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Synopsis

Strongly correlated electron systems exhibit a wide panorama of exotic and emer-

gent behaviour which arises due to the quantum entanglement across the whole sys-

tem which in turn leads to quantum many-body dynamics in these systems. Such

dynamics is very intricate and shows strong renormalization effects due to which

physics changes at different scales. Strong correlation leads to new energy scales as

well. A typical example is the Kondo scale which gets dynamically generated in the

strong coupling regime of the Kondo model. Renormalization group methods be-

come natural to deal with such systems. In this thesis, we have used renormalization

group methods to study various emergent phenomena in quantum impurity systems

which are a special class of strongly correlated electron systems. We have used poor

man scaling method and Wegner’s flow equation method to do the renormalization

studies.

A brief introduction to the strongly correlated electron systems is provided in the

first chapter. A detailed description of the renormalization group methods as applied

to study the strong correlation physics of the quantum impurity systems follows the

introduction in chapter 2. Our interest has been to explore the interplay between

valence fluctuations and Kondo effect in heavy fermion systems and also the interplay

between Kondo effect and topological order. For the lattice Hamiltonian, we have

used dynamical mean field theory which is a very important method that takes
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local quantum fluctuations into consideration while neglecting non-local dynamical

spatial fluctuations. We have used continuous time quantum Monte Carlo(CT-

QMC) method as the impurity solver for DMFT.

In chapter 3, we have carried out perturbative renormalization of the extended

single impurity Anderson model (e-SIAM), which has a Hubbard repulsion between

conduction and impurity electrons in addition to the usual kinetic energy, site-energy,

local Coulomb repulsion on the impurity and the hybridization terms. The moti-

vation for this study comes from recent experiments and related theoretical studies

which suggest that valence fluctuations could play a crucial role for the quantum

criticality in heavy fermion systems. There is also a lot of interest in quantum dots

where a rich interplay between spin and charge Kondo effect leads to SU(4) Kondo

effect and this interplay has also motivated our study. We have extended Haldane’s

and Jefferson’s scaling approach to our model. We find that renormalization flow of

this model is determined by three scaling invariants. Using the scaling invariants,

we calculate the Kondo scale in the local moment regime of the model. We find

that Ufc interaction leads to an increase in the Kondo scale through a renormaliza-

tion of the prefactor. Enhancement of Kondo scale due to Ufc interaction has been

found by earlier numerical renormalization calculations as well. We have carried

out Schrieffer-Wolff transformation to obtain the effective Hamiltonian correspond-

ing to the strong coupling fixed point of e-SIAM and we find that strong coupling

physics of e-SIAM is governed by spin-charge Kondo model which has the interplay

between spin and charge Kondo interactions in contrast to the Anderson impurity

model where spin fluctuations dominate the strong coupling regime of the model.

We also find that valence fluctuations mediated charge Kondo effect co-exists with

spin Kondo effect and can lead to SU(4) Kondo effect in quantum dots where as

phonon mediated charge Kondo effect can not co-exist with spin Kondo effect and

hence can not lead to SU(4) Kondo effect.
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In chapter 4 , we study the lattice version of e-SIAM which is called extended

Periodic Anderson model. We employed dynamical mean field theory approach

which maps e-PAM to an impurity model with self-consistent hybridization. We use,

the continuous time quantum Monte Carlo(CT-QMC) as an impurity solver. We find

that electron occupation of localized(f) electrons decreases with valence fluctuations

and as valence fluctuations become stronger we find abrupt jumps in f electron

occupancy which signals a phase transition. We confirm the existence of the phase

transition from valence susceptibility which diverges close to transition. Further,

valence fluctuations also lead to strong renormalization of the quasiparticle weight

which increases with valence fluctuations, hence signifying the renormalization of

local Hubbard repulsion of f electrons.

In chapter 5, we have explored Z2 topological order in the Kitaev p-wave chain

model. In this chapter, we ask the question why there is topological order in Kitaev

chain model and not in the Transverse Field Ising model(TFIM) when both these

models are related by Jordan-Wigner transformation. We find that there are extra

fermionic symmetries in Kitaev chain model. These symmetry operators are actually

Majorana mode operators which commute with Hamiltonian and change the parity

states. The same symmetry leads to the doubling of the entire spectrum of the

Kitaev, chain model. We also explored how the topological order is related to

topological entanglement as given by Yang-Baxter equation. We find that Majorana

braiding representation arises only in the topological phase of the Kitaev chain. That

leads us to propose a new characterization of topological order as an order which

gives rise to the solutions of Yang-Baxter equation.

In chapter 6, we have studied the interplay between Kondo effect and Majorana

fermions in a setup where quantum dot is connected to a normal lead on one side

and a topological superconductor on another side. The motivation of our study was

to find unambiguous ways for the detection of Majorana fermions and find out ex-
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perimentally feasible ways of probing the signatures of Majorana fermions. We first

write down the Hamiltonian for a setup in which the quantum dot is side-coupled

to the topological superconductor and to a normal lead on another side. Project-

ing this Hamiltonian to its Kondo regime gives us an effective Hamiltonian which

has new interactions in addition to the standard Kondo interaction. One of the

important signatures of Majorana fermion in this model is the relevance of particle-

hole asymmetry for Kondo effect. At the particle-hole symmetric point, Zeeman

field and Andreev scattering term vanish at effective Hamiltonian level. We have

carried out flow equation renormalization study of Majorana-Kondo model, and we

find that flow equations are different for particle-hole symmetric and asymmetric

cases. One of our important findings is that even though Zeeman field vanishes at

the particle-hole symmetric case, however, it emerges again along the unitary flow

of the coupling constants of Majorana-Kondo model and hence making the Kondo

physics anisotropic. It also leads to an important observation about the flow equa-

tions of the model. These equations have essential instability towards the particle-

hole asymmetry, and slightest asymmetry leads to the emergence of Zeeman field

and drives the system away from the particle-hole symmetric point. It has physical

implications for the realistic experimental situations where asymmetry is generic

and particle-hole symmetry being a very special case. Our results suggest that Ma-

jorana fermion produces significant renormalization of Kondo couplings even in the

particle-hole symmetric case and hence there is no need to detune the gate voltage

of the system as had been proposed in earlier studies. Away from particle-hole sym-

metry, the renormalization effects of Kondo couplings are even stronger due to the

contribution of Andreev scattering term to the flow equations. Spin susceptibility

is an experimentally accessible quantity, and hence we have calculated this quantity

for Majorana-Kondo model, both in particle-hole symmetric and asymmetric cases,

to capture the signatures of Majorana fermion in it. Flow equation method gives
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access to renormalization of observables as well. We calculated the flow equations

for Kondo spin operator, and after solving them numerically, we calculate dynamic

spin susceptibility. There are clear signatures of Majorana fermion in this quan-

tity. Our flow equation renormalization studies have confirmed and consolidated

the interplay between Majorana fermion and Kondo effect and proposed feasible

and unambiguous ways for the detection of Majorana fermion in quantum dots.
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1.1 Introduction

Strongly correlated electron systems(SCES) comprise a range of materials which

exhibit panorama of exotic and emergent behaviour. These systems include Mott

insulators, high Tc superconductors, heavy fermion systems, spin liquids, magnetic

materials, fractional quantum Hall fluids. Band theory, based entirely on the quan-

tum theory of solids which have periodic lattice structures, has been a huge success

because of the broad range of solid state systems whose transport properties were

understood based on this theory. But when it comes to strongly correlated electron

systems, band theory fails. The Mott insulating state and Anderson insulators are

just two examples which can not be explained on the basis of band theory because

there are new physical principles at work. The principles of quantum many-body

systems were laid out by many pioneers of this field including Landau, Anderson and

Wilson. These principles include adiabatic continuity on which is based Fermi liquid

theory, Spontaneous symmetry breaking which is the paradigm for understanding

the ordered states of matter, Renormalization group which is the natural framework

to study the effects of strong interactions. These principles have been discussed at

length in a very beautiful book by Anderson[1]. In this thesis, we have employed

renormalization group methods to study the interplay between Kondo effect, valence

fluctuations and topological order.

Strong correlation makes the system a quantum many-body system which can

not be described by single particle theories. Consequently, the dynamic interplay

between the various degrees of freedom leads to a collective behaviour in these sys-

tems. Collective behaviour can not occur without interactions, and neither can be

described without taking interactions into consideration. P. W. Anderson, one of

the pioneers of modern condensed matter physics, has expressed very succinctly in

his famous phrase, “More is different” [2]. Emergent behaviour is another term used

to express the collective behaviour of strongly correlated systems in which new prop-
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erties emerge in the system which are not exhibited by the individual components

of which the whole system is made up of. Consequently, in a strongly correlated

system, one is not concerned with the constituents themselves, rather with their

collective excitations which are the “quasiparticles” of the system. Quasiparticles

are not particles in the sense of elementary particles, but they are rather more real

because in the presence of interactions, bare particles get dressed or renormalized

and the physics is described in terms of quasiparticles rather than the bare particles.

This is another feature of strong interactions, which will be discussed in detail in

chapter 2 of this thesis, that interactions lead to the renormalization of the bare

quantities of the constituents of a system.

Strong correlation leads to quantum many-body dynamics which is very intricate

and has the interplay of various energy scales. Strong correlation also dynamically

generates new energy scales. Kondo scale being the typical example of such a scale

which emerges out of the quantum many-body dynamics of Kondo effect. Stan-

dard perturbation theory does not treat all energy scales and consequently leads to

logarithmic divergences. One is forced to employ strong coupling expansions like

a Schrieffer-Wolff transformation which gives a controlled method to calculate the

effective Hamiltonian in the strong coupling regime of the given model. In a strongly

correlated electron system, quantum fluctuations are vital for dynamics and need to

be taken into consideration. Renormalization group is a well-suited method which

takes quantum fluctuations into consideration and hence becomes natural to deal

with strong correlation. Kondo effect in which physics is governed by spin fluctua-

tions was finally understood by various renormalization group methods, particularly

the numerical renormalization group which was able to capture the Kondo resonance

peak in the spectrum of the Kondo model.

Strong correlations also lead to quantum fluctuations, and one needs to go be-

yond a mean field theory description. The Mott insulating phase is one typical
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example where quantum fluctuations become very important, and hence this phase

can not be understood based on static mean field theory. In low dimensional sys-

tems, quantum fluctuations become even more important and lead to new phases.

In one dimensional systems, strong correlation leads to the formation of Luttinger

liquid which is entirely different from Fermi liquids which occur in higher dimen-

sions. The effect of quantum fluctuations in one dimensional systems is so strong

that there is no order that can take place in one dimensional systems. Rather a very

exotic phenomenon happens: spin-charge separation which is basically that charge

and spin degrees of freedom behave independently.

In this chapter, we will describe the strong correlation physics based on the

quantum many-body Hamiltonians which have been introduced for strongly cor-

related electron systems. Even though these Hamiltonians are minimal models to

capture the physics of SCES, still they have been crucial for the understanding of

strong correlation physics. There are two kinds of quantum many-body Hamiltoni-

ans: Impurity and Lattice Hamiltonians. We will mainly focus on quantum impurity

models. We will also show how in dynamical mean field theory framework, lattice

models can be mapped to quantum impurity models which are easier to understand

because there is just one quantum impurity in the model which is interacting with

conduction electrons which are free fermions. Hence quantum impurity models are

of central importance in the field of strongly correlated electron systems.

1.2 Quantum Many-body Hamiltonians

Quantum impurity systems are a special class of strongly correlated electron systems

which have been very crucial for the understanding of physics of strongly correlated

electron systems. Hence they have been extensively studied. Though they are simple

in the sense that there is a single impurity, there is full quantum many-body physics

involved because quantum impurity gets coupled to the conduction electrons and
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leads to the formation of the quantum many-body ground state. Kondo effect is

a prototypical example of such quantum many-body phenomena in which impurity

electron forms a Kondo singlet with conduction fermion sea, and it manifests in the

spectrum as resonance peak at the Fermi level.

Quantum impurity systems necessitated the need for renormalization group meth-

ods in quantum condensed matter physics, and they have been a testing ground for

so many different renormalization schemes. Renormalization group is needed be-

cause there is the interplay of various energy scales and due to strong correlation

emergent scales also also come into play. Also, quantum fluctuations determine the

dynamics, and hence renormalization group method becomes natural to study these

systems. In fact, Anderson applied renormalization methods to Kondo model[1]

before Wilson made renormalization group(RG) well-known by applying it to crit-

ical phenomena in statistical physics and Kondo model[3]. There is one important

difference in renormalization of quantum impurity systems as compared to the sta-

tistical physics models. In quantum impurity models, it is the quantum(temporal)

fluctuations which need to be dealt with rather than spatial fluctuations in case

of statistical mechanical lattice models. That makes the actual implementation of

renormalization different for quantum impurity models.

We will present two very important Hamiltonians of quantum impurity sys-

tems, Single impurity Anderson model(SIAM) and Kondo model. Though these

models were introduced in different contexts, it was shown using Schrieffer-Wolff

transformation[4] that Anderson impurity model gets mapped to Kondo model in

its strong coupling regime where valence fluctuations get frozen. To understand the

relation between these models, we will also present Schrieffer-Wolff transformation.
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1.2.1 Anderson impurity model

Single impurity Anderson model was introduced[5] to understand the fate of local

magnetic moment in metals. Blandin and Friedel[6] understood the key aspect of

the physics based on scattering theory and they found that there is virtual bound

state formation. However, as was customary that time they proposed that there

is a ferromagnetic exchange between conduction and impurity electrons. Anderson

proposed a Hamiltonian which provided the microscopic understanding of quantum

impurity physics. Anderson based on mean field theory was also able to explain the

formation of virtual bound state, but he found that the exchange term is of antiferro-

magnetic nature which was later confirmed based on Schrieffer-Wolff transformation

and plays a very important role in Kondo physics.

H =
∑

kσ

ǫkc
†
kσckσ +

∑

kσ

Vk(c†kσdσ + h.c.) +
∑

σ

ǫdd
†
σdσ + Und↑nd↓ (1.1)

In this model, there are two species of fermions, and hence we can divide the model

into two sectors: Impurity sector and conduction electron sector. The new ingredi-

ent in this model, introduced by Anderson is the hybridization term which couples

the two sectors and this term is important for the formation of virtual bound state.

Hybridization term gives the coupling between localized impurity orbital and Bloch

wavefunction of conduction electrons. In the absence of the interactions, hybridiza-

tion leads to the broadening of the impurity state with width given by

∆ = π
∑

k

(| Vk |)2δ(ǫ− ǫk) (1.2)

To understand the physics of Anderson model better, it becomes natural to take

local picture approach where we start with the atomic picture of the Hamiltonian

and then adiabatically turn on the hybridization to the conduction band electrons.
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1.2.2 Atomic limit

Hilbert space of impurity electron is four dimensional: | 0〉, |↑〉, |↓〉, | 2〉 which cor-

responds to empty state, singly occupied state with up or down spin and doubly

occupied state. For the case of zero hybridization, conduction and impurity sectors

get decoupled. The impurity part of the Anderson model for V = 0 is the atomic

limit of the model and its local Hilbert space is four dimensional as given above.

Hat =
∑

σ

ǫdd
†
σdσ + Und↑nd↓ (1.3)

Energies of the four states are:

| 2〉 E = 2ǫd + U (1.4)

| 0〉 E = 0 (1.5)

|↑〉, |↓〉 E = ǫd (1.6)

When hybridization is switched on, there are transitions between the states deter-

mined by the energetics and quantum fluctuations. Since impurity electrons can

make transitions to other two states so we can ask under what conditions will local

moment be there.

E0 − E1 = 0 − ǫd > 0 ⇒ U/2 > ǫd + U/2 (1.7)

E2 − E1 = 2ǫd + U − ǫd ⇒ ǫd + U/2 > −U/2 (1.8)

So in atomic limit the condition for the existence of the local moment is

U/2 > ǫd + U/2 > −U/2 (1.9)
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Now the question which Anderson answered using mean field theory is what hap-

pens to the local moments when we switch on the hybridization. However, mean

field theory can not be trusted when interaction becomes stronger than hybridiza-

tion strength. Since quantum impurity models are the simplest examples of quantum

many-body systems and hence to deal with quantum fluctuations in the presence

of interactions one has to resort to renormalization methods. In the case of An-

derson model, such a scheme was introduced by Schrieffer and Wolff who used a

unitary transformation to integrate out the valence fluctuations and found the ef-

fective model for the strong coupling regime of the model. The significance of this

transformation is that not only it helped to understand the strong coupling regime of

quantum many-body Hamiltonian, but it also provided the connection between two

important models which were studied in different contexts. We will come back to

Schrieffer-Wolff transformation later in this chapter. Understanding the connection

between Anderson model and Kondo model was phenomenal because it showed that

the low energy physics of Anderson model is governed by Kondo spin interaction and

hence in renormalization sense, the strong coupling physics of the model is governed

by Kondo fixed point. This physics was later on confirmed by perturbative RG and

finally by Numerical Renormalization group of Wilson. Based on NRG it is known

that SIAM has four fixed points which correspond to four parameter regimes of the

model. 1. Empty orbital fixed point 2. Local moment fixed point 3. Mixed valent

fixed point 4. Kondo fixed point which is the strong coupling fixed point and is very

stable to repulsive interactions[7][8].

Though SIAM was introduced to understand the physics of magnetic moments

in metals, its significance and applicability have gone beyond this physical context.

The same model is used to study the quantum transport in quantum dots where the

quantum dot is represented by impurity part of the Hamiltonian; lead electrons are

represented by conduction part of the Hamiltonian. This way it became possible
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to understand the Kondo effect in quantum dots as well even though the actual

situation is more complicated because of other energy scales. This way SIAM has

gained interest in quantum transport in quantum dots.

Another reason which made SIAM of central importance in the field of strongly

correlated electron systems is that within dynamical mean field theory framework,

Hubbard model gets mapped to SIAM in a self-consistent manner. We will come

back to this aspect of Anderson impurity model in a later section in this chapter.

1.2.3 Kondo model

Kondo model has been a paradigmatic model of condensed matter physics which

exhibits the quantum many-body effects of strong correlation. At Kondo temper-

ature, there is the formation of quantum many-body resonance peak at the Fermi

level which is due to the anti-ferromagnetic exchange between the impurity spin and

the conduction electrons of the host metal.

H =
∑

kσ

ǫkc
†
kσckσ + JS.s(0) (1.10)

S is the Kondo impurity spin and s(0) =
∑

kσ

∑

k′σ′ c
†
k′σ′τσσ′ckσ is the conduction

electron spin density at the site of Kondo impurity. Kondo model challenged the-

orists for many decades but has held immense fascination as well. It is a model

for which the theorist’s favourite method, perturbation theory broke down and

they got pushed to develop renormalization group method. Kondo physics is non-

perturbative and is intimately tied to renormalization group methods. It was for

this model that Kenneth Wilson developed his Numerical Renormalization group[3]

and got the full quantitative understanding of the dynamics and thermodynamics

of this model. Before Wilson, Anderson and collaborators had already applied the

renormalization group methods to Kondo model and had got some analytical in-
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sights into the non-perturbative physics of the model. Anderson’s poor man scaling

method became standard perturbative renormalization scheme in this field but due

to its perturbative nature could not access the regime below Kondo scale. Renormal-

ization group methods brought out the scaling properties of the Kondo model. The

logarithmic divergences in perturbation theory are usually symptoms of scale invari-

ance of the model. Renormalization group method introduces a scale/cut-off such

that physics does not depend on the cut-off, but this procedure helps to construct

the new model which has same physics but is supposed to be tractable as compared

to the original model. It was found that Kondo coupling constant grows under this

renormalization flow of Kondo model and at a particular scale when Kondo sin-

glet is formed, local moment gets completely quenched. This scenario is similar to

asymptotic freedom in quantum chromodynamics. Renormalization group methods

were instrumental in the exploration of Kondo physics. However, there were other

methods and approaches which also played very important role to understand other

aspects of rich physics of Kondo model. Phil Noziéries’ local Fermi liquid theory

approach also helped to have an intuitive understanding of the Kondo physics. He

used familiar methods from scattering theory and Landaus Fermi liquid theory to

show the information about the Kondo singlet formation is in phase shifts.

1.3 Methods for Calculating the Effective Hamiltonians

In this section, we will present two important methods to calculate the effective

Hamiltonians for strongly correlated electron systems: Schrieffer-Wolff transforma-

tion and Projection operator method. In Schrieffer-Wolff transformation, effective

Hamiltonian is calculated by projecting out the high energy excitations using a uni-

tary transformation while as in projection operator method, effective Hamiltonian is

obtained by projecting the Hamiltonian into the desired subspace of the full Hilbert

space.
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1.3.1 Schrieffer-Wolff transformation

Schrieffer-Wolff transformation(SWT) was introduced in[4] to relate Anderson im-

purity model and Kondo model. Since then this transformation has been used

very extensively in condensed matter physics to calculate the effective Hamiltoni-

ans. SWT is a version of degenerate perturbation theory[9], but here we would like

to emphasize its connection to renormalization group[10]. The reason being that, in

the case of strongly correlated electron systems there are emergent scales and SWT

is used to obtain the effective Hamiltonian which results out of the renormalization

process and is associated with new energy scale. SWT integrates out the high energy

excitations by decoupling the high energy and low energy subspaces. Due to the de-

coupling, there is renormalization of the low energy sector of the model. SWT is

a generic method for calculating the effective Hamiltonians of quantum many-body

systems, so we will give a detailed discussion of this transformation. SWT will be

later on used to calculate the effective Hamiltonians for the systems of our interest.

Schrieffer-Wolff transformation being very important transformation has been gen-

eralized in various ways. One very important generalization was done by Wegner[11]

and Glazek and Wilson[12] independently. The new method has been called Flow

equation method by Wegner and Similarity Renormalization by Glazek and Wilson.

In flow equation method the unitary transformation is once again used, but it is

done in a continuous fashion because the generator depends on the flow parame-

ter. The relation between SW transformation and flow equation method has been

worked out in [13]. SWT has been applied to dissipative systems[14], periodically

driven systems[15]and has also been given a path integral formulation[16]. In [9] the

authors have given a mathematically rigorous treatment of the transformation and

have applied SWT to quantum spin systems.
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1.3.2 SWT as unitary transformation

Unitary transformation is the standard method for diagonalization in quantum me-

chanics and condensed matter physics[17]. By the unitary transformation, one

changes to the basis in which the given Hamiltonian becomes diagonal and one

achieves diagonalization in a one step process. However, this is not possible for

all Hamiltonians. So in latter case, one tries to diagonalize the Hamiltonian in a

perturbative manner. One can still use unitary transformation to achieve this goal.

Schrieffer-Wolff transformation is such a method. It has been used extensively in

different areas of physics under different names[9]. In relativistic Quantum Mechan-

ics, it is called Foldy-Wutheysen transformation[18], in Semiconductor physics, it is

called k.p perturbation theory[19] and in condensed matter physics it has been used

as Frohlich transformation for electron-phonon problem[20]. Schrieffer-Wolff trans-

formation not only diagonalizes the Hamiltonian in a perturbative manner in which

case it is unitary perturbation theory but it also renormalizes the parameters in the

Hamiltonian and hence is a kind of renormalization procedure. SW transformation

in the latter sense is used to get the effective Hamiltonian of the given quantum

many-body Hamiltonian[4].

Schrieffer-Wolff transformation is a unitary transformation. So one chooses the

proper unitary operator which can either fully diagonalize the Hamiltonian or to

some desired order.

H ′ = U †HU (1.11)

H ′ = eSHe−S (1.12)

where S is the generator of this transformation and is an anti-hermitian operator.

Usually one requires of this transformation to cancel the off-diagonal terms to the
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first order so that following condition is satisfied.

[S,H0] = −Hv (1.13)

Expanding the operator exponential using Baker-Campbell-Haussdorff(BCH) for-

mula one gets series expansion for the transformed Hamiltonian H ′

H ′ = H0 +
1

2
[S,Hv] +

1

3
[S, [S,Hv]] + .... (1.14)

where H0 and Hv are diagonal and off-diagonal parts of the Hamiltonian H. Since

the off-diagonal term gets cancelled to the first order so the effective Hamiltonian

to the second order is given by

Heff = H0 +
1

2
[S,Hv] (1.15)

1.3.3 How to get the generator?

The most crucial step in doing SW transformation is to get the generator of the

transformation. Once the generator is calculated the rest of the calculation is quite

straightforward. So having an explicit method for calculating the generator is of

immense value. In this section we will present a systematic method to calculate the

generator of Schrieffer-Wolff transformation for a general Hamiltonian and then will

apply this method to Anderson impurity model.

Let H be our full Hamiltonian and H0 be the diagonal part and Hv be the off-

diagonal part of the full Hamiltonian. To obtain the generator, we will proceed in

two steps. In the first step, we will find the commutator [H0, Hv] and call it η. In

the second step, we will impose the condition of removing the off-diagonal part till

first order on η. To do that we will have to keep the coefficients undetermined and

they will be determined by the above condition. So η has to statisfy [η,H0] = −Hv
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in order to be the generator of the transformation. The latter condition determines

the coefficients and we get the generator for SW transformation of the given Hamil-

tonian. In the next section we will calculate the generator of SW transformation

for Single Impurity Anderson Model for which the transformation was carried out

in the original paper[4].

1.3.4 Generator for Anderson Impurity Model

We will first write down the single impurity Anderson Hamiltonian in second quan-

tized notation:

H =
∑

kσ

ǫkc
†
kσckσ +

∑

σ

ǫdd
†
σdσ +

∑

kσ

Vk(c†kσdσ + d†σckσ) + Und↑nd↓ (1.16)

The Hamiltonian has one off-diagonal term which we call as Hv and diagonal terms

which together we call H0.

H0 =
∑

kσ

ǫkc
†
kσckσ +

∑

σ

ǫdd
†
σdσ + Und↑nd↓ (1.17)

Hv =
∑

kσ

Vk(c†kσdσ + d†σckσ) (1.18)

Now the first step is to calculate η which is basically commutator of diagonal part

with off-diagonal part of the Hamiltonian.

η = [H0, Hv] (1.19)

η =

[
∑

kσ

ǫkc
†
kσckσ +

∑

σ

ǫdd
†
σdσ + Und↑nd↓,

∑

kσ

Vk(c†kσdσ + d†σckσ)

]

(1.20)

η =
∑

kσ

(ǫk − ǫd − Undσ̄)Vk(c†kσdσ − d†σckσ) (1.21)

In the second step we will impose the condition of removing the off-diagonal term to

the first order. To do that we will keep the coefficients undetermined and actually
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they will get determined automatically once η satisfies the condition. We will label

it with S to emphasize that it is not actually η which is the generator rather it is S

with correct coefficients. What η has similar to S is the form of the operators.

S =
∑

kσ

(Ak −Bkndσ̄)Vk(c†kσdσ − d†σckσ) (1.22)

Now we will impose the condition on S to determine Ak and Bk

[S,H0] = −Hv (1.23)

⇒
[
∑

kσ

Ak(ǫd − ǫk) +
∑

kσ

(AkU −Bk(ǫd − ǫk + U)ndσ̄)

]

(Vk(c†kσdσ + d†σckσ)

(1.24)

= −
∑

kσ

Vk(c†kσdσ + dσc
†
kσ) (1.25)

⇒ Ak(ǫd − ǫk) + (AkU +Bk(ǫd − ǫk + U)ndσ̄ = −1 (1.26)

Solving for Ak and Bk we obtain:

Ak =
1

ǫk − ǫd
(1.27)

Bk =
1

ǫk − ǫd − U
− 1

ǫk − ǫd
(1.28)

In this way we have calculated the generator of SW transformation for Single Impu-

rity Anderson Model. We can write the generator in the same form as was written

in[4] by using extra index α which takes two values.

S =
∑

kσα

Vk
ǫk − ǫα

nαd,σ̄c
†
kσdσ − h.c. (1.29)
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nαdσ̄ = ndσ̄ ǫα = ǫd + U α = + (1.30)

= 1 − ndσ̄ ǫα = ǫd α = − (1.31)

Summing over α we get S in the same form as we have calculated.

S =
∑

kσ

[ Vk
ǫk − ǫd − U

ndσ̄c
†
kσdσ+

Vk
ǫk − ǫd

(1 − ndσ̄)c†kσdσ
]
− h.c. (1.32)

1.3.5 SW Transformation of SIAM

To carry out SWT we will have to calculate the following commutator:

[S,Hv] (1.33)

=

[
∑

kσ

(Ak +Bkndσ̄)Vk(c†kσdσ − d†σckσ),
∑

k′σ′
Vk′
(

c†k′σ′dσ′ + d†σ′ck′σ′

)
]

[S,Hv]

=
∑

kk′σ

AkVkVk′(c
†
kσck′σ + h.c) −

∑

kσ

AkV
2
k (d†σdσ + h.c.)−

∑

kσ

BkV
2
k (ndσ̄d

†
σdσ + h.c.) +

∑

kk′σ

BkVkVk′(d
†
σ̄ck′σ̄c

†
kσdσ + h.c)−

∑

kk′σ

BkVkVk′(c
†
k′σ̄dσ̄c

†
kσdσ + h.c.) +

∑

kk′σ

BkVkVk′(c
†
kσck′σndσ̄ + h.c.) (1.34)

Switching to Nambu Spinor representation:

Ψ†
k =






c†k↑

c†k↓




 Ψk =






ck↑

ck↓




 Ψ†

d =






d†↑

d†↓




 Ψd =






d↑

d↓




 (1.35)
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We get the Kondo exchange term

=
∑

kk′
Jkk′

(

Ψ†
kSΨk′

)(

Ψ†
dSΨd

)

(1.36)

where exchange constant is given by

Jkk′ = VkVk′

(
1

ǫd − ǫk + U
+

1

ǫd − ǫk′ + U
− 1

ǫd − ǫk
− 1

ǫd − ǫk′

)

(1.37)

In addition to the Kondo exchange term the commutator [S,Hv] also has following

terms which correspond to other scattering processes:

Hdir =
∑

kk′σ

(

AkVkVk′ +BkVkVk′
ndσ + ndσ̄

2

)

c†kσck′σ + h.c. (1.38)

Hhop = −
∑

kσ

V 2
k (Ak +Bkndσ̄)ndσ + h.c. (1.39)

Hch =
∑

kk′σ

BkVkVk′
(

c†kσ̄dσ̄c
†
k′σdσ

)

+ h.c. (1.40)

1.3.6 Projection Operator Method

In this section we will calculate the low energy effective model of e-SIAM using

projection operator method as given in[21]. The Hilbert space of the impurity con-

sists of empty state, singly occupied state and doubly occupied state which can

be written |0〉, | ↑〉, | ↓〉, | ↑↓〉. To get the low energy effective Hamiltonian we will

project out excitations to empty and doubly occupied subspaces and restrict the

dynamics to singly occupied subspace which corresponds to the Kondo regime. The
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corresponding projection operators are:

P0 = |0〉〈0| = (1 − nd↑)(1 − nd↓) (1.41)

P↑ = | ↑〉〈↑ | = (nd↑)(1 − nd↓) (1.42)

P↓ = | ↓〉〈↓ | = (nd↓)(1 − nd↑) (1.43)

Pd = | ↑↓〉〈↑↓ | = nd↑nd↓ (1.44)

Completeness of the local Hilbert space is given byPj0 + Pj↑ + Pj↓ + Pjd = 1

Schrodinger equation for the impurity electron can be written as

HΨ = EΨ (1.45)

2∑

m=0

HnmΨm = EΨn where Hnm = PnHPm (1.46)

H00Ψ0 +H01Ψ1 +H02Ψ2 = EΨ0 (1.47)

H10Ψ0 +H11Ψ1 +H12Ψ2 = EΨ1 (1.48)

H20Ψ0 +H21Ψ1 +H22Ψ2 = EΨ2 (1.49)

Since there is no term in the Hamiltonian which connects empty and doubly occupied

sub-spaces therefore we get H02 = H20 = 0.

Schrodinger equation in |0〉 subspace is

H00Ψ0 +H01Ψ1 = EΨ0 (1.50)

(H00 − E)Ψ0 = −H01Ψ1 (1.51)

⇒ Ψ0 = (E −H00)
−1H01Ψ1 (1.52)

18



Schrodinger equation in |2〉 subspace is given by

H21Ψ1 +H22Ψ2 = EΨ2 (1.53)

(E −H22)Ψ2 = H21Ψ1 (1.54)

⇒ Ψ2 = (E −H22)
−1H21Ψ1 (1.55)

Schrodinger equation in the |1〉 subspace is given by

H10Ψ0 +H11Ψ1 +H12Ψ2 = EΨ1 (1.56)

Substituting for Ψ0 and Ψ2 in equation 1.48 we obtain:

[

H10
1

E −H00
H01 +H11 +H12

1

E −H22
H21

]

|Ψ1〉 = E | Ψ1〉 (1.57)

The projected terms of the Hamiltonian are :

H00 = P0HP0 =
∑

kσ

ǫkc
†
kσckσ (1.58)

H11 = P1HP1 =
∑

kσ

ǫknkσ + ǫd (1.59)

H22 = P2HP2 =
∑

kσ

ǫknkσ + 2ǫd + U (1.60)

H12 = P1HP2 =
∑

k

Vkc
†
kσdσndσ̄ H21 = H†

12 (1.61)

H01 = P0HP1 =
∑

k

Vkc
†
kσdσ(1 − ndσ̄) H10 = H†

01 (1.62)
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To evaluate the effective Hamiltonian we need following commutators:

[H12, H22] =

[
∑

kσ

Vkc
†
kσdσndσ̄,

∑

k′σ′
ǫk′nk′σ′ + 2ǫd + U

]

(1.63)

= −
∑

kσ

Vk(ǫk)c†kσdσndσ̄ (1.64)

[H10, H00] =

[
∑

k′σ′
Vk′d

†
σ′ck′σ′

(

1 − nd
σ̄′

)

,
∑

kσ

ǫkc
†
kσckσ

]

(1.65)

=
∑

kσ

ǫk(Vkd
†
σckσ(1 − ndσ̄)) (1.66)

H12
1

E −H22
H12 (1.67)

=
∑

kσ

∑

k′σ′
Vk′c

†
k′σ′dσnd

σ̄′
1

E −H00 − 2ǫd − U
Vkd

†
σckσndσ̄ (1.68)

=
∑

k′σ′

∑

kσ

−Vk′Vk
U + ǫd − ǫk′

(1 − E −H00 − ǫd
U + ǫd − ǫk′

)−1c†k′σ′dσ′nd
σ̄′d

†
σckσndσ̄ (1.69)

= −
∑

kσ

∑

kσ

Vk′Vk
U + ǫd − ǫk′

c†k′σ′dσ′nd
σ̄′d

†
σckσndσ̄ (1.70)

= −
∑

k′k

∑

σ′σ

VkVk′

U + ǫd − ǫk′

(

1/2
∑

σ

c†kσck′σ −
∑

σσ′
S.c†kσ(σ)σσ′ck′σ′

)

(1.71)

Similarly first term in equation 1.57 can be calculated. It incorporates the excitations

between empty state and singly occupied state. The contribution of this term is given

by:

H10
1

E −H00
H01 (1.72)

=
∑

kσ

∑

k′σ′
Vk′Vk(E −H00 − ǫk′)

−1d†σ′ck′σ′c†kσdσ(1 − nd
σ̄′ )(1 − ndσ̄) (1.73)

From this term one gets contribution to Kondo exchange term and potential scat-

tering term. Potential scattering term will be dropped down from the effective

Hamiltonian. Putting all the terms together one gets the following effective Hamil-
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tonian.

H =
∑

kσ

∑

kσ′
ǫkc

†
kσckσ + Jkk′S.c

†
kσ(σ)σσ′ck′σ′ (1.74)

where the coupling constant given by

Jkk′ = VkVk′

(
1

U + ǫd − ǫk′
+

1

ǫk − ǫd

)

(1.75)

Using the projection operator method we obtain only Kondo exchange term and

potential scattering term in the effective Hamiltonian which is because we have re-

stricted the Hamiltonian to the singly occupied subspace. In contrast, the effective

Hamiltonian which we have obtained via Schrieffer-Wolff transformation has other

terms in addition to Kondo exchange term. However, both methods yield Kondo

exchange interaction which determies the strong coupling physics of Anderson im-

purity model.

In previous sections we have introduced two important quantum impurity mod-

els and then using Schrieffer-Wolff transformation and projection operator method,

shown how Kondo model arises as an effective Hamiltonian in the strong coupling

regime of Anderson impurity model. Now we turn to lattice models and present a

paradigmatic model for strongly correlated electron systems.

1.4 Hubbard model and Dynamical Mean Field theory

Hubbard model is the simplest lattice model which was introduced for strongly

correlated electron systems[22].

H = −
∑

〈ij〉,σ
tij(c

†
iσcjσ + c†jσciσ) + U

∑

i

ni↑ni↓ − µ
∑

i

c†iσciσ (1.76)

tij is the hopping amplitude and U is the local Hubbard interaction and µ is the

chemical potential.
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However, the Hubbard model is exactly solvable only in one dimension[23]. For

higher dimensions, we need to rely on different methods which can not capture the

full phase diagram of the model. Hence it came as a great breakthrough when it

was shown by Metzner and Vollhardt[24] that in infinite dimensions, self-energy and

vertex function for the Hubbard model become local. Later on it was shown that

Hubbard model can be mapped to single impurity Anderson with self-consistent

hybridization[25]. This formalism of mapping lattice models to impurity Anderson

model with self-consistency has been very successful to study the various lattice

models of SCES and has particularly helped to understand interaction driven Mott

transition. This formalism is called dynamical mean field theory(DMFT) because

it treats spatial fluctuations in mean field way but takes into consideration local

quantum fluctuations which lead to the phenomena like Mott transition. There are

many ways to derive and understand this mapping of lattice models to quantum

impurity models, we will follow cavity method[25].

1.4.1 DMFT Mapping and Self-Consistency Conditions

In this section we derive the effective action of Anderson impurity model from the

Hubbard model and in that way we map the lattice model to a quantum impurity

model. Important in this derivation is the infinite dimensional limit which makes the

dynamic quantities like Green’s functions and self-energies local. Since we are not

taking into consideration the momentum dependence and hence spatial fluctuations

can not be treated and DMFT becomes an approximation which takes only local

dynamical fluctuations into account.

S =

∫ β

0
dτ
∑

iσ

c∗iσ(τ)

(
∂

∂τ
− µ

)

ciσ−

∑

ijσ

tijc
∗
iσ(τ)cjσ(τ) +

∑

i

Uc∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ) (1.77)
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c∗iσ and ciσ are Grassmann variables. The action for Hubbard model can be divided

into three parts.

S = S0 + ∆S + S0 (1.78)

S0 =

∫ β

0

∑

σ

c∗0σ(τ)

(
∂

∂τ
− µ

)

c0σ(τ) + Uc∗0↑(τ)c0↑(τ)c∗0↓(τ)c0↓(τ) (1.79)

∆S = −
∫ β

0
dτ
∑

iσ

(ti0c
∗
iσ(τ)c0σ(τ) + t0ic

∗
0σ(τ)ciσ(τ)) (1.80)

S0 =

∫ β

0
dτ
∑

i 6=0,σ

c∗iσ(τ)

(
∂

∂τ
− µ

)

ciσ(τ) −
∑

ij

c∗iσ(τ)cjσ(τ)+

Uc∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ) (1.81)

η ≡ ti0c0σ plays the role of the source field which is coupled to c†iσ. After integrating

out the fermions at all the sites except for cavity site ,we obtain the effective action:

Seff =
∞∑

n=1

∑

i1...jn

∫

η†ii(τi1)...η†in(τin)nj1(τj1)...ηjn(τjn)G0
i1...jn(τi1 ..τin , τj1 ..τjn)+

S0 + const. (1.82)

In this form this result is not useful because we still need to calculate the full cavity

Green’s function. However something very interesting happens when we take the

limit of infinite co-ordination number. In this limit the hopping amplitude needs to

be rescaled as tij ∝ 1√
d|i−j| . This scaling of tij ensures that Greens functions scales

as G0 ∝ ( 1√
d
)|i−j| and hence the leading term is of the order unity and all other

higher order terms have 1
d decay. So in the infinite dimensions limit only the leading

order terms survive and the effective action simplifies to:

Seff =

∫

dτdτ ′c∗0σ



−∂τ + µ−
∑

ij

t0it0jG
0



 c0σ +

∫

dτUn0↑n0↓(τ) (1.83)
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Here we introduce important quantity in DMFT: Weiss field which is related to the

Greens’s function of the Hubbard model with one site removed.

G0(iωn) = iωn + µ−
∑

ij

t0it0jG
0
ij(iω) (1.84)

However we still have to calculate G0 and the full lattice Green’s function for the

Hubbard model. For a general lattice the relation between the cavity and full Green’s

functions is given by:

G
(0)
ij = Gij −

Gi0G0j

G00
(1.85)

Substituting for cavity Green’s function in equation 1.84, we relate Weiss field with

lattice Green’s function.

G0(iωn)−1 = iωn + µ−
∑

ij

t0it0j(Gij −
Gi0G0j

G00
) (1.86)

Taking the Fourier transform of hopping amplitude and Green’s function we arrive

at:

G(k, iωn) =
1

iωn + µ− ǫk − Σiωn

(1.87)

Where we have used the local self-energy Σ(iωn) = Σ(k, iωn). Using the Dyson

equation

Σ(iωn) = G0(iωn)−1 −G(iω)−1 (1.88)

we arrive at the full lattice Green’s function

G(iωn) =

∫ ∞

−∞
dǫ

D(ǫ)

iωn + µ− ǫ− Σ(iωn
) (1.89)
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D(ǫ) is the density of states and depends on the choice of the lattice. The set of

equations we have derived constitute the self-consistent equations of DMFT and

lead to what is called DMFT self-consistency loop. The main step in the DMFT

loop is to solve the quantum impurity model which has been obtained after DMFT

mapping.

DMFT loop can be written as an algorithm which consists of following steps and

can be written as flow diagram as shown in Figure 1.1.

Figure 1.1: DMFT self-consistency loop.(Figure adapted from Phd thesis of N. S. Vidhyad-
hiraja)

Step 1: Start with non-interacting Green’s function for the quantum impurity

model.

Step 2: Using impurity solver calculate the full Green’s function for impurity model.

Step 3: Using the Dyson equation calculate the self-energy.

Step 4: Using Hilbert transform to calculate the local Green’s function of the lattice

model. (In this step DMFT approximation is used which equates impurity self-

energy with Lattice model self-energy).

Step 5: Using Dyson equation calculate the bath Green’s function for the next

iteration.
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Step 6: Run the DMFT loop iteration until convergence is reached.

We have written this algorithm in terms of Green’s function, but it can also be

done in terms of hybridization function. The main step in DMFT computations

is to solve the quantum impurity model. There are many impurity solvers which

have been used within DMFT. Notable among them are numerical renormalization

group method(NRG), Exact diagonalization method(ED), quantum Monte Carlo

method(QMC), density matrix renormalization group (DMRG)method.

1.5 Summary

In this chapter, we have given a brief introduction to strongly correlated electron

systems and how strong correlation physics leads to new emergent phenomena which

need new methods for their exploration. To show the concrete examples of strongly

correlated systems we have discussed three important Hamiltonians for strongly

correlated electron systems, namely Anderson impurity model, Kondo model and

Hubbard model. We have presented two methods for the calculation of effective

Hamiltonians and based on them showed how Anderson impurity model is related

to Kondo model. We have also discussed how within the dynamical mean field theory

framework, Hubbard model(lattice model) gets mapped to Single impurity Anderson

model in a self-consistent manner. This mapping is very important because quantum

impurity models are well-understood models and within DMFT one can use quantum

impurity models to understand lattice models.
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Chapter 2

Renormalization Group Methods for

Quantum Many-body Hamiltonians
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2.1 Introduction

Strong correlation leads to the renormalization of the bare quantities of the elec-

trons in real systems. Landau’s Fermi liquid theory, which has been a corner stone

of condensed matter physics, is based on the renormalization of the free fermions due

to weak correlation. The effective description of Fermi liquid theory is in terms of

“quasiparticles” which have got dressed due to renormalization effects. Similarly, all

the bare properties of free electrons like mass, charge and lifetime also get renormal-

ized, and it is these renormalized quantities which are physical rather than the bare

quantities. At the level of quantum many-body Hamiltonian, the model parameters

get renormalized, and as the energy scales of the model are changed, the parameters

undergo renormalization flows. In the field of strongly correlated electron systems,

renormalization group methods were first applied by Anderson[1][2] to get an un-

derstanding of Kondo model for which perturbation methods had given divergent

results. Hence renormalization method played a very important role in understand-

ing the quantum many-body physics of Kondo effect. Later on Wilson[3] came up

with an even more robust method of renormalization called Numerical renormaliza-

tion group(NRG) which helped eventually to solve what had been called “Kondo

problem”.

Renormalization methods become natural when we deal with many-body systems

where there is an interplay between various degrees of freedom at different scales

present in the system. The logarithmic divergence in the perturbation theory is a
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symptom of the many energy scales. The divergent integral takes the form
∫

dE
E

and as the energy scale goes to the infrared limit, there is a divergence. Another

feature of these systems where renormalization group becomes important is the lack

of an energy scale or in other words scale invariance. Critical phenomena are the

prime examples where there is no energy scale (hence scale invariance) and that is

why understanding phase transitions necessitated scaling and renormalization group

methods[4][5][6]. In strongly correlated electron systems, Kondo physics was the first

such phenomenon which exhibited scale invariance and hence the universality[2][8].

Renormalization group methods capture these scale invariant aspects of the systems

by calculating the scaling equations and the scaling invariants of the quantum many-

body system.

Renormalization group method finds extensive application in quantum field the-

ory, statistical physics, condensed matter physics, non-linear dynamics[12]. By now,

there are many different methods to do the renormalization group study in condensed

matter physics which include, most importantly poor man scaling [8][7], flow equa-

tion method [13], functional renormalization group [14], numerical renormalization

group [15] and density matrix renormalization group [16]. However, the underly-

ing philosophy in all the methods is similar. One identifies high energy(ultraviolet)

and low energy scales in the system. Then the high energy states are integrated

out iteratively. This leads to a series of effective Hamiltonians which scale towards

a fixed point where the scaling flow stops. However, a fixed point can be stable,

unstable or marginal depending on what happens to the scaling flow under a per-

turbation. This gives the fixed point structure of the Hamiltonian and determines

the scaling behaviour. A Hamiltonian flows towards stable fixed point. The scaling

flow of a given Hamiltonian can be written as a differential equation, often called

beta function which can be solved to calculate the scaling invariants for the given

model.
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In this chapter, we will discuss renormalization methods for the quantum impu-

rity models which were introduced in the previous chapter. In quantum impurity

models, renormalization group methods have played a very important role. In quan-

tum impurity models, there are two main energy scales associated with charge and

spin fluctuations. The energy scale associated with the charge fluctuations is higher

as compared to that of spin fluctuations which survive down to the low energy scales.

As seen in the last chapter, Schrieffer-Wolff transformation projects out the high en-

ergy real charge excitations and generates an effective Hamiltonian which has spin

fluctuations alone. The scaling procedure can be continued on the effective Hamil-

tonian. That we will do for Kondo model by applying Anderson’s poor man scaling

method of perturbative renormalization. We will extract the Kondo scale from the

beta function of Kondo model. Then we will carry out scaling analysis of Anderson

impurity model directly without integrating out the charge excitations.

Next, we will introduce another renormalization method which is an extension

of Poor man scaling method. This method is called flow equation renormalization

method. We will apply this method to Kondo model and show how we capture

aspects of scaling behaviour of Kondo model which do not get captured in poor

man scaling method. We will especially solve the flow equations for the Kondo spin

operator and from them calculate dynamic spin susceptibility for Kondo model.

2.2 Renormalization group methods for quantum impu-

rity systems

Perturbation theory of quantum impurity Hamiltonians leads to logarithmic diver-

gences. This logarithmic dependence comes from the scaling properties of these

models. The low energy physics, which is also the strong coupling regime of these

models, does not depend on the bare parameters only. Strong coupling physics de-
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pends on renormalized parameters which have the renormalization effects of high

energy states as well. These renormalized quantities which determine the low en-

ergy physics are the scaling invariants of the Hamiltonian. In the process of scal-

ing, though the parameters of the Hamiltonian get renormalized, however, physics

remains same. The scaling transformations not only renormalize the bare param-

eters of the model but also produce retardation effects and generate new terms as

well. So the scaling transformation is an iterative map which starting with a given

Hamiltonian generates a series of effective Hamiltonians as the high energy states

are projected out, and the parameters of the effective Hamiltonians keep getting

renormalized. All these effective Hamiltonians lie on scaling trajectories which are

determined by scaling invariants of the Hamiltonian. The iterative scaling transfor-

mations can be written as differential equations for the coupling constants of the

model. Kondo model is one of the celebrated models which shows this kind of scaling

behaviour. For Kondo model, Anderson based on his poor man’s scaling analysis

calculated the flow equation for Kondo coupling.

dg

dlnD
= −g2 (2.1)

where J is Kondo coupling constant, g = Jρ0 is dimensionless Kondo coupling

constant and ρ0 is the density of states at Fermi level. Though this differential

equation looks very common and simple, its solution is very interesting and gave

very important physical insights into Kondo physics.

g(D) =
g0

1 − g0 ln(D0
D )

(2.2)

Here D is the running band-width and D0 is the initial band-width. The solution

shows that as the band width is decreased and hence the high energy states are

projected out, Kondo coupling constant grows and in fact it diverges logarithmically
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as the band-width approaches zero. This is the well- known Kondo divergence which

plagues perturbative expansions and is symptomatic of the the formation of Kondo

singlet. Later on, it was confirmed that Kondo coupling actually diverges when

Kondo effect takes place and consequently Kondo singlet is formed. We can define

Kondo scale as the energy scale at which flow of coupling enters strong coupling

regime. So Kondo scale is the energy scale at which coupling constant diverges, and

perturbation expansion breaks down. Kondo scale itself is a scaling invariant and

hence does not depend on band-width.

2.3 Poor Man’s Scaling of Kondo model

In this section, we will carry out the poor man’s scaling analysis of Kondo model[1].

In literature, this method has been called Poor man’s scaling and poor man scaling

method, so we will use these names interchangeably. Poor man scaling method

being very important method has been discussed by many authors including[7–11].

Particularly the last two authors have done a critical study of this method. We will

mainly follow [8] and [9] in this section. First, we will show how Anderson arrived at

renormalized interaction using the T matrix and projection operator algebra. Then

we will calculate the scaling equation for the Kondo couplings by considering the

renormalization effects on various spin scattering processes.

Since Kondo effect involves spin scattering, so one introduces the T matrix which

incorporates the scattering effects due to interactions.

T (ω) = Vint + VintG0(ω)T (ω) (2.3)

G0(ω) = 1
ω−H0

is the resolvent operator corresponding to H0 =
∑

kσ ǫkc
†
kσckσ for
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the conduction electrons. For the Kondo model Vint is given by:

Vint =
J±
2

(S+s− + S−s+) + JzS
zsz (2.4)

To project out the high energy states from the conduction band we need to introduce

a projection operator PδD which projects onto the states which have at least one

particle in the range(D-δD,D) or one hole in the range(-D,-D+δD). (1−PδD) is the

projection operator for orthogonal subspace. Using the properties of the projection

operators, T matrix can be written as:

T = Vint + Vint(1 − PδD)G0T + VintPδDG0T (2.5)

Substituting for T matrix in third term we get:

T = Vint + Vint(1 − PδD)G0T + VintPδDG0Vint

+ VintPδDG0Vint(1 − PδD)G0T + VintPδDG0VintPδDG0T (2.6)

Re-arranging the terms, T matrix can be written as:

T = Vint + VintPδDG0Vint + (Vint + VintPδDG0Vint)(1 − PδD)G0T

+ VintPδDG0VintPδDG0T (2.7)

We can define V ′
int = Vint +VintPδDG0Vint as the renormalized interaction and after

neglecting the last term, T matrix takes the form.

T = V ′
int + V ′

int(1 − PδD)G0T (2.8)

T matrix is of the same form as in equation 2.3, however the interaction has got

renormalized. Projecting out the high energy states renormalizes the interaction
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while keeping the form of T matrix same. ∆Vint = V ′
int−Vint gives the renormalized

interaction: ∆Vint = VintPδDG0Vint

∆Vint =
∑

k2σ2

∑

k1σ1

∑

kσ

c†k2σ2
(τ)σ2σckσ.sd

PδD

ω −H0
c†kσ(τ)σσ1ck1σ1 (2.9)

We have used the Abrikosov’s pseudofermion representation for conduction electrons.

Sz =
1

2
(c†k↑ck↑ − c†k↓ck↓) S+ = c†k↑ck↓ S− = c†k↓ck↑ (2.10)

This is how renormalized interaction was derived by Anderson [1]. Though Ander-

son arrived at the renormalized interation using T matrix and the fact that it should

remain invariant under scaling transformation, we can obtain the renormalized in-

teraction using effective Hamiltonion theory[8][19]. This method was later on used

by Haldane[17] and Jefferson[18] to do the scaling analysis of asymmetric Ander-

son impurity model and by Kuramoto[19] for the renormalization of multi-channel

Kondo models. The details of this method can be found in [8][9]. In this chapter

and chapter 3, we will apply the effective Hamiltonian way of doing the poor man

scaling analysis of quantum impurity models. The effective Hamiltonian formulation

of poor man scaling is an iterative way of generating effective Hamiltonians in which

using the projection operators, the high energy states are being projected out and

the resulting effective Hamiltonian acts on smaller Hilbert space. The renormaliza-

tion effects of the projected out states gets incorporated in the coupling constants.

So unlike Anderson’s original formulation in terms of T matrix, where the original

problem is being mapped to a simpler problem keeping the physics(T matrix) in-

variant, in the effective Hamiltonian method, one maps the original Hamiltonian

to low energy effective Hamiltonian which has smaller Hilbert space and is simpler

than the original Hamiltonian, the physics is kept invariant by incorporating the

effects of the high energy states on the coupling constants of the low energy effective
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Hamiltonian. The effective Hamiltonian can be calculated as[18][19]:

Heff (D̃) = (1 − PδD)H(1 − PδD) + (1 − PδD)HPδD+

(1 − PδD)HPδD
1

E − PδDHPδD
PδDH(1 − PδD) (2.11)

The renormalized interaction is given by the third term. When we substitute Kondo

interaction for HV in above equation, we arrive at the renormalized interaction cal-

culated using T matrix approach. To carry out the poor man scaling analysis of

Kondo model, we need to consider the renormalization effects of all the spin scat-

tering processes. Spin conserving scattering processes will renormalize longitudinal

Kondo coupling while as the transverse Kondo coupling will get renormalized due

to spin flip(transverse) scattering processes.

2.3.1 Renormalization of Jz

In this case only those scattering processes will contribute which are spin conserving

and hence involve two spin flip scattering.

J+J−
∑

q

S−c†k′↑cq↓
1

ω −H0

∑

q′
S+c†q′↓ck↑ (2.12)

The sum on q over the intermediate states is restricted within δD from the top of the

band. Because the band edge states are originally unoccupied, we get cqc
†
q′ = δqq′

Using the commutator [H0, c
†
q′↓ck↑] = (ǫq′ − ǫk)c†q′↓ck↑, Equation 2.12 simplifies to

J+J−δDρ0S
−S+c†k′↑ck↑(E − ǫq − ǫk −H0)

−1 (2.13)

Setting ǫq = D and using the relation S−S+ = h2

2 − hSz, we arrive at

J+J−δDρ0h
2(

1

2
− Sz

h
)c†k′↑ck↑(E −D + ǫk)−1 (2.14)
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Similar contribution when the holes are involved in scattering is given below.

J+J−δDρ0h
2(

1

2
+
Sz

h
)ck↑c

†
k′↑(E −D − ǫk′)

−1 (2.15)

Here we have set ǫq = −D and S+S− = h2

2 + hSz.

Similar contribution from the down spin electrons and holes are:

J+J−δDρ0h
2(

1

2
+
Sz

h
)c†k′↓ck↓

1

E −D + ǫk
(2.16)

J+J−δDρ0h
2(

1

2
− Sz

h
)ck↓c

†
k′↓

1

E −D − ǫk′
(2.17)

Summing the contributions from all these terms and comparing with the original

Hamiltonian we obtain the renormalized longitudinal coupling.

δJz = −J−J+ρ0δD
(

1

E −D
+

1

E −D

)

(2.18)

Renormalized transverse Kondo coupling can be obtained in a similar manner by

considering all spin-flip scattering processes.

δJ± =
1

2
J±Jzρ0δD

(
1

E −D
+

1

E −D

)

(2.19)

The renormalized Kondo couplings are energy dependent which shows that the renor-

malization leads to retardation of effective interaction. For low energy excitations

close to Fermi level, E dependence can be neglected compared to D and ǫk, ǫk′ can

be set to zero. In this case the the scaling equations for anisotropic Kondo model

become:

dJz
dlnD

= −2J+J− (2.20)

dJ±
dlnD

= −2ρ0JzJ± (2.21)
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Dividing these two scaling equations and integrating gives the scaling trajectories

which are hyberbolic curves.

J2
z − J2

± = κ (2.22)

Jz always increases as the band-width is decreased. In case of ferromagnetic models,

Jz < 0 and |Jz| > J±, the above equation shows that J± vanishes along the scaling

flow. While as for antiferromagnetic case, Kondo coupling grows and leads to di-

vergence for the perturbative renormalization methods. For the antiferromagnetic

case, scaling equation can be solved for J± = Jz

dJ

dlnD
= −J2ρ0 (2.23)

J(D) =
J(D0)

1 + ρ0J(D0) ln
(

D
D0

) (2.24)

Scaling trajectories are characterised by a scaling invariant which also defines the

Kondo scale Tk.

De
−1

2Jρ0 = D̃e
−1

2J̃ρ0 = kBTk (2.25)

Kondo temperature is the only energy scale present in the Kondo regime, and ther-

modynamic quantities depend only on this scale and hence show universality.

2.4 Scaling analysis of Anderson model

In this section, we will extend perturbative renormalization to Anderson impurity

model where valence fluctuations are also present in addition to spin fluctuations.

The local Hilbert space of this model is larger, and it also has bigger parameter

space as compared to the Kondo model. Consequently, this model has richer fixed
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point structure. There are other fixed points and hence parameter regimes apart

from the Kondo regime which corresponds to the strong coupling fixed point of An-

derson impurity model. As we have seen in previous chapter that Kondo model is

related to Anderson impurity model via Schrieffer-Wolff transformation. Poor man

scaling analysis of SIAM was first done by Haldane[17] and Jefferson[18]. Though

both papers had a similar motivation of understanding the mixed valence regime

of asymmetric SIAM, in [17] the scaling invariants and scaling trajectories of the

model parameters have been calculated. Perturbative renormalization was done till

second order where hybridization was not found to get renormalized. Renormaliza-

tion of impurity energy levels was also calculated. In [18] third order perturbative

renormalization of the model was done, and scaling equation was also obtained for

hybridization.

In this section, we will apply poor man scaling method to study the scaling

behaviour of Anderson impurity model following[8][17]. We will calculate the scaling

equations for the model parameters and also the renormalization of impurity energy

levels. We begin with a calculation of the renormalization of the impurity energy

levels. This will allow us to extract the scaling equations for the orbital energy, ǫd

and the Hubbard U . As mentioned in the previous section, projecting out the high

lying conduction band states yields an effective interaction as follows:

Hv(D̃) = (1 − PδD)HvPδD
1

E − PδDHcPδD −Hloc
PδDHv(1 − PδD) (2.26)

whereHc is the Hamiltonian for conduction electrons andHloc is the the Hamiltonian

for the impurity. Since there are real charge fluctuations involved in this model, the

natural choice for representing impurity operators is through Hubbard operators.

These are generalized projection operators and satisfy the following superalgebra:

[Xpq, X lm] = δqlX
pm − δmpX

lq (2.27)
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The usual fermionic operators can also be represented in X operator representation

as:

d†σ = Xσ:0 + ηX2:σ̄ (2.28)

Where η = ∓ for for down and up spin respectively. In the new representation, the

hybridization term becomes:

Hv =
∑

kσ

(

Vkc
†
kσ(X0:σ + ηXσ:2)

)

+ V ∗
k

(
Xσ:0 + ηX2:σ̄)ckσ)

)
(2.29)

This implies that

H01 =
∑

kσ

Vkc
†
kσX

0:σ (2.30)

H21 =
∑

kσ

VkηX
2:σ̄ckσ (2.31)

Similarly the local part of the Hamiltonian can be written in Hubbard operator

representation:

Hloc =
∑

σ

ǫdndσ + Und↑nd↓ (2.32)

= E0X
00 +

∑

σ

E1X
σσ + E2X

22 (2.33)

where E1, E2, E3 are the energies of empty, singly occupied and doubly occupied

enegy impurity states.
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The contribution from the term H10
1

E−QH0Q
H01 is

∑

q

Vq(X
σ:0 + ηX2:σ̄)cqσ

1

E − PδDHcPδD −Hloc

∑

q

V ∗
q c

†
qσ(X0:σ + ηX σ̄:2)

=
∑

q

VqV
∗
q (Xσ:0X0:σ 1

E − PδDHcPδD + ǫd − ǫq
)

+
∑

q

VqV
∗
q (X2:σ̄X σ̄:2 1

E − PδDHcPδD + ǫd + U − ǫq
) (2.34)

=
∑

q

VqV
∗
q

1

E − ǫq + ǫd
Xσ:σ +

∑

q

VqV
∗
q

1

E − ǫq + ǫd + U
X2:2

=
∑

q

VqV
∗
q

(
1

−D + ǫd
Xσ:σ +

1

−D + ǫd + U
X2:2

)

(2.35)

The contribution from the term H12
1

E−QH0Q
H21

∑

q

Vqcqσ(Xσ:0 + ηX2:σ)
1

E − PδDHcPδD −Hloc

∑

q

V ∗
q c

†
qσ(X0:σ + ηXσ:2)

=
∑

q

VqV
∗
q X

σ:0X0:σ 1

E − PδDHcPδD − ǫd − U − ǫq

+
∑

q

VqV
∗
q X

2:σXσ:2 1

E − PδDHcPδD − ǫd − U + ǫq

=
∑

q

VqV
∗
q

(
1

−D − ǫd − U
Xσ:σ +

1

−D + ǫd + U
X2:2

)

(2.36)

The contribution of the term H12
1

E−QH0Q
H01

∑

q

V ∗
q c

†
qσ(X0:σ + ηXσ:2)

1

E − PδDHcPδD

∑

q

Vq(X
σ:0 + ηX2:σ̄)cqσ)

=
∑

q

V ∗
q VqX

0:σXσ:0 1

−ǫq − ǫd
+X σ̄:2X2:σ̄ 1

−ǫq − ǫd − U
(2.37)

=
∑

q

VqV
∗
q (X0:0 1

−ǫq − ǫd
+
∑

q

| Vq |2 X σ̄:σ̄ 1

−ǫq − ǫd − U

=
∑

q

VqV
∗
q

(

X0:0 1

−D − ǫd
+X σ̄:σ̄ 1

−D − ǫd − U

)

(2.38)
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Summing up all the contributions from all the terms and comparing them with the

local Hamiltonian given in equation 2.33, we get the following equations for the

renormalization of the quantum impurity energy levels:

E′
0 = E0 −

2△
π

| δD |
D + ǫd

(2.39)

E′
1 = E1 −

△ | δD |
π

( 1

D − ǫd
+

1

D + ǫd + U

)

(2.40)

E′
2 = E2 −

2△ | δD |
π

( 1

D − ǫd − U

)

(2.41)

where E0, E1, E2 are the energies of empty, singly occupied and doubly occupied

impurity electron states. Given these renormalized energies, the scaling equations

for the interaction strength and the orbital energy, may be obtained through ǫd =

E′
1 − E′

0 and U = E′
2 − 2E′

1 + E′
0 [8] as:

dU

dD
= −2∆

π

(
1

D − ǫd
+

1

D + ǫd + U
− 1

D − ǫd − U
− 1

D + ǫd

)

(2.42)

dǫd
dD

= −∆

π

(
2

D + ǫd
− 1

D − ǫd
+

1

D + ǫd + U

)

(2.43)

In chapter 3 we will come back to these equations and they will be solved numerically.

There we will also extend the scaling analysis done here to an extended version of

Anderson impurity model.

2.5 Flow Equation Renormalization Method

In the previous sections we have used poor man scaling method, which is a per-

turbative renormalization scheme to understand the scaling behaviour of quantum

impurity models. The perturbative renormalization methods are very important in

getting analytical insights into renormalization of quantum many-body Hamiltoni-

ans. However due to their perturbative nature they break down in the strong cou-

pling regime. So it becomes natural to ask whether there are methods which can be
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used to study the renormalization flows of the models which exhibit strong coupling

physics. In this section we will introduce one such method which has recently found

extensive applications in quantum many-body physics. This method is called flow

equation renormalization group (FERG) method or flow equation method (FEM)

for short[13]. We will present the formalism of this method and apply it to study

the renormalization flow of Kondo model which exhibits strong coupling physics.

This method is an extension of poor man scaling method as it can be applied to

situations where perturbative methods either fail or need to be modified. One very

important example where flow equation method describes the physics in a natural

manner is non-equilibrium quantum many-body dynamics [13][23][24][25]. Pertur-

bative methods fail here by their very construction as they depend on projecting

out the high energy states which can not be done in the non-equilibrium situation.

Flow equation renormalization method is a non-perturbative method and hence is

able to capture the strong coupling regime of Kondo model[22] and other models like

Sine-Gordon model[13]. Hence FEM captures the full crossover from weak-coupling

to strong coupling fixed points. While poor man scaling is applicable only in weak

coupling and breaks down precisely at the strong coupling fixed point where the

coupling constant diverges.

Flow equation method also integrates very well with bosonization. In fact, FERG

is similar to bosonization in the sense that it is a non-perturbative method to calcu-

late effective Hamiltonians of quantum many-body systems. So mathematically it

gives us a quadratic form for a fermionic system whose Hamiltonian also has quartic

interaction terms. Bosonization uses Kac-Moody algebras(current algebras)[26] to

write down the Hamiltonian, and when we do the same procedure in FERG, we end

up having closed form solutions to flow equations. The flow equations for the Kondo

model written in bosonized form, have closed form solutions and Kondo coupling

constant flows to Toulouse point which turns out to be the strong coupling fixed
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point.

In flow equation method we can also study the renormalization of observables

and calculate correlation and response functions. This is one of the distinct advan-

tages of flow equation method over perturbative methods like poor man scaling in

which we can only study the renormalization flows of the coupling constants. In

flow equation method, there is an expansion of observables which is very similar to

operator product expansion(OPE). However, this expansion of observables has to

satisfy mathematical consistency and physical plausibility conditions. The expan-

sion has to conserve canonical commutation(bosons)or anti-commutation(fermions)

relations. Similarly, the expansion has to respect the sum rules as applicable to cor-

relation and response functions. Since flow equation method is more general method

than poor man scaling so the scaling equations of latter can be recovered in a limit

called infrared parametrization in which case momentum/energy is restricted close

to Fermi level.

Recently there have been many new applications and developments of flow equa-

tion method. It has been used to calculate the entanglement entropy for quantum

many-body systems, and hence a new direction called “flow equation holography”

[27] has opened up which looks very promising for bringing holographic methods

to quantum many-body systems. In a similar vein, flow equation method has been

integrated with tensor network renormalization methods[28] and the corresponding

scheme has been called “Entanglement Continuous unitary transformation”(e-CUT

for short). Since flow equation method brings the quantum many-body Hamilto-

nian in the diagonal or block-diagonal form, so it was used[29] with density matrix

renormalization group and there have been many applications of this FEM-DMRG

scheme in quantum chemistry[30].
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2.5.1 Formalism

Flow equation method is Hamiltonian renormalization method which was introduced

by Wegner[20] and Glazek and Wilson[21]. It uses unitary transformations to bring

the Hamiltonian in a diagonal or band diagonal form. It does not integrate out the

states as in Wilsonian RG. Rather it removes the interaction matrix elements and

hence attains the diagonalization.

H(l) = U(l)H(0)U †(l) (2.44)

where l is the continous parameter. H(0) is the original Hamiltonian for l = 0

dH

dl
= [η(l), H(l)] (2.45)

where η(l) = dU(l)
dl U †. One can see that η(l) is an anti-hermitian operator.

η†(l) = U(l)
dU †(l)
dl

= −dU
dl
U †(l) = −η(l) (2.46)

Here comes the important contribution of Franz Wegner[20] who gave the method to

calculate the canonical generator. Wegner’s generator η is given by the commutator

of diagonal and off-diagonal terms of the Hamiltonian.

η(l) = [H0(l), Hv(l)] (2.47)
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Wegner’s generator removes the off-diagonal matrix elements and hence in the limit

l −→ ∞, Hamiltonian is either diagonal or band-diagonal.

dH(l)

dl
= [η(l), H(l)] (2.48)

(
dH

dl

)

ij

= (ηH)ij − (Hη)ij (2.49)

=
∑

k

(ǫi − ǫk)hikhkj − (ǫk − ǫj)hkjhik (2.50)

=
∑

k

(ǫi + ǫj − 2ǫk)hikhkj (2.51)

So the evolution of matrix elements is given by:

dhij
dl

=
∑

k

(ǫi + ǫj − 2ǫk)hikhkj (2.52)

From this equation we can write down the flow of diagonal and off-diagonal elements:

dǫi
dl

=
∑

k

2(ǫi − ǫk)hikhki
dVij
dl

=
∑

k

(ǫi + ǫj − 2ǫk)hikhkj (2.53)

One of the very important properties of Wegner’s generator is that it leads to the

decay of the off-diagonal elements. That can bee shown by using the invariance of

trace under unitary transformations.

Tr(H2) =
∑

ik

hikhki =
∑

k

ǫ2k +
∑

ik,i 6=k

hikhki (2.54)

d

dl
Tr(H2) =

∑

ik

d

dl
(hikhki) = 0 (2.55)
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Invariance of trace under the unitary flow leads to following relation between the

flow and diagonal and off-diagonal elements in Equation 2.53.

∑

k

d

dl
ǫ2k = −

∑

ik,k 6=i

d

dl
(hikhki) (2.56)

∑

k

dǫ2k
dl

=
∑

k

2ǫk
dǫk
dl

(2.57)

d

dl

∑

k

ǫ2k = 2
∑

i,k

(ǫi − ǫk)2 | vik |2≥ 0 (2.58)

One can see from the last equation that the off-diagonal elements decrease propor-

tional to the energy differences between the two levels. The interaction elements

with largest energy differences vanish first and this process continues until only di-

agonal elements remain. Thus, Wegner’s choice of the generator is appropriate to

calculate the flow equations of Hamiltonians. There are other choices of the gener-

ator for flow equations like as the one by Glazek and Wilson[21], in this thesis, we

will always use Wegner’s choice of generator.

2.5.2 Flow Equation Method treatment of Kondo Model

In this section we will carry out flow equation renormalization of Kondo model

following [13]. We write Kondo model as:

H(l) = H0 +Hint(l) (2.59)

where

H0 =
∑

t,α

ǫtc
†
tαctα (2.60)

Hint(l) =
∑

t′t

Jt′t(l) : S.st′t : (2.61)
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Here t and t’ are general indices which in this case represent momenta. One should

note that normal ordering prescription which is used for quantum many-body sys-

tems has been incorporated. The conduction electron spin desnity is given by:

st′t =
∑

α,β

c†t′α
σαβ
2
ctβ (2.62)

2.5.3 1-loop calculation

First we calculate the generator for flow equations of Kondo model.

η1(l) = [H0, Hint(l)] (2.63)

η1(l) =
∑

t′t

η1t′t(: S.st′t :) (2.64)

where η1t′t(l) = (ǫt′ − ǫt)Jt′t(l). The commutator of generator with the diagonal part

of the Hamiltonian is

[η1(l), H0] = −
∑

t′t

(ǫt′ − ǫt)
2Jt′t(l) : S.st′t : (2.65)

To calculate the commutator of the generator with the interaction term needs work-

ing out some algebra which has been done in following.

C1 = [η1(l), Hint(l)] (2.66)

= [η1(l) : S.st′t :,
∑

u′u

Ju′u(l) : S.su′u :] (2.67)
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We need to work out the following commutator:

B1 = [: S.st′t :, : S.su′u :]

=
i

8

∑

ijk

ǫijkσ
i
αβσ

j
µνS

k(: c†t′αctβ :: c†u′µcuν : + : c†u′µcuν :: c†t′αctβ :)

+
3

16

∑

α

(δtu′ : c†t′αcuα : −δt′u : c†u′αctα :)

+
3

8
δtu′δt′u(n(t′) − n(t)) (2.68)

After doing the normal ordering one gets

B1 = i : S.(st′t × su′u) :

+ : S.st′u : δtu′(n(t) − 1/2)− : S.su′t : δt′u(n(t′) − 1/2)

+
3

16

∑

α

(δtu′ : c†t′αcuα : −δt′u : c†u′αctα :)

+
3

8
δtu′δt′u(n(t′) − n(t)) (2.69)

Fermi functions arise due to the normal ordering prescription which is used in flow

equation method. Plugging in the expression of B1 in the the commutator C1 we

obtain:

C1 = i
∑

t,t′,u,u′
(ǫt′ − ǫt)Jt′tJu′u : S.(st′t × su′u) :

+
∑

t′,t,v

(ǫt′ + ǫt − 2ǫv)Jt′vJvt(n(v) − 1/2) : S.st′t :

+
3

16

∑

t′,t,v,α

(ǫt′ + ǫt − 2ǫv)Jt′vJvt : c†t′αctα :

+ 2 × 3

16

∑

t,v

(2ǫt − 2ǫv)JtvJvtn(t) (2.70)
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The flow equation for Kondo coupling till first loop is:

dJt′t
dl

= −(ǫt′ − ǫt)
2Jt′t+

∑

v

(ǫt′ + ǫt − 2ǫv)Jt′vJvt(n(v) − 1/2) (2.71)

Unlike poor man scaling where Kondo coupling is momentum independent and hence

there is only one scaling equation for isotropic Kondo model, the flow equation given

above is actually a system of equations corresponding to different momenta. The

set of equations in non-linear and coupled. Hence analytical solution is not possible

except in some special cases. Infrared limit is one such special case and we will now

discuss that in next section.

2.5.4 Infrared parametrization

To get the scaling behaviour of the coupling constant at energies close to Fermi

level(infrared limit) we will use infrared parametrization and calculate the beta

function to the leading order. We will extract the Kondo scale from the flow equation

which we obtain after infrared parametrization.

Jt′t(l) =
JIR
N

(l)e−l(ǫt′−ǫt)2 (2.72)

where JIR is the Kondo coupling close to Fermi level(t = t′ = 0). Substituting it in

the flow equation one gets:

dJIR
dl

= −2J2
IR

1

N

∑

ν

ǫνe
−2lǫ2ν (n(ǫν) − 1

2
) (2.73)

= −2J2
IR

∫

dǫρ(ǫ)ǫe−2lǫ2(n(ǫ) − 1

2
) (2.74)

To proceed further, we need to specify density of states. We take the constant density

of states with conduction band width 2D (ǫ ∈ [−D,D]) and set the temperature to

51



be zero. That makes electron occupation function a step function.

dg

dl
=
g2

2l
(1 − e−2lD2

) (2.75)

Where g = ρJIR is dimensionless Kondo coupling. For l ≤ D−2 flow is negligible.

dg

dl
=
g2

2l
(2.76)

We can obtain the poor man scaling equation by noting that RG scale Λ is related

to flow parameter as Λ = l−
1
2 and dl = −2ldlnΛ

dg

dlnΛ
= −g2 (2.77)

This is one-loop scaling equation for isotropic Kondo model. This is the scaling

equation which we obtained from poor man scaling analysis of isotropic Kondo

model.

2.5.5 Extraction of Kondo Scale

Flow equation can be solved for running coupling constant.

∫ g

g0

dg

g2
=

∫ D−2

D−2
0

dl

2l

1

g
− 1

g0
= ln(

D

D0
)

g =
1

1
g0

− ln(D0
D )

(2.78)

Energy scale can not be continuously decreased, and there is special energy scale at

which coupling constant diverges. This scale is called Kondo scale Tk and physically
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corresponds to the Kondo singlet formation.

Tk ∼ D0e
− 1

g0 (2.79)

We have seen that in infrared limit, flow equations recover poor man scaling equa-

tions. Infrared parametrization of flow equations is important for another reason as

well. As shown above we can extract Kondo scale from flow equations in this limit

by using the definition of Kondo scale as the scale at which flow equations diverge

in infrared limit, as used in poor man scaling. Based on this idea, we have come

up with a numerical procedure for extraction of Kondo scale from the numerical

solution of flow equations as well. We will describe the details of this numerical

procedure in next section.

2.5.6 Numerical Solution of Flow equations of Kondo Model

Flow equations are coupled non-linear differential equations. They generally can not

be solved analytically except in some special limits e.g. in the infrared limit when the

momentum of the coupling constants is restricted to be close to Fermi level. In this

case, flow equations reproduce the results of the conventional scaling methods like

poor man scaling. Flow equations can be solved by numerical methods like as Runga-

Kutta methods. The number of flow equations to be solved scales as O(N2) where

N is the number of energy states of the conduction band in case of Kondo model.

Since flow equations are renormalization flows and hence they meet many different

energy scales during the unitary flow and hence become stiff also. In this section,

we solve the flow equations of Kondo model numerically. We have used DOPRI5

Fortran subroutine as the solver. DOPRI5 is based on fifth order Runga-Kutta

method. As we have seen above that in the infrared limit, flow equations recover

poor man scaling equation of Kondo model. Kondo coupling grows logarithmically

and finally diverges at Kondo scale. Numerical solution of flow equations gives access

53



1.5 1.6 1.7 1.8 1.9 2

1/J
k

10
-2

10
-1

T
K

0 500 1000 1500
Flow Parameter

10
0

10
1

10
2

10
3

K
o
n
d
o
 C

o
u
p
li

n
g
, 
J k

J
k
=0.65

J
k
=0.6

J
k
=0.55

J
k
=0.5

0 500 1000 1500 2000 2500 3000
Flow Parameter

10
0

10
1

10
2

10
3

10
4

K
o
n
d
o
 C

o
u
p
li

n
g
, 
J k

T=0
T=0.5T

K

T=T
K

T=10T
K

Figure 2.1: Kondo coupling has been plotted versus flow parameter. In the left panel, the
effect of increasing initial value of Kondo coupling can be seen. In right panel,
temperature T has been varied.

to all the Kondo couplings for different momenta. However to see the divergence

of the Kondo coupling we did infrared parametrization numerically by restricting

momenta to Fermi level(ǫk = 0 = ǫk′). And as shown in the Figure 2.1, we find the

divergence as expected. In the left panel of this figure, we find that as we increase the

Kondo coupling, Kondo divergence becomes steeper and also occurs at different flow

parameter value which is because Kondo scale also changes with Kondo coupling.

The arrows point to the values of flow parameter lc where Kondo divergence occurs.

However, the main significance of our numerical procedure is that we can extract

Kondo scale from the numerical solution of flow equations. From the solution of

flow equation in infrared limit as given in Equation 2.78, we find that Tk = 1√
lc

where lc is the flow parameter value where Kondo coupling diverges. In the inset is

plotted the Kondo scale which we have extracted from our procedure, versus inverse

Kondo coupling and as can be seen that it a straight line. We also found that slope

of this straight line is 2(within numerical error) as expected from the expression

lnTk = lnD − 2 1
JIR

. Our procedure can be used to extract Kondo scale for the

cases where poor man scaling can not be applied. In chapter 6, we have applied this

procedure to extract Kondo scale for Majorana-Kondo model.
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In right panel of Figure 2.1, we see that as temperature is increased, there is

softening of Kondo divergence which is because of going away from Kondo tempera-

ture and also there are incoherent thermal fluctuations which dominate over Kondo

spin fluctuations.

2.5.7 Flow equation for Observables

In the flow equation method, we can calculate the renormalization flows of observ-

ables as well. The way observables and their time evolution is calculated in FEM is

quite different than that of conventional many-body methods. Solving the Heisen-

berg equations of motion for observables is easier in the flow equation method. The

reason for that is the in FEM Hamiltonian is brought in diagonal(or block-diagonal)

form and then evaluating the dynamics with quadratic Hamiltonian becomes easier.

While as to evaluate the dynamics with the original Hamiltonian is very difficult. In

this section, we will present the formalism for calculating the renormalization flows

of the observables. And then we will apply this formalism to calculate the dynamical

spin susceptibility of Kondo model.

Zero Temperature expectation value of observable O is given by:

〈O〉GS = 〈ΨGS |O|ΨGS〉 (2.80)

|ΨGS〉 is the ground state of the full interacting Hamiltonian.

H|ΨGS〉 = EGS |ΨGS〉 (2.81)

Since flow equation method basically diagonalizes the Hamiltonian so we can write

H̃|Ψ̃GS〉 = EGSΨ̃GS (2.82)
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where | ˜ΨGS〉 = U †(l)|ΨGS〉 Now comes the important idea: In FEM the observables

also get transformed under the unitary flow. So to calculate the expectation value

of the observable we use the transformed basis.

〈OGS〉 = 〈Ψ̃GS |Õ|Ψ̃GS〉 (2.83)

Õ = U(l → ∞)OU †(l → ∞) (2.84)

The observable O satisfies the flow equation

dO(l)

dl
= [η(l), O(l)] (2.85)

So under the unitary flow the observable O becomes a linear combination of infinitely

many operators denoted by Ta.

O(l → ∞) =
∑

a

ta(O)Ta (2.86)

The coefficients ta depend on the observable. Since H̃ is in the diagonal form we get

[

H̃, Ta

]

= ΩaTa (2.87)

So we can write the expectation value as:

〈O〉GS =
∑

a

ta(O)〈Ψ̃GS |Ta|Ψ̃GS〉 (2.88)

C(t1, t2) = 〈O1(t1)O2(t2)〉 (2.89)

The operators are in the Heisenberg representation

O(ti) = eiHtiOe−iHti (2.90)

56



Transforming to the diagonal basis:

C(t1, t2) = 〈Ψ̃GS |Õ1(t1)Õ2(t2)|Ψ̃GS〉 (2.91)

= 〈Ψ̃GS |eiH̃t1Õ1e
−iH̃(t1−t2)Õ2e

−iH̃t2 |Ψ̃GS〉 (2.92)

= 〈Ψ̃GS |Õ1e
i(H̃−EGS)(t2−t1)Õ2|Ψ̃GS〉 (2.93)

Employing the expansion for transformed observables:

C(t1, t2) = 〈Ψ̃GS |
∑

a1

ta1Ta1e
i(H̃−EGS)(t2−t1)

∑

a2

ta2Ta2 |Ψ̃GS〉 (2.94)

=
∑

a1

ta1
∑

a2

ta2e
−iΩa2 (t1−t2)〈Ψ̃GS |Ta1Ta2 |Ψ̃GS〉 (2.95)

Similarly one can also write down the (retarded) Greens function.

Gkk′(τ) = −iΘ(τ)
∑

a1a2

ta1ta2〈Ψ̃GS |{Ta1 , T †
a2}|Ψ̃GS〉 (2.96)

Taking the Fourier transform one gets

Gkk′(ω) =
∑

a1a2

ta1(k)t∗a2(k′)
〈Ψ̃GS |{Ta1 , T †

a2}|Ψ̃GS〉
ω − Ωa2 + iǫ

(2.97)

2.5.8 Finite Temperature Formalism

In this section we will extend the formalism of previous section for non-zero tem-

perature. The expectation value of observable O at finite temperature is given by:

〈O〉 = Tr(ρO) =
1

Z

∑

n

〈n|e−βHO|n〉 (2.98)

where ρ is the density matrix and Z is the partition function of the system. Us-

ing the fact that trace is invariant under cyclic permutation we insert the unitary
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transformation and get:

1

Z

∑

n

〈n|e−βH̃Õ|n〉 (2.99)

Using the expansion for the observable we get the final expression for the expectation

value of the observable at finite temperature.

〈O〉 =
1

Z̃

∑

a

ta(O)
∑

n

e−βǫn〈n|Ta|n〉 (2.100)

Here Z̃ is the partition function with transformed Hamiltonian. Similarly the equa-

tions for correlation functions can also be generalized to finite temperature.

C(t1, t2) =
1

Z
Tr(ρO1(t1)O2(t2)) (2.101)

Using the operator expansion one gets

C(t1, t2) =
1

Z̃

∑

n

∑

a1a2

ta1(O1)ta2(O2)e
−βEn−iΩa2 (t1−t2)〈n|Ta1Ta2 |n〉 (2.102)

2.5.9 Spin Dynamics

In this section we will calculate the flow equation for Kondo impurity spin operator

and then calculate the dynamic spin susceptibility from the numerical solution of

the flow equations.

dSa(l)

dl
= [ηl, S

a(l)] (2.103)

We will use the one loop generator, given in equation 2.64 to evaluate the above

commutator. We use the following ansatz for spin operator:

Sa(l) = h(l)Sa + i
∑

u′u

γu′u(l) : (S × su′u)a : (2.104)
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The flow equations for the coefficients are

dh

dl
=
∑

t′t

(ǫt′ − ǫt)Jt′tγtt′n(t′)(1 − n(t)) (2.105)

dγt′t
dl

= h(ǫt′ − ǫt)Jt′t

− 1

4

∑

u

((ǫu′ − ǫu)Jt′uγt′u)(1 − 2n(u))) (2.106)

Using the above formalism we can calculate spin-spin correlation function.

C(t) =
1

2
〈Sz(0), Sz(t)〉 (2.107)

Plugging the ansatz of spin operator in equation 2.102 and Fourier transforming to

frequency domain, we obtain:

C(ω) = − π

Z(β)

∑

n

e−βEn
∑

tt′

∑

uu′
γtt′(l → ∞)γu′u(l → ∞)

× 〈n| : (S × st′t)
z :: (S × su′u)z : |n〉

× (δ(ω − ǫu′ + ǫu) + δ(ω + ǫu′ − ǫu)) (2.108)

C(ω) =
π

4

∑

u

γ2ǫu+ω,ǫu(l → ∞) × (n(ǫu)(1 − n(ǫu + ω)(1 − n(ǫu) (2.109)

The quantity which we are interested in and which we have calculated is imaginary

part of the dynamic spin susceptibility χ(ω). Fluctuation-dissipation theorm relates

χ(ω) to the spin-spin correlation function C(ω) calculated above.

χ(ω) = tanh
( ω

2T

)

C(ω) (2.110)

Spin susceptibility is plotted in Figure 2.2. As we decrease Kondo coupling and

hence Kondo effect becomes weaker, spin susceptibility gets enhanced. We want to
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point out that we obtained these curves with out any broadening which has been

done in[13][22].

2.6 Summary

In this chapter we have given discussion about the renormalization group methods

which have been used in this thesis. Anderson’s poor man scaling method has been

discussed and then applied to calculate the scaling equations for Kondo coupling.

Solving the scaling equation we have calculated Kondo scale. We have also carried

out scaling analysis of Anderson impurity model. Then we have discussed about

flow equation renormalization method and shown how it is an extension of poor

man scaling method. After presenting the formalism of this method we have done

the flow equation renormalization of Kondo model and showed how in infrared limit,

we recover poor man scaling results. We also presented our numerical procedure to

extract Kondo scale from the numerical solutions of flow equations of Kondo model.

Our numerical procedure can be applied to extract Kondo scale for cases where poor
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man scaling can not be applied. One distinct advantage of FERG is that we can also

study the renormalization behaviour of observables and hence calculate correlation

and response functions. For the Kondo model, we have calculated the flow equation

for spin observable and then solving those equations numerically, we obtain dynamic

spin susceptibility. Within flow equation method we can calculate flow equations at

finite temperature as well and they give reliable behaviour for temperatures above

Kondo scale.
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3.1 Introduction

The Doniach phase diagram provides a natural framework to understand the physics

of heavy fermion systems[1, 2], where spin fluctuations govern the low energy Kondo

physics[3]. Though one can understand a broad range of phenomenology in rare-

earths in terms of spin fluctuations alone, there are many experimental observations

such as first order valence transition, unconventional superconductivity in CeCu2Se2

and quantum criticality in Y bRh2Si2, β − Y bAlB4 and CeIrIn5 [4, 5], that require

incorporating valence fluctuations on an equal footing. Historically the Falicov-

Kimball(FK) model was introduced to investigate valence fluctuations. But, the

FK model has spinless electrons; hence to get a realistic description, the Anderson

model is a more appropriate choice. The latter exhibits a mixed valent phase in

which valence fluctuations are dominant. However, they do not lead to any phase

transition. To capture stronger effects of valence fluctuations, the Anderson Hamil-

tonian has been extended by including a Hubbard repulsion between localized f

and itinerant c electrons in the Anderson model[6, 7]. In the literature, this term is

called the Falicov-Kimball(FK) term or the Ufc term. We will change these terms

interchangeably.

Several theoretical studies of the extended single-impurity Anderson model (e-

SIAM) have been carried out. In Ref [7], the authors have carried out a numerical

renormalization group(NRG) study of the e-SIAM, and they found that the Ufc term

does not lead to significant effect on spectral and thermodynamic properties. They

could fit their results to the Anderson impurity model with renormalized parameters.

In Ref [8], the authors have used renormalized perturbation theory (RPT) to study

the effect of Ufc term and they found that there is no change in the low energy fixed

point of the Anderson model due to this term and all it does is the renormalization

of the parameters of Anderson impurity model. However, in Ref [9] a scaling anal-

ysis of SIAM with FK interaction showed that hybridization and hence the Kondo
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scale gets heavily renormalized. Later on, a complete study of the asymmetric SIAM

using NRG[10] found that the FK interaction affects thermodynamic properties like

specific heat. The authors have suggested that due to the FK interaction, there

are excitonic excitations which lead to this renormalization. Thus, the role of the

Ufc term and the ensuing valence fluctuations in the extended SIAM is still de-

batable. We have addressed this debate by using a complementary set of methods

which include perturbative renormalization methods as given in Refs [12–14] and

the Schrieffer-Wolff transformation [15, 16].

Though the standard model for heavy fermions is the periodic Anderson model(PAM),

we have considered the single impurity version of this model. There are many mo-

tivations to do so. One important reason is that in dynamical mean field theory

(DMFT), which is one of the most important methods to study lattice models, the

PAM is mapped to impurity Anderson model, so it becomes very important to un-

derstand the latter. There is yet another interesting reason to study the SIAM

which comes from a recent study of Ref[17]. The authors in the latter show that a

charge Kondo effect can arise due to pair hopping mechanism. They have consid-

ered an extended Anderson impurity along with pair hopping terms. In the isospin

representation, the Ufc term is the longitudinal component of the charge Kondo in-

teraction which is Izc I
z
d = (nkσ−1)(ndσ−1) where Ic and Id are isospin operators of

conduction electrons and impurity respectively. Since charge (valence) fluctuations

play a significant role in quantum transport, the effect of Ufc interaction has been

studied in this context [18–21]. Quantum criticality has also been found in impurity

Anderson models with particular forms of the density of states [22]. This gives an

added motivation for this work.

In this chapter, we have employed perturbative renormalization methods of

Refs. [13, 14] to study the scaling behaviour of e-SIAM, with a focus on the dif-

ferences introduced by the Ufc interaction term. Scaling trajectories of any Hamil-
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tonian are governed by the scaling invariants of that model and hence to explore the

effect of valence fluctuations in e-SIAM, we have calculated its scaling invariants.

We find that they differ from those of SIAM. Since the strong coupling regime of the

SIAM is governed by Kondo physics, we have explored the renormalization of the

Kondo scale due to valence fluctuations and one of the very important findings of

this work is that Kondo scale of e-SIAM gets enhanced due to valence fluctuations.

The Kondo scale has been extracted from the scaling invariants of e-SIAM rather

than from the corresponding Kondo model. The motivation for this is as follows:

to explore the effect of valence fluctuations on Kondo scale, we have to incorporate

valence fluctuations, which is not the case when we use the Kondo model which

is obtained via Schrieffer-Wolff transformation that projects out first order valence

fluctuations. It is known for the case of SIAM, that the hybridization does not get

renormalized at second order level[13][15] and that is what we found for e-SIAM

as well. Nevertheless, we wanted to explore the renormalization effects of Ufc on

hybridization so using Jefferson’s method[14] we did a third order scaling analysis of

e-SIAM and calculated a scaling equation for the hybridization as well. Our pertur-

bative renormalization calculations show that the Ufc interaction does have strong

renormalization effects on the model parameters of e-SIAM, and hence the Kondo

scale also gets renormalized.

To explore these renormalization effects at an effective Hamiltonian level, we em-

ployed Schrieffer-Wolff transformation and found that the strong coupling physics of

e-SIAM is not governed by Kondo model rather it is the spin-charge Kondo model

which has an interplay of spin and charge Kondo effects which govern the strong

coupling physics of this model. We also found that if one uses only projection oper-

ator method, what one gets is the standard Kondo model with renormalized Kondo

coupling which does not capture the full effect of Ufc interaction because projection

operator method projects the Hamiltonian to the singly occupied subspace. That
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is why we had to calculate the effective Hamiltonian using unitary transformation.

Based on all these methods, we have done a detailed perturbative renormalization

study of e-SIAM and explored the role of the valence fluctuations in this model.

The rest of this chapter is being organized as follows: First we introduce the

model we have studied. Then based on projection operator method, we have calcu-

lated the Kondo model and the Kondo scale. Next, we have carried out Schrieffer-

Wolff transformation of the model. Then we have done the perturbative renormal-

ization of the model and calculated the scaling equations and the scaling invariants

of the model. Using Hubbard operator representation we have also found the renor-

malization of impurity energy levels. Finally, we have summarized our results and

given the discussion about them.

3.2 Hamiltonian and the Methods

The Hamiltonian we have studied is the extended single impurity Anderson impurity

(e-SIAM) model in which a Ufc term is added to the usual(standard) Anderson

model to capture the effect of valence fluctuations. In second quantized notation,

the Hamiltonian is written below:

H =
∑

kσ

ǫkc
†
kσckσ +

∑

σ

ǫdd
†
σdσ +

∑

kσ

Vk(c†kσdσ + d†σckσ) + Und↑nd↓ +
∑

kσσ′
Ufcnkσndσ′

(3.1)

The extended SIAM captures the dynamics of a local impurity hybridising with a sea

of free fermions which have dispersion but no interactions. These itinerant electrons

are written as c electrons, and the first term corresponds to them. The impurity

which is a localized d electron has no dispersion, but there is on-site Hubbard inter-

action between d electrons.The local impurity is represented by second and fourth

terms. The hybridization between itinerant and localized electrons is written as
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the third term. The last term is the Ufc term which captures the Hubbard repul-

sion between itinerant and localized electrons. The standard SIAM(Ufc = 0) has

three main regimes called Kondo regime, the mixed valent regime and local moment

regime which is connected by smooth crossovers.

3.3 Effective Hamiltonian through a Schrieffer-Wolf trans-

formation

The Schrieffer-Wolff transformation(SWT) is a method which gives the low energy

effective Hamiltonian of a given quantum many-body Hamiltonian by projecting out

the high energy excitations. In case of SIAM this transformation maps the model

to Kondo model which lies at strong coupling fixed point of SIAM. To understand

the strong coupling regime of e-SIAM we have used SWT and calculated the corre-

sponding Kondo model and found out how does the valence fluctuations renormalize

the Kondo exchange coupling. There are at least two different ways of doing SWT:

1)One can use unitary transformation method as used in[16] or 2) One can use

projection operator method[15]. We have used both of these methods. To map e-

SIAM to the corresponding Kondo model we used projection operator method and

to map e-SIAM with assisted hopping we have used unitary transformation method.

In SIAM Kondo scale is the low energy scale which is an emergent scale and gets

dynamically generated by the interplay of local Hubbard interaction at the impurity

site and hybridization of local moments with the free conduction electrons. Kondo

scale is the most prominent signature of many-body dynamics in this model. Kondo

scale signals the formation of Kondo singlet as manifested in Kondo resonance in

the spectral function of the model. At the Kondo scale the system goes from the

local moment regime to the localized Fermi liquid regime. Anderson’s poor man

scaling[12](which is a perturbative renormalization method) gives the scaling equa-
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tion of the coupling constant from which Kondo scale can be extracted. However we

have directly done perturbative renormalization of the e-SIAM and calculated the

Kondo scale. So we have studied the effect of valence fluctuations on Kondo scale

both in Kondo regime as well in mixed valent regime. We have also found out the

scaling invariants of e-SIAM.

In this section we carry out Schrieffer-Wolff transformation of e-SIAM. The de-

tails of this method are given in chapter 2. We have calculated the generator of SW

transformation for the extended SIAM.

S =
∑

kσ

(Ak +Bkndσ̄)Vk(c†kσdσ − d†σckσ) (3.2)

where Ak and Bk are given below:

Ak =
1

ǫk − ǫd
(3.3)

Bk =
1

ǫk − ǫd + Ufc − U
− 1

ǫk − ǫd
(3.4)

To carry out the transformation we need to evaluate the commutator,[S,Hv] as is

done below:

[S,Hv] =
∑

kk′σ

AkVkVk′(c
†
kσck′σ + h.c) −

∑

kσ

AkV
2
k (d†σdσ + h.c.)

−
∑

kσ

BkV
2
k (ndσ̄d

†
σdσ + h.c.) −

∑

kk′σ

BkVkVk′(c
†
k′σ̄dσ̄c

†
kσdσ + h.c.)+

+
∑

kk′σ

BkVkVk′(d
†
σ̄ck′σ̄c

†
kσdσ + h.c) +

∑

kk′σ

BkVkVk′(c
†
kσck′σndσ̄ + h.c.) (3.5)

As shown in the previous chapter, we need to use Nambu Spinor notation to write

the Kondo exchange term in terms of Spin operators. There are other terms also

present in [S,Hv] commutator. Combining all of them we have the following terms
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in the effective Hamiltonian:

Heff = H0 +Hex +Hpot +Hdir +Hchar (3.6)

H0 =
∑

kσ

ǫkc
†
kσckσ (3.7)

Hex =
∑

kk′σ

Jkk′
(

Ψ†
kSΨk′

)(

Ψ†
dSΨd

)

(3.8)

Hdir =
∑

kk′σ

(

Wkk′ +
1

2
Jkk′ndσ̄

)

c†kσck′σ + h.c. (3.9)

Hhop = −
∑

kσ

(

Wkk +
1

2
Jkkndσ̄

)

ndσ (3.10)

Hchar =
1

2

∑

kk′σ

Jkk′
(

c†kσ̄dσ̄c
†
k′σdσ

)

+ h.c. (3.11)

where Jkk′ and Wkk′ are given by:

Jkk′ = VkVk′

(
1

ǫk − ǫd + Ufc − U
+

1

ǫk′ − ǫd + Ufc − U
− 1

ǫk − ǫd
− 1

ǫk′ − ǫd

)

(3.12)

Wkk′ = VkVk′

(
1

ǫk − ǫd
+

1

ǫk′ − ǫd

)

(3.13)

Choosing k = k′ Kondo coupling constant becomes

Jk = 2V 2
k

(
1

ǫk − ǫd + Ufc − U
− 1

ǫk − ǫd

)

(3.14)

What needs to be immediately noted that as compared to SWT of SIAM we have

charge Kondo interaction term also in the effective Hamiltonian(in H0) which when

combined with Hch gives the full charge Kondo interaction. It is usually ignored

by arguing that spin Kondo model lives in nd = 1 subspace of Anderson Hamilto-

nian. However as noted in [25] in a system with valence fluctuations both Kondo

interactions are significant. From symmetry point of view charge Kondo interaction

has su(2)c symmetry which commutes with symmetry of spin Kondo interaction[26].
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Charge Kondo interaction interacts with isopsin(pairing) part of the conduction bath

and gives rise to Kondo effect[24]. So we have obtained the spin-charge Kondo model

in which spin and charge Kondo effects co-exist as was been already found in NRG

calculations[17]. Our results show that spin-charge Kondo model can arise in a sys-

tem with repulsive interactions alone and there is no need for phononic mechanisms

to have attractive interaction.

3.3.1 Effective Hamiltonian through projection operator method

A minor point that we would like to emphasise is that the elimination of charge

fluctuations can be done in multiple ways, and there are subtle differences between

the methods. For example, the projection operator method, introduced in chapter-2

does yield the Kondo model, when applied to the conventional SIAM. However, since

the projection to the nd = 1 subspace is built into the method, the charge Kondo

terms automatically vanish. This is in contrast to the SWT, which is a unitary

transformation and until a projection to the singly occupied subspace is carried out,

all the quartic operators remain. This implies that the projection operator method,

yields only a renormalized Kondo model (ignoring potential scattering),

H =
∑

kσ

∑

kσ′
(ǫkc

†
kσckσ + Jkk′S.c

†
kσ(σ)σσ′ck′σ′ (3.15)

where the coupling constant is given by

Jkk′ = −VkVk′
(

1

U + ǫd − ǫk′ − 2Ufc
+

1

ǫk − ǫd

)

(3.16)

and not the full spin-charge Kondo model given by the SWT.
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3.4 Perturbative scaling of the E-SIAM: Finite U

In the last chapter we discussed the methods for perturbative renormalization of

the Kondo model and the Anderson impurity model. In this section, we will apply

the same method to the e-SIAM. Our focus will be on the changes in the scaling

equations and the corresponding scaling invariants due to the Ufc interaction. We

begin with a calculation of the renormalization of the impurity energy levels. This

will allow us to extract the scaling equations for the orbital energy, ǫd and the

Hubbard U . Following the same procedure of poor man scaling for e-SIAM as

done for Anderson impurity model in previous chapter, we obtain the renormalized

impurity energy levels:

E′
0 = E0 −

2△
π

| δD |
D + ǫd

(3.17)

E′
1 = E1 −

△ | δD |
π

( 1

D + Ufc − ǫd
+

1

D + 2Ufc + ǫd + U

)

(3.18)

E′
2 = E2 −

2△ | δD |
π

( 1

D + 2Ufc − ǫd − U

)

(3.19)

where E0,E1,E2 are the energies of empty, singly occupied and doubly occupied

impurity electron states and △ = ρ0
π | V 2 | where ρ0 is the density of the states

at the Fermi level. Given these renormalized energies, the scaling equations for the

interaction strength and the orbital energy, may be obtained through ǫd = E′
1 −E′

0

and U = E′
2 − 2E′

1 + E′
0 [15] as:

dU

dD
= −2∆

π

(
1

D + Ufc − ǫd
+

1

D + 2Ufc + ǫd + U
− 1

D + 2Ufc − ǫd − U
− 1

D + ǫd

)

(3.20)

dǫd
dD

= −∆

π

(
2

D + ǫd
− 1

D + Ufc − ǫd
+

1

D + 2Ufc + ǫd + U

)

(3.21)
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These equations may be solved easily using the Euler’s discretization, and the results

are presented below.

3.4.1 Particle-hole symmetric case

For the particle-hole (ph) symmetric case, ǫd = −U/2 is maintained even during the

flow, hence we can focus only on the interaction strength. With Ufc = 0, the flow

should be the same as that of the conventional Anderson model. Figure 3.1 shows

the flow of U with decreasing bandwidth for various initial D values. We see that if

the orbital energy is within the initial band, the interaction strength flows to lower

values and eventually vanishes, implying a flow to a non-interacting system and

hence the strong coupling fixed point. While if the initial bandwidth, D is smaller

than |ǫd|, the interaction strength flows to higher values, and this may be interpreted

as a flow to the local moment fixed point. Hence the separatrix is D = −ǫd. It is well

known (e.g from NRG calculations) that a separatrix is absent in the SIAM, and for

all initial values in the ph-symmetric case, the system flows to the strong coupling

fixed point. The flow to the LM fixed point seen in figure 3.1 is an artefact of the

perturbative renormalization employed here. Next, we investigate the effect of Ufc on

the scaling trajectories. For Ufc = 0, we have seen from figure 3.1 that for D < −ǫd,

the flow is always towards the LM fixed point, since the U increases monotonically

with decreasing bandwidth. The Falicov-Kimball interactions changes the flow as

shown below. The left panel of figure 3.2 shows that for the same parameter regime

( D = 2.5, such that D < −ǫd), a new separatrix is introduced at a finite value of

Ufc, which separates the upward renormalization from the downward flow. However,

a difference with the Ufc = 0 case is that the D → 0 value of U is finite instead of

vanishing as in figure 3.1. Nevertheless, as Ufc increases, the system always flows

towards lower interaction strengths, implying an increase in valence fluctuations.

This observation is reiterated in the right panel of figure 3.2 (D = 3.1 such that
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Figure 3.1: Scaling flow of U for the particle-hole symmetric case with U = 6, ǫd = −U/2
for Ufc = 0.

D > −ǫd), where increasing Ufc leads to uniformly downward renormalization and

progressively smaller values of the interaction strength as D → 0.

3.4.2 Particle-hole asymmetric case

In the p-h symmetric case, the d-occupancy is 1, and the asymmetry, defined as

η = 1 + 2ǫd/U vanishes. In the asymmetric case, ǫd 6= −U/2, hence η 6= 0 and the

occupancy nd deviates from unity, becoming either electron doped (nd > 1) or hole

doped (nd < 1). Before we investigate the effects of Ufc for η 6= 0, the behaviour of

the scaling equations for Ufc = 0 should be understood. We show the scaling flow

of U and ǫd for decreasing bandwidth in the top and bottom panels respectively of

figure 3.3. In contrast to the symmetric case, the flows here are seen to be quite non-

monotonic and interesting. Although D = −ǫd is still a separatrix, the D << |ǫd|

flows show initial downward renormalization, but as D → 0, the interaction strength

grows and saturates at a finite value higher than the initial value. For all D > |ǫd|

however, the Ũ eventually vanishes. So, qualitatively, the infrared flows are exactly
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Figure 3.2: Scaling flow of U with decreasing bandwidth, for various Ufc values in the ph-
symmetric case. The initial bandwidth in the left panel is D = 2.5, such that
D < −ǫd and in the right panel, D = 3.1, such that D > −ǫd.

the same for the symmetric and the asymmetric case. The lower panel of figure 3.3

showing ǫ̃d mirrors the flows seen for the symmetric case. For an initial impurity

energy within the band, the flow is towards ǫ̃d → 0, while for initial ǫd below the

band, the renormalization is towards the LM fixed point. Next we turn on Ufc. The

effect of Ufc is expected to be far more significant in the p-h asymmetric case, since

valence fluctuations are much more favourable when nd 6= 1. Figure 3.4 shows the

flow of U with decreasing bandwidth for U = 10.0, and η = 0.58, which implies

ǫd = −2.1. The left panel shows results for D < −ǫd, such that the d-level lies below

the conduction band. In the absence of Ufc, the system flows to the LM fixed point,

but with increasing Ufc, a separatrix is introduced at Ufc ∼ 2.9 in parallel to the

p-h symmetric case. Since the U flows downward beyond this separatrix, we can

interpret this as Ufc driven increase in valence fluctuations. For, D > −ǫd, such

that the d-level lies within the conduction band, the flow in the absence of Ufc (as

seen in the right panel of figure 3.4) is non-monotonic. The U decreases initially,

bu as the bandwidth reduces, the interaction strength goes through a shallow dip

and increases steeply as D → 0. Again this behaviour changes qualitatively with

increasing Ufc. Although there is no separatrix, the U decreases monotonically for
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Figure 3.3: Scaling flow of U and ǫd for asymmetric case with Ufc = 0.

larger Ufc again leading to the interpretation that valence fluctuations are enhanced.

In the next section, we will consider the U → ∞ limit so that we will study the

effect of valence fluctuations between the empty and singly occupied states only.

3.5 Perturbative scaling of the E-SIAM: Infinite U limit

We consider the U → ∞ limit due to which doubly occupied states get decoupled so

the renormalization of Hubbard repulsion is not a consideration in the following. In

this section, we will first get the scaling equation for ǫd, and subsequently investigate

the renormalization of hybridization.
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that D > −ǫd. The initial interaction strength is U = 10.0.

3.5.1 Scaling flow of ǫd

Following Jefferson[14] we will calculate the scaling equation for ǫd by calculating

the effective Hamiltonian till second order and comparing with the bare Hamiltonian

given in Equation 3.1.

H2
eff = QδDHv

∑

α

GαHvQδD (3.22)

=
∑

qσ

∑

q′σ′
QδDd

†
σcq′σ′Gc†qσdσQδD +QδDc

†
q′σ′dσ′GdσcqσQδD (3.23)

=
∑

qσ

∑

q′σ′

(
d†σ′cq′σ′c†qσdσ

1

−ǫq − Ufc + ǫd
+ c†q′σ′dσ′d†σcqσ

1

−ǫq − ǫd

)
(3.24)

where Gα = PδD

Eα−H0
. Uisng the fact that there are no particles/holes in the high

energy states and after summing over the intermediate states, the above effective

Hamiltonian gives us the renormalized Hamiltonian written below:
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H(D̃) =
∑

kσ

ǫkc
†
kσckσ +

∑

kσσ′
Ufcnkσndσ′ +

∑

k

V 0
k (c†kσdσ + h.c.)+ (3.25)

∑

σ

(ǫ0d +
ρ0V

2δD

−D − Ufc + ǫd
− 2ρ0V

2δD

−D − ǫd
)ndσ , (3.26)

where V 0
k and ǫ0d are bare values of hybridization and impurity orbital energy and

k is restricted to model space. It is easy to see that the impurity energy has got

renormalized. After comparing with the bare Hamiltonian(Equation 3.1) we can

write down the effect due to renormalization.

δǫd = ρ0V
2δD(

2

D + ǫd
− 1

D + Ufc − ǫd
) (3.27)

This equation is identical to the one obtained before 3.21 in the limit of U → ∞. We

have solved this equation numerically and the results are presented in Figure 3.5.

As is shown in figure 3.5, the effect of Ufc is stronger in the mixed valent regime

(D > −ǫd, top panel) while for the local moment regime (D < −ǫd, bottom panel),

where the impurity energy level lies deeper below the band, the effect of Ufc is

insignificant. A few analytical forms may be obtained in a limiting case, namely

D ≫ |ǫd|. The scaling equation for ǫd becomes in this case:

dǫd
dD

= −∆

π

(
2

D
− 1

D + Ufc

)

, (3.28)

where ∆ = πρ0V
2. A scaling invariant can be obtained through this equation.

ǫd +
∆

π

[

ln
D

D0
+ ln

(
D

D0

D0 + Ufc

D + Ufc

)]

= const (3.29)
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Using the fact that Ufc is small as compared to bandwidth D which is the largest

enery scale of the model, we can further simplify this expression of scaling invariant.

ǫ∗d = ǫd +
∆

π
ln
D

D0
− ∆

π

Ufc

D
(3.30)

The scaling invariant of e-SIAM has been written in this form to see its relation with

the corresponding scaling invariant for SIAM where Ufc = 0. The first two terms

constitute the scaling invariant for SIAM and third term gives the contribution of

Ufc term. From the scaling analysis of SIAM[13][14][15], it is known that ǫd increases

with scaling and the impurity energy level moves closer to the Fermi level and hence

inreasing the valence fluctuations. From the above equation we can see that the effect
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of Ufc term is to further enhance the increase in ǫd and hence Ufc term enhances

the valence fluctuations even further.

We have already calculated first scaling invariant for our model. At second

order, there is no renormalization of hybridization so ∆ is another scaling invariant.

In our model, we have third scaling invariant as well which is Ufc interaction itself.

So the renormalization flow of e-SIAM is characterized by three scaling invariants.

Later on, we will see the hybridization gets renormalized and we will find out the

scaling behaviour of hybridization at the third order level.

3.5.2 Renormalization of Hybridization

The hybridization does not get renormalized at the second order level and hence is

taken as a scaling invariant for the Anderson impurity model[13]. In the e-SIAM

also, we did not get any renormalization of hybridization at the second order of per-

turbative renormalization and hence hybridization is once again a scaling invariant

of this model. However at third order, hybridization does get renormalized and for

the conventional Anderson impurity model, Jefferson has calculated the correspond-

ing scaling equations[14]. In this section we will calculate the scaling equations for

hybridization in the e-SIAM. Here also we will continue to keep doubly occupied

state decoupled and hence there will be no contributions of the processes to/from

that state. The third order contributions to the effective Hamiltonian are given by:

Hv(D̃) = (1 − PδD)Hv

∑

α

GαHvGαHv(1 − Pα
δD) (3.31)

− (1 − PδD)Hv

∑

α

Gα(
∑

α′
Gα′Hv(1 − Pα′

δD)Hv(1 − Pα
δD)

where Gα = PδD

Eα−H0
is the projected resolvent and α, α′ are the indices for the

degenerate states. Since we have excluded the doubly occupied state, the first term

in the above equation will not contribute. So the second term is the only third order

82



contribution to the effective Hamiltonian. To get the scaling equation, we need to

calculate this term for our model. We will see that the two terms of the hybridization

(c†kσdσ and its Hermitian conjugate) get renormalized in different ways so we write

them as follows and find the scaling equations separately for them.

Hv =
∑

kσ

Vk1c
†
kσdσ + Vk2d

†
σckσ (3.32)

H3
eff =

∑

kk′qσσ′

∑

αα′

(
− Vk2Vk1Vk2QδDd

†
σck′σGαGα′c†k′σ′dσ′Qα′

δDd
†
σ′ckσQ

α
δD (3.33)

− Vk1Vk2Vk1QδDc
†
kσdσGαGα′d†σckσQ

α
δDc

†
kσQ

α
δD

)

= −
∑

kqσ

Vk2Vk1Vk2
d†cqσc

†
qσdσd

†
σckσ

(−ǫq − Ufc + ǫd)(ǫq − ǫk)
−
∑

qkσ

Vk1Vk2Vk1
c†qσ′dσ′d†σ′cqσ′c†kσdσ

(−ǫq − ǫk)(−ǫq − ǫd)

(3.34)

Once again using the fact there are no particles/holes in high energy states and sum-

ming over the intermediate states, we get the renormalized hybridization expressions

as follows:

V2 − V0 =
−ρ0V1V 2

2 δD

(D + Ufc − ǫd)(D − ǫk)
(3.35)

V1 − V0 =
−2ρ0V2V

2
1 δD

(D + ǫd)(D + ǫk)
(3.36)

The scaling equations for the hybridization can then be written from the above

equations:

dV2
dD

=
ρ0V1V

2
2

(D + Ufc − ǫd)(D − ǫk)
(3.37)

dV1
dD

=
2ρ0V2V

2
1

(D + ǫd)(D + ǫk)
(3.38)
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We will first present two analytically tractable limits for these equations, which will

provide qualitative insight and the third scaling invariant.

I. In the mixed valent regime, and close to the Fermi level, we can choose

ǫk = 0, ǫd = 0. In this regime also, we have two limits. First when D >> Ufc

in which case the scaling equation reduces to that of the SIAM as given in [14].

In the second case, when Ufc is comparable to the bandwidth, the scaling equa-

tions have different solutions and are given below. Also if we divide the two scaling

equations for hybridizations and integrate, we find that V1 and V2 are related as

V1 =
V 2
2

V0
. This relation implies that V2 and V1 renormalize in exactly the same way

in this limit (ǫd = 0 or |ǫd| ≪ D). It also needs to be noted that we have ignored the

momentum dependence of the hybridization amplitudes which is physically reason-

able in this regime because of the closeness to Fermi level. So the scaling equation

for V2 becomes:

dV2
dD

=
V 2
2 V1ρ0

D(D + Ufc)
(3.39)

Solving for hybridization we obtain:

1

V 3
2

− 1

V 3
0

=
−ρ

4V0Ufc
ln

(
D

D0

D0 + Ufc

D + Ufc

)

(3.40)

Once again using the fact that bandwidth is the largest energy scale of the model,we

arrive at the simplified expression for hybridization.

1

V 3
2

=
−ρ
4V0

(
1

D0
− 1

D

)

+
Ufcρ

4V0

(
1

D0
− 1

D

)2

(3.41)

We notice that Ufc enters this expression for hybridization at second order. For the

case of vanishing Ufc, we arrive at following scaling invariant for Anderson impurity

84



model.

1

V 3
2

− ρ0
4V0D

=
1

V 3
0

− ρ0
4V0D0

(3.42)

Solving for V2 we arrive at the following equation which was obtained by Jefferson[14].

V2 = V0

(

1 +
ρV 2

0

4D0

(
D0

D
− 1

))−1/3

(3.43)

As was shown by Jefferson for Ufc = 0, the hybridization becomes weaker under the

scaling flow. The first term on the RHS of equation 3.41 shows that as D → 0, V2

also decreases. The second term is the contribution of Ufc, which is seen to enhance

the reduction of V2 even further. Combined with the fact that |ǫd| ≪ D implies a

flow to the empty orbital regime (see figure 3.5), we deduce that in presence of Ufc,

valence fluctuations get enhanced.

II. In the LM regime, i.e |ǫd| ≫ D, equations 3.37,3.38 lead to a very different

relation between V2 and V1, namely V1V
2
2 = V 3

0 . Thus in this regime, V1 and V2

renormalize in opposite ways. So if V1 diverges, V2 vanishes and vice-versa. For

Ufc = 0, we can solve equation 3.37 to get

V2 = V0 −
ρ0V

3
0

ǫd
ln

D

D0
. (3.44)

Since ǫd < 0, V2 decreases logarithmically as D decreases. As discussed above, V1

increases concomitantly. Eventually, V2 → 0 as D → TK , and hence V1 diverges.

As is well known, this divergence is inherent in perturbative renormalization, and

yields a closed form for the Kondo scale as

TK ≃ D0 exp

(−|ǫd|
ρ0V 2

0

)

. (3.45)

So, for Ufc = 0, the usual expression for Kondo scale is reproduced[15][30]. For
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finite Ufc, we obtain the flows through a numerical solution of equations 3.37 and

3.38 in the next subsection.

3.5.3 Numerical solution

We use the usual Euler discretization to solve equations 3.37 and 3.38. Again, we

restrict to flows of hybridization close to the Fermi level, so ǫk = 0. It is important

to note that ǫd, which also enters these equations, is also a function of D, but its

flow is determined by a second order equation. So, we compute the flow of ǫd first

keeping V1 = V2 = V0 constant, and use this flow to solve for the flow of V1 and V2.

Another issue is the discretization of the bandwidth. Since the Kondo scale is an

exponentially small scale, the D → 0 the regime must be sampled densely, while the

non-universal scales can be sampled coarsely. Thus, a highly non-uniform the grid

has been used to discretize the conduction band, which gets progressively dense as

D → 0.

We fix the initial V1 = V2 = 0.35, and investigate the effect of varying the initial

ǫd on the flow of hybridization in the left panel of figure 3.6. For |ǫd| > D, the V1

diverges at a finite scale. As discussed in section 3.5.2, this scale is indeed the Kondo

scale, and we will establish this shortly. For |ǫd| < D, the hybridization vanishes

algebraically, and as we know from section 3.5.1, the impurity orbital energy also

vanishes as D → 0, thus implying a flow to the empty orbital regime. It is interesting

to note that in the flow to the empty orbital, the hybridization vanishes as D1/2,

while the divergence in the LM regime is ∼ (D− TK)−2 as shown in the right panel

of figure 3.6.

We can now investigate the effect of Ufc on the Kondo scale in the regime of

|ǫd| > D. We fix the initial ǫd = −2.4, and D = 0.375, and find the Kondo scale as a

function of several initial V values ranging from 0.35 to 0.55. The results presented

in the left panel of figure 3.7 show the Kondo scale (TK) as a function of 1/V 2 for
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Figure 3.6: Left panel: Scaling flow of V1 for various values of ǫd with an initial value of
V0 = 0.35 and the bare bandwidth, D = 0.375. Right panel: The divergence
of V1 shown in the left panel is analysed and it is found to be of the form
(D − TK)−2.

three Ufc values of 0 (black circles), 0.5 (red squares) and 1.0 (triangles). The linear

dependence of TK on 1/V 2 when plotted on a linear-log scale indicates an exponential

dependence, and indeed, the slope correlates with ǫd (not shown). Again, the slope

being independent of Ufc indicates that it does not enter the exponential, but in the

prefactor. However, it is clear that the Kondo scale increases with increasing Ufc.

This is shown in the right panel of figure 3.7, where TK − TK0 (with TK0 being the

Ufc = 0 scale) is seen to depend on Ufc as a power law, i.e TK = TK0 +AUγ
fc. The

exponent γ decreases with increasing V . The Ufc driven upward renormalization of

the Kondo scale maybe interpreted as a crossover to a weaker coupling regime, and

hence increased charge/valence fluctuations.

3.6 Summary

In this chapter, we have investigated the effect of a repulsive interaction between

the correlated impurity electrons and the non-interacting conduction electrons in the

extended single impurity Anderson model(e-SIAM) through unitary transformations

and perturbative renormalization of the model. A Schrieffer-Wolff transformation
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Figure 3.7: Left panel: Kondo scale as a function of 1/V 2 for three Ufc values. Right panel:
Kondo scale as a function of Ufc for two V values.

of the e-SIAM shows that the strong coupling regime is governed by a spin-charge

Kondo model, unlike the Anderson impurity model where spin fluctuations domi-

nate the strong coupling physics. Through perturbative renormalization to second

and third order (following Haldane and Jefferson respectively), we found the scaling

equations of the model parameters, with a focus on the effect of Ufc on the renor-

malization flows. The scaling invariants of the model were also found. A divergence

in the flow of hybridization, signalling the breakdown of perturbative renormaliza-

tion, can be used to identify a low energy scale, and is shown to be the Kondo scale,

through analytical arguments and a numerical solution of the scaling flows. The Ufc

interaction leads to an increase in the Kondo scale through a renormalization of the

prefactor, and hence may be interpreted as leading to enhanced valence fluctuations.

Our results are in agreement with NRG studies from Katsnelson’s group who have

found that enhanced valence fluctuations due to Falicov-Kimball interaction lead

to the significant renormalization of the Anderson model parameters and hence of

Kondo scale, which was found to increase with increasing Ufc. However, earlier NRG

studies from Hewson’s group have shown that though Kondo scale gets enhanced

due to Ufc, the physics in the presence of Ufc interaction is still described by Ander-

son impurity model, albeit with renormalized parameters which is not in complete
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agreement with our studies. From the numerical solution of the scaling equations of

e-SIAM, we find that the system flows to the mixed valent regime. However, based

on our perturbative renormalization method we were not able to show conclusively

that Kondo fixed point becomes unstable to Ufc interaction. In future, we would

like to do flow equation renormalization study of e-SIAM to explore the regimes

when Ufc interaction becomes stronger or comparable to Hubbard repulsion.
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4.1 Introduction

Heavy fermion systems(HFS) is another class of strongly correlated electron sys-

tems(SCES) in which the interactions cause the enhancement of electron mass by a

very huge factor of three orders of magnitude. But they also constitute an extreme

case where Fermi liquid theory(FLT) theory holds. Heavy fermion systems have

competing interactions like Kondo and RKKY interaction. Due to these competing

interactions, heavy fermion systems are very close to quantum phase transitions.

In fact most of the quantum phase transitions have been studied in these systems

only[1–3]. Doniach phase diagram[4] is considered standard phase diagram for heavy

fermion systems. But it is based on Kondo lattice model and takes only spin fluctu-

ations into consideration. The conventional theory of quantum criticality in heavy

fermions is also based on spin fluctuations only[3]. But there are many systems

which exhibit phase transitions which can not be explained on the basis of spin

fluctuations alone. Valence/charge fluctuations play a very important role in such

systems.

The prototypical example where valence fluctuations lead to phase transition is

elemental Cerium in which there is an isostructural phase transition between α and

γ phases. In high temperature α phase Cerium is metallic and spin susceptibility

is temperature independent(Pauli type). In γ phase which is at low temperature

Cerium develops local moments and spin susceptibility becomes temperature de-

pendent(Curie type). This transition has been known for a long time but there is

no unanimous microscopic understanding of the transition[5, 6]. Many experimen-

tal techniques have been used to investigate this transition and different theoretical

models have been put forward to explain this transition. Two very important models

are Hubbard-Mott scenario[7] and Kondo Volume Collapse(KVC)[8][9]. In Hubbard-
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Mott picture, f electron of Cerium is delocalized in α phase and gets localized as

Cerium changes to γ phase. In KVC the hybridization(and hence Kondo effect) be-

tween f electron and spd electrons plays an important role. In this picture f electron

gets hybridized by spd electrons and leads to Kondo resonance in α phase while as

in γ phase there is no quenching of local moments. Recent optical spectroscopy[11]

and X-ray emission spectroscopy[12] experiments are in support of KVC picture.

But the microscopic mechanism of the valence transitions is still debated. Crystal

symmetry[13] and phonons[14][15] are also thought to play a role in this transition.

It has also been suggested that valence transition can be Lifshitz transition[16].

Valence fluctuations are also believed to lead to unconventional superconductiv-

ity in CeCu2Si2 [17] and its isoelectronic compound CeCu2Ge2 [18]. CeCu2Si2

is the first discovered heavy fermion superconductor, but its superconductivity has

remained a puzzle for conventional theory based on spin fluctuations. It shows

anomalous behaviour in residual resistivity, Sommerfeld coefficient of resistivity and

Kadowaki-Woods ratio [17][19]. In the doped case CeCu2(Si1−xGex)2 [20][21] the

superconducting phase is split into two domes. In addition to a dome closer to

anti-ferromagnetic(AF) quantum critical point (QCP), there is another dome which

occurs at higher pressure and can not be related to spin fluctuations. There are other

heavy fermion compounds with anomalous behaviour which can not be explained

by the conventional theory of quantum criticality based on spin fluctuations alone.

Many theoretical scenarios like local criticality theory[22][23], the theory of tricrit-

ical point[24] and others have been put forward to understand this unconventional

quantum criticality. But these theories do not give a comprehensive understanding

of the anomalies in these systems. So, an alternative theory based on critical valence

fluctuations has been put forward which explains the critical exponents of the tem-

perature dependence of resistivity, specific heat and susceptibility[25][26]. In a recent

work[27] role of valence fluctuations in various transport properties in CeCu2Si2,
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was experimentally probed. They have consolidated the role of valence fluctuations

in the unconventional superconductivity of CeCu2Si2. In [28], review of the valence

fluctuation theory of unconventional quantum criticality in heavy fermion systems

has been presented.

To understand the role of valence fluctuations in heavy fermion systems, Miyake

et al[29] have extended the periodic Anderson model by Ufc term which is the Hub-

bard repulsion between localized and itinerant electrons. This extended PAM(e-

PAM) has been studied by many analytical and numerical methods. Analytical

methods include Slave Boson mean field theory(SBMFT) [29][30], Gutzwiller vari-

ational method [31][32], Projection Renormalization group(PRM) [33]. Numeri-

cal methods include Density Matrix Renormalization Group(DMRG)[34] and Dy-

namical mean field theory(DMFT) with exact diagonalization(ED) as an impurity

solver[35]. Though all these methods have investigated different aspects of valence

fluctuations and have also confirmed that valence fluctuations lead to first order

transition. But there is scope for more investigations because none of these methods

can explore the full parameter regime of the model. SBMFT taking infinite U limit

exclude the double occupancies and hence does not look at the competition between

onsite Hubbard interaction Uff and inter-orbital interaction Ufc which exists in real

materials. Though DMFT takes into consideration the quantum fluctuations but

using ED as impurity solver restricts it to small system sizes. Similarly, DMRG

has been done only for one-dimensional case which can overestimate the role of va-

lence fluctuations. Gutzwiller variational method is biased towards strong coupling

regime while as valence transition takes place in the mixed valent regime. PRM

like SBMFT does not consider finite U and being perturbative is being truncated

after some order. All the calculations using above methods are at zero temperature

which does not allow to see the effect of valence fluctuations in real materials which

are at finite temperature. Considering all these limitations of the methods valence
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fluctuations need to be investigated by a more powerful method which can explore

a broader range of parameter space of the given model. We have chosen contin-

uous time quantum Monte Carlo(CT-QMC) method which has been used within

the framework of DMFT. CT-QMC is a very robust method and is a numerically

exact method. It has been used to study other quantum phase transitions in spin

systems. Though there has been a CT-QMC study of e-PAM[36] but in that study,

only Kondo regime was explored, and the focus was on charge ordered phases.

In the previous chapter, we studied the effect of valence fluctuations in a quantum

impurity model. In this chapter, we will extend that study and consider a lattice

model for heavy fermion systems in which valence fluctuations lead to instabilities

as well. We have considered extended PAM(e-PAM) which is the lattice version of

extended SIAM which was studied in the previous chapter. Since within dynamical

mean field theory (DMFT), e-PAM gets mapped to e-SIAM so the results of the last

chapter become important for e-PAM as well. The rest of this chapter is organized

in following way. We will give a brief description of algorithm and implementation of

embedding CT-HYB quantum impurity solver with our DMFT code. Then we will

present the results of our computations and discuss them in view of the questions

we have asked in this chapter. Finally, we give the summary of our results.

4.2 Model and methods

Minimal model for heavy fermion systems is periodic Anderson model(PAM). In HFS

there are two kinds of fermions called c and f electrons where former are itinerant

electrons and latter are localized electrons. Hybridization between these two kinds

of electrons leads to Kondo physics.

H =
∑

kσ

ǫkc
†
kσckσ +

∑

iσ

ǫff
†
iσfiσ + V (

∑

iσ

c†iσfiσ + h.c.) +
∑

i

Unfi↑n
f
i↓ (4.1)
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The first term gives the kinetic energy of conduction electrons; second term gives

the energy of localized f electrons, the third term is the hybridization terms which

is important for Kondo physics and the final term gives the local Hubbard repulsion

for the localized electrons. PAM has both Valence as well as Spin fluctuations.

But valence fluctuations only lead to “Crossovers” from Kondo regime to Mixed-

Valent Regime. So to capture the effects of valence fluctuations in heavy fermion

systems, we need to extend this model by a Hubbard repulsion term between c and

f electrons. This term is called Ufc term.

HUfc
= Ufc

∑

iσσ′
nciσn

f
iσ′ (4.2)

This interaction term was first introduced in Falicov-Kimball model for valence tran-

sitions [37] and is also called Falicov-Kimball interaction. This interaction term was

later on used by Miyake[29] for Periodic Anderson Model for valence fluctuations.

4.2.1 DMFT and CT-QMC

In this section, we give the details of the DMFT self-consistency loop which we

have used for our calculations. Since we are dealing with a multi-orbital model so

what we are using in this chapter is the matrix extension of DMFT equations given

in chapter 1 which were for single-orbital Hubbard model. DMFT computations

were done for finite temperature, and hence all the quantities are computed over

Matsubara frequencies. Greens function for itinerant c electron is

Gc =
∑

k

1

iw + µ− ǫc − Σfc − V 2

iw+µ−ǫf−Σff

(4.3)
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Greens function for localized f electron is

Gf =
∑

k

1

iw + µ− ǫf − Σff − V 2

iw+µ−ǫk−Σfc

(4.4)

where iw are Matsubara frequencies, µ is chemical potential, ǫc is the conduction

electron energy, ǫf is the f orbital energy, Σff is the self-energy of f electrons due

to local Hubbard interaction, Σfc is the self-energy due to Ufc interaction and V is

the hybridization between f and c electrons. We have used hybridization expansion

Quantum Monte Carlo , CT-HYB impurity solver from ALPS[38]. To embed the

solver with our DMFT code we have used the following algorithm which is slightly

different from the standard DMFT self-consistency loop as given in chapter 1 because

CT-QMC solver needs hybridization function on Matsubara time and returns self-

energies and other quantities also on Matsubara time, and hence we need to take

Fourier transform to bring them to Matsubara frequency domain used in DMFT

computations.

The algorithm which we followed is given below:

1. Start with non-interacting Lattice Green’s functions.

2. Using the Dyson equation get the Host Green’s function.

3. Obtain hybridization function from host Green’s function.

4. Fourier transform the hybridization function to Matsubara time domain and

pass it on to the hybridization expansion ct-QMC solver which returns impu-

rity self-energy and Green’s functions on Matsubara time axis.

5. Fourier transform the self-energy obtained from solver to Matsubara frequency

domain.

6. Obtain the full lattice Green’s function with a new chemical potential obtained

from Broyden solver.
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7. Take Hilbert transform to obtain the local full Greens function.

8. Go to the next DMFT iteration and run the iterations until convergence is

obtained.

In this DMFT algorithm convergence criterion was implemented using Greens func-

tion which is smoother function as compared to self-energy. To decrease the noise in

data, we switched to Legendre function basis. Since we explored the mixed valent

regime of our model, so we had to calculate the chemical potential as well to fix the

total occupancy of electrons, ntot. In our computations we have taken ntot = 1.8. To

fix ntot we used Broyden solver[39] which was also part of the DMFT loop. Broyden

solver was used in each DMFT iteration to calculate the chemical potential before

hybridization was sent to the solver and after the solver had returned the interacting

Greens functions, the chemical potential was again calculated. This increased the

runtime of our DMFT computations.

4.3 Results and Discussion

In this section, we discuss the results of our computations. These computations

were done using the high performance computing facilities from Louisiana State

University[40]. Close to the first order phase transition we faced convergence is-

sues which are known to happen from similar studies of Mott transition in case of

Hubbard model. We, however, did capture the signatures of the first order valence

transition in our computations.

4.3.1 Effect of Ufc on f electron Occupancy

Since valence fluctuations change the occupancy of the f electrons, so we, first of all,

computed the effect of Ufc on f-level occupancy nf . As shown in Figure 4.1, nf

decreases with increasing Ufc. This happens because, in presence of Ufc, f level gets
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shifted towards the Fermi level and hence the valence fluctuations get enhanced.

We have already seen for the e-SIAM in the previous chapter that in the presence

of Ufc the impurity energy level ǫd gets shifted toward Fermi level. As we kept

increasing Ufc we found the signatures of the first order valence transition as can be

seen from Figure 4.1, for Ufc = 3.0 and higher, there is an abrupt jump in f electron

occupancy. Our results are in agreement with other calculations[25][26][34][28] who

have found based on slave boson mean field theory and DMRG computations that

Ufc enhances valence fluctuations and eventually leads to first order phase transition.

Earlier DMFT calculations[35] have also confirmed that Ufc leads to abrupt jumps

in f level occupancy and eventually leads to first order transition. However, the

model parameters that have been used are unrealistically high. They had to take

Ufc = 9 which is very high value in view of that fact that Ufc is a weaker interaction

as compared to local Hubbard interaction which typically is taken to be U = 6

in DMFT calculations. While in our case we see signatures of first order valence

transition at Ufc = 3 which is very reasonable value. Similarly, Hubbard interaction

parameter U = 20 which has been taken to get consistent results is very unrealistic.

We did not face any sign problems which they had faced in their computations.

It is known for PAM that as f level is moved closer to Fermi level, due to the

valence fluctuations, there is cross-over from Kondo regime to Mixed valent regime.

However, there is no valence transition in that model. In the presence of enhanced

valence fluctuations due to Ufc, cross-over between Kondo and mixed valent regimes

happens for lower values of ǫf . From Figure 4.1 we can see that for fixed ǫf , as we

increase Ufc, the system moves away from Kondo regime even further.

4.3.2 Effect of Ufc on Valence Susceptibility

The dynamical quantity for the valence transition is the valence susceptibility which

diverges close to first order phase transition. Valence susceptibility χv is defined as:
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Figure 4.1: f orbital occupancy nf is plotted versus f orbital energy ǫf for increasing values of
Ufc. Other model parameters for this plot are : U = 6.0, V = 0.77, β = 1

T
= 100.

χv = −dnf

dǫf
. As can been seen from Figure 4.2, as Ufc is increased, valence suscepti-

bility also increases and finally jumps abruptly which is the signature of the valence

transition. Though a similar behaviour of valence susceptibility has been reported

before[35] but the values of Ufc were unrealistically high. Critical valence fluctua-

tions leading to diverging valence susceptibility has been found in other studies[17].

It has been shown[41] that resistivity is related to valence susceptibility:

ρ0 = Bnimp |u(0)|2 ln

∣
∣
∣
∣
∣

(
∂nf
∂ǫf

)

µ

/Nf

∣
∣
∣
∣
∣

+ ρunit0 (4.5)

where the co-efficient B depends on the band structure of host metal,nimp is the

concentration of the impurities with u(q) being the scattering potential. Nf is the
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Figure 4.2: Valence susceptibility χv is plotted versus f orbital energy ǫf for increasing values
of Ufc. Other model parameters for this plot are : U = 6.0, V = 0.77, β = 1

T
=

100.

density of states at Fermi level and ρunit0 is the residual resistivity. As can been from

the above relation that valence susceptibility contributes to the resistivity and hence

the critical valence fluctuations near the valence transition enhance the resistivity

by coupling to the impurities or disorder. The enhancement in resistivity is hence

directly related to the sharpness of the valence transition.

4.3.3 Enhancement of Quasiparticle Weight

Quasiparticle weight is another important quantity which captures the renormal-

ization effects of interactions and hence is related to self-energy. In Quantum

Monte Carlo, quasiparticle weight Z is extracted from the following expression:
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When the local interactions are strong, quasiparticle weight de-

creases due to the renormalization effects of the interaction. But, as confirmed by

other studies[17][19][32], quasiparticle weight increases when valence fluctuations

become stronger and hence taking the systems from the correlated regime to a less

correlated one. We have also found that quasiparticle weight gets enhanced as we

increase Ufc as is shown in Figure 4.2. This behaviour can be understood from

the fact that in the presence of Ufc, local Hubbard interaction U scales downwards

and hence gets renormalized to a weaker interaction as shown in the previous chap-

ter. This enhancement in the effective mass(quasiparticle weight) has been used to
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explain the anomalies in the Sommerfeld co-efficient[17].

4.4 Conclusion

In this chapter, we have studied the extended Periodic Anderson model(e-PAM) to

explore the role of valence fluctuations in heavy fermions systems, in view of recent

measurements in which anomalous quantum critical behaviour (exponents) has been

found. We have employed dynamical mean field theory within which, e-PAM gets

mapped to a multi-orbital Anderson impurity model. For the impurity solver, we

have used continuous time Quantum Monte Carlo, which is a state of art method

for exploring the finite temperature dynamics of quantum impurity models. Ex-

ploring the effect of enhanced valence fluctuations due to Ufc we have found that f

orbital occupancy nf decreases and the system moves to the mixed valent regime,

and as we increase Ufc, there is an abrupt jump in nf which signals the first or-

der valence transition(FOVT). Near the FOVT, valence susceptibility is supposed

to show divergence and that is what we found that as we increase Ufc valence sus-

ceptibility undergoes abrupt jump above the critical Ufc. Our computations have

confirmed that even for mild values of Ufc, critical valence fluctuations can lead to

valence transitions. These critical valence fluctuations lead to the enhancement of

the resistivity. Similarly, there is also a huge renormalization of quasiparticle weight

due to the critical valence fluctuations which is consistent with our perturbative

renormalization studies of extended Anderson impurity model where we have found

that valence fluctuations lead to the downward renormalization of local Hubbard

repulsion, as the systems moves away from the strong coupling fixed point. The

enhancement in quasiparticle weight which we have found explains the renormal-

ization of the Sommerfeld co-efficient due to valence fluctuations. Our studies have

confirmed that valence fluctuations can lead to renormalizations of the resistivity

and Sommerfeld coefficients and this renormalization has to be different than the
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one due to spin fluctuations because as found in this chapter and previous chapter

that the Ufc drives the system to the mixed valent regime where valence fluctuations

are stronger.
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5.1 Introduction

Landau’s symmetry breaking theory has been the paradigm for the classification of

phases in condensed matter physics. Magnetic and superconducting orders are the

prime examples which have been understood within this paradigm. However, the

discovery of the quantum Hall effect gave rise to a counter example for symmetry

breaking order. In this case, there is no symmetry breaking involved, and the classi-

fication is based on topology rather than on symmetry. The discovery of topological

insulators[1, 2]has added more examples to the list for topological order, although in

the latter case the order is not same as that of the quantum Hall fluid. Topological

order in topological insulators and superconductors is called Z2 topological order

because it is associated with a Z2 topological invariant. Discovery of topological

insulators and superconductors has boosted the research in topological order. And

more importantly, many model Hamiltonians have been shown to exhibit topological

order. What is very interesting about these Hamiltonians is that they are quadratic,

and hence can be analytically solved. Based on K-theory and Clifford algebras, by

now there is a full classification for the topological order that arises in these Hamil-

tonians in various dimensions[3]. This classification came as the real breakthrough

in understanding topological properties of matter. Nevertheless, the difficult task of

taking interactions into considerations is going to take a lot more work.

In this Chapter, we will consider a Kitaev chain Hamiltonian[4] which, though

simple and quadratic, has a topological phase in which there are Majorana modes

at the edges of the chain. Kitaev employed a Majorana fermion representation to

diagonalize the Hamiltonian and showed that there are Majorana edge modes. The

Kitaev model is not an entirely new model. It can be obtained from the transverse

field Ising model(TFIM) using a Jordan-Wigner transformation. So what Kitaev
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did is that he took fermions as degrees of freedom instead of spins. This novel

point of view opened up the way to understand the topological order in a well-

known system. TFIM exhibits only Landau order, and the ordered phase arises

due to the symmetry breaking of the model. The immediate question which comes

to mind is how is Landau order in TFIM related to the topological order, or how

does topological order arise in the Kitaev Chain when one maps to a fermionic

representation. One important aspect of Kitaev’s work is that he considered fermions

as degrees of freedom, rather than spins in the TFIM model. But the question

is how does the transformation from spin to fermionic representation give rise to

topological order? This question has been asked in a recent work[5]. There it is

concluded that spectral properties of the two models are same, which we will find

below is not correct. Using duality, this question has been addressed by [6]. They

find that in topological order one gets a non-local order parameter. So one tries to

understand topological order from the symmetry point of view and tries to find out

whether there are different kinds of symmetry breaking involved in the topological

order. In [7] Fendley has come up with an algebraic approach for topological order

in a Majorana chain and more generally for a parafermion chain. He identifies an

operator which is a Majorana mode operator and its presence leads to topological

order. This approach is close to our approach, and below we will show how we

have also found an operator which satisfies the same algebra as that of the Fendley

operator. We will show in this chapter that on the fermionic side, the algebra is

larger and hence there are more symmetries and hence more conserved quantities

which are non-local as compared to the spin model. We will show that in the Kitaev

chain model there is an additional element in the algebra which had not been taken

into consideration by Kitaev. That operator leads to topological degeneracy and

edge modes. Hence we answer the question why there is topological order in Kitaev

chain and not in its spin equivalent. The strength of our approach is that it can
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be generalized to parafermion chains as well. Our construction holds good for the

interacting case also.

The rest of this chapter is organized as follows: First, we briefly discuss the Kitaev

chain model, its symmetries, and topological order. Then in the next section, we

show how the algebra of Majorana fermions is conceptually incomplete, and we

present the full Clifford algebra. In Section 4 we compare our results with Fendley’s

results and show that the operator which we introduce to complete the algebra of

Majorana fermions satisfies the same algebra as that of the Majorana edge mode

operator of Fendley. Then we briefly show how our construction can be generalized

to parafermions as well. In the next section, we discuss the connection between

topological order and the Yang-Baxter equation. In the final section, we summarize

our results and conclusions.

5.2 Kitaev p-wave chain model

To study the relation between Landau order and topological order, we introduce

two Hamiltonians which are related to each other by Jordan-Wigner transformation.

Two models are transverse field Ising model(TFIM) and Kitaev p-wave chain model.

Following Kitaev we will diagonalize Kiatev chain model using Majorana fermion

representation and that way we will show that in its topological phase, Kitaev chain

model has Majorana edge mode and also topological degeneracy. We will look

closely at the algebra of Majorana fermions and how they are different from the

standard(Dirac)fermions.

The Hamiltonian for the transverse field Ising model is:

H = −J
N−1∑

i=1

σxi σ
x
i+1 − hz

N∑

i=1

σzi (5.1)
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Where J is the ferromagnetic exchange constant and hz is the Zeeman field in the Z

direction. This model has Z2 symmetry, due to which the global symmetry operator

commutes with the Hamiltonian.

[
∏

i

σzi , H

]

= 0 (5.2)

The global symmetry operator flips all the spins. There is a doubly degenerate

ground state. This model exhibits two phases which can be understood on the basis

of Landau’s symmetry breaking theory. There is a ferromagnetically ordered phase

which arises when the symmetry of the model is broken.There is a disordered phase

in which symmetry is intact. We will now apply the Jordan-Wigner transformation

to this model to map it to a fermionic model which will turn out to be the Kitaev

chain model. The Jordan-Wigner transform maps the spin operators into Fermionic

ones:

ci = σ†i





i−1∏

j=1

σzi



 c†i = σ−i





i−1∏

j=1

σzi



 (5.3)

H = −t
N−1∑

i=0

(c†ici+1 + h.c.) + △
N−1∑

i=0

c†ic
†
i+1 + h.c.− µ

N∑

i=0

c†ici

where t,∆, µ are hopping strength,superconducting order parameter and chemical

potential respectively. Kitaev employed a Majorana fermion representation to diag-

onalize this Hamiltonian.

ci =
γ1,i − iγ2,i√

2
c†i =

γ1,i + iγ2,i√
2

(5.4)
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In the Majorana representation the Hamiltonian gets transformed to:

H = it
N−1∑

i=0

(γ1,iγ2,i+1 − γ2,iγ1,i+1) + i∆
N−1∑

i=0

(γ1,iγ2,i+1 + γ2,iγ1,i+1)

− µ

N∑

i=0

(
1

2
− iγ1,iγ2,i) (5.5)

The Hamiltonian has trivial phase and topological phase. Trivial phase is obtained

for the choice of parameters: t = ∆ = 0. In this case two Majorana fermions at each

site couple together to form a complex fermion, and there is no topological phase

as there are no Majorana edge modes. Choosing µ = 0 and t = ∆ the Hamiltonian

becomes.

H = 2it

N−1∑

i=0

γ1,iγ2,i+1 (5.6)

We can define a complex fermion:

ai =
γ2,i+1 − iγ1,i√

2
(5.7)

The Hamiltonian becomes:

H =

(

t

N−1∑

i=0

a†iai −
1

2

)

(5.8)

We can see that ground state of this Hamiltonian has no a-fermions. But there is

more to the story because there are two Majorana fermions which have not been

included in the Hamiltonian. Taking them together we can form another fermion

which is non-local, residing at the two ends of the chain.

a0 =
γ1,N − iγ2,0√

2
(5.9)
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So there is boundary term Hb corresponding to two Majorana edge modes. The

presence of boundary term due to the bulk topology is another feature of topological

order in which there is a bulk-boundary correspondence.

Hb = ǫ0a
†
0a0 ǫ0 = 0 (5.10)

With this boundary term included in the Hamiltonian, we can see that it has a

doubly degenerate ground state depending on presence or absence of the edge mode.

It is this edge mode which is the feature of the topological phase of Kitaev chain

and is related to the topological invariant of the bulk spectrum. The two ground

states can be distinguished by a parity operator. They have even and odd parity

respectively. | 0〉 has no a0 fermion and hence an even number of fermions while as

| 1〉 has one a0 fermion and hence odd parity. So the presence of an edge mode gives

rise to double degeneracy. This degeneracy is an example of topological degeneracy

because it is protected by a topological invariant. Since the topological invariant

comes from a particle-hole symmetry which is a discrete symmetry, such topological

order has been called symmetry protected topological order.

5.2.1 Majorana fermions versus complex fermions

Majorana fermions can be taken algebraically as building blocks of (standard) Dirac

fermions. The algebra of Majorana fermions makes them very different from the

Dirac fermions. Dirac Fermions obey the Grassmann algebra:

{ci, c†i} = δij c2i = (c†i )
2 = 0 N = c†c N2 = N (5.11)
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where c†,c and N are creation, annihilation and number operator for a fermion.

| 1〉 = c† | 0〉 | 0〉 = c | 1〉 (5.12)

c | 0〉 = c† | 1〉 = 0 (5.13)

Fermions have a vacuum state. Creation and annihilation operators are used to con-

struct the states of fermions. Fermions have U(1) symmetry, and hence the number

of fermions is conserved, and occupation number is a well-defined quantum number.

The number of fermions in a state is given by the eigenvalue of the number operator.

Here the number operator is idempotent, and hence there are only two eigenvalues:

0, 1. Also, different fermion operators anti-commute with each other and hence obey

Fermi-Dirac statistics.

Majoranas are very different because they are self-hermitian and hence creation and

annihilation operators are the same, which means that a Majorana fermion is its

own anti-particle. A fermionic vacuum can not be defined for Majorana fermions

because there is no well-defined number operator, or in other words, the number of

Majorana fermions is not a well-defined quantity, and hence not a quantum number

which can be used to label Majorana fermions. Majorana fermions don’t have U(1)

symmetry, and hence a number operator can not be defined for them. However, they

have Z2 symmetry; parity is conserved for Majorana fermions. Majorana fermions

also anti-commute among each other. However, Majorana fermions generate non-

abelian braid statistics. They generate a braid group representation [16][17][18].

When taken abstractly Majorana fermions appear to be very unrealistic particles,

but physically they can appear as Bogoliubov quasiparticles which exist as zero

modes in topological superconductors. They are zero energy solutions of the BdG

equation and are different from Majorana spinors which are solutions of the Dirac

equation.

For a general choice of parameters, one finds that the Hamiltonian is an antisym-
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metric matrix and hence has doubled spectrum. For every energy state, there is

another degenerate eigenstate. So one can say that the presence of particle-hole

symmetry turns a Hermitian matrix into a real anti-symmetric matrix which has

doubled spectrum. The number of Majorana modes is a topological invariant called

the Z2 invariant, and is given by a Pfaffian of the Hamiltonian.

5.3 Algebra of Majorana doubling

In this section, we will revisit the algebra of Majorana fermions and see that in the

way it is usually presented some of the significant higher order products are not

used. In the Kitaev paper, the algebra of Majorana fermions is written as

{ai, aj} = 2δij (5.14)

This equation defines the Clifford algebra of Majorana fermions. The full algebra

is generated by all the ordered products of these operators. For the case of three

Majorana fermions the full Clifford algebra is described below:

{1, γ1 = a1, γ2 = a2, γ3 = a3, γ12 = a1a2, γ23 = a2a3, γ31 = a3a1, γ123 = a1a2a3}

(5.15)

The Clifford algebra of three Majorana fermions is 8 dimensional, with these eight

independent generators. There are three bivectors γ12,γ23,γ31 and one tri-vector(also

called pseudoscalar) γ123. Bivectors are related to rotations and trivector will turn

out to be very important for our discussion on topological order because it is a

chirality operator which distinguishes between even and odd parity. We refer to

[9] for more discussion on the role of chirality operator and Z2 grading of Clifford

algebra.

We ask whether there is a way to understand how topological order arises in the
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Kitaev chain model as we do an algebraic transformation from TFIM. During this

transformation, the degrees of freedom or the quasiparticles also get transformed.

To answer this question, we revisit the algebra of Kitaev chain.

In [8] Lee and Wilczek gave an illuminating analysis of doubled spectrum of the

Kitaev chain model. They showed that the algebra which has been considered

for the Kitaev chain model is conceptually incomplete. Using the case of three

Majorana fermions which are at the edges of superconducting wires, it is shown

that the Hamiltonian of these Majorana fermions has more algebraic structure than

anticipated. The difference lies in another Majorana operator which was missed in

the Kitaev paper. This Majorana operator has been called Emergent Majorana for

the reason that it obeys all the properties of a Majorana fermion. We briefly review

their analysis here and later on generalize it. Let b1,b2 and b3 are three Majorana

fermions which can occur at the ends of three wires. They obey Clifford algebra:

{bj , bk} = 2δjk (5.16)

We can write down a Hamiltonian for these interacting Majorana fermions coming

from three different wires.

Hm = −i(αb1b2 + βb2b3 + γb3b1) (5.17)

Now it is known that Majorana bilinears generate a spin algebra so one would

naively think that it is a spin Hamiltonian. But the spin Hamiltonian neither has

edge modes nor any topological degeneracy. To understand this one needs to realize

that the Clifford algebra generated by Majorana fermions is larger than what is

present in equation 5.14. There are other generators of the algebra. Physically

the full implications of the parity operator need to be taken into consideration to

conceptually complete the algebra. There is a special operator Γ in the algebra
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which we call as Emergent Majorana because it has all the properties of a Majorana

fermion.

Γ ≡ −ib1b2b3 (5.18)

Γ2 = 1 [Γ, bj ] = 0 [Γ, Hm] = 0 {Γ, P} = 0 (5.19)

The emergent Majorana operator commutes with the Hamiltonian, and hence there

is an additional symmetry present, as it anti-commutes with the parity operator and

hence it shifts among the parity states. Both the P and Γ operators commute with

Hamiltonian but anti-commute with each other due to which there is doubling of the

spectrum. The presence of this extra symmetry leads to the doubled spectrum. This

doubling is different from Kramer’s doubling[10] because no time reversal symmetry

is needed. In the basis in which P is diagonal with ±1 eigenvalues, the Γ operator

takes the states into degenerate eigenstates with eigenvalues ∓1.

The doubled spectrum of the Kitaev chain Hamiltonian comes from this algebraic

structure which leads to extra symmetries. This algebraic structure is non-perturbative,

and hence is robust to perturbations as long as they preserve the discrete symmetry.

This algebraic structure survives the interactions also, though there can be dressing

of the Majorana operators. So these properties are present in the Kitaev chain with

interactions well. Γ operator can be defined for the interacting chain as well.

5.4 Topological order and Γ operator

What we have already found is that the complete algebra of Majorana fermions has

extra operators which has been called as emergent Majorana fermions and repre-

sented by Γ operators. Emergent Majorana fermions have all the properties of the

Majorana mode operators, and in fact, they are more robust to the effects of the envi-

ronment. That is why it has been proposed to use them for quantum computing[11].
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Due to the robustness of emergent Majorana fermions, they have been the focus of

research recently [12][13][14][15] where their robustness to the environment and in-

teractions has been studied in detail. Interesting things about emergent Majorana

fermions is that they survive interactions as well while as Majorana fermions exist

as zero modes of the mean-field(quadratic) Hamiltonians [12][13]. So it is clear that

emergent Majorana fermions have something to do with topological order and in this

section, we are going to make that connection explicit and rigorous. Though topo-

logical order has different definitions, we will use the definition as given in [7]. The

presence of edge modes is a very important signature of topological order. First, we

give a definition of fermionic zero mode, and then we will show how that is related

to Emergent Majorana fermions or the Gamma operator. A fermionic zero mode is

an operator Γ such that

• Commutes with Hamiltonian:[H,Γ] = 0

• anti-commutes with parity:{P,Γ} = 0

• has finite ”normalization” even in the L→ ∞ limit:Γ†Γ = 1.

Now we can easily see that the first two properties are the defining properties of the

Γ operator and hence are satisfied. Γ, like a Majorana operator, squares to unity

and so is always normalized. So our Γ operator satisfies all the properties of the zero

edge mode. We will reformulate the conditions in terms of the emergent Majoranas.

A system is said to be topologically ordered if there exists a zero mode which is

given by an operator Γ which is an emergent Majorana fermion and satisfies the

above properties. Therefore topological order is not just the presence of Majorana

edge modes, rather it is the presence of emergent Majorana fermion that leads to

the topological order in Kitaev chain model.

There are a few things that need to be understood here. Though there is a duality

mapping between the spin model and the Fermion model, the algebra and hence the
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symmetries and observables are not same. On the fermionic side, there is larger

algebra in which there are extra operators which give rise to topological order while

as there are spin analogues of these operators.The Jordan-Wigner transformation

takes local observables to non-local observables, but it cannot give rise to a new

algebra or the gamma operator. The Duality mapping can not find topological

order because all it does is map observables on one side to other observables on

another side.

5.5 Topological order and Yang-Baxter equation

Majorana fermions have been the focus of interest in research in topological quantum

computation because as shown in [16] [18] that Majorana fermions have non-abelian

braid statistics and generate representation of braid group. Kitaev chain realization

of Majorana fermions have given ways to engineer Majorana fermions and there

has already been some progress on that front[19]. It has also been realized[20] that

the Majorana representation of braid group is different than the ones known in the

literature. This representation has been called a type-II representation. Now the

question which has been asked is that is the topological order which arises from

quantum entanglement also related to topological entanglement which arises from

the solutions of Yang-Baxter equation. Majorana fermions give new solutions to

Yang-Baxter equations and hence the new type of topological entanglement. When

there is topological order, we get a representation of braid group and also solutions

to YBE.

Braiding operators arise from a row of Majorana Fermions {γ1, · · · γn} as follows:

Let

σi = (1/
√

2)(1 + γi+1γi).
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Note that if we define

λk = γi+1γi

for i = 1, · · ·n with γn+1 = γ1, then

λ2i = −1

and

λiλj + λjλi = 0

where i 6= j. From this it is easy to see that

σiσi+1σi = σi+1σiσi+1

for all i and that σiσj = σjσi when |i−j| > 2. Thus we have constructed a represen-

tation of the Artin braid group from a row of Majorana fermions. This construction

is due to Ivanov [18] and he notes that

σi = e(π/4)γi+1γi .

In [20] authors make the further observation that if we define

R̆i(θ) = eθγi+1γi ,

Then R̆i(θ) satisfies the full Yang-Baxter equation with rapidity parameter θ. That

is, we have the equation

R̆i(θ1)R̆i+1(θ2)R̆i(θ3) = R̆i+1(θ3)R̆i(θ2)R̆i+1(θ1).

This makes if very clear that R̆i(θ) has physical significance, and suggests examining
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the physical process for a temporal evolution of the unitary operator R̆i(θ).

In fact, following [20], we can construct a Kitaev chain based on the solution R̆i(θ) of

the Yang-Baxter Equation. Let a unitary evolution be governed by R̆i(θ). When θ

in the unitary operator R̆i(θ) is time-dependent, we define a state |ψ(t)〉 by |ψ(t)〉 =

R̆i|ψ(0)〉. With the Schrödinger equation i~ ∂
∂t |ψ(t)〉 = Ĥ(t)|ψ(t)〉 one obtains:

i~ ∂
∂t [R̆i|ψ(0)〉] = Ĥ(t)R̆i|ψ(0)〉. (5.20)

Then the Hamiltonian Ĥi(t) related to the unitary operator R̆i(θ) is obtained by

the formula:

Ĥi(t) = i~∂R̆i

∂t R̆
−1
i . (5.21)

Substituting R̆i(θ) = exp(θγi+1γi) into equation (5.21), we have:

Ĥi(t) = i~θ̇γi+1γi. (5.22)

This Hamiltonian describes the interaction between i-th and (i+ 1)-th sites via the

parameter θ̇. When θ = n × π
4 , the unitary evolution corresponds to the braiding

progress of two nearest Majorana fermion sites in the system as we have described

it above. Here n is an integer and signifies the time of the braiding operation. We

remark that it is interesting to examine this periodicity of the appearance of the

topological phase in the time evolution of this Hamiltonian. For applications, one

may consider processes that let the Hamiltonian take the the system right to one

of these topological points and then this Hamiltonian cuts off. One may also think

of a mode of observation that is tuned in frequency with the appearances of the

topological phase.

In [20] authors also point out that if we only consider the nearest-neighbour

interactions between Majorana Fermions, and extend equation (5.22) to an inhomo-
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geneous chain with 2N sites, the derived model is expressed as:

Ĥ = i~
N∑

k=1

(θ̇1γ2kγ2k−1 + θ̇2γ2k+1γ2k), (5.23)

with θ̇1 and θ̇2 describing odd-even and even-odd pairs, respectively.

They then analyze the above chain model in two cases:

1. θ̇1 > 0, θ̇2 = 0.

In this case, the Hamiltonian is:

Ĥ1 = i~

N∑

k

θ̇1γ2kγ2k−1. (5.24)

The Majorana operators γ2k−1 and γ2k come from the same ordinary fermion

site k, iγ2kγ2k−1 = 2a†kak − 1 (a†k and ak are spinless ordinary fermion opera-

tors). Ĥ1 simply means the total occupancy of ordinary fermions in the chain

and has U(1) symmetry, aj → eiφaj . Specifically, when θ1(t) = π
4 , the unitary

evolution eθ1γ2kγ2k−1 corresponds to the braiding operation of two Majorana

sites from the same k-th ordinary fermion site. The ground state represents the

ordinary fermion occupation number 0. In comparison to 1D Kitaev model,

this Hamiltonian corresponds to the trivial case of Kitaev’s. This Hamiltonian

is described by the intersecting lines above the dashed line, where the inter-

secting lines correspond to interactions. The unitary evolution of the system

e−i
∫
Ĥ1dt stands for the exchange process of odd-even Majorana sites.

2. θ̇1 = 0, θ̇2 > 0.
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In this case, the Hamiltonian is:

Ĥ2 = i~
N∑

k

θ̇2γ2k+1γ2k. (5.25)

This Hamiltonian corresponds to the topological phase of 1D Kitaev model and

has Z2 symmetry, aj → −aj . Here the operators γ1 and γ2N are absent in Ĥ2.

The Hamiltonian has two degenerate ground state, |0〉 and |1〉 = d†|0〉, d† =

e−iϕ/2(γ1 − iγ2N )/2. This mode is the so-called Majorana mode in 1D Kitaev

chain model. When θ2(t) = π
4 , the unitary evolution eθ2γ2k+1γ2k corresponds

to the braiding operation of two Majorana sites γ2k and γ2k+1 from k-th and

(k + 1)-th ordinary fermion sites, respectively.

Thus the Hamiltonian derived from R̆i(θ(t)) corresponding to the braiding of

nearest Majorana fermion sites is exactly the same as the 1D wire proposed by Ki-

taev, and θ̇1 = θ̇2 corresponds to the phase transition point in the “superconducting”

chain. By choosing different time-dependent parameter θ1 and θ2, one finds that the

Hamiltonian Ĥ corresponds to different phases. These observations of Mo-Lin Ge

give physical substance and significance to the Majorana Fermion braiding operators

discovered by Ivanov [18], putting them into a robust context of Hamiltonian evolu-

tion via the simple Yang-Baxterization R̆i(θ) = eθγi+1γi . Yu and Mo-lin Ge[20] make

another observation, that we wish to point out. In [21], Kauffman and Lomonaco

observe that the Bell Basis Change Matrix in the quantum information context is

a solution to the Yang-Baxter equation. Remarkably this solution can be seen as a

4 × 4 matrix representation for the operator R̆i(θ).

This lets one can ask whether there is relation between topological order and

quantum entanglement and braiding [21] which is the case for the Kitaev chain

where non-local Majorana modes are entangled and also braiding.
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The Bell-Basis Matrix BII is given as follows:

BII =
1√
2












1 0 0 1

0 1 1 0

0 −1 1 0

−1 0 0 1












=
1√
2

(
I +M

) (
M2 = −1

)
(5.26)

and

MiMi±1 = −Mi±1Mi, M2 = −I, (5.27)

MiMj = MjMi,

∣
∣i− j

∣
∣ ≥ 2. (5.28)

Remarks. The operators Mi take the place here of the products of Majorana

Fermions γi+1γi in the Ivanov picture of braid group representation in the form

σi = (1/
√

2)(1 + γi+1γi).

This observation of authors in [20] gives a concrete interpretation of these braiding

operators and relates them to a Hamiltonian for the physical system. This goes

beyond the work of Ivanov, who examines the representation on Majoranas obtained

by conjugating by these operators. The Ivanov representation is of order two, while

this representation is of order eight. The reader may wish to compare this remark

with the contents of [22] where we associate Majorana fermions with elementary

periodic processes. These processes can be regarded as prior to the periodic process

associated with the Hamiltonian of Yu and Mo-Lin Ge[20].
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5.5.1 Topological order and topological entanglement

To understand the relation between quantum entanglement in Kitaev chain and

the corresponding topological entanglement which manifests as braid group repre-

sentation,we point out that it is only in the topological phase of the Kitaev chain

braid group representation arises while as in topologically trivial phase there are no

Majorana edge modes and hence no braid representation. To see this relation math-

ematically, we rewrite the Kitaev chain Hamiltonian corresponding to topological

phase.

H = 2it

N−1∑

i=0

γ1,i+1γ2,i (5.29)

and now find out that for Majorana representation as shown by Ivanov we need

the operator of the form 1 + γi+1γi which arises only in topological phase. So

this brings out the relation between topological order and the topological entangle-

ment(braiding).

Using this relation we give a new characterization of topological order. A system

is said to be topological ordered if it also gives a solution to Yang-Baxter equation.

This is true both for Kitaev chain and its parafermion generalization. In both cases,

there are edge modes which give a solution to Yang-Baxter equation.

5.6 Conclusion

In this chapter, we answer the question of how topological order and Landau order

are related in the context of Kitaev p-wave chain. We show that on the fermionic side

there are extra symmetries and particularly we identify γ operator which is needed

to have topological order. The same gamma operator was shown to lead to doubled

spectrum for the Kitaev chain Hamiltonian. It is interesting to note that the γ

operator which we have used to define topological order has same algebraic properties
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as Ψ operator which Fendley has defined. Our construction can be easily generalized

to parafermion case as well. We have also shown how non-locality of Majorana

fermions(quantum entangelemt) is related to topological entangelent which arises

for the solutions of Yang-Baxter equation. Since understanding topological order is

very important not only for the topological quantum computation rather is is also

very important within condensed matter physics where more and more systems are

being discovered which exhibit topological order. In that direction, our work is very

important because it clearly shows how topological order occurs when there are more

symmetries and larger algebra.
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Chapter 6

The interplay of Majorana fermions and

Kondo effect in quantum dots: Flow

equation Renormalization
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6.1 Introduction

Majorana fermions(Majorana zero modes) have recently attracted a lot of atten-

tion in condensed matter physics community due to their special topological prop-

erties which make them a promising candidate for quantum computing. Majo-

rana fermions make topological qubits which can store the information non-locally

and hence are immune to local perturbations. Their topological protection comes

from Z2 parity symmetry. Majorana fermions are Ising anyons and obey non-

abelian statistics. Though it was known that Majorana fermions exist in topological

superconductors[1][2] but after Kitaev[3] introduced a simple Hamiltonian and it

was realized that it could be experimentally realized[4], it gave a boost to the re-

search on Majorana fermions. So the search for Majorana fermions in solid state

systems started. Since as of now there is no conclusive evidence for the topological

superconductivity in nature, it was realized that we could engineer systems which

harbour Majorana fermions. The recent successes in the detection and control of

the Majorana fermions[5][6][7] have created a lot of hope about Majorana fermion

based quantum computing[8]. However, the experimental detection of Majorana

fermions is based on spectroscopic signatures, and there are physical effects which

contribute to the zero-bias spectral peaks including Kondo impurities and disorder.

So the search for unambiguous signatures of Majorana fermions is still on. In [11] it

was proposed that Kondo effect can be used for the detection of Majorana fermions.

Kondo effect is known to have a high level of experimental tunability in quantum

dots. So quantum dot systems offer a very feasible and controllable way for the de-

tection of Majorana fermions.There are other reasons also to consider a setup where
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Majorana fermions are coupled to quantum dots. It was shown in[9][10] that Ma-

jorana fermions tunnel-coupled to conduction leads do not preserve the information

in qubit and also parity time of Majorana fermions can not be determined in those

experiments. They proposed an experimental setup in which Majorana fermions

are coupled to quantum dot which can be coupled to normal lead(s) as well. To

explore the signatures of Majorana fermions in Kondo effect and hence the interplay

between Majorana fermions and Kondo effect, there have been recent theoretical

studies [11][12][13][14]. In [11] poor man’s scaling was applied to study the stability

of Kondo effect. Though they find that Majorana fermions have a drastic effect on

Kondo effect, they have got the same scaling equations as for the standard Kondo

model. In [12] based on numerical renormalization group(NRG) calculations, it has

been found that there is Majorana fermion induced Zeeman field which shifts the

spectral function of one species of fermions and also there is the contribution of

Majorana fermions to differential conductance. In [14] similar results have been

obtained using recursive Greens function method. However, none of these studies

has found a new fixed point arising due to the Majorana fermions. In [13] based

on perturbative renormalization, slave boson mean field theory and density matrix

renormalization group calculations, the authors have come to the conclusion that

in the strong Majorana-Dot coupling regime, physics of the system is governed by

a new fixed point rather than Kondo fixed point. The signatures of the new fixed

point can be found in spin susceptibility, and they find that, quite unlike Kondo fixed

point, spin susceptibility is dependent on gate-voltage(particle-hole asymmetry).

There are still many questions which have not been addressed in these studies.

The existence of a new fixed point needs to be put on more firm analytical and

computational basis and needs to be confirmed by more direct ways than has been

done. Since Kondo effect is associated with the strong coupling fixed point and

hence to capture the effects of Majorana fermions, we need to employ a method
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which can capture the physics in the strong coupling regime where perturbative

renormalization methods can not be relied upon. Similarly, it has been realized that

dynamic spin susceptibility is an important quantity which can be used to capture

the signatures of Majorana fermions. However, a detailed study of this quantity

has not been done. Yet another aspect of the interplay between Majorana fermions

and Kondo effect which needs further exploration is the particle-hole asymmetry.

In the presence of Majorana fermions, particle-hole asymmetry becomes a relevant

perturbation for Kondo physics. Physics is different for the cases when particle-hole

symmetry is present or absent. Motivated by these questions which need detailed

study, we employed flow equation renormalization method to study the interplay

between Majorana fermions and Kondo effect. Flow equation method retains the

full momentum dependence of the coupling constants of the Hamiltonian and is not

restricted to the excitations closer to the Fermi level, as is the case with perturba-

tive renormalization methods like poor man’s scaling. Due to this restriction, many

renormalization processes are not captured. In our present study, flow equation

method has brought out one important difference between the particle-hole sym-

metric and asymmetric cases. In other studies, it has been found that the emergent

Zeeman field which arises due to the Majorana fermions vanishes at particle-hole

symmetry and hence does not contribute to the renormalization of the Kondo cou-

plings. However, in flow equation method studies we have found that even though

the emergent field is zero initially, it emerges again under the renormalization flow

and hence leads to anisotropic Kondo model. So while other studies have found that

Majorana fermions have drastic effects only away from particle-hole symmetry, our

results show that even at the particle-hole symmetric case, Majorana fermions lead

to significant renormalization of Kondo couplings and hence dynamic spin suscep-

tibility also changes. And to see the effect of Majorana fermions on Kondo effect

in quantum dots, there is no need to tune the gate voltage, as has been shown in

134



other works. This is one of the main results of our studies, and it brings out the

new aspects of the renormalization effects of Majorana fermions on Kondo physics

which were not explored in literature and due to which there was an impression that

to see the strong renormalization effects of Majorana fermions, we need to tune the

gate voltage away from particle-hole symmetric point. Flow equation method gives

us access to the renormalization flow of observables and correlation and response

functions. Since spin susceptibility is a key observable which can be used in the

experiment for the unambiguous detection of Majorana fermions, we have done a

detailed study of spin susceptibility both at the particle-hole symmetric point and

away from it. Once again though there were some results about how away from the

particle-hole symmetric point, the emergent Zeeman field will effect the spin suscep-

tibility, a detailed study of the signatures of Majorana fermions in spin susceptibility

was lacking and has been done in this chapter.

The rest of this chapter is organized in following way. First, we consider the

Hamiltonian for the system in which a quantum dot is coupled to a normal lead on

one side and is side-coupled to the topological superconductor. In the long chain

limit, there is only one Majorana fermion in the topological superconductor. We

calculate the effective Hamiltonian, Majorana-Kondo model, which has both Kondo

interaction and terms arising from the coupling to Majorana fermion. To find the

stability of Kondo fixed point in the presence of Majorana fermions, we calculate

the flow equations for the couplings constants of the Majorana-Kondo model. We

solve the flow equations numerically. Then we calculate the flow equations of Kondo

spin observable and solving the flow equations numerically, we calculate dynamic

spin susceptibility, and we find clear signatures of Majorana fermions in this key

observable quantity. Once again we explore both the cases, with particle-hole sym-

metry being present and absent. Finally, we summarize our conclusions and discuss

the interplay between Majorana fermions and Kondo effect and hence point to the
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unambiguous ways for the detection of Majorana fermions.

6.2 Hamiltonian for Normal Lead-Quantum Dot-Topological

Superconductor System

We consider a set-up in which a quantum dot is connected to a topological supercon-

ductor on one side and to a normal lead on another side. Topological superconductor

is an experimental realization of Kitaev chain model and hence has two Majorana

fermions on the edges of the chain. We work in the long chain limit and couple only

one of the Majorana fermions to the quantum dot. The Hamiltonian for this system

is:

H =
∑

kσ

ǫkc
†
kσckσ +

∑

σ

ǫdd
†
σdσ + Und↑nd↓ + t

∑

kσ

(c†kσdσ + h.c.) +
∑

σ

iλσγ(dσ + d†σ)

(6.1)

The first four terms constitute the Anderson impurity model for quantum dot con-

nected to a normal lead. The last term represents the coupling of Majorana fermion

with quantum dot electron, λ being the coupling strength. We have taken general

coupling, but later on, we will see that Majorana fermion gets coupled to only one

species of electrons. To get an insight into the effect of Majorana fermions on the

dynamics of our system, we first consider the case when Majorana fermions are

coupled to quantum dot only[9]. The Hamiltonian for this system is:

H = HD +
i

2
γ1γ2 + i

∑

σ

λσγ(dσ + d†σ) (6.2)

Where HD is the Hamiltonian for the quantum dot which is actually the impurity

part of the Anderson impurity model. For the case λ = 0, all the terms commute

among themselves and hence can be diagonalized. We denote the eigenstates of the

Hamiltonian as | ndnf 〉 where nf is the number operator for the fermionic state
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corresponding to Majorana fermion. In the absence of the Majorana fermion, local

Hilbert space of the quantum dot is four dimensional corresponding to the empty,

singly occupied(up and down) and doubly occupied states. But due to the parity

conservation in the presence of Majorana fermions, Majorana-dot Hamiltonian will

be block-diagonal where the two blocks refer to the even and odd parity sectors.

Since number of their fermions is not conserved, it is only the parity which is a good

quantum number for this system. The tunnelling part of the Hamiltonian connects

even and odd parity sectors by changing the occupation by ∓1. We have assumed

the long chain limit of topological superconductor in which case the two Majorana

edge modes are degenerate, and this degeneracy breaks for the case of finite chain

and the Majorana edge modes have actually finite energy. Like Anderson impurity

model, our Hamiltonian has many parameter regimes but to study the interplay

between Majorana fermions and Kondo effect; we need to project our Hamiltonian

into its Kondo regime. We will use the projection operator method to calculate the

effective Hamiltonian in the Kondo regime of our model. The details of the projection

operator method have been given in chapter 3 where it was used to calculate the

effective Hamiltonian for another extended version of Anderson impurity model.

Effective Hamiltonian in singly occupied space is given by

Heff = H11 +H10
1

E −H00
H01 +H12

1

E −H22
H21 (6.3)

To get the effective Hamiltonian we need to calculate the projected Hamiltonian

terms H12 and H10. Since there are only two tunneling terms so only these will

contribute to off-diagonal part of the effective Hamiltonian.

H12 =
∑

σ

(tc†kσ + iλσγ)dσndσ̄ H21 = H†
12 (6.4)
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H01 =
∑

σ

(tc†kσ + iλσγ)dσ(1 − ndσ̄) H10 = H†
01 (6.5)

To calculate the effective Hamiltonian, we need to evaluate following two terms.

H12
1

E −H22
H21

=
∑

σ

tc†kσdσndσ̄
1

E −H22

∑

k′σ′
td†σ′ck′σ′ndσ̄′

+
∑

kσ

tc†kσdσndσ̄
1

E −H22

∑

k′σ′
iλσ′γd†σ′ck′σ′ndσ̄′

+
∑

kσ

iλσγdσndσ̄
1

E −H22

∑

k′σ′
itσ′d†σ′ck′σ′ndσ̄′

+
∑

kσ

iλσγdσndσ̄
1

E −H22

∑

k′σ′
iλσ′d†σ′ndσ̄′

(6.6)

H10
1

E −H00
H01

=
∑

kσ

∑

k′σ′
td†σckσ(1 − ndσ̄)

1

E −H00
tc†k′σ′dσ′(1 − ndσ̄′)

+
∑

kσ

∑

k′σ′
td†σckσ(1 − ndσ̄)

1

E −H00
iλσ′γdσ′(1 − ndσ̄′)

+
∑

kσ

∑

k′σ′
iλσγd

†
σckσ(1 − ndσ̄)

1

E −H00
tc†k′σ′dσ′(1 − ndσ̄′)

+
∑

kσ

∑

k′σ′
iλσγd

†
σckσ(1 − ndσ̄)

1

E −H00
iλσ′γdσ′(1 − ndσ̄′)

(6.7)
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Using the Abrikosov’s fermion representation of spin operators, we can write the

effective Hamiltonian as(also calculated in[12][13]):

Heff =
∑

kk′
J(k, k′)S.skk′ − hSz +

∑

k

J1(k)iγ(ck↑ + c†k↑)+

∑

k

J2(k)iγ(ck↑ + c†k↑)S
z +

∑

k

J3(k)iγ(c†k↓S
+ + ck↓S

−) (6.8)

where J(k, k′) = t2ζ1+, h = λ2ζ−, J1 = tλζ−, J2 = J3 = tλζ2+.

ζ1+ =
1

ǫd + U − ǫk
+

1

ǫk − ǫd

+
1

ǫd + U − ǫk′
+

1

ǫk′ − ǫd
(6.9)

ζ2+ =
1

ǫd + U − ǫk
+

1

ǫk − ǫd
(6.10)

ζ− =
1

ǫd + U − ǫm
− 1

ǫm − ǫd
(6.11)

6.2.1 Majorana-Kondo Model

The effective Hamiltonian that we have obtained has terms arising from the Quan-

tum Dot-Majorana coupling. We call this model Majorana-Kondo model (MKM).

Heff =
∑

kσ

ǫkc
†
kσckσ + Jk

∑

kk′
S.skk′

︸ ︷︷ ︸

Kondo model

− hzS
z

︸ ︷︷ ︸

Zeeman term

+
∑

k

J1(iγ)(ck↑ + c†k↑)

︸ ︷︷ ︸

Andreev term

+

∑

k

J2(iγ)(ck↑ + c†k↑)S
z +

∑

k

J3(iλ)γ(c†k↓S
+ + ck↓S

−)

In Majorana-Kondo model there are four other terms in addition to the standard

Kondo interaction term. 1. Zeeman term which has Majorana induced Zeeman field.

2. Andreev Scattering term. Since there is no direct tunneling between lead and

Majorana so this term arises due to the virtual charge fluctuations. 3. Then there are

two more terms in which impurity spin couples both to Majorana and lead electrons.
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To get insight into last two terms it is helpful to consider Majorana-Kondo model

in particle-hole symmetric limit. The particle-hole symmetric case gives an insight

into the dynamics of Majorana fermion and also about the competition between

Majorana and Kondo physics. In this case ζ− = 0 and hence there is no Zeeman

field and Andreev scattering at the effective Hamiltonian level which has only two

Majorana terms. We will ignore the Kondo term for now and study the Majorana

terms alone.

H = iJ3

(

(c0↑ + c†0↑)γS
z + (c†0↓S

+ + c0↓S
−)γ

)

(6.12)

We can switch to Majorana fermion representation for lead electrons as well.

c0↑ + c†0↑ = ηz (6.13)

c0↓ + c†0↓ = ηx (6.14)

i(c†0↓ − c0↓) = ηy (6.15)

In Majorana representation Hamiltonian takes the following form:

H = iJ3
∑

a

γηaS
a a ∈ (x, y, z) (6.16)

This Hamiltonian has not only particle-hole symmetry but also an emergent time

reversal due to which 〈S〉 = 0 and hence there are impurity spin fluctuations. So

at particle-hole symmetric point, there is no impurity spin polarization due to the

emergent time reversal symmetry. Impurity spin gets entangled with the parity of

the lead electrons which can be seen from Majorana representation of Hamiltonian.

Since there are two Majorana fermions present for each spin direction hence, there

are four fermion states which are present, but due to the parity constraint, only

linear combinations of these states are eigenstates of the Hamiltonian. Impurity
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spin couples with these two states of the lead electrons. Four states are: | 00〉, |

11〉, | 10〉, | 01〉 . Parity states: | even〉 =| 00〉+ | 11〉, | odd〉 =| 10〉+ | 01〉.

Particle-hole asymmetry is not relevant perturbation for Kondo physics (model)

while it is a relevant perturbation for Majorana physics. In the case of Kondo

model(zero Majorana coupling) detuning of the gate voltage away from particle-

hole symmetric point does not change impurity magnetization while in presence of

Majorana coupling impurity magnetization is different for particle-hole symmetric

and asymmetric case. So impurity susceptibility has the signatures of Majorana

physics.

6.3 Flow equations for Majorana-Kondo Model

In this section, we will apply the flow equation renormalization group method to

Majorana-Kondo model. We will calculate the flow equations for the parameters

of the model. In chapter 2 we have given the formalism of this method and cal-

culated the flow equations for Kondo model. We have seen that Kondo couplings

show divergence which is one important signature of Kondo effect. In the case of

Majorana-Kondo model, our interest is to explore the interplay between the Kondo

effect and Majorana fermions, so we will find out what happens to Kondo diver-

gence(scale) in the presence of Majorana fermions. We will increase the QD-TSC

coupling λ and find out whether Kondo effect survives in the strong λ regime. To

calculate the flow equation for our model, we first need to calculate the generator.

141



Generator for the flow equations for Majorana-Kondo model is given below:

η =
1

2

∑

pq

(ǫp − ǫq)(J
↑(p, q) : c†p↑cq↑ : −J↓(p, q) : c†p↓cq↓ :)Sz

+
1

2

∑

pq

(ǫp − ǫq + h)J⊥(p, q)(: c†p↑cq↓ : S−− : c†q↓cp↑ : S+)

+
∑

p

ǫpJ1(p)(iγ)(c†p↑ − cp↑) + ǫpJ2(p)(iγ)(c†p↑ − cp↑)S
z

+
∑

p

(ǫp + h)J3(p)(iγ)(c†p↓S
† − cp↓S−) (6.17)

η = η
‖
K + η⊥K + η1M + η2M + η3M (6.18)

In equation 6.18 flow equation generator has been written as sum of generators

corresponding to different terms in the interaction of the Hamiltonian. To calculate

the flow equations we need to evaluate the commutators of the generators with the

full Hamiltonian. These commutators have been evaluated in Appendix A. Putting

all the commutators together and comparing with the original Hamiltonian we obtain

the flow equations for the Majorana-Kondo Hamiltonian.

For spin-up Kondo coupling, the flow equation is

dJ↑(p, q)
dl

= − (ǫp − ǫq)
2J↑(p, q)+

1

2

∑

s

(

2(ǫs − h) − (ǫp + ǫq))J
⊥(p, s)J⊥(q, s)(1 − 2n(s)

)

(6.19)

Similarly for spin down Kondo Coupling, flow equation is

dJ↓(p, q)
dl

= − (ǫp − ǫq)
2J↓(p, q)+

1

2

∑

s

(

2(ǫs + h) − (ǫp + ǫq))J
⊥(s, p)J⊥(s, q)(1 − 2n(s)

)

(6.20)
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Flow equation for transverse Kondo coupling is

dJ⊥(p, q)

dl
= − (ǫp − ǫq + h)2J⊥(p, q)+

1

4

∑

s

(1 − 2nf (s))
[

(2ǫs − (ǫp + ǫq) + h)J⊥(s, q)J↑(p, s))

+ (2ǫs − (ǫp + ǫq) − h)(J⊥(p, s))J↓(q, s))
]

(6.21)

Fot the Majorana induced Zeeman field, flow equation has contributions both from

Kondo interaction as well as Majorana coupling terms.

dh

dl
=

1

2

∑

pq

(ǫp − ǫq + h)(n(p) + n(q) − 2n(p)n(q))(J2
⊥(p, q))+

(ǫp + h)2J2
3 (1 − 2n(p)) (6.22)

Flow equation for Andreev scattering term is

dJ1(p)

dl
= − ǫpJ1(p) +

1

4

∑

q

(ǫp − ǫq)J
↑(p, q)J2(q) +

1

2

∑

q

(ǫp − ǫq + h)J3(q)J
⊥(p, q)

− 1

2

∑

q

(ǫq + h)J3(q)J
⊥(p, q)) − 1

4

∑

q

ǫqJ2(q)J
↑(p, q) (6.23)

Flow equation for Majorana couplings J2 is:

dJ2(p)

dl
= − ǫpJ2(p) +

∑

q

(ǫp − ǫq)J
↑(p, q)J1(q) −

∑

q

ǫqJ1(q)J
↑(p, q)

−
∑

q

(ǫp − ǫq + h)J3(q)J
⊥(p, q)(1 − 2n(q))

+
∑

q

(ǫq + h)J3(q)J
⊥(p, q)(1 − 2n(q)) (6.24)
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Flow equation for Majorana coupling J3 is:

dJ3(p)

dl
= − ǫpJ3(p) −

1

2

∑

q

(ǫp − ǫq)(1 − 2n(q))(J↓(p, q)J3(q)

−
∑

q

(ǫq − ǫp + h)J⊥(q, p)J1(q)

+
1

2

∑

q

(ǫq − ǫp + h)J⊥(q, p)J2(q)(1 − 2n(q))+

−
∑

q

ǫqJ1(q)J
⊥(p, q) − 1

2

∑

q

ǫqJ2(q)J
⊥(q, p)(1 − 2n(q))

− 1

2

∑

q

(ǫq + h)J3(q)J
↓(p, q)(1 − 2n(q)) (6.25)

6.3.1 Numerical Solution of Flow Equations

As we have seen in chapter 2 where we have solved flow equations for Kondo model,

flow equations need to be solved numerically because they are non-linear coupled

differential equations and analytical solution can be obtained only in some special

limits like infrared limit where momentum dependence of coupling constants can

be dropped off. In case of Majorana-Kondo model, since there is larger number of

coupling constants so the system of differential equations becomes larger and even

more coupled which increases the computational complexity of the problem. Also

there are more energy scales in addition to the Kondo scale. Due to the interplay

of various energy scales present in the system flow equations generally become stiff.

For the numerical solution of the flow equation of Majorana-Kondo model we have

taken conduction bath to have flat density of states. Conduction band has been

discretized and typically we have kept 200 energy states and since number of flow

equations to be solved scales as O(N2) where N is the number of states kept in

conduction band, the dimension of systems of flow equations is of the order 104.

The computational expense however scales as ON3. We have used DOPRI5 which

is the fifth order Runga-Kutta method for solving ODEs. The method has proved
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stable for the flow equations except that due to the stiffness of the flow equations we

often had to tweak the discretization of the flow parameter l grid so that the lowest

energy scale gets resolved.

Particle-hole asymmetry is not a relevant perturbation for Kondo model and hence in

chapter 2 we solved the Kondo model without incorporating it. However as shown

above for Majorana-Kondo model, particle-hole asymmetry becomes relevant and

hence we need to solve the flow equations separately for the two cases. We will first

solve the flow equations for particle-hole symmetric case and then for the general

case.

6.3.2 Particle-hole symmetric Case

At particle-hole symmetric point, Andreev scattering term vanishes because ζ− = 0.

Similarly emergent Zeeman field is also zero initially. However, as can been seen from

the flow equation for the Zeeman field, it grows under unitary flow and hence needs

to be taken into consideration even at particle-hole symmetric case. This is one of

the main differences between our studies and earlier studies in which they have found

that Zeeman field does not contribute to renormalization at particle-hole symmetric

case because it vanishes at the effective Hamiltonian level. Using the flow equation

method, we have been able to capture the effect of emergent Zeeman field on Kondo

fixed point even at particle-hole symmetric case where perturbative renormalization

have missed it because Zeeman field does not have a scaling equation and hence

does not grow. Consequently the scaling equations for the Kondo couplings which

were obtained using poor man’s scaling[11] or other perturbative renormalization

method[13], are same as that of isotropic Kondo model. So the effect of Majorana

fermions on Kondo effect and the consequent emhancement of Kondo scale even at

particle-hole symmetric point is one of the main results of our work. It shows that

the effect of Majorana fermions of Kondo effect is stronger than has been anticipated
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by earlier works. Later on we will see that the signatures of Majorana fermions are

present in spin susceptibility even at partice-hole symmetric case.

Now we will present the numerical solutions of the flow equations. In Figure 6.1,
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Figure 6.1: In left panel, longitudinal Kondo coupling is plotted versus flow parameter. In
right panel, transverse Kondo coupling is plotted versus flow parameter. Other
parameters are: U= 6.0, ǫd= -3.0, t= 3.0.

Kondo couplings, both longitudinal and transverse have been plotted versus flow pa-

rameter. First thing to be noted is that longitudinal and transverse Kondo couplings

get renormalized in an anisotropic way due to Majorana fermions. This behaviour

was not captured by earlier studies[11][13][14]. Since there is Majorana fermion

induced Zeeman field which is contributing to the renormalization flow of Kondo

couplings, we find that the Kondo divergence is being cut off as shown in Figure 6.1.

As λ increases, divergence gets cut off earlier in the renormalization flow which is

tantamount to the change in Kondo scale. Kondo scale has been calculated from

longitudinal Kondo coupling using the expression g = 1
1
g0

−ln(
√

lc√
l0
)
. g is dimensionless

Kondo coupling and lc is the value of the flow parameter where Kondo divergence

occurs. We have also used the relation D = 1√
l

which relates energy scale D with

flow parameter l. We have plotted Kondo scale versus λ in Figure 6.2, and as can be

seen, Kondo scale increases in the presence of Majorana fermion. Similar enhance-
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ment of Kondo scale has been found in [14] where recursive Green’s function method

has been used. Through curve fitting we found that Tk(λ) = Tk(λ = 0) +Aλθ where

θ ∼ 0.15. So the dependence of Kondo scale on QD-TSC coupling λ is sub-linear.

In Figure 6.2(left panel) flow of the emergent Zeeman field has been plotted. It is

interesting to note that Zeeman field is zero until certain scale which is roughly same

scale at which longitudinal Kondo coupling gets cut off, and Zeeman field makes an

abrupt jump. Even more interesting is the fact that smaller is the value of λ, the

higher is the value to which Zeeman field jumps to. Zeeman field finally saturates

to a universal value at which all curves collapse.

The plots corresponding to λ = 0+ in Figure 6.1 also show the Kondo divergence

gets cut off. However, this is known in case of anisotropic Kondo model, h(l) ≡ 0,

J↑(p, q) = J↓(p, q) and J⊥(p, q) = J⊥(q, p) are fulfilled during the flow for the

case h(l = 0) = 0. The relations J↑(p, q) = J↑(q, p) and J↓(p, q) = J↓(q, p) are

always fulfilled due to hermiticity[16]. So what we see in these plots shows that

flow equations have essential instability to particle-hole asymmetry. The slightest

asymmetry makes the Zeeman field to grow. Since in numerical solutions of flow

equations the condition J⊥(p, q) = J⊥(q, p) which holds for zero initial field, is

maintained only within the machine error which propagates along the flow and

leads to the flow of the field as well. That is what we see in the plots for λ = 0. This

result has physical implications for the experimental situations where particle-hole

asymmetry is generic, and consequently Majorana physics is going to dominate over

Kondo physics even for weaker QD-TSC coupling. This is one of our important

observations which gives the insight into the interplay between Majorana fermions

and Kondo physics.
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Figure 6.2: In the left panel, flow of Zeeman field has been plotted. In the right panel,
Kondo scale has been plotted as a function of λ, coupling of quantum Dot to
the topological superconductor. Other parameters are same as given in Figure
6.1

6.3.3 Particle-hole asymmetric case

Away from particle-hole symmetry, both Zeeman field and Andreev scattering terms

are present in the Majorana-Kondo model and hence both contribute to the flow

equations of Kondo couplings. In Figure 6.3 longitudinal (left panel) and trans-

verse(right panel), Kondo couplings for asymmetric Majorana-Kondo model are plot-

ted versus the flow parameter. We once again see that Kondo divergence gets cut off.

However, what needs to be noted is that as compared to the similar plots for particle-

hole symmetric case(Figure 6.1), Kondo divergence gets cut off at different values of

flow parameter for the same values of λ which signifies the change in Kondo scale.

This is because in asymmetric case Andreev scattering also contributes to the renor-

malization of Kondo couplings. Earlier renormalization studies[11][13] have explored

the particle-hole asymmetric case of Majorana-Kondo model and found how Majo-

rana fermions renormalize Kondo couplings. However what was not found in those

studies is that Majorana fermions renormalize Kondo couplings in anisotropic man-

ner. The conclusion that Kondo fixed point becomes unstable to Majorana fermion

coupling was arrived by looking at renormalization flow of Majorana fermions rather
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Figure 6.3: Flow of the Kondo couplings for the asymmetric case of Majorana-Kondo model:
In the left panel, longitudinal Kondo coupling is plotted versus the flow param-
eter. In the right panel, transverse Kondo coupling versus flow parameter is
plotted. Other parameters are: U = 6.0 , ǫd = -3.1, t= 3.0

than directly from the scaling equations of Kondo couplings which were found to

be same as for the isotropic Kondo model. In our studies, we have found the effect

of Majorana fermion induced couplings directly from the flow equations of Kondo

couplings, and as shown in Figure 6.3 we see clearly how Kondo divergence gets cut

off, and hence Kondo scale also changes. Kondo scale for the asymmetric case is

plotted in Figure 6.4(right panel). Kondo scale has been extracted by following the

procedure of the particle-hole symmetric case. Kondo scale gets enhanced, but the

dependence of Kondo scale on λ is linear in this case which needs to be compared

with the symmetric case where we have found sub-linear dependence. Similarly, the

behaviour of emergent Zeeman field, shown in Figure 6.4(right panel) is also different

than the symmetric case. However, Zeeman field once again makes an abrupt jump

and the higher values to which it jumps are for lower values of λ. Again the value of

flow parameter at which Zeeman field jumps is roughly same as the one where the

divergence of longitudinal Kondo coupling gets cut off.
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Figure 6.4: Plots for asymmetric Majorana-Kondo model: In the left panel, the flow of the
emergent Zeeman field has been plotted. In right panel, Kondo scale has been
plotted as function of λ, coupling of quantum dot to topological superconductor,
for different asymmetry parameters.

6.4 Flow equations for Kondo impurity spin

One main difference between flow equations and conventional renormalization meth-

ods is that in flow equations observables also undergo unitary flow and hence renor-

malization. In the case of fermionic systems, fermion operators get transformed

under unitary flow. The new fermion operators are then written as operator prod-

uct expansion of fermion operators. In the case of Kondo model, the spin operator

gets transformed under unitary flow. To check the consistency, there are many

checks which one can make using the properties of the unitary flow. Unitary flow

keeps the operator algebra(commutation/anti-commutation) invariant. There are

other sum rules also which can be used to check the consistency of the operator

product expansion. There are physical plausibility arguments as well which can be

used to make sense of these operator product expansions. In the case of Kondo

model, it is known that as renormalization flow proceeds to strong coupling fixed

point, the magnetic moment of Kondo impurity gets quenched. This physical pro-

cess has an algebraic mapping in flow equation method as shown below. Using the

transformed observables, we can calculate correlation and response functions for a
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given Hamiltonian. In chapter 2 dynamic spin susceptibility was obtained from the

numerical solution of the flow equations for the isotropic Kondo model. In this sec-

tion, we will calculate flow equations for the Kondo impurity spin and upon solving

the flow equations, obtain the dynamic spin susceptibility for the Majorana-Kondo

model. This quantity will give us access to the signatures of Majorana fermions

which can be detected easily in an experiment. Hence dynamic spin susceptibility is

a very important quantity to understand the interplay between Majorana fermions

and Kondo effect and hence for the detection of Majorana fermions.

We make following ansatz for the spin operator Sz:

Sz(l) = hz(l)Sz +
M(l)

2
+
∑

pq

γpq(l)(: c
†
p↑cq↓ : S−+ : c†q↓cp↑ : S+)

+
∑

p

ζp(l)(iγ)(cp↑ + c†p↑)S
z) +

∑

p

ηp(l)(γ(c+p↓S
+ + cp↓S

−) (6.26)

where hz(l = 0) = 1 and initial values of all other parameters are zero. For the

Kondo model, the ansatz for the spin operator[15] is motivated by the fact that

Kondo effect quenches the magnetic moment. So for isotropic Kondo model, the

decomposition of the spin operator has only two terms referring to the Kondo spin

and the Kondo interaction. We have used this ansatz in chapter 2 of this thesis.

For the anisotropic case, since there is Zeeman field and hence magnetization also,

so the ansatz for spin observable needs to include these terms as well[16]. For the

case of Majorana-Kondo model, there are Majorana fermion induced couplings due

to which Kondo impurity spin couples to Majorana fermion also and hence these

interactions need to be included in the ansatz. Andreev scattering term does not

couple to Kondo impurity spi and hence has not been included in the ansatz.

To calculate the flow equation of the spin operator , we will use one-loop generator
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as given in equation 6.17. .

dSz

dl
= [η(l), Sz(l)] (6.27)

The commutators are evaluated in Appendix A. In the following we will present the

flow equations for the various parameters in Equation 6.26.

Flow equation for magnetization is:

dM

dl
=
∑

pq

(n(p) − n(q))(ǫp − ǫq + h)J⊥(p, q)γpq(l)

+
∑

p

(ǫp + h)ηp(l)J3(p) (6.28)

Flow equation for hz co-efficient is:

dhz

dl
= −

∑

pq

(ǫp − ǫq + h)(J⊥(p, q)γpq)(n(p) + n(q) − 2n(p)n(q))

+
∑

p

(ǫp + h)ηp(l)J3(p)(1 − 2n(p)) (6.29)

Flow equation for γ co-efficient is:

dγpq
dl

=
1

2

∑

r

(

J↑(p, r)(ǫr − ǫp)γrq(l) + J↓(r, q)(ǫr − ǫq)γpr(l)
)

(1 − 2n(q))

+
1

2
(ǫp − ǫq + h)J⊥(p, q)hz(l) (6.30)

Flow equation for ζ co-efficient is:

dζp
dl

=
∑

q

(ǫq + h)J3(q)γpq(1 − 2n(q)) (6.31)

−
∑

q

(ǫp − ǫq + h)J⊥(p, q)ηq(1 − 2n(q)) (6.32)
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Flow equation for η co-efficient is:

dηp(l)

dl
= − (ǫp + h)J3(p)h

z(l) −
∑

q

ǫqJ1(q)γqp(l) (6.33)

− 1

2

∑

q

ǫqJ2(q)γqp(l)(1 − 2n(q))

+
1

2

∑

q

(ǫp − ǫq + h)J⊥(p, q)ζq(l)(1 − 2n(q)) (6.34)

− 1

2

∑

q

(ǫp − ǫq)J
↓(p, q)ηq(1 − 2n(q)) (6.35)

6.4.1 Numerical solution

In this section we will solve the flow equations for the spin operator and calculate

the dynamic spin susceptibility. The formalism for the calculation of correlation and

response functions is given in chapter 2. For the Majorana-Kondo model, dynamical

spin susceptibility is given by:

χ(ω) =
π(1 − sgn(h̃))

2

∑

p

(

γ̃2
ǫp,ǫp+ω+h̃

nf (ǫp)(1 − nf (ǫp + ω + h̃))

− γ̃2
ǫp,ǫp+ω+h̃

nf (ǫp)(1 − nf (ǫp − ω + h̃))
)

+
π(1 + sgn(h̃))

2

∑

p

(

γ̃2
ǫp,ǫp+ω+h̃

nf (ǫp + ω + h̃)(1 − nf (ǫp))

− γ̃2
ǫp,ǫp+ω+h̃

(1 − nf (ǫp))(nf (ǫp − ω + h̃))
)

(6.36)

It is the imaginary part of the Fourier transformed response function[16]. To com-

pute dynamic susceptibility we need the solve the flow equations for the spin ob-

servable numerically. Once again the flow equations need to be solved separately for

the particle-hole symmetric and asymmetric cases.
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Figure 6.5: Dynamical spin susceptibility plots for Majorana-Kondo model at particle-hole
symmetric point: In left panel, spin susceptibility has been plotted on frequency
axis for different J2 coupling constants. In right panel, spin susceptibility has
been plotted for increasing values of Zeeman field.

6.4.2 Particle-hole symmetric case

To capture the effects of Majorana fermions in spin susceptibility we have plotted

dynamic spin susceptibility on frequency axis in Figure 6.5 . In left panel, we see

the effect of increasing J2 Majorana coupling. As we increase J2, spin susceptibility

increases because as we have shown earlier in section 6.2.1 that coupling to the

topological superconductor lets Kondo spin to interact with Majorana fermion which

competes with Kondo effect which arises from the interaction between Kondo spin

and lead electrons consequently Kondo effect weakenes. Similarly, as we increase

Zeeman field, we find that dynamic spin susceptibility gets enhanced. What is very

interesting to note is that very small values of Zeeman field lead to quite significant

effects on spin susceptibility which shows the effect of Majorana fermions on Kondo

effect is quite strong.

6.4.3 Particle-Hole Asymmetric Case

Away from the particle-hole symmetry, we expect that the effects of Majorana

fermions on spin susceptibility will be even stronger because Andreev scattering
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Figure 6.6: Dynamic spin susceptibility for asymmetric Majorana-Kondo model: In the left
panel, spin susceptibility has been plotted on the frequency axis for increasing
values of J2 coupling. In right panel, spin susceptibility has been plotted for
increasing values of Zeeman field.

term is also present at the effective Hamiltonian level and contributes to the flow

equations of the spin operator as well. As can be seen from the Figure 6.6, spin

susceptibility has huge effects even for smaller values of J2(left panel) and Zeeman

field(right panel). These values are the order of magnitude smaller than the ones

shown in plots in Figure 6.5 for the particle-hole symmetric case.

6.5 Conclusion

In this chapter, we have done a detailed study of the interplay between Majorana

fermions and Kondo effects considering an experimental set-up in which a quantum

dot is coupled to a normal lead on one side and tunnel-coupled to a topological super-

conductor, which itself is an experimental realization of Kitaev p-wave chain model.

Our motivation comes from the recent surge in the research on Majorana fermions as

being the promising candidates for topological quantum computing. Hence searching

for umambiguous ways of their detection has assumed utmost importance. Kondo

effect in quantum dots offers a lot of tunability and hence very feasible way to detect

Majorana fermions. However, to single out the signatures of Majorana fermions in
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Kondo physics, needs careful and detailed study. There are questions which need to

be addressed to have conclusive evidence for the signatures of Majorana fermions.

Firstly Kondo effect is associated with the strong coupling fixed point of Anderson

impurity model and is very stable to perturbations and hence to show that Majo-

rana fermions make Kondo fixed point unstable and lead to new fixed point, one

has to take recourse to methods which can be relied upon in the strong coupling

regime of the model. In our work, we have employed flow equation method which

has already been applied to Kondo model to study its strong coupling physics both

in equilibrium and non-equilibrium. Based on this method we did the renormaliza-

tion group study of the Majorana-Kondo model which is the effective Hamiltonian

in the strong coupling regime of the Hamiltonian for NL-QD-TSC system. We cal-

culated the flow equations for the coupling constants of the Majorana-Kondo model,

and after solving them numerically, we clearly found how Majorana fermion induced

terms, cut off Kondo divergence and also change the Kondo scale. One important

signature of Majorana fermions in Kondo physics is that they make particle-hole

asymmetry relevant for Kondo effect. Away from the particle-hole symmetric point,

there is a Majorana fermion induced Zeeman field and also Andreev scattering term

, both of which vanish at particle-hole symmetry. Hence the renormalization effects

of Kondo couplings in both cases are different. One of our novel results of our works

is that though Andreev scattering vanishes at particle-hole symmetric point and

hence does not contribute to the renormalization flow of the Kondo couplings, the

same is not true for the Zeeman field which initially is zero, but it gets generated

during the flow and hence contributes to the renormalization of Kondo couplings.

In fact, Zeeman field makes the renormalization flow of the Kondo couplings same

as that of anisotropic Kondo model which is what earlier studies have missed due to

the nature of perturbative renormalization methods. In the presence of Majorana

fermions, particle-hole asymmetry becomes relevant perturbation for Kondo effect
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which is not true for the standard Kondo fixed point for which particle-hole asym-

metry is irrelevant. We explored both particle-hole symmetric and asymmetric cases

and found that Kondo couplings renormalize differently in two cases. Also, Kondo

scale shows a different kind of dependence on QD-TSC coupling parameter. From the

numerical solution of flow equations of Kondo couplings of Majorana-Kondo model,

we have made an important observation that these flow equations have an essential

instability to particle-hole asymmetry due to which Majorana fermions dominate

the physics even in the QD-TSC coupling regime. This observation has physical

implications for the realistic experimental situations where particle-hole asymmetry

being generic and particle-hole symmetric point being a very special point.

Dynamic spin susceptibility is an experimentally accessible quantity. We find

clear signatures of Majorana fermions in this quantity and we propose these sig-

natures can be feasibly found in experiments on quantum dots. Our studies have

confirmed and consolidated the interplay between Majorana fermions and Kondo ef-

fect and hence showed that Kondo effect in quantum dots provides an experimentally

feasible and unambiguous way for the detection of Majorana fermions.
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Chapter 7

Summary

The research work reported in the thesis belongs to the broad area of strongly

correlated electron systems. Kondo physics is the underlying theme of the thesis and

renormalization group method is the main method applied to explore the interplay

of Kondo physics with other quantum fluctuations. The thesis can be divided into

two sections : the first section is about the interplay between Kondo physics, and

valence fluctuations which is explored in chapters 3 and 4 and the other section

is about the interplay between Kondo physics and the topological order which is

explored in chapter 6 and chapter 5 sets the background for that work. Introduction

to the field of strongly correlated electron systems is given in chapter 1 where the

various models are described which include quantum impurity models as well as

Hubbard model. There is also a brief description of dynamical mean field theory

which is used in chapter 4 to study the lattice model for heavy fermion systems. A

detailed discussion of the various renormalization group methods used in the thesis

is given in chapter 2. In this chapter, we will summarise the main results of the

research projects described in chapter 3 to chapter 6. We will also discuss the future

directions of these projects.

In chapter 3 the main goal of the project is to understand the role of valence
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fluctuations on the Kondo fixed point and to find out whether valence fluctuations

can lead to quantum criticality in the lattice case. To capture the effects of the

valence fluctuations, a local, Hubbard repulsive interaction term between conduc-

tion electrons and impurity electrons is added to Anderson impurity model and this

way we get what has been called extended Anderson impurity model (e-SIAM). We

have employed Haldane’s and Jefferson’s perturbative renormalization methods to

e-SIAM and have calculated scaling equations for various parameters of the model.

The scaling equations have been solved both numerically and analytically, and ef-

fects of the valence fluctuations on the Kondo scale have been explored, since this

would yield information about the stability of the Kondo fixed point. We have

found that the Kondo scale gets enhanced due to valence fluctuations. To get the

effective Hamiltonian in the strong coupling regime of e-SIAM, we have carried out

Schrieffer-Wolff transformation and found that the strong coupling physics of the

model is governed by spin-charge Kondo model which has anisotropic charge Kondo

interaction in addition to the spin Kondo interaction. Our scaling equations did not

confirm these results from SWT because our scaling analysis is restricted to infinite

U case due to which the doubly occupied subspace gets decoupled. So, in future, we

would like to explore the finite U case and confirm the co-existence of the spin and

charge Kondo effects together. We are planning to apply flow equation renormal-

ization method and see if the spin-charge Kondo model arises in the flow equations

as well.

In chapter 4 we have explored the lattice version of extended single impurity

Anderson model. The lattice version is called extended Periodic Anderson model.

Once again the motivation here was to explore the role of the valence fluctuations in

the quantum criticality in heavy fermions systems for which the Periodic Anderson

model is the minimal model. We have employed the framework of dynamical mean

field theory(DMFT) in which e-PAM gets mapped to e-SIAM. Hybridization ex-
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pansion continuous time quantum Monte Carlo has been used as quantum impurity

solver. We find that as we increase the Ufc interaction and hence as the valence

fluctuations get enhanced, the occupancy of the f electrons decreases which signifies

that f electron level is getting closer to the Fermi level, in agreement with the scaling

behaviour of the impurity energy level of e-SIAM, as found in the chapter 3. Based

on slave boson mean field theory studies of e-PAM, it has been found that critical

valence fluctuations lead to first order phase transition where the valence suscep-

tibility diverges. We also calculated this quantity and found that at some critical

value of Ufc, valence susceptibility diverges. We also calculated quasiparticle weight

and once again, in agreement with our renormalization calculations of e-SIAM, we

found that quasiparticle weight increases and hence the system moves away from

the strong coupling regime. Though our results suggest that valence fluctuations

can lead to quantum criticality in heavy fermion systems, in future, we would like to

carry out a more detailed study of e-PAM and actually locate the quantum critical

point in the phase diagram. We would also like to see how the valence fluctuations

mediated charge Kondo effect, which we have found in case of e-SIAM, manifests

in case of lattice model and what are the physical implications of the competition

between spin and charge Kondo effects for the heavy fermion systems.

In chapter 5 we have explored two models which are related to each other via

Jordan-Wigner transformation. One model is the transverse field Ising model which

has been studied extensively as a model for the quantum phase transition. Another

model is the Kitaev chain model which has become the celebrated model which ex-

hibits Z2 topological order and has Majorana edge modes. The natural question

which one can ask is that why there is topological order in Kitaev chain model while

there is only Landau symmetry broken order in the Jordan-Wigner dual spin model.

We explore the algebra of the Majorana fermions of the Kitaev chain model, and we

find that these two models do not have the same symmetries. The fermionic model
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has extra symmetries which are important for the topological order. We particularly

identify some symmetry operators which commute with the Hamiltonian and anti-

commute with parity operator and hence lead to the doubling of the spectrum in

Kitaev chain model. We have also explored the implication of these fermionic sym-

metries for the Majorana fermion braid group representations. In future, we would

like to extend our work to parafermion systems and show that same formalism can

be applied there also to explain the topological order in parafermion models. Simi-

larly we would like to extend our formalism to two dimensional model like toric code

model and Kitaev spin model and show that Z2 topological order can be explained

based on our formalism.

In chapter 6 we explore the interplay between Kondo physics and Z2 topologi-

cal order in topological superconductors. The motivation of this study comes from

the recent surge in the interest of Majorana fermions as the promising candidates

for topological quantum computing. So their detection in unambiguous ways and

their stability in realistic situations where interactions are also present becomes

inevitable. In this chapter, we have considered a setup in which quantum dot is

coupled to normal lead on one side and to topological superconductor(TSC) on an-

other side. We calculated the effective Hamiltonian for the system corresponding to

the Kondo regime. The effective Hamiltonian is called Majorana-Kondo model and

has extra terms coming from the coupling to the TSC. Employing the flow equa-

tion renormalization method, we calculated the flow equations for the parameters

of the Majorana-Kondo model. We find that particle-hole asymmetry is the rele-

vant perturbation for the Majorana-Kondo model which is one of the signatures of

the Majorana fermions. It is known from the renormalization group study of the

Kondo model that particle-hole asymmetry is not a relevant perturbation for the

Kondo fixed point. In the Majorana-Kondo model, there is an emergent Zeeman

field which suppresses the transverse spin fluctuations and hence in the strong Ma-
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jorana coupling regime, the physics is governed by Majorana couplings rather than

Kondo coupling. From the numerical solutions of the flow equations of Majorana-

Kondo model, we find that Kondo divergence gets suppressed as we increase the

coupling strength to TSC.

Flow equation renormalization method gives us access to dynamic spin suscepti-

bility, and hence we explored the signatures of Majorana fermions in this quantity.

These signatures can be probed in experiments on quantum dots, and hence our

studies offer another way for the detection of Majorana fermions in quantum dots.

Though we found that Majorana fermions have strong renormalization effects on the

Kondo fixed point, however, we were not able to confirm the existence of Andreev

fixed point which was found in one research group based on perturbative renormal-

ization and other related methods. In future, we would like to do a more detailed

study of other parameter regimes of the model to find out whether flow equations

of Majorana-Kondo model lead to instability of the Kondo fixed point and Andreev

fixed point determines the low energy physics of Majorana-Kondo model.
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Appendix A

Commutators for Flow Equations for Majorana-Kondo

model

In this appendix we have evaluated all the commutators needed to calculate the flow

equations for the coupling constants and spin dynamics of Majorana-Kondo model.

The generator for the Majorana-Kondo model is:

η =
1

2

∑

pq

(ǫp − ǫq)(J
↑(p, q) : c†p↑cq↑ : −J↓(p, q) : c†p↓cq↓ :)Sz+

(ǫp − ǫq + h)J⊥(p, q)(: c†p↑cq↓ : S−− : c†q↓cp↑ : S+)+

ǫpJ1(p)(iγ)(c†p↑ − cp↑) + ǫpJ2(p)(iγ)(c†p↑ − cp↑)S
z+

(ǫp + h)J3(p)(iγ)(c†↓S
† − cp↓S−) (A.1)

For convenience we have divided the generator in following way:

η = η
‖
K + η⊥K + η1M + η2M + η3M (A.2)
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[η
‖
K , H0] = −

∑

pq

(ǫp − ǫq)
2(J↑(p, q) : c†p↑cq↑ − J↓(p, q) : c†p↓cq↓ :)Sz (A.3)

[η⊥K , H0] = −
∑

pq

(ǫp − ǫq + h)2
(

: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+
)

(A.4)

[

η⊥, H
⊥
K

]

=

∑

pq

∑

rs

(2(ǫs − h) − ǫp + ǫq)J⊥(p, s)J⊥(q, s)(1 − 2n(s)) : c†p↑cq↑ : Sz

− (2(ǫs + h) − (ǫp − ǫq))J⊥(s, p)J⊥(r, q)(1 − 2n(r))(: c†p↓cq↓ : Sz)

− (ǫp − ǫq + h)(n(p) + n(q) − 2n(p)n(q))J2
⊥(p, q)Sz) (A.5)

[

η
‖
K ,
∑

k

J1(k)(iγ)(ck↑ + c†k↑)

]

=
∑

pq

(ǫp − ǫq)J
↑(p, q)J1(q)(iγ)(cp↑ + c†p↑)S

z (A.6)

[

η
‖
K ,
∑

k

iJ2(k)(: γck↑ : + : γc†k↑ :)Sz

]

=
1

4

∑

pq

(ǫp − ǫq)J
↑(p, q)J2(q)(iγ)(cp↑ + c†p↑) (A.7)

[

η
‖
K ,
∑

k

J3(k)(iγ)(c+k↓S
† + ck↓S

−
]

= −1

2

∑

pq

(ǫp − ǫq)J
↓(p, q)J3(q)(iγ)(1 − 2n(q)(c†p↓S

† + cp↓S
−) (A.8)

[

η⊥K ,
∑

k

J1(k)(iγ)(ck↑ + c†k↑)

]

= −
∑

pq

(ǫq − ǫp + h)J⊥(q, p)J1(q)(iγ)(cp↓S
− + c†p↓S

+) (A.9)

[

η⊥K ,
∑

k

J2(k)(iγ)(ck↑ + c†k↑)S
z

]

=
1

2

∑

pq

(ǫq − ǫp + h)J⊥(q, p)J2(q)(1 − 2n(q))(iγ)(cp↓S
− + c†p↓S

†) (A.10)
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[

η⊥K ,
∑

k

J3(k)(iγ)c†k↓S
† + ck↓S

−)

]

(A.11)

= −
∑

pq

(ǫp − ǫq + h)J3(q)J
⊥(p, q)(iγ)(c†p↑ + cp↑)S

z(1 − 2n(q))+

+
1

2

∑

pq

(ǫp − ǫq + h)J3(q)J
⊥(p, q)(iγ)(c†p↑ + cp↑) (A.12)

[
∑

p

ǫpJ1(p)(iγ)(c†p↑ − cp↑),
∑

qσ

ǫqc
†
qσcqσ

]

= −
∑

p

J1(p)ǫ
2
p(iγ)(c†p↑ + cp↑) (A.13)

[
∑

p

ǫpJ2(p)(iγ)(c†p↑ − cp↑)S
z,
∑

qσ

ǫqc
†
qσcqσ

]

= −
∑

p

J2(p)ǫ
2
p(iγ)(c†p↑ + cp↑)S

z

(A.14)
[
∑

p

(ǫp + h)J2(p)(iγ)(c†p↓S
+ − cp↓S

−),
∑

qσ

ǫqc
†
qσcqσ

]

= −
∑

p

J2(p)ǫp(ǫ+ h)(iγ)(c†p↓S
+ + cp↓S

−) (A.15)

[
∑

p

(ǫp + h)J2(p)(iγ)(c†p↓S
+ − cp↓S

−),−hSz

]

=
∑

p

J2(p)(ǫp + h)h(iγ)(c†p↓ + cp↓)S
z (A.16)

[
∑

k

J1(k)ǫk(iγ)(c†k↑ − ck↑),
∑

pq

J‖(p, q)c†p↑cp↑S
z

]

= −
∑

pq

ǫpJ1(q)J
↑(p, q)(iγ)(c†p↑ + cp↑)S

z (A.17)

[
∑

k

ǫkJ1(k)(iγ)(c†k↑ − ck↑),
∑

pq

J⊥(p, q)(c†p↑cq↓S
− + c†q↓cp↑S

+

]

= −
∑

pq

J1(q)J
⊥(q, p)ǫq(iγ)(c†p↓S

+ + cp↓S
−) (A.18)
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[
∑

k

ǫkJ2(k)(iγ)(c†k↑ − ck↑)S
z,
∑

pq

J↑(p, q) : c†p↑cq↑ : Sz

]

= −1

4

∑

p

ǫqJ2(q)J
↑(p, q)(iγ)(c†p↑ + cp↑) (A.19)

[
∑

k

ǫkJ1(k)(iγ)(c†k↑ − ck↑,
∑

pq

J⊥(p, q)(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+

]

= −
∑

k

ǫpJ1(p)J
⊥(p, q)(iγ)(cq↓S

− + c†q↓S
+) (A.20)

[
∑

k

ǫkJ2(k)(iγ)(c†k↑ − ck↑)S
z,
∑

pq

J⊥(p, q)(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+)

]

= −1

2

∑

pq

ǫpJ2(p)J
⊥(p, q)(iγ)(c†q↓S

+ + cq↓S
−)(1 − 2n(p)) (A.21)

[
∑

k

(ǫk + h)J2(k)(iγ)(c†k↓S
+ − ck↓S

−),−
∑

pq

J↓(p, q) : c†p↓cq↓ : Sz)

]

= −1

2

∑

pq

(ǫq + h)J2(q)J
↓(p, q)(iγ)(c†p↓S

+ + cp↓S
−)(1 − 2n(q)) (A.22)

[
∑

k

(ǫk + h)J2(k)(iγ)(c†k↓S
+ − ck↓S

−),
∑

pq

J⊥(p, q)(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+

]

=
∑

pq

(ǫq + h)J2(q)J
⊥(p, q)(iγ)(c†p↑ + cp↑)(1 − 2n(q))Sz

− 1

2

∑

pq

(ǫq + h)J2(q)J
⊥(p, q)(iγ)(c†p↑ + cp↑) (A.23)

[
∑

p

(ǫp + h)J2(p)(iγ)(c†p↓S
+ − cp↓S

−),
∑

q

(ǫq + h)J2(q)(iγ)(c†q↓S
+ + cq↓S

−)

]

= 2
∑

pq

(ǫp + h)2J2
2 (p)Sz +

∑

p

(ǫp + h)2J2
2 (p) (A.24)
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A.1 Commutators for the Spin dynamics

[η(l), h(l)Sz] = −
∑

pq

(ǫp − ǫq + h)J⊥(p, q)h(l)(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+)

−
∑

p

(ǫp + h)J3(p)h(l)(iγ)(c†p↓S
† + cp↓S

−) (A.25)

[
∑

r

ǫrJ1(r)(iγ)(c†r↑ − cr↑),
∑

pq

γpq(l)(: c
†
p↑cq↓ : S−+ : c†q↓cp↑ : S+)

]

= −
∑

pr

ǫrJ1(r)γrp(l)(iγ)(c†p↓S
+ + cp↓S

−) (A.26)

[
∑

r

ǫrJ2(r)(iγ)(c†r↑ − cr↑)S
z,
∑

pq

γpq(l)(: c
†
p↑cq↓ : S− + (: c†q↓cp↑ : S+)

]

=
1

2

∑

r

ǫrJ2(r)γrp(l)(iγ)(1 − 2n(r))(c†↓S
+ + cp↓S

−) (A.27)

[
∑

pqr

(ǫr + h)J3(r)(iγ)(c†r↓S
+ − cr↓S

−,
∑

pq

γpq(l)(: c
†
p↑cq↓ : S−+ : c†q↓cp↑ : S+

]

(A.28)

=
∑

pqr

(ǫr + h)J3(r)γpr(l)(1 − 2n(r))(iγ)(c†p↑ + cp↑)S
z) (A.29)

[
∑

pq

(ǫp − ǫq + h)J⊥(p, q)(: c†p↑cq↓ : S−− : c†q↓cp↑ : S+),
∑

r

ζr(l)(iγ)(cr↑ + c†r↑)S
z

]

=
1

2

∑

r

(ǫr − ǫq + h)J⊥(r, q)ζr(l)(1 − 2n(r))(cq↓S
− + c†q↓S

+) (A.30)

[
∑

r

(ǫr + h)J3(r)(iγ)(c†r↓S
+ − cr↓S

−),
∑

p

ηp(l)(iγ)(c†p↓S
+ + cp↓S

−)

]

=
∑

r

(ǫr + h)ηp(l)J3(r)(2S
z(1 − 2n(p)) + (ǫr + h)ηp(l)J3(r)) (A.31)
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