street is observed for Re > Re,.
However, there are slight differences between eylinders of different aspect ratios. Figures 4.3(a)
- 4.3(d) show the Karman streets for rectangular cylinders of aspect ratio 1,2,4 and 6.

In the cases where Re is slightly higher than Re.,, the growth of a disturbance has three
stages of development. In the first stage the disturbance grows exponentially with time; this
is the linear regime. In the second stage, there is a transition from linear to nonlinear flow,
and finally in the third, the disturbance reaches a saturated nonlinear state (H. Oertel (1990)).
These regions are clearly seen in fig. 4.4, H. Oertel (1990) introduces an additional zeroth stage,
where the disturbance is too small to detect,

To caleulate the Re.,. for different cylinders, the method given in Sreenivasan et al. (1987)
and Provansal et al. (1989) is used. As mentioned earlier, the Re at which the growth rate of
disturbance, v, is zero is the required critical Reynolds nuwmber. The growth rates can be found

23
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Figure 4.1: Wake behind the square cylinder for Re = 30. Two bubbles attached to the cylinder
can be seen. The bubble length, L. is defined as the distance between the rear of cylinder
and the saddle point in the wake. The apparent asymmetry is due to the manual selection of

streamlines.

0 25 30 35 40
Re

Figure 4.2: Bubble size (L/D) vs. Be for rectangular eylinders of different aspect ratios. As
can been seen, the How in the wake is stable even for L/D > 3 in all cases. The bubble sizes
obtained for the square case (/h = 1) are in excelleul agreement with the values obtained by

Sharma & Eswaran (2004). For the most part, the bubble size varies linearly with Re.
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(b) bfa = 0.275

(a) b/a = 0.285

(d) b/a = 0.28

{¢) bja = 0.24

Figure 4.3: Karman streets for (a) D/h =1, (b) D/h =2, (¢) D/h = 4 and (b) D/h = 6. The
ratio of transverse (b) and streamwise (a) distances (b/a) between two consecutive vortices is

also shown.
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1.5 2
)4:106

Figure 4.4: D/h = 4 and Re = 40. This plot shows the evolution of a disturbance in the wake
for Re > Re.. and not very far from it. The zeroth region is not seen in this case. However, the
other regions are discernible in the plot. Region-1: linear regime, region-2: region of transition
and region-3: saturated nonlinear state.

from the time signals of, say u, or C'y, and exponential curves of the form u, = ae’ | where 5
is the growth rate, can be fit to the amplitude in the early transient parts of the curves. For
Re < Reg, v < 0 which means that all disturbances are damped and for Re > Re.., v > 0
showing the growth of the dominant disturbances. These values are plotted against Re and the
intercept on the abscissa is found, which gives Re,... Figures 4.5(a) - 4.6(b) show the growth
rates obtained from the time signals of u, at the monitor point A behind the cylinders. Growth
rates in both cases have been nondimensionalized using the inverse of respective convective time
scales.

It is found that the growth rate,y, for Re not very far from Re.. indeed varies linearly as
(Re., — Re), as predicted by the linear theory. The range of linear behaviour is remarkably
large, as is clearly seen in both figs. 4.5(a) - 4.6(b) and especially in the latter.

It is observed that Re., decreases slightly with increasing D/h, i.e. with increasing bluffness
of the cylinder. This is intuitive as one would expect the instability to set in sooner for more
blunt geometries. Re,.,. is plotted against D/h as shown in fig. 4.7,

The Strouhal numbers for D/h = 2,4 geometries have been obtained for 80 < Re < 200,
These are shown in figs 4.8(a) and 4.8(b).

4.1.2 Inline oscillating cylinders

Modes of vortex shedding

When the oscillation frequency f. is very small, the flow is not too ditferent from that past a
lixed eylinder, exeept. that the Reynolds number now is slowly varying. One expects, and finds,
a slightly modified Karman street behind the body in this case. The same is true when the
amplitude of oscillation A/D is small, since the oncoming flow merely sees a slightly modilied
body on an average. To observe competition between symmetric and antisymmetrie shedding,
one needs an effective oscillation Reynolds number Re, = (2A)D /1 which is not negligible
compared to that of the incoming How. Although we carried out many simulations to ensure
that our results are general, we present only a few typical ones. The shiedding pattern changes

as the excitation frequency Jo s inercased from 0.5, hall the nalural shedding frequencey
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Figure 4.5: Calculation of Re,, for D/h = 1,2. The nondimensional growth rate, v = 7D /U,
is plotted against Re. (a) Re.. = 45.86 and (b) Re.. = 14.03
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Figure 4.6: Caleulation of Re.,. tor D/h = 1,6. Nondimensional growth rate, v*. is plotted
against Re. (a) Re.. =~ 4282 and (b) Re,.,. = 13.3
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Figure 4.7: Plot showing variation of Re. with D/h. It is seen that there is a slight decrease
in Re., with increasing D/h.

of a stationary cylinder, to five times this value, some examples are shown in figure 4.9. A
rectangular cylinder of aspect ratio 4 is used here and A/D is fixed at 0.1. At low f. the
shedding is antisymmetric, and goes to symmetric shedding as f. increases. At f./f, = 5 we
have the symmetric S-I mode, with all the top vortices being of one sign, and all the bottom of
the opposite sign. At moderate f./f,, the shedding is neither symmetric nor antisymmetric, but
the upper and lower vortices are shed with a phase between 0 and 7 (or 7 and 27). The flow
however is still periodic. In some cases, vortex merger on each side of the cylinder is promoted,
and the pattern downstream becomes antisymmetric. At small f., the shedding frequency f;
is close to f,. However, as f./f, is increased beyond 2, f, decreases before locking on to a
subharmonic of f.. and then starts increasing proportionately with fe, such that fi/f. = 0.25
for 3 < f./f, <4. Beyond this range f, steadily decreases with further increase in f.. The lock-
on is similar to those seen on circular cylinders Konstantinidis & Balabani (2007). Note that at
these high frequencies shedding oceurs on a given surface once every four complete oscillations,
rather than once in every other oscillation.

Next, choosing A/D = 0.175, we summarise in figure 4.10 the patterns of vortex shedding
observed on cylinders with aspect ratio D/h = 1,2,4 and 8. This higher oscillation amplitude
will be seen to contrast with the lower A/D discussed above, in particular in the transition from
an antisymmetric pattern of shedding to a symmetric. In the case of a square cross section, one
would have to go to high amplitudes of oscillation to observe syminetric shedding. We benefit
by the use of rectangular geometries, where a small oscillation amlitude is sufficient to observe
different modes of shedding in the typical range of frequencies we use. The symmetric modes
obtained may be classified into three types, S-1 to S-1I1. As mentioned earlier, the first two have
been observed in experiments before, but on circular cylinders (Ongoren & Rockwell (1988); Xu
et al. (2006)). The letter S significs a syuunetric pattern, while the number denotes how many
pairs of shed vortices may be associated with one time period ol the flow. Thus the cylinder
sheds one vortex of each sign both at the top and the bottom in an S-II mode. At higher
oscillation frequericies, the How displays what we terim as a mixed mode.

To discuss the mixed mode, shown in fgure L11. we choose a square geometry, Such a
pattern has also been seen by Konstantinidis & Balabani (2007). The shedding off the eylinder
is actnally symmetric, but some distance downstream, the shed vortices arrange hemselves
in an antisymunetric pattern, much like a Karwan streeet, but with a lavrger spacing, and a
correspowdingly lower Strouhal munbee of 0,92 thmes that of a fixed square eylinder ab this

62 433
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(a) fo/fo =2 (b) fe/fo =3 (€) fe/fo =4

(d) fe/fa=5

Figure 4.9: Vorticity fields at a typical time for A/D = 0.1 at various excitation frequencies for
a cylinder of aspect ratio 4.
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Figure 4.10: Flow patterns in the wake of an incline oscillating rectangular cylinder at e = 200
and A/D = 0.175. Circles: antisymmetric shedding, squares: symmetric shedding. The solid
squares indicate the S-11 mode, the open squares stand for the S5-I mode, while the patterned
square indicates an S-111 shedding. Triangles: mixed mode, where the shedding is symmetric
bit the vortices arrange themselves into an antisymmetric pattern downstream. Stars: chaotic

flow, sinele solid diamond: the Conder-Basdevant mode,
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Figure 4.11: Mixed mode in the case of square cylinder. f./f, = 4. A/D = 0.175.

(a) (b)

Figure 4.12: Two of the modes of shedding at A/D = 0.175 on a body of aspect ratio 4. (a)
The S-1II mode at f./f, = 2.15. Three pairs of binary vortices are shed. (b) The S-II mode at
fe/fo = 4. In this mode two binary vortices are shed during each time period.

Reynolds number. The oscillating square cylinder together with the symmetric portion of its
wake corresponds roughly to a stationary body with an effective D/h less than 1. In fact the
Strouhal number of the downstream portion of this figure is the same as that of a body whose
aspect ratio is 0.67. In taller geometries, the mixed mode is actually encouraged to occur by
merger events of vortices of one sign, some of which are evident in figures 4.9(b) and 4.9(c). The
downstream behaviour again becomes antisymmetric. With all other parameters held constant,
and reducing h alone, i.e., using a taller rectangular cylinder rather than a square, we would
reduce the relative size of the boundary layer and therefore the strength of the shed vortex.
The pressure oscillations, which normally promote antisymimetric shedding, are correspondingly
reduced, and so the symmetric pattern should persist further downstream for a given oscillation
frequency. This is indeed manifested (not shown).

Returning to our discussion on the aspect ratio of 4, the wake pattern changes from a Kdrman
street, followed by a chaotic pattern, through S-TIT and then S-TI. followed by S-1 with increase
in the frequency of oscillation. The S-TIT mode, shown in figure 4.12(a), is simply the 5-11 mode
with an extra pair of vortices appenring close to the centreline. It is classified separately since
it appears on the other side of chaos in the transition from antisymmetric shedding. A sample
ol S-1T shedding on this eylinder is shown in figure 4.12(b).

The dominant frequency for f./f, = 2 is fy = f, (Hgure 4.13). This is indicative of subhar-
monic lock-on {'l_‘llm'iii et al. (1086); Griflin & Ramberg (1974)), while the shedding is locked on
to the oscillation of the eylinder in the S-TII mode.

Mechanism for S-11 and S-1TI modes

Fignre 1L shows the time signal ol the vorticity w at the monitor point C. [n the absence of

A mean How, it is easy to visualise the alternate shedding ol appositely signed vortices when
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Figure 4.13: Power spectra at the monitor point A for D/h = 4 and A/D = 0.175. (a)
Subharmonic shedding at f./f, = 2. (b) The shedding is harmonic (symmetric) for f./f, = 2.15.
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Figure 4.14: Phase information for the S-Il mode for D/h = 8. Solid line: the vorticity w at
monitor point B. Dashed line: inlet velocity Ujprar- Here f./f, = 2 and A/D = 0.175. The
circles indicate the phases at which the vorticity field is shown in figures 4.15(a) - 4.15(d).

the cylinder is moving to and fro. The mean flow advects both vortices downstream. This 5-1T
mode of shedding is aided by the ‘ground effect’. The primary vortices accelerate the fluid in
the wake region towards the cylinder, and due to the larger area available on a rectangle rather
than a square at the lee surface, significant vorticity of opposite sign is generated. This effect is
similar to the one studied by Carnevale et al. (1997) on a different problem,

This ground effect is clearly visible on a rectangle of aspect ratio 8 The circles in figure
4.14 indicate the time instances at which vorticity field is plotted in figures 4.15(a) - 4.15(d).
In figure 4.15(a) the eylinder is moving upstream. The primary vortices are seen to form just
behind the top and bottom surfaces of the cylinder. Vorticity is continuously supplied to them
in the usual manner by the boundary layers. As these primary vortices grow they accelerate the
fluid in the wake region leading to the formation of boundary layers, figure 4.15(b), on the lee
side of the cylinder, of oppositely-signed vorticity with respect to the primary vortices. Now,
when the cylinder moves downstream there is a local reverse flow near the cylinder. This causes
shape changes in both vortices. The secondary vortices continue to grow and cut off supply
to the primary vortices as can be seen in Figs. 4.15(c¢) aud 1.15(d). This cycle repeats. In
the experiments of Xu et al. (2006) there was considerable overall reverse flow which aided the
formation of opposite signed vortices on the surface of a circular cylinder. Here, aided hy the
around effect, we obtain the S-II mode even without reverse flow at the inlet.

The formation of the S-110mode involves the ground effect too. However, the vorticity ficld
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(d)

Figure 4.15: The S-II mode of vortex shedding; D/h = 8, f./f, = 2 & A/D = 0.175, Time
has been non-dimensionalized using the convective time-scale, D/U.. (a) Attached primary
vortices are growing. (b) Vorticity is generated on the lee side. (c¢) Close to the cylinder the
flow is from right to left. The primary vortices are pushed apart and the secondary vortices are
‘stretched’. (d) The secondary vortices cut off the supply to primary.

is more complex than in the S-II mode during the intermediate stages. Since the frequency is
slightly lower in this case, there is time for the secondary vortex to get stretched, due to the
action of both the vortex being generated on the surface and the vortex which has just been
dislodged from the cylinder. This leads to the pinching off of the secondary vortex at a point
close to the primary vortex, and thus the generation of an extra pair of vortices which move
along the centerline. Figures 4.16(a) and 4.16(b) show two phases of this process.

An obvious difference between our geometries and a circular cylinder, even when the cylinders
are fixed, is that the separation points are fixed at the sharp corners in our case, but are Reynolds
number dependent in the eircular evlinder. No other qualitative difference is evident in this range
of Reynolds numbers. The basic difference between a square and rectangiular geometry is that the
ground effect is more pronounced in the latter, when the two are oscillating. The larger surface
available on the rear side relative to the horizontal surfaces on a rectangular cross-section means
that boundary layer effects from the rear can compete with those from the top and bottom.
Other things held fixed, a rectangular geometry can thus provide a range of possibilities not all
accessible to a square,

Mode competition and chaos

Perdikaris et al. (2009) reported chaotic How in the wake of a cireular eylinder placed in a uniform
flow at one particular amplitude of inline oscillation. [n their simulations the cylinder was forced
at the corresponding Stronhal frequency ol the fixed eylinder. At abont the same time, withont
being aware of that work, we had obtained chaotic How using square and rectangular cylinders.
We thus confirm their appealing finding. Further, while they surmised that a competition
bhetween antisyimmetric and syimmetric shedding was eausing chaos, they did nor have direct

evidener for this, In pactienlae, theiv Lt coetlicients and spectra indical e antisyinmetric shedding
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(a) (b)

Figure 4.16: The S-III mode of vortex shedding; D/h = 4, f./fo = 2.15 & A/D = 0.175. In
both figures the cylinder is moving towards the left (upstream). (a) The stretching of secondary
vortices has begun, and they are about to be dislodged from the cylinder by the next pair of
primary vortices. {b) The central part of the secondary vortices have thinned, creating a pinch
off of an extra pair vortices which then move along the centreline.

(a) (b)

Figure 4.17: Delay plots for D/h = 4, f./fo = 2 and 2.085. The oscillation amplitude A/D =
0.175. The monitor point is behind the cylinder at (0.50,0.350). The delay plot (a) consists
of closed curves, indicating periodicity, whereas (b) is characteristic of an aperiodic time signal.

under all non-chaotic conditions, so they do not have mode competition between antisymmetric
and symmetric modes. For the values of nondimensional numbers used the use of a rectangular
cross-section makes it easy to obtain symmetric shedding, so we are able to demonstrate that
the shedding is antisymmetric at f. less than for the chaotic flow, and symmetric for f. greater
than this value, which is a direct demonstration of mode competition in the sense of Ciliberto
& Gollub (1984, 1985).

In figure 4.18(c), typical delay plots, for w, at f./f, = 2 and 2.085 are shown. The axes on
the delay plots represent V| = u,(t + 7) and V4 = w, (¢t — 7) at a suitably chosen location and
delay time 7. In figure 4.17(a) the paths in phase space are closed, which indicates periodicity.
The noise in the computations gives rise to a patch rather than a single path, as often happens
in these computations. In spite of this noise. this fignre may ecasily be contrasted with figure
4.17(b), which is indicative of a chaotic flow. The chaotic window is casily visualised in figure
L.18, with the antisymmetric mode, locked on to 0.5f,, and the S-II[ mode, locked on to f., on
either side of the narrow window of chaotic How in hetween.

Thus far we have obtained qualitative indications of the chaotic window. To confirm that
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(a) (b) ()

Figure 4.18: Chaotic window for D/h = 4. (a) f./f, = 2, the shedding here is antisymmetric.
(b) fe/fs = 2.085, the shedding is chaotic. (¢) f./f, = 2.15, S-1II mode of symmetric shedding.

Figure 4.19: D/h = 4. Variation of S with At for different cases. Squares: f./f, = 2, circles:
fe/fo = 2.085 and diamonds: f./f, = 2.15. The first and third curves exhibit periodicity and
have sharp dips at Af = n'I" for any integer n, whereas the second curve is aperiodic.

the How is indeed chaotic, we use a global measure S(Af), defined as:

S= Z Z (Wi y;, to + At) — w(zi, ylj.!n)]z.{l.i'Ay‘ (4.1)
T

Being an integrated quantity over the entire domain. S is a reliable measure of chaos. For a
periodic system of period I', S(1') = 0. Moreover for any At we should have S(At+7T') = S(At).
For f./f, = 2 and f./f, = 2.15, both these properties are seen in figure 4.19. In particular, a
sharp dip in S for At = nT for any integer n is visible. On the other hand, for f./f, = 2.085,
S remains at a high value, characterising a chaotic system.

A different behaviour is scen at D/h = 8. The vortex shedding mode changes from S-1I to
the mixed mode with S-1 shedding when f./f, is varied from 2 to 3.5. Figure 4.22 shows that
the low for f./f, = 2 is periodic. However, the [low is chaotic for f./f, — 2.5, as evidenced by
the r-;pm'f'r'llnll in figure 4.20. Also the arrangement of vortices at a given ‘tine is in no particular
pattern, as seen in figure 4.21. ‘The contrast in terms of the S is demonstrated in figure 4.22. A
smaller region is chosen to improve the contrast. The variation of S for f./f, = 2 is seen to be

periodic. whereas for f./f, = 2.5 it is not.
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Figure 4.20: D/h =8, fe/f, = 2.5 & A/D = 0.175. The spectrum of the time signal of u, is
broadband.

Figure 4.21: D/h =8, f./f, = 2.5 & A/D = 0.175. The arrangement of vortices is unordered,
showing that the flow is chaotic,

At

Figure 4.22: D/h = 8. Variation of & with Af in a region z/D = 2.5 — 8.75. Diamonds:
Je/fo = 2. and is repetitive indicating periodicity. Circles: f,/f, = 2.5. and shows the aperiodic
nature of the vorticity field in that region.
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Chaos in flow past an inline oscillating square cylinder (?)

[n contrast to the results discussed above, for a rectangular geometry a square geometry seems
to be different. In the latter mode competition does not play a role in the chaotic flow obtained
in the case of a square cylinder oscillating at the Strouhal frequency. The nondimensional
numbers used in this case were: Re = 200, f./f, = | and 0.1 < A/D < 1. Chaotic flow
is observed at A/D = 1, and the route seems to be the Ruelle-Takens route to chaos. In
this route incommensurate frequencies are generated in the system with the increase in the
governing nondimensional parameter. A strange attractor appears after the generation of three
incommensurate frequencies, which suddenly leads to chaos. The generation of incommensurate
frequencies was observed as A/D was varied from 0.1 to 1. However, the data is not conclusive
enough to support this. This does indicate that there might be differnt routes to chaos depending
on the range of nondimensional numbers being used to study the flow. Perdikaris el al. (2009)
too observed chaos at this forcing frequency, and our results qualitatively indicate that it was not
mode competition, as claimed by them, which led to chaotic flow. Figures 4.23(a) and 4.23(b)
show the time signal and spectrum for the chaotic flow in square cylinder case.
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Figure 4.23: Time signal of u, at the monitor point A for square cylinder. e = 200, f./f, = |

and A/D = 1. (a) The time signal indicates the chiaotic nature of flow, and (h) the bhroadband

spectrinm confivms this,



Chapter 5
Vortex Merger

This chapter describes a problem that is difforent from the main work of this thesis. It is a
study being done with Rehith Swaminathan, and a detailed description will be presented in his
thesis. Here, the code developed is described in some detail, and some preliminary results are
presented.

Merger of two vortices is one the important processes that characterizes a two-dimensional
tnrbulent flow in which a large number of vortices merge depending on their signs {clockwise or
anticlockwise). A detailed study of this phenomenon is important as it would lead to a better
understanding of the process which drives fluid turbulence in two dimensions. There have been
several studies in the past, some of them heing: Cerretelli & Williamson {2003), Brandt &
Nomura (2006), Meunier et al. (2005), Dixit (2010), etc. In this chapter, some aspects of the
Fourier spectral method and its application to the above mentioned problem are discussed.
Preliminary results on the merger of two Gaussian vortices are also presented.

5.1 Governing equations and the Fourier spectral method

In the case of two-dimensional flows, it is advantageous to solve the vorticity equation as it
does not involve the pressure term. This equation is derived from the Navier-Stokes equation
by taking the curl of the latter. The equation is

Sw Ow Hw ({'}zw 32w) ‘ (5.1)

atu—tvg—=v|l 5+ 35
ot dr By dr?  Iy?
Here, w is the vorticity field, « and v are the x and y components of the velocity and v is the
kinematic viscosity of the fluid. The veloeity components are expressed in terms of the stream
function, ¥, which are given by
hp M
H = '_(E, v = '—'5;. (52]

The stream function can be calculated from the vorticity field by solving the Poisson equation

Vip = —w, {5.3)

In the Fourier spectral method, eqns. 5.1 and 5.3 are solved in Fourier space with periodic
boundary conditions. This numerical approach is the two-dimensional eounterpart of the “box
turbulence” in three dimensions, where the tirhbulent flow is considered to be both homogeneous
and isotropic. The Fourier trausforin of the vorticity feld is given by

A .
k() = j w(z,y, e~ ELdady, (5.4)
1]

where & and 1 are the wavenumber and displaccinent vectors and & (#) is the vortieity in Fourier
space. The domain size is taken to he 2%, and hence the choice of the limits of integration. The
tlow parameters have no spatial dependence in Fourier space as they have been integrated over
space.

Now, taking the transform of eqns. 5.1 and 5.3 oue obtains

30
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didy  dw  dw 3
5 Tt P vk*Gy, (5.5)
and,
~ @
Uk = 73, (5.6)

where k% = k2 + kg. Equation 5.5 is an ordinary differential equation in &y and any of the
standard explicit time-marching schemes {(first order Euler, Runge-Kutta, Adams-Bashforth,
etc) can be used to solve the above equations for a given initial condition. However, the most

difficult part of the eqn. 5.5 are the convolution surmns, u’g% and U%‘ which represent the
interaction between different wavenumbers. If there are N wavenumbers, then it would require
O(N?) operations to compute each convolution sum in Fourier space. This operation is a very
expensive one, and to circumvent this difficulty the convolution sums are evaluated in real space
(Canuto et al. {2006)). This method is widely known as the pseudo-spectral method. For the
second term in eqn. 5.5, first the terms # and —ik,& are calculated, then they are inverse
transformed to give u and g‘—"z- in real space which are multiplied giving ug%, and finally the
Fourier transform of this term gives the required convolution sum. The third term in eqn. 5.5
is obtained similarly.

However, one has to take care of the corruption of data coming in from higher wave numbers.
This effect is called the aliasing effect. This can be understood as follows: let the size of the
domain be 27 and let there be N grid points. The j** co-ordinate is then given by x; = 27j/N.
Let f(x) and g(x) be two functions of i, and F(k) and G(k) be their discrete Fourier tranforms,
ie.,

Nl i N-L 2wij
FR) = 3 fape 55 Gy = Y glzj)e T, (5.7)
j=0 j=0

Functions of one variable are considered for simplicity. The product of the functions is given by:

s = f(x)glz); (5.8)
and its convolution is:
Nj2-1 e
C= Y slzj)e” #*, (5.9)
k=—N/2

Substituting eqn. 5.8 and the inverse transforms in 5.9, we get:

Mi2-1

C= 3 flapglae F, (5.10)

k=—N/2

where 7 = /—1. Substituting the discrete transforms of f and g in eqn. 5.10 we have

Lif] 2mij i,
c=3" (Z Fpe ®Py" qu_ng,,) T (5.11)
k p q t

Here, p and g are wavenumbers too. The summation is from —N/2 to N/2 — 1 and will he
omitted in the subsequent expressions. Simplifying this gives,

C= Y S RG Y Frh, (5.12)
1

-~
P k
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This can be written as

C= > EG+ Y, FKG, (5.13)
p+g=k pra=k+tN

The first term on the right hand side of eqn. 5.13 is the required convolution sum and the second
term is the aliasing error. It is easily seen that when p + ¢ # k the second term too contributes
to the convolution sum, which as mentioned earlier is the interference of higher wave numbers.
De-aliasing is carried out by padding the signals with zeroes at the ends in the second stage
of the pseudo-spectral method, .i.e. the inverse Fourier-transformed signals are padded. The
two signals are then multiplied in real space and product is Fourier transformed. The relevant
data is extracted from this transform. This method of padding makes the amplitudes of higher

wave number terms zero, thus making their contribution zero. This process is shown below:

i Inversetrana form Padding Multiplyand Fouriertrans formtheproduct
F(k), G(k) = flx),glx) =" filz), gi(z) .

P TS Extract .7, 7
filn)qi(z) 7= f(x)g(x).
The minimum size of the padded signal is 3N/2 for a given signal of size N. These methods are
discussed in detail in the books of Canuto et al. (2006) and Boyd (2000).

5.2 Merger of same signed Gaussian vortices

The Fourier spectral code developed is used to study the merger of two, three and four Gaus-
sian vortices in a homogeneous finid. Periodic boundary conditions are used in both x and y
directions. The domain size used is 27 x 27 with different grid points depending on Re. Here, [’
is the circulation of one vortex, a, is the initial diameter and b, is some measure of the distance
between vortices based on their alignment. Re is defined as: Re = I'/v and the convective time
scale is t, = 2ma? /T.

Some of the plots shown in this section were first used in my BE thesis, but have been
reproduced here with more analyses which were done recently.

5.2.1 Merger of two vortices: code validation

The results of validation for the case of merger of two vortices is discussed here. The results
obtained from the code were compared with that of Brandt & Nomura (2006), and Dixit (2010).

In fig. 5.1, the evolution of the distance between the vortices is compared with that obtained
by Brandt & Nomura (Brandt & Nomura (2006)). The distance is non-dimensionalized with the
initial distance, and the time with the convective time scale. The data presented in their article
is only uptil t* = 0.92, and the complete merger process is shown in the result obtained by us.
As evident, the results are in excellent agreement. One interesting point to note is that they
used a finite difference scheme to solve the governing equations with 20482 grid points, but in
our computation done with spectral method the same accuracy is obtained by using just 2562
grid points. Similar comparison was done for Re = 2000 with Dixit (2010), and an excellent
agreement was found. This is shown in fig. 5.2.

The events leading to the merger of two vortices is shown in fig. 5.3. The vortices, in the
initial stage, grow due to viscous diffusion.
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c0.61

Figure 5.1: The plot shows the comparison of the evolution of distance between the two vortices
with time for Re = 1000. Squares: Brandt & Nomura (2006); Red curve: present study. Here,
time is non-dimensionalized with the convective time scale: t* = t27%b2 /T
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=0.6

b/b
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Figure 5.2: The plot shows the comparison of the evolution of distance between the two vortices
with time for e = 2000, Squares: Dixit (2000); Red curve: present study. Here, time is
non-dimensionalized with the convective time scale: t* = #2722 /T,
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Figure 5.3: Evolution of two vortices in an unstratified fuid for Re = 1000.






Chapter 6
Conclusions

In this thesis, vortex shedding from both fixed and inline oscillating rectangular cylinders has
been studied numerically. The Lattice-Boltzmann equation (LBE} was used to solve for the
flow. Rectangular cylinders of aspect ratios (D/h) 1 — 8 were used in this study, and this is
the first such study to our knowledge. Grid stretching was employed to reduce the computation
time. The code was validated for both fixed and oscillating cases with standard results available
in the literature,

In the case of fixed rectangular cylinders the following were studied: the variation of bubble
size for Re < Regp, calculation of Ree based on decay and growth rates of disturbances in the
wake, the variation of St with Re for some geometries (D/h = 1,2&4) and b/a ratios for the
Kérmén streets at the same Re. It is found that the flow is steady even when L/D > 3 for all
geometries considered, and upto L/D = 4 for D/h = 8. It was shown that for Re close to Re.,
the growth rates vary linearly with Re — Re,, as predicted by the linear theory. Re.. was found
to decrease slightly with increasing D/h, confirming our intuition.

In the case of inline oscillating rectangular cylinders, all the symmetric modes reported in
the literature were reproduced. To our knowledge, this is the first numerical study to report the
S — IT mode of symmetric shedding, first discovered by Xu ef of. {2006) in their experiments,
A new symmetric mode, named § — fIJ, was discovered and the mechanism of its formation
was discussed. It was also shown that the flow becomes chaotic for certain values of forcing
parameters, and windows of chaos, qualitatively similar to the ones discovered by Ciliberto &
Gollub (1984}, exist in the case of flow past an inline oscillating cylinder too. A global parameter
was constructed {o ‘quantify’ chaos and the spatio-temporal aperiodicity of the chaotic Aow was
demonstrated.

Also, a previously developed Fourier-Spectral code was validated with existing results in the
literature, and sample results discussed.
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