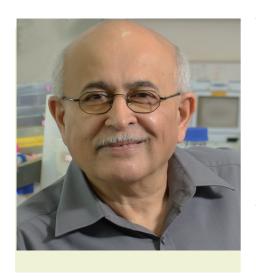
वार्षिक रिपोर्ट 2018-19


जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र जक्कूर डाक, बेंगलूरु, कर्नाटक 560 064

विषय-वस्तु

अध्यक्ष की ओर से	4
प्रस्तावना	6-21
जनेउवैअकें के 30 वर्ष	8
इस वर्ष जनेउवैअकें का एक अवलोकन	10
पुरस्कार एवं उपलब्धियाँ	11
कार्यकलाप चार्ट	17
संगठनात्मक चार्ट	18
प्रबंध परिषद	19
वित्त समिति	20
शैक्षिक सलाहकार समिति	20
संकाय एवं प्रशासन	21
शैक्षिक कार्यक्रम	22-27
अनुसंधान एवं विकास	28-93
अनुसंधान एकक	30
बौद्धिक संपत्ति	87
संकाय प्रकाशन	91
जनेउवैअकें संकायों द्वारा नवोद्यम	92
अधिसदस्यता एवं अभिगम	94-100
अधिसदस्यताएँ और विस्तरण कार्यक्रम	96
शैक्षिक प्रौद्योगिकी एकक	98
निधियन एवं सुविधाएँ	101-106
प्रायोजित परियोजनाएँ	102
ग्रंथालय	103
संगणना प्रयोगालय	105
नवीन अनुसंधान सुविधाएँ	106
वितीय विवरण	107-144

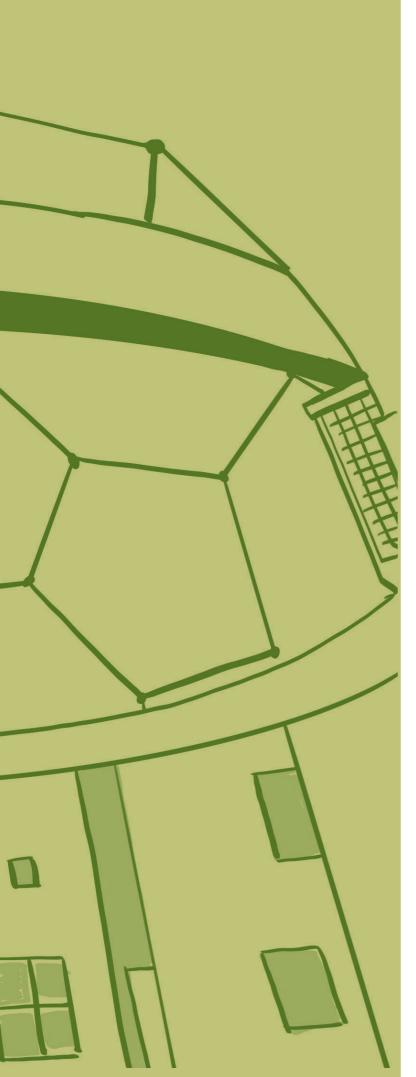
अध्यक्ष की ओर से

यह तो अत्यंत गर्व का विषय है कि मैं वर्ष 2018-19 के लिए केंद्र की 30वीं वार्षिक रिपोर्ट प्रस्तुत करता हूँ। एक संस्था के रूप में जनेउवैअकें, अपनी संस्थापना के समय से बहुत दूर तक चला आया है तथा इसकी उपस्थिति एवं इसका (प्रभाव) संघात देश में साथ ही अंतर्राष्ट्रीयता से व्यापक रूप से मान्यता प्राप्त कर चुके हैं। इस केंद्र को एक अग्रणी वैज्ञानिक प्रकाशक - "नेचर" द्वारा घोषित (प्रकृति सूचकांक वार्षिक सारणी) नेचर इंडेक्स एनुअल टेबल-2019 के अनुसार पूरे संसार में उच्चतम 10 अनुसंधान संस्थानों में से 7वें स्थान (रैंक) दिया गया है। यह हमारे लिए गर्व एवं सार्थक क्षण रहा है; विशेष रूप से, यह विचार करते हुए कि हमने इसे 30 वर्षों की अल्पाविध में प्राप्त कर लिया है। जबिक इसका मूल्यांकन दीर्घाविध के पहले स्थापित एवं भारी (बृहत) प्रतिभागी संस्थानों के साथ किया गया है। वैश्विकता से हम वैश्विक विश्वविद्यालयों के बृहत्तम शैक्षिक रैंकिंग संस्थान अर्थात – CWUR (जागतिक विश्वविद्यालय रैंकिंग श्रेणिबद्धता) के अनुसार वर्ष 2018-19 में विश्वभर के 18000 विश्वविद्यालयों से 781वें स्थान पर रहे हैं। इससे अधिक जनेउवैअकें को "करंट साइंस" (वर्तमान विज्ञान) (जून 2018) द्वारा विभिन्न भारतीय संस्थाओं के (प्रतिव्यक्ति) निष्पादन के आधार पर किए गए नूतन (हाल ही के) अध्ययनों के अनुसार अनुसंधान-उत्पादकता की दृष्टि से अत्युत्तम संस्था के रूप में स्थान दिया गया है।

हमारी सफलता के आधार पर तथा भारत के वैज्ञानिक समुदाय के संघात के आधार पर हमें श्रेणी-1 मान्यता प्राप्तेय (सम) वि.वि. का ग्रेड दिया गया है, जो UGC विनियमों के खंड-4 (श्रेणी-1 विश्वविद्यालयों की स्वायत्तता के आयामों) के अधीन उल्लेखनीय लाभों के लिए हमें अर्ह बना देता है । हम यह आशा करते हैं कि हम अपने शैक्षिक तथा अधिसदस्यता कार्यक्रमों को उत्तम्तर बनाने हेतु उपयोग करेंगे । अन्य उपलब्धियों में जनेउवैअकें पर जीवन विज्ञान अनुसंधान, शिक्षा तथा प्रशिक्षण" की परियोजना के लिए भारत सरकार के जैव-प्रौद्योगिकी विभाग द्वारा INR 28.56 करोड का अनुदान प्राप्त है । हाल ही में केंद्र ने मानव आनुवंशिकी केंद्र, बेंगलूर एवं पोर्तुगल के अंतर्राष्ट्रीय आइबेरियन नानो प्रौद्योगिकी प्रयोगालय के साथ समझौता-ज्ञापन पर हस्ताक्षर किए हैं । यह कहते हुए मुझे गर्व होता है कि हमने भा.वि.सं. के साथ मिलकर जनेउवैअकें पर राष्ट्रीय उच्चतम संगणना (सुपर कंप्यूटिंग) सुविधा (निपुणता) की स्थापना कराई है ; यह सुविधा (निपुणता) संगणात्मक अंतर्सरचना के लिए 500 टेराफ्लॉप विद्युतशिक्त तथा 150 टेराफ्लॉप – त्विरतक विद्युतशिक्त का प्रवर्धन करती है ।

विगत वर्षों के जैसे ही, इस वर्ष भी अनेक संकाय सदस्यों ने देश में से तथा साथ ही विदेशों से विभिन्न प्रस्कारों तथा सम्मन प्राप्त किए हैं । मैं "भारत रत्न" प्रो. सी.एन.आर. राव को बधाई देना चाहता हूँ, जिन्होंने 1,00,000 से भी अधिक प्रकाशनों के असाधारण कार्य को (साध्य) प्राप्त किया है तथा (फिजिक्स – पब्लिशिंग) भौतिकी प्रकाशन संस्थान द्वारा प्रदान किए जानेवाले उच्चतम उल्लेखनीय लेखक प्रस्कार-2018 प्राप्त किया है । उन्होंने UAE के उन्नत पदार्थ केंद्र द्वारा प्रदत्त पदार्थ - अनुसंधान के लिए प्रथम शेख सीद अंतर्राष्ट्रीय प्रस्कार प्राप्त किया है; तथा UK के मैंचेस्तर विश्वविद्यालय तथा कोलकता के प्रेसिडन्सी वि.वि. से मानद डाक्टरेट प्राप्त किए हैं । प्रो.मनीषा इनामदार ने कर्नाटक सरकार के KSCST द्वारा प्रदत्त किए जाने वाले विज्ञान एवं प्रोचोगिकी के क्षेत्र में वर्ष 2017 के लिए महिला विज्ञानी के लिए डॉ. कल्पना चावला प्रस्कार प्राप्त किया हैं; साथ ही निम्नलिखित समितियों के लिए वे नामित हैं – मानव न्यूनतम – सूत्री संपादन के अभिशासन तथा निरीक्षण के लिए वैश्विक मानकों के विकास पर विश्व स्वास्थ्य संगठन (WHO) के विशेषज्ञ परामर्शी समिति; अनुसंधान योजना समिति में जैवनैतिकता के वैश्विक मंच-2019; भारत सरकार के औषधि-अनुसंधान की भारतीय नलिका कोशिका अनुसंधान परिषद के विशेषज्ञ-समूह; तथा भारतीय विज्ञान अकादमी के विज्ञान में महिला नामिका। प्रो. के.एस. वाल्दिया को भा.स. के पृथ्वी विज्ञान मंत्रालय से जीवन-काल उत्कृष्टता पुरस्कार प्रदान किया गया है । प्रो. जी.यू. कुलकर्णी ने MRSI प्रतिष्ठित व्याख्यानदाता प्रस्कार (2019-20) तथा रासायनिकी तथा पदार्थ-विज्ञान में उत्कृष्टता के लिए SASTRA सी.एन.आर. राव प्रस्कार प्राप्त किए हैं । प्रो. टी. गोविंदराजु ने रासायनिक विज्ञान श्रेणी में औषध-अनुसंधान में उत्कृष्टता के लिए CDRI- प्ररस्कार -2019 प्राप्त किया है । प्रो. जयंत हल्दर को भा.स. के रासायनिक एवं उर्वरक मंत्रालय द्वारा प्रौद्योगिकी नवोन्मेषकेलिए 8वाँ राष्ट्रीय पुरस्कार प्रदान किया गया है, साथ ही वर्ष 2018 में CRSI काँस पदक भी । इनके अलावा तथा अन्य सम्मानों के साथ, अनेक संकाय सदस्यों ने विभिन्न अधिसदस्यताओं को प्राप्त किया है तथा देश की तथा विदेशों की अनेक प्रतिष्ठित शैक्षिक (अकादमीय) समितियों के सदस्य बन गए हैं । मैं यहाँ पर 'ब्रीद टीम' की उपलब्धि का उल्लेख करना चाहता हूँ,जो 12वें क्लीन ईक्विटी फोरम में प्रथम रनर-अप रहे हैं । यह समूह अब मेथेनॉल जैसे वाणिज्यिकता से व्यवहार्य पदार्थी में कार्बन-डाइ-ऑक्साइड को परिवर्तित करनेके अपने अत्याधुनिक प्रोद्योगिकी करने एवं वाणिज्यिकीकरण करने की प्रक्रिया में रहा है, जो इसे एक परिपूर्ण नवोचम कारोबार (जिले ब्रीद अप्लाइड साइन्स प्राइवेट लिमिटेड कहा गया है) है, जो मेथेनॉल-आर्थिकता, आयात प्रतिस्थानन तथा भारतमें निर्माण के (छत्र छाया) आश्रय में सही (ठीक) बैठता है । मैं डॉ. कुशाग्र बन्सल को हमारे यहाँ स्वागत करता हूँ, जो जनेउवैअकें के MBGU में संकाय अधिसदस्य के रूप में ज्वाइन हो चुके हैं।

विज्ञान एवं प्रोचोगिकी के अंतर्विषयों के अनुसरण करने के केंद्र के लक्ष्य को ध्यान में रखते हुए, हमारे अनुसंधांकर्ताओं ने अपने वैज्ञानिक अनुसरण में उत्कृष्ट प्रगति कर ली है, साथ ही अपने प्रौचोगिकीय नवोन्मेषों के द्वारा प्रत्यक्ष रूप से सामाजिक प्रभाव (संघात) को भी सिद्ध कर दिया है। गुणवतावाली पत्रिकाओं में भारी संख्या के प्रकाशनों तथा एकास्वाधिकार आवेदनों के द्वारा यह स्पष्ट हो जाता है। विगत वर्ष में, हमने कुल 250 लेखनों (कृतियों) का प्रकाशन करवाया है तथा प्रस्तुत किए गए 15 एकास्वाधिकारों में से 11 स्वीकृत हो चुके हैं। मैं यह आशा करता हूँ कि उपरोक्त उल्लेखनीय सभी उपलब्धियाँ हम सबको अनुकूलकारी विज्ञान की उपलब्धि के लिए तथा अपने प्रयासों में सफल होने के लिए प्रोत्साहित तथा प्रेरित करेंगी।


हमारी प्रमुख प्रतिबद्धता सदा के लिए विद्यार्थियों के प्रति रही है । इस वर्ष 33 पी.एचडी. प्रवेश तथा 46 एम.एस. प्रवेश दिए गए, इससे विद्यार्थियों की कुल संख्या 325 बन गई है । विगत वर्ष के दौरान विभिन्न कार्यक्रमों के अधीन कुल 30 पी.एचडी., 17 समेकित पी.एचडी., 1 एम.एस. तथा 2 पी.जी.डी.एम.एस. उपाधियाँप्रदान की गई हैं । अनुसंधान को प्रयोगालय से समाज की ओर ले जाने की हमारी शपथ (प्रतिज्ञा)के प्रति समर्पित रहते हुए अनेक विज्ञान अधिगम कार्यक्रमों तथा कार्यशालाओं का आयोजन विगत वर्ष में किया गया । ये कार्यक्रम अत्यंत सफल रहे हैं – जिसके प्रति सभी प्रतिभागियों ने ऐसे प्रयासों को जारी रखने के प्रति सकारात्मक प्रतिक्रिया दी है; जो अनुसंधान प्रक्रियाओं के प्रति युवामनोंको उद्गासित करते हैं । ये कार्यक्रम विज्ञान के उन्नयन तथा देश में वैज्ञानिक प्रगति के प्रति समाज को जागरुक बनाने में सफल रहे हैं ।

मैं यह विश्वास करता हूँ कि हमारे संस्थान ने अल्पाविध में ही महत्तर कार्यों को सिद्ध (प्राप्त) कर लिया है तथा ये सभी कार्य जनेउवैअकें पर स्थित प्रतिभा-संपन्न, प्रतिबद्ध तथा असमान दल के बिना संभव नहीं हो सकते थे। हमारी विविधता, निर्धार तथा आकांक्षाएँ ही हमारे लिए सामर्थ्य हैं, जो हमें बहुमुखी क्षेत्रों में विधित तथा संविधित होने देते हैं। आगे के पृष्ठ विगत वर्ष की उपलब्धियों की एक झलक उपलब्ध कराते हैं। मैं अब अपने संस्थान के सभी सदस्यों को धन्यवाद देते हुए अपना वक्तव्य समाप्त करना चहता हूँ – जिन्होंने केंद्र के दृष्टिकोण में सहभागिता की तथा इसे सफल बनाने में प्रयास किया है तथा मैं एक और सफल वर्ष की प्रतीक्षा करूँगा।

प्रो. वी. नागराज अध्यक्ष जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र

01

जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र (JNCASR) की स्थापना वर्ष 1989 में भारत के प्रथम प्रधान-मंत्री तथा स्वतंत्र भारत के वैज्ञानिक प्रगति एवं विकास के अगुआ / अग्रगामी पंडित जवाहरलाल नेहरू की जन्म शताब्दी के स्मरण के रूप में की गई है । केंद्र की स्थापना भारत सरकार के विज्ञान एवं प्रौद्योगिकी विभाग के निधियन के साथ की गई है ।

जनेउवैअकें एक विज्ञान के अंतर्विषयी अनुसंधान संस्थान है जिसके 10 विविध अनुसंधान एकक हैं तथा शैक्षिक कार्यक्रमों की विभिन्न श्रेणियाँ हैं तथा अनेक शैक्षिक अधिगम कार्यकलाप भी हैं। वर्ष 2002 में, इस केंद्र को एक "मान्यता प्राप्त विश्वविद्यालय" के रूप में वि.वि. अनुदान आयोग द्वारा मान्यता प्राप्त हुई है तथा विद्यर्थियों को यह केंद्र सीधे ही उपाधियाँ प्रदान करता है । अनेक वर्षों से यह संस्थान पर्याप्त मात्रा में विस्तरित हुआ है तथा वर्तमान में 330 से अधिक विद्यर्थियों को प्रवेश दिया है (अतिथेय बना है) । अपने केंद्रीकृत क्रोड मूल्यों के रूप में अपनी उत्कृष्टता नवोन्मेष सहयोगात्मक अंतर्विषयी पहुँच/(अभिगम) के साथ, यह केंद्र आज देश का एक सर्वप्रथम संस्थान बना है तथा अनुसंधान के बह्विध क्षेत्रों में अपना महत्त्वपूर्ण योगदान प्रदान किया है ।

जनेउवैअकें के 30 वर्ष

भारत सरकार के विज्ञान एवं प्रौद्योगिकी विभाग (DST) के सूत्रपात (की अगुआई) के द्वारा वर्ष 1989 में जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र की स्थापना वैज्ञानिक अनुसंधान के उन्नयन को विज्ञान और अभियांत्रिकी की अंतर्शाखाओं के उच्चतम सीमांत स्तर पर एक (विनम्र) साधारण प्रारंभ तथा स्पष्ट दूरदर्शिता के साथ की गई है। प्रो. सी. एन. आर. राव, सद्यत: रासायनिकी पदार्थ भौतिकी एकक (CPMU) से संबद्ध; नव रासायनिकी एकक (NCU) के चेयरमैन और अंतर्राष्ट्रीय पदार्थ विज्ञान केंद्र (ICMS) के निदेशक प्रो. सी. एन. आर. राव वर्ष 1989 से 1999 तक केंद्र के अध्यक्ष के पद पर रहे। उनके उत्तराधिकारी प्रो. वी. कृष्णन ने केंद्र के अध्यक्ष के पद पर वर्ष 2000 से 2003 तक सेवा की है। प्रो. एमआरएस राव अध्यक्ष के रूप में वर्ष 2003 से 2013 तक रहे तथा प्रो. के. एस. नारायण अध्यक्ष के रूप में 2013 से 2015 तक रहे। प्रो. वी नागराज, अक्तूबर 2015 से वर्तमान अध्यक्ष रहे हैं।

जब जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र की योजना (के विचार) पर सोचा जा रहा था, तब यह निश्चय किया गया कि भारत के अत्यंत पुराने तथा प्रतिष्ठित (संस्थापित) अनुसंधान संस्थान – भारतीय विज्ञान संस्थान (IISC) का सहयोग इस केंद्र की संवृद्धि के लिए अपेक्षणीय तथा प्रेरक होगा । वास्तव में भारतीय विज्ञान संस्थान ने इस विचार पर अपना संपूर्ण समर्थन दिया तथा जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र के प्रथम कार्यालय भाविसं परिसर में स्थापित किए गए । वर्ष 1994 में कर्नाटक सरकार द्वारा दान में दी गई 15 एकड़ भूमि पर जनेउवैअकें का मुख्य परिसर पूर्ण रूप से प्रचलन में आ गया । जनेउवैअकें का परिसर जो भाविसं से 11 कि.मी. की दूरी पर स्थित है, फिर भी भाविसं के साथ

प्रबल सहयोगात्मक संबंध बनाये रखता है। यद्यपि सापेक्ष रूप से यह केंद्र युवा है तथापि दीर्घ प्रगति की है तथा भारत में वैज्ञानिक – दृश्य पर गाढ प्रभाव (संघात) किया है, आज अपने 30वें वर्ष में विज्ञान और अभियांत्रिकी के क्षेत्रों में विज्ञान की अंतरशीखाओं के लिए देश भर में अग्रणी संस्थानों में से एक रहा है।

कुछ ही वर्षों में जनेउवैअकें के परिसर पर अनेक अनुसंधान एककों की स्थापना की गई है। इनमें सम्मिलित हैं - रासायनिकी एवं पदार्थ भौतिकी एकक (CPMU), अंतर्राष्ट्रीय पदार्थ विज्ञान केंद्र (ICMS), नव रासायनिकी एकक (NCU), विकासवादी एवं समेकित जैविकी एकक (EIBU), आण्विक जैविकी एवं आनुवंशिकी (MBGU), तंत्रिका विज्ञान एकक (NSU), अभियांत्रिकी यांत्रिकी एकक (EMU), सैद्धांतिक विज्ञान एकक (TSU), भूगतिकी एकक (GDU), संगणात्मक पदार्थ-विज्ञान विषयक उत्कृष्टता एकक (CMS-TEU) तथा रासायनिकी में सीएसआईआर उत्कृष्टता केंद्र (CES-CSIR) । इन अनुसंधान एककों में 50 प्रतिभासंपन्न अन्संधान संकाय फैले हए हैं (स्थित हैं) । इस जनेउवैअकें का एक सामर्थ्य यह है - विज्ञान की अंतर्शाखाओं का परिसर जो अपार संख्या के परिसर स्थित सहयोगों का पोषण (पालन) करता है, जो भव्य आह्वानों (चुनौतियों) के समाधान हेत् युवाओं को एक साथ जुटाने का काम करता है । हाल ही में केंद्र पर उन्नत पदार्थ स्कूल की स्थापना की गई है जो केंद्र पर अधिक सक्षम पदार्थ-विज्ञान कार्यक्रम प्रदान करता है ; इस उद्यम में रासायनिकी, ICMS, NCU तथा TSU के संकाय सम्मिलित हैं । जनेउवैअकें, प्रेरणादायक संकायों तथा विद्यार्थियों को अपने सुजनात्मक विचारों के विकास के लिए सन्नद्ध प्रयोगात्मक, संगणात्मक तथा अंतर्सरचनात्मक सुविधाएँ प्रदान (संवर्धित) करता है । सद्यतः राष्ट्रीय सुपर कंप्यूटिंग मिशन के निधियन से 500 टेराफ्लॉप सीपीयू पॉवर तथा 150 वेगवर्धक टेराफ्लॉप पॉवर से युक्त एक नवीन संगणात्मक सुविधा की स्थापना की गई है। केंद्र का एक महत्त्वपूर्ण लक्ष्य यह रहा है कि स्नातक विद्यर्थियों को

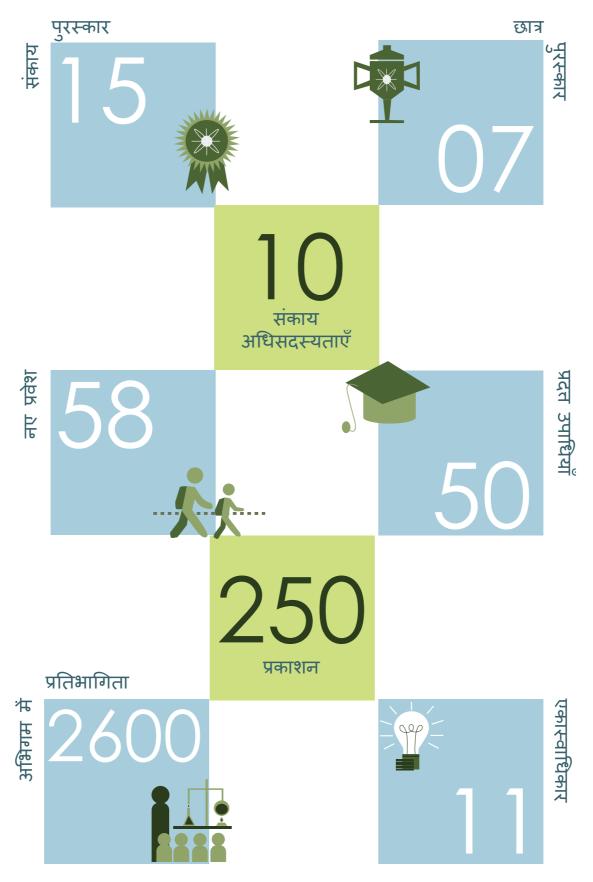
प्रशिक्षित करना तथा अवसर प्रदान करना । वर्ष 2002 में केंद्र को एक मान्यता प्राप्त विश्वविद्यालय की मान्यता प्राप्त हुई है । आज अपने 30वें वर्ष में, केंद्र विज्ञान और इंजीनियरिंग के अंतःविषय अनुसंधान के क्षेत्रों में देश के अग्रणी संस्थानों में से एक है।

जनेउवैअकें की सफलता – अपार संख्या के प्रकाशनों, प्रतिष्ठित संकायों तथा विद्यार्थी-पुरस्कारों, एकास्वाधिकारों साथ ही विद्यार्थियों को दिए गए अधिक संख्या के पीएचडी तथा मास्टर – उपाधियों से स्पष्ट होता है। विगत वर्षों में, जनेउवैअकें के संकाय सदस्यों ने अपार संख्या में पुरस्कार प्राप्त किए हैं। हाल ही में केंद्र के संस्थापक-अध्यक्ष प्रो. सीएनआर राव, जिन्होंने वर्ष 2014 में उच्चतम नागरिक पुरस्कार – "भारत-रत्न" प्राप्त किया है, जो एच-इंडेक्स 100 को पर करनेवाले तथा 1,00,000-उद्धरण प्राप्त करनेवाले प्रथम भारतीय विज्ञानी रहे हैं – जिसे विश्वभर में अत्यल्प विज्ञानी ही प्राप्त (उपलब्ध) कर पाये हैं। जनेउवैअकें ने एक संस्थान के रूप में, राष्ट्रीय तथा अंतर्राष्ट्रीय मंचों पर मान्यता तथा अनेक पुरस्कार प्राप्त किए हैं। वर्ष 2018 में, केंद्र ने द्वितीय बार "क्लारिवेट अनालिटिक्स इंडिया इन्लोवेशन अवार्ड" प्राप्त किया है – जिससे केंद्र भारत में उच्चतर नवोन्मेषक बन गया है। वर्ष 2018 में अनुसंधान उत्पादकता के आधार पर जनेउवैअकें को देश में अत्युत्तम संस्थानों में से एक के रूप में श्रेणी प्रदान की गई है।

समाज के साथ अपने संबंध को संयोजित करने के अपने लक्ष्य की प्राप्ति की दृष्टि से यह केंद्र कार्यशालाओं, उत्सवों तथा विस्तरण कार्यक्रमों के द्वारा अनेक अधिगम कार्यकलापों में कार्यरत रहा है। एक महत्त्वपूर्ण कार्यशाला − जो विज्ञान को लोकप्रिय बनाने के प्रयत्न में विद्यालय के शिक्षाकों तथा विद्यार्थियों के लिए संचालित की गई है। हाल ही में, प्रारंभ किया गया □छात्र-मैत्री कार्यक्रम□ जिसमें स्कूल के विद्यार्थी केंद्र पर एक दिन भर के लिए दौरा करते हैं − अधिक सफल रहा है।

विगत कुछ वर्षों से केंद्र ने बहुत कुछ उपलब्ध कर लिया है तथा अपने लक्ष्यों की प्राप्ति के लिए उत्साह के साथ आगे बढ रहा है । इस वर्ष जनेउवैअकें, अपनी स्थापना से लेकर 30 वर्षों के स्मरणोत्सव के दौरान यह केंद्र अपने अनेक स्मरणीय तथा उत्तेजनात्मक क्षणों तथा अनेक प्रमुख आविष्कारों तथा सफल नवोन्मेषों की ओर दृष्टिपात कर सकता है । निस्संदेह ही, यह एक श्रमसाध्य तथा चुनौती भरी यात्रा रही है, परंतु जनेउवैअकें द्वारा प्राप्त अनेक क्षेत्रों में उपलब्धियों तथा योगदानों ने केंद्र को अपने मिशन (लक्ष्यकार्य) के अनुसरण को जारी रखने को उपयुक्त माना गया है ।

लक्ष्य


- विज्ञान एवं अभियांत्रिकी में विश्व श्रेणी स्थापित करना एवं संचालित करना ।
- विज्ञान की अंतर्शाखाओं तथा सहयोगात्मक अनुसंधान का संपोषण ।
- वैज्ञानिक अनुसंधान को सुसाध्य बनाने हेतु सन्नद्ध (सुसज्जित) प्रयोगालयों, संगणनात्मक तथा अंतर्सरंचनात्मक सुविधाओं की स्थापना (उपलब्धता) करना ।
- विज्ञान एवं अभियांत्रिकी में उच्च गुणतावाले पीएचडी यों के द्वारा क्षमता का निर्माण ।
- विस्तृत विज्ञान अधिगम, नवल अधिसदस्यता एवं विस्तरण कार्यक्रमों के द्वारा स्कूल एवं कॉलेज के विद्यार्यों के बीच में विज्ञान एवं अनुसंधान के बारे में जागरूकता की वृद्धि करना ।
- समाज के साथ संयोजित करने हेतु चेतनायुक्त प्रयत्न द्वारा अनुसंधान को प्रयोगालय से समाज की ओर ले जाना ।

सीएटी के अधिनिर्णयों / आदेशों का आरक्षण, राजभाषा तथा कार्यान्वयन

समय समय पर प्रबंध परिषद के आवश्यक मार्गदर्शन के साथ भारत सरकार के द्वारा जारी नियमों तथा आदेशों के अनुसार आरक्षण एवं राजभाषा की राष्ट्रीय नीतियों का अनुसरण करता है।

वर्ष 2018-19 के दौरान सीएटी के सम्मुख केंद्र से संबद्ध कोई भी मुकदमा नहीं है ।

इस वर्ष जनेउवैअकें का एक अवलोकन

पुरस्कार एवं उपलब्धियाँ

यूजीसी (वि.वि. अनुदान समिति) ने जनेउवैअकें को श्रणी-। मान्यता प्राप्तेय वि.वि. होने की स्वीकृति दी है – इसके साथ जनेकें को अब यूजीसी के विनियमों के खंड-4 (श्रेणी-। वि.वि. यों के लिए स्वायत्तता के आयामों) के अधीन उल्लेखित लाभों के लिए अईता प्राप्त हो गई है।

जनेउवैअकें को अनुसंधान उत्पादकता की दृष्टि से अत्युत्तम संस्थान की श्रेणी प्रदान की गई है जो विभिन्न भारतीय संस्थानों के निष्पादन (प्रतिव्यक्ति / प्रत्येक) के हाल ही के अध्ययनों के आधार पर है-करंट-साइन्स – जून 10, 2018 http://goo.gl/TFK6Kj-

डीबीटी-जनेउवैअकें परियोजना – शीर्षक – जनेउवैअकें में जीवन विज्ञान अनुसंधान शिक्षा तथा प्रशिक्षण – पर जैव प्रौद्योगिकी विभाग (डीबीटी) भारत-सरकार द्वारा परियोजना अनुदान रु.28.56 करोड़ प्रदान किया गया है।

समझौता ज्ञापन : केंद्र ने मानव आनुवंशिकी केंद्र-बेंगलूर तथा अंतर्राष्ट्रीय आइबेरिन नानो प्रौद्योगिकी प्रयोगालय (INL) पोर्तुगल के साथ समझौता ज्ञापन (MOU) पर हस्ताक्षर किया है।

एनएसएम - राष्ट्रीय सुपर (अत्युच्च) संगणना सुविधा – जेनउवैअकें में 500 टेराफ्लॉप सीपीयू पॉवर 150 टेराफ्लॉप संगणात्मक अंतर्सरचना के त्वरित गति पॉवर से युक्त सुविधा की स्थापना हेतु आईआईएससी (भा.वि.सं.) के साथ समझौता ज्ञापना पर हस्ताक्षर किया गया है।

अत्युत्तम अनुरक्षित उद्यान ट्रोफी : जनेउवैअकें ने अत्युत्तम अनुरक्षित उद्यान ट्रोफी सतत रूप से 6वें वर्ष भी मैसूर बाग़बानी सोसाइटी से प्राप्त की है। चामुंडी परिसर ने भी उक्त ट्रोफी प्रथम वर्ष के लिए प्राप्त की है।

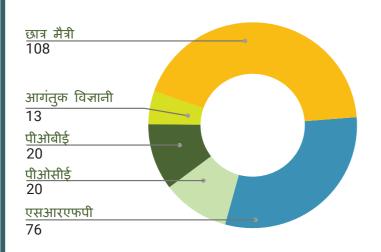
2018-2019 की घटनाएँ

 87
 12

 संगोष्ठियाँ
 बैठकें

 12
 12

 विद्यालय एवं सम्मेलन
 व्याख्यान

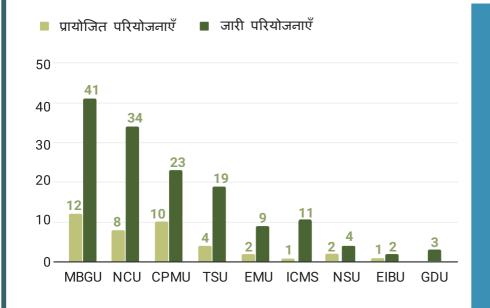

नियुक्तियाँ डॉ. कुशाग्र बंसल संकाय अधिसदस्य, एमबीजीयू

सेवा-निवृत्ति प्रो. नमिता सुरोलिया पदोन्नतियाँ डॉ. कनिष्क बिस्वास सहयोगी प्रोफेसर

प्रोफेसर

डॉ. सुबीर के दास डॉ. एन.एस. विद्याधिराजा

2018-19 में अधिसदस्यता एवं विस्तरण कार्यक्रमों में प्रतिभागिता


शैक्षिक तकनीकी कार्यक्रम

14

शैक्षिक तकनीकी कार्यक्रम

2351

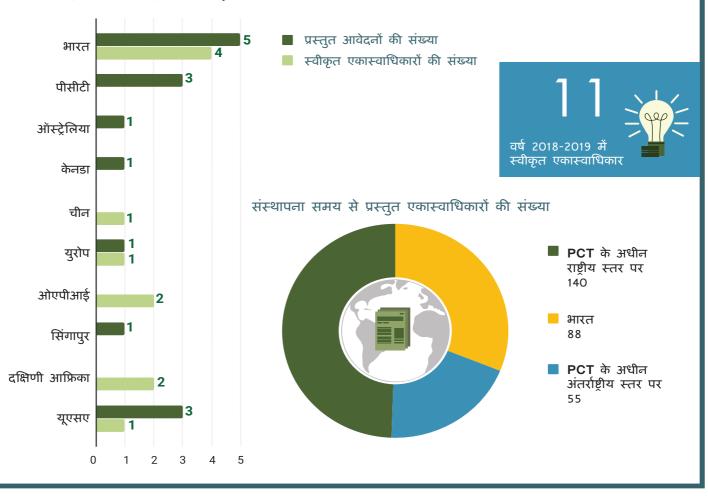
शैक्षिक तकनीकी कार्यक्रम

40

नई प्रायोजित परियोजनाएँ

144

जारी प्रायोजित परियोजनाएँ


नूतन प्रकाशन

247
औसत घटक पत्रिकाओं
में कुल प्रकाशन

<u>औसत</u> संघात घटक

एकास्वाधिकार आवेदन 2018-2019

संकायों द्वारा प्राप्त पुरस्कार

प्रो. सी.एन.आर. राव

- प्रेसिडेन्सी वि.वि. कोलकता से हॉनररी कॉसा डॉक्टरेट (80 वॉ हॉनररी कॉसा डॉक्टरेट) प्राप्त किया ।
- यू.के. के मेंचेस्टर वि.वि. से हॉनररी डॉक्टरेट प्राप्त किया ।
- भौतिकी प्रकाशन संख्या (IOP) द्वारा उच्चतम उल्लेखनीय लेखक पुरस्कार-2018.
- कोसाइन (COSINE) पुरस्कार 2017
- यू ए ई के उन्नत पदार्थ केंद्र द्वारा दिए जानेवाला प्रथम शेख सौद अंतर्राष्ट्रीय पुरस्कार ।

प्रो. एम आर एस राव

साइन्स चेयर प्रोफेसरशिप SERB - विज्ञान वर्ष

प्रो. के एस वाल्दिया

 भारत सरकार के पृथ्वी विज्ञान मंत्रालय से जीवन-काल उत्कृष्टता पुरस्कार।

प्रो. रोद्दम नरसिंह

 दि.7 मार्च, 2018 को बेंगलूर केंद्रीय वि.वि. के सेंट्रल कॉलेज के उद्घाटन के अवसर पर कर्नाटक के मुख्य मंत्री द्वारा विरष्ठ पूर्व-छात्र प्रस्कार ।

प्रो. अमिताभ जोशी

 वैज्ञानिक साहित्य के प्रति मुक्त उपागमन (प्रवेश) के लिए एक राष्ट्रीय रूपरेखा। के प्रारूपन के लिए तीन विज्ञान – अकादिमयों की अंतर – अकादमी समिति के सदस्य 2019.

अनुरंजन आनंद

सहयोगी (एडजंक्ट) प्रो. (मानद) – मानव – आनुवंशिकी केंद्र,
 बेंगलूर ।

प्रो. जी.यू. कुलकर्णी

- आई आर एस आई प्रतिष्ठित व्याख्यानदाता पुरस्कार (2019-20)
- रासायनिकी एवं पदार्थ विज्ञान में उत्कृष्टता के लिए एस.ए.एस. टी.आर.ए. - सी.एन.आर. राव पुरस्कार (2019-20)

प्रो. नमिता सुरोलिया

• डी.बी.टी. प्रतिष्ठित जैव प्रौद्योगिकी अनुसाधान प्रोफेसरशिप पुरस्कार ।

प्रो. तपस कुमार माजी

• भारतीय विज्ञान अकादमी, बेंगलूर की अधिसदस्यता ।

प्रो. चंद्रभास

- भारतीय विज्ञान अकादमी, बेंगलूर की अधिसदस्यता ।
- मिजुशिमा रामन व्याख्यान 2018.

प्रो. टी. गोविंदराजु

- रासायनिक विज्ञान श्रेणी में औषध अनुसंधान में उत्कृष्टता के लिए सी.डी.आर.आई. पुरस्कार-2019
- आगंत्क प्रो. शिव, पैरिस वि.वि. सुद

प्रो. कौस्तुव सान्याल

- अमरीकी सूक्ष्म जैविकी अकादमी के अधिसदस्य ।
- सहयोगी संपादक, कोशिकीय संदूषण सूक्ष्म जैविकी में सीमांत ।

प्रो. जयंत हाल्दर

- आर.एस.सी. के मेड् केम् कॉम (Med Chem Comm) के संपादकीय मंडली के सदस्य ।
- वर्ष 2018 में भारत सरकार के रासायनिक एवं उर्वरक मंत्रालय के प्रौद्योगिकी नवोन्मेष के लिए 8वाँ राष्ट्रीय पुरस्कार ।
- वर्ष 2018 में सी.आर.एस.आई. काँस पदक ।
- वर्ष 2018 में शेख सर्क़ करियर पुरस्कार- अधिसदस्यता ।

प्रो. सेबास्टियन सी पीटर

• स्वर्णजयंती अधिसदस्यता (रासायनिक विज्ञान) (2018)

प्रो. कनिष्क बिस्वास

- जर्नल ए.सी.एस., अनुप्रयुक्त ऊर्जा पदार्थ, उदयोन्मुख अन्वेषक –
 केम कॉम आर.एस.सी. के सहयोगी संपादक ।
- भारतीय रासायनिक अनुसंधान संघ (CRSI) से सी.आर.एस.आई.
 काँस पदक (2019)

प्रो. रंजनी विश्वनाथ

एम.आर.एस.आई. पदक-2018

प्रो. सुबी जॉर्ज

• भारतीय विज्ञान अकादमी की अधिसदस्यता ।

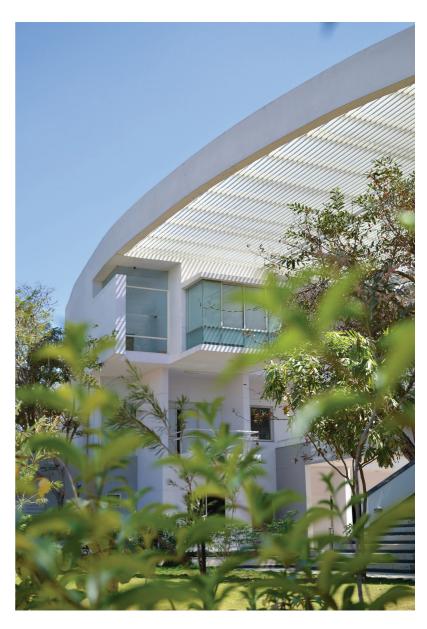
प्रो. स्वपन के. पति

• भारतीय राष्ट्रीय विज्ञान अकादमी की अधिसदस्यता ।

प्रो. कुशाग्र बन्सल

 जैव प्रौद्योगिकी विभाग द्वारा रामिलंग स्वामी पुनः प्रवेश अधिसदस्यता।

प्रो. मनीषा इनामदार


- कर्नाटक सरकार के के.एस.सी.एस.टी. द्वारा वर्ष 2017 के लिए विज्ञान तथा प्रौद्योगिकी के क्षेत्र में महिला विज्ञानी के लिए डॉ. कल्पना चावला पुरस्कार।
- प्रो. सी.एन.आर. राव वकृता पुरस्कार 2019
- अभिशासन के लिए वैश्विक मानकों के विकास तथा मानव न्यूनतम सूत्री संपादन पर विश्व स्वास्थ्य संगठन (WHO) विशेषज्ञ परामशीं समिति के सदस्य ।
- अनुसंधान योजना समिति में वैश्विक जैवनैतिकता मंच के सदस्य
 2019.
- भारतीय विज्ञान अकादमी के विज्ञान में महिला नामिका के सदस्य ।
- भारतीय विज्ञान अकादमी के पशु एवं पादप (सस्य) विज्ञान की अनुभागीय समिति के सदस्य ।
- भारत सरकार के डी.बी.टी. (जै.प्रो.वि.) के औषधीय जैव प्रौद्योगिकी पर वैज्ञानिक तकनीकी मूल्यांकन तथा परामर्शी दल के सदस्य ।
- भा.स. के जै.प्रौ.वि. (Gol-DBT) के निलका कोशिका एवं पुनरुज्जीवन औषध पर तकनीकी विशेषज्ञ समिति का (सह-अध्यक्ष) को-चेयर ।

प्रो. उमेश वी. वाघ्मारे

- भौतिकी प्रकाशन संस्था (आई.ओ.पी.) द्वारा उच्चतम उल्लेखनीय लेखक प्रस्कार – 2018
- सहयोगी संपादक, नानो-स्केल
- राष्ट्रीय विज्ञान संस्थान परिषद् अलाहाबाद के सदस्य ।
- एशिया पेसिफिक पदार्थ अकादमी के अधिसदस्य ।

प्रो. तपस के. कुंदु

• उत्तर बंग कृषि वि.वि. के डी.एस.सी. हॉनरिस कॉसा

विद्यार्थियों द्वारा प्राप्त पुरस्कार

मि. अभिलाष लक्ष्मण (पीएचडी विद्यार्थी वर्ण जैविकी लैब) -मि. अभिलाष लक्ष्मण, जैविकीय लय बैठक (SRBR) में अनुसंधान के लिए वर्ष 2018 में सोसाइटी में प्रवेश – (वर्ण दृश्य चित्र) क्रोनो विडियो प्रतियोगिता में रनर-अप स्थान प्राप्त। http://youtu.be/a63UUZ9011c.

सुश्री कीर्ति प्रिया पी. (पीएचडी विद्यार्थी-EIBU) को दिनांक 31 अगस्त, 2018 को भा.वि.सं., बेंगलूर में पारिस्थितिकी विज्ञान केंद्र में हुई स्पीक-अप बैठक में उसके व्याख्यान के लिए रनर-अप पुरस्कार प्रदान किया गया।

मि. राजाजी विन्सेंट (पीएचडी विद्यार्थी - CPMU) ने दिनांक 2-7 सितंबर, 2018 को अवेरू पोर्तुगल में हुई 56वीं यूरोपीय उच्च दाब अनुसंधान दल (EHPRG) बैठक ने उसके अत्युत्तम भिति चित्र प्रस्तुतीकरण पुरस्कार प्राप्त किया।

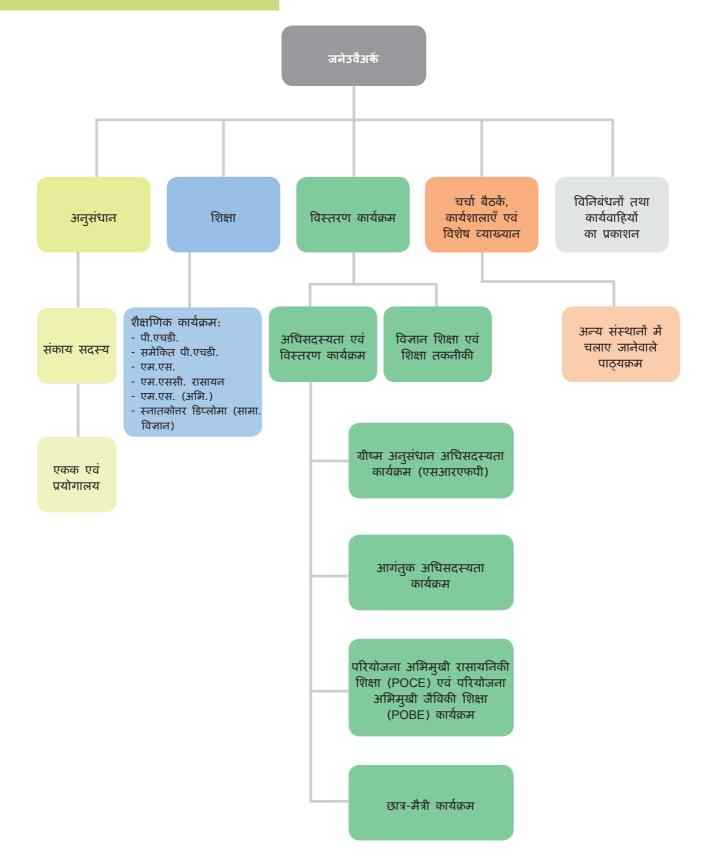
सुश्री अनन्या बनिक को IISER पुणे में ऊर्जा एवं चलनशीलता सम्मेलन में के.पि.आई.टी. शोध पुरस्कार उसके अत्युत्तम शोध पर पुरस्कार प्रदान किया गया ।

मि. गौरव बार्वे, पीएचडी विद्यार्थी – स्वभक्षी लैब, ने जे.सी.एस. प्रकाशन में अग्रणी लेखक के रूप में साक्षात्कार दिया ।

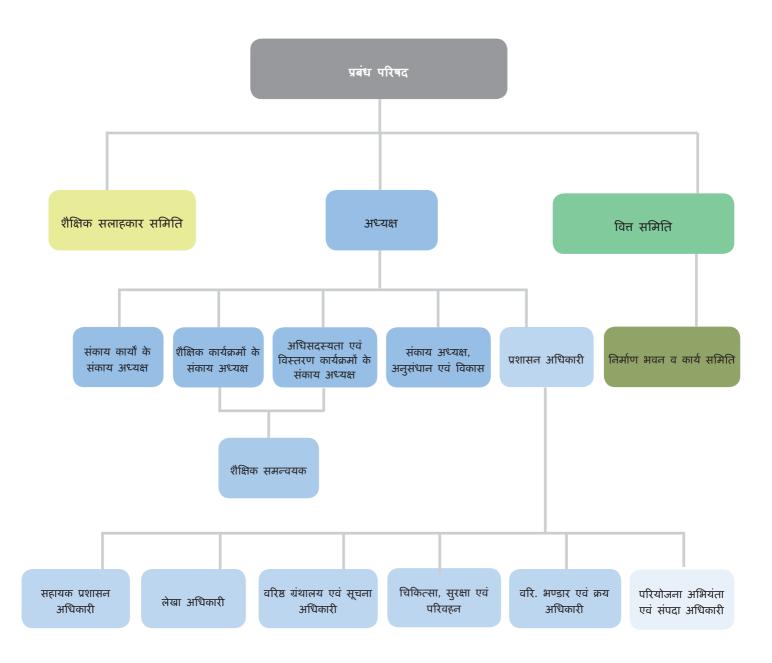
सुश्री सोम्या वत्स, पीएचडी विद्यार्थी ने डॉ. रिव मंजिताया के अनुसंधान-मार्गदर्शन के अधीन न्यूटन – भाभा अधिसदस्यता प्राप्त की है। डॉ. सोवन सरकर के प्रयोगालय के साथ सहयोग में उनके कार्य ने पार्किन्सन, हंटिंगटन, ए.एल.एस. आदि तंत्रिकाह्मसी विकारों के उपचार के लिए नए संभाव्यों का नया मार्ग खोल दिया है।

डॉ. श्रीदेवी पद्मनाभन ने डॉक्टरोत्तर अधिसदस्यता श्रेणी में ए.डब्ल्यू. एस.ए.आर. पुरस्कार प्राप्त किया है।

सुश्री श्रीमायी मुखर्जी, पीएचडी विद्यार्थी ने हाल ही में प्रो.राजेश गणपित के साथ भौतिकी समीक्षा पत्र (पित्रका) में एक प्रकाशन दिया है जो उस सप्ताह के अंक के लिए संपादकीय सुझाव तथा आवरण पृष्ठ बन गया।


मि. सुभजित रायचौधुरी, पीएचडी विद्यार्थी ने प्रो. कनिष्क बिस्वास, NCU, जनेउवैअकें के पर्यवेक्षण में वर्ष 2019 में एमआरएस (बसंत) स्प्रिंग बैठक फ़ोनिक्स, अरिज़ोना, यूएसए में प्रस्नातक विद्यार्थी रजत पुरस्कार तथा उस बैठक में भाग लेने हेतु CSIR यात्रा अनुदानप भी प्राप्त किया ।

सुश्री नेहा वर्ष्णें (पीएचडी विद्यार्थी – अनुसंधान पर्यवेक्षक – प्रो. कौस्तुव सान्याल) ने दिसंबर 2018 में हुई गुणसूत्र (वंशावली) स्थिरता बैठक में प्लॉस आनुवंशिकी अत्युत्तम भिति चित्र पुरस्कार प्राप्त किया है।



कार्यकलाप चार्ट

संगठनात्मक चार्ट

प्रबंध परिषद

केंद्र के कार्य व वित्त के प्रशासन एवं प्रबंध-कार्य का संचालन प्रबंध-परिषद द्वारा किया जाता है । केंद्र की प्रबंध-परिषद की बैठकें वर्ष में दो बार होती हैं ।

प्रो. गोवर्धन मेहता अध्यक्ष (विप्रौवि नामिती) पूर्व निदेशक, आई.आई.एस.सी., बेंगलूर

प्रो.एम. जगदीश कुमार सदस्य (विप्रौवि नामिती) उप कुलपति, जनेयू, नई दिल्ली

प्रो. विनोद के सिंह सदस्य (डीएसटी नामिती) प्रोफेसर, आईआईटी-कांपुर

श्री के.एन. व्यास सदस्य (डीएसटी नामिती) सचिव, डीएई तथा अध्यक्ष, एईसी

प्रो. वीरंदर एस चौहान सदस्य (यूजीसी नामिती) कार्यकारी समिति, एनएएसी, नर्ड दिल्ली

प्रो. आषुतोश शर्मा सदस्य (पदेन) सचिव, डी.एस.टी.

श्री बी. आनंद सदस्य (पदेन) एएस तथा एफए, डी.एस.टी.

प्रो. अनुराग कुमार सदस्य (पदेन) निदेशक, आई.आई.एस.सी.,

प्रो. श्रीराम रामस्वामी सदस्य (आई.आई.एस.सी. नामिती) भौतिकी विभाग, आई.आई.एस.सी. (भा.वि.सं.)

प्रो. वी नागराज सदस्य (पदेन) अध्यक्ष, जनेउवैअकें

प्रो. हेमलता बलराम सदस्य संकायाध्यक्ष, संकाय कार्य, जनेउवैअकें

प्रो. के.एस. नारायण सदस्य संकायाध्यक्ष, अनु. एवं विकास, जनेऽवैअर्के

प्रो. अनुरंजन आनंद सदस्य प्रोफेसर, एमबीजीयू, जनेउवैअकें

प्रो. रोद्दम नरसिंह सदस्य मानद प्रोफेसर, जनेऽवैअकें

श्री. जॉयदीप देब गैर-सदस्य सचिव प्रशासनिक अधिकारी, जनेउवैअकें

वित्त समिति

केंद्र की वित्त समिति सभी वित्तिय प्रस्तावों की संवीक्षा करती है तथा प्रबंध परिषद को सिफारिशें करती है।

नाम एवं पदनाम	संबंधन
प्रो. वी. नागराज, अध्यक्ष, जनेउवैअकें	अध्यक्ष (पदेन)
प्रो. विनोद के. सिंह, प्रोफेसर, भा.त.सं., कानपुर	सदस्य
प्रो. एन. बालकृष्णन, प्रोफेसर, भा.वि.सं.	सदस्य
प्रो. हेमलता बलराम, संकायाध्यक्ष, संकाय कार्य, जनेउवैअकें	सदस्य
श्री बी. आनंद, एएस व एफए, डी.एस.टी.	सदस्य (पदेन)
श्री संपद पात्रा, लेखा अधिकारी, जनेउवैअकें	सदस्य (पदेन)
श्री. जॉयदीप देब, प्रशासनिक अधिकारी, जनेउवैअकें	सदस्य (पदेन)

शैक्षिक सलाहकार समिति

शैसस (AAC) के कार्यक्रमों में सम्मिलित हैं – केंद्र के अनुसंधान एवं शैक्षिक कार्यकलापों के नियोजन, कार्यान्वयन तथा समन्वयन । यह पाठ्यक्रमों का अध्ययन विद्यार्थियों के प्रवेश की कार्यविधि, परीक्षा आदि का नियंत्रण करती है । यह वर्ष में कम से कम दो बार बैठकें करती है । यह समिति प्रबंध परिषद को सभी शैक्षिक विषयों पर सिफारिशें करती है ।

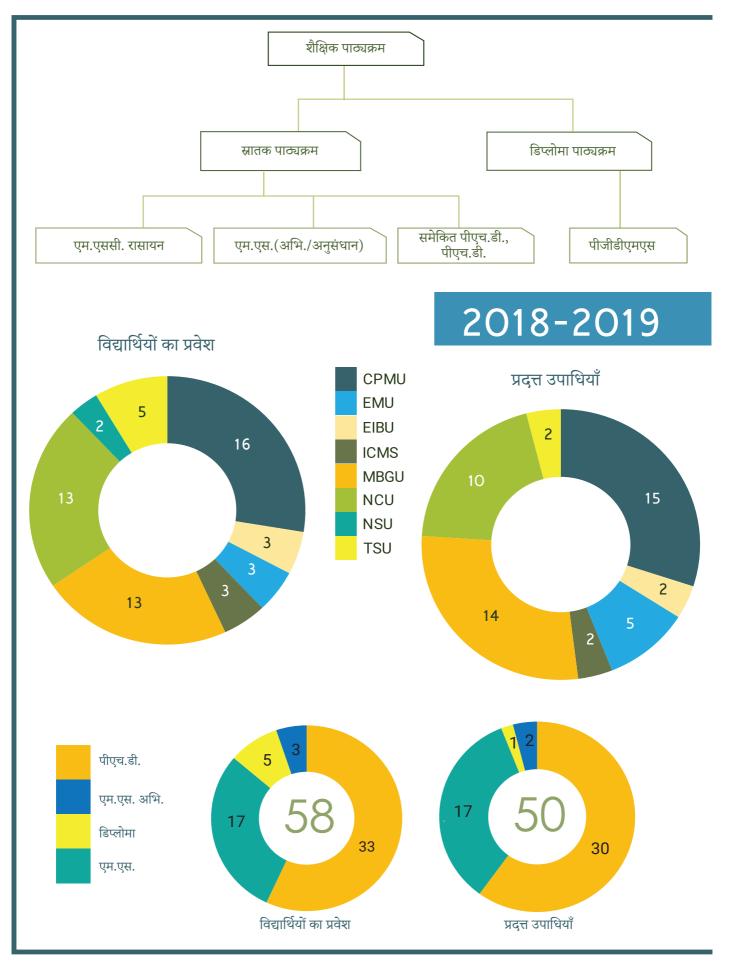
नाम एवं पदनाम	संबंधन
प्रो. वी नागराज, अध्यक्ष, जनेउवैअकें	अध्यक्ष (पदेन)
प्रो. के.एस. नारायण, संकायाध्यक्ष, अ एवं वि, जनेउवैअकें	सदस्य (पदेन)
प्रो. हेमलता बलराम, संकायाध्यक्ष, संकाय कार्य, जनेउवैअकें	सदस्य (पदेन)
प्रो. उमेश वी. वाघ्मारे, संकायाध्यक्ष, शैक्षिक कार्य, जनेउवैअकें	सदस्य (पदेन)
प्रो. मनीषा इनमदार, संकायाध्यक्ष, अधिसदस्यता एवं विस्तरण कार्यक्रम, जनेउवैअकें	सदस्य (पदेन)
प्रो. यू. राममूर्ति, एमाई, एनटीयू, सिंगापुर	सदस्य
प्रो. डी.डी. शर्मा, एसएससीयू, भा.वि.सं.	सदस्य
प्रो. देवांग वी. खखर, निदेशक, भा.त.सं.	सदस्य (यूजीसी नामिति)
प्रो. आर. मुरुगवेल, भा.त.सं., बाम्बे	सदस्य
प्रो. राघवन वरदराजन, एमबीयू, भा.वि.सं.	सदस्य
श्री. जॉयदीप देव, प्रशासनिक अधिकारी, जनेउवैअकें	सदस्य (पदेन)

संकाय एवं प्रशासन

संबंधन	सदस्य का नाम
अध्यक्ष	वी नागराज, पीएचडी, एफएएससी, एफएनएएससी
संकायाध्यक्ष, संकाय कार्य	हेमलता बलराम, पीएचडी, एफएएससी, एफएनएएससी
संकायाध्यक्ष, शैक्षिक कार्य	उमेश वी. वाघमारे, पीएचडी, एफएएससी, एफएनएएससी, एफएनए
संकायाध्यक्ष, अधिसदस्यता एवं विस्तरण कार्यक्रम	मनीषा एस. इनमदार, पीएचडी, एफएएससी, एफएनएएससी
संकायाध्यक्ष, अनुसंधान एवं विकास	के.एस. नारायण, पीएचडी, एफएनएएससी, एफएएससी
छात्रपाल एवं विद्यार्थी परामर्शदाता	तपस कुमार माजी, पीएचडी, एफएएससी
सह छात्रपाल	रंजनी विश्वनाथ, पीएचडी
प्रशासनिक अधिकारी एवं जन सूचना अधिकारी	जॉयदीप देब, एमएससी(इलेक्ट्रॉनिक्स), एमएससी (दूरसंचार)
सहायक प्रशासनिक अधिकारी	सी.एस. चित्रा, बीकॉम
शैक्षिक समन्वयक	प्रिंसी जैसन पेरैरा, पीएचडी
लेखा अधिकारी	संपद पात्रा, बीकॉम, पीजीडीसीए, एमबीए (वित्त)
वरिष्ठ भण्डार एवं क्रय अधिकारी	के. भास्कर राव, एमएससी
वरिष्ठ ग्रंथालय-व-सूचना अधिकारी	नबोनिता गुहा, एमएलआईएस
अध्यक्ष के वरिष्ठ सचिव	ए. श्रीनिवासन, बीए
कनिष्ठ लेखा अधिकारी	बी. वेंकटेशुलु, बीएससी
सहायक जन सूचना अधिकारी	सुशीला जी., बीएससी
वरिष्ठ जन सूचना अधिकारी, ग्रेड.।	सचिन एस. बेलवाडी, बी.ए.
परियोजना अभियंता	महादेवन एन., बीई, एमाईई
परियोजना अभियंता ग्रेड ॥	नाडिगेर नागराज, डीसीई
सहायक परियोजना अभियंता (विद्युत)	सुजीत कुमार एस., डीईई
कनिष्ठ परियोजना अभियंता (सिविल)	वीरेश एन.आर., डीसीई
परामर्शी चिकित्सा अधिकारी	जी.आर. नागभूषण, एमबीबीएस, एफसीजीपी, एम व सीएचएल में स्नातकोत्तर डिप्लोमा
	आर. त्यागराजु, एमबीबीएस
परामर्शी महिला चिकित्सा अधिकारी	कविता श्रीधर, एमबीबीएस
	अर्चना, एम.एल.वी., एमबीबीएस
	एच.वी. चंद्रलेखा, एमबीबीएस
	एलिज़ेबत डैनियल, एमए, एमफिल, पीएचडी
शरीर क्रिया चिकित्सक	वाई. योगेश, बीपीटी
मानद चिकित्सा अधिकारी	सी. सतीश राव, एमबीबीएस
2	आर. निर्मला, एमबीबीएस
सलाहकार – विशेष परियोजनाएँ एवं उपक्रमण (पहल)	ए.एन. जयचन्द्र, बी.कॉम, स्नातकोत्तर डिप्लोमा (वित्त)
मानद सुरक्षा अधिकारी	एम.आर. चंद्रशेखर, बीएससी, एलएलबी

शैक्षिक कार्यक्रम

02

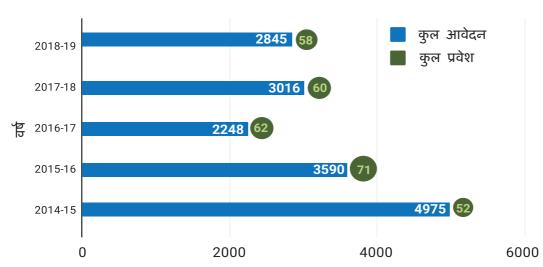

जनेउवैअकें एक ऐसा स्पंदनात्मक केंद्र है. जो विज्ञान एवं अभियांत्रिकी उपाधि कार्यक्रमों में पीएच.डी., समेकित पीएच.डी., एम.एस. (अन्संधान) तथा एम.एस.(अभियांत्रिकी) प्रदान करता है । एम.एससी., बी.ई, बी.टेक, एम.ई., एम.टेक. या एमबीबीएस वाले अभ्यर्थी इन पीएच.डी. कार्यक्रमों के लिए आवेदन कर सकते हैं । इसके अतिरिक्त अभ्यर्थियों के पास अपने उच्चतम वि.वि. परीक्षाओं में कम से कम 50% अंक होने चाहिए तथा जीएटीई/जेईएसटी/जीपीएटी या यूजीसी/सीएसाईआर -एनईटी - जेआरएफ / आईसीएमार-जेआरएफ / डीबीटी - जेआरएफ / आईएनएसपीआईआरई - जेआरएफ जैसे राष्ट्रीकृत परीक्षणों में योग्यता / अर्हता प्राप्त होना चाहिए ! अभ्यर्थियों के अंतिम चयन का आधार - उनके अपने शैक्षिक अभिलेखों, राष्ट्रीय स्तर की अई योग्यता प्राप्त परीक्षाओं में निष्पादन, रेफरियों की सिफारिशों तथा साक्षात्कार में निष्पादन होंगे । समेकित पीच.डी. कार्यक्रम पदार्थ-विज्ञान, रासायनिक विज्ञान तथा जैविकीय विज्ञान के क्षेत्रों में प्रदान किए जाते हैं । यह कार्यक्रम केवल प्रवेशों के अगस्त-सत्र के दौरान ही प्रदान किया जाता है । नामांकित विद्यार्थियों को अपने-अपने पाठ्यक्रम लेना होगा तथा अनुसंधान में सक्रिय रूप से प्रतिभागिता करनी होगी । अनुसंधान विद्यार्थी सरकार/केंद्र के मानदण्डों के अनुसार मासिक अधिसदस्यता (छात्रवृत्ति) प्राप्त करेंगे / अपने पाठ्यक्रम – कार्य तथा शोध-प्रबंध को सफलतापूर्वक पूरा कर लेने पर विद्यार्थियों को संगत उपाधियाँ प्रदान की जाएँगी । विद्यार्थियों को राष्ट्रीय तथा अंतर्राष्ट्रीय सम्मेलनों तथा कार्यशालाओं के ज़रिए नामी विज्ञानियों तथा अन्य सहपाठी विद्यार्थियों के साथ अंतर्क्रिया करने हेत् पर्याप्त अवसर प्राप्त होंगे । प्रत्येक विभाग अपनी ही संगोष्ठियों का संचालन करेगा जहाँ पर अपने अनुसंधान के बारे में चर्चा करने के लिए संकाय तथा विद्यार्थियों को अवसर प्राप्त होंगे । विद्यार्थियों के लिए जागतिक कोटि की अंतर्संरचना तथा अत्याध्निक स्विधाओं के प्रति उपागमन होगा ।

अनुसंधान प्रवेश

वर्ष 2018-19 के विगत वर्ष में केंद्र पर विभिन्न उपाधि कार्यक्रमों में 58 विद्यार्थियों ने नामांकन कर लिया है । जनेउवैअकें पर वर्तमान विद्यार्थी संख्या 325 रही है ।

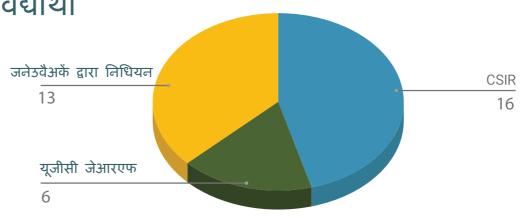
प्रदत्त उपाधियाँ

विगत वर्ष में, निम्निलिखित संख्या में उपाधियाँ प्रदान की गई : 30 पीएच.डी, 17 समेकित पीएच.डी., 1 एम.एस. (अभि.), 6 एम.एस. (जैविकीय विज्ञान); 6 एम.एस. (पदार्थ विज्ञान) तथा 5 एम.एस. (रासायनिक विज्ञान)



पाँच वर्षीय आँकड़े

विद्यार्थियों की कुल संख्या


जनेउवैअकें में आवेदन एवं प्रवेश

निधियन अभिकरणों द्वारा समर्थित विद्यार्थी

कौन आवेदन कर सकता है

एम.एस./पीएच.डी. के साथ एम.एससी., बी.ई, बी.टेक, एम.ई., एम.टेक./एमबीबीएस वाले उपाधियों एवं अभ्यर्थियों के पास न्यूनतम अपने उच्चतम वि.वि. परीक्षाओं में कम से कम 50% अंक होने चाहिए तथा जीएटी/यूजीसी-सीएसाईआर-जेआरएफ/ आईसीएमार-जेआरएफ/ डीबीटी-जेआरएफ / आईएनएसपीआईआरई-जेआरएफ/ जीपीएटी परीक्षणों में योग्यता / अर्हता प्राप्त होनी चाहिए ।

समेकित पीएच.डी. के साथ रासायन में स्नातकोत्तर उपाधि तथा विज्ञान या सांख्यिकीय के क्षेत्र में स्नातक उपाधियों में कम से कम 55% अंक होने चाहिए ।

ब आवेदन करें ?

अगस्त प्रवेशों के लिए मार्च (सभी कार्यक्रम)

जनवरी प्रवेश के लिए अक्तूबर-नवंबर (पीएच.डी. एवं एम.एस.) एम.एस.

₹ 25,000 (दिस. 31, 2019 तक) ₹ 31,000 (जनवरी 01, 2019 से)

पीएच.डी.

₹ 25,000 - 28,000 (दिस. 31, 2019 तक) ₹ 31,000 - 35,000 (जनवरी 01, 2019 से)

समेकित पीएच.डी.

₹ 15,000 - 28,000 (दिस. 31, 2019 तक) ₹ 19,000 - 35,000 (जनवरी 01, 2019 से) छात्रवृत्ति

अनुसंधान एवं विकास

03

अनुसंधान एवं विकास ही केंद्र का प्राथमिक (प्रथम) लक्ष्य रहा है; जहाँ पर विज्ञान के अंतर्विषयक अनुसंधान एवं गुणवत्ता तथा अखंडता (सत्यनिष्ठा) के उच्चतम मानकों पर महत्व दिया जाता है । अपनीसंस्थापनाके समय से ही जनेउवैअकें के अनुसंधानकर्ताओं ने महत्वपूर्ण आविष्कार तथा नवोन्मेष किए हैं, जिन्होंने केंद्र की मान्यता (पहचान) को एक चरमसीमा के अनुसंधान संस्थान के रूप में न केवल देश में बल्कि अंतर्राष्ट्रीय वैज्ञानिक समुदाय में करा दिया है। केवल विगत एक वर्ष में ही केंद्र पर किए गए अर्थपूर्ण तथा प्रभावपूर्ण अनुसंधान 250 प्रकाशनों तथा 11 प्रस्तुत एकास्वाधिकारों में परिणत हुए है । इसके अलावा, इन उपलब्धियों ने निरंतरता से वैज्ञानिक समुदाय में समाचार सृजित किया है तथा प्रत्यक्ष रूप से अपनी सामाजिक संगतता को माध्यम जगत में स्जित किया है । अनुगामी खंड वर्ष 2018-19 में की गई अपनी प्रगति को विस्तार से अपने 9 अनुसंधान एककों के द्वारा वर्णित करता है अर्थात रासायनिकी एवं पदार्थ विज्ञान एकक, विकासवादी तथा समेकित जैविकी एकक, अभियांत्रिकी यांत्रिकी एकक, भूगतिकी एकक, आण्विक जैविकी तथा आनुवंशिकी एकक, नव रासायनिक एकक, तंत्रिका विज्ञान एकक, सैद्धांतिक विज्ञान एकक तथा अंतर्राष्ट्रीय पदार्थ विज्ञान केंद्र ।

रासायनिकी एवं पदार्थ विज्ञान एकक (CPMU)

CPMU के बारे में

जनेउवैअकें पर स्थापित रासायनिकी एवं पदार्थ विज्ञान एकक एक प्रमुख अनुसंधान एकक रहा है। पदार्थ विज्ञान के प्रति एक नवल अंतर्विषयक अभिगम के साथ अपने स्थापना-समय से ही अनेक मूलभूत (भेदक) अविष्कार किए गए हैं। इस शैक्षिक वर्ष के दौरान यह एकक प्रकाशनों, पुरस्कारों तथा अधिसस्यताओं के साथ तथा अपने प्रयोगालयों के द्वारा राष्ट्रीय एवं अंतर्राष्ट्रीय सहयोगों को आकर्षित करता रहा है। दिसंबर-2017 में एक अंतर्राष्ट्रीय समीक्षा, जहाँ CPMU के योगदानों की अत्यंत प्रशंसा की गई है – के आधार पर उन्नत पदार्थ विज्ञान स्कूल (SA-Mat) की स्थापना, अंतर्राष्ट्रीय स्तर पर CPMU की गोचरता (प्रत्यक्षरता) के वर्धन के रूप में की गई है।

अनुसंधान क्षेत्र

CPMU में अनुसंधान का ध्यान निम्नों पर केंद्रीकृत रहा है :-

- संगणानात्मक आण्विक विज्ञान ;
- रामन और ब्रिलाइन वर्णक्रमदर्शी,
- उच्च दबाव अनुसंधान;
- नानो-संविरचना तथा युक्तियाँ;
- जैविक वियुन्मानिकी, प्रकाश वोल्तानिकी, साधन, भौतिकी जैव और वियुन्मानिकी;
- चुंबकत्व, उच्च चालकता तथा बहु-लौहकता, प्रकार्यात्मक पदार्थ ।

अनुसंधान अंतर्दिष्टियाँ

- पदार्थीं में सांस्थितिकीय पारगमन के मूल (स्रोत) में अंतर्दृष्टि को उच्च दाब रामन अध्ययनों द्वारा प्राप्त कर लिया गया है।
- प्रकाश-निर्भर स्थानात्मक संवेदात्मक संसूचक साधनों की संविरचना के लिए एक लयात्मक अभिगम का प्रदर्शन, प्रकाशवर्णीय अज़ोबेंज़ेनअणुओं के साथ तार्किकता से अभिकल्पित परा विद्युत उच्च-जालक संरचनाओं के आधार पर किया गया है ।
- अधिअनुचालनीय एकल स्फटिक TiN/(Al, Sc) N धातु / अर्धचालक उच्च जालकों की स्कॉटी परिघ उच्चता का निर्धारण प्रथम बार किया गया है।
- n-प्रकारी p-प्रकारी वाहक पारगमन क्षेत्र के पर्यंत स्केंडियग नाइट्राइड (ScN) की कठोर-पिट्टका वियुन्मानीय संरचना की संस्थापना की गई है (सिद्ध कर दिया गया है)।
- एक सरल एक चरणीय दहन पद्धति द्वारा निर्मित कोबाल्ट आक्साइड @c उत्प्रेरक के लिए उच्च आम्लजनक-विकास बलगतिकी को दर्शाया गया है।
- न्यूट्रॉन विवर्तन द्वारा मिश्र दुर्लभ-मृत्तिका मैंग्नाइट में छद्म सर्पित अधुवी आधारी अवस्था की पहचान कर ली गई है ।
- नवल द्वय अनुक्रमित ध्रुव बहुलौहिक पेरोवस्काइटों का संश्लेषण उच्च दाव तथा उच्च तापमान पर किया गया है।
- आवेश सहायित जलजनक बंधक के ज़िरए विभिन्न आण्विक बंधकों द्वारा जो हाइड्रोजेल (जलोजेल) के प्रति स्व-संयुज्य होता है । उस जल-विलायक धातु-जैविक घनाकृति (क्यूब)
 — Ga(III) का अभिकल्प तथा संश्लेषण किया गया है ।
- प्रतिबिंबन तथा जैविकीय वितरण हेतु एक विलायक अनुक्लकारी गतिकीय धातु-जैविक मृदु संकर के बारे में रिपोर्ट की गई है। (विवरण दिया गया है)।

चंद्रभास नारायणा

पीएच.डी., एफ.ए.एससी., एफ.आर.एससी., एफ.एन.ए.एससी., प्रोफेसर व चेयर

प्रकाश प्रकीर्णन प्रयोगालय

नवीन सांस्थितिकीय ऊष्मारोधकों का आविष्कार उच्चदाब रामन अध्ययनों के अधीन उपलब्ध कराई है। ZIF-8 – धातु जैविक ढाँचा पदार्थ का अध्ययन अनिल अधिशोषण के अन्वयन की उपयोगिता को समझ लेने के लिए कियागया है। इसके विभिन्न रूपों की पहचान समान वर्णक्रमदर्शी के उपयोग द्वारा की गई है। SER का कार्य दो नए निष्कर्षों को अग्रसर करता है।

SERS के अन्वयनों में से एक है – रोग – निदानिकी के लिए DNA तथा RNA जैसे जैव-अणुओं की संसूचना के अन्वेषण के लिए है। दुमिकृतिकतयीय संरचनाओं के उपयोग द्वारा रामन अंकक को परिष्करित (रूपांतरित) करनेवाले एक नवीन कौशल ने यह दर्शाया है कि वह अधिक उत्तमतर, सस्ता है तथा जैव-निदानिकी में व्यापक संभाव्यवाला रहा है। SERS के एक और अन्वयन में हमने रामन का उपयोग बाह्य पिंडों के लिए पहचानात्मक उपकरण के रूप में किया गया है, जो रोगों के लिए महत्तवपूर्ण अंकक (मार्कर) है तथा यह एक आगामी (आविर्भावी) क्षेत्र रहा है। प्रारंभिक अध्ययन प्रोत्साहनदायक रहे हैं तथा हम विभिन्न कोशिका पंक्तियों से विभिन्न बाह्य पिंडों की पहचान कर पाए हैं।

TRC के अधीन जैव-निदानिकी में उपयोग के लिए नवीनता से विकसित वहनीय रामन वर्णक्रममापी ।

प्रमुख प्रकाशन :

राजाजी वी. तथा अन्य 2018. "InTe में दबाव आवेशित पट्टिका प्रतिलोमन विद्युन्मानीय तथा संरचनात्मक प्रावस्था पारगमन : एक संयुक्त प्रयोगात्मक तथा सैद्धांतिक अध्ययन" – Physical Review – B.97: 155158.

राजाजी वी. तथा अन्य 2018. "जलस्थैतिक दबाव के अधीन 1T-TiTe2 के संरचनात्मक, स्पंदनात्मक तथा विद्युतीय गुणधर्म ।"

सी.एन.आर. राव

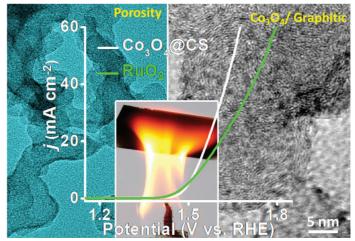
डी.एससी., पी.एच.डी., एफ.आर.एस., मानद एफ.आर.एस.सी.,लाइनस पॉलिंग अनुसंधान प्रोफेसर तथा निदेशक. ICMS

हमारा अनुसंधान दल ग्राफेन तथा उससे परे परतीय पदार्थों तथा ऑक्साइडों, नाइट्राइडों, सल्फाइडों जैसे विभिन्न प्रकार के जैविक व अजैविक नानो पदार्थों के संश्लेषण, गुणधर्म वर्णन तथा मापन में विशेषज्ञता रखता है । हमारे दल की वर्तमान अनुसंधान रुचियों में सम्मिलित हैं – जलविखंडन द्वारा प्रकाश रासायनिक जलजनक उत्पाद, अर्ध चालक धातु चल्कोजनाइड तथा उनके भौतिकीय गुणधर्म तथा ग्राफेन से परे पदार्थ ।

प्रमुख प्रकाशन :

रॉय ए. तथा अन्य 2019. कैङ्गियम फॉस्फोहेलाइडों के संरचनात्मक लक्षण तथा HER क्रियाकलापों । Angew Chem Int Ed. 58: 6926–31.

मंजुनाथ के. तथा अन्य 2019. मुखपृष्ठ आवरण, Hg,NF के अनुरूप Analogue of HgO. Euro J Inorg Chem. 19: 2396.


Aliovalent Anions Substitution Transformation M = Zn, Ti, Cd, Hg... 340-380 °C NH3 HgF2 HgF2

ईश्वरमूर्ति एम.

पीएच.डी., प्रोफेसर

नानो पदार्थ एवं उत्प्रेरक प्रयोगालय

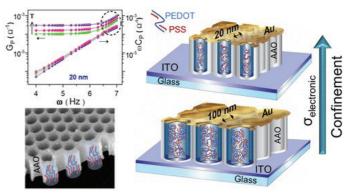
प्रोपेन संक्षेषण के लिए प्रोपेन के ऑक्सिडेटिव निर्जलीकरण के लिए पर्यावरण – मैत्रुक सिक्रिय एवं चयनित उत्प्रेरकों का विकास – चुनौतीयुक्त उत्प्रेरक अभिक्रियाओं में से एक रहा है। इस अभिक्रिया में विशाल (भारी) औद्योगिक संभाव्य रहे हैं। हाल ही में, हमने प्रोपेन के ऑक्सिडेटिक निर्जनीकरण के लिए षट्कोणीय बोरोन नाइट्राइड के लिए उच्च उत्प्रेरक अभिक्रिया को दर्शाया है। प्रोपेन के अति उच्च परिवर्तन (~50% के) पर अल्केनेस (~70%) के लिए महत्वपूर्ण चयनशीलता प्राप्त कर ली गई है। इस उत्प्रेरक को अमोनिया की उपस्थित में 100 घंटों से भी अधिक समय तक अपनी अभिक्रिया को प्रतिधारित करते हुए पाया गया है। हमने एक सरल एक चरणीय दहन पद्धित द्वारा कोबाल्ट आक्सॉइड @C उत्प्रेरक के लिए उच्च जलजनक विकास बलगितकी दर्शायी है।

OER अभिक्रिया के लिए CO3O4@C उत्प्रेरकों के एक चरणीय दहन संश्लेषण ।

प्रम्ख प्रकाशन :

कुमार बी.वी. तथा अन्य 2018. "नानो-वाहिनियों में आयॉन-परिवहन के लिए अधि-आण्विक स्विच्चन ।" ACS. अनुप्रयुक्त पदार्थ एवं अंतरापृष्ठ 10.23458 23465.

सिंह डी.के., तथा अन्य 2018. बत्ती चयन (पिक ए विक) : "वर्धित जलजनक विकास बल गतिकी के लिए Cl_3O_4 कार्बन के एक सरल अतितेज दहन संश्लेषण" – ACS Apply Energy.Matter. 1: 4448.4452.

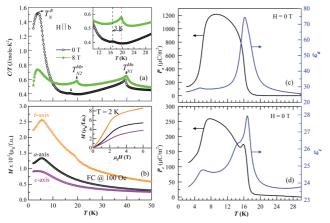

के.एस. नारायण

पीएच.डी., एफ.ए.ए.एससी., प्रोफेसर

आण्विक विद्युन्मानिकी प्रयोगालय

जैविक (असावयव) हेलाइड पेरोपस्काइट के एक सक्रिय परत के उपयोग द्वारा प्रकाश अवलंबित स्थान-संवेदक संसूचग (PSD) का प्रदर्शन किया गया है। हमने प्रकाश वर्णिक अज़ोबेंज़ेन अणुओं के साथ तार्किकता से अभिकल्पित पराविद्युतीय – उच्च – जालक संरचनाओं पर आधारित ऐसे साधनों (यंत्रों) की संविरचना हेतु एक लयात्मक अभिगम का प्रदर्शन किया है। इन नानो पराविद्युतीयी से युक्त आयॉनिक आण्विक तथा परमाणुवीय धुवीकरण का उपयोग बहुलक पतली फ़िल्म ट्रान्सिस्टरों (TFTयों) में 2 cm²V¹S¹ से अधिकवाले P-टाइप क्षेत्र प्रभावी चलनशीलता (µFET) के साथ उच्चनिष्पादन विद्युन्मानिकी को प्राप्त करने हेत् किया गया है।

हमने विलयन प्रक्रियित विद्युन्मानिकी के लिए गलनक्रांतिक धातु मिश्रातुओं के आसंजक तथा प्रकाशीय गुणधर्मों का अध्ययन किया है। हमने संकर पेरोवस्काइट सौर कोशिकाओं के निष्पादन प्राचलों के प्रति प्रकाश-धारा (रव) ध्विन-उच्चावचन में वीक्षित लक्षणों की स्पष्ट अन्योन्याश्रिता की रिपोर्ट दी है। वर्धनीय (नाद) रव आयाम की सामान्य प्रवृत्ति, जो आवृत्ति के व्यापक-रेंज तक विस्तरित होता है – को वयोवर्धन (काल प्रभावन) के प्रकार्य (प्रभाव) के रूप में सिद्ध कर दिया गया है। विशिष्ट साधनों प्रकाश धारा के उच्च विभेदक स्थानीय मानचित्रण तथा नाद (रव) वर्णक्रम के संबद्ध परिवर्तन ने अंतर्निहित प्रवृत्ति की पृष्टि की गई है।


विद्युन्मानीकी परिरोध ।

सुंदरेशन ए.

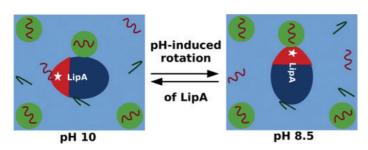
पीएच.डी., प्रोफेसर

उच्च चालकता तथा च्ंबकत्व प्रयोगालय

हमने हालही में यह आविष्कार कर लिया है कि द्वयात्मक अनुक्रमित पेरोवस्काइट NaRMWO (R-दुर्लभ मृत्तिका तथा M=Mn, CO तथा Ni), रोचक चुंबक विद्युतीय बहुलौहिक गुणधर्मों को प्रदर्शित करते हैं । टाइप-II बहुलौहिकता से भिन्न इन यौगिकों में चक्रण-संरचना सम परिमाणी परंतु अ-रेखीय होती है । चुंबकश्यानता युग्मन के बारे में यह विश्वास किया जाता है कि यह इन ध्रुव – चुंबकत्वकेचुंबकीय अनुक्रमण पर वीक्षित ध्रुवीकरण में परिवर्तन के लिए उत्तरदायी होता है । रोचक विषय यह रहा है कि हमने द्वयात्मक पेरोवस्काइट BizFeAlO में सम-सह संयोजक

तापमान तथा चुंबकीय क्षेत्र के साथ विभिन्न चुंबकीय प्रावस्थाओं को दर्शाने वाले ${\rm Gd_{0.5}Dy_{0.5}MnO_3}$ के प्रावस्था मानचित्र ।

धनायन का आविष्कार किया है, जो परिवेशी तापमान पर लौह विद्युतिकी तथा चुंबकत्व को प्रदर्शित करता है । एक ओर महत्त्वपूर्ण अध्ययन रहा – Gd_{0.5}Dy_{0.5}MnO₃ में अनुप्रयुक्त चुंबकीय क्षेत्रों तथा अ-धुवीय आधार अवस्था के अधीन एक दिशा के पर्यंत असामान्य धुवीकरण वर्धन होता है ।


प्रम्ख प्रकाशन :

डे एच. बग तथा अन्य 2019. Gd_{o.s}Dy_{o.s}MnO₃ में अत्यंत नादात्मक चुंबकीय सर्पिल तथा विद्युतीय धुवीकरण । *Phys Rev Mat*. 03: 044401-044410.a

सेन ए तथा अन्य 2019. प्रखर प्रदीप्त जैविक – अजैविक $[CH_6N_3]_2$ MnCl $_4$. हेलिडे में स्विच्चनीय पराविद्युतीय तथा चुंबकीय गुणधर्मों के आरपार अप्रत्याशित 30K हिस्टरेसिस (उत्तरवर्धिता) J Mater Chem C, 4838-4845.

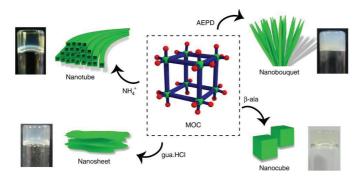
बालसुब्रमणियन एस

पीएच.डी., एफएएससी, प्रोफेसर

Thesit Surfactant की उपस्थिति में PH में परिवर्तन के साथ lidless lipase LipA के घूर्णन का आविष्कार

आण्विक अनुरूपण प्रयोगालय

उन्नत आण्विक अनुरूपणों का उपयोग करके हमने Thesit Surfactant की उपस्थिति में PH में परिवर्तन के साथ lidless lipase LipA के घूर्णन का आविष्कार किया है ।


प्रमुख प्रकाशन :

अवुला एन.यू.एस. तथा अन्य 2018. युग्म आयॉनिक द्रव मिश्रणों में आवेश पर्यावरण एवं बंधकगतिकी : एक संगणानात्मक अध्ययन. जे (पीजीए चेम लेट्) J. Phys. Chem Lett. 9:3511-3516.

मिश्रा ए. तथा अन्य 2018. इंधन चालित नियंत्रित अधिआण्विक बहुतयीकरण के जिरए जैव-अनुकरण अस्थायी स्व-संयुज्य Nature Commun. 9:1295.

तपस के. माजी

पीएच.डी., एफ.आर.एससी., एफ.ए.एससी., प्रोफेसर

विभिन्न आण्विकबंधकों के साथ MOC के स्व-संयुज्य ।

आण्विक पदार्थ प्रयोगालय

हमारे प्रयोगालय ने प्रकार्यात्मक हाइड्रोजेलों की ओर धातु-जैविक घनों के बंधक चालित स्व-संयुज्यों को दर्शाया है । इसके अतिरिक्त हमने प्रतिबिंबन तथा जैविकीय वितरण के लिए विलायक हाइड्रोकार्बनों के पृथक्करण के लिए लचीले (श्यान) MOFओं का उपयोग प्रभावात्मका से किया गया है । संयोजित सूक्ष्म-रंध्रीय बहुलक, जो धातु नानो कणों के साथ मादित हैं – उनका उपयोग वियुत उत्प्रेरणा तथा वियु – रासायनिक जल-विखंडन के लिए किया गया है ।

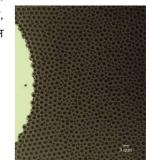
प्रम्ख प्रकाशन :

समंता डी. तथा अन्य 2019. प्रतिबिंबन एवं जैविकीय वितरण के लिए विलायक अनुकूलकारीधातु-जैविक मृदु संकर । Angew Chem Int Ed. 58: 5008.

राजेश गणपति

पीएच.डी., सहयोगी प्रोफेसर

मृद् पदार्थ प्रयोगलय

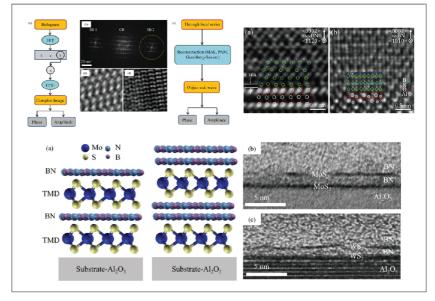

हालही के एक प्रयोगमूलक अध्ययन में हमारे दल ने प्रथम बार यह प्रदर्शित किया है कि द्वि-विकिरक (विसरणशील) बुलबुलों के सघन अव्यवस्थित (विकृत) संवेष्ठन में यांत्रिकीय स्मरणों के (कोढ़ीकरण) कूटन होता है । यह अध्ययन, बहु-स्मरणों के कूटन को दर्शाने में समर्थ रहा है तथा इन स्मरणों के संरूपण में मूलभूत अंतर्दृष्टि उपलब्ध कराया है । इस (कार्य) लेख को PRL में प्रकाशित किया गया तथा इसे संपादक के सुझाव के

रूप में लिया गया है तथा एक (पत्रिका) जर्नल में आवरण-पृष्ठ के रूप में प्रकाशित किया गया है । इसे "अमरीकी भौतिकी संस्थान" के एक जनप्रिय विज्ञान-पत्रिका – 'फ़िजिक्स टुडे' में भी प्रकाशित किया गया है । इसके अतिरिक्त, हमारे दल ने अन्य दो अध्ययनों को भी पूरा कर लिया है:- प्रथम – कलिलीय छड़ों के निलंबनों में अपरूपण-प्रगाढ़न पर तथा द्वितीय – तनाव – उपशमन प्रतिमानों पर कलिलीय स्फटिकों पर स्व-संगठित वर्धन पर ।

प्रमुख प्रकाशन :

मुखर्जी एस. तथा अन्य 2019. मृदु काच के पराभवी बिंदु पर यांत्रिक स्मरणों का बल अधिकतम होता है । Phys.Rev. Lett. 122:158001.

गणपति डी. तथा अन्य 2018. कलीलिय काच पारगमन के अभिगम पर अनाकारीय-अनाकारीय अंतरापृष्ठों के वर्धक सतह तनाव के अनुमापन । Nature Commun. 9:397.

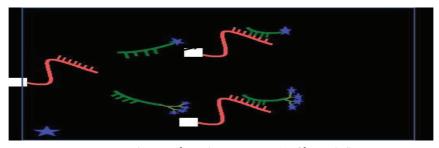


अनाकारीय बुलबुले तरापा (बेड़ा)

रंजन दत्ता

पीएच.डी., सहयोगी प्रोफेसर

उच्च प्रसारण विद्युदणु सूक्ष्मदर्शी प्रयोगालय (HRTEM) विभेदन विगत शैक्षिक वर्ष में हमने सफलतापूर्वक मात्रात्मक उच्च विभेदक प्रसारण वियुदणु सूक्ष्मदर्शी (HRTEM) का अन्वयन इन-लाइन (प्रतीक्षा) तथा प्रथम-अक्ष स्वलेख – इन दोनों द्वारा किया है । हमने विशाल क्षेत्रीय पतली फ़िल्म-रूप पर अति कठोर अधि-स्थिर w-BN को स्थिरीकृत कर दिया है । हमने ऊर्जा-अन्वयन के लिए 2D पारगमन-धातु डाइचेल्कोजेनाइडों की पतली-फ़िल्म विषम संरचनाओं को विकसित कर लिया है । अब हम सक्रियता से द्वि-ध्रुवी-साधनों (यंत्रों) तथा स्पिनट्रॉनिक्स (चक्रणिकी) में अन्वयन हेतु पतली फ़िल्म रूप के Zno में P-मादन तथा चुंबकत्य कार्य में कार्यरत रहे हैं । हम अपने TiTAN (टाइटान) सूक्ष्मदर्शी की अद्वितीय (सक्षमता) समर्थता का उपयोग करके समस्याओं को समझ लेने का प्रयास कर रहे हैं ।

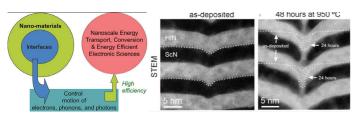

(a) तथा (e) क्रमशः स्वलेख तथा HRTEM प्रतिबिंब (प्रतिकृति) श्रेणियों से प्रावस्था तथा प्रवर्धन (विस्तार) प्राप्त करने हेतु पुनर्निर्माण पद्धतियों में निहित चरण । (b) एक CB तथा दो SB यों को दर्शानेवाले स्वलेख के फोरियर रूपांतरण । (c) तथा (d) <11-20>Z.A के पर्यंत ZnO अध-स्तरीय पतली फ़िल्म के परमाणुवीय विभेदन स्वलेख तथा HRTEM के उदा. है ।

श्रीधर राजाराम

पी.एच.डी., सहयोगी प्रोफेसर

बहलक प्रयोगालय

पॉलिकार्बोनेट ऐसे (टिकार्क) स्थायी, (सख्त) कठोर तथा जैव अपकर्षी बहुलक होते हैं,जिनका उपयोग विस्तृत रूप से दैनंदिन जीवन में किया जाता है । परंतु, उनके उपयोग से संबंधित प्रमुख समस्या (प्रश्न) है – एकतयी इकाई के रूप में bisphenol-A (बिसफ़ेनॉल-ए) की उपस्थित विगत वर्ष में हमने बिसफ़ेनॉल-ए-मुक्त पॉलि-कार्बोनेटों के विकास के लिए एक परियोजना प्रारंभ की है । हम इस संबंध में चक्रिय कार्बोनेटों का प्रदेश-चयनीय वलय मुक्तक बहुतयिकरण (ROP) पर कार्य कर रहे हैं । इन चक्रीय कार्बोनेटों का निर्माण सरलता से 1,3 डाइयोलों से किया जा सकता है, जिसे क्रमशः अल्डोल (aldol) उत्पाद के न्यूनन द्वारा प्राप्त किया जा सकता है । इस प्रकार परिवर्तनीय गुणधर्मों के साथ बहुलक की एक श्रेणी के प्रति सहज ही अभिगम प्राप्त किया जा सकता है । असममितीय कार्बोनेटों के संदर्भ में, बहुलक के यांत्रिकीय गुणधर्म प्रादेशिक नियमिता पर निर्भर होते हैं । (ROP) के गुणधर्म प्रादेशिक नियमिता का नियंत्रण एक कठिन कार्य है तथा हमने एक ऐसे नवल अंग (जैव) उत्प्रेरकों को विकसित कर लिया है, जो एक उत्तम प्रदेश-नियमितता से युक्त होता है । हम इन नवल बहुलकों के गुणधर्मों के अन्वेषण की प्रक्रिया में हैं ।


द्रमाश्म रामन अंकक (मार्कस) संसूचना क्षमता को वर्धित करते हैं ।

बिवास साहा

पी.एच.डी., संकाय अधिसदस्य

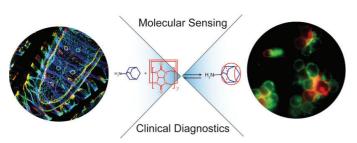
विषम जननीय समेकन अनुसंधान प्रयोगालय

हमने विगत शैक्षिक वर्ष में (अन्य अनेक अनुसंधान विकासों के साथ) प्रमुख दो आविष्कार किए हैं । प्रथमतः (समकालीकरण) सिंक्रोट्रॉनिक — आधारी क्ष-िकरण अधिशोषण तथा उत्सर्जन वर्णक्रमदर्शी मापनों तथा प्रथम-सूत्र नमूनन विश्लेषण के संयोजन के साथ, हमने n-टाइप से p-टाइप के प्रति वाहक पारगमन प्रदेश के पर्यत (स्कांडियम नाइट्राइड ScN) Scandium Nitride की कठोर पिट्टका वियुन्मानीय संरचनाओं का प्रदर्शन किया है। हमारे पिरणामों ने यह दर्शाया है कि अन्य III नाइट्राइड अर्ध-चालकों से भिन्न अभिप्रेत Mg रंध्र मादन तथा अनिभिप्रेत O अशुद्धता SCNओं के मूलभूत पिट्टका अंतर के अंतर्गत त्रृटि अवस्थाओं को नहीं दर्शाता तथा पिट्टका अंतर तथा पिट्टका-धार अपरिवर्तित रहते हैं । द्वितीयतः क्ष-किरण प्रकाश उत्सर्जन वर्णक्रमदर्शी तथा नमूनन विश्लेषण के संयुक्त के साथ हमने प्रथम बार ऊष्म-वियुतीय प्लास्मोनिक तथा नानो-प्रकाशीय ऊर्जा पिरवर्तन पर आधारित उनके ऊष्मा आयॉनिक उत्सर्जन के लिए Tin/(AI, SC)N धातु/अर्ध चालक उच्च जालांध्रों की स्कॉटी Schottky रोधिका की उच्चता का निर्धारण किया गया है।

HIRG अनुसंधान समूह की अनुसंधान योजना को प्रस्तुत किया गया है । उच्च विभेदक प्रसारण वियुत सूक्ष्म रूपरेखा (HRTEM) उच्च जालक अधि-पदार्थों में विपथन पाइप (नलिका) विसरण रूपण को प्रस्तुत कियागया है ।

प्रमुख प्रकाशन :

नायक एस. तथा अन्य 2019. n-टाइप से p-टाइप वाहक पारगमन क्षेत्र पर्यंत स्कैंडियम नाइट्राइड (ScN) कठोर पट्टिका विद्युन्मानीय संरचना, Phys. Rev. B. शीघ्र संचार. 99 161117.


मौर्य के.सी. तथा अन्य 2019. अधिअनुचालनीय n-टाइप ScN पतली फिल्मों में युग्मित प्लॉसमॉन – LO द्वनिमात्रिकों से तरंग – सदिश निर्भर रामन प्रकीर्ण (बिखेरना). *Phys. Status Solidi RRL*.1900196.

सरित अगस्ती

पी.एच.डी., संकाय अधिसदस्य

कार्यक्रमणीय आण्विक अभिकल्प प्रयोगालय

अ-सह-संयोजक निर्माण खंडों के उपलब्ध रंगपटलों में से स्थूल चक्रीय अणुओं पर आधारित संक्षेषित पोषक-पोषित मूलभूत्व (मूलभाव) विशेष रूप से जैविकीय संकीर्णताओं (जिटलताओं) में अपने विशिष्ट मान्यता प्राप्त गुणधर्मोंक कारण आकर्षक होते हैं । हाल ही में हमने, मूलभूत तथा (वैचकीय) मेडिकल अनुसंधान की संगतता के साथ विभिन्न प्रकार की नवल प्रौधोगिकियों के विकास हेतुजैविकीय अंतरापृष्ठ के साथ संक्षेषित पोषक पोषित प्रणालियों को संयोजित किया है । इन उदा. में सिन्मिलित हैं – जैव लंब कोणीय प्रतिबिंबन तथा संवेदन, उच्च विभिद्रन प्रतिबिंबन तथा चिकित्सात्मक पदार्थों के वितरण तथा सिक्रयन के लिए नवल अभिगम । प्राथमिक लक्ष्य – अभिकर्ताओं (एजेंटों) अर्थात प्रतिपिंडों प्रतिरोगकारक के साथ CB[7] के संयोजन से तथा ADA संयोजित फ्लुरोफोर के अन्वयन द्वारा, हमने यह दर्शाया है कि CB(7) तथा ADA के मध्य में पोषक-पोषित अंतर्कियाएँ, कोशिकाओं में जैव लंबकोणीय – प्रतिबिंबन के लिए स्वस्थाने अ-सहसंयोजक तंत्र को उपलब्ध कराती है । इस अ-सह-संयोजक लेबलिंग प्लेटफार्म को ड्रोसाफिला मेलानो-गास्टर नमूना प्रणाली के उत्तक प्रतिदर्शों की सिम्मिश्रताओं (संकीर्णताओं) में प्रतिबिंब लक्ष्य अणुओं में रूपांतरित कर लिया गया है । इसके अतिरिक्त, हमने प्रणाली का उपयोग, वर्तमान सह-संयोजक प्रणाली का उपयोग, वर्तमान सह-संयोजक प्रणाली का उपयोग, वर्तमान सह-संयोजक के लिए किया है तथा इस प्रकार, उनके संयोजन को एकल जैविकीय प्रणालीके भीतर ही बहु जैव अणुओं के एकसाथ लेबलिंग के लिए उपयोग किया जा सकता है । हमने यह भी सिद्धकर दियाहै कि अधिस्थैतिक अर्बुद रोग-से संबद्ध कोशिका सतह प्रोटीन अंकक (मार्कर) के प्रतिबिंबन द्वारा तथा सजीव (सिक्रय) कोशिकाओं में अल्प अणु लक्षीय F-actin के वितरण तथा गतिकी को दर्शानेवाले में प्रतिबिंबन द्वारा सजीव कोशिका पर्यावरण में प्रणाली की उपयोगिता होती है ।

संश्लेषित पोषक-पोषित प्रणाली मध्यस्थित आण्विक संवेदन तथा नैदानिक निदानिकी कौशल ।

प्रमुख प्रकाशन :

ससमल आर. तथा अन्य 2018. कोशिकाओं में तथा ऊतकों में संश्लेषित पोषक-पोषित संयोज्य आण्विक मान्यता का तेज स्थिरता चयनित जैवलंबकोणीय प्रतिबिंबन । Anal Chem. 90(19): 11305-14.

सिन्हा एस. तथा अन्य 2018. गतिकीयता से संयोज्य कूष्मांड यूराइल पोषक तथा नानो कण पोषित साँचे से प्रत्यावर्ति संपुटीकरण तथा उद्दीपक प्रतिक्रियात्मक जैविकीय वितरण । *J Mater Chem* B. 6: 7329-7334.

एकक के सदस्य

प्रोफेसर व चेयर

चन्द्रभास नारायणा

लीनस पॉलिंग अन्संधान

प्रो. सी.एन.आर. राव

प्रोफेसर

बालसुब्रमणियन एस. ईश्वरमूर्ति मुतुस्वामी. कुलकर्णी जी यू (पुनर्ग्यहणाधिकार के साथ 21.4.15 से जारी) के.एस. नारायण ए. सुंदरेशन एस एम शिवप्रसाद (पुनर्ग्यहणाधिकार के साथ 11.08.17 से जारी) तपस कुमार माजि

सहयोगी प्रोफेसर

राजेश गणपति (ICMS के साथ सहयोगी संकाय) रंजन दत्ता (ICMS के साथ सहयोगी संकाय) श्रीधर राजाराम (ICMS के साथ सहयोगी संकाय)

संकाय अधिसदस्य

बिवास साहा (ICMS के साथ संयुक्त रूप से) सरित अगस्ती (CPMU के साथ संयुक्त रूप से)

अनुसंधान विद्यार्थी

अब्दुल अज़ीज़ एच, अभिजित चट्टर्जी, अभिजित सेन, अभिरूप लाहरी, अभिषेक कुमार, अभिषेक पॉल, अलोलिका गंगूली, अनारण्या घोराय, अनिरुद्ध मिरमिरा, अंजली गौर, अंजना जोसेफ, अरिंदम मुखर्जी, अरुणव साहा, आषुतोश कुमार सिंह, अवुला वेंकट सिव निखिल, बदरी विशाल, भरत बी, बिदेश बिस्वास, ब्रिजेश, चैताली सौ, सी एस दीपक, देबेन्द्र प्रसाद पाण्डा, धीमही, दिव्या, दिव्या सी, फरुख़ अहमद रहिमी, गणेश एन, ग्रंजन शर्मा, जानकी एस, कोंपेल्ला वी के, श्रीनाथ, कोर्लेपरा दिव्या भारती, कृष्ण चन्द मौर्या, लक्ष्य धीर, मनीश तिवारी, मनोदीप मोण्डल, मीनाक्षी पहवा, मोहित चौधरी, मोमिन अहमद, नरेंद्र कुमार, नवनीत सिंह, निजिता मैथ्यू, निकिता गुप्ता, निलोयेंद् रॉय, निमिश डी, पारुल वर्मा, पवित्रा नित्यानंद शानबाग, प्रज्ञा अरोड़ा, प्रियांका जैन, पुरोहित सुमुख अनिल, राघेश ए वी, राग्य अरोड़ा, राजेन्द्र कुमार, रवि शंकर पी एन, संचिता कर्माकर, शंतन् अगरवाल, शरोना थॉमस होर्ता, शशांक चतुर्वेदी, शिवानी ग्रोवर, शिवराम बी कुबकड्डी, सिनय सिमंता बेहेरा, सोहिनी भट्टाचार्य, सोन् के पी, सौमिता चक्रबोर्ती, सौमेन प्रधान, सौर्ज्यदीप चक्रबोर्ती, श्रीमायी मुखर्जी, सुभजित लाहा, सुदर्शन बेहेरा, स्दीप दास, स्कन्या दास, स्ऋषि वशिष्ठ, स्वप्नसोपान दत्ता, स्वराज सर्वोत्तम, स्वर्णमयी मिश्रा, तरणदीप सिंह, उषा मंजुनाथ भट्ट, वी. राजाजी, यंडा प्रेमकुमार

अन्संधान वैज्ञानिक बी

अनूप एस, सुरेश जे

अन्संधान सहयोगी

आशिष सिंह, कमली केशवन, प्रशांत कुमार, शिवण्णा एम, स्यमंतक रॉय, वेंकट सुरेश मोथिका

SERB (TARE)

शफीक कुलथिंटे मीथल

SERB राष्ट्रीय PDF

मेहराज उद दिन शेख़, मनोज कुमार बर्मन, सांद्र दियास, सुबर्णा डे

परियोजना सहायक

गौवर विनायक धोपेश्वरकर, सुनामी एस मोरिसन

कनिष्ठ अनुसंधान अधिसदस्य

मानवेंद्र सिंह, मोनिका श्वेता बोस्को

वरिष्ठ तकनीकी अधिकारी

श्रीनाथ वी, श्रीनिवास एस

परियोजना तकनीकी सहायक

अभिनंदन रेड्डी बी

अन्संधान एवं विकास सहायक

अनिल कृष्ण कोंडुरी, के.पी. सोनु, राह्ल कुमार

मेट्रॉनिक प्रयोगालय सहायक

स्नोज के आर

उपकरण स्विधा - प्रभारी

राहुल भारद्वाज ग्लास ब्लोअर (काच धमित्र) (अस्थायी) श्री नन्द किशोर

परामर्शी

सुमन बैनर्जी

तकनीशियन

सौम्या सी

CPMU की एक झलक

संकाय द्वारा प्राप्त पुरस्कार

संकाय द्वारा प्राप्त प्रस्कार

प्रो. जी.यू. कुलकर्णी – एम आर एस आई – प्रतिष्ठित व्याख्यानदाता पुरस्कार – (2019-20); रासायनिकी एवं पदार्थ विज्ञान में उत्कृष्ठता के लिए एस.ए.एस.टी.आर.ए. सी.एन.आर. राव पुरस्कार (2019-20)

प्रो. तपस कुमार माजी - भारतीय विज्ञान अकादमी, बेंगलूर की अधिसदस्यता ।

प्रो. चन्द्रभास नारायणा – भारतीय विज्ञान अकादमी, बेंगलूर की अधिसदस्यता ; मिजुशिमा रामन व्याख्यान 2018.

प्रो. ए सुंदरेशन – घन अवस्था तथा पदार्थ रासायनिकी पर अनुसंधान के लिए राष्ट्रीय पुरस्कार (2018). MRSI-ICSC तथा पदार्थ-विज्ञान वार्षिक पुरस्कार (2019).

बिवास साहा - SERB अंतर्राष्ट्रीय यात्रा पुरस्कार ।

विद्यार्थी द्वारा प्राप्त पुरस्कार

श्रीमायी मुखर्जी – सुश्री श्रीमायी मुखर्जी ने एक अनुसंधान लेख प्रकाशित किया, जो उस सप्ताह के अंक के लिए संपादकीय सुझाव तथा आवरण पृष्ठ बन गया ।

राजाजी विन्सेट - मि. राजाजी विन्सेंट ने दिनांक 2-7 सितंबर, 2018 को अवेरू पोर्तुगल में हुई 56वीं यूरोपीय उच्च दाब अनुसंधान दल (EHPRG) बैठक में उसके अत्युत्तम भित्ति चित्र प्रस्तुतीकरण पुरस्कार प्राप्त किया ।

प्रायोजित परियोजनाएँ

वर्ष 2018-19 के दौरान प्राप्त धनराशि

नई परियोजनाएँ

10

19.33 करोड़

जारी परियोजनाएँ

23

24.45 करोड़

12 पीएच.डी. तथा 3 एम.एस. प्रवेश प्राप्त विद्यार्थियाँ

9 पीएच.डी. तथा 6 एम.एस. स्नातक प्राप्त विद्यार्थियाँ

79 प्रकाशन

विकासवादी तथा समेकित जैविकी एकक (EIBU)

EIBU के बारे में

जैविकीय प्रणालियाँ श्रेणीबद्ध रीति में संरचनात्मकता से आयोजित होती हैं तथा अण्ओं से लेकर पारिस्थितिक जीवन-तंत्र तक श्रेणी-स्तर पर इनका अध्ययन किया जा सकता है । फिर भी, प्रकार्यात्मकता से इन जीवन-तंत्रों में संरचनात्मक संकीर्णता (सिम्मश्रता) के विशेष रूप से समेकित संपर्क अन्माप होता है । अधिकांश संदर्भों में, इस संकीर्णता (सम्मिश्रित) के मूलभूत (प्रधान) संरचनात्मक स्तर जो प्रकार्यात्मकता से समेकित पारिस्थितिकीय अस्तित्व का होता है । वह बह्कोशिकीय जीव का होता है, जो अधिकांश रूप से प्राथमिक स्तर का होता है, जिस पर प्राकृतिक चयन कार्य करता है । इस प्रकार, इस जैविकीय संकीर्णता के विभिन्न संरचनात्मक स्तरों पर जीव को समझ लेने से एकत्रित (चयनित) सुचनाएँ और अंतर्दृष्टियाँ - तो विकास के भव्य समेकक, संकल्पना के बिना और कुछ भी नहीं है । अतः, हमारे एकक (पूर्व में, विकासवादी तथा जैविकीय जैविकी एकक) के अनुसंधान के ध्येय (उद्देश्य) का ध्यान विकासवादी स्पष्टीकरण को प्रबलता से नव आधार के साथ प्रकार्यात्मक संपूर्ण जीव-जैविकी में संकल्पनात्मक मूलभूत प्रश्नों पर केंद्रीकृत रहा है । इस एकक के संकाय, पारिस्थितिकी, विकास तथा स्वभाव (व्यवहार) के नये क्षेत्रों में मूलभूत प्रश्नों के समाधान करने में, जिनके बारे में भारत में इसस पूर्व कोई अध्ययन नहीं किया गया है, नेता रहे हैं तथा भारत में वन्य जनसंख्या में आनुवंशिक विविधता के प्रति अनाक्रामक अभिगमों तथा प्रयोग मूलक विकास जैसे प्रणाली-विज्ञानियों के उपयोग में अग्रद्त रहे हैं । इसके अतिरिक्त एकक के संकाय, सैद्धांतिक तथा प्रयोगमूलक प्रयोगालय के संत्लित मिश्रण तथा मूलभूत प्रश्नों के समाधान हेत् क्षेत्र आधारित अभिगमों को विकसित कर लेने में भारतीय विकासवादी जैविकविदों के बीच में पूर्ण रूप (उचित रूप) से अद्वितीय रहे हैं । स्नातक - अध्ययन के संदर्भ में, भी हमारा एकक भारत में अपने विस्तृत पाठ्यक्रम कार्य के लिए अति प्रसिद्ध रहा है।

अनुसंधान के क्षेत्र

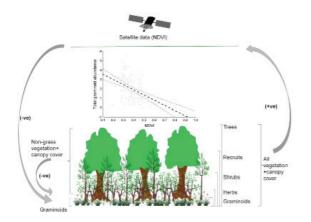
हमारे संकायों के पास प्रयोगालयी प्रयोगों तथा / अथवा निम्नों पर अनुसंधान में क्षेत्र वीक्षणों के साथ संयुक्त सैद्धांतिक विश्लेषण हैं

- जीव-वृत्तांतों तथा प्रतियोगात्मक क्षमता के विकास में अन्योन्य-क्रिया तथा जनसंख्या-गतिकी पर इसका प्रभाव,
- सामाजिक संगठन में प्रभाव डाल लेने वाले पारिस्थितिकीय, व्यवहारात्मक (स्वभावमूलक) तथा अनुवंशिक घटकों की अन्योन्य-क्रिया से संबंधित समाज-पारिस्थितिकीय सिद्धांत से पूर्वान्मानों का मूल्यांकन तथा
- जीव-संबंधी या अ-जीव संबंधी वंशानुक्रम के अधीन विविध समलक्षणी की अनुकूलवादी विकासवादी गतिकी के विश्लेषण के उद्देश्य से (स्वस्थता) क्षमता तथा आनुवंशिकता जैसी आधारभूत परिघटनाओं पुनर (व्याख्या) प्रतिपादन द्वारा विकासवादी के क्रोड की प्नर-संकल्पनात्मकता ।

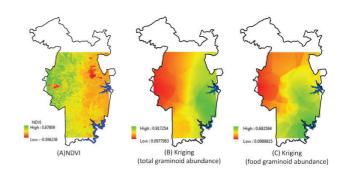
अनुसंधान अंतर्दिष्टियाँ

- विविध चयन तथा आहार क्षेत्रों के अधीन ड्रोसोफिला जीवसंख्या गतिकी के प्रमुख पहलुओं के पूर्वानुमान के लिए वैयक्तिक (प्रत्येक) के आधार पर नमूने का विकास ।
- संकुलन (भीड़न) अनुकूलित ड्रोसोफिला जीव संख्याओं में वर्धित समरूपता स्थिरता विकास हेतु के r-K ट्रेड ऑफ़ (व्यवसाय पृथक) मध्यस्थता का प्रयोगात्मक प्रदर्शन।
- उपग्रह आधारित एन.डी.वी.आई. के उपयोग के बदले में, बहुस्तरीय उष्ण किटबंधी वन (अरण्य) में भरी शाकभिक्षयों के लिए चारे के मूल्यांकन हेतु पारंपरिक जैव-मात्रा (संहति) के संचयन की आवश्यकता का प्रदर्शन ।
- एशियाई हाथियों में मस्थ (मद) के होने पर पुराने प्रतियोगियों नों के संभाव्य प्रभाव के लिए साक्ष्य ।

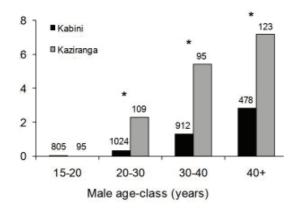
TNC विद्या


पीच.डी., सहयोगी प्रोफेसर तथा चेयर, ईआईबीयू; भारतीय विकासवादी जैवविद संघ की कार्यकारी परिषद् के चेयर (अध्यक्ष) EIBU संस्थापक सदस्य तथा सदस्य; एशियाई हाथी विशेषज्ञ दल का आई.यू.सी.एन. एस.एस.सी. (विश्व संरक्षण संघ की प्रजाति उत्तरजीविता आयोग) सदस्य ।

हमारा प्रयोगालय नागरहोळे तथा बंडीपुर के राष्ट्रीय उद्यानों में मादा व नर एशियाई हाथियों की सामाजिक संरचना का अध्ययन करता है। हाल ही में, हमने यह दर्शाया है कि उपग्रह आधारित सामान्यीकृत अंतर सस्य (शाक) अनुक्रमणिका (NDVI) वन की बहु स्तरीय प्रकृति तथा विभिन्न संस्तरों में आहार प्रजातियों तथा कुल प्रजाति-वितरण के बीच में असंगति के कारण से हाथी-चारा (आहार) आधिक्यता (प्रचुरता) के प्राक्कलन के लिए एक उत्तम प्रतिनिधित्व नहीं करता। (रेखाचित्र-1), क्षेत्र डाटा से क्रिगिंग नमूने पर आधारित स्थानीयता से अंतर्वेशित (प्रक्षिप्त) कुल घास की अधिकता को एन.डी.वी.आई. के कुल घास अधिकता के पूर्वानुमान से अधिक उत्तम पाया गया है। (रेखाचित्र-2), हमारा अध्ययन यह सूचित (संकेत) करता है कि अन्य दो (जीव) जनसंख्याओं की तुलना में नागरहोळे तथा बंडीपुर के राष्ट्रीय उद्यानों में नर हाथियों में मस्थ (मद) का निम्न अनुपात होता है। संभवतः (पुराने) वयोवृद्धों की संख्याओं तथा प्रतियोगी नरों में अंतर के कारण से होता है। (रेखाचित्र-3) हमने इसकी परीक्षा भी की है कि सामुदायिक बसेरा (घांसला) (शयनकक्षा) की परिकल्पना के परीक्षण हेतु जंगली मैना सामुदायिक बसेरा (शयनकक्षां) के आंत्र (आँतड़ी) परजीवियों के भार (लदान) केंद्र से बसेरों के परिधीय के विभिन्न अंतरों पर समान रहे हैं।


प्रमुख प्रकाशन :

गौतम तथा अन्य 2019. शीतोष्ण वन्य आवास स्थान में विशाल शाकाहारी (तृणाहारी) के लिए चारे की प्रचुरता के प्रतिनिधि के रूप में एनडीवीआई विश्वासाई नहीं है । बयो ट्रोपिका 51:443-456.


नंदिनी एस. तथा अन्य 2018. समूह आकारी विभिन्नताएँ सामाजिक संरचना में आधारभूत समनताओं को आच्छादित कर सकती हैं: मादा हाथी (समाजों) संघों की तुलना: व्यावहारिक पारिस्थितिकी 29(1):145-159.



रेखाचित्र 1 : घास अधिकता अ-घास-शस्य तथा उपग्रह व्युत्पन्न एन.डी.वी.आई. उत्पादकता के बीच में संबंध का आरेखीय (योजनाबद्ध) प्रतिनिधित्व (निरूपण) – (गौतम तथा अन्य, 2019 बयो ट्रोपिका)

रेखाचित्र 2 : यह नक्शा यह दर्शाता है कि (ए) एन.डी.वी.आई., (बी) क्रिगिंग (स्थानिक अंतर्वेशन) नमूना-जो कुल घास अधिकता का है, तथा (सी) शुष्क ऋतु में आहार-घास अधिकता का क्रिगिंग नमूना । एन.डी.वी.आई. नक्शे के लाल चितियाँ वनाग्नि से प्रभावित क्षेत्र हैं – (गौतम तथा अन्य – 2019 बयो ट्रोपिका)।

रेखाचित्र 3 : (बाये) कबिनि और काज़ीरंगा तथा (दायें) कबिनि एवं मदुमलै के मस्थ के बीच में दर्शाये गये विभिन्न-वय-वर्गों के नर हाथियों के लक्ष्य साधनों (स्थानों) के अनुपातों की तुलना ।

अमिताभ जोशी

पीच.डी., प्रोफेसर, भारतीय विकासवादी जैवविद संघ की कार्यकारी परिषद् के संस्थापक सदस्य तथा सदस्य; भारतीय विज्ञान अकादमी बेंगलूर के वैज्ञानिक मूल्यों नामिका के सदस्य; भारतीय राष्ट्रीय विज्ञान अकादमी, नई दिल्ली के प्रकाशन परामर्शी मंडली के सदस्य; वैज्ञानिक प्रकाशन पर राष्ट्रीय नीति सिफारिशों के प्रारूपण के लिए अंतर-अकादमी दल के सदस्य; हाल्टरेस की संपादकीय मंडली के सदस्य तथा विकासवादी जैविकी की अंतर्राष्ट्रीय पत्रिका; प्रकाशन संपादक, भारतीय विज्ञानअकादमी, बेंगलूरु ।

हमारा प्रयोगालय अपनी नमूना-प्रणाली के रूप में फल-मिक्षका-ड्रोसोफिला के उपयोग द्वारा विकास व व्यवहार को समझलेने हेतु अनेक नमूनों के विकास में कार्यरत रहा है । हमने विविध चयन तथा आहार-क्षेत्रों के अधीन समय श्रेणी सारांश, सांख्यिकी, स्थिरता उपाय, जन (जीव) संख्या आकार-वितरण के लिए गतिकी के प्रमुख पहलुओं के पूर्वानुमान हेतु ड्रोसोफिला जीवसंख्या गतिकी के वयक्तिक (प्रत्येक) के आधार पर नमूने को विकिसत कर लिया है । अबतक, यह अत्युत्तम प्रकार्यात्मक फल-मिक्षका गतिकी नमूना रहा है तथा एल.डी. मुल्लर के 1988 के नमूने से लेकर अबतक यह नमूनन फल-मिक्षका जीवसंख्या गतिकी में एक प्रथम प्रमुख विकास (उन्नित) रहा है । हम इस नमूने का उपयोग संकुलित (भीड़ित) ड्रोसोफिला संवर्धन की पारिस्थितिकी तथा विकास को समझ लेने के लिए कर सकते हैं । साथ में, हमने अजनीय अनुवंशिकता के नमूनों का भी विकास कर लिया है । हमने संकुलित (भीड़ित) अनुकूलित ड्रोसोफिला जीव (जन) संख्याओं वर्धित समरूपता स्थिरता के विकास मध्यस्थता r-K ट्रेडऑफ (व्यवसाय पृथक) के लिए प्रयोगमूलक प्रदर्शन भी किया है । हमने प्रयोगमूलकता से यौन (लैंगिक) चयन के सापिक्षिक योगदानों का तथा फल मिक्षकाओं में मध्य स्थित नर-मदा सह-विकास में त्विरत-विकास के लिए चयन का विक्षेषण किया है ।

प्रमुख प्रकाशन :

डे. एस., जोशी ए. 2018. ड्रोसोफिला जीवसंख्या गतिकीके दो दशक : नमूनन, प्रयोग तथा अन्वयन सांख्यिकीय पुस्तिका में, खंड-39 पृष्ठ 275-312, समेकित जनसंख्या जैविकी – भाग ए. (संपादन – सी.आर. राव, ए.एस.आर. श्रीनिवास राव) एल्सेवियर अम्स्टरडम तथा ऑक्सफोर्ड (आमंत्रण पर) । जोशी ए. 2018. त्विरत मानवोद्भविक परिवर्तनों के समयों में प्रयोगमूलक विकास अध्ययनों की संगतता : पृष्ठ 113-25. मूलभूत अनुसंधान पर संगोष्ठी की कार्यवाहियों में तथा राष्ट्रीय विकासमें इसका पात्र, एन.ए.एस.आई. के 87वें राष्ट्रीय सत्र, 8-10 दिसंबर 2017 (संपादन- पी.एन. टंडन, एम. शर्मा) राष्ट्रीय फिज्ञानअकादमी, भारर, अलाहाबाद (आमंत्रण पर)

एकक के सदस्य

सहयोगी प्रोफेसर तथा अध्यक्ष (चेयर)

टी.एन.सी. विद्या

प्रोफेसर

अमिताभ जोशी

अन्संधान विद्यार्थी

अभिलाष लक्ष्मण, अंकना सन्याल, अंजु मेनन, अन्विता एस, अथिरा टी.के., अविन मिताल, हंसराज गौतम, मनन गुप्ता, मेधा राव, नेहा पाण्डेय, पवित्रा प्रकाश, रेवती टी, रुत्विज कौस्तुभ, सत्यब्रता नायक, श्रीकांत वेंकटाचलम, सिंह विवेक जगदीश.

अनुसंधान सहयोगी

अवनी मिताल, कीर्तिप्रिया पी. (अनंतिम)

अनुसंधान व विकास सहायक

साजिथ वी एस. रमेश एम के.

EIBU की एक झलक

3 पी.एच.डी. विद्यार्थी प्रवेश प्राप्त

२ पी.एच.डी. विद्यार्थी स्नातक प्राप्त

6 प्रकाशन

विद्यार्थी द्वारा प्राप्त पुरस्कार

कीर्ति प्रिया पी. - पीएचडी विद्यार्थी ; दिनांक 31 अगस्त, 2018 को भा.वि.सं., बेंगलूर में पारिस्थितिकी विज्ञान केंद्र में हुई स्पीक-अप बैठक में उसके व्याख्यान के लिए रनर-अप पुरस्कार प्रदान किया गया ।

प्रायोजित परियोजनाएँ

वर्ष 2018-19 के दौरान प्राप्त राशि

जारी परियोजनाएँ

15.89 लाख

नई परियोजनाएँ

4.13 लाख

अभियांत्रिकी यांत्रिकी एकक (EMU)

EMU के बारे में

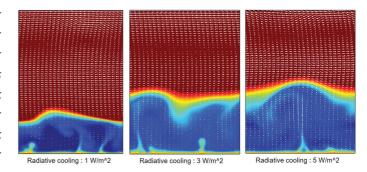
EMU ने अपना ध्यान दैर्घ्य तथा समय-अनुमापों की श्रेणी में सरल और संकीर्ण द्रवों में परिवहन प्रक्रियाओं से संबद्घ विभिन्न प्रकरणों के अनुसंधान पर केंद्रीकृत किया है। सचतःअनुसंधान प्रयासोंकी चालू चिंताएँ हैं – सिम्मश्र सूक्ष्म संरचित द्रवों (निलंबनों तथा पायलों कणकीय पदार्थों, बहुलक विलायकों तथा गलनों, सिक्रय पदार्थ) तथा सिम्मश्र बहावों जल गतिकीय अस्थिरताओं के रेखीय तथा अ-रेखीय विकास, प्रतिमान संरूपण के तंत्र, क्षोभता तथा गतिकीय प्रणाली – सिद्धांत), दैर्घ्य तथा काल-मानों (अनुमापों) के अपार श्रेणी तक व्यास हैं।

हमारे अनुसंधान उद्देश्यों (लक्ष्यों) में सिम्मिलित हैं – मूलभूत संकल्पनाएँ तथा अन्वयन-अभिमुखी दृश्य, जो भारत तथा विश्वभर के अग्रणी संस्थाओं के साथ अनुसंधान तथा निधियन-आधारित सहयोगों में परिणत हो गए हैं। हमारे एकक के सदस्यों द्वारा अन्वेषित अनुसंधान समस्याएँ हैं – वायु गतिकी, संकीर्ण (सिम्मिश्र) द्रव तथा धारा-प्रवाहिकी, बहाव तथा अंतरापृष्ठीय स्थिरता तथा संगणनात्मक विज्ञान। जैविकीय – समस्याएँ तथा प्राकृतिक परिघटना – कीट उड़ान से लेकर मेघों की द्रव गतिकी - तक आदि का अन्वेषण सैद्वांतिक और प्रयोगमूलक पद्वतियों के अन्वयन द्वारा किया जा रहा है।

अनुसंधान के क्षेत्र

विशेष रूप से इस एकक का ध्यान निम्न क्षेत्रों के अनुसंधान पर केंद्रित है

- क्षोभकारी बहावों का अंकात्मक अनुरूपण ;
- सम्मिश्र द्रवों की गतिकी, धारा-प्रवाहिकी तथा स्थिरता के अध्ययन ;
- मेघों की द्रव गतिकी तथा वातावरणीय संवहन ;
- भू-भौतिकीय संवहनीय बहाव ;
- पारगमन, बहाव-नियंत्रण तथा पुनिस्थिरीकरण ;
- जलगतिकीय स्थिरता एवं विक्षोभ ;
- चक्रवात-गतिकी;
- धारा-प्रवाहिकी, बहाव एवं सक्रिय असंतुलन निलंबनों की सूक्ष्म-संरचना के
- सूक्ष्म गुरुत्व स्थितियों के अधीन बहाव ।

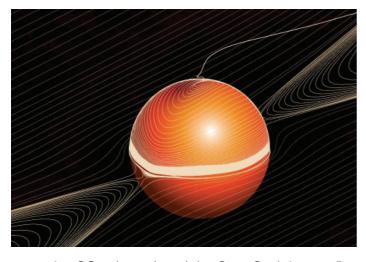

अनुसंधान अंतर्दिष्टियाँ

- पाइप बहाव में रेखीय अस्थिरता का विकास ।
- कणकीय एवं अनिल-घन निलंबनों के लिए निरंतर द्वितीय-अनुक्रम अरेखीय सिद्धांत का विकास ।
- एक ऐसी अन्य स्थानिक अवस्था का आविष्कार जिसमें अचलनशील तथा भ्रमणकारी (चलनशील) तरंगों को निलंबन टेलर-क्यूटे बहाव में सह-अस्तित्व में पाया गया है ।
- जी.पी.यू. त्विरत गित के आंतरिक कोड 'अनुरूप'के निष्पादन को मूल्यांकन के हाल ही के डी.एन.एस. अध्ययन ने यह प्रकट किया है कि सी.पी.सू.यों के निष्पादन की तुलना में अधिक लागत-प्रभावी तथा कम वियुत खपत (उपभोग) वाला है।

के.आर. श्रीनिवास

पीच.डी., प्रोफेसर; अध्यक्ष (चेयर); EMU

वायु-पत्तन प्रबंधन में विकिरण-कोहरा कार्यकलाप को एक आविर्भावी तथा महत्त्व्यूर्ण समस्या के रूप में पहचान लिया गया है। हमारे दल ने कोहरे के रूपण पर प्रभाव डालनेवाले विभिन्न प्राचलों के अनुवीक्षण के लिए बेंगलूर अंतर्राष्ट्रीय विमान-पत्तन (बी.आई.ए.एल.) के साथ उनके रन-वे (हवाई-पट्टी) के पास एक वीक्षण केंद्र (स्टेशन) की स्थापना की है। हमने रात्रीय वातावरणीय सीमा परत में परिवहन प्रक्रिया, मेघ-रूपण तथा विकिरण – कोहरे की सूक्ष्म भौतिकी के अध्ययन का लक्ष्य रखा है। अंततोगत्वा, इस क्षेत्र में अनुसंधान ऐसे अंकात्मक-कोड के विकास को अग्रसर कर सकता है – जो वायु-परिवहन प्रबंध में पहले ही वायु-पत्तन पर विकिरक कोहरे के प्रारंभ के पूर्वानुमान में सहायता कर सकता है।



विभिन्न विकिरक शीतलन दरों के कारण रात्रीय पर्यावरणीय सीमा परत में वेधक (भेदक) संवहन ।

भा.वि.सं., यू.ए.एस., जनेउवैअकें तथा आई.सी.ए.आर. के अधीन के अन्य संस्थानों के बीच के एक संयुक्त परियोजना एक और महत्त्वपूर्ण विकास रहा है, जो दक्षिण भारतीय, जलवायु – स्थितियों में आलू – बीज के उत्पादन के लिए ऊर्जा एवं जल-सक्षम एयरो पोनिक चेंबर के विकास के लिए रहा है । इस परियोजना के अंश के रूप में इस विकास में सिमलित हैं –ऐसी सौर धुआँ-दान (चिमनी) है, जो पॉली हाउस के निष्क्रिय वायु संचालन में सहायता करता है । इस दल द्वारा अनुसरित अनुसंधान का एक और क्षेत्र है यास (ड्रैग) न्यूनन (घटाव) बहुलकों की अत्यल्प मात्रा के संयोजन द्वारा क्षोभकारी यास का न्यूनन । हमने बहाव स्थिरता तथा चक्रवात गतिकीपर यास न्यूनन बहुलक के प्रभाव का अन्वेषण किया है ।

गणेश सुब्रमणियन

पीएच.डी., प्रोफेसर

एक ससीम (निश्वित) रेनाल्ड संख्या परे के अति-पवलयिक रेखीय बहाव में बिंदु निमज्जित के आरपार प्रवाह (धारा) रेखाएँ ।

सिद्धांत एवं संगणनाओं का उपयोग करके हमारे दल ने हाल ही में, अपरूपण — आवेशित आप्रवास तथा पट्टी-रचना; दृश्यमान (प्रकट) उच्चद्रवता प्रणालियों, अनियमितता से वर्धित आरेखक विसरणशीलताओं तथा अत्यंत कुतूहलकारी रूप से क्रांतिक संकेंद्रण अधारित अवसीमा के परे दीर्घ श्रेणी की अन्योन्याश्रित-रूपी सामूहिक चलन की अवस्था का पारगमन सहित सक्रिय निलंबनों में असंख्य परिघटनाओं का स्पष्टीकरण (विवरण) दिया है । भा.त.सं. कानपुर के प्रो.वी. शंकर के दल के साथ के एक सहयोग में अनुसंधान प्रयत्नों ने यह दर्शाया है कि श्यान-लचीले द्रव एक तनुकृत बहुलक विलायक के (पाइप) निलंका बहाव संचालित नव रेखीयता से होता है । अतः न्यूटोनियन पाइप फ्लो को रेखीयता से स्थिर के रूप में जाना जाता है अतः एक सौ तीस वर्षों के पहले क्षोभकारिता के प्रति पारगमन को दर्शानेवाले रेनाल्ड अग्रगामी प्रयोगों से लेकर निलंका बहाव में रेखीय अस्थिरता का प्रथम आविष्कार रहा है । यह आविष्कार प्रस्तुत साहित्य में संस्थापित विश्वास के विरुद्ध जाता है, क्योंकि ऐसे श्यान-लचीले अपरूपण — बहाव — रेखीयता से स्थिर होते हैं ।

प्रमुख प्रकाशन

कृष्णमूर्ति डी. सुब्रमणियन जी. 2018. अपरूपण बहावों में बिंदुकाओं से उष्णता या सांद्रता का परिवहन- भाग-1 मुक्त धारा रेखा क्षेत्र,द्रव यांत्रिकी पत्रिका 850:439-483.

गर्ग पी. तथा अन्य - 2018. श्यान-लचीलेपाइप (नलिका) बहाव रेखीयता से अस्थिर होता है । फिजि. रेव. लेट. 121(2):24502.

मेहबूब आलम

पीच.डी., प्रोफेसर

कणकीय भौतिकी प्रयोगालय

विगत वर्ष में, हमने ऐसे संगत द्वितीय क्रम के अरेखीय सिद्धांत को विकसित कर लिया है, जो कणकीय तथा अनिल-घन निलंबनों के लिया है, जिनमें तनुकृत (अनिलमय) से सघन (द्रव) प्रणालियों में लागू होने की संभावना होती है। यह सिद्धांत, ऐसे सामान्य तनाव-अंतरों तथा संबंध विषम दैशिकों को संस्थापित करता है, जो अ-न्यूटोनियन – धारा प्रवाहिकी के संकेत होते हैं, जो हमारे सिद्धांत को और अधिक प्राचलों की श्रेणी के प्रति अन्वयित बनाता है, जहाँ मानक नेवियर-स्टोक्स रीति के नमूने असफल हो जाते हैं। यह सिद्धांत, ऊष्म-बहाव के लिए अंगीभूत (संघटक) संबंध को दर्शाता है, जो (i) सांद्रता (घनता) अनुपात (प्रवणता) तथा (ii) तनाव-अनुपात के प्रति नवीन आनुपातिकों के संस्थापन (संयोजन) के जरिए मानक फोरियर – नियम के परे जाता है; प्रत्येक संदर्भ में, संबंधित चालकता – तानिका विषम – दैशिक होती है, जो बहावदार कणकीय – पदार्थ के कुछ अनियमित व्यवहार (स्वभाव) को स्पष्ट करता है।

हमने प्रसंभात्य अनुरूपणों के जरिए प्रसिद्ध नुडसेन (Knudsen) विरोधाभास का पुनर-विश्लेषण किया है, जो आण्कि तथा कणकीय अनिलों के लिए पाइसुल्ले (Poiseuill) बहाव में द्रव्यमान-बहाव दर पर भिति-कण अंतर्क्रियाओं के पात्र पर नवीन अंतर्र्राष्टि में परिणत होता है । हाल ही में "निलंबन

निलंबन टाइलर क्यूटे बहाव में तरंगित टाइलर (Taylor) भ्रमिलताएँ ।

टेलर क्यूटे (Taylor Couette)" बहाव पर प्रयोगों ने अन्य स्थानिक अवस्था को अनावृत (प्रकट) किया है, जहाँ अचलनशील (स्थिर) तथा (भ्रमणकारी) चलनशील तरंगों को सह-अस्तित्व में पाया गया है । एक अरेखीन साधन – अंतर्राक्रिया सिद्धांत ऐसी कपोल-कल्पना जैसे सह-अस्तित्व प्रतिमानों को स्पष्ट कर सकता है ।

प्रमुख प्रकाशन :

रमएश पी. तथा अन्य 2019. निलंबन टाइलर-क्यूटेबहाव: अचल तथा चलनशील तरंगों का सह-अस्तित्व तथा टाइलर भ्रमिलताओं तथा सर्पिलों द्स लक्षण । द्रव यांत्रिकी पत्रिका. 870:901-940. साहा एस., आलम एम. 2017. (ज्वलित) दिहत तथा (शमित) दिमतपारगमनका पुनर्दर्शन तथा अपरूपित तनुकृत अनिल-घन निलंबन की अ-न्यूटोनियन धारा-प्रवाहिकी । द्र.य.यो.प. 833: 206-46.

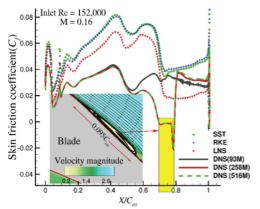
संतोष अंशुमाली

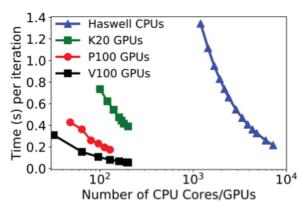
पीच.डी.. सहयोगी प्रोफेसर

संगणात्मक द्रव गतिकी, क्षोभकारी बहावों के अनुरूपणों के लिए चुनौतियाँ बनी हुई हैं, जो विशिष्ट रूप से सही है कि अगर मार्गस्थ (चिर अवस्था से भिन्न) व्यवहारों का अनुरूपण करना चाहें या वह बहाव घनकाय (अवस्था) से पृथकृत हो जाए तो वह तेजी से प्रवाहित होगा । विमानों और मोटार-कारों जैसे व्यावहारिक लाभ (हित) के अनेक स्थितियों में पृथकृत बहाव होते हैं । सी.ए.डी. (संद्रग) के पारंपरिक अभिगमों के लिए भारी चक्रवातों पर लघु मात्रा के प्रभावों को संस्थापित करनेवाले स्पष्ट अनुभव जन्य नमूनों के सृजन की आवश्यकता होती है। ऐसे वैकल्पिक अभिगम जो व्यापकता से समानांतर संगणनात्मक पर्यावरण के आरपार (के पर्यत) रेखीय मापनीयता होने देते हैं, उनके सीमित अन्वयन होते हैं, क्योंकि ये परिकलन प्रक्रियाएँ तब अस्थिर हो जाती हैं, जब निम्न श्यानता या उच्च स्थानिक प्रवीणता स्थितियों के साथ अनुरूपण करते समय वहाँ पर परिभ्रमणीय कर्णों का वितरण-आदर्श मैक्सवेल-बोल्टज़मन्न वितरण से अतिदूर विचलित हो जाती हैं । इन भारी विचलनों के निर्वंध तथा स्थिरता की पुनर्स्थापना के प्रति एक मानक अभिगम ही उत्क्रम-मापी बोल्टज़मन्न नमूना (ELBM) रहा है, जिसमें सम्मिलित है – एक ऐसी अतिरिक्त माँग है जो प्रणाली का उत्क्रम-मापी विकास के प्रत्येक चरण के पर्यंत न्यूनीकृत कर देता है । उत्क्रम-मापी की समता की माँग के बदले में हमने ऊष्मा-गतिकी के द्वितीयनियम पर आधारित असमता की माँग है। नमूने में परिवर्तन कर दिया - अर्थात् उत्क्रम-मापी में न्यूनन न हो। ऐसे करने में समस्या ने अ-रेखीय असमता का समाधान करने की नई भूमिका की खोज में प्रवृत्त किया है । हम अ-रेखीय असमता के प्रति ऐसे निखर समाधान का पता लगा रहे हैं, जो बोल्टसमन्न समीकरण के अनुसार जालक पर परिभ्रमणीय कणों पर ऊष्मा-गतिकी के द्वितीय – नियम को प्रवर्तित करता है । इन समाधानों का उपयोग करके हम एक ऐसी परिकलन – प्रक्रिया को सूत्रबद्ध कर रहे हैं, जो अप्रतिबंध रूप से स्थिर होती है तथा वह अर्थपूर्ण रूप से (कम) अल्प संगणनात्मक संसाधनों का उपयोग करती है तथा (आकाश) वायुयानों, मोटार-कारों तथा अन्य औद्योगिक (प्रणालियों) साधनों के लिए निखरता से अनुपालन करनेवाली ऊष्मा-गतिकी में विक्षोभ के लिए नमुनों के उपयोगों को पुनरस्थापित करती है । इस नई परिकलन-प्रक्रिया के कौशल के प्रदर्शन के रूप में हमने त्रय-मान संगणना – गुच्छ पर स्टाल (सहयोगी) कोण पर्यंत आक्रमण के कणों के लिए न्यूनतम – मानदंड वायुपर्णी के वायु बहाव त्वरितता के लिए अस्थायी अनुरूपण को निष्पादन किया है । इन अनुरूपणों में प्रयोगात्मक परिणामों के साथ उत्कृष्टता से सुमेल होते हैं ; जो एक साहसिक कार्य रहा है तथा वह जो अब तक अलभ्य रहा है । निम्न संगणना की अपेक्षा (अवश्यकता) तथा अन्रूपण की जब निखरता में वे विशिष्टताएँ रही हैं जो कि उसमें निकट भविष्य में पंच अनुमाप-गुच्छों पर बहाव त्वरितता संपूर्ण वायुयानों तथा मोटार कारों के अन्रूपण में परिकलन - प्रक्रिया का विभव होता है।

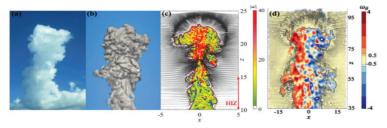
रोद्दम नरसिंह

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए., एफ.टी.डब्ल्यू.ए.एस., एफ.आर.एस.; मानद प्रोफेसर


हमारे अनुसंधान दल का ध्यान सर्वाधिक रूप से (अनिल दाबयंत्र फलकों) गैस टर्बाइन ब्लेडों पर सिम्मश्र बहाव के प्रत्यक्ष अंकात्मक अनुरूपण (DNS) पर केंद्रीकृत रहा है तथा प्रयोगालीयी प्रयोगों तथा डी.एन.एस. अध्ययनों का उपयोग द्वारा मेघों के द्रव गतिकी अन्वेषण का कार्य करता है। हाल ही में, डी.आर.डी.ओ. – जी.टी.आर.ई. में अभिकल्पित अल्प (छोटे) (दाब-पंख) टर्बोफैन यंत्र का डी.एन.एस. अध्ययन किया गया है । सूक्ष्म जाल (जालंध्र) (258M तथा 516M कोशिकाओं) पर डी.एन.एस. यह सुझाव देता है कि पृथक्करण बुलबुलों की उपस्थित होती है, जहाँ कि स्थूल जालंध्र (94m) तथा आर.ए.एन.एस. नमूनों पर बुलबुलों के प्रग्रहण में असमर्थ होते हैं । परंतु उच्च आर.ई. पर डी.एन.एस. संगणनात्मक रूप से व्यवकारी (महँगी) होता है । विषमजिनयता पर संगणन-तत्व के रूप में जी.पी.यू. का उपयोग से कुछ (राहत) परिहार मिलता है । रेखाचित्र 1. दर्शाता है कि सी.पी.यू. यों के निष्पादन की तुलना में, जी.पी.यू. -त्विरत-आंतिरत कोड अनुरूप (ANUROOP) का निष्पादन । यह देखा गया है कि इसी निष्पादन के लिए सी.पी.यू. आधारित गुच्छ के लिए 25% कम विद्युत की अपेक्षा होती है तथा जी.पी.यू. आधारित गुच्छ के लिए 30% कम लागत लगती है ।

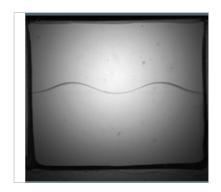

मेघ-बहावों पर इससे पूर्व के कार्यों ने यह दर्शाया है कि अल्प स्थायी मधुमेह पिच्छक (टी.डी.पी. अमुपि), कपासी मेघों के लिए एक उत्तम द्रव गितिकी नमूना प्रस्तुत कर सकता है। हाल ही के कार्य ने मेघ में उष्णता विमोच के अनुकरण हेतु टी.डी.पी. के लिए समुचित अनुमापित उष्णता अंतर्वेशन के साथ टी.डी.पी. पर प्रयोगात्मक तथा संगणनात्मक (-डी.एन.एस. वर्तमान संदर्भ का है) पिरणाम उपलब्ध कराता है। रेखाचित्र 2. इन पिरणामों की तुलना को दर्शाता है। रेखाचित्र 2a. एक प्राकृतिक कपासी मेघ है। डी.एन.एस. पिरणाम यह दर्शाते हैं कि टी.डी.पी. जैसे बाहर से देखने में आता है, परंतु सतह (रेखाचित्र- 2b) में देखे गए भ्रमिलता – मात्रा के भीतर ही अक्षीय – अनुभाग (अंश) को दर्शाता है। रेखाचित्र 2d, जो टी.डी.पी. का अक्षीय – अनुभाग (अंश) है, जो दिगंश भ्रमिलता क्षेत्र को दर्शाता है। डी.एन.एस. तथा प्रयोगात्मक परिणामों के बीच की समानताओं को स्पष्टरूप से देखा जा सकता है तथा किस प्रकार उष्णन वायुदाब निदानिका कंठी (एंठन) द्वारा तथा परिवेशी द्रव में आरूढन / अवरूढन गित (वेग) द्वारा नई भ्रमिलता का सृजन करता है।

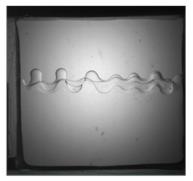
प्रमुख प्रकाशन :


पटेल के.एस. तथा अन्य 2018. डी.एन.एस. के विरुद्ध एच.पी.टी. जलदाब-यंत्र फलकों पर नमूने परिणामों की विशिष्ट (क्रांतिक) तुलनाएं । 20वीं AeSI वार्षिक CFD चर्चा गोष्ठी NAL में ।

मारुति एन.एच. तथा अन्य 2018. नवीनतम जीपीयू वास्तुरचनाओं पर संदाबनीय डीएनेस कोड का निष्पादन । जीपीयू प्रोद्योगिकी सम्मेलन-2019 में साइन जोस सीए. यूएसए ।

रेखाचित्र 1 : **(बार्यी ओर)** रेनाल्ड नं. पर एस.टी.एफ.ई. उच्च – दबाव दाबयंत्र (टर्बाइन) फलक के चूषण-पार्श्व के पर्यंत त्वचा-घर्षण गुणांक का अंतर (परिवर्तन)/ (Re) को अंतर्गम गति तथा रज्जु (तार) दैर्घ्य के आधार पर दर्शाया गया है । **(दार्यी ओर)** सी.पी.यू.यों (ह्यासवेल्ल) की तुलना में जी.पी.यू.यों के तीन उत्पादकों के साथ अनुरूप (ANUROOP) का प्रबल अनुमापन निष्पादन । [मारुती तथा अन्य 2019, जी.पी.यू. प्रौदोगिकी सम्मेलन, सैन जोस सी.ए., यू.एस.ए..]




रेखाचित्र 2 : प्राकृतिक मेघ का स्पष्ट दृश्य (a) तथा डी.एन.एस. द्वारा टी.डी.पी. में मेघ बहाव, (b) तथा (c) तथा प्रयोगात्मक (d) अध्ययन, (सम्राट राव तथा अन्य, वैभव तथा अन्य)

दिवाकर एस. वंकटेश

पीच.डी.. संकाय अधिसदस्य

हम सूक्ष्म-गुरुत्व में फेरडे अस्थिरता के गुणधर्मवर्ण के लिए परवययिक उडान प्रयोग में कार्यरत रहे हैं। इस कार्य का संचालन 27 मार्च 2017 तथा 7 अप्रैल 2017 के बीच में आयोजित सीएनईएस (फ्रेंच अंतरिक्ष एजेन्सी) परवलयिक उडान अभियान के अंश के रूप में किया गया है। इन प्रयोगों के परिणाम, प्रथम बार के लिए यह पुष्टि करते हैं कि गुरुत्व द्वारा दोहरे द्विपात्र लिया जाता है, जहाँ यह स्पंदन के निम्न आवृत्तियों पर स्पंदनात्मक द्रव प्रणाली अधिक स्थिर होता है तथा उच्चतर आवृत्तियों पर इसके विपरीत वाला होता है। प्रयोगों ने वास्तविकता से यह भी प्रति अंतर्दशीं स्थिरीकरण को प्रदर्शित किया है, जो अंतरापृष्ठीय तनाव में न्यूनन से परिणत हो सकता है।

सामान्य गुरुत्व तथा सूक्ष्म गुरुत्व स्थितियों में विकसित अंतरापृष्ठ ।

एकक के सदस्य

प्रोफेसर एवं अध्यक्ष (चेयर)

के.आर. श्रीनिवास

प्रोफेसर

गणेश सुब्रमणियन मेहबूब आलम

सहयोगी प्रोफेसर

संतोष अंशुमाली

संकाय अधिसदस्य

दिवाकर सेय्यानूर वेंकटेशन

मानद प्रोफेसर

रोद्दम नरसिंह

अनुसंधान विद्यार्थी

आकांक्षा बोरा, अक्षय चन्द्रन, अक्षयसिंह बावरसिंह शेखावत, आलिबन प्रिंस जॉन, अमित कुमार मिश्रा, अरुण कुमार वारणासी, बिस्वादीप रॉय, के. सिद्दार्थ, महन राज बैनर्जी, मयांक तोप्रानी, मोहम्मद अतिफ, मोहम्मद रैफ्द्रीन, निशांत सोनी, पियुश गर्ग, प्रशांत रमेश,

प्रतीक आनंद, प्रवीण कुमार के, पुलिकत कुमार दुबे, सबरीश वी.एन., सैफुद्दीन वी., संकल्प नंबियार, शशांक एच जे, शौर्य कौशल, स्वस्तिक हेगडे, तनुमॉय धर, वैभव जी आर.

कनिष्ठ अनुसंधान अधिसदस्य

समर्थ अग्रवाल

परियोजना सहायक

पुलकित कुमार दुबे

अन्संधान सहयोगी

दीपक गोविंद मडिवाल, किशोर सिंह पटेल, रामकृष्ण रोंगली

एस.ई.आर.बी. युवा विज्ञानी अधिसदस्य

लक्ष्मीनरसिंहराव, शैलेंद्र कुमार सिंह

अनुसंधान व विकास सहायक

एलबिन पी जॉन, सुमन डी एच, संकल्प राधाकृष्णन नंबियार, प्रवेश शुक्ल, रोहेथ राधाकृष्णन

EMU की एक झलक

3 एम.एस. (अभि.) प्रवेश प्राप्त विद्यार्थी

4 पी.एच.डी. एवं 1 एम.एस. (अभि.) स्नातक प्राप्त विद्यार्थी

13 प्रकाशन

संकाय द्वारा प्राप्त पुरस्कार

प्रो. रोद्दम नरसिंह - दिनांक 7 मार्च, 2018 को बेंगलूर केन्द्रीय वि.वि. केंद्रीय महाविद्यालय (सेंट्रल कॉलेज) के उद्दारण के अवसर पर कर्नाटक के मुख्य-मंत्री द्वारा विरष्ठ पूर्व छात्र पुरस्कार ।

प्रायोजित परियोजनाएँ

वर्ष 2018-19 के दौरान प्राप्त की गई राशि

नई परियोजनाएँ

403 लाख

जारी परियोजनाएँ

9

439.8 लाख

जनेउवैअकें में उद्भवित ईएमयू के प्रथम नवोचम -संख्या सूत्र प्रयोगालय ने आईएनार 600 मिलीयन राशि के ए.श्रेणी के निधियन को प्राप्त किया है।

भूगतिकी एकक (GDU)

GDU के बारे में

घन पृथ्वी विज्ञान में प्रतिमान (मार्गदर्शन) महत्वपूर्ण से भूगतिकीय संकल्पनाओं में गहरे (बद्धमूल) होते हैं तथा भू-गितकीय, विवर्तनिकी तथा अन्य विभिन्न प्रक्रियाओं के बीच में किड्यों होती हैं । (भूगितिकी एकक) GDU का एक प्रमुख उद्देश्य है – केन्द्रीय तथा पिश्वमी हिमालय में प्रमुख क्षेप-पिट्टकाओं का गुणधर्म-वर्णन, हिमालयी – भूकंपन के पात्र का मापन करने का है । भूकंप-इतिहास तथा भू-गिगतीय (अल्पांतरी) अध्ययनों से यह विवरण प्राप्त हुआ है कि प्रमुख भूकंप को पोषित करने में इन क्षेत्रों में अधिक प्रवृत्ति रही है । (क्रि.श. 1803 तथा 1833) के सहस्राब्दी के उत्तरार्ध के दौरान भूकंपों के स्थानों, भंगों तथा आकारों को प्रलेखबद्ध किया गया है, परंतु (क्रि.श. 1255, 1344 तथा 1505) सहस्राब्दी के पूर्वार्ध के बारे में अस्पष्टताएँ रह गई हैं । हमने भूकंप-विज्ञानीय तथा भू-विज्ञानीय उपकरणों का उपयोग हिमालय-चाप तथा इसके निकटस्थ प्रदेशों के भूकंप-तंत्र के अन्वेषण के लिए किया है । इसके अतिरिक्त, भारतीय समुद्र-तटों के सुनामी-आपदा-क्षेत्रों तथा हिमालयी – क्षेत्र में जलवायु – विकास पर विभिन्न भू-वैज्ञानिक प्रतिनिधिकों का भी अन्वेषण किया गया है।

अनुसंधान के क्षेत्र

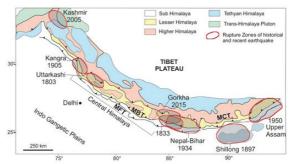
इस एकक द्वारा किए गए अनुसंधान का ध्यान -

 हिमालय पर्यंत विवर्तनिकी तथा भूकंप-निर्माण-प्रक्रियाएँ तथा हिमालयी भूकंपों की भूकंप जननीयता अनुसंधान केंद्रीय हिमालय में पश्च चतुर्थ युगीन जलवायु-परिवर्तन की पुनर्निर्माण जिसेक्रोलोजी, अवसाद-विज्ञान स्थिर सम स्थानीय तथा भू-रासायनिकी जैसे बहु प्राचलों के उपयोग द्वारा किया गया है।

अनुसंधान अंतर्दिष्टियाँ

- केंद्रीय हिमालयी क्षेत्र में भूकंप प्रतिमानों की पहचान (संज्ञान) यह संकेत देती है कि यह क्षेत्र एक और बृहत भुकंप के लिए तैयार है।
- हिमालय में विगत जलवायु परिवर्तनों के उच्चा-विभेदक पुनर्निर्माण तथा उच्च-वियोजित समय-मान-जो मौसिमी (ऋतुजन्य) से हिमनदीय/अंतर हिमनदीय चक्रों तक के समय-मानों पर जलवायुवीय तथा पर्यावरणीय प्रक्रियाओं में नई अंतर्दष्टियाँ उपलब्ध कराते हैं।
- भारतीय सागर-स्रोतों से सुनामियों के मध्यंतर आवर्तन का नियंत्रण तथा प्रभाव मूल्यांकन ।

के.एस. वाल्दिया


पी.एच.डी., एफ.एन.ए.एस.सी., एफ.टी.डबल्यू.ए.एस., मानद प्रो. तथा चेयर, GDU

हमारे अध्ययन का ध्यान ऐसी पिट्ट्यों की पहचान जहाँ एकाएक तथा द्रुतगामी भू-गितकी भू-वैज्ञानिक पिरघटना होने की संभावना होती है, तथा ऐसे अति संवेदनशील प्रदेश, जैसे कि हिमालय चाप के केंद्रीय (सेक्टर) अंचल (उत्तरांचल में कुमायूँ) दक्षिण-पूर्व (आग्नेय) कर्नाटक में बिलिरंगन क्षेत्र तथा पिश्वम कर्नाटक तथा केरल में सह्याद्री क्षेत्रों पर केंद्रीकृत रहा है। इन क्षेत्रों में घटित होनेवाले भौतिकीय पिरवर्तनों की पहचान पारिस्थितिकीय मानचित्रों के प्रतिमानों तथा उपग्रह प्रतिबिंबता (प्रतिमावाली) क्षेत्र-कार्य तथा विवर्तनिकी की ओर निदयों तथा झरनों के असामान्य व्यवहारों द्वारा कर ली गई है।

सी.पी. राजेंद्रन

पी.एच.डी.; वरिष्ठ सहयोगी

हाल ही में, हमने मध्यकालीन अविध (क्रि.श. 11 वीं से 14 वीं शताब्दियों के दौरान), केंद्रीय हिमालय में बृहत् भूकंप-गुच्छों के होने की पहचान कर ली है, जो इस तथ्य को सिद्ध करता है कि वर्तमान में केंद्रीय हिमालय भूकंप का केंद्र है, क्योंकि भूकंप-अंतराल ने अवश्य ही अतीत में बृहत्-भूकंप के लिए तैयार रहा है।

हिमालय के विवर्तनिकी प्रक्षेत्र प्रमुख क्षेत्र [MCT : मुख्य केंद्रीय क्षेप, MBT: मुख्य सीमा क्षेप; तथा MFT – मुख्य अग्रभागीय क्षेप] प्रमुख ऐतिहासिक तथा हालही के भूकंपों के विभंग आँचल।

एकक के सदस्य

मानद प्रोफेसर व चेयर

के.एस. वाल्दिया

वरिष्ठ सहयोगी

सी.पी. राजेंद्रन

अनुसंधान सहयोगी

तुलसीरामन नटराजन, जैश्री सन्वाल भट्ट

GDU की एक झलक

संकाय द्वारा प्राप्त पुरस्कार

प्रो. के.एस. वाल्दिया - भा.स. के पृथ्वी मंत्रालय से जीवनकाल उत्कृष्ट पुरस्कार ।

प्रायोजित परियोजनाएँ

वर्ष 2018-19 में प्राप्त राशि

जारी परियोजनाएँ

3 18.99 ਜਾਂਘ

अंतर्राष्ट्रीय पदार्थ-विज्ञान केंद्र (ICMS)

ICMS के बारे में

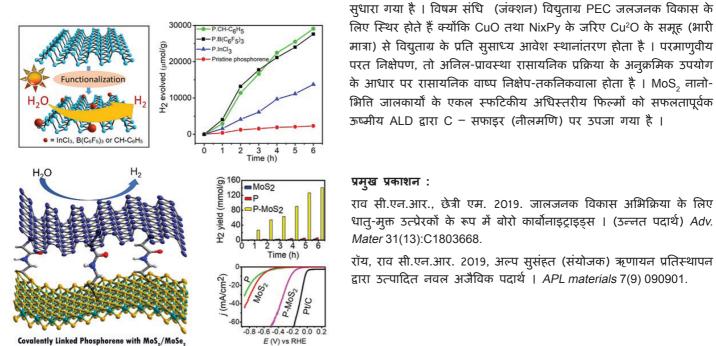
अंपविके (ICMS) अपनी तरह का प्रथम अंतर्राष्ट्रीय केंद्र है, जो 3 दिसंबर, 2011 को अस्तित्व में आया तथा तत्कालीन प्रधान मंत्री डॉ. मनमोहन सिंह द्वारा उद्घाटित ह्आ । यह ICMS उच्च संघात (प्रभाव) विज्ञान के अंतर्विषयी अनुसंधान के लिए देशभर में स्विधाएँ प्रदान करने में अग्रणी केंद्र रहा है । इस केंद्र को भारत-सरकार के विज्ञान एवं प्रौद्योगिकी विभाग (DST-विप्रौवि) द्वारा निधियन सहायता प्राप्त है तथा प्रो. CNR राव FRS द्वारा निर्देशित रहा है. ICMS के चयनित क्षेत्रों में उच्च गुणता वाले आंतरिक अनुसंधान का अन्सरण करना, भारत तथा विदेशों में महत्त्वपूर्ण केंद्रों तथा व्यक्तियों के साथ अनुसंधान और शिक्षा में सहयोग का उन्नयन करना, पदार्थ विज्ञान में शरद / ग्रीष्म स्कूलों (प्रशिक्षण) का आयोजन करना तथा भारत के अन्य संस्थानों के शिक्षकों तथा युवा-अनुसंधानकर्ताओं को आगंत्क अधिसदस्यता उपलब्ध कराना । केंद्र ने Weizmann, SIS-SA, RMIT ऑस्ट्रेलिया, वाटरलू-केनडा, मेंचेस्टर वि.वि. जैसी अग्रणी अंतर्राष्ट्रीय अनुसंधान संस्थानों के साथ अनेक सहयोग स्थापित कर लिए हैं तथा समझौता ज्ञापनों पर हस्ताक्षर कर दिए हैं, जिनके अंतर्गत निरंतर तांत्रिक (तकनीकी) बैठकों तथा कार्यशालाओं के द्वारा तथा अनुसंधानकर्ताओं के साथ लगातार आदान-प्रदान होते रहते हैं । यह केंद्र EICOON, WMRIT तथा IUSSTF जैसे अनेक अंतर्राष्ट्रीय मंचों का सदस्य रहा है।

अनुसंधान के क्षेत्र

केंद्र निम्नलिखित क्षेत्रों में अनुसंधान पर अपना ध्यान केंद्रीकृत करता है।

- घन-अवस्था एवं संरचनात्मक रासायनिकी
- स्वसंयुज्य नानो-संरचनाओं की विषम अधस्तरीय वृद्धि तथा रूपण
- विपथन संशोधित उच्च विभेदन, प्रसारण विद्युत सूक्ष्मदर्शी
- अर्ध-चालक नानो-संरचनाएँ
- मृद् संघनित पदार्थ भौतिकी
- जैविक-अजैविक संकर पदार्थ
- नानो-पदार्थों की भौतिकी एवं रासायनिकी

अनुसंधान अंतर्दिष्टियाँ


- विखंडित जल, अर्ध-चालक धातु चेल्कोजेनाइडों द्वारा सौर प्रकाश-रासायनिक जलजनक उत्पादन का अन्वेषण तथा उनकी भौतिकी-गुणधर्मा तथा परतीय पदार्थों साथ में अन्य विषयों का प्रकाशन विभिन्न । नानो-पदार्थों का संश्लेषण । (प्रो. सी.एन.आर. राव का दल)
- पोषक-पोषित रासायनिकी के आधार पर एक नवल अधि-आण्विक कौशल्य का विश्लेषण, जैविक-वर्णमूलकों के साथ 20 नानो शीटों (चादरों) की असंहत प्रकार्यात्मकता के द्वारा किया गया है।
- प्रकाश विद्युत रासायनिकीय (PEC) जल विखंडन के लिए Cu₂O प्रकाश ऋणाग्र फिल्मों की प्रकाश स्थिरता के सुधार को सह-उत्प्रेरक के रूप में Nixpy के साथ अंतरापृष्ठीय पट्टिका की धार (कोर) के निर्माण के द्वारा किया गया है।
- Gan- एक आयामीय नानो छड़ों (राडों) तथा अर्ध दो आयामीय नानो-भित्तियों के रूपण के दौरान की प्रक्रियाओं का विशदीकरण ।
- प्रथम बार द्वि-प्रकीर्णन (विखंडन) बुलबुलों के सघन अव्यय-स्थित (विकृत) संवेष्ठन में यांत्रिकीय स्मरणों को कोढ़ीकरण।
- मात्रात्मक उच्च-विभेदक प्रसारण विद्युदणु सूक्ष्म दर्शी (HRTEM)
 का निष्पादन इन-लाइन (प्रतीक्षा) तथा पृथक-अक्ष स्वलेख दोनों
 द्वारा किया गया ।
- विस्तृत अध्ययनों ने मार्गस्थ (अस्थाई) Mn³+ अवस्था के आविर्भाव को अग्रसर किया है, जिसे आगे, चक्रण व अवलंबित सघनता प्रकार्यात्मक सिद्धांत परिकलन के साथ परिपुष्ट किया गया। बाह्य प्रदीप्ति द्वारा चुंबकीय आयॉन की चक्रण-अवस्था के नियंत्रण द्वारा अर्ध-चालक नानो-संरचना में प्रतिवर्ती प्रकाश-रासायनिकी प्रतिक्रिया तथा उच्च विकिरक क्षमता के कार्यान्वयन (परिणित) के लिए एक अद्वितीय अवसर प्रदान करता है।
- नवल अंग (जैव) उत्प्रेरक का विकास एक उत्तम क्षेत्र नियमितता
 के साथ कार्बोनेटों को (काटकर) खोल सकता है ।
- n-type से P-type वाहक पारगमन क्षेत्र के पर्यंत स्कैंडियम नाइट्राइड (ScN) की दुर्नम्य (कठोर) पिट्टका विद्युन्मानीय संरचनाओं का प्रदर्शन अनेक तंत्रों (तकनीकों) का उपयोग करके किया गया ।
- प्रथम बार ताप-आयॉनिक ऊर्जा परिवर्तन (तंत्र) साधन-अन्वयनों
 के लिए अधिस्तरीय एकल स्फटिकीय TiN/(AI, Sc) N धातु /
 अधिचालक (उच्च) ऊर्ध्व जालकों के (स्काटी) Schottky रोधिका
 (परिघ) ऊँचाई का निर्धारण ।

सी.एन.आर. राव

डी.एससी., पी.एच.डी., एफ.आर.एस., मानद एफ.आर.एस.सी., लाइनस पॉलिंग अनुसंधान प्रोफेसर तथा निदेशक, ICMS

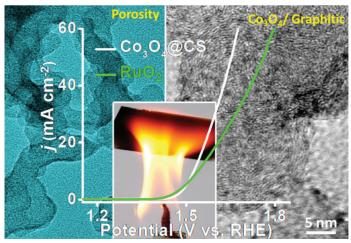
मूल तत्वीय फोस्फोरस की एकल परत - फोस्फोरिन का आविभीव हालही में, एक संवेदनशील 2D अर्ध चालक के रूप में हुआ है, जो 0.3-2.0 eV श्रेणी में (मोटाई) सघनता नादमय बैंड-गैप (पटिटका-अंतराल) उच्च आवेश वाहक चलनशीलता (~1,000 cm²V-¹s-¹) तथा 1 ऑन / 1 ऑफ अनुपात - 10⁵ को दर्शाता है । परंतु इस फोस्फोरिन का अन्वयन परिवेशी परिस्थितियों में इसकी निर्बल स्थिरता के कारण सीमित रहता है । हमने यह दर्शाया है कि लेविस आम्ल [जैसे कि InCl, तथा B(C,H,),] के गुणधर्मों के घाटे के बिना ही उस लेविस आम्ल के साथ रासायनिक प्रकार्यात्मकरण के बाद परिवेशी परिस्थितियों में फोस्फोरिन का स्थिरिकरण किया जा सकता है । इस प्रकार प्रकार्यात्मक फोस्फोरिन, पूर्व-प्रतिदर्श (नमूने) की तुलना में जल में तथा साथ में श्रेष्ठ (ऊर्ध्व) तथा (हृष्टपुष्ट) संतुलित H₃ विकास अभिक्रिया (HER) (कार्यकलाप में) क्रियाशीलता में उत्तम प्रकीर्णता को प्रदर्शित करता है । इस फोस्फोरिन के HER (कार्यकलाप को) क्रियाशीलता को आगे और -MOS, तथा MOSe, जैसे अन्य 2D पदार्थों के साथ ससंयोजकता से तिर्यक-संयोजन (बंधनी) द्वारा वर्धित किया जा सकता है । फोस्फोरिन -MOS, नानो सम्मिश्र के उत्कृष्ट HER - क्रियाशीलता को 2D (चादरों) शीटों के अनुक्रमित तिर्यक-संयोजन के लिए उत्तरदायी माना जा सकता है।

विगत वर्ष में, हमने 2D पदार्थों के क्षेत्र में अनेक रीति से प्रगति कर ली है । 1.0 तथा 5.0nm के अंतर के औसतन आकारों के साथ स्थिर फोस्फोरिन प्रमात्रा बिंदुकाओं (PQDयों) का निर्माण टोलुइन तथा मेसिटाइलिन जैसे अत्यंत अध्रुवीय विलायकों में काले (कृष्ण) फोस्फोरस के सोनिकेशन (ध्वनिकरण) द्वारा किया गया है । ये PQDएँ उत्तेजनात्मक तरंग-दैर्घ्य निर्भर नीले प्रकाश-संदीप्ति को प्रदर्शित करती हैं । (अर्सेनिन) Arsenene नानोशीटों तथा प्रमात्रा-बिंदुकाओं का निर्माण स्योग्य विलायकों में (धँधले संखिया) । ग्रे-अर्सेनिक के द्रव-अपशल्कन द्वारा किया गया है. 1T-MoS, तथा MoSe, की स्थिरता का सुधार, सरल जलऊष्मीय विलयन ऊष्मीय पद्धतियों के द्वारा किया गया है । ग्राफेन, MoS,, C,N, तथा BCN जैसी 2D संरचनाओं के ससंयोजक तिर्यक-संयोजन ने युग्मन-अभिक्रियाओं को वर्धित सतह क्षेत्रों, उत्कृष्टतर उच्चधारिता निष्पादन जलजनक विकास जैसे के नवीन अथवा सुधरे गुण-धर्मों के साथ नवल पदार्थों के उत्पादन होने दिया है । इसके अतिरिक्त, पोषक - पोषित रासायनिकी पर आधारित एक नवल अधिआण्विक कौशल्य का विश्लेषण जैविक वर्णधारियों के साथ 2D नानो-शीटों की असुसंहत (असंयोजक) प्रकार्यात्मकरण के लिए किया गया । इस कौशल्य को HER क्रियाशीलता के लिए अधि-आण्विक विषम संरचनाओं के संश्लेषण तक विस्तरित किया गया । बहुलक-साँचों के यांत्रिकीय तथा ऊष्मीय गुणधर्मी वर्धन विभिन्न संयोजन के परतीय BCN के साथ पुनर्बलन पर किया गया है । धात्-आकसॉइडों सल्फाइडों में अल्प-संहत (संयोजक) ऋणायन प्रतिस्थान, पट्टिका-संरचनाओं के निर्माण के लिए किया जा सकता है । Cd,NF तथा TiNF का संश्लेषण अन्रूप आक्सॉइड के जालक (जालंध्र) में 'O' के संपूर्ण प्रतिस्थानन द्वारा किया गया है । अलियोवेलेंट P³ तथा X (X=CI, Br,I) आयॉनों के द्वारा CdS में Sू के संपूर्ण प्रतिस्थानन को प्रत्यक्ष बैंड-गैप के साथ Cd,P,X, संयोजन तथा उत्कृष्ट जलजनक विकास तथा CO, न्यूनन गुणधर्मों के यौगिकों के उत्पादन के रूप में पाया गया है । गोचर प्रकाश प्रदीपन के अधीन समुद्रजल को जलजनक के रूप में सक्षम न्यूनन का अध्ययन श्'द्ध जल के साथ जल-विखंडन के लिए ज्ञात विभिन्न उतप्रेरकों के द्वारा किया गया है । प्रकाश-विद्युत रासयनिक (PEC) जल-विखंडन के लिए Cu₂O प्रकाश ऋणाग्र फ़िल्म (पटलों) की प्रकाश-स्थिरता को सह-उत्प्रेरक के रूप में NiXPy के साथ अंतरापृष्ठीय बैंड (पटिटका) धार ऊर्जिकी के निर्माण द्वारा

प्रमुख प्रकाशन :

राव सी.एन.आर., छेत्री एम. 2019. जालजनक विकास अभिक्रिया के लिए धात्-मृक्त उत्प्रेरकों के रूप में बोरो कार्बोनाइट्राइड्स । (उन्नत पदार्थ) Adv. Mater 31(13):C1803668.

रॉय, राव सी.एन.आर. 2019, अल्प सुसंहत (संयोजक) ऋणायन प्रतिस्थापन द्वारा उत्पादित नवल अजैविक पदार्थ । APL materials 7(9) 090901.


फोस्फोरिन तथा HER अध्ययन ।

ईश्वर्मूर्ति एम.

पीच.डी., प्रोफेसर एवं सहयोगी निदेशक, ICMS

नानो पदार्थ तथा उत्प्रेरण प्रयोगालय

प्रोपेन संश्लेषण के लिए प्रोपेन के उपचायक (ऑक्सिडेटिव) निर्जलीकरण के लिए पर्यावरणीय मैत्रुक सिक्रयात्मक तथा चयनात्मक उत्प्रेरकों का विकास उत्प्रेरक – अभिक्रियाओं की चुनौतियों में से एक है । इस अभिक्रिया की विपुल औद्योगिक संभाव्यता रही है । हाल ही में,हमने प्रोपेन के उपचायक निर्जलीकर्ण के लिए षट्कोणीय बोरोन नाइट्राइड के लिए उच्च उत्प्रेरक कार्यकलाप को दर्शाया है । प्रोपेन के अति उच्च परिवर्तन (~50%) पर (क्षारीयता) अल्कनेस (~70%) के लिए अर्थपूर्ण चयनीयता प्राप्त कर ली गई है । इस उत्प्रेरक को अमोनिया की उपस्थित में 100 घंटों से भी अधिक समय के लिए अपनी अभिक्रिया को बनाए रखते हुए पाया गया है । हमने एक सरल, एक चरणीय दहन (ज्वलन) पद्धित द्वारा उत्पादित कोबाल्ट ऑक्साइड@c उत्प्रेरक के लिए उच्च जलजनक विकास बलगितिकी को दर्शाया है ।

OER अभिक्रिया के लिए $Co_3O_4@c$ उत्प्रेरक के एक चरणीय दहन (ज्वलन) संश्लेषण ।

प्रमुख प्रकाशन :

एस.एम. शिवप्रसाद

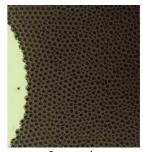
पी.एच.डी., प्रोफेसर (पुनर्ग्रहणाधिकार के साथ दि.11.08.2017 से लागू)

हमारा अनुचालन प्रयोगालय – GaN, InN तथा AIN जैसे III-नाइट्राइड अर्ध चालकों की नानो संरचनाओं तथा नवल प्रकार्यात्मक तथा गुणधर्मों के साथ उनके मिश्रधातुओं की पतली फिल्मों के वर्धन में कार्यरत रहा है। हमने GaN अर्ध-एक आयामीय नानो छड़ों तथा अधि-दो-आयामीय नानो भितियों के रूपण के दौरान की गतिविधि में परमाणुवीय प्रक्रियाओं के विशिदिकरण हेतु प्रयोगमूलक तथा प्रथम सूत्र सैद्धांतिक अध्ययन किया है। GaN पदार्थों पर आधारित प्रकाश विद्युन्मानिकी तथा विद्युन्मानीय साधन (तंत्र) संस्थापित (प्रतिष्ठित) उद्यम बन गए हैं। परंतु GaN के मादन से संबंधित कुछ गुणधर्मों को पूर्ण रूप से समझा नहीं गया है। Mg समावेशन द्वारा GaN के छेद मादन सक्षम प्रक्रियाएँ तथा प्रकाशीय तथा परिवहन गुणधर्मों में परिणामी प्रभावों का अध्ययन किया गया है। हमने मादित GaN की नीली संदीिस के मूल को समझ लेने हेतु वर्णक्रमदर्शी अध्ययन तथा सैद्धांतिक परिकलन का कार्य किया है। यह पाया गया है कि प्रतिस्थानीय तथा अंतरालीय Mg की सिन्मिश्रता (संकीर्णता) GaN के वर्जित अंतराल के भीतर त्रृटि-अवस्था का निर्माण करती है तथा उपरोक्त नीली संदीिस के लिए उत्तरदायी होती है। इसके अतिरिक्त GaN नानो-छड़ों की वर्धन-प्रक्रिया पर Mg के प्रभाव की परीक्षा की गई। यह पाया गया है कि Mg, नानो-छड़ों के त्रिज्यीय (अरीय) वृद्धि को वर्धित करता है। GaN आधारित विषम संरचनाओं ने जल-विखंडन अन्वयनों में आधासन दर्शाया है। यह पाया गया है कि प्रकाश उत्पेरक गुणधर्मों का वर्धन GaN की नानो-संरचनाओं के द्वारा किया जाता है। GaN नानो-भिति TiO2 विषम-संरचनाओं को जलजनक विकास अभिक्रिया के लिए समक्ष प्रकाश-धनाय के रूप में पाया गया है।

राजेश गणपति

पी.एच.डी., सहयोगी प्रोफेसर

मृद् पदार्थ प्रयोगालय

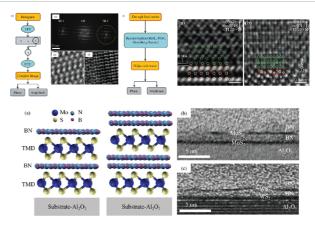

हालही के एक प्रयोगमूलक अध्ययन में हमारे दल ने प्रथम बार यह प्रदर्शित किया है कि द्वि-विकिरक (विसरणशील) बुलबुलों के सघन अव्यवस्थित (विकृत) संवेष्ठन में यांत्रिकीय स्मरणों के (कोढ़ीकरण) कूटन होता है । यह अध्ययन, बहु-स्मरणों के कूटन को दर्शाने में समर्थ रहा है तथा इन स्मरणों के संरूपण में मूलभूत अंतर्दष्टि उपलब्ध कराया है । इस (कार्य) लेख को PRL में प्रकाशित किया गया तथा इसे संपादक के सुझाव के रूप में लिया गया है तथा एक (पित्रका) जर्नल में आवरण-पृष्ठ के रूप में प्रकाशित किया गया है । इसे "अमरीकी भौतिकी संस्थान" के एक जनप्रिय विज्ञान-पित्रका – 'फ़िजिक्स टुडे' में भी प्रकाशित किया गया है । इसके अतिरिक्त, हमारे दल ने अन्य दो अध्ययनों को भी पूरा कर लिया है:-

प्रथम – कलिलीय छड़ों के निलंबनों में अपरूपण-प्रगाढ़न पर तथा द्वितीय – तनाव – उपशमन प्रतिमानों पर कलिलीय स्फटिकों पर स्व-संगठित वर्धन पर ।

प्रमुख प्रकाश्न

मुखर्जी एस. तथा अन्य 2019. मृदु काच के पराभवीबिंदु पर यांत्रिकीय स्मरणों का सामर्थ्य अधिकतम होता है । Phys. Rev. Lett. 122: 158001.

गणपति डी. तथा अन्य 2018. तथा अन्य । कलीलिय काच पारगमन के उपागमन पर अनाकारीय-अनाकारीय आव अंतरापृष्ठों के वर्धक सतह तनाव के मापन । Nat. Commun. 9:397.


अनाकारीय बुल्बुले तरापा

रंजन दत्ता

पी.एच.डी., सहयोगी प्रोफेसर

उच्च विभेदन प्रसारण विद्युदणु सूक्ष्मदर्शी प्रयोगालय

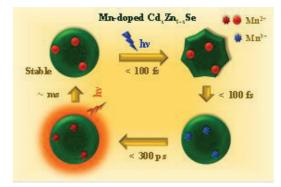
विगत शैक्षिक वर्ष में, हमने बहुरूपी कार्यों को प्राप्त कर लिया है। हमने सफलतापूर्वक मात्रात्मक उच्च विभेदक प्रसारण वियुदणु सूक्ष्मदर्शी (HR-TEM) का अन्वयन इन-लाइन (प्रतीक्षा) तथा प्रथम-अक्ष स्वलेख – इन दोनों द्वारा किया है। हमने विशाल क्षेत्रीय पतली फ़िल्म-रूप पर अति कठोर अधि-स्थिर w-BN को स्थिरीकृत कर दिया है। हमने ऊर्जा-अन्वयन के लिए 2D पारगमन-धातु डाइचेल्कोजेनाइडों की पतली-फ़िल्म विषम संरचनाओं को विकसित कर लिया है। अब हम सक्रियता से द्वि-ध्रुवी-साधनों (यंत्रों) तथा स्पिनट्रॉनिक्स (चक्रणिकी) में अन्वयन हेतु पतली फ़िल्म रूप के Zno में P-मादन तथा चुंबकत्व कार्य में कार्यरत रहे हैं। हम अपने TiTAN (टाइटान) सूक्ष्मदर्शी की अद्वितीय (सक्षमता) समर्थता का उपयोग करके समस्याओं को समझ लेने का प्रयास कर रहे हैं।

(a) तथा (e) क्रमशः स्वलेख तथा HRTEM प्रतिबिंब (प्रतिकृति) श्रेणियों से प्रावस्था तथा प्रवर्धन (विस्तार) प्राप्त करने हेतु पुनर्निर्माण पद्धतियों में निहित चरण । (b) एक CB तथा दो SB यों को दर्शानेवाले स्वलेख के फोरियर रूपांतरण । (c) तथा (d) <11-20>Z.A के पर्यंत ZnO अध-स्तरीय पतली फ़िल्म के परमाणुवीय विभेदन स्वलेख तथा HRTEM के उदा. है ।

रंजनी विश्वनाथ

पी.एच.डी., सहयोगी प्रोफेसर

प्रमात्रा बिंद्का प्रयोगालय

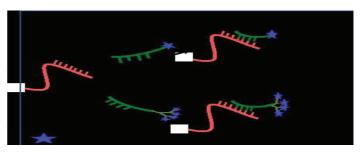

मादित अर्ध-चालक प्रमात्रा बिंदुकाओं में चक्रण/अक्षीय वर्जित Mn d-d से उत्सर्जन को अग्रसर करनेवाली अस्थायी प्रजातियों की प्रकृति ने दीर्घाविध से विज्ञानियों को चित्ताकर्षक कर रहा है । हमारा प्रयोगालय इन प्रजातियों की प्रकृति के विशदीकरण (स्पष्टीकरण) के प्रति कार्य करता रहा है । इन अस्थायी प्रजातियों के जीवनकाल के वर्धन हेतु अस्थायी अवशोषण पोषक पदार्थों के कुशल रूपांतरण का उपयोग करके हमने Mn उत्सर्जन के बारे में एक महत्त्वपूर्ण दीर्घकालीन समस्या (पहेली) को अनावृत किया है, जो अब तक दुर्गाह्म (जिटल) रहा । इस संकल्पना को पेरोवस्काइट पदार्थों के प्रति विस्तरित किया गया है । हमने Sn तथा Fe – मादित पेरोवस्काइट पदार्थों का संक्षेषण उत्कृष्ट प्रकाशीय गुणधर्मों के साथ किया है । EXAFS को एक उपकरण के रूप में उपयोग करते हुए पेरोवस्काइटों के उच्च निष्पादन में अनेक अनसुलझी समस्याओं को समझ लेने का

कार्य जारी में रहा है । हमने विस्तार से मादन-पारगमन धातुओं को II-VI अर्ध-चालकों पेरोवास्काइट प्रमात्रा बिंदुकाओं में लेने तथा उनका उपयोग पोषक प्रमात्रा बिंदुकाओं में लेने तथा उनका उपयोग पोषक प्रमात्रा बिंदुकाओं की विद्युन्मानीय संरचना के शोध परिवर्तन करने का कार्य किया है । इसके अतिरिक्त हमने चुंबकीय आयॉनों को cds नानो स्फटिकों में मादन करने तथा इसके प्रकाशीय प्रभाव को पोषक पर करने का कार्य किया है । हमने चुंबकीय/अ-चुंबकीय पदार्थों के अंतरापृष्ठ से उभरनेवाले चुंबकत्व का भी अध्ययन किया है ।

प्रमुख प्रकाशन

गेहलाट के. तथा अन्य 2019. II-VI अर्धचालक प्रमात्रा बिंदुकाओं में चक्रण-निषिद्ध – Mn d अवस्थाओं के प्रति मध्यस्थित ऊर्जा स्थानांतरणीय अल्प स्थायी (मार्गस्थ) प्रजातियाँ । ACS Energy. Lett. A:729-35

साहा ए., विश्वनाथ आर. 2017., चुंबकीय आक्सॉइड तथा अ-चुंबकीय अर्धचालक प्रमात्रा बिंद्का के अंतारापृष्ठ पर चुंबकत्व । ACS नानो-11.3347.54.


नानो-पदार्थों में Mn उतसर्जन का तंत्र ।

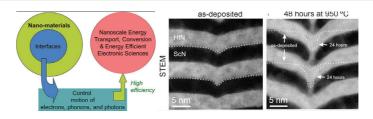
श्रीधर राजाराम

पी.एच.डी., सहयोगी प्रोफेसर

बह्लक प्रयोगालय

पॉलिकार्बोनेट ऐसे (टिकाऊ) स्थायी, (सख्त) कठोर तथा जैव अपकर्षी बहुलक होते हैं, जिनका उपयोग विस्तृत रूप से दैनंदिन जीवन में किया जाता है । परंतु, उनके उपयोग से संबंधित प्रमुख समस्या (प्रश्न) है – एकतयी इकाई के रूप में bisphenol-A (बिसफ़ेनॉल-ए) की उपस्थिति विगत वर्ष में हमने बिसफ़ेनॉल-ए-मुक्त पॉलि-कार्बोनेटों के विकास के लिए एक परियोजना प्रारंभ की है । हम इस संबंध में चक्रिय कार्बोनेटों का प्रदेश-चयनीय वलय मुक्तक बहुतयिकरण (ROP) पर कार्य कर रहे हैं ।

द्रमाश्म रामन अंकक (मार्कर) संसूचना क्षमता को वर्धित करते हैं ।


इन चक्रीय कार्बोनेटों का निर्माण सरलता से 1,3 डाइयोलों से किया जा सकता है, जिसे क्रमशः अल्डोल (aldol) उत्पाद के न्यूनन द्वारा प्राप्त किया जा सकता है। इस प्रकार परिवर्तनीय गुणधर्मों के साथ बहुलक की एक श्रेणी के प्रति सहज ही अभिगम प्राप्त किया जा सकता है। असममितीय कार्बोनेटों के संदर्भ में, बहुलक के यांत्रिकीय गुणधर्म प्रादेशिक नियमिता पर निर्भर होते हैं। (ROP) के गुणधर्म प्रादेशिक नियमिता का नियंत्रण एक किन कार्य है तथा हमने एक ऐसे नवल अंग (जैव) उत्प्रेरकों को विकसित कर लिया है, जो एक उत्तम प्रदेश-नियमितता से युक्त होता है। हम इन नवल बहुलकों के गुणधर्मों के अन्वेषण की प्रक्रिया में हैं।

बिवास साहा

पी.एच.डी., संकाय अधिसदस्य

विषम जननीय समेकन अनुसंधान प्रयोगालय

हमने विगत शैक्षिक वर्ष में (अन्य अनेक अनुसंधान विकासों के साथ) प्रमुख तीन आविष्कार किए हैं । प्रथमतः (समकालीकरण) सिंक्रोट्रॉनिक — आधारी क्ष-िकरण अधिशोषण तथा उत्सर्जन वर्णक्रमदर्शी मापनों तथा प्रथम-सूत्र नमूनन विश्लेषण के संयोजन के साथ, हमने n-टाइप से p-टाइप के प्रति वाहक पारगमन प्रदेश के पर्यंत (स्कांडियम नाइट्राइड ScN) Scandium Nitride की कठोर पिट्टका वियुन्मानीय संरचनाओं का प्रदर्शन किया है । द्वितीयतः तरंग-सिद्देश निर्भर प्लाजमॉन — अनुलंब ध्विनमात्रिक (LO) युग्मन तथा (फैनो) Fano अनुनाद को अधिस्तरीय ScN में प्रदर्शित किया गया है । तृतीयतः प्रथम-बार ऊष्मी-आयॉनिक ऊर्जा परिवर्तन साधन अन्वयनों के लिए अनुचालन एकल स्फिटिकीय Tin/(AI, SC)N धातु/अर्ध चालक उच्च जालांधों की स्कांटी Schottky रोधिका की उच्चता का निर्धारण किया गया है ।

उच्च जालक अधि-पदार्थों में विस्थापन पाइप विसरण रूपण को दर्शानेवाले उच्च विभेदक प्रसारण विद्युदण् सूक्ष्म रेखाचित्र ।

प्रमुख प्रकाशन :

नायक एस. तथा अन्य-2019. n-प्रकारी से p-प्रकारी वाहक पारगमन क्षेत्र पर्यंत स्कैंडियम नाइट्राइड (ScN) की कठोर पट्टिका विद्युन्मानीय संरचना । Phys Rev B.99:161117

मौर्य के.सी. तथा अन्य 2019. अधिस्तरीय n-प्रकारी SCN पतली फिल्मों में युग्मित प्लॉस्मॉन-LO ध्विनमात्रिक से तरंग-सिधश निर्भर रामन प्रकीर्णन । Phys Status Solidi Rapid Res Lett 13:1900196.

प्रेमकुमार संगुतुवन

पी.एच.डी., संकाय अधिसदस्य

ऊर्जा भंडारण तथा परिवर्तन प्रयोगालय

वेनेडियम आधारित NASCION – Na_3V_2 (PO_4) $_3$ ऋणाग्र का प्रदर्शन PO_4 0 $_3$ ऋणाग्र का प्रदर्शन PO_4 0 $_3$ 0 (PO_4 0 $_3$ 0) $_3$ 1 (PO_4 0 $_3$ 0) $_3$ 2 (PO_4 0 $_3$ 0) $_3$ 3 (PO_4 0 $_3$ 1) $_3$ 3 (PO_4 0 $_3$ 1) $_3$ 3 (PO_4 0 $_3$ 1) $_3$ 4 (PO_4 0 $_3$ 2) $_3$ 3 (PO_4 0 $_3$ 3) $_3$ 4 (PO_4 0 $_3$ 3) $_3$ 5 (PO_4 0 $_3$ 4) $_3$ 5 (PO_4 0 $_3$ 4) $_3$ 5 (PO_4 0 $_3$ 5 (PO_4 0 $_3$ 5) $_3$ 6 (PO_4 0 $_3$ 5) $_3$ 7 (PO_4 0 $_3$ 6) $_3$ 7 (PO_4 0 $_3$ 7) $_3$ 7 (PO_4 0 $_3$ 7) $_3$ 7 (PO_4 0 $_3$ 7) $_3$ 8 (PO_4 0 $_3$ 7) $_3$ 8 (PO_4 0 $_3$ 7) $_3$ 8 (PO_4 0 $_3$ 7) $_3$ 9 (PO_4 0 $_3$ 7) $_4$ 9 (PO_4 0 $_4$ 7) $_4$ 9 (PO_4 0 $_3$ 7) $_4$ 9 (PO_4 0 $_4$ 9) (P

एकक के सदस्य

लाइनस पॉलिंग अनुसंधान प्रोफेसर व निदेशक

सी.एन.आर. राव

सहयोगी निदेशक

एम. ईश्वर्मूर्ति

प्रोफेसर

एस.एम. शिवप्रसाद (पुनर्ग्रहणाधिकार के साथ 11.08.2017 से लागू)

सहयोगी फोफेसर

राजेश गणपति (सहयोगी संकाय CPMU) रंजन दत्ता (सहयोगी संकाय CPMU) रंजनी विश्वनाथ (सहयोगी संकाय NCU) श्रीधर राजाराम (सहयोगी संकाय CPMU)

संकाय अधिसदस्य

बिवास साहा (CPMU के साथ संयुक्त रूप से) प्रेमकुमार सेंगतुवन (NCU के साथ संयुक्त रूप से)

वरिष्ठ अनुसंधान अधिकारी

जय घटक

पीजीडीएमेस विद्यार्थी

बिबेकानन्द पयकरारे, एम शुभश्री, निर्मल जोस

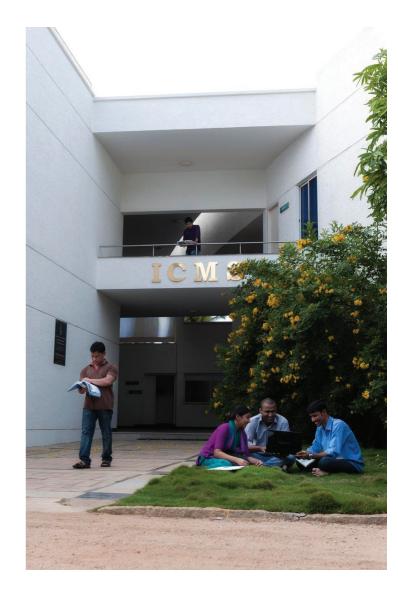
अन्संधान सहयोगी

आनन्द कुमार रॉय (अनंतिम), कविता शर्मा, मंजोध कौर, प्रमोद के, प्रताप विश्णोई, शशिधर

SERB राष्ट्रीय PDF

मोकुराला कृष्णय्या

महिला विज्ञानी, योजना-ए


सरस्वती सी

परियोजना सहायक

अंगिरा रॉय

तकनीकी सहायक-प्रशिक्षु

दीपक वी

ICMS की एक झलक

संकाय द्वारा प्राप्त पुरस्कार

प्रो. सी.एन.आर. राव – प्रेसिडेन्सी वि.वि. कोलकता से हॉनररी कॉसा डॉक्टरेट (80 वॉ हॉनररी कॉसा डॉक्टरेट) प्राप्त किया ; यू.के. के मेंचेस्टर वि.वि. से हॉनररी डॉक्टरेट प्राप्त किया ; भौतिकी प्रकाशन संख्या (IOP) द्वारा उच्चतम उल्लेखनीय लेखक पुरस्कार-2018; कोसाइन (COSINE) पुरस्कार – 2017 ; यू ए ई के उन्नत पदार्थ केंद्र द्वारा दिए जानेवाला प्रथम शेख सौद अंतर्राष्ट्रीय पुरस्कार ; सहयोगी प्रोफेसर (मानद) मानव अनुवंशिकी केंद्र, बेंगलूर ।

प्रो. रंजनी विश्वनाथ - MRSI पद 2018

बिवास साहा - SERB अंतर्राष्ट्रीय यात्रा पुरस्कार

3 **PGDMS** प्रवेश प्राप्त विद्यार्थी

2 **PGDMS** स्नातक प्राप्त विद्यार्थी

32 प्रकाशन

प्रायोजित प्रायोजनाएँ

वर्ष 2018-19 के दौरान प्राप्त राशि

नई परियोजनाएँ

42.36 लाख

जारी प्रयोजनाएँ

11

3.91 करोड

आण्विक जैविकी तथा आनुवंशिकी एकक (MBGU)

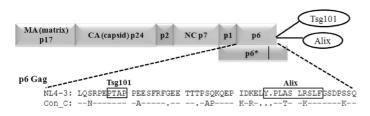
MBGU के बारे में

MBGU में अनुसंधान कार्य जैविकी में संकल्पनाओं को समझ लेने (ज्ञान) में वृद्धि करने हेत् साथ ही स्वास्थ्य-रक्षण तथा औषधि के लिए अन्वयनात्मक समाधानों को उपलब्ध करने हेत् आधारभूत सिद्धांतों तथा उन्नत (विकसित) उपागमनों का उपयोग करता है । प्रदत्त अनुपम अनुसंधान क्षेत्रों के विन्यास के साथ JNCASR के पास ऐसी विशेषज्ञता प्राप्त है, जिससे जैविकी-विज्ञानी आसानी से विविध वैज्ञानिक विषयों में (आरपार अन्प्रस्य रूप से) जा सकते हैं तथा विश्वभर के जालकार्यों का सहयोगोंको प्राप्त कर सकते हैं । हमारा अनुसंधान नैदानिकीय समझ (ज्ञान) तथा अन्वयन तथा रूपांतरणीय अध्ययनों पर प्रभाव डालता है । रोगाणुओं, खमीरों, आदि जीवियों, ड्रोसोफिला तथा मूषिकाओं, नलिका-कोशिकाओं जैसे विभिन्न प्रकार के जीवियों तथा मानव नैदानिक-नमूनों के अध्ययन द्वारा जैविकीय संकल्पनाओं तथा प्रक्रियाओं को स्लझा दिया जाताहै । अनुसंधान प्रश्नों में सम्मिलित होते हैं - मानव विकास के अध्ययन के वर्णक्रम की एक ओर जैव-अण्ओं को समझ लेना तथा दूसरी ओर रोगों को समझ लेना । तिर्यक (आर-पार) अंतर्विषयक अंतर्क्रियाओं के उन्नयन के लिए स्विधाओं, निधियनों तथा प्रशिक्षण - कार्यक्रमों को अनुकूलित (त्वरित) बना दिया गया है । अनेक दशकों के अपने (विशाल) अपार अनुभव के साथ संकायों ने JNCASR में तथा राष्ट्रीयता एवं अंतर्राष्ट्रीयता से प्रमुख प्रशासनिक एवं परामर्शी पदों पर स्थित (आसीन) हैं। इस एकक ने देश में विज्ञान के प्रति अपने योगदानों में उच्चतम प्रभाव सिद्ध कर दिया है।

यह एकक वर्ष 2018-19 के दौरान शैक्षिकता से अत्यंत सिक्रय तथा उत्पादक रहा है, जो अनेक प्रकाशनों, शोध प्रबंधों प्रतिवादों, अतिथि-व्याख्यानों तथा सम्मेलनों से युक्त रहा । अनेक संकाय सदस्यों के योगदानों को पुरस्कारों तथा व्यावसायिक निकायों की सदस्यता के रूप में मान्यता प्राप्त हुई है । वर्ष, 2018 में डॉ. कुशाग्र बन्सल के संकाय – अधिसदस्यता के रूप में ज्वाइन होने के साथ "रोग-निरोधक कोशिका विभेदन तथा प्रकार्य के आण्विक आधार" पर अनुसंधान का नया क्षेत्र प्रारंभ किया गया है ।

अनुसंधान के क्षेत्र

आ.जै.आ.ए. में अनुसंधान का ध्यान निम्नलिखित क्षेत्रों पर केंद्रीकृत रहा है ।


- स्वभक्षी एवं तंत्रिकाहासी रोग ।
- वर्णक जैविकी एवं न्यूनतम-सूत्र ।
- एच.आई.वी.-1 उपरूप-C तनाव ।
- गुणसूत्र पृथक्करण तंत्र ।
- मानव रोगों का आनुवंशिक आधार ।
- प्रोटीन अभियांत्रिकी (विन्यास) तथा आण्विक परजीवी विज्ञान ।
- निलका कोशिकाएँ तथा हत-संवहनी विकास ।
- अनुलेखन ।
- रोगनिरोधक भेदीकरण तथा प्रकार्य ।

अनुसंधान अंतर्दिष्टियाँ

- प्लास्मोडियम AMP अमोनिया-हरण के प्रमुख प्रकार्यात्मक अवशेषों की पहचान ।
- प्लास्मोडियम बर्घेरी में कोशिकीय प्रकार्यों के लिए आवश्यक चयापचयी – शोधक-साक्ष्य किण्वक के रूप में फोस्फोग्लाइकोलेट फोस्फेटेज की स्थापना ।
- गुणसूत्र बिंदु के विकास में RNAi की पहचान एक क्रांतिक घटक होता है ।
- जीन-रुधीरा को निकालने के द्वारा हृत्-संवहनी त्रुटियों का भारत से प्रथम अचेतन (नॉकौट) मूषिका नमूने का (सृजन) उत्पादन ।
- मानव बहुसमर्थ निलका कोशिकाओं में चयापचयी उप-अवस्थाओं का प्रदर्शन तथा विभेदन हेत् उनकी संभाव्यता ।
- न्यूनतम-सूत्रीय अखंडता (अक्षतता) के लिए अ-ऊतक वर्णक – संयोजित प्रोटीन PC₄ क्रांतिक होता है – इसका आविष्कार ।
- स्वभक्षी में (बाह्यस्योति) एक्सोसिस्ट सिम्मश्र के पात्र की पहचान ।
- स्व-अभिक्रियात्मक T-कोशिकाओं में नकारात्मक चयन के वादन (लयता) में तीन आयामीय (3डी) वर्णक संरचना के गतिकीय नियंत्रण में सम्मिलित होनेवाले नवल तंत्र की पहचान ।

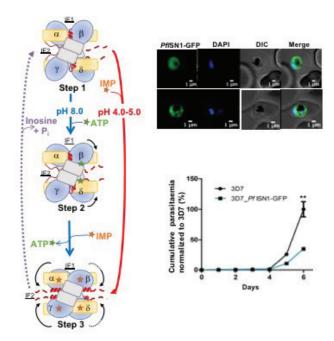
रंगा उदयकुमार

पी.एच.डी.. प्रोफेसर एवं चेयर. MBGU

काले रंग की बक्सों में अंकित कोर PTAP मूलभाव के साथ उपरूपी-B में अत्यंत सामान्य 3 aa अनुलिपिकरण के विरुद्ध (नैदानिक पृथक T004 से अनुक्रम में) उपरूपी Cp6 में पहचानित 14 aa अनुलिपिकरण को विशिष्टता से दर्शानेवाले HIV-1 Gag प्रोटीन प्रक्षेत्रोंका योजनाबद्ध (आरेखीय) प्रतिनिधित्व (चित्रण)।

HIV-AIDS प्रयोगालय

हमारा प्रयोगालय विषाण् अनुलेखनात्मक स्तब्धता का अध्ययन करता है । भेदक-अनुलेखनात्मक स्तब्धता प्रभावात्मकता से रोगों के प्रबंध तथा वेक्सिन के विकास के लिए अत्यंत (क्रांतिक) निर्णायात्मक होती है । भारत भर में चार संस्थानों के सहयोग के साथ निष्पादित एक अध्ययन में हमने यह वीक्षण किया है कि हाल ही के वर्षों में भारी संख्या में उन्नायक परिवर्तक विषाण्-तनाव उभर आए हैं । इन उन्नायक परिवर्तन – उन्नायक के अनुलेखनात्मक सामर्थ्य को वर्धित करने तथा साथ ही विषाण् अव्यक्तता की क्षमता को पूनर्बलित करने के होते हैं । हमने लगभग 10 परिवर्तक विषाण् तनावों को ऐसी दो व्यापक श्रेणियों में वर्गीकृत किया हे, जिनका आधार था कि केवल NF-kB मूलभाव, विषाण् उन्नायक पर था या RBE-III मूलभाव के साथ प्रतिकरण भी था । हमने यह दर्शाया है कि ऐसे परिवर्तन केवल HIV-I के उपरूप-C के लिए अद्वितीय लगते हैं । हम विषाणु अव्यक्तता तथा आधान (भंडार) इन संदूषणों में ही प्रभावित है विषाण् उन्नायक में अनुक्रमिक प्रतिकरणों के प्रभाव तथा विषाणु प्रतिकृति क्षमता पर Gag-p6 को प्रभाव यास निरोधकता तथा विकास के प्रभाव क्या होते हैं । हम प्रतिलोमतः (ट्रान्सक्रिप्टेस) अनुलेखन के उपरूप विशिष्ट गुणधर्मों की परीक्षा करने की योजना बना रहे हैं ।


प्रमुख प्रकाशन :

शर्मा एस. तथा अन्य 2017. भारत तथा द-आफ्रिका में औषध-नैव (naive) (नैदानिकी) विषयों में HIV-1 उपरूपी C Gag p6 में PTAP उपनुक्रम अनुलिपीकरण । *BMC infect Dis* 17.95.

शर्मा एस. तथा अन्य 2018. p6 Gag प्रोटीन में PPTAP मूलभाव अनुलिपिकरण HIV-1 उपरूप C पर प्रतिकृति लाभ को सिद्ध करता है। Biol.Chem. 293:11687-708.

हेमलता बलराम

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए.एस.सी., प्रोफेसर

प्लास्मोडियम फल्सीपरम 1SN1, संरचना – जैव रासायनिक – प्रकार्य, स्थानीकरण, शरीर क्रिया विज्ञान का महत्त्व ।

आण्विक परजीवी विज्ञान प्रयोगालय

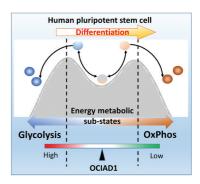
हमारे प्रयोगालय ने हालही में, खमीर (यीस्ट) में प्रकार्यात्मक पूरकीकरण द्वारा प्लास्मोडियम AMP-अमोनिया-हरण (ए.एम.पी.डी.) के जैव-रासायनिक गुणधर्म वर्णन का कार्य किया है। ए.एम.पी.डी. का अचेतन (नॉकाउट) परजीवी – जीवन – चक्र की सभी स्तरों पर घातक नहीं होता, जबिक विधित प्रकटन ने संपूर्णरूप में वृद्धि को निर्विधित किया है। उत्प्रेरक नियंत्रण प्लास्मोडियम फिल्सपरम Pf IMP- विशिष्ट 5'— न्यूक्लियोटाइडेस (केंद्रीकृत) के जीवीय (invivo) (शारीरिक) रूप से महत्त्व का विशिदिकरण किया गया है। इसके अतिरिक्त P-बर्घेरी में कोशिकीय प्रकार्यों के लिए आवश्यक चयापचयी शोधक-साक्ष्य किण्वक के रूप में फोस्फोग्लाइकोलेट फोस्फेटेज की स्थापना की गई है। संरचना तथा आण्विक-गतिकी अनुरूपण का उपयोग करके मेथानोकाल्डोकोकस जनाश्चि ग्लुटामाइनेज में ऊष्मा-स्थिरता के सुसिनाइमाइड आवेशित तंत्र को सूलझाया गया।

प्रमुख प्रकाशन :

जयरामन वी. तथा अन्य 2018. प्लास्मोडियम फ्यूमिरट हाइड्रोटेज के जैव रासायनिक गुणधर्म वर्णन तथा उसकी अत्यावश्यकता । *J.Bio. chem.* 293 : 5878 – 5894

कंपय्या नागप्पा एल. के तथा अन्य 2019. फोस्फोग्लाइकोलेट फोस्फेटेज जो प्लास्मोडियम बर्घेरी में कोशिकीय प्रकार्य के लिए चयापचयी शोधक – साक्ष्य किण्वक की अत्यावश्यकता होती है । J.Bio. chem. 294: 4997 – 5007

मनीषा एस. इनामदार

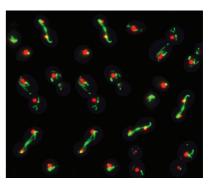

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए.एस.सी., प्रोफेसर

नलिका कोशिका तथा संवहनी जैविकी प्रयोगालय

हमारे प्रयोगालय ने हालही में मानव बहु समर्थ निलका कोशिकाओं में ऊर्जा चयापचयी उप-अवस्थाओं के अस्तित्व को प्रदर्शित किया है । हमने प्रथम बार भारत में हृत-संवहनी-त्रुटियों तथा अर्बुद रोगों के लिए प्रथम अचेतन मूषिका नमूने का निर्माण किया है ।

प्रमुख प्रकाशन :

शेट्टी डी. तथा अन्य 2018. मानव बहु-समर्थता निलका-कोशिकाओं में ऊर्जा चयापचयता के नियंत्रण हेतु OCIAD1 द्वारा वियुदणु परिवरण श्रृंखला सम्मिश्र-। कार्यकलाप को नियंत्रित करता है । Stem Cell Rep. 11: 128–41.


मानव बहु-समर्थ नलिका कोशिकाओं में ऊर्जा चयापचयी उप-अवस्थाएँ ।

कौस्तुव सन्याल

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए.एस.सी., ए.ए.एम. के अधिसदस्य, प्रोफेसर

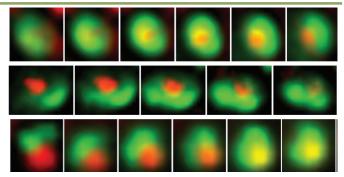
आण्विक कवक विज्ञान प्रयोगालय

हमारे प्रयोगालय ने, हालही में, यह प्रकटित किया है कि गुणसूत्र बिंदु के विकास में आर.एन.ए.आई. एक क्रांतिक घटक होता है क्योंकि आर.एन.ए.आई. की हानि आर.एन.ए.आई. निपुण प्रजातियों के गुणसूत्र बिंदु से पश्च क्रम परिवर्तन के संघर्षण को अग्रसर करती है, जो फ्राइप्टोकोकस की RNAi-त्रुटिपूर्ण प्रजातियों में लघुतर गुण-सूत्र-बिंदु को अग्रसर करता है (यादव तथा अन्य, 2018 PNAS) । इसके अतिरिक्त, ऐसे प्रोटीन Sad1 की भी पहचान की है, जो क्राइप्टोकोकस नियोफार्मान्स में केंद्रीय आवरण के प्रति गुणसूत्रों का स्थिरण (आश्रित) कर देता है तथा गुणसूत्र पृथक्करण के स्थानिक अस्थायी नियंत्रण के लिए यह अंतर्क्रिया महत्त्वपूर्ण होती है (यादव तथा सन्यास, 2018 m.Sphere)

गुणसूत्र पृथक्करण

प्रमुख प्रकाशन :

यादव वी. तथा अन्य 2018. निकटता से संबद्ध कवक में गुणसूत्र-बिंदु के विकास के लिए आर.एन.ए.आई. एक क्रांतिक निर्धारक होता है । Proc Natl Acad Sci USA 115 : 3108-3113.


वार्ष्णे वी. तथा अन्य 2019. क्रिप्टोकोकस नियोफॉर्मन्स में औरोरा स्वर्णिम क्षोभक-रस B 1pl1 द्वारा नाभिकीय प्रभाग के स्थानीय अस्थायी नियंत्रण. PLOS Genetics. 15: e1007959.

रवि मंजिताया

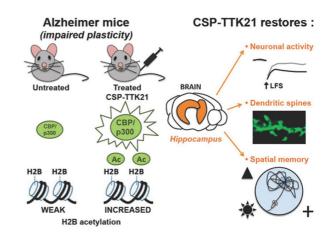
पी.एच.डी., सहयोगी प्रोफेसर (एन.सी.यू. के साथ संयुक्त रूप से) जी.आर.सी.-सदस्य

स्वभक्षी प्रयोगालय

हमारे प्रयोगालय का लक्ष्य है - खमीर से मानवों की श्रेणी में विभिन्न नमूने प्रणालियों के पर्यंत स्वभक्षी की प्रक्रिया को समझ लेना । इसकी उपलब्धि हेत् हमारे प्रयोगालय में दो अभिगमों का उपयोग विस्तार से किया गया है - (1) आनुवंशिक अभिगम-जहाँपर स्वभक्षी में अंतर्ग्रस्तता के लिए विभिन्न अत्यावश्यक तथा अ-अत्यावश्यक जीनों का चित्रांकन किया गया है ; तथा (2) रासायनिक अभिगम - जहाँ पर अल्प अण्ओं का उपयोग स्वभक्षी के (अधिमिश्रण) रूपांतरण के लिए किया गया है, आगे उन्हें रोग नमूनों में वैध (मूल्यंकित) किया गया है । हालही में, हमने यह प्रकट किया है - स्वभक्षी में बाह्य कोशिका सम्मिश्र का पात्र क्या होता है, जो अन्यथा सच्चा रोमाइसेस सेरोवाईसाइस में स्रवण में वैधनिकता से सम्मिलित होने के लिए ज्ञात है। बाह्य कोशिका सम्मिश्र, जो प्रयोगालय में किए गए आन्वंशिक चित्रण (संवीक्षण) से प्राप्त एक (घटक) तत्व रहा था । उसी के समान एक सम्मिश्र, जिसे सप्तक सिम्मिश्र कहा जाता है, को स्वभक्षी में अ-वैधानिक पात्रवाले रूप से दर्शाया गया है । इसके साथ ही, स्वभक्षी-सूत्र तथा बिदलन-सूत्र (ऑटोफेजीसोम तथा लाइसोसोम) विलयन को प्रतिरोध (रोकने) में प्रतिलोमतः निरोधक के पात्र को भी दर्शाने में समर्थ हो गए । एतद्वारा स्वभक्षीसूत्रीय यातायाती प्रक्रिया के अध्ययन के लिए एक नवल सक्षम उपकरण उपलब्ध करा सके हैं।

सच्चारोमाइसेस सेरेवाइसाइ में स्वभक्षी सूत्री (एम चेरीं लेबलित Atg8) के चारों ओर जी.एफ.पी. टैगित Cdc10, Cdc11 तथा Shs1 रूपी अ-वैधिकीय वलय संरूपण ।

प्रमुख प्रकाशन


वत्स एस. तथा मंजिताया आर. 2019 प्रतिलोमी स्वभक्षी निरोधक स्वभक्षी सूत्री विदलन सूत्र (ऑटोफ़ेजोसोम तथा लाइसोसोम) विलयन को स्वभक्षीसूत्री में Stx17 के भरण (लदान) के प्रतिरोध द्वारा रोक सकता है। आण्विक जैविकी कोशिका 17:2283-95.

सिंह एस. तथा अन्य 2019. Atg9 यातायात (परिवहन) के नियंत्रण द्वारा स्वभक्षी जैवजननीयता में बाह्य कोशिका उप-सम्मिश्र प्रकाय – आण्विक जैविकी पत्रिका 431:2821-34.

तपस कुंदु

पी.एच.डी., डी.एस.सी., एफ.ए.एस.सी., एफ.एन.ए., एफ.एन.ए.एस.सी., प्रोफेसर (पुनर्ग्रहणाधिकार के साथ 08.08.2018 से लागू)

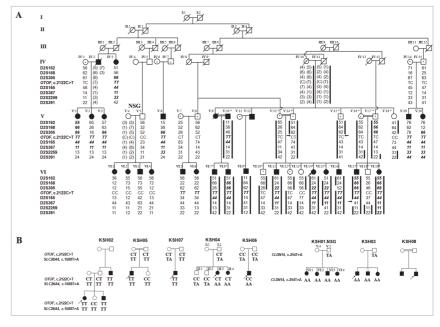
अन्लेखन तथा रोग प्रयोगालय (एन.एस.यू. के साथ संयुक्त रूप से) हमने यह आविष्कार किया है कि अ-ऊतक वर्णक सहायित प्रोटीन PC4, न्यूनतम सूत्री अखंडता (अक्षतता) के लिए क्रांतिक होता है तथा कोशिकाओं में इसकी क्षीणता का परिणाम केंद्रीय आकार परिवर्तन वर्णक की मुक्तता (खुलना) तथा परिवर्तित पश्चजननीय परिदृश्य के रूप में होता है । हमारे अध्ययनों ने यह दर्शाया है क PC4 -स्वभक्षी के नियंत्रक होता है तथा यह कोशिकीय समस्थैतिकता का अनुरक्षण करता है। (सिकदर तथा अन्य, 2019) । आगे, हमने वसा - जननीयता तथा मुख-अर्ब्द रोग में मिथाइलट्रान्सफरेस किण्वक CARM1 के पात्र तथा इनकी प्रक्रियाओं में इसके प्रकटन के नियंत्रण के आधारभूत तंत्र का प्रदर्शन किया है (बेहेरा तथा अन्य, 2018 - बेहेरा तथा अन्य 2019) । हमारे विस्तरित अनुसंधान ने यह दर्शाया है कि अल्प अणु संयोजित नानोकण (CSP-TTK 21) का उपयोग करके लाइसिन असिटाइल ट्रान्सफरेस किण्वक, p300/CBP का सक्रियन अल्ज़ीमर रोग से संबंधित स्थानिक स्मरण तथा स्घट्यता (फ्लास्टिसिटि) (न्यूनताओं) क्षीणताओं को समर्थता से पुनर्पूरण कर सकता है । (चटर्जी तथा अन्य, 2018), साथ ही मेरुदंड घावों में मूषिका तथा चूहा नमूनों में संवेदन तथा चालन (मोटार) प्रकार्यों के पुनर्पूरण में सहायता कर सकता है (हट्सन तथा अन्य)।

अल्ज़ीमर रोग से संबंधित स्मरण (क्षतियों) क्षीणताओं का पुरर्पूरण ।

प्रमुख प्रकाशन :

सिकदर एस. तथा अन्य 2019. अ-ऊतक मानव वर्णक प्रोटीन *PC4* FEBS J. doi: 10.1111/febs.14952

चटर्जी एस. तथा अन्य 2018. असिटाइलट्रान्सफेरेस सक्रियक के साथ टाओपथि मूिषका में सुघट्यता तथा स्मरण की पुनर्स्थापना. EMBO Mol. Med. 10(11): e8587.


अनुरंजन आनंद

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए., एफ.एन.ए.एस.सी., प्रोफेसर

मानव आन्वंशिकी प्रयोगलय

भारत के जम्मू एवं कश्मीर के धढ़की ग्राम के श्रवण क्षिति के प्रमुख कारण हैं – OTOF, CLDN14 तथा SLC.26A4 में उत्परिवर्तन । कारणीभूत उत्परिवर्तनों की पहचान के लिए दो-चरणीय अभिगम में हमने 45 सदस्योंवाले एक विस्तरित परिवार, जिसमें सम्मिलित थे – 23 प्रभावित तथा 22 अप्रभावित सदस्य थे – में संपूर्ण न्यूनतम – सूत्री - आधारित विश्लेषण का कार्य किया है । इसके अतिरिक्त श्रवण-क्षिति के साथवाले सात (अल्प) छोटे परिवारों में बहरेपन के प्रति अतिसंवेदनशीलता के कारणीभूत ज्ञात अनेक जीनों का विश्लेषण किया है । हमने p.R708X (OTOF में c.2122C>T उत्परिवर्तन) के साथ OTOF, CLDN14, तथा SLC26A4 में नवल उत्परिवर्तनों की पहचान, श्रवण-क्षिति के प्रमुख कारण के रूप में (रेखाचित्र) की है । हमारे परिणाम यह सुझाते हैं कि इस जनसंख्या

में श्रवण क्षति के कारक-तत्व में पर्याप्त मात्रा में आनुवंशिक विषम जननीयता रही है । इससे आगे, अनुकूलकारी, स्वकायिक पश्चगामी, पूर्व-जिह्नीय, अ-संलक्षणीय तथा कठोर से गंभीर श्रवण क्षतिके साथ 750 परिवारों की विस्तृत परीक्षा ने यह प्रकट किया है कि बहरेपनके कारक जीनों में रोगजननीयता के हमारे ज्ञानको विस्तिरत किया है । आनुवंशीय श्रवण-क्षति का भार (युक्तता)के प्रति इन जीनों के सापेक्ष योगदानों के ज्ञान से सुयोग्य (उपयुक्त) हस्तक्षेपीय चिकित्साओं के लिए शीघ्रविकार की संसूचना (शोध) तथा कार्यान्वयन के लिए "आनुवंशीय परिकलन – प्रक्रिया" की युक्ति (तंत्र) के लिए सहायता हो सकती है ।

वंशाविलयाँ KSH01-KSH08 A: 2p24-p22 अंकक (मार्कर) आवृति प्रकारी तथा OTOF, c.2122C>T in KSH01 में । सदस्यों को न्युनतमस्त्री-संवीक्षण (तारा चिह्नित) के लिए लिया गया है तथा अतिरिक्त प्रभावग्रस्त सदस्यों को अनुवंश – व्यवस्था तथा उनके पैतृकों / पूर्वजों को चित्रित सूक्ष्म उपग्रहीय अंकनों के रूप में (बाई ओर) । प्रभावग्रस्त गुणस्त्र (काले बार्स) विशिष्ट पुनर्सयोजन सीमाएँ (बाणाकार), स्वसंयुग्मन अनुवंश व्यवस्थित (मोटे इटालिक) तथा अनुमानित अनुवंश व्यवशित (लघु कोष्ठक) को स्चित करते हैं । NSG से 2p24-p22 के प्रति संयोजन की शाखा की अनुपस्थित को दर्शाता है । B: KSH02-KSH08 तथा KSH01. से पृथक उत्परिवर्तन - c.2122C>T, c.254T>A तथा c.1668T>A का संकेत मिलता है ।

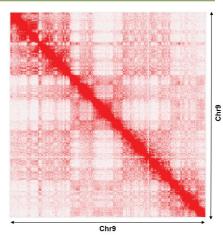
एम.आर. सत्यनारायण राव

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए., एफ.एन.ए.एस.सी., एफ.ए.एम.एस., एफ.टी.डब्ल्यू.ए.एस. मानद प्रोफेसर, एस.ई.आर.बी. वाई.ओ.एस., चेयर प्रोफेसर

वर्णक जैविकी प्रयोगालय

mrhl दीर्घ-कोडन आर.एन.ए. का प्रकटन मूषिका भ्रूणीय नलिका कोशिकाओं (ई.एस.) में होता है । प्रकार्य-हानि के अध्ययन ने यह दर्शाया है कि mrhl आई.आर.आई.सी. – RNA की आवश्यकता बह्समर्थता के लिए नहीं है, परंतु ई.एस. कोशिकाओं के वंशावली विशिष्ट विभेदन के लिए आवश्यकता होती है । IncRNA का न्यूनतम सूत्री पर्यंत अधिग्रहण (व्याप्ति) तथा अनुलेखनात्मकता (ट्रान्सिस्क्रिप्तेम) के अध्ययनों ने यह संकेत दिया है कि वर्णक अधिग्रहित क्षेत्रों तथा mrhl IncRNA के नियंत्रण का अनुसरण करनेवाले क्षोभकृत जीन - इससे पहले वीक्षित बी-प्रकारी वीर्याण् जननीय कोशिकाओं से संपूर्ण रूप से भिन्न होते हैं । हमने mrhl RNA के मानव सादृश्य का गुणधर्मवर्णन किया है तथा यह वीक्षण किया है कि यह (स्नायुक-संधि) सिंटेनिकली संरक्षित होता है, क्योंकि यह मूषिका प्रतिपक्ष का होता है । TH2B एक प्रमुख ऊतक परिवर्ती होता है, जो स्तनीय वीर्याण् कोशिकाओं तथा वीर्याण् सदृश्यों में कायिक एच2बी का लगभग 80-85% को प्रतिस्थानित करता है । टीएच2बी पर परिवर्तनोत्तर रूपांतरों (PTMओं) का उत्तमतर रूप से गुणधर्मवर्णन वीर्याणु कोशिकाओं तथा वीर्याणु सदृश्यों में किया गया है। परंतु TH2B पर इन PTMओं के जैविकीय प्रकार्यों को विस्तृत रूप से गूढार्थ नहीं निकाला गया है । ऊतक परिवर्ती TH2B के अद्वितीय प्रकार्य/यों के गूढार्थ निकालने के हमारे प्रयत्न में हमने इसकी संसूचना प्राप्त की है कि वीर्याण् कोशिकाओं में TH2B पर सेरिन 11 फोस्फोराइलेशन (TH2BS11PH) के एन-अंत्य पृच्छ में रूपांतरण होता है । अत्यंत विशिष्ट प्रतिपिंडों के साथ रोगनिरोधक संदीप्ति ने यह प्रकट किया है कि TH2BS11P ऊतक चिह्न (अंकन) की समृद्धता, लैंगिक काय के असूत्रयुग्मनध्री में होती है तथा Scp3, γH2AX, pATM तथा ATR जैसे प्रोटीनों से संबद्ध XY काय (पिंड) के साथ सहयोगित होता है. P20 C57BL6 मूषिका वृषण कोशिकाओं में चिप अनुक्रमण प्रयोगों से निर्धारित के अनुसार नयूनतम सूत्री-व्यापि अधिक्रहण के अध्ययनों ने यह प्रकट किया है कि TH2BS11P की समृद्धि जो स्थूल सूत्र वीर्याण् कोशिकाओं में रोग-निरोधक संदीप्ति आभिरंजन (कलंक) की पृष्टि X तथा Y गुणसूत्रों में होती है । XY काय में इस रूपांतरण के स्थानीकरण के अलावा, TH2BS11ph प्रमुखता से H3Kme3- के सहयोगित होता है,जिसके जीन उन्नयकों जैसे न्युनतम सुत्री-क्षेत्र निहित होते हैं । इन डाटाओं को P12 C57BL6 मुषिका-वृषण कोशिकाओं में किए गए TH2BS11ph ऊतक चिह्न पाया गया है जिसमें हमने H3Kme3- से युक्त न्यूनतम सूत्री क्षेत्रों पर इस रूपांतरण के पूर्ण-प्रधान्य स्थानीकरण को पाया है। एक केंद्रकसूत्री (काय) से युक्त TH2BS11ph के साथ सहयोगित प्रोटीन के द्रव्यमान वर्णक्रममिति विश्लेषण ने XY काय, परि (बाह्य) केंद्रिक विषमवर्णक तथा अनुलेखन के प्रकार्यों से संयुज्य प्रमुख प्रोटीनों को प्रकट किया है।

प्रमुख प्रकाशन :


आखाडे वी.एस. तथा अन्य 2016, मूषिका वीर्याणु-पूर्वज कोशिकाओं में एम.आर.एच.एल. दीर्घ अ-कोडन आर.एन.ए. के अवनियंत्रण से आवेशित writ संकेतन का तंत्र । न्यूक्लिक एसिड रिसर्च 44(1); 387-401.

काटरूका एस. तथा अन्य 2017. नियंत्रक (सॉक्स) SOX प्रकटन द्वारा मूषिका वीर्याणु पूर्वज कोशिकाओं के एम.आर.एच.एल. दीर्घ अ-कोडन आर.एन.ए. मध्यस्थित ह्वास-विभाजनी दायित्व / - आण्विक तथा कोशिकीय जैविकी; 37(14) : e00632-16.

कुशाग्र बन्सल

पी.एच.डी., संकाय अधिसदस्य

हमारे प्रयोगालय का प्राथमिक ध्यान सस्तनियों में रोगनिरोधक कोशिकाओं के व्यवहार (स्वभाव) को नियंत्रित करने वाले सम्मिश्र नियंत्रक कोडों (संहिताओं) को समझलेने हेत् विस्तृत यांत्रिकी के निर्माण करने पर केंद्रीकृत रहा है । विशेषकर हमने यह अन्वेषित किया है कि किस प्रकार न्यूनतम सूत्री द्वारा कोडीकृत "CIS" तथा "trans" जैसे कार्यकारी घटकों को अनुलेखनात्मक तथा पश्चजननीय (यांत्रिकता) तंत्र में समेकित किया गया है, जो एक स्वस्थ रोगनिरोधक प्रतिक्रिया को स्विधाकृत करता है तथा ये आण्विकपरिपथ किस प्रकार रोगिनरोधक मध्यस्थित रोगों में असफल होते हैं - इसके बारे में गूढार्थ निकालने का प्रयत्न किया गया है । बहाव कोशिकामिति, (अनुलेखनिकी) ट्रांसिकप्टोमिक्स (RNA-Seq सूक्ष्म विन्यास), न्यूनतम सूत्री व्यापी वर्णक - मानचित्रण तकनीक (तंत्र) (Chip-Seq, ATAC-Seq), उच्च-संवेह गुणसूत्र पृष्टि प्रग्रह वर्गीकरण (Hi-C) से मूषिकाओं में आनुवंशिक क्षोभकारिता जैसे विभिन्न कोटि के अंतर्विषयक प्रयोगमूलक उपमानों की श्रेणियों के संयोजन द्वारा हमने रोग निरोधक कोशिका प्रकार्यों के नवल आण्विक मध्यस्थों को अनावृत किया है । सद्यतः, हमने अपना ध्यान DNA पारिस्थितिकी के नियंत्रकों तथा न्यूनतम सूत्री उच्च संरचना के संबंध को रोगनिरोधक कोशिकाओं के समलक्षणी के साथ स्थापित करने पर केंद्रीकृत किया है तथा प्राथमिक परिणाम यह सुझाते हैं कि इनमें सहजात में तथा साथ ही अनुकूलात्मक रोगनिरोधक प्रतिक्रियाओं के मध्यस्थों के नियंत्रणात्मक पात्र होता है। हमारे प्रयोगालय ने स्व-अभिक्रियात्मक टी-कोशिकाओं के नकारात्मक चयन के (वादन) लयात्मकता में तीन आयामीय (3डी) वर्णक-संरचना के गतिकीय नियंत्रण में सम्मिलित होनेवाले एक नवल तंत्र की पहचान की है।

मज्जक अजवाईन अधिछ्द्रक कोशिकाओं में chr9 के ग्णसूत्रीय संपर्क रूपरेखा (नक्शा)

वार्षिक रिपोर्ट 2018-2019

एकक के सदस्य

प्रोफेसर एवं चेयर

रंगा उदयकुमार

प्रोफेसर

अनुरंजन आनंद (एनएसयू के साथ सहयोगित) हेमलता बलराम कौस्तुव सन्याल मनीषा एस. इनमदार तपस कुमार कुंडु (एनएसयू के साथ सहयोगित तथा 08.08.18 से पूनर्ग्रहणाधिकार के साथ)

सहयोगी प्रोफेसर

रवि मंजिताय (एनएसयू के साथ सहयोगी संकाय) मानद प्रोफेसर एमआरएस राव

संकाय अधिसदस्य

कुशाग्र बन्सल

अनुसंधान विद्यार्थी

आदित्य बट्टाचार्य, ऐश्वर्या प्रकाश, आकार कुमार सिंह, अक्षय सी नंबियार, अलीस सिन्हा, अनन्या रे, अंजली आम्रपली विश्वनाथ, अंकित शर्मा, अनुषा चंद्रशेखरमठ, अनुष्का चक्रवर्ती, अरिंदम रे, अर्पिता ए सूर्यवंशी, अरुण पंचपकेशन, आशुतोष बी आर, बार्वे गौरव रमानंद, भांगे दिशा रमेश, भट्ट मल्लिका दत्तात्रेय, भावना कय्यर, छवी सैनी, कुकू तेरेसा जेट्टो, डोंगरे अपर्णा विलास पुष्पलता, डोंगरे प्रथमेश राजेश, हर्षदीप कौर, इरिने मरिया अब्राहम, इशफाख़ अहमद बाबा, अय्यर आदित्य महादेवन, ज्योत्सना करन, कामत काजल मुरली, करणदीप सिंह, कोयल रॉय, कृष्णेंद्र गुइन, कुलदीप दास, कुमारी रुचिका रंजन, लक्ष्मीश के एन, मौमिता बस्, निवेदिता पाण्डे, पद्मालय, पलक अगरवाल, पल्लबी मुस्ताफी, पल्लवी चौबे, पोलिसेट्टी वी एस, सत्य देव, पूजा बरक, प्रीति जिन्दाल, प्रिया ब्रह्मा, प्रिया जेटली, राह्ल मदान, राजश्री बतब्याल, रणबीर चक्रबोर्ती, राशि अगरवाल, रेश्मी रवि, रीमा सिंघा, रोहित गोयल, सहेली रॉय, सलोनी सिन्हा, सांभवी पुरी, संतोष एस, शर्मा प्रज्ञा नीरज, श्रेयस श्रीधर, श्रीलक्ष्मी वी. जोशी, श्वेता जयशंकर, सिद्दार्थ सिंह, स्मिता ए एस, सोम्या वत्स, श्रेष्ठ पाल, श्रीजन दत्ता, एस सुदर राम, सुचिस्मिता डे, सुनैना सिंह रजपुत, वीणा ए, वुल्लिगुंडम प्रवीण, यशस्विनी रै

अन्संधान वैज्ञानिक बी

लक्ष्मी श्रीकुमार

अन्संधान सहयोगी

सी एन राहुल (डीबीटी), दिवेश जोशी (अनंतिम) कीर्ति (डीबीटी), एम. जयप्रकाश राव, नरेंद्र नाला, नेहा वार्ष्ण, राजाजी विन्सेंट (अनंतिम) संगीता दत्ता (डीबीटी), संतोष शिवकुमारस्वामि (अनन्तिम), शरमिष्टा हल्दर सिन्हा, श्रीदेवी पी (डीबीटी), श्वेता सिकदर, वी शालिनी (डीबीटी).

SERB (TARE)

धनलक्ष्मी

SERB NPDF

अश्वथी नारायण, ममता नेगी, मुहम्मद हाशिम रेज़ा, सुमन यादव श्रिंका सेन

कनिष्ठ अन्संधान अधिसदस्य

अभिजित दास, डोंगरे अपर्णाविलास, हैदर अलि, इला जोशी, कविता मेहता, एम.के. श्रुति, प्रियदर्शिनी सन्याल, तेजल आर. गुजराती, उत्स भादुरी, विनय जे राव

वरिष्ठ अनुसंधान अधिसदस्य

आकाश साम, डयाना रोड्रिगुस, ज़निय

प्रयोगालय प्रबंधक

श्वेता एल.आर.

वरिष्ठ तकनीकी अधिकारी

प्रकाश आर जी तकनीकी अधिकारी ग्रेड ॥ सुमा बी एस

महिला विज्ञानी योजना ए.

श्वेता पंचाल, लक्ष्मी गरिमेल्ला

परियोजना सहायक

धरणीश्वर रेड्डी एम, गिरिजा जे सुबोधी, विशाखा गंगाधर शेवले

परियोजना तकनीकी अधिकारी

कृति एच.टी.

अन्संधान एवं विकास सहायक

अफजल अमानुल्ला, अनंगी ब्रह्मय्या, हर्षित कुमार प्रजापति मृदुला गिरिधरन, एस दीपक, स्वाती सिंह

अन्संधान सहायक

शालिनी रॉय चौध्री

परियोजना तकनीशियन

सुनील कुमार आर

प्रशिक्षु

सहना रवि

MBGU की एक झलक

संकाय द्वारा प्राप्त प्रस्कार

प्रो. एम आर एस राव - साइन्स चेयर प्रोफेसरशिप SERB - विज्ञान वर्ष ।

प्रो. कौस्तुव सन्याल - अमरीकी सूक्ष्म जैविकी अकादमी के अधिसदस्य, सहयोगी संपादक, कोशिकीय संदूषण सूक्ष्म जैविकी में सीमांत, टाटा इन्नोवेशन अधिसदस्यता से पुरस्कृत ।

प्रो. कुशाग्र बन्सल - जैव प्रौद्योगिकी विभाग द्वारा रामलिंग स्वामी प्रनः प्रवेश अधिसदस्यता ।

प्रो. मनीषा इनामदार - कर्नाटक सरकार के के.एस.सी.एस.टी. द्वारा वर्ष 2017 के लिए विज्ञान तथा प्रौद्योगिकी के क्षेत्र में महिला विज्ञानी के लिए डॉ. कल्पना चावला पुरस्कार, प्रो. सी.एन.आर. राव वक्तृता पुरस्कार – 2019, अभिशासन के लिए वैश्विक मानकों के विकास तथा मानव न्यूनतम सूत्री संपादन पर विश्व स्वास्थ्य संगठन (WHO) विशेषज्ञ परामर्शी समिति के सदस्य, अनुसंधान योजना समिति में वैश्विक जैवनैतिकता मंच के सदस्य – 2019, भारतीय विज्ञान अकादमी के विज्ञान में महिला नामिका के सदस्य, भारतीय विज्ञान अकादमी के पशु एवं पादप (सस्य) विज्ञान की अनुभागीय समिति के सदस्य, भारत सरकार के DBT (जै.प्रो.वि.) के औषधीय जैव प्रौद्योगिकी पर वैज्ञानिक तकनीकी मूल्यांकन तथा परामर्शी दल के सदस्य, भा.स. के जै.प्रौ.वि. (Gol-DBT) के नलिका कोशिका एवं पुनरुज्जीवन औषध पर तकनीकी विशेषज्ञ समिति का (सह-अध्यक्ष) को-चेयर।

प्रो. तपस के. कुंदु - उत्तर बंग कृषि वि.वि. के DSC हॉनरस कॉसा; आगंतुक प्रोफेसर आदिचुंचनगिरि वि.वि. - टी.जी. नगर, कर्नाटक (2019-अद्यतन); प्रतिष्ठित प्रोफेसर – SDU उच्च शिक्षा एवं अनुसंधान अकादमी, कोलार-कर्नाटक; आई.आई.टी., आई.आई.एस.सी.आर. तथा सी.एस.आई.आर. के संकाय भर्ती समिति के सदस्य ।

प्रो. हेमलता बलराम – विज्ञानी पुरस्कार – कर्नाटक राज्य विज्ञान एवं प्रौद्योगिकी परिषद; भारतीय राष्ट्रीय विज्ञान अकादमी अधिसदस्यता – 2018; निम्नों के लिए सदस्यता :

सदस्य – अनुभागीय समिति (जैविकी), भारतीय विज्ञान अकादमी (2019-), सदस्य-पशु विज्ञान एवं जैव प्रौद्योगिकी RC, CSIR (2019-2022) ; सदस्य - तकनीकी विशेषज्ञ समिति (TEC); मेडिकल जैव प्रौद्योगिकी विशिषज्ञ समिति उत्तर पूर्वी क्षेत्र (2019);

सदस्य मेडिकल जैव प्रौद्योगिकी पर DBT-NER वैज्ञानिक एवं तकनीकी मूल्यांकन तथा परामर्शी दल (STAG).

प्रो. निमता सुरोलिया - डीबीटी प्रतिष्ठित जैवतकनीकी अनुसंधान प्रोफेसरशिप पुरस्कार

MBGU की एक झलक

विद्यार्थियों द्वारा प्राप्त पुरस्कार

गौरव बारवे ने JCS प्रकाशन में अग्रणी लेखक के रूप में साक्षात्कार दिया ।

सोम्या वत्स ने न्यूटन – भाभा अधिसदस्यता प्राप्त की है ।

नेहा वर्ष्ण ने दिसंबर 2018 में हुई गुणसूत्र (वंशावली) स्थिरता बैठक में PLoS आनुवंशिकी अत्युत्तम भित्ति चित्र पुरस्कार प्राप्त किया है ।

श्रीदेवी पद्मनाभन को डॉक्टरोत्तर अधिसदस्य श्रेणी में AWSAR पुरस्कार ।

प्रायोजित परियोजनाएँ

वर्ष 2018-19 के दौरान प्राप्त राशि

नई परियोजनाएँ

12

19.41 लाख

जारी परियोजनाएँ

41

3.69 करोड

4 पी.एच.डी. तथा 9 एम.एस. प्रवेश प्राप्त विद्यार्थी

8 पी.एच.डी. तथा 6 एम.एस. स्नातक प्राप्त विद्यार्थी

38 प्रकाशन

नव रासायनिकी एकक (NCU)

NCU के बारे में

न.रा.ए. का सजन ज.ने.उ.वै.अ.कें. द्वारा 11वीं पंचवर्षीय योजना के अंग के रूप में वर्ष 2010 में किया गया । यह एकक रासायनिक जैविकी, रासायनिक विज्ञान तथा पदार्थ-विज्ञान के अंतरापृष्ठ के अनुसंधानात्मक क्षेत्रों पर महत्व देते हुए रासायनिक-विज्ञान की अंतर्शाखाओं के पहलुओं पर कार्य करता है । न.रा.ए. ने विभिन्न पदार्थों के संपूर्ण गुणधर्मवर्णन तथा विश्लेषण के लिए सन्नद्ध (सुसज्जित) प्रयोगात्मक सुविधाओं को विकसित कर लिया है । यह एकक समकालिकता (तुल्यकालिकता)-तंत्र जैसे सन्नद्ध (स्सज्जित) स्विधाओं के प्रति अभिगम प्राप्त करने हेत् विभिन्न राष्ट्रीय तथा अंतर्राष्ट्रीय अनुसंधान केंद्रों के साथ सक्रियता से सहयोग कर रहा है । विगत वर्षों में न.रा.ए. देश के अग्रणी रासायनिक विभागों में से एक के रूप में उभर आया है तथा अनुप्रयोगात्मक (रूपांतरात्मक) अनुसंधान में यह एकक उत्कृष्ट हो गया है तथा अनेक राष्ट्रीय तथा अंतर्राष्ट्रीय एकास्वाधिकारों के साथ अपने संकाय - सदस्यों द्वारा दो नवोद्यमों को प्रारंभ कर दिया गया है।

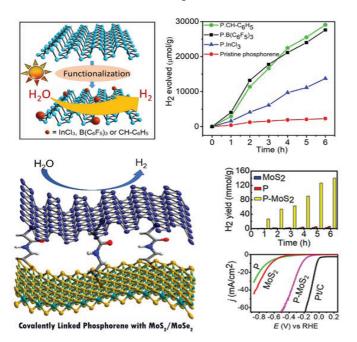
अनुसंधान के क्षेत्र

न.रा.ए. में अनुसंधान का ध्यान निम्नलिखित क्षेत्रों पर केंद्रीकृत रहा है :

• घन-अवस्था तथा पदार्थ रासायनिकी, जैविक संश्लेषण, जैव पदार्थ, अल्ज़मीर रोग, पाचक (पेप्टाइड) रासायनिकी, प्रति-जैविकी, प्रति-सूक्ष्माणुवीय पाचक अनुकरण, अधि-आण्विक रासायनिकी, प्रतिमानीय बहुलक, चालक बहुलक, उच्च-विभेदन प्रतिबिंबन, डी.एन.ए. नानो-प्रौयोगिकी, अर्ध-चालक नानो-पदार्थ, बहु प्रकार्यातमक धातु जैविक संकट, औषधीय रासायनिकी, रासायनिक तंत्रिका-विज्ञान, सैद्धांतिक रासायनिकी, कार्बन तथा आक्साइड आधारित पदार्थ उत्प्रेरक, कार्बन-नानो-संरचना रासायनिकी । न.रा.ए. के नवीकरणीय ऊर्जा अनुसंधान के प्रमुख कार्यकलापों में सम्मिलित हैं – जल-विखंडन, इंधन-कोशिका, CO2 न्यूनन, Li/Na बैटरियाँ तथा ऊष्म-विद्युतिकी ।

अन्संधान अंतर्दिष्टियाँ

- स्थिर फोस्फोरिन प्रमात्रा बिंदुकाओं (PQDयों) का निर्माण टोलोइन तथा मेसिटाइलिन जैसे अत्यंत अ-ध्रुवी विलायकों में (काले) कृष्ण फोस्फोरस के ध्वनिकरण द्वारा किया गया है।
- जैविक वर्णधारी के साथ 2D नानोशीटों के असुसंहत प्रकार्यात्मकता के लिए पोषक-पोषित रासायनिकी के आधार पर एक नवल अधि-आण्विक कौशल का विश्लेषण किया गया है।
- प्रकाश विद्युतीय (PEC) जल-विखंडन के लिए Cu₂O प्रकाश विद्युदग्र फिल्म की प्रकाश स्थिरता का सुधार सह-उत्प्रेरक के रूप में NixPy के साथ अंतरापृष्ठीय पटिका-धार (बैंड-एड्ज) ऊर्जिकी की अभियांत्रिकी (के विन्यास) द्वारा किया गया है।
- अल्ज़मीर रोग की शीघ्र नैदानिकी के लिए संकर (पाचकों) पेप्टाइडों अल्प अणु आधारित उपकरणों का विकास ।
- न्यूनतम विषाक्तता के साथ प्रतिजीवाणुवीय क्रियाकलापों के निर्धारण में महत्वपूर्ण पात्र वाली आण्विक संरचना में ध्रुवीय तथा अध्रुवीय अर्धांशों में विशिष्ट व्यवस्था (रचना) को सिद्ध करने हेतु वसामय नार्स्परमाइडाइनों के व्युत्पन्नों का विकास किया गया ।
- मेथिसिलिन निरोधक (प्रतिरोधक) स्टाफाइलोकोकस औरस के विरुद्ध एक अत्यंत सक्रिय द्वय-प्रकार्य बहुलक-रजत नानो-सम्मिश्रों का विकास किया गया ।
- पदार्थ की लौह विद्युतीय स्थिरता की अभियांत्रिकी द्वारा उसकी वाहक चलनशीलता का ह्रास नहीं करते हुए पदार्थ – kL को अर्थपूर्णता से न्यून करने हेत् एक मूलभूत नये कौशल का अन्वेषण किया गया है ।
- विस्तृत अध्ययन ने अल्पस्थायी Mn₃₊ अवस्था के आविर्भाव को अग्रसर किया है, जिसे आगे चक्रण निर्भर सांद्रता प्रकार्यात्मक सिद्धांत परिकलनाओं के साथ परिपुष्ट कर दिया गया है । यह बाह्य प्रदीपन द्वारा चुंबकीय आयाँन की चक्रण अवस्था के नियंत्रण द्वारा अर्धचालक नानो-संरचना में उच्च विकिरक क्षमता तथा प्रत्यावर्ती प्रकाश रासायनिक अभिक्रिया को समझलेने हेत् एक अद्वितीय अवसर प्रदान करता है ।
- मानवोद्भविक CO₂ को रासायनिकों तथा इंधनों में परिवर्तन के लिए एक समेकित प्रौद्योगिकी का विकास कर लिया गया है ।
- जीवंत / सजीव तथा संतुलित (सादृश्य) अधि-आण्विक बहुलकता से परे (में से) रासायनिक इंधन चालित अभिगम का प्ररंभ ।
- जलीय प्रावस्था फोस्फोरेसों (स्फुरदीप्त) की संकल्पना तथा अधि आण्विक साँचा अभिगम द्वारा परिवेशी परिस्थितियों में (जल में भी) लाल प्रकाश उत्सर्जक कक्ष-तापमान स्फ्रदीप्ति जैविक प्रणाली का प्रारंभ ।
- Na-आयॉन बैटरियों में ताराकार चक्रीय निष्पादन के वेनेडियम आधारित NASCION ऋणाग्र $Na_3V_2(PO_4)_3$ का प्रदर्शन किया गया ।
- जैव-लंबकोणीय प्रतिबिंबन तथा संवेदन, उच्च-विभेदन प्रतिबिंबन तथा चिकित्सात्मक पदार्थों के वितरण तथा सिक्रयन हेतु नए अभिगमों को विकसित कर लिया गया है।


सी.एन.आर. राव

डी.एससी., पीएच.डी., एफ.आर.एस., मानद एफ.आर.एससी., लाइनस पॉलिंग अन्संधान प्रोफेसर तथा चेयर NCU

पदार्थ संश्लेषण प्रयोगालय

फोस्फोरिन, जो मूल तत्वीय फोस्फोरस का एक-परतीय है, जो एक संवेदनात्मक 20 अर्धचालक के रूप में आविर्भावी हुआ है । वह $0.3-2.0\,\mathrm{eV}$ (श्रेणी) रेंज में सघन (मोटा) नादात्मक बैंड-गैप, उच्च आवेशवाहक चलनशीलता ($\sim 1000\,\mathrm{cm^2V^-ls^-l}$) तथा $I_\mathrm{ON}/I_\mathrm{OFF}$ अनुपात >105 को दर्शाता है । परंतु, इस फोस्फोरिन का अन्वयन परिवेशी परिस्थितियों में निर्बल स्थिरता द्वारा सीमित होता है । हमने यह दर्शाया है कि इस फोस्फोरिन को परिवेशी परिस्थितियों में इसके गुणधर्मों की हानि किए बिना ही (खोए बिना ही) लेविस आम्लों [जैसे $- \mathrm{InCl_3}\,\mathrm{B}(\mathrm{C_6H_5})_3$] के साथ रासायनिक प्रकार्यात्मकरण के बाद स्थिर किया जा सकता है । प्रकार्यात्मकृत फोस्फोरिन, जल में उत्तम प्रकीर्णता तथा इससे पूर्व के प्रतिदर्शों की तुलना में उच्चतर तथा हृष्टपुष्ट $\mathrm{H_2}$ विकास अभिक्रिया (HER) क्रियाकलाप को प्रदर्शित करता है । इस फोस्फोरिन के HER क्रियाकलाप को आगे और $\mathrm{MoS_2}$ तथा $\mathrm{MoSe_2}$ जैसे अन्य 2D पदार्थों के साथ इसे सुसंहतता से तिर्यक (संजोजन) बंधनी द्वारा वर्धित किया गया है । फोस्फोरिन $-\mathrm{MoS_2}$ नानो - सिम्मश्र के उत्कृष्ट HER क्रियाकलाप को 2D शीटों के अनुक्रमित तिर्यक-बंधनी का प्रतीक माना जा सकता है ।

विगत वर्ष में, हमने 2D पदार्थों के क्षेत्र में अनेक प्रकार की प्रगति की है । स्थिर फोस्फोरिन प्रमात्रा बिंद्काओं (PQDयों) का निर्माण 1.0 तथा 5.0nm के अंतरवाले औसत आकारों के साथ, टोलुइन तथा मोसिटाइलिन जैसे अत्यंत अ-ध्रुवीय विलायकों में काले (कृष्ण) फोस्फोरस के ध्वनिकरण द्वारा किया गया है । ये PQDयों उत्तेजक तरंग दैर्घ्य – निर्भरित नीली प्रकाश प्रदीप्ति को प्रदर्शित करते हैं । अर्सेनिन नानो-शीटों तथा प्रमात्रा बिंद्काओं का निर्माण समुचित विलायकों में धुँधले (धूसर) अर्सेनिक के द्रव-अपशल्कन द्वारा किया गया है. 1T-MoS2 तथा MoSe2 की स्थिरता को सरल जल-ऊष्मीय तथा विलायक ऊष्मीय पद्धतियों के द्वारा सुधारा गया है । ग्राफेन MoS_2 , C_3N_4 तथा BCN जैसे 2D संरचनाओं के सुसंहत – तिर्यक - बंधनी ने युग्मन-अभिक्रियाओं के उपयोग द्वारा वर्धित सतह क्षेत्रों, उच्चतर अति-धारिता निष्पादन तथा जल-जनक विकास जैसे नए या स्धरे गुणधर्मों के नवल - पदार्थों का उत्पादन होने दिया है । इसके अलावा, पोषक-पोषित रासायनिकी पर आधारित एक नवल अधि-आण्विक कौशल का विश्लषण, जैविक वर्णधारियों के साथ 2D नानो-शीटों के असहसंजोजक प्रकार्यात्मकरण के लिए किया गया है । इस कौशल को HER क्रियाकलापों के लिए अधि आण्कि विषम-संरचनाओं के संश्लेषण के प्रति विस्तरित किया गया है । बह्लक – साँचों के यंत्रिकीय तथा ऊष्मीय गुणधर्मों का वर्धन,विविध सम्मिश्रों (संयोजनों) के परतीय BCN के साथ पुनर्बलन के साथ किया गया है । बैंड (पट्टिका) संरचनाओं के विन्यास (अभियंत्रण) के लिए धात् आक्साइडों तथा सल्फाइडों में अलियो सहसंयोजक ऋणायन प्रतिस्थानन द्वारा किया जा सकता है । अनुरूप आक्साइडों के जालकों में 'O' के संपूर्ण प्रतिस्थानन द्वारा Cd,NF तथा TiNF का संश्लेषण किया गया है । अलियोवेलेंट P3 तथा X(X=Cl, Br, l) आयॉनों द्वारा Cds में S2 के संपूर्ण प्रतिस्थानन को सीधे बैंड गैपों तथा उत्कृष्ट जलजनक-विकास तथा CO, न्यूनन गुणधर्मों को Cd』P,X. (सिम्मश्र) संयोजन के यौगिक प्रदान करनेवाले के रूप में पाया गया है । शुद्धजल के साथ जल-विखंडन के लिए ज्ञात विभिन्न उत्प्रेरकों के द्वारा गोचर प्रकाश – प्रदीपन के अधीन सागर जल को जलजनक में सक्षम न्यूनन का अध्ययन किया गया । सह – उत्प्रेरक के रूप में NixPy के साथ अंतरापृष्ठीय बैंड – (पट्टिका) धार ऊर्जिकी की अभियांत्रिकी की द्वारा प्रकाश विद्युत रासायनिक (PEC) जल-विखंडन के लिए Cu,O प्रकाश ऋणाग्र की प्रकाश – स्थिरता को सुधारा गया है ।

फोस्फोरिन प्रकार्यात्मकरण तथा HER अध्ययन ।

विषम (संधि) जंक्शन विद्युद्रग्र PEC जलजनक विकास के लिए स्थिर होते हैं क्योंकि $\mathrm{Cu_2O}$ के समूह (राशि) से CuO तथा NixPy के जिरए विद्युत-अपघट्य के प्रति (की ओर) सहज (सुनम्य) आवेश स्थानांतरण होता है । परमाणुवीय परत निक्षेप एक रासायनिक वाष्प निक्षेप तकनीक (तंत्र) है जो अनिल प्रावस्था रासायनिक प्रक्रिया के अनुक्रमिक उपयोग पर आधारित होता है । MoS_2 नानो-भित्ति जालकार्यों के एकल स्फिटकीय अधिन्यासीय (स्तरीय) फिल्मों की सफलता पूर्वक ऊष्मीय ALD द्वारा C - सफायर पर उत्पन्न (वर्धित) किया गया है ।

प्रमुख प्रकाशन :

राव सी.एन.आर. तथा अन्य 2009, ग्राफेन : एक नवीन दो आयामीय नानो-पदार्थ । अंगेवांडे केमी अंतर्राष्ट्रीय आवृत्ति 48(42): 7752-7777. राव सी.एन.आर. तथा अन्य 2004. मुक्त वास्तु संरचना के साथ धातु कार्बोक्सिलेट्स । अंगेवांडे के.मी. अंतर्राष्ट्रीय आवृत्ति – 43(12):1466-1496.

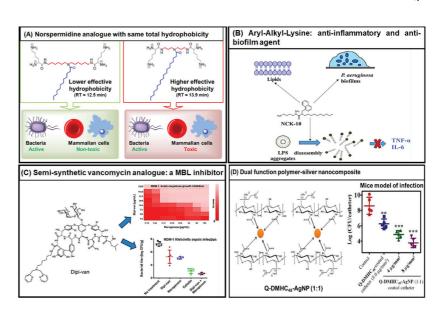
गोविंदराजु टी.

पीएच.डी., सहयोगी प्रोफेसर

हमारे प्रयोगालय में किए गए अनुसंधान की दिशा रासायनिकी, जैविकी तथा (जैव) पदार्थों-विज्ञान के अंतरापृष्ठ, जैविक रासायनिकी, पाचक रासायनिकी, पाचक अनुकरिणकी प्रकार्यात्मक रोग माड़ सदृश आण्विक शोध, नाभिक (केंद्रीय) आम्ल तथा जैव प्रेरित वास्तु-संरचना के प्रति रही है । हमारे हालही के प्रयत्न रहे हैं – अल्ज़मेर (AD) तथा पार्किनसन (PD) जैसे रोगों से संबद्ध समस्याओं के समाधान के लिए तथा अचिकित्सीय तंत्रिका ह्वासी रोगों के लिए निदानात्मक तथा चिकित्सात्मक प्रयत्नों के विकास के प्रति रहे हैं । इन रोगों से संबद्ध समस्याओं के समाधान बहु विज्ञान-अंतर्शाखा रासायनिकी अभिगमों के सुचारू रूप से संयोजन द्वारा इन मार्गों का शोध (अन्वेषण) कर रहे हैं । वे विशिष्टता से पाचकों (पेप्टाइडों) तथा अल्प-अणु आधारित चिकित्सात्मक कारकों (एजेंटों) के विकास के लिए इन रोगों के रोगजननीयता में संलग्न (कार्यरत) बहुपथों का लक्ष्य करके कार्य कर रहे हैं । हमने अपने प्रयोगालय में संकर (पाचियताओं) पेप्टाइडों तथा अल्प अणु आधारित उपकरणों को विकसित कर लिया है, जो प्राकृतिक कोशिकीय प्रक्रियाओं द्वारा विषक पिट्टका (प्लेक) को शुद्ध (स्वच्छ) करने में सक्षम होते हैं । अनुसंधान समूह ऐसे आण्विक शोधों को विकसित कर रहा है, जो मस्तिष्क मेरुदंड द्रव (CSF), रुधिर तथा मस्तिष्क-प्रतिदर्शों में AD जैव-निर्मापकों के संसूचक होते हैं । जिनका उपयोग AD के शीघ्र निदान के लिए व्यवहार्य उपकरणों के रूप में किया जा सकता है । एक और महत्वपूर्ण क्षेत्र विस्तार से लिया जा रहा है - जिसमें प्रकार्यात्मक माडी सदृश (अर्थात् मकडीरेशम) के जैव अनुकरणिकी के उत्पादन तथा जैव पदार्थ के रूप में संभाव्य अन्वयन, विभिन्न संदर्भों में करने के लिए अध्ययन किया जा रहा है ।

जयंत हल्दर

पीएच.डी., सहयोगी प्रोफेसर

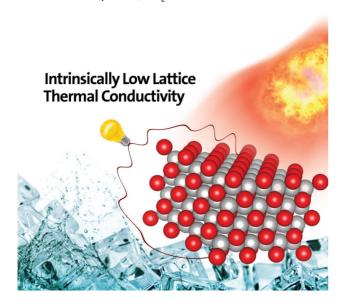

प्रति सूक्ष्म जीवाणुवीय अनुसंधान प्रयोगालय

न्यूनतम विषाक्तता के साथ प्रजीवाणुवीय क्रियाकलापों के निर्धारण में महत्त्वपूर्ण पात्र वाली आण्विक संरचना में ध्रुवीय तथा अध्रुवीय अर्धांशों में विशिष्ट व्यवस्था (रचना) को सिद्ध करने हेतु वसामय नार्स्परमाइडाइनों के व्युत्पन्नों का विकास किया गया । उसके साथ ही Aryl-Alkyl-Lysines को विकसित कर लिया गया है, जिन्होंने प्रशंसनीय प्रति-ज्वलनशीलता तथा प्रति जैव-फिल्म गुणधर्मों को स्पष्ट किया है । हमने यह रिपोर्ट दी है कि अत्यंत सिक्रय द्वि-प्रकार्य बहुलक रजत नानो-सिम्मिश्र, जो अंतर्निहित प्रति-सूक्ष्म-जीवाणुवीय तथा जैव हासी बहुलक से युक्त होता है तथा जिसने नालशलाका सतह पर नानो-पदार्थ के लेपन पर मूषिका नमूने में मेथिसिलिन (निरोधक) रेसिस्टंट स्टेफाइलोकोकस अरेनेस (MRSA) के भार को न्यून

कर दिया है । अत्यंत महत्त्वपूर्ण रूप से एक अर्ध-संश्लेषित वेंकोमाइसिन सादृश्य (अनुरूप) को विकसित कर लिया गया है, जिसने MDR ग्राम (Gram) नकारात्मक जीवाणु आश्रित नई दिल्ली मेटाल्लों β-lactamase (NDM-1) के विरुद्ध मेरोपेनेम (meropenem) क्रियाकलाप को पुनर्प्राप्त किया है । इस नव-अर्ध-संश्लेषित सादृश्य तथा मेरोपेनेन के संयुक्त रूप (संयोजन) ने मूषिका नमूने में प्रतिदोष संदूषण के संदर्भ में जीवाण्वीय भार को न्यून कर दिया है ।

प्रमुख प्रकाशन :

हक़ जे. तथा अन्य 2019, सूक्ष्म जीवाणुओं तथा निषिद्ध – जैव फिल्मों के शीघ्र नाश करने हेतु दि-प्रकार्यात्मक-बहुलक-रजत नानो-सम्मिश्र । ACS बयोमिटर. Sci. Eng. 5:81-91.


(ए) नार्स्परमाइड सादृश्य, जो समान कुल जलभीति चयनशीलता लक्ष्य के जीवाणु के साथ न्यूनतम विषाकता (स्तनीय कोशिकाओं की ओर) (बी) अराइल अल्काइल लाइनेस – स्पष्टता प्रति ज्वलनशीलता तथा प्रति जैव फिल्म क्रियाकलाप । (सी) एक अर्ध-संश्लेषित वेंकोमाइसिन सादृश्य NDM-1 ग्राम-नकारात्मक रोगजनकों के विरुद्ध मेरोपेनेम क्रियाकलापों को पूनर्पूरित करता है । (डी) द्वि-प्रकार्यात्मक बहुलक-रजत नानो सिम्मिश्र शीघ्रता से सूक्ष्म जीवाणुओं तथानिरुद्ध जैव-फिल्मों को नष्ट कर देता है ।

कनिष्क बिस्वास

पीएच.डी., सहयोगी प्रोफेसर

घन अवस्था रासायनिकी प्रयोगालय

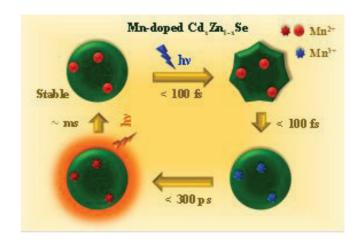
हमने आगे यह प्रदर्शित किया है कि 3D CsPbB $_3$ के नानो-स्फिटकों से 2D CsPb $_2$ B $_5$ नानो-शीटों के एकल (पॉट) पात्र विलयन आधारित रूपांतरण होता है तथा यह अन्वेषण किया है कि विस्तृत प्रयोगों तथा सांद्रता प्रकार्यात्मक सिद्धांत (DFT) परिकलनों के द्वारा इसके प्रदीप्ति गुणधर्मों का मूल क्या होता है । [नानोस्केल, 2019, 11, 4001]. AgBiSe2 के साथ उत्क्रममापी चालित घन विलयन (विलायक) द्वारा परिवेशी परिस्थितियों पर n-प्रकारी घन (क्यूबिक) GeSe को स्थिरीकृत किया गया, जिसने यह प्रदर्शित किया है कि उसमें अतिनिम्न ऊष्मीय चालकता के साथ आधासनात्मक ऊष्म विद्युतीय गुणधर्म होते हैं । GeSe में वर्धित AgBiSe2 संकेंद्रण प्रणाली के बैंड गैप को असामान्य रूप से परिवर्तित कर देता है । [Angew. Chem. Int. Ed., 2018, 57, 15167] हमने यहाँ तक कि 342.02+8 mg/g की धारिता के साथ PH (श्रेणी) रेंज 0.5-11 में 0.3 ppb Hg(II) प्रदूषित जल से Hg $_{2+}$ के निष्कासन के लिए (सस्ते) अव्ययकारी ग्राफेन आक्साइड टिन (IV) डाइसल्फाइड (SnS $_2$) सम्मिश्र (GO@SnS $_2$) का भी संक्षेषण किया है । अनुकूलकारी अन्वयन हेतु, हमने मितव्ययता से प्रदूषित जल से Hg(II) के 99.9% को ग्रहित करनेवाले GO@SnS $_2$ पाउडर (चूर्ण) से चाय-बैग का अभिकल्प तैयार किया है । [J. Mater. Chem. A, 2018, 6, 13142]. आगे n-प्रकारी कुछ परतीय (2-4 परतें) Bi मादित SnSe 2D नानो शीटों (1.2-3 nm मोटे) का संक्षेषण सहज निम्न-तापमान विलयन आधारित मार्गों (उपायों) द्वारा किया है । नानो-मान किणका सीमाओं तथा परतीय अन्य दैशिक संरचनाओं की उपस्थित अर्थपूर्ण प्रकीर्णन होने हेतु उष्णता वाहक ध्वनिमात्रिकों को बलवान बना देती है । एतद्वारा 300-720K – रेंज पर 0.3 W/mK जितनानिम्न तक kL को न्यून कर देती है । [ACS Energy lett. 2018, 3,1153] हमने n-प्रकारी समूह (राशि) (घन) क्यूबिक AgBiS $_2$ का संक्षेषण किया है, जिसने अपवादात्मकता से तापमान रेंज 298-820 K में 0.68-0.48 W/mK जितने निम्न kL

घन अजैविक यौगिकों के द्वारा ऊष्म विद्यतीय त्याज्य उष्णता को विद्युतीय ऊर्जा में परिवर्तन ।

को प्रदर्शित करता है । युग्म-वितरण प्रकार्य (PDF) विश्लेषण के सुझाव के अनुसार Bi के 6s2 एक युग्म के विन्यास रासायनिकीय क्रियाकलाप से उद्भव होनेवाले [011] दिशा पर्यंत स्थानीय संरचनात्मक विरूपणों के कारण से निम्न kL का संबंध अर्थपूर्ण जालक असामंजस्यता से होता है । [Chem.Mater., 2019, 31, 2016].

प्रम्ख प्रकाशन :

बनिक ए. तथा अन्य 2019. Sn_{1-x}Ge_xTe में अतिनिम्न ऊष्मीय चालकता तथा उच्च ऊष्मा-विद्युतीय निष्पादन को प्राप्त करने हेतु लौह-विद्युतीय स्थिरता की अभियांत्रिकीयता (का विन्यास) । [Energy Enviten. Sci. 12: 589-95]


सामंत एम. तथा अन्य 2018 n-प्रकारी Bise निर्बल सांस्थिकीय विसंवाहक में अतिनिम्न जालक ऊष्मीय चालकता तथा उच्च ऊष्म-विद्युतीय निष्पादन को अग्रसर करनेवाले Bi द्विपरत के स्थानिकृत स्पंदन J. Am Chem. Soc. 140: 5866-72.

रंजनी विश्वनाथ

पीएच.डी, सहयोगी प्रोफेसर

प्रमात्रा बिंदुका प्रयोगालय

मादित अर्ध-चालक प्रमात्रा बिंद्काओं में चक्रण / अक्षीय निषिद्ध Mn d-d पारगमन से उत्सर्जन को अग्रसर करने वाली अस्थायी प्रजातियों की प्रकृति ने दीर्घकाल से विज्ञानियों को चिंताक्रांत किया है । यह संज्ञान (समझ) ऊर्जा-क्षमता के लिए अन्वेषण में महत्तवपूर्ण है क्योंकि संवहन (पट्टिका) बैंड से ऊर्जा को Mn की ओर फेम्टोसेकेंड समय-मान में सूक्ष्मता से स्थानांतरित किया जाता है, जो अन्य अ. विकिरक पुनर्सयोजन पथों को पराजित कर देता है । हमारा प्रयोगालय इन प्रजातियों (प्रकारों) की प्रकृति के विशिदीकरण के प्रति कार्य कर रहा है। हमने अबतक दुर्गाह्य लगनेवाली अस्थायी प्रजातियों (प्रकारों) के जीवन-काल को वर्धित करने हेत् पोषक पदार्थ के कुशल रूपांतरण तथा अस्थायी अधिशोषण के उपयोग द्वारा Mn उत्सर्जन के बारे में एक महत्त्वपूर्ण दीर्घकालीन (रहस्य) पहेली का अनावरण किया है । इस संकल्पना को पेरोवस्काइट पदार्थों की ओर भी विस्तरित किया गया है। हमने उत्कृष्ट प्रकाशीय गुणधर्मों के साथ Sn तथा Fe- मादित पेरोवस्काइट पदार्थों का संश्लेषण किया है । हमने मादन पारगमन धातुओं को ॥ – VI अर्ध चालकों में तथा पेरोवस्काइट प्रमात्रा बिंद्काओं में लगाने का कार्य किया है तथा पोषक प्रमात्रा बिंदुकाओं की वियुन्मानीय संरचना के शोध तथा परिवर्तन के लिए उपयोग करने का कार्य किया है । इसके अतिरिक्त हमने, cds नानो-स्फटिकों में चुंबकीय आयानों के मादन पर तथा पोषक पर इसके प्रकाशीय प्रभाव पर कार्य किया है । हमने EXAFS को एक उपकरण के रूप में उपयोग करके अंतरापृष्ठ पर विनिमय अभिनति कोड उत्पन्न करनेवाले चुंबकीय / अ-चुंबकीय पदार्थों के अंतरापृष्ठ पर उद्भव होनेवाले चुंबकत्व का भी अध्ययन किया है।

नानो-पदार्थों में Mn उत्सर्जन का तंत्र ।

प्रमुख प्रकाशन :

गेहलाट के. तथा अन्य 2019. II-VI अर्ध-चालक प्रमात्रा बिंदुकाओं में चक्रण-निषिद्ध Mn d अवस्थाओं के प्रति अस्थायी प्रजातियों (प्रकारों) के मध्यस्थित ऊर्जा – स्थानांतरण. ACS Energy letters. 4: 729-735. साहा ए., विश्वनाथ आर. 2017. चुंबकीय आक्साइड अ-चुंबकीय अर्ध-चालक प्रमात्रा बिंदुका के अंतरापृष्ठ पर चुंबकत्व. ACS नानो. 11:

प्रेमकुमार संगतुवन

पीच.डी., संकाय अधिसदस्य

ऊर्जा भंडारण एवं परिवर्तन प्रयोगालय

Na — आयॉन बैटरियों में तारकीय चक्रण निष्पादन के साथ वेनेडियम आधारित NASCION ऋणाग्र — $Na_3V_2(PO_4)_3$ का प्रदर्शन कियागया है । इसकी क्षमता / धारिता को सुधारने हेतु हमने $Na_{3+}yV_{1-}yM'_{y}(PO_4)_3$ (M' प्रथम व द्वितीय पंक्ति पारगमन धातु आयॉन है, के यौगिकों का संश्लेषण किया है । संयुज्य (संयुक्त) विद्युत-रासायनिकीय XRD तथा XAFS अध्ययनों ने विभिन्न वेनेडियम तथा मैंगनिज़ रेडॉक्स युग्मों की प्रकटित किया है, जिन्हें DFT परिकलनों के द्वारा विधिमान्य बना दिया गया है । y=0.75 के लिए उच्च प्रत्यावर्ती क्षमता — दर — क्षमता तथा उत्तमतर चक्रीयता प्राप्त कर ली गई है, जिसे सोडियम आयॉन विसरण के लिए तथा साथ ही उच्चारोपित V- तथा Mn-रेडॉक्स केंद्रोंके अनुकूलतम गत्यावरोध — आकार के लिए परिपुष्ट किया जा सकता है ।

हमने सोडियम फ्लोराइड (NaF) नामक संरचना-स्थिरिकारक अभिकर्ता (एजेंट) के संस्थापन (लगाते) द्वारा एक आयामीय (1D) $FeF_3.3H_2O$ (इसके बाद जिसे IF के रूप में संकेतित किया गया है) अग्रगामी संरचना को उच्चतर आयामीय आयॉन ढाँचे (रूपरेखा) में परिवर्तित करने हेतु एक नवीन सांस्थितिकीय रासायनिक वर्गीकरण (प्रणाली-विज्ञान) को भी विकसित कर लिया है ।

सुबी जेकब जॉर्ज

पीएच.डी., एफ.ए.एससी., सहयोगी चेयर, सहयोगी प्रोफेसर

अधि आण्विक रासायनिकी प्रयोगालय

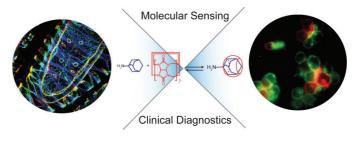
हमारा दल जैविक रासायनिकी, अधिआण्विक रासायनिकी तथा प्रकार्यात्मक पदार्थों के अंतरापृष्ठों पर कार्य करता है। जिसका अंतिम लक्ष्य गतिकीय, प्रत्यावर्ती, स्व-सुधार (मरम्मत) तथा अनुकूली गुणधर्मों के साथ जैव – प्रेरित पदार्थों का अभिकल्प करने का रहा है। अन्वेषित पदार्थों का एक वर्ग (श्रेणी) है – गतिकीय अधिगाण्विक बहुलक, जहाँ एकतिययों को अ-ससंहत (असंयोजक) अंतिर्क्रियाओं से बंधे (जकड़े) हुए होते हैं। इस वर्ष, तंतुमय प्रोटीनों के स्व-संयुज्य से संकेत प्राप्त करके हमने इन गतिकीय पदार्थों के संरचनात्मक तथा अस्थायी कार्यक्रमण (योजना) के लिए अद्वितीय इंधन चालित स्व-संयुज्य अभिगम को विकसित कर लिया है। इसके अतिरिक्त, हमने किण्वकों रासायनिक अभिक्रिया रेडॉक्स प्रक्रियाओं जैसे विभिन्न इंधन चालित अभिगमों द्वारा अस्थायी रूप से कार्यक्रमित (योजित) अनुरूप में से अस्थायी पदार्थों का मृजन किया है। अन्वयन की दृष्टि से, हमने उत्सर्जन – प्रमात्रा (उपज) उत्पन्न को सुधारने हेतु जैविक वर्णधारियों के त्रय – संरचना पर कार्य किया है। हमने सफलतापूर्वक अजैविक घटक के रूप में लेपोनाइट (अजैविक मृतिका के रूप में) उपयोग करते हुए परिवेशी प्रदीप्ति के अधि आण्विक साँचे का प्रदर्शन किया है तथा जैविक संदीपक के रूप में नेफ्थालिन डिमाइड (NDI) व्युत्पन्नों का अभिकल्प समुचित रूप से किया है

इंधन (अर्थात् PH किण्वक या रासायनिक) चालित अभिगम द्वारा अधिआण्विक बहुतयीकरण पर अस्थायी तथा संरचनात्मक नियंत्रण का रेखात्मक प्रतिपादन ।

। लेपोनाइट के साथ NDI संदीपक के विद्युत स्थैतिकता से चालित सह-संयुज्य ने विलायक तथा विलायक प्रक्रियागत पारदर्शक पतली फ़िल्मों में RTP प्रदान करता है। हमने ऊष्मीयता से सक्रियित विलंबित प्रदीप्ति (TADF) उत्सर्जक नामक त्रय उत्सर्जक पदार्थों के एक अति महत्त्वपूर्ण वर्ग/श्रेणी, के उत्तेजित अवस्था प्रकाश भौतिकीय गुणधर्मों का अन्वेषण किया है तथा उसके लिए अनेक नए आण्विक अभिकल्पों को प्राप्त किया है।

प्रमुख प्रकाशन

जैन ए. तथा अन्य 2019. रासायनिक इंधन चालित जीवंत तथा मार्गस्थ (अल्प स्थायी) अधि आण्विक बहुतयीकरण Nat Commun. 10:450. कुलकर्णी सी. तथा अन्य 2015. द्विधुव घूर्ण (संवेग) चालित सहकारी अधि आण्विक बहुतयीकरण J. Am Chem Soc. 137: 3924–32.


सरित अगस्ती

पीएच.डी., संकाय अधिसदस्य

क्रमादेशी (कार्यक्रमीय) आण्विक अभिकल्प प्रयोगालय

अ-सह-संयोजक निर्माण खंडों के उपलब्ध रिपोर्टों में से स्थूल चक्रीय अणुओं पर आधारित संश्लेषित पोषक-पोषित मूलभूत्व (मूलभाव) विशेष रूप से जैविकीय संकीर्णताओं (जटिलताओं) में अपने विशिष्ट मान्यता प्राप्त गुणधर्मोंके कारण आकर्षक होते हैं । हाल ही में हमने, मूलभूत तथा

(वैद्यकीय) मेडिकल अनुसंधान की संगतता के साथ विभिन्न प्रकार की नवल प्रौद्योगिकियों के विकास हेत् जैविकीय अंतरापृष्ठ के साथ संश्लेषित पोषक पोषित प्रणालियों को संयोजित किया है । इन उदा. में सिम्मिलत हैं - जैव लंब कोणीय प्रतिबिंबन तथा संवेदन, उच्च विभिदन प्रतिबिंबन तथा चिकित्सात्मक पदार्थों के वितरण तथा सक्रियन के लिए नवल अभिगम । प्राथमिक लक्ष्य - अभिकर्ताओं (एजेंटों) अर्थात प्रतिपिंडों प्रतिरोगकारक के साथ CB[7] के संयोजन से तथा ADA संयोजित फ्ल्रोफोर के अन्वयन द्वारा, हमने यह दर्शाया है कि CB(7) तथा ADA के मध्य में पोषक-पोषित अंतर्क्रियाएँ, कोशिकाओं में जैव लंबकोणीय - प्रतिबिंबन के लिए स्वस्थाने अ-सहसंयोजक तंत्र को उपलब्ध कराती हैं । इस अ-सह-संयोजक लेबलिंग प्लेटफार्म को ड्रोसाफिला मेलानो-गास्टर नमूना प्रणाली के ऊतक प्रतिदशौं की सम्मिश्रताओं (संकीर्णताओं) में प्रतिबिंब लक्ष्य अण्ओं में रूपांतरित कर लिया गया है । इसके अतिरिक्त, हमने इस प्रणाली का उपयोग, वर्तमान सह-संयोजक प्रणाली का उपयोग, वर्तमान सह-संयोजक प्रणाली [अर्थात चतुःरेंणुक अनुबंध (संयोजन)] के विरुद्ध पूर्णरूप से लंबकोणीय लेबलिंग प्लेटफार्म उपलब्ध करने के लिए किया है तथा इस प्रकार, उनके संयोजन को एकल जैविकीय प्रणालीके भीतर ही बह् जैव अणुओं के एकसाथ लेबलिंग के लिए उपयोग किया जा सकता है । हमने यह भी सिद्ध कर दिया है कि अधिस्थैतिक अर्बुद रोग-से संबद्ध कोशिका सतह प्रोटीन अंकक (मार्कर) के प्रतिबिंबन अल्प अण् लक्षीय F-actin के वितरण तथा गतिकी को दर्शानेवाले में प्रतिबिंबन द्वारा इस प्रणाली की उपयोगिता होती है।

संश्लेषित पोषक-पोषित प्रणाली मध्यस्थित आण्विक संवेदन तथा नैदानिक निदानिकी कौशल ।

प्रमुख प्रकाशन :

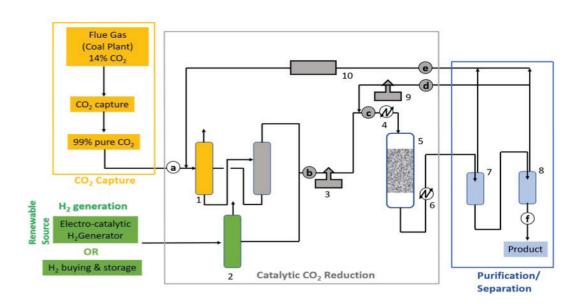
ससमल आर. तथा अन्य 2018, कोशिकाओं तथा ऊतकों में संश्लेषित पोषक-पोषित संयुज्य : आण्विक मान्यता द्वारा तेज स्थिर तथा चयनित जैवलंबकोणीय प्रतिबिंबन. Anal Chem. 90(19): 11305-11314.

सिन्हा एस. तथा अन्य 2018, गतिकीयता से संयुज्य कूष्मांड (7) यूराइल पोषक तथा नानो कण पोषित साँचे से प्रत्यावर्ती संपुटीकरण तथा उद्दीपक प्रतिक्रियात्मक जैविकीय वितरण J Mater Chem. B.6: 7329-7334.

सेबास्टियन चिरांबट्टे पीटर

पीएच.डी., सहयोगी प्रोफेसर

घन अवस्था तथा अजैविक रासायनिकी प्रयोगालय


हमारे प्रयोगालय ने मानवोद्भवित CO_2 को रासायनिकों तथा इंधनों में परिवर्तित कर लेने हेतु एक समेकित प्रौचोगिकी (तंत्र) को विकसित कर लिया है । 5कि.ग्रा. CO_2 / दिवस क्षमता के साथ हमने उतप्रेरकों के संश्लेषण प्रक्रियात्मक प्रौचोगिकी (पथप्रदर्शी) आरंभिक मापन (250 कि.ग्रा. CO_2 / दिवस क्षमता) का समाकलन का अनुमापन कर लिया है तथा जनेउवैअकें के नए परिसर में विशिष्ट अभिकल्प वाले भवन में इसे प्रारंभ किया जानेवाला है । इस अनुमापन को ब्रीद अप्लाइड साइन्स प्राइवेट लिमिटेड के नवोचम द्वारा किया गया है । इस प्रोचोगिकी विकास को विभिन्न समाचार-पत्रों (द हिंदु, टाइम्स ऑफ़ इंडिया तथा डेक्कन हेराल्ड) में तथा दूर दर्शन (ETV) में विशिष्ट रूप से उल्लेख किया गया है । इस अविध के दौरान मेरे दल ने NRGCOSIA कार्बन XPRIZE प्रतियोगिता में अंतिम दौर में प्रवेश किया तथा 20 मिलियन यू-एस डॉलर पुरस्कार प्राप्त किया है । इस प्रतियोगिता के अंश के रूप में हम व्योमिंग यूएसए में 2TPD क्षमता के साथ एक भारी संयंत्र को विकसित कर रहे हैं । इस प्रक्रिया के दौरान CO_2 को रासायनिकों में परिवर्तित कर लेने हेतु हमने सभी रासायनिक प्रौचोगिकियों (तंत्रों) (ऊष्मी, प्रकाशी वियुत-रासायनिकी) को विकसित कर लिया है । हमने CO_2 से मेथानॉल CO_3 से मेथानॉल CO_4 से मेथानॉल CO_4 से भेथानॉल CO_4 से भेथानॉल CO_5 सिथेन, फार्मिक आम्ल, आइसोप्रोपानॉल इथेनॉल तथा एसेटिक आम्ल के उत्पादन को प्राप्त कर लिया है ।

हमने इंधन सेल (वैटरी) अन्वयन हेतु एक सक्षम वियुदगों के रूप में नॉन – Pt- आधारित यौगिकों को विकसित कर लिया है । हमने विभिन्न कौशलों – जैसे – मिश्रधातुकरण अमिश्र धातुकरण, अनुक्रमित संरचना, विषम संरचना तथा प्रतिस्थानन – का उपयोग, इनके वियुत रासायनिकी – गुणधर्मों की लयात्मकता के लिए किया है । हमने दो एकास्वाधिकार (पेटेंट) प्रस्तुत किया है तथा उनके वाणिज्यिक अन्वयन हेतु साधन-संविरचना (गढ़न) का कार्य प्रारंभ किया है । हमने वियुत-रासायनिकीय जल विखंडन के लिए पदार्थों का अभिकल्प तैयार किया है । हमने एक पदबंध का निर्माण किया है – "परमाणुवीय अनुमाप में प्रत्यावर्ती तनाव प्रभाव डालता है" – जो Cu के प्रतिस्थानन के साथ प्राकृतिक खनिज Pd₁₇Se₁₅ में होता है । हमने अद्वितीय स्फटिक संरचना के कारण प्रतिलोभी तनाव का वीक्षण किया है, जो जलजनक विकास प्रक्रिया में एक नाटकीय सुधार का कारणीभूत बन गया [ACS एनर्जी लेट. 2018, 3 (12), 3008-3014]. हमने न्यूरो ट्रान्समिटर डोपामाइन तथा अनाल्जेसिक पैरासेआमल की प्रत्येक तथा (एक साथ) तत्क्षण संसूचना के लिए एक नवल वियुत-रासायनिक संवेदक – नानो संरचित Pt(CeO₂@Cu₂0 नानो सम्मिश्रों को विकसित कर लिया है । (डोपामाइन तथा पैरासेटामल के (तत्क्षण) एक साथ विश्लेषण कर लेने का कार्य – इस औषि के नैदानिकी तथा औषध-निर्माणीय महत्व को समझ लेना एक परम अपेक्षा वाला होता है ।) इस संवेदक को अत्यंत प्राधान्यता दी गई है, क्योंकि इसमें भारी सतह-क्षेत्र, प्रयत्यावर्ती रेडाक्स क्रियाकलाप, उच्च सतह आम्बजनक चलनशीलता, रासायनिक निष्क्रियता – जैसे- संगतता, अ-विषाक्रता तथा अन्वयनात्मकता – भारी मात्रा के क्षेत्रों में होते हैं । इस कार्य को ACS अप्लाइड नानो पदार्थ (2018,1, 5148-5157) में प्रकाशित किया गया है तथा 'द हिंदु' समाचार पत्र में 8 सिंतबर - 2018 को विशिष्ट रूप से प्रकाशित किया गया है । हमने हाफ़ हेसलर (Half heusler) यौगिकों तथा भारी-धातु आधारित पदार्थ भौतिकी में अन्वयन हेतु अनेक अंतर धातुवीय तथा चेल्कोजेनाइडों को विकसित कर लिया है ।

प्रमुख प्रकाशन :

रॉय एस. तथा अन्य 2018, एकल कार्बन उत्पाद के लिए ऊष्मा रासायनिकीय CO₂ जलजनकीकरण : वैज्ञानिक एवं प्रौद्योगिकीय चुनौतियाँ – ACS Energy Letters. 3:1938-1966.

सर्मा एस.सी. तथा अन्य 2018, परमाणुवीय अनुमाप में प्रतिलोम तनाव प्रभाव – वर्धित जलजनक विकास क्रियाकलापों तथा Cu प्रतिस्थापन पल्लड्साइट में टिकाउपन ASC Energy Letters. 3: 3008-14.

CO, को रासायनिकी तथा इंधन में परिवर्तित करने हेतु समेकित प्रौचोगिकी का आरेखन (रूपरेखा) ।

एकक के सदस्य

लाइनस पॉलिंग अनुसंधान प्रोफेसर व चेयर

सी.एन.आर. राव

धर्मदाय प्रोफेसर

एच. इला

सहयोगी प्रोफेसर

गोविंदराजु टी जयंत हल्दर कनिष्क बिस्वास रंजनी विश्वनाथ (सहयोगी संकाय, ICMS) सेबास्टियन चिरंबट्टे पीटर सुबी जेकॉब जॉर्ज श्रीधर राजाराम (ICMS के साथ संयुक्त रूप से)

संकाय अधिसदस्य

प्रेमकुमार सेंगुतुवन (ICMS के साथ संयुक्त रूप से), सरित अगस्ती (CPMU के साथ संयुक्त रूप से)

अन्संधान विद्यार्थी

अभिषेक रावत, आचार्य यश संजय, अदिति चिरिंग, अदिति सारस्वत, अद्रिजा घोष, अहजा विनिता अशोक कुमार, अक्षय सरोह, आनन्द कुमार रॉय, अनन्य मिश्रा, अंगशुमान दास, अन्निबन पाल, अनुशा एस अवधानी, अरित्रा सर्कार, अर्जुन सी.एच., अर्क सोम, अर्नब सिन्हबाबु, आशीष कुमार, बिश्वनाथ मैती, बिटन रे, ब्रिंता भट्टाचार्जी, दर्शन देब, देबब्रत बाग्ची, देबाशीष घोष, देबतम सर्कार, एकाश्मि राठोर, गीतिका धंडा कृष्णेंद्र जलानि, मध् आर, मध्लिका मज़्म्दर, महिमा मक्कर, मनस्वी बरुआ, मनीषा समंता, मेरी एंटोनी पी, मो. मोनिस अय्यूब, मोहिनी मोहन कोनाय, मोयनक दत्ता, ओयशिका जश, परमिता सर्कार, परिबेश आचार्य, पाएल मोण्डल, प्रदीप के आर, प्रसेनजीत मण्डल, राजीब डे, रमेश एम एस, रंजन ससमल, रिद्दिमोनी पाठक, रिसाव दास, रीतेंद्र सिंह, रोबी संकर पात्रा, रोहित, सप्तर्शी चक्रबोर्ती, सौरव चन्द्र शर्मा, श्रेया सर्कार, शिखा धीमन, सौरव समंता, सौविक सर्कार, श्रेयन घोष, स्भजित दास, सुभजित रॉयचौधुरी, सुभम घोष, सुभम सिंह, सुची स्मिता बिस्वास, सुदीप मुखर्जी, सुमन कुइला, सुमोन प्रतिहर, सुश्मिता चन्द्र, स्वाधीन गराइन, स्वगतम बर्मन, एलिसेट्टी वेंकट सुशीला, योगेंद्र कुमार

अनुसंधान सहयोगी

बप्पादित्या रॉय, चेनिक्कायल बालचन्द्र, देबज्योती बसक, इनियवन पी, लक्ष्मी प्रिया दत्ता, एल. ज्योतिष कुमार (अनंतिम), मंजीत च्चेत्, मौलि कोनर (अनंतिम), नबदिंति बर्मन, नीलांजना दास साहा, रिया मुखर्जी, संदीप समद्दर, एस. दसरध रामाराव, शिदलिंग मट्टेपनवर, सुर्भी शर्मा, तनमोय घोष, वाई वी सुशीला (अनंतिम)

SERB (TARE)

आश्ले पी.सी.

SERB राष्ट्रीय PDFS

कामना शर्मा डॉ. कौशिक कुंडु जी.एल. बालाजी पर्धसारधी सता

परियोजना सहायक

निखिता श्रीनिवास

सहायक अनुसंधान अधिसदस्य

कथकली डे

R & D सहायक

अखिल वी गोपाल जितु राज कृष्णेंदु माजी ऋषिकेष वी उत्सव कुमार डे

NCU की एक झलक

संकायों द्वारा प्राप्त पुरस्कार

प्रो. सी.एन.आर. राव - प्रेसिडेन्सी वि.वि. कोलकता से हॉनररी कॉसा डॉक्टरेट (80 वॉ हॉनररी कॉसा डॉक्टरेट) प्राप्त किया ; यू.के. के मेंचेस्टर वि.वि. से हॉनररी डॉक्टरेट प्राप्त किया ; भौतिकी प्रकाशन संस्था (IOP) द्वारा उच्चतम उल्लेखनीय लेखक पुरस्कार-2018 ; कोसाइन (COSINE) पुरस्कार - 2017; यू ए ई के उन्नत पदार्थ केंद्र द्वारा दिए जानेवाला प्रथम शेख सौंद अंतर्राष्ट्रीय पुरस्कार ; सहयोगी प्रोफेसर (मानद) -मानव आन्वंशिकी केंद्र - बेंगलूर ।

प्रो. रंजनी विश्वनाथ - MRSI पदक 2018

प्रो. गोविंदराजु टी. - रासायनिक विज्ञान श्रेणियों में औषध अनुसंधान में उत्कृष्टता के लिए CDRI पुरस्कार - 2019; आगंत्क प्रोफेसरशिप - पैरिस - सूद वि.वि.

प्रो. जयंत हल्दर - आर.एस.सी. के मेड् केम् कॉम (Med Chem Comm) के संपादकीय मंडली के सदस्य; वर्ष 2018 में भारत सरकार के रासायनिक एवं उर्वरक मंत्रालय के प्रौद्योगिकी नवोन्मेष के लिए 8 वाँ राष्ट्रीय पुरस्कार; वर्ष 2018 में सी.आर.एस.आई. काँस पदक; वर्ष 2018 में शेख सर्क करियर पुरस्कार – अधिसदस्यता; भारतीय रासायनिक अनुसंधान सोसाइटी के सदस्य 2018; अमरीकी रासायनिक सोसाइटी के सदस्य, 2018; बहुलक विज्ञान सोसाइटी भारत के सदस्य-2019; एल्सेवियर के "सूक्ष्माणुवीय रोग जननीयता" जर्नल (पित्रका) के अतिथि संपादक 2018.

प्रो. सेबास्टियन सी. पीटर – स्वर्ण जयंती अधिसदस्यता (रासायनिक विज्ञान) 2018

प्रो. कनिष्क बिस्वास - जर्नल ए.सी.एस., अनुप्रयुक्त ऊर्जा पदार्थ, उदयोन्मुख अन्वेषक - केम कॉम आर.एस.सी. के सहयोगी संपादक ; भारतीय रासायनिक अनुसंधान संघ (CRSI) से सी.आर.एस.आई. कॉस पदक (2019)

प्रो. सुबी जॉर्ज - भारतीय विज्ञान अकादमी की अधिसदस्यता

विद्यार्थियों द्वारा प्राप्त पुरस्कार

अनन्या मिश्रा (शोध पर्यवेक्षकः प्रो. सूबी जे. जॉर्ज) को BIRAC SRISTI GYTI 2019 का पुरस्कार भारत के राष्ट्रपति माननीय श्री वेंकैया नायडू से प्राप्त हुआ ।

आनंद रॉय (शोध पर्यवेक्षक: सी. एन. आर. राव) ने 10 वीं बंगलूरू नैनो 2018 में शोध पत्र के लिए मल्होत्रा वीकफील्ड पुरस्कार प्राप्त किया ।

सौम्यब्रत रॉय (शोध पर्यवेक्षकः प्रो. एस. सी. पीटर) को IISER पुणे (2019) के के.पी.आई.टी.-शोध पुरस्कार में सर्वश्रेष्ठ भिति चित्र का पुरस्कार मिला पुरस्कार।

सुभजित रायचौधुरी - पीएचडी विद्यार्थी ने प्रो. कनिष्क बिस्वास, NCU, जनेउवैअकें के पर्यवेक्षण में वर्ष 2019 में एमआरएस (बसंत) स्प्रिंग बैठक फ़ोनिक्स, अरिज़ोना, यूएसए में "स्नातक विद्यार्थी रजत पुरस्कार तथा उस बैठक में भाग लेने हेत् CSIR यात्रा अनुदान" भी प्राप्त किया ।

अनन्या बनिक को IISER पुणे में ऊर्जा एवं चलनशीलता सम्मेलन में के.पी.आई.टी. शोध पुरस्कार में उसके अत्युत्तम शोध पर पुरस्कार प्रदान किया गया ।

7 पीएच.डी. तथा 5 एम.एस. प्रवेश प्राप्त विद्यार्थी

५ पीएच.डी. तथा ५ एम.एस. स्नातक प्राप्त विद्यार्थी

78 प्रकाशन

प्रायोजित परियोजनाएँ

2018-19 में प्राप्त धनराशि

नई परियोजनाएँ

3

2.86 करोड

जारी परियोजनाएँ

34

6.18 करोड

तंत्रिका विज्ञान एकक (NSU)

NSU के बारे में

तंत्रिका विज्ञान एकक (NSU) में अनुसंधान ने अपना ध्यान ड्रोसोफिला, मूषिका जैसे नमूने जीवियों तथा मानव रोगियों के नमूनों का उपयोग करके नैदानिकता से संगत तंत्रिका विज्ञानीय परिघटनाओं तथा सामान्य तंत्रिका जैविकीय परिघटनाओं पर केंद्रीकृत किया है । दैनंदिन-क्रिया, लयों, बौद्धिक अक्षमता तथा आक्रमण – अव्यवस्था के आण्विक तथा जालकार्यों के स्तर आधारों के समझ लेना ही इस एकक के मुख्य उद्देश्य रहे हैं । इस एकक के सदस्यों तथा NSU के सदस्यों के बीच में साथ ही केंद्र के अन्य विज्ञानियों के साथ तथा NIMHANS, IISC, NCBS के नैदानिकों तथा अनुसंधानकर्ताओं तथा अन्य राष्ट्रीय तथा अंतर्राष्ट्रीय संगठनों के साथ अनेक सहयोगात्मक परियोजनाएँ प्रारंभ होनेवाली हैं ।

अनुसंधान के क्षेत्र

NSU प्रमुख रूप से निम्नलिखित अनुसंधान क्षेत्रों पर अपना ध्यान केंद्रीकृत करता है -

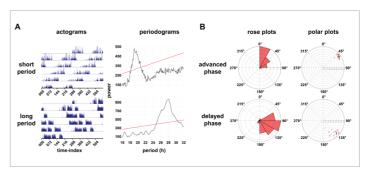
(साइनाप्टिक) सूत्रयुग्मक प्रकार्य तथा तंत्रिका-ह्नासी रोगों के साथ इनका संबंध, दैनंदिन-कार्य (सिर्काडियन) लय तथा निद्रा-समस्थिरता; मानव मस्तिष्क तथा मनोविकारों का आण्विक तथा कोशिकीय तंत्रात्मकता ।

अनुसंधान अंतर्दृष्टियाँ

- लय (आवर्तन) डाटा के विश्लेषण हेतु (लयता)
 आवर्तिता नामक मुक्त स्रोत अन्वयन का विकास ।
- दैनंदिन कार्य गतिनियामक तथा निद्रा समस्थिरता के बीच में अंतर्कियाओं की पहचान ।
- ऑस्टिम वर्णक्रम विकार नम्ने में साइन गैप के प्रकार्य के प्रत्यायन (पुनरपूरण) के लिए संभाव्य (विभव) लक्ष्य के रूप में FMRP की पहचान ।
- तंत्रिकाह्मसी विकारों के उपचार हेतु संभाव्य (समर्थ) चिकित्सात्मक अभिकर्ता (एजेंट) के रूप में स्वभक्षी आवेशकों की पहचान की गई है।

अनुरंजन आनंद

पी.एच.डी.; एफ.ए.एस.सी.; एफ.एन.ए.; एफ.एन.ए.एस.सी.; प्रोफेसर एवं चेयर, NSU


हमारा प्रयोगालय CASR, जो किशोर (बाल) पेशीकृंतक अपस्मार के लिए प्रेरक जीन का अन्वेषण कर रहा है, जिसके लिए आनुवंशिक तथा कोशिका जैविकी अभिगमों का उपयोग किया गया है । (बालिकशोर पेशीकृंतक अपस्मार) JME सर्व-मानव अपस्मारों का 10% का होता है (थॉमस तथा बेर्कोविक, नैट रेव न्युरोल 2014) । इससे पूर्व प्रयोगालय में पहचानित प्रेरक जीन EIG8 के अन्वेषण हेतु हमने ऐसे आनुवंशिक अध्ययन किया है, जिसने JME रोगियों में विस्तृत रूप से स्थित CASR में छः (6) उत्परिवर्तनों को प्रकट किया है । यह CASR एक G-प्रोटीन युग्मित ग्राहित्र को कोडीकरण करता है, जो कोशिका बाह्य (चूर्ण) कैल्सियम स्तरों के संवेदक होता है (ब्राउन तथा अन्य, नेचर 1993) । पहचाने गए छः (6) उत्परिवर्तन विरल हैं तथा संरक्षित CASR अवशेषों के अंश होते हैं । MAPK (कोशिका-विभाजक सिक्रयक प्रोटीन क्षोभक-रस) के अन्वयन के प्रकार्यात्मक अध्ययनों के मूल्यांकन ने यह संकेत दिया है कि विभिन्न Ca_{2+} संकेद्रणों के पर्यंत CASR का संकेत कार्यकलाप अवग्रह रूपी मात्रा – प्रतिक्रियात्मक वक्रता का अनुसरण करता है, जो Ca_{2+} के प्रतिपादकता से वर्धमान – क्रियाकलाप के साथ होता है । हम यह विश्वास करते हैं कि मिस्तिष्क में CASR का प्रकार्य सामान्य तंत्रिका-कोशिकीय उत्तेजनशीलता को बनाये रखने (अनुरक्षण हेतु) के लिए निर्णायक होता है यह CASR अपस्मार में संभवनीय चिकित्सीय लक्ष्यवाला होता है ।

शीबा वासु

पी.एच.डी.; सहयोगी प्रोफेसर

व्यवहारात्मक तंत्रिका आन्वंशिकी तथा कालक्रमिक प्रयोगालय

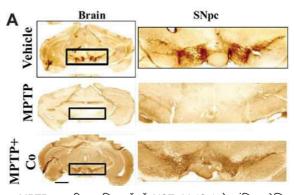
हमारा प्रयोगालय दैनंदिन कार्य समयावर्तन द्वारा नियंत्रित, तंत्रिका परिपथों तथा लयों का अध्ययन करता है । हालही में, हमने दैनंदिन-कार्य समयावर्तन तथा निद्रा-सम-स्थिरता के बीच में अंतर्क्रियाओं की पहचान कर ली है तथा दैनंदिन-क्रिया नियामक परिपथों में विद्युतीय सूत्रय्गमन प्रोटीनों का साक्ष्य पाया है । हमने दैनंदिन-कार्य (क्रिया) समयावर्तन अवधि तथा निखरता तथा सुरूपष्टता से लयात्मक उत्पादन के अनुकूलन (अधिमिश्रण) के बीच में एक अन्पम संबंध भी दर्शाया है । दैनंदिन-कार्य (क्रिया) समयावर्तन अवधि तथा निखरता तथा सुस्पष्टता से लयात्मक उत्पादन के अनुकूलन (अधिमिश्रण) के बीच में एक अनुपम संबंध भी दर्शाया है । दैनंदिन-कार्य प्रकाश-संवेदनशीलता रूपांतरण का साक्ष्य पाया है, जो मक्षिकाओं में निखर दैनंदिन समयावर्तन के विकास को घटित होने देता है । आगे, मक्षिकाओं की अगली पीढ़ी के संपूर्ण न्यूनतम सूत्री (जेनोम) अनुक्रमण ने यह सुझाया है कि दैनंदिन-कार्य समयावर्तन जीन अनुक्रमों में परिवर्तनों के पर्यंत ज्ञात प्रकाश, तापमान, संवेदनशीलता तथा प्रतिरोधक प्रणाली में जात पात्रों के साथ जीनों में परिवर्तन होते हैं। हमने बाहरी घेरे में अन्रक्षित मक्षिका जीव-संख्याओं में प्राप्त लयों तथा अ-समयावर्तन गुणधर्मों में परिवर्तनों की पहचान कर ली है । महत्त्वपूर्ण रूप से, हमने ऐसे लयों के विश्लेषण के लिए एक मुक्त-स्रोत अन्वयन को विकसित कर लिया है, जो विश्वभर में वर्ण जैविकी समुदाय के लिए उपयोगी होगा (रेखाचित्र-1) । तंत्रिका-ह्नासी मिक्षका नमूने का उपयोग करके हमने यह भी पाया है कि मानव हंटिंगटन रोग के कारक रोग जननिता को स्वभक्षी-पक्ष के उच्चनियंत्रण द्वारा रक्षा कर सकते हैं।

लयात्मकता से R-में एक मुक्त स्रोत अन्वयन, जो लय-डाटा के विश्लेषण के लिए आंतरिक अभिकल्पित है ।

- (A) ऊपरि तथा निचली पंक्तियाँ क्रमशः अल्पाविध तथा दीर्घाविध वयक्तिक (प्रत्येक) मक्षिका के लिए क्रियाकलाप विश्रांत मानचित्र या कार्यमापया अविध माप दर्शाते हैं ।
- (B) ऊपरी तथा निचली पंक्तियाँ विकसित प्रावस्था तथा विलंबित, कालक्रम के प्रत्येक प्रदर्शन (चित्रण) के साथ गुलाब स्थान (आलेख) ध्रुव-आलेख (स्थान) के प्रदर्शन (चित्रण) को दर्शाती हैं।

प्रमुख प्रकाशन :

पोतदार एस. तथा अन्य 2018. निद्रा वंचन नकारात्मकता से ड्रोसोफिला मेलानोगास्टर में जनन-उत्पादन पर प्रभाव डालता है । *J Exp Biol.* 221: jeb174771.


पोतदार एस. शीबा वासु 2018. ड्रोसोफिला मेलानोगास्टर में (निद्राजनक) ड्रोपामाइनेर्जिक तंत्रिका कोशिकाओं के प्रति PDFR संकेतन द्वारा दिन के समय जाग्रतावस्था को उन्नयन किया जाता है । eNeuro. 5: ENEU-RO.0129-18.2018.

रवि मंजिताया

पीएच.डी. सहयोगी प्रोफेसर (MBGU के साथ संयुक्त रूप से) GRC सदस्य

स्वभक्षी प्रयोगालय

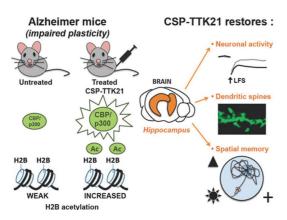
हमारा प्रयोगालय विभिन्न नमूने प्रणालियों में स्वभक्षी नियंत्रकों (अधिमिश्रकों) का संवीक्षण करता है, जिसका लक्ष्य आण्विक तंत्रों को समझ लेने का है तथा विभिन्न तंत्रिका ह्रासी – स्थितियों में समुच्चयों (संचयों) के शोधन (निर्मूलन) के वर्धन हेतु एक उपकरण के रूप में उपयोग करता है । हाल ही में, हमने ऐसे एक अणु-XCT790 की पहचान कर ली है जो ERRa के प्रतिलोम मुख्य कार्यकीय है तथा Aggrephagy – ERRa में एक नवल आण्विक (कार्यकर्ता) प्लेयर रहा है । हमने यह दर्शाया है कि यह प्रेरक – XCT790 – पार्किनसन – रोग की पृष्टि करता है । यह अणु पार्किनसन-रोग के रोगनिदान विज्ञान को सुधारता है तथा

MPTP उपचरित मूिषकाओं में XCT790 (Co) के तंत्रिकाकोशिका रक्षात्मक प्रभाव । XCT790 द्वारा SNpc में डोपामाइनेर्जिक हानि का उपशमन किया जाता है ।

मोटार (चालक) नियंत्रण तथा समन्वयन में वृद्धि करता है। वर्तमान में, हमारे अध्ययनों में से एक का ध्यान हंटिंगटन-रोग – R6/2 के ट्रान्सजिनक (पारजिनक) नमूने में आधारात्मक स्वभक्षी-स्तर के गुणधर्मवर्णन करने पर केंद्रीकृत रहा है। हंटिंगटन – समुच्चय में अस्थायी वृद्धि होने पर भी स्वभक्षी के आधारात्मक स्तर अपरिवर्तित रहता है, इसके द्वारा यह सिद्ध होता है कि वर्धक विषाक्तता के संचयी स्तरों के शोधन (निर्मूलन) के लिए स्वभक्षी में पर्याप्त परिवर्तन नहीं रहता। हंटिंगटन-रोग में स्वभक्षी के बहु-चरणों के अवरुद्ध होने पर भी ऐसे अल्प-अणुओं के मिश्रण (कॉकटेल) के परीक्षण पर हमारे प्रयत्न जारी हैं, जो इन अवरुद्ध चरणों के प्रत्येक के प्रति विशेष रूप से लक्ष्य साधते हैं। अन्य जारी अध्ययन है – ड्रोसोफिला तंत्रिका-कोशिका-पेशीय संधियों (जंक्शनों) के उपयोग द्वारा सूत्रयुग्मन में स्वभक्षी के पात्र का गूढार्थ लगाने का है। सूत्रयुग्मन में स्वभक्षी की क्षति को तंत्रिकाहासी रोगों में प्रारंभिक कारणों में से एक के रूप में माना गया है; अतः अब हम, सूत्रयुग्मन नियंत्रण ड्रोसोफिला तंत्रिका कोशिका पेशी संधि का उपयोग करके सूत्र युगमन में स्वभक्षी के पात्र में स्वभक्षी की प्रक्रिया को समझ लेने का प्रयत्न कर रहे हैं। यह रिपोर्ट की गयी है कि सूत्रयुग्मन में स्वभक्षी की क्षति ही तंत्रिका कोशिकाहासी रोगों प्रारंभिक कारणों में से एक रहा है। अब हम सूत्रयुग्मन नियंत्रण में स्वभक्षी की प्रक्रिया को समझ लेने का प्रयत्न कर रहे हैं।

प्रमुख प्रकाशन :

सुरेश एस.एन. तथा अन्य 2018. ERRa के अल्पअणु प्रतिलोम मुख्य कार्यकीयता द्वारा स्वभक्षी का नियंत्रण ही तंत्रिका – रक्षणात्मक होता है । Front Mol Neurosci. 11: 109.


सरेश एस.एन. तथा अन्य 2018. तंत्रिकाकोशिका ह्रासी रोग - नमूना जीवी, रोगविज्ञान तथा स्वभक्षी J Genet. 97: 679-701.

तपस कुंदु

पी.एच.डी., डी.एस.सी., एफ.ए.एस.सी., एफ.एन.ए., एफ.एन.ए.एस.सी., प्रोफेसर (पुनर्ग्रहणाधिकार के साथ 08.08.2018 से लागू)

अन्लेखन तथा रोग प्रयोगालय (एन.एस.यू. के साथ संयुक्त रूप से)

हमने यह आविष्कार किया है कि अ-ऊतक वर्णक सहायित प्रोटीन PC4, न्यूनतम सूत्री अखंडता (अक्षतता) के लिए क्रांतिक होता है तथा कोशिकाओं में इसकी क्षीणता का परिणाम केंद्रीय आकार परिवर्तन वर्णक की मुक्तता (खुलना) तथा परिवर्तित पश्चजननीय परिदृश्य के रूप में होता है । हमारे अध्ययनों ने यह दर्शाया है क PC4 —स्वभक्षी के नियंत्रक होता है तथा यह कोशिकीय समस्थैतिकता का अनुरक्षण करता है । (सिकदर तथा अन्य, 2019) । आगे, हमने वसा — जननीयता तथा मुख-अर्बुद रोग में मिथाइलट्रान्सफरेस किण्वक CARM1 के पात्र तथा इनकी प्रक्रियाओं में इसके प्रकटन के नियंत्रण के आधारभूत तंत्र का प्रदर्शन किया है (बेहेरा तथा अन्य, 2018 - बेहेरा तथा अन्य 2019) । हमारे विस्तरित अनुसंधान ने यह

अल्ज़ीमर रोग से संबंधित स्मरण (क्षतियों) क्षीणताओं का पुरर्पूरण ।

दर्शाया है कि अल्प अणु संयोजित नानोकण (CSP-TTK 21) का उपयोग करके लाइसिन असिटाइल ट्रान्सफरेस किण्वक, p300/CBP का सिक्रयन अल्ज़ीमर रोग से संबंधित स्थानिक स्मरण तथा सुघट्यता (फ्लास्टिसिटि) (न्यूनताओं) क्षीणताओं को समर्थता से पुनर्पूरण कर सकता है। (चटर्जी तथा अन्य, 2018), साथ ही मेरुदंड घावों में मूषिका तथा चूहा नमूनों में संवेदन तथा चालन (मोटार) प्रकार्यों के पुनर्पूरण में सहायता कर सकता है (हट्सन तथा अन्य)।

प्रमुख प्रकाशन :

सिकदर एस. तथा अन्य 2019. अ-ऊतक मानव वर्णक प्रोटीन PC4 FEBS J. doi: 10.1111/febs.14952

चटर्जी एस. तथा अन्य 2018. असिटाइलट्रान्सफेरेस सक्रियक के साथ टाओपथि मूर्षिका में सुघट्यता तथा स्मरण की पुनर्स्थापना. EMBO Mol. Med 10(11): e8587.

जेम्स पी.सी. चेल्लय्या

पी.एच.डी.. संकाय अधिसदस्य

तंत्रिका क्रिया विज्ञान प्रयोगालय

तंत्रिका जैविकी के क्षेत्र में महत्तवपूर्ण (अर्थपूर्ण) समस्याओं में एक समस्या है – वयस्क (प्रौढ़) अवस्थाओं में मस्तिष्क प्रकार्य को पुनर भरण की असमर्थता । हालही में, दुष्कार्यात्मक प्रोटीन को कोडीकरण करनेवाले उत्परिवर्तक जीन के प्रकार्य को प्नर्भरण के लिए पूरक प्रोटीन संकेतक पथ को लक्ष्य बना लेने के पूर्वेक्षण पर अनेक तंत्रिका विज्ञानियों ने विचार किया है । इसी प्रकार, ऑस्टिम वर्णक्रम विकार (विकृति) के अध्ययन के लिए, एक नमूने के रूप में साइनगैप-1 का उपयोग करके, हमने यह दर्शाया है कि लक्षणों के उपशमन के लिए तथा साइनगैप-1 के प्रकार्य को पुनर्भरण के लिए सुकुमार (कोमल) X मस्तिष्क विलंबन (मंदन) प्रोटीन एक संभाव्य लक्ष्य होता है । इसके अतिरिक्त, यह FMRP-(कोमविप्रो) विकास के दौरान साइनगैप-1 के प्रकटन को नियंत्रित करता है । इस अध्ययन के अलावा हमारे समाज द्वारा सामना किए जानेवाला प्रमुख प्रश्न है - तंत्रिकाह्मासी रोग 1 MPTP आधारित पार्किनसन रोग नमूने का उपयोग करके हमने यह दर्शाया है कि एक ऐसा अण् जो स्वभक्षी को उत्तेजित करता है और वह तंत्रिकाओं के और आगे के ह्नास के प्रति संरक्षण दे सकता है । इस प्रकार, स्वभक्षी (उत्तेजक) अभिप्रेरत, तंत्रिकाह्मासी रोगों के उपचार के लिए संभाव्य (समर्थ) चिकित्सात्मक अभिकर्ता हो सकते हैं।

पीत स्फुर दीस – प्रोटीन को दर्शानेवाले मूषिका – मस्तिष्क का एक संपूर्ण 30 µm खंड

प्रमुख प्रकाशन :

सुरेश एस.एन. तथा अन्य 2018. ERRa के अल्पअणु प्रतिलोम मुख्य कार्यकीयता द्वारा स्वभक्षी का नियंत्रण ही तंत्रिका – रक्षणात्मक होता है । Front Mol Neurosci. 11: 109.

सिंह ए.के. तथा अन्य 2018. तंत्रिका ह्नासी विकारों के लिए अल्प अणु व्यौंगिकों के द्वारा पश्च जननीयता अधिमिश्रण (नियंत्रण) । Pharmacol Res. 132: 135–48.

एकक के सदस्य

प्रोफेसर व चेयर

अनुरंजन आनंद

प्रोफेसर

तपस कुंडु (MBGU के सहयोगी संकाय)
(08.08.18 से पुनर्ग्रहणाधिकार पर)
एम.आर.एस. राव (MBGU के साथ संयुक्त रूप से)
के.एस. नारायण (CPMU के साथ संयुक्त रूप से)

सहयोगी प्रोफेसर

शीबा वासु रिव मंजिताय (MBGU के सहयोगी संकाय)

संकाय अधिसदस्य

जेम्स पी.सी. चेल्लय्या

अनुसंधान विद्यार्थी

अभिक पॉल, अंग्शुमी दत्त, अरिजित घोष, भूपेश वैद्या, दानी चितरंग कमल, अय्यंगर ऐश्वर्या प्रसन, अय्यर ऐश्वर्या रामकृष्णन, विजयन वर्मा, विजय कुमार एम.जे.

NSU की एक झलक

संकाय द्वारा प्राप्त पुरस्कार

प्रो. अनुरंजन आनंद - सहयोगी (एड्जुंक्ट) प्रोफेसर (मानद), मानव आनुवंशिकी केंद्र, बेंगलूर

जेम्स पी. चेल्लय्या - DST-SERB अधिसदस्यता प्रस्कार ।

2 Ph.D. प्रवेश प्राप्त विद्यार्थी

। प्रकाशन

विद्यार्थी द्वारा प्राप्त पुरस्कार

अभिलाष लक्ष्मण - जैविकीय लय बैठक (SRBR) में अनुसंधान के लिए वर्ष 2018 में सोसाइटी में प्रवेश - (वर्ण दृश्य चित्र) क्रोनो विडियो प्रतियोगिता में रनर-अप स्थान प्राप्त। https://youtu.be/a63UUZ9o11c

प्रायोजित परियोजनाएँ

वर्ष 2018-19 के दौरान प्राप्त राशि

नई परियोजनाएँ

2

41.85 लाख

जारी परियोजनाएँ

4

64.45 लाख

सैद्धांतिक विज्ञान एकक (TSU)

TSU के बारे में

सैद्धांतिक पदार्थ एकक (TSU) ऐसे आधारभूत भौतिकी को समझने तथा स्पष्टीकरण देने का लक्ष्य रखते हैं, जो अपने संसारभर में दृश्यमान जगत को अभिशासित करता है। हम ऐसे विभिन्न क्षेत्रों की समस्याओं के प्रति अंतर्विषयक अभिगम कर लेते हैं, जैसे कि विकासवादी जैविकी तथा पदार्थ विज्ञान, जो ऐसी नई परिघटनाओं तथा परिस्थितियों का पूर्वानुमान करने की तथा पहचान कर लेने की आशा रखते हैं जो प्रकृति में वीक्षित प्रतिरूप – चाहे वह पदार्थ हो या जीव – को रूपांतरित करता हो। हमारे एकक में अनुसंधान व्यापकता से दो सामान्य एकीकरणीय भौतिकीय तत्वों से प्रेरित है – वैश्विकता की खोज तथा प्रतिमान संरूपण तथा वीक्षित प्रतिमान से किसी प्रकार के विचलन का अन्वेषण।

अनुसंधान के क्षेत्र

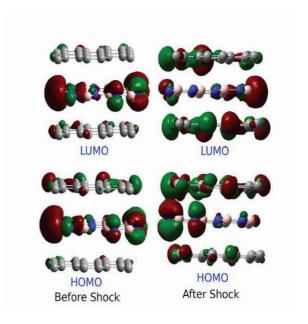
विगत वर्ष में, हमारे अनुसंधान का ध्यान निम्न क्षेत्रों पर केन्द्रीकृत रहा – ऊर्जा पर्यावरण के लिए उत्प्रेरणा सिद्धांत, निम्न आयामीय पदार्थ त्रुटियाँ, सतह पुनर्निर्माण, स्व-संयोजन, ऊष्मा-विद्युतिकी तथा चुंबकीय विद्युतिकी, औषध अणु तथा जैविकीय झिल्ली – अंतर्क्रियाएँ, भिंचन (जाम्मन) स्व-संगठन, रिक्त-आकाश (अंतरिक्षा), गुच्छ वृद्धि तथा विकास, विभिन्न ऊर्जा तथा दैर्घ्य मानों पर प्रणाली विकास परिवर्तनशील पर्यावरण में बहुजनिक अनुकूलन तथा असंतुलित जनसंख्या में अनुकूलन ध्वनि-मात्रिक प्रणालियों में अंडरसन स्थानीकरण अ-हेर्मिशियन प्रमात्रा प्रणालियाँ गतिकीय प्रमात्रा प्रावस्था पारगमन ।

अनुसंधान अंतर्द्धियाँ

- ऐसे संगणनात्मक योजना का विकास जो पदार्थों में अल्प तथ्यात्मक आँकड़े (डाटा) तथा वर्तमान ज्ञान तथा संकीर्ण परिघटना के पूर्वानुमानीय नम्नों की व्युत्पत्ति से अध्ययन होने देते हैं ।
- Ca_2 - Mn_2O_5 आधारित पेरोवस्काइटों के अनुकूलन को मूल (आधारभूत) माध्यम में कुछ संयोजन के लिए 0.14V निम्नतम अतिसंभाव्य मूल्य की प्राप्ति के साथ दर्शाया गया है।
- एक ऐसे सरल चित्रण (वर्णन) को पाया गया है, जो विभिन्न प्रणालियों में आवेश स्थानांतरण तथा साथ ही धातु उपस्तरों के लिए 2डी पदार्थों के समर्थ बंध को भी गहित करता है।
- यह पाया गया है कि निरंतरता से परिवर्तनीय पर्यावरण में, जनसंख्या समर्थता (स्वस्थता) के परिवर्तन तथा पर्यावरण की दर के बीच की पश्चता (पिछड़) समय के साथ वर्धित होती है, जिसके परिणामस्वरूप विलुप्त होने का अति संकट उत्पन्न करती है ।
- नाभियन (केन्द्रण) के क्षेत्र में अंतरापृष्ठीय तनाव की वक्रता-निर्भरता से संबंधित महत्त्वपूर्ण लक्षणों का (शोध) अनावरण किया गया है । बलगतिकी के प्रावस्था-पारगमन में पहचान विभिन्न असंतुलन अनुमापन प्रकार्यों में की गई है ।
- पराभवी बिंदु के ऊपर तनाव स्थानीकरण तथा अपरूपण बंध के आविर्भाव को चक्रीयता से विरूप काँचों में दर्शाया गया है।
- नॉन-फ़र्मी (अ-परमाणुमापी) द्रव गतिकी के आविर्भाव को नव ग्रीन-प्रकार्य पर आधारित उस संगणनात्मक तकनीक (तंत्र) जिसे (प्रतिनिधिक) विशिष्ट माध्यम गतिकीय अभिगम कहते हैं के द्वारा अंतर्क्रियात्मक (विकृत) अनियमित प्रणाली में अ-स्थानीय अन्योन्याश्रिताओं के द्वारा दर्शाया गया है ।

स्वपन पति

पी.एच.डी., एफ.एन.ए., एफ.ए.एस.सी., एफ.एन.ए.एस.सी., एफ.टी. डब्ल्यू.ए.एस., प्रोफेसर व चेयरए, TSU

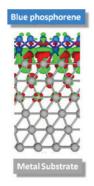

उन्नत प्रमात्रा सिद्धांत प्रयोगालय

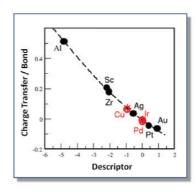
विगत वर्ष में, हमने टिन आधारित कुंठित (विफल) लेविस युग्म उत्प्रेरकों को तथा प्रथम-सूत्रों के उपयोग द्वारा MXenes में विभिन्न बिंदु – त्रुटियों के संरचनात्मक तथा चुंबकीय-वियुतीय गुणधर्मों का अध्ययन किया है । हमने यह भी दर्शाश है कि एक नवीन 2D पदार्थ – अल्फा – सीस – ऑक्साइड (a-PbO) गोचर प्रकाश को संवेदनशीलता के साथ दर्शाता है । ऑक्सिज़न (आम्लजनक) न्यूनन (अभिक्रिया) प्रतिक्रिया के लिए हम यह स्पष्ट किया है कि कोबाल्ट आधारित धातु-जैविक ढाँचे (प्रयोगमूलक प्राप्त) के निष्पादन के लिए कारण क्या होते हैं । इसके अतिरिक्त, हमने यह पाया है कि अधि-आण्विक ढाँचे से होकर विशुद्ध (संदीपकों) जैविक (फॉस्फोर्स) संदीपकों में जलीय प्रावस्था स्फुर दीति द्वारा हम त्रय अवस्था (उपज) परिणाम प्राप्त कर सकते हैं ।

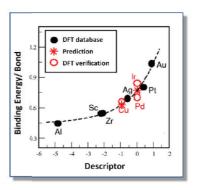
प्रमुख प्रकाशन :

बंदोपाध्याय ए. तथा अन्य 2018. संगणनात्मक दृष्टि में नव पीढ़ी के (नव उतपादन) के 2 आयामीय पदार्थों पर चमकता प्रकाश । *J Phys Chem Lett.* 9: 1605–12.

पांडे बी. पति एस.के.-2017 द्विध्रुवी फेर्मियानों के साथ त्रिभजाकारीय सीढ़ी पर त्रयी उच्चद्रवता । *Phys Rev B*. 95: 85105–10.

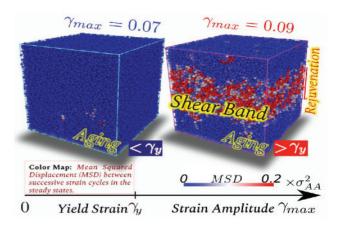



Gr/BN/Gr विषम संरचना में लेज़र आघातों के पूर्व एवं पश्चात् निम्नतम अनावृत अग्रहित तथा उच्चतम आवृत (ग्रहित) ऊर्जा स्तरों के तरंग-प्रकार्य। (ग्राफेन-बोरोन नाइट्राइड मोइरी सुपरलाटिसिस) [संदर्भ: नानो –लोटर्स. 19, 283 (2019)]


शोभना नरसिंहन

पी.एच.डी.. एफ.एन.ए.एस.सी.: प्रोफेसर

हमारे अनुसंधान का ध्यान नानो-मान (अनुमाप) पर भौतिकी एवं रासायनिकी को सैद्धांतिक तकनीकों के उपयोग द्वारा शोध करने तथा आयामीयता को निम्निकरण पर और / अथवा आकार के न्यूनन पर किस प्रकार गुणधर्मों में परिवर्तनों के निर्धारण पर केंद्रीकृत रहा है । हाल ही में, हमने एक ऐसे (चित्रण) वर्णन को प्राप्त किया है जो विभिन्न प्रणालियों में आवेश – स्थानांतरण को धातु उपस्तरों के प्रति 2D पदार्थों के बंध के सामर्थ्य को प्रग्रहित कर सकता है । यह चित्रण – केवल पृथकृत-प्रणालियों के अणुओं के गुणधर्मों के मूल्यांकन तथा अवलंबन के लिए सरल होता है ।



आवेश स्थानांतरण बंधक ऊर्जा – जो धातु प्रणालियों में विभिन्न नीले स्फुर दीप्ति के लिए होते हैं – उनका सफलतापूर्वक वर्णन एक ऐसे सरल (वर्णक) चित्रण द्वारा किया जा सकता है जो केवल पृथकृत अणुओं के गुणधर्मी पर निर्भर होते हैं ।

श्रीकांत शास्त्री

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए.एस.सी., एफ.एन.ए.; प्रोफेसर

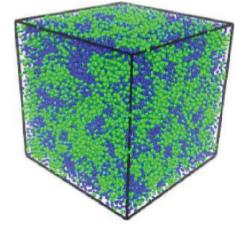
हमारे अनुसंधान का ध्यान एक निश्चित दर तथा तापमान पर चक्रीय अऊष्मीय अर्धस्थैतिक विरूपण के अधीन प्रतिदर्श-काच के पराभवी व्यवहार (स्वभाव) का संगणनात्मक अध्ययन पर केंद्रीकृत रहा है । हमने दर्शाया है कि पराभवी का गुणधर्म वर्णन अपरूपण पट्टिका के असतत प्रकटन (आविर्भाव) द्वारा किया जाता है, जिसका विस्तार (की चौड़ाई), उनके आरंभ पर लगभग दस कण व्यास का होता है, जिसमें तनाव स्थानीकृत हो जाता है। यह तनाव स्थानीकरण को साथ देते हैं - ऊर्जाओं में अनुरूप (सादृश्य) परिवर्तन तथा अपरूपण पट्टिका की सांद्रता में न्यूनता । काच (ग्लास) अपरूपण पट्टिका के बाहर तापानुशीतित रहता है । पराभवी अवस्था के गुणर्ध वर्णन करनेवाले कर्णों की विसरणशील चलनशीलता - अपरूपण पट्टिकाओं के प्रति प्रतिबद्ध होती है, जिसके औसत स्थान (स्थिति) पुनरावर्तित चक्रों पर चलन को दर्शाते हैं । अपरूपण पटिटका के बाहर कणों की चलनशीलताएँ उपविसरणीय होती हैं परंतु सीमित रहती है । उनके प्रकटन की असतत प्रकृति के बावज़ूद भी अपरूपण पट्टिका प्रतिवर्ती होती हैं, पराभवी के निम्न के प्रति चक्रीय विरूपण के प्रवर्धन (विस्तार) में न्यूनन ही निपटान तथा अपरूपण पट्टिकाओं के अप्रकटन को अग्रसर करते हैं।

प्रदत्त तनाव विस्तार (आयाम) के साथ चक्रीय अपरूपण के अधीन ओपचारिक रूप से संगणीयता से अध्ययनित नमूना काच का अपरूप पटिटका का प्रकटन ।

बार्यी ओर : जब तनाव-विस्तार पराभवी-तनाव से कम होता है तब अपरूपन पट्टिका का कोई संकेत नहीं होता । जब पराभवी तनाव से तनाव विस्तार का कोई संकेत नहीं होता । जब पराभवी-तनाव से तनाव विस्तार अधिक होता है तब अपरूपन-पट्टिका का अविर्भाव होता है ।

सुबीर के दास

पी.एच.डी.; प्रोफेसर

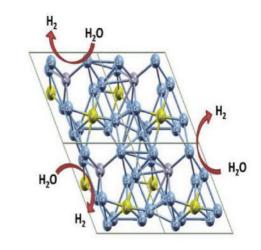

मृद् पदार्थ तथा सांख्यिकीय यांत्रिकी प्रयोगालय

हमारा दल सांख्यिकीय यांत्रिकी के क्षेत्र समस्याओं का अध्ययन करता है तथा नाभियन, वर्धन वयोवर्धन से संबंधित प्रश्नों का तथा विभिन्न संघिनत पदार्थ प्रणालियों में क्लेदन का अन्वेषण करता है। विगत वर्ष में, हमने अंतरापृष्ठीय तनाव के वक्रता-अवलंबन से संबंधित महत्त्वपूर्ण लक्षणों का अनावरण किया है, जो स्थिर भ्रूणों तथा उनकी वृद्धि के संरूपण (की रचना) ऊर्जा को समझने में महत्त्वपूर्ण पात्र लेने की संभावना होती है। नाभियन (केन्द्रण) के क्षेत्र में अंतरापृष्ठीय तनाव की वक्रता-निर्भरता से संबंधित महत्त्वपूर्ण लक्षणों का (शोध) अनावरण किया गया है। बलगतिकी के प्रावस्था-पारगमन में निश्चित आकारी अनुमापन पद्धितयों के समुचित (प्रतिपादन) सूत्रिकरण द्वारा भिन्नताओं की पहचान, आरंभिक अन्योन्याश्रिता, अंतरिक्ष (आकाश) आयामीयता, क्रमबद्ध प्राचिलक संरक्षण, अंतरापृष्ठ – रूक्षता तथा जल गतिकी की सुसंगता के आधार पर विभिन्न असंतुलन अनुमापन प्रकार्यों में की गई है।

प्रमुख प्रकाशन :

वडकायिल एन. तथा अन्य 2019. अरक्षित (आसिंग) अर्ध पारदर्शी नमूने में स्थूलकरण (मोवाई) के दौरान वयोवर्धन का निश्वित (ससीम) आकारी अनुमापन अध्ययन । शून्य तापमान प्रशमन – मामला । J Chem Phys. 150: 054702.

दास एस.के. तथा अन्य 2018. क्या सतह संलग्न बिंदुकाओं के संपर्क-कोण तथा पंक्ति-तनाव वक्रता के त्रिज्य पर निर्भर होता है । *J Phys* Condens Matter. 30: 255001.



द्रव युग्म मिश्रण के विकास के दौरान का आशुचित्र (स्नेपशॉट)

उमेश वी. वाघ्मारे

पी.एच.डी., एफ.ए.एस.सी., एफ.एन.ए.एस.सी., एफ.एन.ए.; प्रोफेसर

हालही में, हमने चिराल तात्विक सेलेनियम में ध्विन-मात्रा से उद्भवी THz श्रेणी में रेखीय चुंबक वियुतीय प्रभाव का पूर्वानुमान किया है, इसका सत्यापन अय्यूब तथा अन्यों द्वारा प्रयोगमूलक किया गया है। इसके अतिरिक्त क्षारिय माध्यम में जलजनक विकास (अभिक्रिया) प्रतिक्रिया के वियुत उत्प्रेरक के रूप में अनाकारीय CO-MO-P के नमूने को सफलतापूर्वक तैयार किया है। एतद्वारा टेंपल वि.वि. में स्ट्रोंगिन दल द्वारा किए गए प्रयोग का स्पष्टीकरण दिया गया है। हमने आम्लजनक न्यूनन प्रतिक्रिया के प्रति B व N मादित ग्राफेन के उत्प्रेरक कार्यकलाप के वियुन्मानीय तथा संरचनात्मक (वर्णकों) चित्रणों की पहचान कर ली है। हमने Bi के द्विपरतीय के स्थानीकृत दोलनों (कंपनों) के रूप में Bise की निम्न ऊष्मीय चालकता तथा उच्च ऊष्म-वियुतीय निष्पादन के लिए सैद्धांतिक स्पष्टीकरण उपलब्ध कराया है तथा GaN में नीले स्फुर दीप्ति के मूल के अनावरण हेत् प्रथम-सूत्रीय सैद्धांतिक विश्लेषण किया है।

अनाकारीय CO-MO-P उत्पेरक पर जलजनक विकास प्रतिक्रिया ।

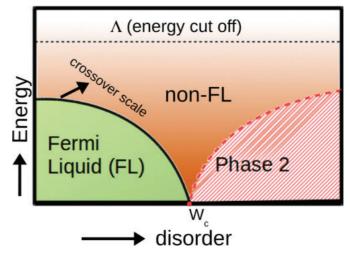
प्रमुख प्रकाशन :

कुमार एन. तथा अन्य 2019. आयामीय विश्लेषण तथा अनुमापन नियमों के साथ यांत्रिक अध्ययन (सीखना) नियंत्रित अल्प डाटा सेटों से पदार्थों के सरल, स्थानांतरणीय तथा व्याख्यात्मक नमूने । Chem Mater. 31 (2): 314–21.

बानेक ए. तथा अन्य 2019. $Sn_{1-x}Ge_x$ Te में अति निम्न 5ष्मीय चालकता तथा उच्च 5ष्म-विद्युतीय निष्पादन प्राप्त करने हेतु लौह विद्युतीय अस्थिरता की अभियांत्रिकी । Energy Environ Sci. 12: 589–95.

विद्याधिराज एन.एस.

पी.एच.डी.; प्रोफेसर

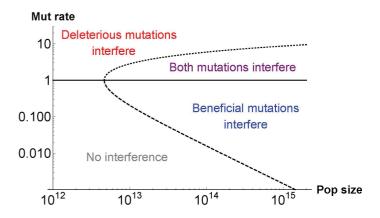

समर्थ अन्योन्याश्रित विद्युन्मानिकी प्रणालियाँ

विगत वर्ष में, हमने ध्विनमात्रिक अंडरसन स्थानीकरण की परिघटना के अन्वेषण के लिए एक नवीन विशिष्ट माध्यम गतिकीय गुच्छ अभिगम सिद्ध किया है तथा इसका अन्वयन द्रव्यमान – विकृति तथा बल-स्थिर विकृत मिश्रधातुओं के अध्ययन के लिए किया है । हमने तीन आयामीय अंडरसन – हब्बर्ड नमूने का अन्वेषण किया है तथा यह दर्शाया है कि मंद (निर्बल) अंतर्रिक्रयाओं के लिए वर्धक विकार भी कोंडो अनुमापों के व्यापक एवं अनुमापों के व्यापक एवं अनुपम वितरण को अग्रसर कर सकते हैं तथा अंततोगत्वा वह प्रमात्रा-क्रांतिक बिंदु के प्रति होता है । एक प्रावस्था – आरेख (चित्र) प्राप्त किया तथा संलग्न चित्र में दर्शाया गया है ।

प्रमुख प्रकाशन :

सेन एस. तथा अन्य 2018. एक अंतर्क्रियात्मक विकारी (अव्यवस्थित) प्रणाली में अ-स्थानिक अन्यान्याश्रिताओं के द्वारा अ-फ़ेर्मी – द्रव गतिकी का आविर्भाव । *Phys Rev B.* 98 (7): 075112.

तेर्लेस्क एच. तथा अन्य 2018. समर्थता से अव्यवस्थित विद्युन्मानिकी प्रणालियों में स्थानीकरण के अध्ययन हेतु प्रणाली बद्ध प्रमात्रा गुच्छ विशिष्ट माध्यम पद्धति । Appl Sci. 8 (12): 2401.

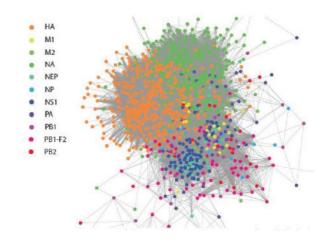

फेर्मी (परमाणुमापी) द्रव एफ तथा अ-एफ.एल. गतिकी के पृथक्करणीय प्राप्त संक्रमण मार्गपारक ऊर्जा अनुमाप का आरेखीय निरूपण, काली मोटी रेखा - हमारा टी=ओ प्राक्कलनों के भीतर ही व्युत्पन्न संक्रमण (मार्गपारक) अनुमाप का निरूपण करती है । यह अनुमाप FL गतिकी से वर्धक ऊर्जा के साथ nFL गतिकी का संकेत देता है तथा इसकी अगोचरता अंततोगत्वा क्रांतिक विकार बल Wc पर QCP को अग्रसर कर सकता है । यह गतिकी QCP के ससीम (निश्वित) तापमान-उत्तेजन में प्रकट हो सकता है । काली बिंदुकित रेखा – उच्च-ऊर्जा अंतक (कट-ऑफ)A का निरूपण करती है, जिसके पार पर ऐसी गतिकी का चित्रण (अमान्य) निर्वल हो जाता है । लाल (इंश) रेखिका रेखा nFL प्रावस्था को द्वितीय प्रावस्था से पृथकृत कर देती है जिसकी प्रकृति का निर्धारण वर्तमान सिद्धांत के भीतर नहीं किया जा सकता, परंतु विगत (पूर्व) अध्ययनों से अनुमानित किया जा सकता है ।

कविता जैन

पी.एच.डी.: सहयोगी प्रोफेसर

ययपि अनेक समलक्षणीय विशेषताओं का निर्धारण भारी संख्या के (जननीय/आनुवंशिक) परिवर्तक द्वारा किया जाता है, किस प्रकार बहु आनुवंशिक विशेषता पर्यावरणीय परिवर्तनों की प्रतिक्रिया में अनुकूल बनालेती है – इसके बारे में अभी तक कुछ भी ठीक से पता नहीं चला है । क्रमशः (धीरे-धीरे) परिवर्तनीय पर्यावरण में, रेखीयता से चलनशील समलक्षणीय अनुकूलतम द्वारा नमूनित से हमने यह पाया है कि औसत विशेषक भी समय के साथ रेखीयता से चलता है । फिर भी औसत विशेषक समलक्षणीय अनुकूलतम के बीच की पश्चता में वृद्धि होती है, जो पारंपरिक परिणाम की तुलना में होती है जहाँ पश्चता स्थिर रहती है ।

चयन, उत्परिवर्तन तथा याद्दिष्ठक आनुवंशिक अपसरण (च्युति) की संयुक्त-क्रिया (कार्रवाई) के अधीन विकासशील असंरचित अलैंगिक जनसंख्या की अनुकूलन गतिकी का वर्गीकरण, विभिन्न क्षेत्रों में किया जा सकता है । इसमें महत्वपूर्ण यह होता है कि क्या वह व्यतिकरण (हस्तक्षेप) (लोसी) loci पर निर्भर होता है या नहीं । हमने उन प्राचलिक क्षेत्रों की पहचान कर ली है जहाँ अनुकूलन गति/दर या तो हितकारी या विलोपकारी या दोनों प्रकार के उत्परिवर्तनों के कारण से न्यूनकृत हो जाती है ।



जनसंख्या – आकार तथा विलोपकारी उत्परिवर्तन दर के अंतर में क्षेत्र – जहाँ संयोजित उत्परिवर्तन व्यतिकारी होता है।

मेहर के. प्रकाश

पी.एच.डी.: संकाय अधिसदस्य

हमारा दल विषाणुओं (वाइरसों) द्वारा निरोधक तंत्र के प्रति (संकीर्ण) जिटल रोग-निरोधक प्रतिक्रिया को समझ लेने हेतु संकीर्ण (सिन्मिश्र) सिद्धांत तथा जैव-सूचिनकी अभिगम का उपयोग करता है। वे सरल होते हैं क्योंकि (बेक्टेरियाओं) जीवाणुओं में – 5000 के साथ तुलना करने पर उनमें प्रोटीनों के 10 से अधिक प्रकार नहीं होते तथा वे जिटल होते हैं, क्योंकि कम संख्या के प्रोटीन-टाइपों के होने पर भी उच्च रोग-निरोधक दर के कारण वे प्रभावात्मकता से रोग-निरोधकता से बच निकलते हैं। अतः उन प्रश्नों (विषयों) में हम उस एक का समाधान कर रहे हैं कि कया यह संभव (साध्य) है कि रोग-निरोधक पद्धति द्वारा किस रोगाणु के प्रति प्रभावात्मकता से कार्य किया जा सकता है। अन्य प्रश्नों के साथ संबद्ध रोग-निरोधकता रोगजननीयता के अनुकूलन को समझ लेने हेतु यह प्रश्न महत्वपूर्ण रहा है।

विषाणु कपटता से सरल होते हैं, परंतु वे रोग-निरोधकता प्रतिक्रिया के प्रति जिटल निरोधकता को एनकोड कर लेते हैं । जिटलता सिद्धांत तथा जैव-सूचिनकी अभिगम के उपयोग द्वारा हमने इन विषाणुओं के प्रति रोग निरोधकता प्रणालियाँ किस प्रकार प्रतिक्रिया करती हैं इसको समझने तथा प्रमात्रिकरण करने का प्रयास किया है ।

एकक के सदस्य

प्रोफेसर व चेयर

स्वपन के पति

प्रोफेसर

शोभना नरसिंहन श्रीकांत शास्त्री सुबीर कुमार दास उमेश वी वाघ्मारे विद्याधिराज एन.एस.

मानद प्रोफेसर

के.बी. सिन्हा

सहयोगी प्रोफेसर

कविता जैन

संकाय अधिसदस्य

मेहर के. प्रकाश

अनुसंधान विद्यार्थी

अभिषेक कुमार अडक, आलोक कुमार दीक्षित, अंकित कुमार, अरबिंद बेरा, अर्चना देवी, अर्पण दास, बिधान चन्द्र गरैन, देबदीसो आचार्य, धीरज कुमार, हिमांशु जोशी, कौशलेंद्र कुमार, खंदरे पुष्कर गोपालराव, कोयेल दास, कोयेंद्रिला देबनाथ, मलय रंजन बिस्वाल, मेहा भोग्रा, मनोज अधिकारी, निलना वी, नंदना एस के, नेहा बोत्रा, पल्लबी दास, पल्लवी सरकर, पवन कुमार, राजदीप बैनर्जी, राजु कुमार बिस्वास, सचिन कौशिकि, सौमिक घोष, सौरव मोण्डल, श्रृती सी के, सुप्रीती दत्ता, वर्घीस बाबु, विनायक एम कुलकर्णी, वासिम राजा मोण्डल, यिनक गोस्वामी,

अनुसंधान सहयोगी

अनुजा चनना, अरुणकुमार भूपति, देविना शर्मा, हिमांग्सु भौमिक, के नवमणि, मतुकुमिल्लि वी.डी. प्रसाद, परिमता बैनर्जी, रजनीश कुमार, डॉ. सयानी चैट्टर्जी, शाज़िया जनवरी, सुचित्रा (अनंतिम)

R&D (अन्संधान विकास) सहायक

अमरनाथ चक्रबर्ति, पवन कुमार, वासिम राजा मोण्डल

TSU की एक झलक

संकायों द्वारा प्राप्त पुरस्कार

प्रो. उमेश वी वाघ्मारे

भौतिकी प्रकाशन संस्था (IOP) द्वारा उच्चतम उल्लेखनीय लेखक पुरस्कार-2018, राष्ट्रीय विज्ञान अकादमी अलाहाबाद की परिषद् के सदस्य, सहयोगी संपादक – नानो स्केल, (रॉयल रासायनिकी सोसाइटी द्वारा एक जर्नल का प्रकाशन), (APAM) एशिया पेसिफिक पदार्थ अकादमी के परिसदस्य के रूप में चयनित, "वैज्ञानिक साहितय के प्रति मुक्त-अभिगम हेतु राष्ट्रीय ढाँचा" के प्रारूपण के लिए तीन विज्ञान अकादमियों के लिए अंतर-अकादमी समिति के सदस्य-2019.

प्रो. स्वपन पति – भारतीय राष्ट्रीय विज्ञान अकादमी – 2018 के अधिसदस्य के रूप में चयनित

प्रौ. सुबीर के दास – इकोले नॉर्मले सुपरियर, लियॉन, फ्रॉन्स में आमंत्रित प्रो. (सितंबर, 2019)

प्रो. मेहर के. प्रकाश - अंतर्राष्ट्रीय सैद्धांतिक भौतिकी केंद्र, इटली के सहयोगी के रूप में चयनित ।

प्रायोजित परियोजनाएँ

वर्ष 2018-2019 के दौरान प्राप्त राशि

प्रायोजित परियोजनाएँ

4

43.1 लाख

जारी परियोजनाएँ

19

1.43 करोड़

5 पी.एच.डी. प्रवेश प्राप्त विद्यार्थी

2 पी.एच.डी. स्नातकोत्तर उपाधि प्राप्त विद्यार्थी

62 प्रकाशन

संगणना पदार्थ विज्ञान में उत्कृष्टता विषयक एकक (TUE-CMS)

संगणना पदार्थ विज्ञान में उत्कृष्टता विषयक एकक की स्थापना अप्रैल, 2006 में की गई तथा (विज्ञान एवं प्रौद्योगिकी विभाग) DST के द्वारा अपने नानो विज्ञान एवं प्रौद्योगिकी के सूत्रपात से आर्थिक सहायता प्राप्त की है। यह एकक पदार्थ विज्ञान, काच तथा अन्य संगणनात्मक गहन अनुसंधान क्षेत्रों में अन्वेषण हेतु अनुरूपणों का उपयोग करता है।

अनुसंधान अंतर्द्धियाँ

- प्रमात्रा बहु-काय अन्योन्याश्रित नमूनों के साथ द्विधुवी परमाणु-मापानुगामीय प्रणालियों में आंतरिकता से विकसित समय निर्भर अनुकूलकारी सांद्रता-साँचा पुनर्सामान्यीकरण समूह (tDMRG) पद्धतियों के उपयोग द्वारा हमने दर्शाया है कि SU(2) सममिति की उपस्थिति में भी आवेश एवं चक्रण स्वतंत्रता (मुक्तता) डिग्रियों की बहु-काय स्थानिकृत प्रावस्थाएँ होती हैं । यह प्रावस्था हृष्ट्पुष्ट (बलवान) है जिसका सत्यापन विकार, दीर्घाकालिक गतिकी तथा दीर्घ प्रणाली आकारों (ससीम आकार अनुमापन) के द्वारा किया गया है ।
- सुधरे आम्लजनक विकास प्रतिक्रिया के लिए आम्लजनक त्रुटिपूर्ण (हीन) द्वयात्मक पेरोवस्काइट $Ca_2Mn_2O_5$ में B(Mn)site आयॉन के eg स्तर की अधिग्रहण की लयात्मकता हेतु सस्ते धनायनों के साथ A(Ca) site का मादन किया है तथा यह पाया है कि अल्कलाइन (लवणीय) माध्यम में 30% सेरियम मादित $Ca_{1.7}Ce_{0.3}Mn_2O_5$ के लिए अति-संभाव्य मूल्य $0.16\ V$ रहा है 1
- आयामीय विश्लेषणों तथा अनुमापन नियमों (विधियों) द्वारा निर्वंध यंत्र द्वारा (अध्ययन) सीखने का उपयोग करने पदार्थ-गुणधर्मों के व्याख्यात्मक तथा स्थानांतरणीय पूर्वानुमानीय नमूनों के निर्माण हेतु संगणनात्मक योजना का विकास ।
- B एवं N-प्रतिस्थानित ग्राफेनों की उत्प्रेरक क्रियाकलाप के अनावृत वर्णनात्मकतातथा तांत्रिकता, जलजनक तथा आम्लजनक विकास अभिक्रियाओं के प्रति अनाकारीय CoMoP तथा कुछ सांख्यितिकीय अनगण्य चेल्कोजेनाइड ।
- यह प्रदर्शित किया है कि कैसे अभियांत्रिकी लौह-विद्युतीय अस्थिरताएँ तथा उसीके समान स्थानीय स्पंदन अति-निम्न ऊष्मीय चालकता के लिए कारणीभूत होते हैं तथा अतः धातु-चेल्कोजेनाइडों में उच्च ऊष्म-विद्युतीय निष्पादन होता है ।
- कुछ चेल्कोजेनाइड अर्धचालकों में दबाव-निर्भर विद्युन्मानिकीय सांस्थितिकीय पारगमनों तथा Lifshitz पारगमन की भौतिकी दे अनावरण हेतु
 पूरक प्रयोगमूलक कार्य ।
- उप स्तरीय मध्यस्थित अधिअन्चालनीय तनाव द्वारा प्रारंभित जैविक अण्ओं के एकल परत में चक्रण विनिमय पारगमन का स्पष्टीकरण ।
- आक्साइडों में अलियो-वेलेंट मादन की परभावोत्पादकता के लिए वर्णनात्मक का सूत्रन तथा 2D पदार्थों तथा धातु उपस्तरों के बीच के अंतरापृष्ठ पर बंधक ।
- कक्ष-तापमान आयॉनिक द्रवों के विन्यास हेतु एक नवल बल क्षेत्र का विकास जो उनके संघनित प्रावस्थाओं के प्रमात्रा सांद्रता प्रकार्यात्मक सिद्धांत से व्युत्पन्न परमाणु आवेशों पर आधारित है । परिणामी आयॉन आवेश, प्रकाश विद्युदणु वर्णक्रमदर्शी डाटा के साथ स्थिर रहे तथा इन द्रवों के भौतिकीय गुणधर्मी के प्रमात्रा पूर्वानुमानों को समर्थ बता देते हैं ।

- अल्पतयी आकार के संदर्भ में अल्पतयीकरण की मुक्त ऊर्जा में परिवर्तनों (बदलावों) का उपयोग करके अधिआण्विक बहुतयीकरण (सहकारी तथा आइसोडेस्मिक) के दो विशिष्ट तंत्रों की रूपरेखा संगणनात्मकता से तैयार की गई है।
- (भिंचन) संबाधन, असंबाधन, अपरूपण संबाधन, पराभवी पारगमनों सिहत चालित (वृत्त) गोलाकार संवेष्ठन का एकीकृत गतिकीय प्रावस्था मानचित्र ।
- विशेष परिस्थितियों में संघर्षहीन (वृत्त) गोलाकार संवेष्ठन में विस्तरणशीलता
- पदार्थ अभिकल्पों के लिए प्रतिलोम पद्धतियाँ ।
- संतुलित तथा असंतुलित प्रणालियों में सूचना-निहितता तथा उत्क्रममापी का अन्वेषण ।
- जीवाणुवीय झिल्लियों के विरुद्ध कार्य करनेवाले नवल प्रति जीवाणुवीय यौगिकों के क्रियाकलाप के अध्ययन के लिए समर्थ क्षेत्रों का विकास ।
- जीवाणुवीय झिल्लियों के विरुद्ध उनके क्रियाकलापों के लिए जीवाणुवीय झिल्लियों के अंदर औषधों के स्व-संयुज्य के पात्र का विस्तृत-वर्णन ।

एकक के सदस्य

प्रोफेसर

बालसुब्रमणियन सुंदरम शोभना नरसिंहन श्रीकांत शास्त्री स्वपन के. पति उमेश वी. वाघ्मारे

संकाय अधिसदस्य

मेहर के. प्रकाश

अन्संधान सहयोगी

देवीना शर्मा

अनुसंधान विज्ञानी बी

अनूप एस सुरेश जे

सहायक

बसवराज टी

बौद्धिक संपत्ति (IP)

बौदधिक संपत्ति की परिसंपत्तियों में ये सम्मिलित हैं

बौद्धिक संपत्तियाँ, एकास्वाधिकार (पेटेंट), व्यापार-चिह्न (ट्रेडमार्क), रचना स्वत्वाधिकार (कॉपी राइट वर्क), औद्योगिक अभिकल्प, भौगोलिक संकेत और व्यापार-रहस्य । इन IP परिसंपत्तियों का अपार आर्थिक मूल्य होता है, क्योंकि इनमें प्रारक्षित प्रौद्योगिकियों, नवोन्मेषों, उत्पादों तथा सेवाओं से ज्ञान गुण-लब्धि तथा वित्तीय लाभ को वर्धित करने की क्षमता होती है ।

यह केंद्र अपने अनुसंधानकर्ताओं की IP के महत्त्व का विमोचन करने में देशभर में अति प्रमुख अनुसंधान – संस्थानों में से एक रहा है । यह केंद्र IP की वाणिज्यिकता से उपयोग, सृजन, विकास, संरक्षण तथा प्रबंधन को प्रोत्साहित करता है तथा सुविधा उपलब्ध कराता है और उसके प्रवर्तन के साथ शैक्षिक – औद्योगिक भागीदारी का संपोषण भी करता है । स्थापना के समय से केंद्र ने 283 (भारत-88, PCT-55, ऑस्ट्रेलिया-6, ब्राज़िल-3, केनडा-10, चीन-6, यूरोप-27, हाँग काँग-2, इसराइल-1, जपान-8, कोरिया-2, सिंगापुर-4, दक्षिण आफ्रिका-5, दक्षिण कोरिया-3, यूएसए-58, ए.आर.आई.पी.ओ.-2, ओ.ए.पी.आई.-2 तथा वियेटनाम-1) तथा 79 एकास्वाधिकार स्वीकृतियाँ (भारत-16, ऑस्ट्रेलिया-3, केनडा-1, चीन-5,

यूरोप-9, जपान-4, कोरिया-2, ओ.ए.पी.आई.-2, दक्षिण आफ्रिका-4, दिक्षिण कोरिया-1, तथा यूएसए-32) प्राप्त की हैं । अन्य बौ.सं.प. (आई. पी.ए.)यों में 1 व्यापार चिह्न, 1 औद्योगिक अभिकल्प तथा 1-रचना-स्वतवाधिकार प्राप्त किए हैं ।

हस्तांतरित प्रौदयोगिकियाँ

वर्ष 2018-19 के दौरान दो एकास्वाधिकृत प्रौद्योगिकियों अर्थात्-"स्वभक्षी के अनुवीक्षण हेतु मूल्यांकन के निष्पादन की पद्धति तथा उसका किट" तथा स्वभक्षी के नियंत्रक (अधिमिश्रक) तथा उनके अन्वयन – जो प्रो. रिव मंजिताय तथा अन्यों द्वारा विकसित हैं – को मेसर्स विप्राजन बयोसाइन्सस प्रा.लि. को अनुज्ञित किया गया है। इसके अतिरिक्त तीन एकास्वाधिकृत प्रौद्योगिकियों – अर्थात् अल्प अणुशोध, प्रक्रियाएँ तथा उसका उपयोग, डी.एन.ए. शोधों के रूप में यौगिक, पद्धतियों तथा उनके अन्वयन तथा उद्दीपन प्रतिक्रियात्मक शोधों के रूप में यौगिक, पद्धतियों तथा उनके उपयोग, जो प्रो. गोविंदराजु तिम्मय्या अन्यों द्वारा विकसित हैं को मेसर्स. वी.एन.आई.आर.(वीनीर) बयो टेक्नॉलॉजिस प्रा.लि. को अनुज्ञित किया गया है।

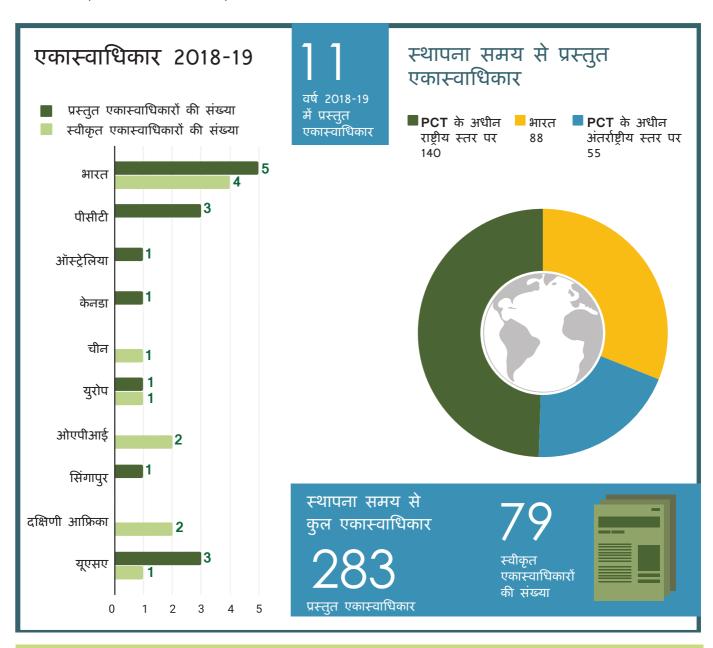
शैक्षिक वर्ष 2018-19 में प्रस्त्त तथा स्वीकृत एकास्वाधिकारों का विवरण निम्न सूची में दिया गया है

वर्ष 2018-19 में प्रस्त्त भारतीय एकास्वाधिकार आवेदन

अन्वेषण का शीर्षक	अन्वेषक	एकक	प्रदेश	पेटेंट आवेदन सं.	प्रस्तुत दिनांक
सौर कोशिकाओं के निर्धारण (मूल्यांकन) हेतु पद्धति तथा प्रणाली	कवस्सेरी सुरेस्वरन नारायण, प्रशांत कुमार, सुमन बैनर्जी	सी.पी.एम.यू.	भारत	201841020900	2018-06-05
	प्रेमकुमार सेंगुतुवन	एन.सी.यू.	भारत	201841032648	2018-08-30
	कनिष्क बिस्वास, मनीषा समंता	एन.सी.यू.	भारत	201841034822	2018-09-14
	सेबास्टियन चिरांबट्टे पीटर, सौम्यब्रता रॉय, अर्जुन सी.एच., मनोज काजा साई	एन.सी.यू.	भारत	201841045187	2018-11-29
	रंगा उदयकुमार	एम.बी.जी.यू.	भारत	201941005934	2019-02-14

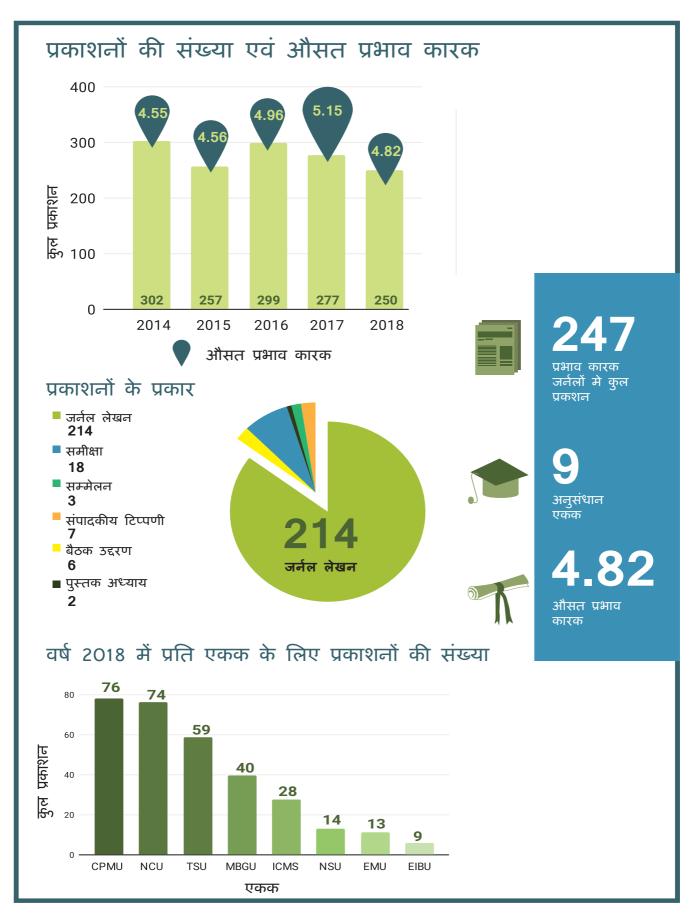
वर्ष 2018-2019 में PCT के अधीन प्रस्तुत अंतर्राष्ट्रीय प्रावस्था पेटेंट (एकास्वाधिकार) आवेदन

अन्वेषण का शीर्षक	अन्चेषक	एकक	प्रदेश	पेटेंट आवेदन सं.	प्रस्तुत दिनांक
गतिकीय पोषक-पोषित अंतर्किया प्रणाली	सरित शेखर अगस्ति, रंजन ससमल, निलांजना दास साहा	एन.सी.यू.	पी.सी.टी.	PCT/IB2018/055375	2018-07-19
सौर कोशिकाओं के निर्धारण (मूल्यांकन) हेतु पद्धति तथा प्रणाली	कवस्सेरी सुरेस्वरन नारायण, प्रशांत कुमार, सुमन बैनर्जी	सी.पी. एम.यू.	पी.सी.टी.	PCT/IB2018/056731	2018-09-04
चुंबकीय क्षेत्र द्वारा वेइल अर्ध धातुओं के प्रकाश उत्प्रेरक जल विखंडन क्षमता का वर्धन	चिंतामणि नागेस, रामचन्द्र राव, क्लौडिया फेल्सर, कैथरीन रंजिता राजमित, नितेश कुमार, उत्तम गुप्ता	एन.सी.यू. तथा सी.पी. एम.यू.	पी.सी.टी.	EP2019/052874	2019-02-06


वर्ष 2018-2019 में PCT के अधीन प्रस्तुत राष्ट्रीय प्रावस्था (स्तर) एकास्वाधिकार

अन्वेषण का शीर्षक	अन्वेषक	एकक	प्रदेश	पेटेंट आवेदन सं.	प्रस्तुत दिनांक
स्वभक्षी नियंत्रण पद्धति तथा उसके अन्वयन	रवि मंजिताय, पीयूष मिश्रा, सुरेश सन्ति नटेशन, सोम्या बट्स, वीणा अम्मनाथन, अरविंद चवलमने	एम.बी. जी.यू.	आस्ट्रेलिया	2016366810	2018-06-08
			सिंगापोर	11201804884P	2018-06-08
			यूरोप	16820017.8	2018-06-14
			यूएसए	16/060,445	2018-06-08
सम्मिश्र ढाँचा तथा उसके अन्वयन	गोविंदराजु तिम्मय्या, शिवप्रसाद मंचिनील्ला	एन.सी.यू.	यूएसए	16/077391	2018-08-10
बहुलक जालकार्य, उत्पादन पद्धति तथा उसके उपयोग	जयंत हल्दर, जिया-उल-हक	एन.सी.यू.	यूएसए	16/321,674	2019-01-29
			केनाडा	3032292	2019-01-29

वर्ष 2018-19 में स्वीकृत एकास्वाधिकार


अन्वेषण का शीर्षक	अन्वेषक	एकक	प्रदेश	पेटेंट आवेदन सं.	प्रस्तुत दिनांक
जैविकीय प्रतिदर्श-शोध के आण्विक अंकन के लिए उच्च संवेदनशील मूल्यांकन	रंगा उदयकुमार चंद्रभास नारायण, जयसूर्यन नारायण	एम.बी.जी.यू. तथा सी.पी. एम.यू.	भारत	295700	2018-04-12
धनायनी प्रति-जैविकीय यौगिक, सम्मिश्र पद्धति तथा उनके नियम (सूत्र)	जयंत हल्दर, यारलगड्डा वेंकटेश्वरलु, अक्कपेद्दि पद्मा	एन.सी.यू.	भारत	296510	2018-05-03
प्रति सूक्ष्मजीवाणुवीय यौगिक, उनके संश्लेषण तथा उनके अन्वयन	जयंत हल्दर, चन्द्रधीश घोष, गौतम बेलगुला मंजुनाथ, पद्मा अक्कपेद्दि	एन.सी.यू.	चीना	ZL201380 070984.4	2018-06-19
पंख-आरूढित ट्रेक्टर नोदकों / रोटरों (घूर्णकों) द्वारा चालित विमान के पंख के उपावेश या कुल यास (ड्राग) के न्यूनन हेतु अनुकूलतम पंख प्लेनफार्म्स	रोद्दम नरसिंह, सुरेश मधुसूदन देशपाण्डे, प्रवीण चन्द्रशेखरप्पा, रक्षित बेलूर राघवन	ई.एम.यू.	युरोप	2448819	2018-09-12
धनायनी प्रति-जैविकीय यौगिक, सम्मिश्र, पद्धति तथा उनके नियम (सूत्र)	जयंत हल्दर, यारलगड्डा वेंकटेश्वरलु, अक्कापेद्दि पद्मा	एन.सी.यू.	यूएसए	10,081, 655 B2	2018-09-25
अल्प अणु शोध, प्रक्रियाएँ तथा उसके उपयोग	गोविंदराजु तिम्मय्या, नागार्जुन नारायणस्वामी, कोल्ल राजशेखर	एन.सी.यू.	दक्षिणी आफ्रिका	2016/ 07051	2018-10-31
डी.एन.ए. शोध के रूप में यौगिक तथा उनके अन्वयन	गोविंदराजु तिम्मय्या, नागार्जुन नारायणस्वामी	एन.सी.यू.	ओ.ए.पी. आई.	18595	2018-12-28
उद्दीपक प्रतिक्रिया शोध पद्धतियों के रूप में यौगिक तथा उनके अन्वयन ।	गोविंदराजु तिम्मय्या, नागार्जुन नारायणस्वामी	एन.सी.यू.	ओ.ए.पी. आई.	18596	2018-12-28
			दक्षिणी आफ्रिका	2018/ 01948	2019-01-30
प्रतिजीवाणुवीय यौगिकों के नानो- कण-सम्मिश्र तथा उनके अन्य उपयोग	जयंत हल्दर, दिवाकर शिवा सत्यनारायण मूर्ति उप्पु, अक्कापेद्दि पद्मा, गौतम बेळगुला मंजुनाथ	एन.सी.यू.	भारत	307423	2019-02-14
NPM1 तथा उस टाइलेटेड NPM1 के विरुद्ध एक-कृंतकीय प्रतिपिंड तथा उसकी प्रक्रियाएँ	तपस कुमार कुण्डु, प्रारिजत सेनापति, गोपिनाथ कोडगन्र, श्रीनिवासाचार, दीप्ति सुदर्शन, मंजुला दास, स्मिता, पळूर कुमारन, मंजुनाथ शिवसंगप्पा, देवरामन, अजित कुमार, सुमित्रप्पा	एम.बी.जी.यू.	भारत	2016/ 07051 2018/ 01948	2019-03-21

एकास्वाधिकार 2018-19

एकक के सदस्य संनायाध्यक्ष, अनुसंधान व विकास प्रो. के.एस. नारायण तकनीकी अधिकारी श्रेणी-। ए.वी. नागरत्नम्मा तकनीकी स्टफ यङती राज्यलक्ष्मी

संकाय प्रकाशन

जनेउवैअकें संकायों द्वारा "नवोद्यम"

जनेउवैअकें अपने (तकनीकी) तांत्रिक अनुसंधान केंद्र "(टी.आर.सी.) के द्वारा" जनेउवैअकें कुछ ही भारतीय सरकारी निधियन के अनुसंधान व विकास संस्थानों में से एक है, जिसने ग्लोबल, मार्केटों (वैश्विक बाज़ारों) के लिए "उच्च ज़ोखिम उच्च संभाव्यता" के आधार पर वाणिज्यिक को अपनाया है। भारत सरकार के विज्ञान एवं प्रौद्योगिकी विभाग (DST) की निधियन सहायता से ता.अ.कें. (TRC) की स्थापना वर्ष, 2016 में की गई है, जो एक बहुमुखी मंचवाला है, जिसका ध्येयोद्धेश – विज्ञानियों को, उद्यमियों को तथा वाणिज्य (व्यापारी) बंधुओं को अनुसंधान को उत्पादों में रूपांतरित करने हेतु तथा निम्नलिखित प्रक्रियाओं के ज़रिए तांत्रिकविधिक (कानूनी) – वाणिज्यिक तथा वितीय सहायता देने का रहा है:

- जनेठवैअकें में विकसित पृष्ठभूमीय बौद्धिक पिरसंपत्तियों के निर्माण तथा नई बौद्धिक संपत्तियों के सृजन के लिए अन्वयन – अभिमुखी पिरयोजनाओं को निधियन सहायता ;
- बौद्धिक संपति / कौशल, औद्योगिकी प्रायोजित अनुसंधान व विकास परियोजनाओं, औद्योगिक परामर्श तथा सहयोगात्मक अनुसंधान एवं विकास परियोजनाओं के बाह्य अनुज्ञिसयों के ज़िरए जनेउवैअकें उद्योग – भागीदारिता को संभालना ;
- नवोचमों के ज़िरए जनेठवैअकें द्वारा विकसित प्रौचोगिकियों / बौद्धिक संपत्तियों को विस्तिरत करने के लिए प्रेरक पारिस्थितिकी का सृजन करना ;
- तथा रूपांतरणीय (हस्तांतरणीय) अनुसंधान व विकास के निष्पादन हेतु आवश्यक अनुसंधान व विकास अंतर्सरचना को विकसित कर लेना ;

उदा. में सिम्मिलित है – रामन वर्णक्रमदर्शी के उपयोग द्वारा एच.आई. वी. निदानिकी तथा अन्य नमूने के सांक्रामक (संदूषक) रोगों के लिए टी.आर.सी. द्वारा समर्थित अनुसंधान परियोजना, जिसे निम्न लागत तथा अनाक्रमक पद्धति । नारियल-रोपण (बागान) में रेड पाम घुण गंडक भृंग के प्रबंध में एक निम्न-लागत योजना को दो औद्योगिक भागीदारों को अनुज्ञित किया गया है । एक परियोजना ऊष्म वियुतीय पदार्थों त्याज्य उष्णता को वियुतीय ऊर्जा में परिवर्तन करने के लिए है तो दूसरी परियोजना का लक्ष्य इंधन-कोशिका हरित ऊर्जा के उत्पादन के लिए वियुत्तग्र पदार्थों के रूप में नॉन-पी.टी. आधारित अंतरधात्विक नॉनो-कणों के विकास के लिए है । ऐसी परियोजनाओं के ज़िरए टी.आर.सी. का लक्ष्य है – मूलभूत अनुसंधान दिशा निर्देशित विकास तथा नियोजन के बीच में सही संतुलन पर प्रभाव डालने के द्वारा रूपांतरणीय अनुसंधान के उन्नयन तथा विज्ञान में देश की उत्कृष्टता के बलवर्धन की ओर योगदान देने का रहा है ।

आरंभ (स्थापना) के समय से ही, टी.आर.सी. ने 30 अनुसंधान व विकास परियोजनाओं को निधियन सहायता दी है; एक दर्जन से अधिक को अनुज्ञिस दी है प्रक्रियाधीन 10 प्रौद्योगिकियों / बौद्धिक संपत्तियों का प्रारंभ किया है तथा और दो प्राक्रयाधीन अवस्था में हैं; 20 से अधिक औद्योगिक भागीदारों के साथ सहभागिता की है; एक सन्नद्ध (सुसज्जित) अनुसंधान एवं विकास अंतर्सरचना की स्थापना की है तथा पूरक नवोन्मेषी पारिस्थितिकी के साथ अनुसंधान एवं विकास पणधारियों के लिए विस्तृत जालकार्य का निर्माण किया है।

नवोद्यम - साहसिक कार्यों के उदा. निम्न प्रकार रहे हैं :

संख्यासूत्र प्रयोगालय प्राइवेट लिमिटेड (SSL - सं.सू.प्र.) यह सं.सू.प्र. वर्ष 2016 में जनेउवैअकें में प्रारंभित प्रथम नवोचम है तथा यह प्रो. संतोष अंशुमाली (ई.एम.य्.) द्वारा सह-निधियन वाला है । यह एक ही ऐसी कंपनी है जो एशिया में इस प्रकार का है । यह सं.सू.प्र. उच्च प्रयोजनमूलक संगणनात्मक द्रव गतिकी उपलब्ध कराता है तथा संकीर्ण उत्पाद विकास समस्याओं के लिए अनुरूपण समाधान (परिहार) उपलब्ध कराता है, जो उत्कृष्ट (निखर) अभियांत्रिकी से वायुयानिकी से रक्षा से सिमेंट संयंत्रों की श्रेणी में अन्वयनों को उपलब्ध कराता है । अल्प अवधि के दौरान ही निवेशों का एकत्रीकरण, अपने से क्रोड दल तथा समर्थन विक्रय निरंतरता का निर्माण तथा वितीय समर्थन एवं ए-श्रेणी के निवेश प्राप्त करने के रूप में सं.सू.प्र. ने पर्याप्त प्रगति की है । हाल ही में सं.सू.प्र. जनेउवैअकें द्वारा सफलतापूर्वक क्रमबद्ध/श्रेणीकृत हो गया है ।

एचबीएआरओएमईजीए प्राइवेट लिमिटेड :

इस कंपनी ने अवनिष्पादक तथा त्रृटिपूर्ण पी.वी.-फलकों की पहचान तथा (छानने) परिष्कृत करने की चुनौती के साथ प्रकाश वोल्टनिकी (पी.वी.) में विशेषज्ञता के साथ एक नवोद्यम के रूप में दूरदर्शिता कर ली है। इस कंपनी का लक्ष्य रहा है – पी.वी. फलकों (पैनलों) के निष्पादन के साथ समझौता कर सकनेवाली अधिकांश त्रुटियों को प्रारंभ में ही पहचान लेने हेत् सरल परंत् प्रकाश-पुंज आवेशित प्रकाश-धारा [एल.बी.आई. सी.(प्रपुआधा)] की बलवान प्रौद्योगिकी (तकनीकी) का उपयोग द्वारा इस कार्य को पूरा करना । यह नवोद्यम इस प्रौद्योगिकी को विकसित करता रहा है तथा विनिर्माण तथा संस्थापना पर्यावरणों में भारी-क्षेत्र के फलकों के लिए एल.बी.आई.सी. की प्रौद्योगिकी के वाणिज्यिकरण के लिए अनुकूलित (गतिशीलता) करता रहा है । इसका लक्ष्य यह रहा है कि पी.वी. फलकों की विश्वसनीयता में सुधार लेने हेत् तथा राष्ट्रीय (देशी) तथा अंतर्राष्ट्रीय मार्केटों के लिए मुख्य धारा-उत्पादन तथा गुणता-नियंत्रण प्रक्रिया में इस तकनीकी को लाना (लगाना) है, जो इसके बदले में, जीवन-काल तथा ऊर्जा (चुकौती) प्रतिपूर्ति में सुधार ला सकता है । एक और महत्त्वपूर्ण उद्देश्य यह रहा है कि भारी मात्रा के सौर-पी. वी. फलक त्याज्य को बढ़ावा देनेवाले तथा अल्पअनुकूली फलकों तथा भू-जल संदूषण में परिणत होनेवाले तथा कचरे में सौर-फलकों के भारी संग्रह को न्यूनतम करना ।

वीनीर बयोटेक्नॉलॉज़िज़ प्राइवेट लिमिटेड (वीनीर जैव प्रौद्योगिकी प्राइवेट लिमिटेड) :

यह वीनीर जनेउवैअकें के दो संकायों द्वारा सृजित नवोद्यम रहा है । यह कंपनी डॉ. टी. गोविंदराज् (सह संस्थापक तथा संकाय सदस्य -एन.सी.यू.) द्वारा विकसित अल्प प्रतिदीस अन्वेषण (शोध) / अणुओं का उत्पादन, जैविकीय प्रतिबिंबन तथा नैदानिकी के अन्वयन के साथ करता है । इसमें सम्मिलित हैं - अर्ध दर्जन निकट - अवरक्त प्रतिदीसि अन्वेषण - आधारित ऐसे उत्पाद जो अबतक मार्केट की आवश्यकताओं के अलभ्य / आपूरित समाधान हेत् जैसेकि अभिक्रियात्मक आम्लजनक प्रजाति संसूचना, जीवंत कोशिका प्रतिबिंबन तथा तत्काल पी.सी.आर. जैसे उच्च संवेश-प्रवाह अन्वयनों के लिए सुरक्षित विकल्प । इसके अतिरिक्त, यह सांसर्गिक (संदूषक) रोगों (जैसे-मेलेरिया) तथा असांसर्गिक (असंदूषक) रोगों (जैसे-अल्ज़माइर) के निदान के लिए सुरक्षात्मक साधनों / यंत्रों का विकास कर रहा है । इस नवोद्यम ने अभी से ही वितीय समर्थन के निवेशों का आकर्षक किया है, बयो टेक्नॉलॉजी इग्नियशन अनुदान जैसे कुछ महत्त्वपूर्ण अनुदान प्रस किए हैं तथा प्रतिष्ठित एलिवेट कार्यक्रम के अधीन कर्नाटक के 100 परमोच्च नवोद्यमों में से एक के रूप में प्रारंभिक धन प्रदान किया गया है । वीनीर ने पूर्णकालिक कर्मचारियों को एक दल का निर्माण किया है तथा विनिर्माण स्विधाओं, विक्रयों तथा वितरण वाहिनियों की स्थापना की है तथा अब अपने व्यापारी कारोबारों का अनुमापन करने का कार्य कर रहा है । साथ ही अपने उत्पादन निवेश - सूची (संविभाग) का विस्तरण भी कर रहा है

ब्रीद अप्लाइड साइन्स प्रा.लि. (BAS):

जनेउवैअकें के संकाय सदस्य प्रो. उमेश वाघ्मारे तथा डॉ. सेबास्टियन पीटर ने डॉ. रक्षित राघवन (जनेउवैअकें के पूर्व छात्र) के साथ मिलकर एक दल का गठन किया है जो, यू.एस.ए. के X-प्राइज़ फाउंडेशन द्वारा अतिथेयित वैश्विक 20 मिलियन डॉलर एन.आर.जी. कॉसिया कार्बन X-प्राइज प्रतिभागिता में भाग लेने के लिए है। प्रो. पीटर के नेतृत्ववाले दल ने अपना प्रस्ताव प्रस्तुत किया है,जिसका ध्यान कार्बन डाइआक्साइड को मेथानॉल में परिवर्तित करने की ओर केंद्रीकृत था, जिसके आधार पर दल ने अंतिम दौर में प्रवेश किया है तथा ऐसा करनेवाला केवल भारतीय दल प्रवेश प्राप्त किया है । इस सर्वोपरि प्रौद्योगिकी विकास प्रो. सेबास्टियन सी. पीटर तथा उसके अनुसंधान दल द्वारा किए गए नवल 3 प्रेरकों के आविष्कार पर केंद्रीकृत रहा है । इस दल ने ऐसी प्रक्रियात्मक अभियांत्रिकी (विन्यास) का अभिकल्प तैयार किया हैए जो मानवोद्भवित CO, के सक्षम उपयोगिता के लिए सन्नद्ध परियोजना बनाने हेतु अन्य घटकों के साथ समेकित किया हुआ है । अब यह दल प्रस्तावित अत्याधुनिक की प्रौद्योगिकी के विकास तथा वाणिज्यिकरण की प्रक्रिया में है, जो परिपूर्णता से मेथानॉल मितव्ययिता, आयात - प्रतिस्थानन (विकल्प) तथा भारत में निर्माण की सीमा (छत्र) के भीतर आता है। इसके अतिरिक्त, इस प्रौद्योगिकी को अन्य रासायनिक के अतिथेयता के लिए भी विस्तरित किया जा सकता है । सद्यतः यह दल अपनी प्रौद्योगिकी तथा व्यापार-योजना को परिष्कृत कर रहा है तथा अपनी प्रौद्योगिकी का अनुमापन कर रहा है।

उपरोक्त उल्लेखित चार नवोधमों के अतिरिक्त, टी.आर.सी. अपने मंच पर 2-3 नवोधमों के प्रस्तावों के लेने के प्रारंभिक स्थिति में रहा है।

JNCASR तथा ICAR-CPRI को संयुक्त रूप से DBT जैव प्रौद्योगिकी उत्पाद, प्रक्रिया विकास एवं वाणिज्यिकरण पुरस्कार – 2018 प्रदत्त किया गया ।

अधिसदस्यता एवं अधिगम

04

केंद्र के प्राथमिक उद्देश्यों में से एक है – देश में स्कूल व कॉलेजों के स्तरों पर वैज्ञानिक जागरूकता में सुधार लाना तथा उत्कृष्ट वैज्ञानिक शिक्षा में सुविधा उपलब्ध करना । इसको साकार कर लेने हेतु जनेउवैअकें अनेक अभिगम तथा अधिसदस्यता कार्यक्रम अपनाता है । इनका संचालन शिक्षा प्रौद्योगिकी एकक तथा पूर्णरूप से विकसित अधिसदस्यता एवं विस्तरण कार्यक्रम कार्यालय द्वारा किया जाता है । आगामी खंड जनेउवैअकें के अभिगम खंड की उपलब्धियों की रूपरेखा प्रस्तुत करता है ।

अधिसदस्यताएँ और विस्तरण कार्यक्रम

विभिन्न क्षेत्रों में शैक्षिक उपाधियों के अनुसरण के अवसरों के अतिरिक्त यह केंद्र अधिसदस्यता कार्यक्रम भी प्रस्तुत करता है। उपलब्ध विभिन्न कार्यक्रमों का संक्षिप्त विवरण निम्नप्रकार रहा है:

जनेउवैअकें द्वारा प्रदत्त कार्यक्रम / अधिसदस्यताएँ

कक्षा XI / XII के विद्यार्थियों के लिए छात्र-मैत्री कार्यक्रम :

इस कार्यक्रम का लक्ष्य है कि वैयक्तिक अंतर्क्रियाओं के जिरए जनेउवैअकें अनुसंधानकर्ता स्कॉलर के जीवन के एक दिन के प्रति कक्षा XI/XII के विद्यार्थियों को अभिदर्शित कराना । निर्दिष्ट पीएच.डी / स्नातकोत्तर पीएच.डी विद्यार्थी / डॉक्टरोत्तरों के साथ आगंतुक विद्यार्थी को जारी अनुसंधान या चर्चाओं का वीक्षण करने और / अथवा प्रतिभागिता करने का अवसर दिया जाता है । इस कार्यक्रम के अधीन वर्ष-2018 में जवाहर नवोदय विद्यालय तथा केंद्रीय विद्यालय तथा सागर विज्ञान फोरम के 108 विद्यार्थियों ने इसका लाभ उठाया है। प्रतिभागी विद्यार्थियों, मैत्री-छात्रों तथा शिक्षकों से विस्तृत प्वर्निवे श प्राप्त किया गया है।

स्नातकपूर्वो (बी.एस.सी. वालों) के लिए

ग्रीष्म अनुसंधान अधिसदस्यता कार्यक्रम (एस.आर.एफ.पी. – ग्री.अ.अ.का.): वर्ष 1991 में इसकी संस्थापना से लेकर अब तक ~2300 विद्यार्थियों ने इसका लाभ उठाया है । ग्री.अ.अ.का. – 2018 के लिए कुल 70 विद्यार्थियों ने छात्रवृत्ति का लाभ उठाया है तथा भौतिकी, रासायनिकी तथा जैविकी तथा अभियांत्रिकी के विविध क्षेत्रों में बंगलूर में तथा देशभर में अन्यत्र भी अनुसंधान प्रशिक्षण प्राप्त किया है । ग्री.अ.अ.का.-2019 के लिए विज्ञापन नवंबर-2018 के दौरान जनेउवैअकें के वेबसाइट पर तथा दो समाचार-पत्रों में घोषित (जारी) किया गया है । देशभर के लगभग 200 महाविद्यालयों के प्राचार्यों को विज्ञापन और आवेदन-पत्र ई-मेल द्वारा प्रेषित किए गए हैं । ग्री.अ.अ.का.-2019 के लिए कुल 2020 आवेदन प्राप्त किए गए तथा 147 विद्यार्थियों का चयन किया गया है । केंद्र ने अप्रैल 2019 से ग्री.अ.अ.का. अधिसदस्यता को रु.6000/- से रु.10,000/- प्रति माह की दर से वर्धित कर दिया है ।

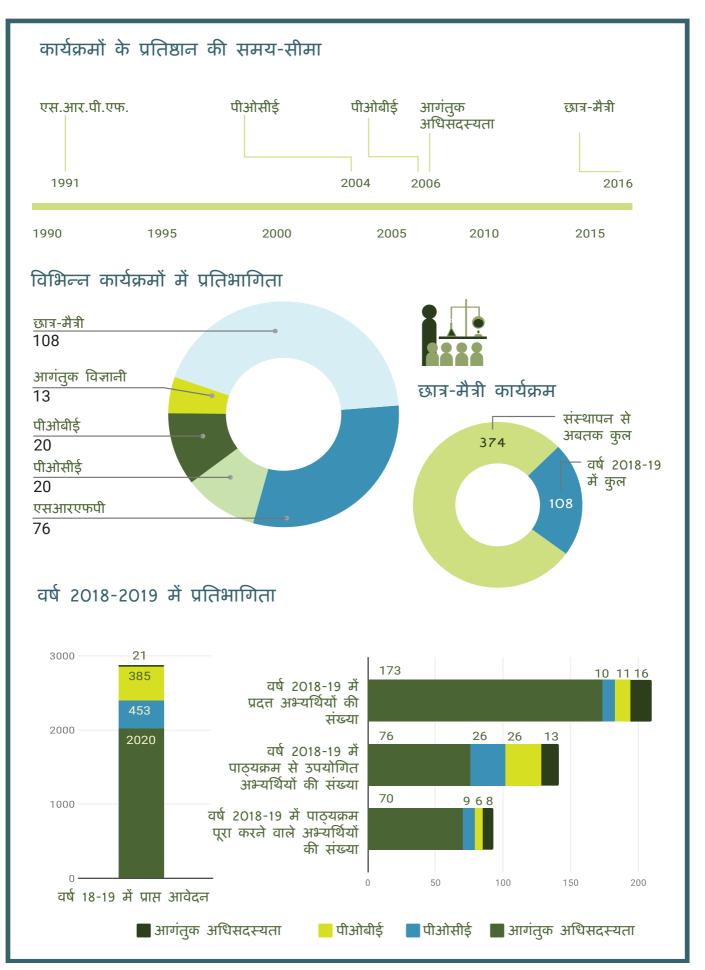
परियोजना अभिमुखी रासायनिकी / जैविकी शिक्षा (POCE/POBE) POCE/POBE क्रमशः

15 तथा 13 वर्ष पूरे किए हैं, जो इन कार्यक्रमों के प्रत्येक के लिए देश के आर-पार से प्रतिवर्ष (10) दस मेधवी विद्यार्थियों का चयन करता है। ग्रीष्म कालों (अप्रैल-जुलाई के मध्य में) के अलावा ये विद्यार्थी अपने मध्य-सत्रों के अंतराल के दौरान केंद्र के संकाय-सदस्यों के अल्पकालीन अनुसंधान परियोजनाओं के साथ काम करते हैं। अपने प्रशिक्षण को पूरा कर लेने पर जो 3 वर्षों का होता है. उन्हें रासायनिकी या जैविकी – जो

भी संबद्ध कार्यक्रम हो, उसमें डिप्लोमा प्रमाण-पत्र प्रदान किया जाता है। वर्ष 2018 के कार्यक्रम में क्रमशः POCE/POBE के लिए 398 तथा 375 आवेदकों में से 10-10 का चयन किया गया है। मई, 2019 चयन के दौरान क्रमशः POCE/POBE के 385 तथा 453 आवेदकों में से 10-10 का चयन किया गया है। POCE/POBE – 2016-18 बैच के क्रमशः नौ (9) तथा छह (6) विद्यार्थियों को रासायनिकी जैविकी में दि.4 जुलाई 2018 को डिप्लोमा प्रदान किया गया। मई 2019 सत्र से POCE/POBE की अधिसदस्यता को 6000 से 10,000 INR प्रतिमाह वर्धित किया गया है।

स्नातकोत्तर (मास्टर्स) विद्यार्थियों के लिए

ग्रीष्म अनुसंधान अधिसदस्यता कार्यक्रम :


एस.आर.एफ.पी. स्नातकोत्तर (मास्टर्स) विद्यार्थियों के लिए एस.आर. एफ.पी. कार्यक्रम, स्नातकपूर्व (बैचलर) विद्यार्थियों की ही कार्यविधि का अनुसरण करता है – (जैसेकि उपरोक्त उल्लेखित है) ।

विज्ञानियों के लिए

आगंत्क अधिसदस्यताएँ :

कंद्र अनुसंधानकर्ता विज्ञानियों को शैक्षणिक संस्थानों तथा अनुसंधान एवं विकास प्रयोगालयों में जनेउवैअकें के संकायों के साथ कार्य करने हेतु आगंतुक विज्ञानी अधिसदस्यताएँ भी प्रदान करता है। इस कार्यक्रम का स्वागत अनेक युवा विज्ञानियों द्वारा किया गया है, क्योंकि केंद्र पर अनुसंधान प्रशिक्षण प्राप्त करने के बाद अपनी मूल (पैतृक) संस्थाओं में अपने-अपने कौशल को सानने या अनुसंधान प्रयोगालयों के विकास करने में समर्थ हो गए हैं। आगंतुक अधिसदस्यताओं के लिए जुलाई, 2018 के दौरान 'करंट साइन्स' में विज्ञापन प्रकाशित किया गया। जनेउवैअकें आगंतुक अधिसदस्यता – 2018-19 के लिए देशभर के अनुसंधान संस्थानों के तेरह (13) विज्ञानियों का चयन किया गया है। उनका आतिथेय सी.पी.एम.यू., एम.बी.जी.यू., एन.सी.यू., एन.एस.यू. तथा टी.एस.यू. द्वारा किया जाएगा।

शैक्षिक प्रौद्योगिकी एकक (ETU)

शैक्षिक प्रौद्योगिकी एकक (ETU) की स्थापना वर्ष 1996 में अध्ययन तथा अध्यापन सामग्रियों के विकास द्वारा स्कूल और कॉलेजों में विज्ञान-शिक्षा के सुधार के उद्देश्य से की गई । यह एकक शिक्षकों तथा विद्यार्थियों के लिए भौतिकी, रासायनिकी तथा जैविकी में व्याख्यान कार्यक्रमों/कार्यशालाओं का संचालन करता है । ETU के विगत वर्ष के कुछ कार्यकलापों की विशिष्टियाँ नीचे दी गई हैं ।

विज्ञान अधिगम कार्यक्रम (SOP विअका) :

विज्ञान अधिगम कार्यक्रम (SOP विअका) को आयोजित मई 2018 में - गंगोली हाट, उत्तराखंड में हिमालय ग्राम विकास उत्तराखंड के साथ तथा सी.एन.आर. राव हॉल ऑफ़ साइन्स द्वारा प्रयोजित किया गया था। इस वार्षिक अधिगम कार्यक्रम में जनेउवैअकें, भा.प्रौ.सं. (IIT) - मुंबई तथा कुमाऊ वि.वि., उत्तरखंड के संकाय सदस्यों ने भौतिकी एवं रासायनिकी में व्याख्यानों तथा प्रदर्शनों को इस कार्यक्रम में प्रतिभागिता करनेवाले विद्यार्थियों तथा शिक्षकों के लिए प्रस्तुत किया। उत्तरखंड भरके लगभग 150 विद्यार्थियों ने (कक्षा-XI तथा XII) इस कार्यक्रम में भाग लिया।

विद्यार्थियों के लिए भौतिकी में कार्यक्रम तथा विद्यार्थियों के लिए जैविकी में कार्यक्रम का आयोजन अगस्त तथा सितंबर में क्रमशः सी.एन.आर. राव हॉल ऑफ़ साइन्स शि.प्रौ.ए. द्वारा किया गया । (प्रथम) पहले ही कार्यक्रम में प्रो.शशी तुद्रपल्ली (एन.सी.बी.एस.) प्रो एस.एम. शिवप्रसाद (जनेउवैअकें) तथा डॉ. मेहर प्रकाश (जनेउवैअकें) द्वारा व्याख्यान दिए गए, जबिक (द्वितीय) बादवाले कार्यक्रम में तीन व्याख्यान, डॉ. आकाश गल्याणी (ISCBRM InStem), डॉ. फल्ग्णी अल्लाडी (निम्हान्स) तथा डॉ. शीबा वासु (जनेउवैअकें) के तीन व्याख्यान निहित थे । लगभग 185-200 स्कूलों, कॉलेजों के विद्यार्थियों ने (कक्षा XI तथा XII) तथा शिक्षकों ने उपरोक्त के प्रत्येक कार्यक्रमों में भागलिया । दोनों कार्यक्रमों के अंग के रूप में विद्यार्थियों ने "पदार्थ-रासायनिकी प्रदर्शनी" तथा सी.एन.आर. राव हॉल ऑफ़ साइन्स के प्रो. सी.एन.आर. राव अभिलेखागार का दौरा किया । नवंबर में एक एस.ओ.पी. कार्यक्रम का संचालन किया गया, जिसमें जनेउवैअकें के संकाय सदस्यों द्वारा व्याख्यान दिए गए, जिसमें सम्मिलित थे - डॉ. मेहर के. प्रकाश, डॉ. बिवास साहा, प्रो. ए. सुंदरेशन, प्रो. चंद्रभास नारायण तथा प्रो. टी. गोविंद राज्। इस कार्यक्रम में लगभग 180-200 स्कूलों के विद्यार्थियों तथा उनके शिक्षकों ने भाग लिया । उन्होंने भी पदार्थ रासायनिकी प्रदर्शनी का तथा सी.एन.आर. राव हॉल ऑफ़ साइन्स के प्रो. सी.एन.आर. राव अभिलेखागार का दौरा किया ।

दिसंबर, 2018 में, ई.टी.यू. द्वारा आयोजित एक एस.ओ.पी. कार्यक्रम में लगभग 200 विद्यर्थियों ने जक्कूर स्नातकपूर्व कॉलेज परिक्रमा, जवाहर नवोदय विद्यालय, यलहंका तथा चंदन-स्कूल लक्ष्मेश्वर से भाग लिया । विद्यार्थियों ने विभिन्न विज्ञान परियोजनाओं पर नमूना – अधारित तथा बहु माध्यमीय प्रस्तुतीकरण किया । इसके अतिरिक्त आई.आई.एस.ई.आर., पुणे के मि. अशोक रूपनर ने "व्यावहारिक प्रयोगों के साथ विनोद" नामक सत्र का संचालन किया । इसके उपरांत हमारे प्राचीन कला-रूप के बारे में सीखाने के लिए बच्चों को प्रोत्साहित (प्रेरित) करने के लिए "त्रिपुर-संहार" नामक 'कठ पुतली' प्रदर्शन हुआ । एक और एस.ओ.पी. (वि अ का) का संचालन दिसंबर-2018 में किया गया, जिसमें, सी.एन.आर. राव हॉल ऑफ़ साइन्स तथा शि.प्रौ.ए. द्वारा किया गया, जिसमें "कॉलेज केमेस्ट्री किट" का उपयोग करके चार (4) कार्यशालाओं का संचालन किया गया. 4 स्नातक पूर्व महाविद्यालयों के 99 विद्यार्थियों तथा 9 शिक्षकों ने भाग लिया ।

उत्कृष्ट विज्ञान शिक्षक कार्यक्रम (जनेउअवैके) :

जुलाई 2018 में (जनेऽअवैके) के सी.एन.आर. राव शिक्षा प्रतिष्ठान तथा ETU द्वारा उत्कृष्ट विज्ञान शिक्षक-पुरस्कार, 2017 के लिए एक कार्यक्रम आयोजित किया गया । इसके पुरस्कार-विजेता – श्री कृष्णमूर्ति भट डॉ. एस.के. सैमसुल आलम रहे । पुरस्कार – समारोह के बाद, प्रो. के.एस. वाल्दिया (जनेऽअवैके) तथा प्रो. जी.यू. कुलकर्णी (CeNs) द्वारा भौतिकी तथा पर्यावरण पर दो व्याख्यान हुए । इस कार्यक्रम के अंश के रूप में श्रीमती अनघा भट द्वारा संगीत – समारोह हुआ। इस कार्यक्रम में कर्नाटक के विभिन्न भागों के विभिन्न स्कूलों तथा कॉलेजों के लगभग 225 विद्यार्थियों ने (कक्षा XI तथा XII) तथा शिक्षकों ने भाग लिया ।

विद्यार्थी परामर्शी कार्यक्रम (SMP - वि.प.का.) :

विद्यार्थी परामर्शी कार्यक्रम (SMP – वि.प.का.) की सहायता (समर्थन) सी.एन. आर. राव हॉल ऑफ़ साइन्स निधि द्वारा की जाती है । अक्तूबर, 2018 में संचालित वि.प.का. में कक्षा- XI के नौ (9) विद्यार्थियों ने भाग लिया तथा अप्रैल-मई, 2019 में संचालित वि.प.का. में कक्षा- XI के बारह (12) विद्यार्थियों ने भाग लिया। जनेउअवैक में अपने इंटर्नशिप (अंतरंग अध्ययन) के दौरान, प्रतिभागियों ने नियमित कक्षाओं में भाग लिया, प्रयोगालयों में काम किया, ग्रंथालय का उपयोग किया तथा अन्य मनोरंजनात्मक कार्यकलापों में कार्यरत रहे ।

चेतना-कार्यक्रम :

स्चना प्रौद्योगिकी – जैव प्रौद्योगिकी तथा विज्ञान व प्रौद्योगिकी विभाग – कर्नाटक सरकार के साथ सहयोग में सी.एन.आर. राव हॉल ऑफ़ साइन्स तथा ETU (शि प्रौ ए) ने "चेतना शरद स्कूल (प्रशिक्षण)" कार्यक्रम का आयोजन अक्तूबर-2018 में किया । इस कार्यक्रम का प्रमुख ध्येय है, जो कार्यक्रम प्रतिवर्ष होता है – एस.एस. एल.सी. में बालिका-टॉपरों (सर्वोत्तम श्रेणी) का समारोह करना तथा उन्हें विज्ञान के नवीनतम रूझानों (प्रवृत्तियों) के प्रति (उन्मुक्त) अभिदर्शित कराना तथा उन्हें विज्ञान में अपना व्यावसायिक जीवन प्रारंभ करने के लिए प्रेरित करना । इस वर्ष (33) तैंतीस बालिकाओं ने तथा (2) दो संकाय समन्वयकों ने इस कार्यक्रम में भाग लिया ।

परिक्रमा (समारोह) उत्सव :

जनवरी 2019 को विज्ञान का परिक्रमा (समारोह) उत्सव हुआ । इस वर्ष इस उत्सव का मुख्य विषय । विन्य जीवन। रहा । प्रो. सी.एन.आर. राव ने इस उत्सव का उद्घाटन किया तथा इस उत्सव में प्रतिभागिता करनेवाले 200 से अधिक विद्यार्थियों, शिक्षकों, अतिथियों कार्यकर्ताओं को संबोधित किया । इस कार्यक्रम सी.एन.आर. राव हॉल ऑफ़ साइन्स ए.एम.आर.एल. सम्मेलन कक्ष में हुआ ।

अन्य कार्यशालाएँ तथा शिविर :

सल्टर्स केमेस्ट्री कैंप (शिविर) – नवंबर 2018, में, प्रो. सी.एन.आर. राव तथा डॉ. इंदुमती राव के मार्गदर्शन में रासयनिकी-रायल सोसाइटी के सहयोग में हुआ। उसमें ग्रामीण सरकारी विद्यालयों के 60 विद्यार्थियों ने अपने समन्वयकों साथ शिविर में भाग लिया । दिसंबर 2018, को शिमोगा के सागर में सागर साइन्स फ़ोरम तथा सी.एन.आर. राव हॉल ऑफ़ साइन्स (प्रायोजक) के साथ संयुक्त रूप से संवर्धक आवासीय कार्यशाला का आयोजन तथा प्रचालन किया गया । व्याख्यान एवं प्रयोगमूलक सत्रों का संचालन जनेउवैअकें के ETU के प्रो. एन.एस. विद्याधिराज मि. विनायक पतार द्वारा किया गया ।

सी.एन.आर. राव शिक्षा प्रतिष्ठान के समर्थन / सहायता के द्वारा भौतिकी रासायनिकी पर एक तीन-दिवसीय कार्यशाला का संचालन जनवरी 2019 में चंदन स्कूल, लक्ष्मेश्वर-गदग में किया गया ।

एक कार्यशाला का संचालन सागर साइन्स फोरम के साथ सागर, शिमोगा में मार्च-अप्रैल-2019 में किया गया । इसमें भौतिकी प्रयोग, व्याख्यान एवं प्रदर्शन सिम्मिलित थे, जिसमें कम लागत के भौतिकी नमूने तैयार करने के बारे में (एन.सी.ई.आर.टी.-VII - X) व्याख्यान दिए गए । इस कार्यशाला में आठ (8) विद्यालयों के शिक्षकों तथा चार (4) विद्यार्थियों ने भाग लिया तथा (20) बीस भौतिकी किट तैयार किए गए तथा प्रत्येक किट में लगभग (25) पच्चीस प्रयोग निहित रहे ।

□आविधिक समय-सारणी के अंतर्राष्ट्रीय वर्ष (IYPT-2019)" उत्सव मनाने के (समारोह) के लिए एक दिन-भर के कार्यक्रम का आयोजन, जनेउअवैके, CeNS – जालहल्ली, भा.वि.सं. IISc के द्वारा संयुक्त-रूप से दि.29 मई, 2019 को आयोजित किया गया । जे.एन. टाटा रंगमंदिर (ऑडिटोरियम), भा.वि.सं. में हुई इस कार्यक्रम में (850) आठ सौ पचास से भी अधिक विद्यार्थियों तथा शिक्षकों ने भाग लिया । प्रो. सी.एन.आर. राव ने इस कार्यक्रम का उद्घाटन किया तथा □आविधिक समय-सरणी□ – पर व्याख्यान दिया । डॉ. इंदुमती राव ने "मेंडेलीव के जीवन के संताप और उल्लास" पर एक व्याख्यान दिया । इन प्रतिभागियों को अति चालकता, आकाशगामिता पर विभिन्न वैज्ञानिक प्रदर्शनों तथा अपने वास्तविक अवस्था में उनका प्रदर्शन तथा आविधिक समय-सारणी पर आधारित अनेक प्रकार के खेलों तथा वर्ग-पहेलियों को देखने का अवसर मिला ।

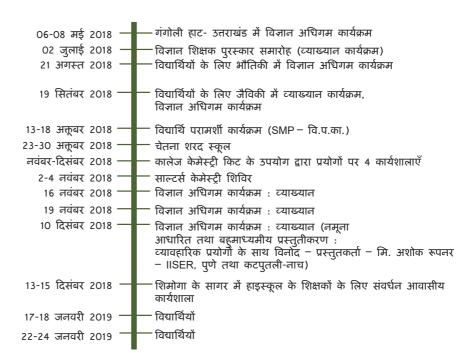
उपरोक्त के अलावा रासायनिकी प्रदर्शन की तैयारी हेतु कार्यक्रम जारी हैं।

ETU परिदृश्य

14

06-08 मई 2018

2351


प्रतिभागी

प्रयोजक

सी.एन.आर. राव हॉल ऑफ़ साइन्स निधि सी.एन.आर. राव शिक्षा संस्थापन ETU, JNCASR सूचना प्रौद्योगिकी, जैव प्रौद्योगिकी तथा विज्ञान एवं प्रौद्योगिकी विभाग, कर्नाटक सरकार रासायनिकी रॉयल सोसाइटी परिक्रमा मानवता संस्थापन (परिक्रमा

ह्यमानिटी फ़ाउंडेशन)

वर्ष 2018-19 की घटनाएँ

एकक के सदस्य

लाइनस पॉलिंग अनुसंधान प्रोफेसर

प्रो. सी.एन.आर. राव

चेयर

प्रो. वी. कृष्णन

मानद समन्वयक

डॉ. (श्रीमती) इंदुमती राव

तकनीकी अधिकारी

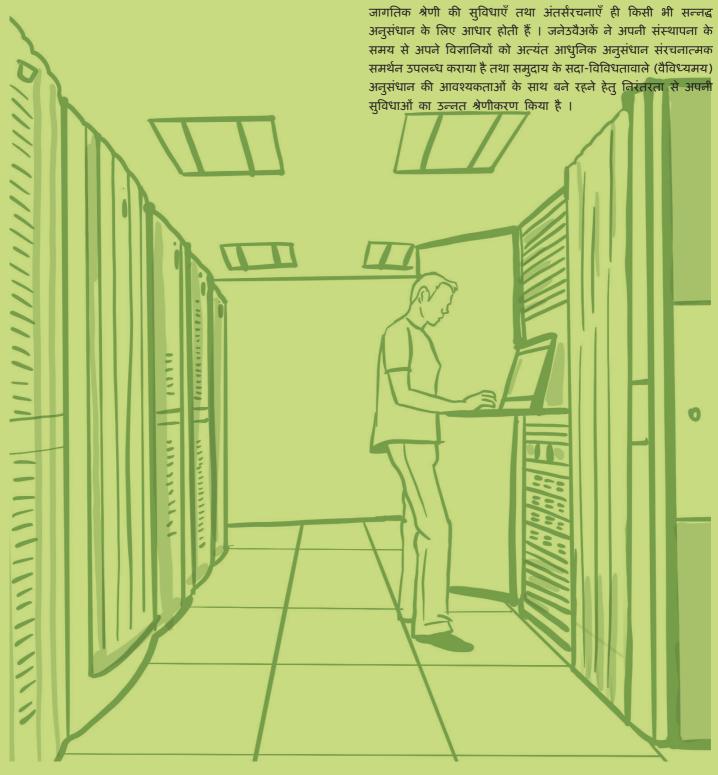
जतींदर कौर

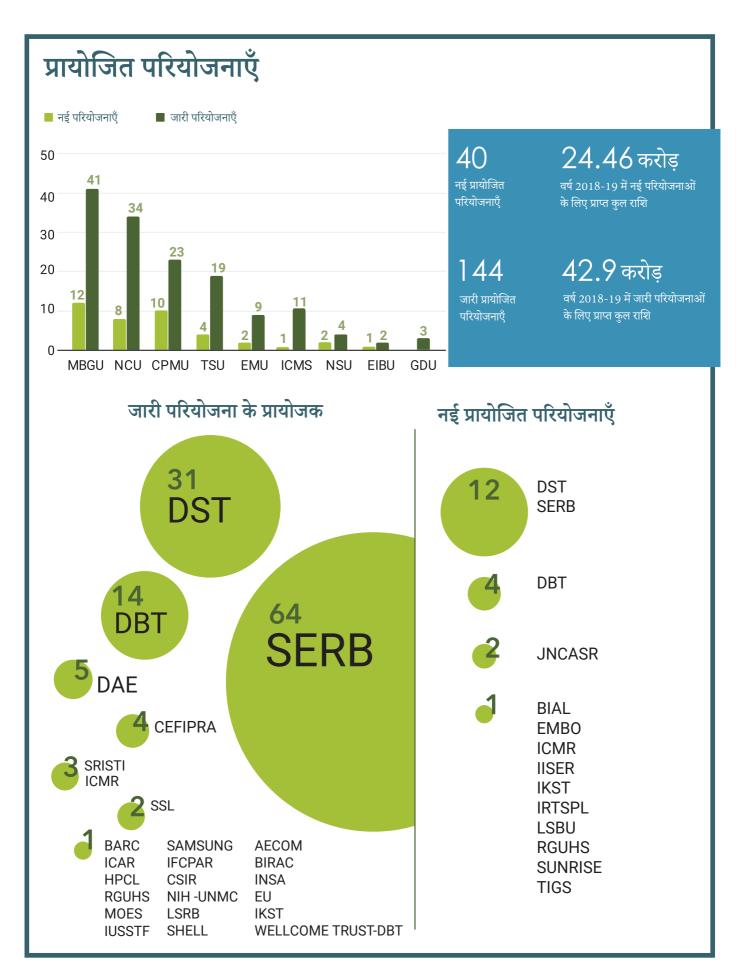
मानद सहायक

संजय एस.आर. राव

POCE समन्वयक - ETU SOP

प्रो. एस.एन. भट्ट


तकनीशियन - मदन मोहन मालवीय रंगमंदिर


मेहबूब पीर एच.मुने गौडा

निधियन एवं सुविधाएँ

05

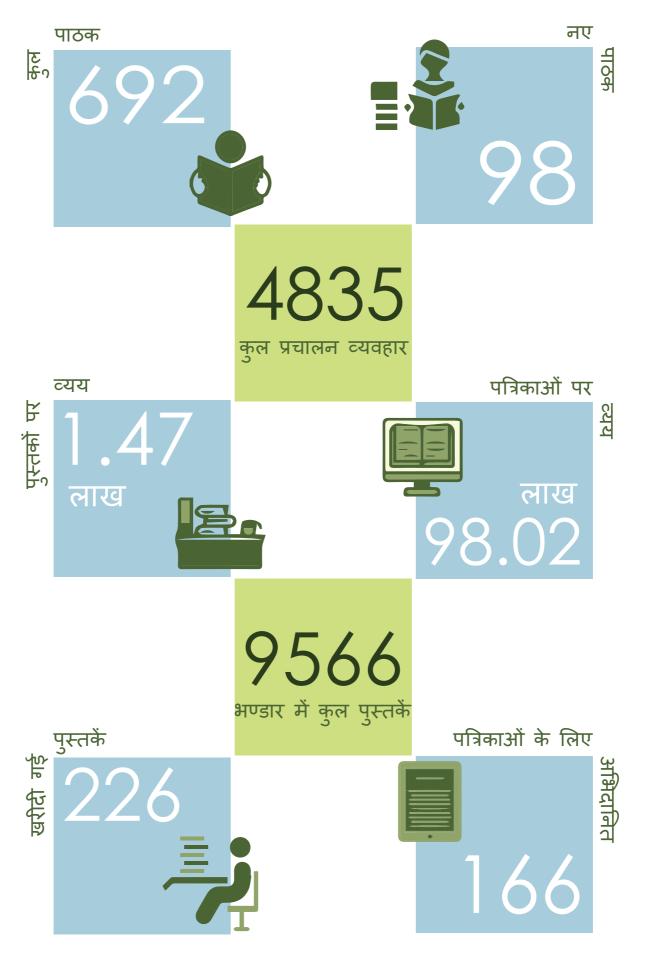
ग्रंथालय

जनेउवैअकें अपने यहाँ सु-संचयित ग्रंथालय होने का गर्व करता है कि अपने संग्रह में 9566 अधिक पुस्तकें हैं तथा 4000 वैज्ञानिक पत्रिकाओं (जर्नलों) प्रति अभिगम रहा है । यह ग्रंथालय संकायों, विद्यार्थियों तथा अनुसंधानकर्ताओं को आवश्यकता आधारित सूचना सेवाएँ प्रदान करने हेतु सूचना-स्रोतों को प्राप्त, आयोजित तथा प्रसार करने के कार्य को जारी रख रहा है । विशेषकर, यह ग्रंथालय प्रलेख-वितरण, अंतर-ग्रंथालयी-उधार, वर्तमान जागरूकता तथा ग्रंथसूची मापी अध्ययनों जैसी सेवाएँ प्रदान करता है ।

वर्ष 2018-19 में कुल 226 पुस्तकें तथा 166 जर्नलों के लिए नए अभिदान प्राप्त किए गए हैं । विगत वर्ष में 98 नए (ग्राहक) पाठक ग्रंथालय के अंग बन गए हैं, जिससे कुल संख्या 692 हो गई । इस वर्ष के कार्यकलापों में सम्मिलित हैं –

- संपूर्तित लेख अनुरोध : 84
- उपभोक्ता अभिमुखी कार्यक्रम : 3
- प्रचालित (प्रचार-संख्या) कुल पुस्तकें : प्रचालन 1832, नवीकृत-1042, वापसी 1961
- महासंघ द्वारा समर्थित (सहायित) संसाधन (स्रोत) एन.के.आर.सी. ४०००,
- नेचर पब्लिशिंग द्वारा संचालित लेखक-कार्यशाला : दि.21दिसंबर. 2018 ।
- सूचनिकी (इन्फरमेटिक्स) द्वारा संचालित प्रशिक्षण (J. gate क्षमता) 6 जुलाई, 2018 ।
- EBSCO द्वारा संचालित प्रशिक्षण (EBSCO क्षमता)- दि.5 मार्च, 2019.

पुस्तकों पर इस वर्ष व्यय की गई राशि - 1,47,893 भा.रु. जबिक जर्नलों पर इस वर्ष व्यय की गई राशि - 94,02,360 भा.रु.


ग्रंथालय के सदस्य

वरिष्ठ ग्रंथालय व सूचना अधिकारी नबोनीता गुहा

वरिष्ठ ग्रंथालय व सूचना सहायक ग्रेड 1 नंद कुमारी ई. नागेश हादिमनि

वरिष्ठ सहायक राजीव जे.

संगणना प्रयोगालय

जनेउवैअकें के यहाँ उच्च गित स्थानीय क्षेत्र जाल कार्य (लैन) है जो 10 जी.बी.पी.एस. अंतर्जाल संयोजकता (कनेक्टिविटी) दे सकता है ! वर्ष 2018-19 में 600 एम.बी.पी.एस. समेकित अंतर्जाल बैंडिविड्थ को सुनिश्वित करने के प्रयत्न किए गए. 1 जी.बी.पी.एस. तक बैंडिविड्थ को वर्धित करने के लिए अंतर्सरचनात्मक उन्नत-श्रेणीकरण किए गए जो परिसर में प्रतिव्यक्ति के लिए औसतन 100 एम.बी.पी.एस. बैंडिविड्थ को सुनिश्वित करेगा । परिसर में डाटा भंडारण आवश्यकताओं की आपूर्ति के लिए 25 टी.बी. केंद्रीकृत भंडारण सुविधा जोड़ी गई है । क्रांतिक (विशिष्ट) डाटा जैसेकि ई-मेल, वीयम साफ्टवेयर के ज़रिए De-(द्विगुणन) अनुलिपिकरण-तंत्र- को स्थापित किया गया है तथा प्रणाली में प्रचुरता (अधिक्यता) को सुनिश्वित करने के लिए एक द्वितीय भंडारण का सृजन किया गया है । पुरानतर सर्वर डाटा के अनुरक्षण के लिए 5 टी.बी. अभिलेखागार सर्वर प्रतिपूर्ति के लिए एक समर्पित भंडारण की स्थापना की गई है ।

अतिरिक्त रूप से, निम्न के संदर्भ में महत्त्वपूर्ण परिवर्तन किए गए हैं :

ई-मेल : ई-मेल के उचित प्रकार्य को सुनिश्वित करने हेतु नई नीतियों का कार्यान्वयन किया गया है।

सुरक्षित तथा वर्धित वाई-फाई: 802.11 b/g/n/ac के साथ एक उच्च गित नि:तंतु (बेतार) जालकार्य (नेटवर्क) की स्थापना सफलतापूर्वक की गई है। अब परिसर 116 तत्क्षण अभिगम स्थानों (बिन्दुओं) से व्यास है, जिनमें प्रत्येक 350-500 एम.बी.पी.एस. जालकार्य संयोजकता उपलब्ध कराता है। परिसर का Wi-Fi (वाई-फाई) सुरक्षा मापदंडों से संपूर्ण संरूपित है। Wi-Fi (वाई-फाई) उपभोक्ताओं को हमारे केंद्रीकृत एल.डी.ए.पी. तथा cppm सर्वर द्वारा अधिप्रमाणित किया गया है; स्थायी स्टाफ-सदस्य एम.ए.सी. – आधारित अधिप्रमाणन प्राप्त करते हैं तथा अतिथि मेल तथा अतिथेय सत्यापन द्वारा अधिप्रमाणन प्राप्त करते हैं। केंद्र ने परिसर में एइरोम (शिक्षा भ्रमण) वाई-फाई सुविधा के लिए अभिदान दिया है।

वर्धित जालकार्य प्रबंध-प्रणाली : इसकी स्थापना सर्वरों, कोर-स्विच्च तथा (अग्निभित्ति) फायरवाल जैसे अन्य अंतरसंयोजक साधनों की सुरक्षा तथा अधिकता को सुनिश्वित करने हेतु की गई है । सभी क्रांतिक जालकार्य घटकों को परिसर में जालकार्य-निष्पादन की वृद्धि तथा निरंतर – जालकार्य – संयोजकता उपलब्ध कराने हेतु सिक्रय-सिक्रय अधिकता-साधन (रूप) पर रखा गया है ।

संकायों तथा विद्यार्थियों के लिए नि:शुल्क साफ्टवेयर (अनुज्ञित) – स्वतंत्रता : हमारे परिसर में नि:शुल्क साफ्टवेयर (अनुज्ञित) – स्वतंत्रता है जहाँ सभी संकाय तथा विद्यार्थी मेथेमेटिका, एम.ए.टी.एल.ए.बी. (मैटलैब) इंटेल समानांतर स्टुडियो तथा माइक्रोसाफ्ट ऑफिस 365 लाइसेन्स (छूट) का उपयोग कर सकते हैं जो 5 साधन (यंत्र) स्थापना को सहायता देते हैं तथा 5 टी.बी. (मेघ-भंडारण) क्लौड-स्टोरेज का वहन करते हैं ।

सुरिक्षित मुद्रण सुविधा : जनेउवैअकें के सभी कर्मचारी-वृंदों (स्टाफ) तथा विद्यार्थियों के लिए एल.डी.ए.पी. – अधिप्रमाणन के साथ (नियतांश) कोटा – आधारित परिसर मुद्रण सुविधा की स्थापना की गई है । परिसर में भित्ति चित्र मुद्रण एकक है जो ग्लॉस (चमकदार) तथा मट्टे (अचमकदार) पेपर पर ए.ओ. आकारी व मुद्रण को संभालता (समर्थन) देता है ।

एस.एम.एस. (अल्प संदेश सेवा) अधिसूचना : केंद्र ने परिसर के उपभोक्ताओं के लिए अल्प संदेश सेवा SMS अधिसूचना को प्रोत्साहित करने हेत् सी.डी.ए.सी. के साथ हस्ताक्षर किया है।

एकक के सदस्य

प्रधान

प्रो. सुबीर के दास

परामर्शक

चंदन एन. उदयकुमार एस. ऑन साइट (कार्यस्थान) पर अभियंता

राजीव रंजन अभिषेक कुमार

प्रशिक्षु

सतीश कुमार पी.

नवीन अनुसंधान सुविधाएँ

अत्यंत खाँचेदार क्रोड अनुसंधान सुविधाओं तथा उपस्करों की अत्यावश्यकता (तीव्रगति) अत्याधुनिक अनुसंधान के संचालन के लिए होती है । जनेउवैअकें अपने संपूर्ण संकायों तथा अनुसंधान विद्यार्थियों को नवीनतम प्रौद्योगिकियों तथा सुविधाओं की उपलब्धता अपने-अपने अनुसंधान कार्य करने हेतु प्रयत्न करता है । विगत वर्ष क्रय किए गए कुछ नई सुविधाओं तथा नये उपस्करों की सूची निम्न प्रकार है -

रासायनिकी एवं पदार्थ विज्ञान एकक (CPMU)

रोलाद MDX (मिल्लिंग) पेषण-यंत्रए प्रतिबिंब-प्रणाली हेतु निम्नतापी-प्रणालीए स्पंद-P-1064 लेजर्स, 350 MHZ पूर्व प्रवर्धक – 4 वाहिनियों, Tousimis 931.GL क्रांतिक बिंदु शुष्कक, STED के साथ संन्नाभि सूक्ष्मदर्शी, वर्तमान iHR-320 के उन्नत श्रेणीकरण हेतु सहायक-सामग्रियाँ, अनुप्रयुक्त जैव प्रणाली आनुवंशिकी विश्लेषक, जलजनक अनिल वर्ण-चित्रमापी तथा कुशल (तेज) HPCL प्रणाली ।

अभियांत्रिकी यांत्रिकी एकक (EMU)

लिडार (Lidar) प्रणाली सहित 3D संवीक्षण (स्कैनिंग), बोस्टॉन X86-2U सॉकेट (गर्तिका) सर्वर, 1 संख्या.

अंतर्राष्ट्रीय पदार्थ-विज्ञान केंद्र (ICMS)

निम्न तापमान परिवहन PL प्रणाली, वेर्सा लैब निम्नतापी (हिमकारी) मुक्त-आधारी प्रणाली, ETU वेर्सा लैब, DC, इन्नोवा 43R (चित्ति) राशिकरण हिलत्र संवाहक, जास्को वर्णक्रम दीप्ति FP8500, उच्चतापमान सिहत वर्णक्रमदर्शीय दीर्घवृत्तमापी, अ-चुंबकीय प्रकाशीय सारणी, बेल्सोप्र मैक्स-11 अनिन वाष्प अधिशोषण प्रणाली, HT टैंक 300KV मोनो EMC (टैट्यान) Titan सूक्ष्मदर्शी के लिए सहायक सामग्रियाँ।

आण्विक जैविकी तथा आन्वंशिकी एकक (MBGU)

जेल (GEL) प्रलेखन प्रणाली, द्रव प्रस्फुरण गणित्र, वायोलेट् 405Nm लेसर, BD FACS स्वर-माधुर्य कोशिका छँटाई प्रणाली, CFX96 वास्तविक समय PCR संसूचना प्रणाली

नव रासायनिकी एकक (NCU)

परिपथीय ध्रुवीकृत संदीप्ति वर्णक्रमदर्शी, DLS उपकरण, संवृत चक्रीय हिमकारी-स्थैतिकी, (थैली) पाउच इंधन कोशिका संविरचना प्रणाली

तंत्रिका विज्ञान एकक (NSU)

घनानुचालकता अंतःक्षेपक उपकरण, उत्थित स्पंद (मेज़) उलझन के साथ उन्नत श्रेणीकृत स्वभाव विश्लेषक सुविधा, मोरिस (Morris) जल-उलझन (भूतभुलैया), नवल पदार्थ संज्ञान कार्यक्षेत्र

सैद्धांतिक विज्ञान एकक (TSU)

संगणना-निस्पंद तथा 128GB स्मरण ।

अन्य

अन्य ए-प्रकारी IVC (केज) उत्थापक संयोजन तथा मानक प्रकारी संवातक, मानक प्रकारी संवातक सिटिज़न, प्लगों, संयोजक FC संयोजित्रों के साथ विद्युत-रज्जु (कॉर्ड), MAT प्रयोगालय साफ्टवेयर – 3 वर्ष, लेखा तथा प्रशासन साफ्टवेयर स्वचलन SFACTS, युरोसिट पीठोपकरण, 200KW ग्रिड-सोलार विद्युत संयंत्र, अग्नि-सचेतक प्रणाली ।

वितीय विवरण

06

स्वतंत्र लेखा-परीक्षक की रिपोर्ट

<u>बेंगलूरु के जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र के प्रशासी</u> <u>निकाय के सदस्यों को</u>

अभिमत

हमने जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र, जक्क्रूर, बेंगल्रूरु 560 064 के वितीय विवरण की लेखा-परीक्षा की है, जिसमें सिम्मिलित होते हैं यथा 31 मार्च, 2019 को समाप्त तुलन-पत्र, आय एवं व्यय के लेखा विवरण, उसी वर्ष को समाप्त दिनांक की प्राप्तियाँ तथा भुगतान तथा महत्त्वपूर्ण लेखाकरण नीतियाँ तथा अन्य स्पष्टीकरणात्मक सूचनाएँ।

हमारे अभिमत में तथा हमारी सर्वोत्तम सूचना तथा हमें उपलब्ध कराये गये स्पष्टीकरणों के आधार पर, कथित लेखे आवश्यक सूचना देते हैं तथा भारत की लेखाकरण नीतियों की अनुरूपता में सत्य एवं न्यायसंगत दृष्टिकोण प्रस्तुत करते हैं।

- 1) जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र के यथा 31 मार्च, 2019 को समाप्त होने वाले तुलन-पत्र की सामायिक स्थिति के संबंध में तथा
- 2) उक्त दिनांक को समाप्त वर्ष हेतु आय एवं व्यय लेखा से आय पर अतिरिक्त व्यय के संबंध में।

अभिमत के आधार

हमने अपनी लेखा-परीक्षा का संचालन भारत के सनदी-लेखाकार संस्थान द्वारा जारी लेखा-परीक्षक-मानकों (SAS) के अनुसरण पर किया है। इन मानकों के अधीन हमारी उत्तरदायित्वों को हमारी रिपोर्ट की वित्तीय विवरणों की लेखा-परीक्षा में वर्णित लेखा- परीक्षक के अनुसार रहे हैं। भारत के सनदी लेखाकार संस्थान द्वारा जारी नीति संहिता के अनुसरण में केंद्र से हम स्वतंत्र हैं तथा हमने इनकी अपेक्षाओं तथा नीति-संहिता के अनुसरण में अपने अन्य नैतिक उत्तरदायित्वों को पूरा किया है। हम यह विश्वास करते हैं कि हमारे अभिमत के आधार उपलब्ध कराने के लिए हमसे प्राप्त किए गए लेखा-परीक्षक के साक्ष्य पर्याप्त तथा सम्चित रहे हैं।

वित्तीय विवरण के संबंध में प्रबंधन का उत्तरदायित्व

वित्तीय विवरणों की तैयारी के लिए प्रबंध ही उत्तरदायी होता है। इस उत्तरदायित्व में निम्न सिम्मिलित होते हैं – केंद्र की परिसंपत्तियों की सुरक्षा के लिए पर्याप्त लेखाकरण अभिलेखों का अनुरक्षण करना तथा धोखों (कपटों) तथा अन्य अनियमितताओं का पता लगाने तथा रोकने के लिए; लेखाकरण नीतियों के समुचित कार्यान्वयन तथा अनुरक्षण का अन्वयन; यह निर्णय तथा प्राक्कलन करने के लिए कि वे यथोचित तथा विवेकपूर्ण हैं तथा यों पर्याप्त आंतरिक वित्तीय नियंत्रणों के विन्यास, कार्यान्वयन तथा अनुरक्षण करने के लिए कि वे लेखाकरण अभिलेखों की निखरता तथा संपूर्णता को सुनिश्चित करने के लिए प्रभावी रूप से प्रचालन में रहे हैं तथा इस प्रकार वे वितीय विवरणों के निर्माण तथा प्रस्तुतीकरण के लिए संगत हैं, जो सही एवं सत्य दृष्टिकोण प्रदान करते हैं तथा तात्विक (भौतिक) अयाथार्थ विवरणों से मुक्त हो – चाहें वे कपट (धोखे) से या त्रुटि (गलती) से हुए हों।

वित्तीय विवरण की लेखा-परीक्षा के लिए लेखा-परीक्षक का उत्तरदायित्व

हमारे उद्देश्य हैं —िवतीय विवरण तात्विक अयथार्थ से मुक्त होने के बारे में चाहे वे कपट या बुटियों से हुए हों के बारे में पर्याप्त आश्वासन प्राप्त करना तथा लेखा-परीक्षक की ऐसी एक रिपोर्ट प्रस्तुत करना — जिसमें हमारा अभिमत निहित होता है। पर्याप्त आश्वासन एक उच्च स्तरीय आश्वासन होता है, परंतु इसमें कोई गारंटी नहीं होती कि SAS के अनुसरण में संचालित लेखा-परीक्षा हमेशा अपने अस्तित्व के समक्ष के तात्विक अयथार्थ विवरण का पता लगाएगी। अयथार्थ विवरण — कपट (धोखे) या बुटि (गलती) से उभर आए हों तथा उनके बारे में विचार यह किया जाता है कि, अगर वे तत्व वैयक्तिक रूप से या समुच्चय रूप से हों, उनके बारे में पर्याप्त रूप से यह अपेक्षा की जाती है कि वे इन

वित्तीयविवरणों के आधार पर लेने से उपभोक्ता की आर्थिक निर्णयों पर प्रभाव डाल सकते हैं।

हम आगे यह रिपोर्ट करते हैं :

- a) हमने उन सभी सूचनाओं तथा स्पष्टीकरणों को प्राप्त किया है, जो हमारे पूर्ण ज्ञान तथा विश्वास के अनुसार हमारी लेखा-परीक्षा के प्रयोजन से आवश्यक थे तथा उन्हें संतोषजनक पाया गया है।
- b) हमारे अभिमत में, विधि की अपेक्षानुसार उचित लेखा-बहियों को केंद्र द्वारा अनुरक्षित किया गया है – जो उन बहियों की परीक्षा द्वारा सही लगता है।
- c) इस रिपोर्ट द्वारा परीक्षित तुलन-पत्र तथा आय एवं व्यय लेखा, लेखा-बहियों के अनुसरण में रहे हैं।

कृते बी आर वी गौड एवं कंपनी,

सनदी लेखाकार

FRN. 000992S

स्थान : बेंगलूरु

दिनांक: 31.07.2019

(ए बी शिव सुब्रमण्यम)

भागीदार

सदस्यता सं. 201108

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र यथा 31 मार्च 2019 को तुलन पत्र

राशि रु. में

		राशि रु. म
अनुसूची सं	चालू वर्ष 2018-19	गत वर्ष 2017-18
1 2 3 4 5 6 7	2,15,46,16,396 5,70,16,479 1,17,67,16,672 0 0 0 24,48,66,178	1,38,11,636 1,19,70,19,351 0 0 0
ल	3,63,32,15,726	3,35,91,09,134
8 9 10 11	1,86,24,95,101 26,42,05,500 8,84,41,015 1,41,80,74,110	1,73,46,54,311 22,82,55,463 12,08,79,200
	3,63,32,15,726	3,35,91,09,134
24 25		
	1 2 3 4 5 6 7 रब	1 2,15,46,16,396 2 5,70,16,479 3 1,17,67,16,672 4 0 5 0 6 0 7 24,48,66,178 8 1,86,24,95,101 9 26,42,05,500 10 8,84,41,015 11 1,41,80,74,110

लेखा के अंग के रूप में अनुसूची 1 से 25 प्रपत्र अंकीकृत है।

हमारे उस दिनांक की रिपोर्ट में यह तुलन-पत्र संदर्भित है। कृते बी आर वी गौड एवं कपनी सनदी लेखाकार

> . [ए.बी. शिव सुब्रमण्यम] भागीदार

सदस्यता सं. 201108

स्थान : बेंगलूरु दिनांक : 31/07/2019.

CHARTERED ACCOUNTANTS

कृते जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र

> ं संपद पात्रा लेखा अधिकारी

लखा आधकारा

प्रो. के.एस. नारायण जॉयदीप देब प्रभारी अध्यक्ष प्रशासनिक अधिकारी

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिए आय एवं व्यय लेखा

राशि रु. में

	a	चाल् वर्ष	गत वर्ष
	अनुसूची सं	201 8 -19	2017-18
<u>आय</u>			
विक्रयों/सेवाओं से आय	12	10,00,000	0
अनुदान/सहायक धन	13	84,84,11,000	76,41,52,000
		84,94,11,000	76,41,52,000
घटाएँ: वर्ष के दौरान अपेक्षित अचल परिसंपत्तियाँ (DST कोर अन्दानों से)		19,89,08,813	21,68,63,612
		65,05,02,187	54,72,88,388
श्ल्कों/चंदों	14	40,42,858	49,75,177
निवेशों से आय	15	0	0
रॉयल्टी आय, प्रकाशन, लाइसेंस श्ल्क आदि	16	2,54,976	1,42,772
अर्जित ब्याज	17	86,42,431	76,23,511
अन्य आय	18	75,71,969	1,04,59,695
स्टॉकों में बढाव/घटाव	19	0	0
कुल (A)		67,10,14,421	57,04,89,543
1			
<u>व्यय</u>		=	
संस्थापन व्यय	20	41,73,02,429	39,67,78,829
संस्थापन व्यय अन्य प्रशासनिक व्यय	21	41,73,02,429 21,04,85,763	39,67,78,829 23,49,64,714
संस्थापन व्यय अन्य प्रशासनिक व्यय अनुदान, सहायक धन आदि पर व्यय	21 22	21,04,85,763 0	23,49,64,714 0
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार	21	21,04,85,763 0 21,385	23,49,64,714 0 9,950
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार मूल्य-हास (अन्सूची-8 के अन्सरण में वर्ष के अंत में)	21 22	21,04,85,763 0 21,385 10,43,77,423	23,49,64,714 0 9,950 10,69,15,408
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार	21 22	21,04,85,763 0 21,385	23,49,64,714 0 9,950
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार मूल्य-ह्रास (अन्सूची-8 के अन्सरण में वर्ष के अंत में)	21 22	21,04,85,763 0 21,385 10,43,77,423	23,49,64,714 0 9,950 10,69,15,408
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार मृल्य-हास (अन्सूची-8 के अन्सरण में वर्ष के अंत में) कुल (B) शेष - व्यय से आय की अधिकता के रूप में (A-B) - पूर्व अविध का व्यय	21 22	21,04,85,763 0 21,385 10,43,77,423 73,21,87,001	23,49,64,714 0 9,950 10,69,15,408 73,86,68,902
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार मूल्य-हास (अन्सूची-8 के अन्सरण में वर्ष के अंत में) कुल (B) शेष - व्यय से आय की अधिकता के रूप में (A-B)	21 22	21,04,85,763 0 21,385 10,43,77,423 73,21,87,001	23,49,64,714 0 9,950 10,69,15,408 73,86,68,902 -16,81,79,358 26,747
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार मृल्य-हास (अन्सूची-8 के अन्सरण में वर्ष के अंत में) कुल (B) शेष - व्यय से आय की अधिकता के रूप में (A-B) - पूर्व अवधि का व्यय	21 22	21,04,85,763 0 21,385 10,43,77,423 73,21,87,001 -6,11,72,580 0	23,49,64,714 0 9,950 10,69,15,408 73,86,68,902 -16,81,79,358 26,747
संस्थापन व्यय अन्य प्रशासनिक व्यय अन्दान, सहायक धन आदि पर व्यय ब्याज एवं बैंक प्रभार मृल्य-हास (अन्सूची-8 के अन्सरण में वर्ष के अंत में) क्ल (B) शेष - व्यय से आय की अधिकता के रूप में (A-B) - पूर्व अवधि का व्यय आरक्षित एवं अधिकता - शेष अग्रनीत	21 22	21,04,85,763 0 21,385 10,43,77,423 73,21,87,001 -6,11,72,580 0 -9,31,03,772	23,49,64,714 0 9,950 10,69,15,408 73,86,68,902 -16,81,79,358 26,747 7,51,02,333

लेखा के अंग के रूप में अनुसूची 1 से 25 प्रपत्र अंकीकृत है।

हमारे उस दिनांक की रिपोर्ट में यह त्लन-पत्र संदर्भित है। कृते बी आर वी गौड एवं कपनी सनदी लेखाकार

GOUD CHARTERED ACCOUNTANTS

[ए.बी. शिव स्ब्रमण्यम] भागीदार

सदस्यता सं. 201108

प्रो. के.एस. नारायण प्रभारी अध्यक्ष

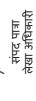
कृते जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र

ं संपद पात्रा लेखा अधिकारी

जॉयदीप देब प्रशासनिक अधिकारी

स्थान : बेंगलूरु दिनांक : 31/07/2019.

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिये लेखा के अंग के रूप में अनुसूचियाँ


31 माच 2019 का समाप्त वष	न लिन लेखा क	2018-19	2017-18
विवरण			
		राशि रु. में	राशि रु. में
अन्स्ची 1- प्ँजीगत/सँग्रह निधि :			
A: प्ँजीगत			
वर्ष के दौरान आरंभ में अथ शेष		1,73,46,54,311	1,61,22,89,974
जोड़ें : वर्ष के दौरान अचल परिसंपत्तियाँ कोर अन्दानों से		19,89,08,813	21,68,63,612
जोडें : वर्ष के दौरान अचल परिसंपतियाँ अन्य निधियों से		3,33,09,400	1,24,16,134
	उपक्ल	1,96,68,72,524	1,84,15,69,720
घटाएँ : वर्तमान वर्ष हेत् मूल्यहास		10,43,77,423	10,69,15,408
	क्ल(A)	1,86,24,95,101	1,73,46,54,311
B: संग्रह निधि			
अथ शेष		26,39,30,384	22,81,50,335
वर्ष के दौरान परिवर्धन		1,06,09,339	1,69,10,767
निधियाँ - किए गए निवेशों से आय		2,07,05,462	1,84,49,337
ब्याज - बचत बैंक - धर्मदाय लेखे से		95,741	4,20,267
	उपक्ल	29,53,40,925	26,39,30,707
घटाएँ : निधियाँ - उपयोगिता/किया गया व्यय		32,19,631	323
·	कुल (B)	29,21,21,295	26,39,30,384
	<u> </u>	,	
	क्ल (A+B)	2,15,46,16,396	1,99,85,84,695
अनसची 2- आरक्षित एवं अधिशेष :			
सामान्य आरक्षितः			
आय एवं व्यय लेखा में अधिशेष/घाटा		-15,42,76,352	-9,31,03,772
· ·		' '	
पँजीगत आरक्षित:			
अथशेष		10,69,15,408	
वितीय वर्ष 2018-19 के लिए मुल्यहास आरक्षित		10,43,77,423	10,69,15,408
A		_==, ==, ==, ===	,,,
		E 70 46 470	1 20 11 525
कल		5,70,16,479	1,38,11,636

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिये लेखा के अंग के रूप में अनुसूचियाँ

F						
अनुस्चो 3- उद्दिष्ट/ धर्मदाय निधियाँ:		निधि-वार विभाजित आँकड़े	गजित आँकड़े		कुल	
2018	योजना निधियाँ	किरण मजुम्दार एमबीएसआरएल	<u>रासायनिक पैतृक संपत्ति</u> विवरण	धर्मदाय अन्य	2018-19	2017-18
	1,10,47,59,755	25,89,233	45,04,633	8,51,65,730	1,19,70,19,351	95,39,30,926
ं जार्ग का पारवधन :	72 12 78 901	טטט טט טט כ	50 10 345	C	74 77 08 245	65 30 30 503
।. पान/अनुपान ii. निधियों के त्रेखे पर किए गए निवेशों से आय	5,47.32.151			53.69.682	6.01.01.833	8.06.33.058
ां. अन्य	27,92,44,936	0	0	0	27,92,44,936	40,86,387
कुल(ए+बी)	2,16,01,15,743	2,25,89,233	1,04,23,978	9,05,35,413	2,28,36,64,366	1,69,25,80,874
<u>सी) निधियों के उददेश्यों के प्रति उपयोगिता / व्यय</u> i. पूँजीगत व्यय - अचल परिसंपतियाँ	48,70,84,710	2,28,85,422	1,04,23,978	0	52,03,94,110	18,63,69,122
- ਮੌਦਧ कल	0 48,70,84,710	2	1,	O O	0 52,03,94,110	18,63,69,122
ं राजस्व त्यय	, , , , , , , , , , , , , , , , , , ,			c	, C 0	0 0
- वतन्, मज़दूर। तथ। भरा आद - अन्य प्रशासनिक व्यय	49,78,42,776	0	0	54,55,411	50,32,98,187	22,63,33,812
<u>केल</u>	58,10,98,173	0	0	54,55,411	58,65,53,584	30,91,92,401
(4) 1:		CC 70 0C C		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00001	40 EF 64 E22
(II) Nie		2,40,65,422	1,04,23,97	04,00,411	1,10,09,47,093	49,33,01,323
[라 + 라 그 라 삼 유 영 년 전 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1 년	1,09,19,32,800	-2,90,189	0	8,50,80,002	1,11,01,10,012	1,19,70,19,351

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिये लेखा के अग के रूप में अनुस्चियाँ

31 माच 2019 का समाप्त व	ग्य कालय लखा व	7.0	
		2018-19	2017-18
मूल्यहास		राशि रु. में	राशि रु. में
		(11 (1 (1 -1	(11 (1 - 1
अनुसूची 4- प्राप्त ऋण एवं उधार :		0	0
अनुसूची 5-अप्राप्त ऋण देयताएँ :		0	0
जिल्ला छ अत्रा रा बहुन द्वरार ।		· ·	9
			_
अनुसूची 6- आस्थगित ऋण एवं उधार :		0	0
कल		0	0
		-	-
<u>अनुसूची 7- चालू देयताएँ एवं प्रावधान</u>			
A. चाल देयता <u>ए</u> ँ			
AL SICI GIVIN			
1. विविध लेनदार :			
a. मालों के लिए	8,96,25,062		
		0.01 EE 071	2 22 02 962
b. अन्य -बयाना जमा राशि/प्रतिभूति जमा	95,30,009	9,91,55,071	3,23,03,863
2. प्राप्त अग्रिम :		10,64,543	16,13,035
3. संविधिक देयताएँ :		47.00.020	1 54 16 200
3. सावाधक दयतार :		47,09,020	1,54,16,289
4. अन्य चालु देयताएँ:		13,63,23,790	3,88,11,749
		_5/55/_5/5	3,33,==,2 13
— (A)		24 12 52 424	0.01.44.036
क्ल (A)		24,12,52,424	8,81,44,936
B. प्रावधान			
			
		_	E 00 0= 10=
7वें वेतन आयोग बकाया		0	5,82,07,135
उदत्त छात्रवृत्ति / वेतन		36,13,754	33,41,381
[' '	, ,
3 (D)		26 12 754	6 1E 40 E16
क्ल (B)		36,13,754	6,15,48,516
कुल (A+B)		24,48,66,178	14,96,93,452
/		, , , -	, , , -

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र, जक्कूर पोस्ट, जक्कूर, बेंगलूर 560 064 31 मार्च 2019 को समाप्त वर्ष के लिए लेखा के अंग के रूप में अनुसूचियाँ

अनुसूची 8 - अचल परिसंपत्तियाँ		सकल ख	is			कटौ	ति		निव्वत	न खंड
	वर्ष 2018-19		वर्ष 2018-19	वर्ष 2018-19	वर्ष 2018-19		वर्ष 2018-19	वर्ष 2018-19	चालू	विगत वर्ष
विवरण	के आरंभ के	के दौरान	के दौरान	के आरंभ	के आरंभ	के दौरान	के दौरान	तक	वर्ष 2018-19	2017-18
	अनुसार	परिवर्धन	के कटौति	में	में	मूल्यहास	कटौतियाँ	कुल	के अंत तक	के अंत तक
	लागत/मूल्य			लागत/मूल्य	मूल्यहास					
<u>भ्खंड :</u>										
पूर्ण स्वामित्व	1,77,15,351		0	1,77,15,351	0	0	0	0	1,77,15,351	1,77,15,351
<u>भवन :</u>		_	_				_			
भवन	8,78,33,491	0	0	8,78,33,491	3,29,96,450	14,31,686	0	3,44,28,136	5,34,05,355	5,48,37,041
छात्रावास भवन	1,56,60,055	0	0	1,56,60,055	60,46,368	2,55,259	0	63,01,627	93,58,428	96,13,687
उन्नत पदार्थ अनुसंधान प्रयोगालय	2,59,30,339	0	0	2,59,30,339	63,24,278	4,22,665	0	67,46,943	1,91,83,396	1,96,06,061
पशु आवास कर्मचारी आवास	67,88,701	0	0	67,88,701	25,80,268	1,10,656	0	26,90,924	40,97,777	42,08,433
कमचारा आवास इंटीयु भवन	43,19,353 30,91,348	0	0	43,19,353 30,91,348	13,03,639 7,10,907	70,405 50,389	0	13,74,044 7,61,296	29,45,309 23,30,052	30,15,714 23,80,441
छात्रावास, महाविदयालय आदि विस्तरण जैसे अन्य भवन	1,18,83,626	0	0	1,18,83,626	25,68,514	1,93,703	0	27,62,217	91,21,409	93,15,112
नानो विज्ञान ब्लॉक	70,42,909	0	4,47,700	65,95,209	12,62,792	1,93,703	0	13,70,294	52,24,915	57,80,117
अभियांत्रिकी एवं यांत्रिकी प्रयोगालय	74,26,272	0	0	74,26,272	13,28,407	1,21,048	0	14,49,455	59,76,817	60,97,865
भोजनालय एवं रसोई घर	1,35,59,591	3,47,802	0	1,39,07,393	21,43,987	2,26,691	0	23,70,678	1,15,36,715	1,14,15,604
छात्रावास चरण ॥	1,95,52,377	0,,662	0	1,95,52,377	35,05,742	3,18,704	0	38,24,446	1,57,27,931	1,60,46,635
व्याख्यान कक्षों (सभाभवन) एवं शैक्षिक ब्लॉक	96,36,712	0	0	96,36,712	17,10,258	1,57,078	0	18,67,336	77,69,376	79,26,454
अंतर्राष्ट्रीय पदार्थ विज्ञान केंद्र	5,01,48,316	0	0	5,01,48,316	81,97,040	8,17,418	0	90,14,458	4,11,33,858	4,19,51,276
अंतर्राष्ट्रीय भवन	2,31,42,418	0	0	2,31,42,418	38,62,848	3,77,221	0	42,40,069	1,89,02,349	1,92,79,570
छात्रावास चरण III	2,75,01,103	0	0	2,75,01,103	44,19,428	4,48,268	0	48,67,696	2,26,33,407	2,30,81,675
प्रो. सी एन आर राव विज्ञान भवन	1,03,33,669	0	0	1,03,33,669	16,63,770	1,68,439	0	18,32,209	85,01,460	86,69,899
HIV लेब विस्तरण	10,16,085	0	0	10,16,085	1,65,621	16,562	0	1,82,183	8,33,902	8,50,464
सुरक्षा कार्यालय ब्लॉक	7,42,632	13,58,993	0	21,01,625	60,206	45,332	0	1,05,538	19,96,087	6,82,426
रेंडियो एक्टिव लैब - II	30,35,391	0	0	30,35,391	1,97,737	49,477	0	2,47,214	27,88,177	28,37,654
एसटीपी भवन	2,91,699	0	0	2,91,699	52,302	4,755	0	57,057	2,34,642	2,39,397
आवासीय क्वार्टर्स - प्रशासनिक अधिकारी	36,59,034	0	0	36,59,034	4,85,605	59,642	0	5,45,247	31,13,787	31,73,429
शिशु संरक्षण केंद्र	7,28,827	0	0	7,28,827	1,00,641	11,880	0	1,12,521	6,16,306	6,28,186
जैविकी लैब का विस्तरण - 2009	1,94,24,005	0	0	1,94,24,005	21,03,103	3,16,611	0	24,19,714	1,70,04,291	1,73,20,902
पशु गृह - अतिरिक्त खंड	82,92,632	0	0	82,92,632	13,13,482	1,35,170	0	14,48,652	68,43,980	69,79,150
छात्रावास चरण IV (62 कमरे)	2,59,34,842	0	0	2,59,34,842	30,52,120	4,22,738	0	34,74,858	2,24,59,984	2,28,82,722
पॉलिंग भवन - जैविकी ब्लॉक का विस्तरण	47,66,109	0	0	47,66,109	20,46,939	77,688	0	21,24,627	26,41,482	27,19,170
SCADA-DG कक्ष	2,40,660	0	0	2,40,660	23,537	3,923	0	27,460	2,13,200	2,17,123
अध्यक्ष का आवास	77,88,054	0	0	77,88,054	7,50,145	1,26,945	0	8,77,090	69,10,964	70,37,909
आगंतुक छात्र छात्रावास	3,39,82,070	0	0	3,39,82,070	32,93,384	5,53,908	0	38,47,292	3,01,34,778	3,06,88,686
स्वास्थ्य केंद्र	32,43,422	0	0	32,43,422	3,17,207	52,868	0	3,70,075	28,73,347	29,26,215
नानो संस्थान, शिवनपुर	37,09,242	0	0	37,09,242	3,62,765	60,461	0	4,23,226	32,86,016	33,46,477
पदार्थ विज्ञान खंड - CCMS	5,54,31,961	0	0	5,54,31,961	49,43,301	9,03,541	0	58,46,842	4,95,85,119	5,04,88,660
डॉक्टरोत्तर आवास - श्रीरामपुर	1,54,86,086	0	0	1,54,86,086	9,41,548	2,52,423	0	11,93,971	1,42,92,115	1,45,44,538
नया सभागार नया रंगमंदिर चरण ॥	2,20,24,759 4,87,16,112	11,64,255	0	2,20,24,759 4,98,80,367	13,51,100 7,95,760	3,59,004 8,13,266	0	17,10,104 16,09,026	2,03,14,655 4,82,71,341	2,06,73,659
ईओबीयु लैब ब्लॉक	2,09,11,646	11,64,255	0	2,09,11,646	18,16,648	3,40,860	0	21,57,508	1,87,54,138	4,79,20,352 1,90,94,998
अंरसँरचना सुविधाएँ - मार्ग, पथ-दीप विभाजन आदि	10,66,12,812	54,11,270	0	11,20,24,082	1,70,44,883	17,94,585	0	1,88,39,469	9,31,84,613	8,95,67,929
المالية	10,00,12,012	34,11,270	Ū	11,20,24,002	1,70,44,003	17,34,303	·	1,00,55,405	3,31,04,013	0,33,07,323
उपकरण :										
वैज्ञानिक उपकरण/संयंत्र/यंत्र	1,01,48,24,292	5,33,95,448	51,42,205	1,06,30,77,535	39,74,73,653	4,99,56,055	0	44,74,29,709	61,56,47,826	61,73,50,639
कार्बन एवं नैनो पदार्थ उपकरण	3,41,82,430	38,579	0	3,42,21,009	3,42,21,008	0	0	3,42,21,008	1	-38,578
उपकरण - रासायनिकी एवं पदार्थ भौतिकी	98,78,095	0	0	98,78,095	98,78,094	0	0	98,78,094	1	1
समुह अध्ययन उपकरण	26,87,514	0	0	26,87,514	25,37,808	1,27,657	0	26,65,465	22,049	1,49,706
उन्नयन प्रोदयोगिकी प्रयोगालय उपकरण	2,02,02,562	0	0	2,02,02,562	1,87,39,137	9,59,622	0	1,96,98,759	5,03,803	14,63,425
चुंबक उपकरण	70,90,855	0	0	70,90,855	65,73,501	3,36,816	0	69,10,317	1,80,538	5,17,354
ICMS-प्रयोगालय उपकरण/स्विधाएँ	32,81,71,473	5,17,88,473	0	37,99,59,946	8,63,12,105	1,90,24,946	0	10,53,37,051	27,46,22,894	24,18,59,368
Ĭ		•				•				
<u>वाहन</u>	54,12,133	7,397		54,19,530	39,98,549	5,14,855	0	45,13,404	9,06,126	14,13,584
<u>फर्नीचर एवं जुडनार</u>	9,29,58,460	32,63,839	11,44,083	9,50,78,216	7,85,05,644	59,50,489	0	8,44,56,133	1,06,22,083	1,44,52,816
कार्यालय उपकरण	2,31,25,888	7,09,534	80,000	2,37,55,422	1,32,98,597	11,11,958	0	1,44,10,555	93,44,867	98,27,291
<u>कम्पट्र / पेरिफेरल्स</u>	8,42,38,889	22,91,079	1,000	8,65,28,968	8,30,19,977	2,36,796	0	8,32,56,773		12,18,912
विद्युत संस्थापन	11,27,38,560	1,36,15,195	0	12,63,53,755	1,73,58,471	19,48,775	0	1,93,07,246		9,53,80,089
ग्रंथालय पुस्तकें	2,91,25,431	70,189	0	2,91,95,620	1,70,65,025	13,85,460	0	1,84,50,485	1,07,45,135	1,20,60,406
<u>ग्रंथालय पत्रिकाएँ</u>	19,53,72,979	92,21,504	0	20,45,94,483	7,96,99,045	95,11,753	0	8,92,10,799	11,53,83,685	11,56,73,934
<u>नल-कृप एवं जल आपूर्ति</u>	2,48,912	0	0	2,48,912	59,289	4,057	0	63,346	1,85,566	1,89,623
<u>अन्य अचल संपत्तियाँ</u>										
अमूर्त परिसंपतियाँ - साफ्ट्वेयर	2,65,26,627	74,23,358	0	3,39,49,985	2,65,26,626	16,29,413	0	2,81,56,039	57,93,946	1
प्रगति में प्रजीगत कार्य	4 24 40 70-	2 06 70 051	_	E 00 00 440	_	•	_		E 00 00 440	4 94 40 707
आधुनिक जैवचिकित्सीय विज्ञान अनुसंधान प्रयोगालय	1,24,10,767	3,96,78,651	0	5,20,89,418	0	0	0	0	5,20,89,418	1,24,10,767
रासायनिक पैतृक - सँपति विवरण	5,367	1,04,23,978	0	1,04,29,345	0	0	0	0	1,04,29,345	5,367
मूल्भूत अंतर्सरचना सुविधाएँ - नया परिसर - चोक्कन हल्ली	49,58,626 0	1,25,41,374	0	1,75,00,000	0	0	0	0	1,75,00,000 2,19,49,123	49,58,626
विद्युत संस्थापन - 2000 KVA DG SET	0	2,19,49,123		2,19,49,123	0	0	0	0		0
अभियांत्रिकी तथा यांत्रिकीय एकक (EMU) का विस्तरण हॉल ऑफ साइंस का विस्तरण	0	29,91,732 7,46,430	0	29,91,732 7,46,430	0	0	0	0	29,91,732	0
हाल आफ साइस का विस्तरण छात्रावास चरण - V	0	7,46,430 5,69,040	0	5,69,040	0	0	0	0	7,46,430 5,69,040	0
खेल सम्च्यय	0	25,960	0	25,960	0	0	0	0	25,960	0
कुल	2,73,17,63,573	23,90,33,201		2,96,39,81,785	99,71,09,261	10,43,77,423	0	1,10,14,86,684		1,73,46,54,311
Z'VI	2,70,17,00,073	±0,00,00,201	· · · · · · · · · · · · · · · · · · ·	_,00,00,01,100	55,11,05,201	.0,70,11,723	U	1, 10, 14,00,004	.,00,2-1,00,101	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिये लेखा के अंग के रूप में अनुसूचियाँ

विवरण	2018-19	2017-18
199(*1	राशि रु. में	राशि रु. में
अनुमूची 9- निवेश - उद्दिष्ट/धर्मदाय निधियाँ		
दीर्घावधि जमा राशियाँ		
सावधि जमा राशियाँ - आ.वि.वि.नि.लि.	9,77,05,500	8,77,05,500
सावधि जमा राशियाँ - केनरा बैंक	0	3,50,00,000
SBI के पास सावधि जमा राशियाँ	0	1,00,49,963
PNB आवास वित्त लि. के पास सावधि जमा राशियाँ	10,35,00,000	3,25,00,000
SHCI के पास सावधि जमा राशियाँ	6,30,00,000	6,30,00,000
क्ल	26,42,05,500	22,82,55,463
अनुसूची 10- निवेश - अन्य		
अल्पावधि जमा राशियाँ	8,84,32,125	12,00,00,000
<u>अन्य</u>	8,890	8,79,200
क्ल	8,84,41,015	12,08,79,200
अनसची 11- चाल परिसंपतियाँ, ऋण, अग्रिम आदि		
<u>नकद एवं बैंक शेष (योजनाएँ)</u>		
हाथ में नकद	0	0
बैंक में नकद - केनरा बैंक	13,25,10,629	1,28,37,801
सावधि जमा राशियाँ - केनरा बैंक	17,12,96,082	12,00,00,000
सावधि जमा राशियाँ - आ.वि.वि.नि.लि.	20,10,00,000	22,00,00,000
PNB आवास वित लि. के पास सावधि जमा राशियाँ	49,66,07,807	64,76,01,317
उपक्ल	1,00,14,14,518	1,00,04,39,118
<u>ऋण एवं अग्रिम (योजनाएँ)</u>		
अचल जमाराशियों से उपचित ब्याज	3,13,96,201	3,18,21,171
प्राप्तेय TDS	37,48,981	14,49,675
केंद्र से प्राप्तेय	13,22,967	2,53,39,683
विभिन्न निधियन अभिकरणों से प्राप्तेय	5,40,50,192	4,57,10,108
उपक्ल	9,05,18,341	10,43,20,637
योजनाओं का क्ल	1,09,19,32,860	1,10,47,59,755
<u>नकद एवं बैंक शेष</u>		
हाथ में नकद - अनुदान लेखा	0	0
हाथ में नकद - धर्मदाय खाता	0	0
बैंक में नकद - केनरा बैंक - अनुदान लेखा	7,15,69,598	63,09,733
हाथ में नकद - केनरा बैंक -एफर्सीआरए खाता	98,557	0
हाथ में नकद - केनरा बैंक - धर्मदाय खाता	2,30,66,959	68,64,183
बैंक में नकद - एसबीआई	3,21,29,131	1,09,04,360
बैंक में नकद - एचडीएफसी	60,10,180	15,94,100
उपक्ल	13,28,74,426	2,56,72,376
<u>ऋण एवं अग्रिम</u>		
स्टाफ को अग्रिम	5,18,772	49,350
जमा राशियाँ	21,15,979	18,27,929
निर्दिष्ट/धर्मदाय निधियों से उपचित ब्याज	1,46,47,235	1,28,55,584
अन्य अग्रिम एवं प्राप्तेय	4,11,91,463	1,11,40,540
CSIR, UGC, DBT, DST से प्राप्तेय	89,57,704	1,48,90,105
धर्मदाय खाता - योजना लेखे से प्राप्तेय	0	1,50,00,000
धर्मदाय खाता - आपूर्तिकर्ता को अग्रिम	25,600	33,110
धर्मदाय खाता - CPF लेखे से प्राप्तेय	7,63,47,488	8,46,13,346
अन्दान लेखे से धर्मदाय खाता	4,34,14,011	3,16,978
धर्मदाय लेखे से प्राप्तेय TDS	38,48,122	27,50,374
प्राप्तेय TDS - धर्मदाय खाता	21,60,449	13,71,714
अग्रदाय शेष	40,000	39,000
उपक्ल	19,32,66,824	14,48,88,029
योजनाओं के अलावा अन्य कुल	32,61,41,250	17,05,60,405
क्ल	1,41,80,74,110	1,27,53,20,160
L PWI	_,, ., ., ., ., .,	_,,,,

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिये लेखा के अग के रूप में अनुसूचियाँ

Docarintion		2018-19	2017-18
Description		Amount in Rs.	Amount in Rs.
	L		
<u>अनसूची 12- विक्रयों / सेवाओं से आय</u>	_	10,00,000	0
अनसची 13- अनदान/आर्थिक सहायताएँ <u>:</u>			
<u> अनदान - DST</u>		84,84,11,000	76,41,52,000
अनुदान - सरकारी एजेंसियों/यात्रा अनुदान आदि से		01,01,11,000	70,11,32,000
अनुदान - अन्य संस्थाओं से		0	0
अनुदान - अन्य अंतर्राष्ट्रीय एजेंसियों से		0	0
	कुल	84,84,11,000	76,41,52,000
<u>अनसूची 14- शल्क/चंदों से आय:</u>		40 42 050	40 75 477
श्ल्क,चंदों,चिकित्सा,अंशदान आदि से आय		40,42,858	49,75,177
	कुल	40,42,858	49,75,177
अनुसूची 15- निवेशों से आय ;		0	0
Siertial To leidti (1 3114)		<u> </u>	
अनसची 16- रॉयल्टी आय, प्रकाशन, लाइसेंस शल्क :			
रॉयल्टी से		0	0
लाइसेंस शुल्क		2,54,976	1,42,772
	क्ल	2,54,976	1,42,772
21- 2			
<u>अनसूची17- अर्जित ब्याज :</u> सावधि जमाओं से		06 20 121	0.70.600
सावाध जमाजा स राष्ट्रीकत बैंकों के बचत खातों से		86,28,121	8,78,689 61,75,478
राष्ट्राकृत बका क बचत खाता स अर्जित ब्याज - अन्य		14,310	5,69,344
31101(1 84101 - 310 4	कल	86,42,431	76,23,511
	•	, ,	, ,
<u>अनुसूची 18- अन्य आय :</u>			
आगंत्क आवास, अतिथि कक्ष, छात्रावास आदि से		18,54,996	75,33,657
CSIR अधिसदस्यता, ICMS, SRFP प्रतिपूर्ति आदि		0	0
पूर्व वर्ष की प्राप्तियाँ		9,99,785	22,28,365
विविध आय		44,10,188	5,39,020
अन्यों से (निविदा श्ल्क एवं संग्रहित अन्य श्ल्क)		3,07,000	40,000
अन्य प्राप्तियाँ (अनगदीकृत चेक आरक्षित)		0	1,18,654
	क्ल	75,71,969	1,04,59,695
<u>अनसूची 19- स्टॉक में बढाव/घटाव:</u>		0	0

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिये लेखा के अंग के रूप में अनुसूचियाँ

विवरण	2018-19 राशि रु. में	2017-18 राशि रु. में
अनसची 20- संस्थापन व्यय:	रा।रा ए. न	राारा रु. न
छात्रों को वेतन एवं छात्रवृत्ति	27,46,03,178	27,60,39,593
मजदुरियाँ	8,95,34,821	8,52,81,342
भते (चिकित्सा प्रतिपर्ति आदि)	62,67,767	81,31,962
लाभांश	02,07,707	01,51,502
अंशदायी भविष्य निधि के प्रति अंशदान	24,05,579	4,27,719
नई पेंशन योजना में अंशदान	1,17,77,962	2,13,06,065
समुह उपदान में अंशदान	2,50,57,583	
छटटी नकदीकरण लाभ		1,19,675
	49,24,514	38,16,546
सेवानिवृत्त तथा अंतिम लाभ - पेंशन एलटीसी	9,70,874	16 55 027
KWCI4I	17,60,151	16,55,927
कल	41,73,02,429	39,67,78,829
अनसुची 21- अन्य प्रशासनिक व्यय	1-/2-0/0-/1-0	55/62/20/025
विदयुत एवं विदयुत शक्ति	5,65,07,965	5,87,44,857
जल प्रेभार	41,15,205	56,33,397
बीमा	8,92,749	7,67,394
मरम्मत एवं रखरखाव	5,87,11,472	6,28,77,396
किराये, दरें व कर	3,95,756	7,79,014
वाहन परिचालन रख्रखाव	29,08,125	61,32,453
डाक, टेलीफोन व संचार	22,27,727	25,95,437
मुद्रण व लेखन सामग्री, पुस्तकें	53,06,076	60,71,450
योत्रा एवं सवारी	47,34,273	44,51,066
संगोष्ठियाँ, कार्यशालाओं/विचार-विमर्श बैठकों पर व्यय	1,02,56,530	80,76,512
सदस्यता एवं अभिदान	18,82,692	1,17,95,518
व्यावसायिक प्रभार	1,44,900	15,27,260
प्रयोगालयी उपभोज्य सामग्रियाँ	3,63,25,043	4,06,38,869
विज्ञापान एवं प्रचार	23,70,926	35,62,260
छात्रावास, आगंतुक आवास, अंतर्राष्ट्रीय भवन आदि	9,97,320	2,50,428
सांविधिक लेखा - परीक्षा शल्क	1,18,000	95,200
POBE एवं POCE कार्यक्रमें	9,82,953	9,31,044
ग्रीष्म अनुसंधान अधिसदस्यता तथा छात्र कार्यक्रम	10,85,215	13,12,022
ICMS - कार्यशाला, प्रशिक्षण आदि	37,99,513	8,73,656
ICMS - आगंतुक कार्यक्रम (राष्ट्रीय एवं अंतर्राष्ट्रीय)	53,101	1,45,754
ICMS - आवर्ती व्यय	1,59,96,914	
हानि : नानो विज्ञान खंड अग्नि दुर्घटन	6,73,309	0
3	27: 372 33	
क्ल	21,04,85,763	
अनुसूची 22- अनुदान, सहायता धन आदि पर व्यय:	0	0 050
<u>अनुसूची 23- ब्याज एवं बैंक प्रभार :</u>	21,385	9,950

जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केन्द्र 31 मार्च, 2019 को समाप्त वर्ष क लिए लेखा के अंग के रूप में अनुसूचियाँ अनुसूची 24 : महत्त्वपूर्ण लेखाकरण नीतियाँ

विहगावलोकन:

जवाहरलाल नेहरू उन्नत वैज्ञानिक अनुसंधान केंद्र, कर्नाटक संघ पंजीकरण अधिनियम 1960 के अधीन एक संघ (सिमिति) के रूप में पंजीकृत है तथा आयकर अधिनियम 1961 के धारा 35(1)(ii) के अधीन के रूप में पंजीकृत है। यह एक स्वायत संस्थान के रूप मान्यता प्राप्त है तथा परवर्ती समय में विज्ञान एवं प्रौद्योगिकी विभाग, भारत सरकार द्वारा निधियन संस्थान है।

केंद्र के उद्देश्य हैं – विज्ञान एवं अभियांत्रिकी में विश्व-श्रेणी स्थापित करना एवं संचालित करना, विज्ञान की अंतर्शाखाओं में तथा सहयोगात्मक अनुसंधान का संपोषण, वैज्ञानिक अनुसंधान के संचालन हेतु (सन्नद्ध) सुसन्जित प्रयोगालयों, संगणात्मक तथा अंतर्सरचनात्मक सुविधाओं की स्थापना करना, विज्ञान एवं अभियांत्रिकी में उच्च गुणता Ph.D यों के द्वारा मानव पूँजी का सृजन, विज्ञान अधिगम तथा विस्तरण कार्यकलापों के द्वारा स्कूल और कॉलेजों के विद्यार्थियों के बीच में विज्ञान एवं अनुसंधान के बारे में जागरूकता की वृद्धि करना, प्रयोगालय से समाज की ओर अनुसंधान को ले जाना।

महत्त्वपूर्ण लेखाकरण नीतियाँ :

1. तेखाकरण परंपरा : वितीयविवरण ऐतिहासिक लेखाकरण परंपराओं के अनुसार तथा चल रही (प्रचलित) समस्या (प्रश्न) संकल्पना के आधार पर तैयार किए गए हैं । आय एवं व्यय के अभिलेख हेतु लेखाकरण की उपचित पद्धित का अनुसरण किया गया है ।

केन्द्रीय स्वायत संस्थानों के लिए लेखों के एकरूप प्रारूप के अनुसार जैसे कि अन्वयित होते हैं तथा व्यावहारिक स्तर तक, मार्गदर्शक सिद्धांतों का अनुसरण केंद्र के वित्तीय विवरणों के प्रस्तुतीकरण में किया गया है।

- 2. निवेश: निवेशों का उल्लेख लागत पर किया गया है तथा निवेशों से ब्याज का लेखा उपचित के आधार पर किया गया है।
- 3. अचल परिसंपितयाँ: अचल परिसंपितयों का उल्लेख अवलिखित मूल्य के आधार पर किया गया है तथा अधिग्रहण लागत पर लेखों में लिया गया है जिसमें सिम्मिलित हैं अधिग्रहण से संबद्ध आवक भाडा, शुल्क, कर तथा आकस्मिक व्यय।
- 4. **मूल्यहास** : अचल परिसंपत्तियों पर मूल्यहास को सीधी कटौती प्रणाली पर उपलब्ध कराया गया है ।
- 5. सरकारी अनुदान । अन्य अनुदान : प्राप्त अनुदानों को उगाही के आधार पर लेखों में मान्यता दी गई है । प्राप्त अनुदानों को तथा अचल परिसंपत्तियों के क्रय के लिये उपयोगित अनुदानों को आय एवं व्यय लेखे में प्राप्त कुल अनुदानों से घटा दिया गया है तथा उसे पूँजीगत निधि लेखे में सम्मिलित किया गया है ।
- 6. सेवा निवृत्ति लाभ: केन्द्र ने उपदान के संबंध में भारतीय जीव बीमा निगम से समूह उपदान पॉलिसी प्राप्त कर ली है तथा तदनुसार प्रीमियम (किस्त) वार्षिक रूप से दिया जाता है। छुट्टी नगदीकरण के संदर्भ में, AS 15 द्वारा अपेक्षित के अनुसार कोई भी प्रावधान नहीं किया गया है। परंतु देयता का विमोचन होता है तब उसे नगद के रूप में लेखों में लिया जाता है।
- 7. **योजनाओं के प्रति आबंटन / हस्तांतरण :** केन्द्र के पास कुछ योजनाओं के संबंध में निवेशों पर अर्जित ब्याज का आबंटन / हस्तांतरण करने की नीति निहित है।

CHARTERED

- 8. विदेशी मुद्रा तथा इसका उतार-चढ़ाव: विदेशी मुद्रा व्यवहारों का रूपांतरण व्यवहार के दिनांक पर प्रचलित दरों के आधार पर किया जाता है। अचल संपत्तियों के क्रय के लेखे पर विदेशी-मुद्रा की घट-बढ़ का पूँजीकरण अचलसंपत्तियों के संदर्भ में किया जाता है।
- 9. पूर्व अविध की मदें: पूर्व अविध की मदें चाहे वे आय या व्यय की हों, जो एक या अधिक अविधयों के वित्तीय विवरणों की तैयारी में मूल या चूक के परिणामस्वरूप वर्तमान अविध में उद्भवित हों उनको देखे जाने पर मान्यता दी गई हैं तथा पृथक से दिखाया गया है।

अनुसूची 25: आकस्मिक दायित्व तथा लेखों पर टिप्पणियाँ

ए. आकस्मिक दायित्व	2018-19	2017-18
·	(राशि)	(राशि)
1. ऋण के रूप में स्वीकृत न किए गए सत्ता के प्रति	शून्य	शून्य
दावे	शून्य	शून्य
2. शेष रहे साख पत्र		

बी. लेखों पर टिप्पणियाँ :

- आय एवं व्यय लेखा-अनुदानों/आर्थिक सहायताओं की आय में सूचित रु.84,84,11,000/- की राशि में उस अंतर्सरचना समर्थन की राशि रु.14,44,29,000/- सम्मिलित है – जिसके लिए वित्तीय वर्ष के दौरान DST, Gol (विप्रौवि-भा.स.) द्वारा विशिष्ट अनुदान प्रदान किए गए थे।
- 2. आँकड़ों को निकटतम रुपये तक पूर्णांकित किया गया है तथा विगतवर्ष के आँकड़ों को वर्तमान वर्ष के अनुरूप में पुनर्समूहित तथा पुनर्वर्गीकृत किया गया है।
- 3. रु. 10,43,77,423/- राशि की अचल संपत्तियों पर मूल्यह्नास को इस वर्ष में प्राक्कित किया गया है तथा आय व व्यय के शीर्ष पर डाला गया है।

- 4. **आय-कर:** केन्द्र आय-कर अधिनियम 1961 की धारा 35(1)(ii) के अधीन पंजीकृत है तथा कर से मुक्ति के अर्ह है तथा अत: आय-कर के संदर्भ में कोई प्रावधान नहीं किया गया है।
- 5. 1 से 25 तक संलग्न अनुसूचियाँ यथा दिनांक 31 मार्च, 2019 के अनुसार तुलन-पत्र के तथा उसी दिनांक को समाप्त वर्ष के लिए आय एवं व्यय लेखे के अविभाज्य अंश हैं।

प्रो. के.एस. नारायण

प्रभारी अध्यक्ष

स्थान : बेंगलूरु

दिनांक: 31/07/2019

जायदाप दब प्रशासनिक अधिकारी संपद पात्रा लेखा अधिकारी

कृते बी.आर.वी. गौड एवं कंपनी सनदी लेखाकार

CHARTERED O ACCOUNTANTS

[ए.बी. शिव सुब्रमण्यम]

भागीदार,

सदस्यता सं.: 201108

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिए सीपीएफ निधि कार्यों का विवरण

रि	31 ਸਾਥ :	१०१९ का समाप्त वष र	31 माच 2019 का समाप्त वर्ष के ालए सापाएफ जिम्ही काया का विवरण		
न् विवरण	साशिकः में	राशि रु. में	विवरण	राशि रु. में	राशिरु. में
अंशदायी भविष्य निधि			निधियों का निवेश :		
<u>अभिदान :</u>			जिक्तों में :		
🌣 प्रारंशिक शेष	3,61,48,876		भारत सरकार के 8 % बांड्स (SHCIL)	4,95,00,000	
02 बोडें : वर्ष के दौरान प्राप्त अभिदान	83,45,682		PNBHF के पास सावधि जमा	3,75,00,000	
ठ अग्रिम पुनर्भुगतान	6,03,862		केनरा बैंक के पास सावधि जमा	1,50,00,000	
अभिदानों पर ब्याज	30,21,658		HDFC में सावधि जमा	2,30,00,000	12,50,00,000
उपकृत	4,81,20,078				
घटायें : अग्रिम/अंशिक अंतिम अन्दान	29,47,195		बैंक में नकद :		
घटायें : अतिम भुगतान/समायोजन	19,73,414		केनरा बैंक, बचत खाता सं. 0683101017513	2,80,681	2,80,681
उपकुल	49,20,609				
इति शेष		4,31,99,469	4,31,99,469 TDS receivable :		
			भा स से बाँडों (2012-13) पर प्राप्तेय	1,48,000	
अंशदान :			भा स से बाँडों (2014-15) पर प्राप्तेय	1,48,000	
अथ शेष	2,58,85,116		भा स से बाँडों (2015-16) पर प्राप्तेय	1,49,400	
जोडें : वर्ष के दौरान अशदान	56,59,328		भा स से बाँडों (2016-17) पर प्राप्तेय	63,333	
अंशदानों पर ब्याज	19,75,596		भा स से बाँडों (2017-18) पर प्राप्तेय	23,532	
उपकृष	3,35,20,040		केनरा बैंक से बॉडों (2018-19) पर प्राप्तेय	1,40,020	6,72,285
घटायें : अतिम भुगतान/समायोजन	11,16,919				
इति शेष		3,24,03,121	3,24,03,121 <u>उपचित्र ब्याज :</u>		
			Gol 8 % बॉड्स (SHCIL) पर उपचित ब्याज	84,62,705	
धर्मदाय को देय		45,36,000	45,36,000 PNBHF में जमाओं पर उपचित ब्याज	75,83,258	
			केनरा बैंकों में जमाओं पर उपचित ब्याज	43,56,892	
संग्रह को देय		7,18,11,488	7,18,11,488 HDFC में जमाओं पर उपचित ब्याज	67,44,120	2,71,46,975
आधक/धाटा (-)		11,49,863			
কুল		15,30,99,941 ਕ੍ਰਿਕ	कुल		15,30,99,941

कृते जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र

कृते बी आर वी गौड एवं कपनी सनदी लेखाकार्

प्रो. के.एस. नारायण प्रभारी अध्यक्ष

[ए.बी. शिव सुब्रमण्यम]

CHARTERED

सदस्यता सं. 201108 भागीदार

| जॉय दीप प्रशासनिक अधिकारी

संपद पात्रा लेखा अधिकारी

स्थान : बेंगलूरु दिनाक : 27/07/2018.

वार्षिक रिपोर्ट 2018-2019

जवाहरलाल नेहरु उन्नत वैनानिक अनुसंघान केंद्र 31 मार्च 2019 को समास वर्ष के लिए प्राप्तियाँ एवं भुगतान लेखा

		3.1 माप र	. । अका समात वर्ष	31 મીચ 2019 कા તમીત વર્ષ જ ાભેષ્ પ્રાપ્તિયા પેવ મુગતાન ભધા			राशि रुपयों में
अथशेष एवं प्राप्तियाँ		2018-19	2017-18	भुगतान एवं इतिशेष		2018-19	2017-18
<u>। अथ शृष :</u> - हाथ में नकद एवं केंद्र पर अदायगी - हाथ में नकद एवं योजना निषि पर अदायगी		39,000	51,435	<u>।. ट्यय :</u> - संस्थापन ट्यय - प्रशासनिक ट्यय		52,07,77,367 90,98,80,883	38,94,26,281 97,77,82,499
र्वेक में शेष :				- धर्मदायौँ से व्यय		58,91,394	31,66,158
<i>बचत बेक खाता म</i> ं - केनरा बैंक - अनुदान खाता		63,09,733	5,59,91,316		<u>১</u> ব ক্টুল :	1,43,65,49,644	1,37,03,74,937
- केनरा बैंक - धर्मदाय खाता - केनरा बैंक - योजना खाता - एस.बी.आई. बैंक में सन्त्र में सन्तर से		68,64,183 1,28,37,801 1,09,04,360	61,37,974 47,53,917 28,33,039	II. सावधि परिसंपतियौं पर व्यय तथा मॅनीनट कर्म तमाटि में ·			
6 6 6 8 1년· 영구· · · · · · · · · · · · · · · · · ·		9,100	0.0,5			67,36,37,095	36,92,72,193
<i>जमा खाता म :</i> - केनरा बैंक में		3,50,00,000	5,34,67,000	•			
- एस.बी.आई. बेक मे - एच.डी.एफ.सी. ट्रस्ट में		1,00,49,963	7,72,66,669	III. आधेशेष धन/ऋणों को वापसी		0	0
. पी.एन.बी. भे . शाउनीय एस एच मी. भे		3,25,00,000	1,75,00,000	1,75,00,000 <mark>IV. विन प्रभार (बैंक प्रभार)</mark> 3 80 00 000		36,697	20,054
. केनरा बँक में (अनुदान खाता) - सावधि जमा राशियों (योजना खाता)		12,00,00,000 98,76,01,317	7,25,00,000 7,25,00,000 78,25,35,423				
	उप कुल :	1,37,44,05,957	1,19,87,79,292				
॥. प्राप्त अनुदान :	,			<u>V. अन्य भुगतान :</u> - बयाना धन जमा वापसी		0	0
- सहायता में DST-अनुदान में		84,84,11,000	76,41,52,000	- स्टॉक अब्रिम (त्योहार अग्रिम आदि)		0	49,350
- याजना नाथया - कर्मनामीमंत्राह निश्चिक्त भी भी स		72,13,78,901	99,64,96,141	- अन्य आग्रम - गनिश्वनिः-नमाग्रीः की याग्यी		76,28,63,093	63,17,26,913
		1,59,24,89,901	1,78,21,58,141	- माराज्याताच्याच्याच्याच्याच्याच्याच्याच्याच्याच्य		5,44,76,006	2,87,40,442
III. निवेशों से आय : सम्बन्धि चमार्थें सा सम्बन				- वृत्तिपर कर क्षतिक्रमा निक्षे		0 0 10 0 17	7,74,400
<u>सावाच जनाजा पर ब्याज .</u> - निर्देष्ट/धर्मदाय निर्धियों से		1.37.41.092	2.12.44.419	- भावस्य ।नाच - संकायों को अग्रिम		14,29,79,958	8.40.835
- स्व निष्धियाँ से		46,12,227	8,02,415	<u>'</u>		72,51,154	18,38,914
- योजना निधियों से		2,04,12,840	3,06,73,530	- CPF को अग्रिम		0	8,15,80,000
	उप कुल :	3,87,66,159	5,27,20,364		उप कुल :	96,80,94,151	77,02,09,123
IV. SB के खातों से प्राप्त ब्याज : - सहायता अनदान से		46.24.498	61.75.478	<u>VI. इति शेष</u>			
. स्य निथियों से जेना निश्ची से		0 77	5,69,344	- हाथ में नकद एवं केंद्र पर अग्रदाय * * कें		40,000	39,000
- 4.999 19144 14	3प कुल :	79,36,484	1,01,40,338	1 101			
				- केनरा बैंक - अनुदान खाता - केनरा बैंक - धर्मदाय खाता		7,15,69,598	63,09,733 68,64,183
V. अन्य आय :			•	- भारतीय स्टेट बैंक		3,21,29,131	1,09,04,360
- आगतुका, आताथ गृह आदि स संग्रहण शह्य अंकायन अफी मे		57,33,095	0 24 75 243	- एच.डा.एफ.सा. बक ************************************		60,10,180	15,94,100
- धुल्यः, अरापान आप रा - CSIR अधिसदस्यताएँ, UGC, DBT, SRFP		2,39,12,487	91,27,755	•		5,23,10,629	00, 15,001,1
- אונוענט תענשתו	उप कुल :	5,68,01,367	2,13,02,968		उप कुल :	26,53,26,498	3,85,49,177
शेष अग्रेनित		3,07,03,99,869	3,06,51,01,103	शेष अग्रेनित		3,34,36,44,085	2,54,84,25,484

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र 31 मार्च 2019 को समाप्त वर्ष के लिए प्राप्तियाँ एवं भुगतान लेखा (जारी...)

3,88,42,82,264	4,56,52,84,156	भक्ष	4,56,52,84,156 3,88,42,82,264	4,56,52,84,156	कुल
1,33,58,56,780	1,22,16,40,071	उपकुल :	81,91,81,161	1,49,48,84,287	उप कुल :
			80,99,56,450	1,47,12,34,697	- अन्य
98,76,01,317	86,89,03,889	- जमा राशि (योजना खाता)	83,71,373	1,65,24,634	- बैठकों को सहायता
0	98,557	- केनरा बैंक में (अनुदान खाता) FCRA	69,437	66,85,425	- GSLI प्राप्तियाँ
12,00,00,000	8,84,32,125	- केनरा बैंक में (अनुदान खाता)	0	0	- परियोजना निधियन-प्राप्त
6,30,00,000	6,30,00,000	- भारतीय एस.एच.सी. में	0	0	- प्राप्त बयाना निधि
3,25,00,000	10,35,00,000	- मी.एन.बी. में	7,45,982	4,36,870	- सकाय अग्रिम का भुगतान
8,77,05,500	9,77,05,500	- एच.डी.एफ.सी. ड्रस्ट में	37,919	2,662	- स्टाफों अग्रिम वसूली से
1,00,49,963	0	- एस.बी.आई. में	0	0	- विविध लेनदारों से
3,50,00,000	0	- केनरा बैंक में	0	0	- आयकर वापसी से
		जमाराशि लेखों में :			VI. अन्य प्राप्तियाँ ∶
2,54,84,25,484	3,34,36,44,085	शेष अग्रेनीत	3,06,51,01,103	3,07,03,99,869	शेष अग्रेनीत
2017-18	2018-19	भुगतान एवं इतिशेष	2017-18	2018-19	अधशेष एवं प्राप्तियाँ
राशि रुपयों में					

कृते जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र

हमारे उस दिनाक की रिपोर्ट में यह संदर्भित है। कृते बी आर वी गौड एवं कपनी सनदी लेखाकार

[ए.बी. शिव सुब्रमण्यम] भागीदार सदस्यता सं. 201108

CHARTERED

संपद पात्रा लेखा अधिकारी

्रो. के.एस. नारायण प्रभारी अध्यक्ष

जॉय दीप प्रशासनिक अधिकारी

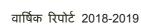
स्थान : बेंगलूरु दिनाक : 31/07/2019.

जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र यथा 31 मार्च, 2018 को धर्मदाय मूल्यनिधि (संग्रह) तथा अन्य निधियों के शेष (2018 - 19)

रु. लाखों में

विवरण	मूलधन			प्राप्त	उपचित			
	धर्मदाय	अथशेष	परिवर्धन	ब्याज	ब्याज	कुल	व्यय	इतिशेष
	निधि	2018-19	2018-19	2018-19	2018-19	2018-19	2018-19	2018-19
धर्मदाय पीठ (चेयर)	Rs.	Rs.	Rs.	Rs.	Rs.	Rs.	Rs.	Rs.
हिंद्स्तान लीवर लि. तथा घार्डा रासायनिक पीठ (चेयर)	32.00	45.46	0.00	2.55	0.00	48.01	3.60	44.41
आस्ट्रा ज़ेनेका तथा IBM पीठ	20.00	51.97	0.00	1.60	0.00	53.57	0.00	53.57
DAE (पऊवि) - डॉ. विक्रम सारभाई पीठ	22.00	32.36	0.00	1.71	0.00	34.07	0.00	34.07
DRDO & CSIR पीठ	30.00	69.37	0.00	2.38	0.00	71.75	3.60	68.15
रजत जयंती प्रोफेसरशिप - प्रो.सी.एन.आर. राव	25.00	27.57	0.00	2.10	0.00	29.67	1.80	27.87
कुल- धर्मदाय पीठ	129.00	226.73	0.00	10.34	0.00	237.07	9.00	228.07
रिलायंस इंड्स्ट्रीज								
प्रो. लिनस पॉलिंग प्रोफेसरशिप	84.34	97.55	0.00	6.89	0.00	104.44	23.19	81.25
अन्य धर्मदाय निधियाँ	+							
प्रो.सी.एन.आर. राव से अंशदान	4.25	13.06	0.00	0.00	0.55	13.61	0.26	13.35
शांता सीतारामय्या पुरस्कार	1.00	3.55	0.00	0.00	0.13		0.17	3.51
बाप् नारायण स्वामी पुरस्कार	1.00	2.83	0.00	0.00	0.12			2.89
प्रो.रोददम नरसिंह पुरस्कार	2.00	2.87	0.00	0.17	0.00	3.04	0.00	3.04
प्रो. एम.के. चंद्रशेखरन निधि	5.43	4.35	0.00	0.31	0.00	4.66	0.00	4.66
कुल - अन्य धर्मदाय निधियाँ	13.68	26.66	0.00	0.48	0.80	27.94	0.49	27.45
ट्याख्यान श्रेणियाँ								
	31.00	31.14	0.00	2.35	0.00	33.49	1.71	31.78
इस्रो - डॉ. सतीश धवन	14.00	21.42	0.00	1.11	0.00	22.53	0.56	
DAE - डॉ. राजा रामण्णा	15.00	16.32	0.00	1.14	0.00	17.46	0.95	16.51
DBT - प्रो, वी. रामलिंग स्वामी	7.00	12.36	0.00	0.56	0.00	12.92	0.00	12.92
कुल - व्याख्यान श्रेणियाँ	67.00	81.24	0.00	5.16	0.00	86.40	3.22	83.18
सी.एन.आर. राव हॉल ऑफ़ साइंस निधि	170.00	211.58	0.00	11.70	4.04	227.32	17.81	209.51
पदार्थ अनुसंधान निधि	149.06	207.90	0.00	8.64	5.64	222.18	0.84	221.34
JAILA OLAŽILAIGI IGILA	143.00	207.30	0.00	0.04	5.04	222.10	0.04	221.34
जनेकें - संग्रह (मूल्य निधि) निधि	1,682.07	2639.3	106.09	131.07	76.94	2,953.40	32.19	2,921.21
कुल योग	2,295.15	3,490.96	106.09	174.28	87.42	3,858.75	86.74	3,772.01

						जवाहर	जवाहरलाल नेहरु उन्नत वैज्ञानिक अनुसंधान केंद्र	' वैज्ञानिक अत	नुसंधान केंद्र		
						वितिय वर्ष 2	. 2018-19 के लिए	- योजना - नि	- निधियों के विवरण		
			# #	अथशेष	निधियों के परिवर्धन	परिवर्धन	निधियों के	उददेशयों की	उपयोगिता/व्यय	र्ड	इतिशेष
क्रम.सं.	कोड	विवरण	司司	ऋण	प्राप्तियाँ	पुनर् ऋण	अचल परिसंपतियाँ	वेतन	अन्य प्रशासनिक व्यय	副計	ऋण
1	4037	DST/MKC	1,63,516	0	0	0	0	0	0	1,63,516	0
7	4041	4041 CSIR/AA	0	1,39,376	0	0	0	0	0	0	1,39,376
m	4042	4042 UTC/USA/RN	0	0	0	0	0	0	-17,685	0	17,685
4	4044	INF/RR	0	2,20,968	0	0	0	0	0	0	2,20,968
2	4048	INSA/VKS	58,378	0	0	0	0	0	0	58,378	0
9	4051	ARDB/RN	0	4,000	0	0	0	0	0	0	4,000
7	4052	4052 DBT/RUK	1,30,972	0	0	0	0	0	0	1,30,972	0
∞	4053	4053 DBT/AA	3,55,267	0	0	0	0	0	0	3,55,267	0
6	4058	4058 DST/AJ	0	5,000	0	0	0	0	0	0	5,000
10	4059	SIG/HB	30,526	0	0	0	0	0	0	30,526	0
11	4062	CSIR/TKK	22,445	0	0	0	0	0	0	22,445	0
12	4063	4063 DAE/CNR	0	7,87,513	0	0	0	0	0	0	7,87,513
13	4064	4064 DST/CNR	0	2,61,088	0	0	0	0	0	0	2,61,088
14	4066	4066 DBT/AA	3,28,461	0	0	0	0	0	0	3,28,461	0
15	4070	4070 DRDO/CNR	15,075	0	0	0	0	0	0	15,075	0
16	4071	DST/RUK	0	3,54,148	0	0	0	0	0	0	3,54,148
17	4072	DBT/KNG	0	20,33,705	0	0	0	0	0	0	20,33,705
18	4073	4073 CSIR/MI	0	2,450	0	0	0	0	0	0	2,450
19	4074	4074 REL/CNR	0	1,27,700	0	0	0	0	0	0	1,27,700
20	4075	4075 DRDO/RG	0	10,961	0	0	0	0	0	0	10,961
21	4076	ICMR/HB	4,615	0	0	0	0	0	0	4,615	0
22	4077	IT/KSN	0	335	0	0	0	0	0	0	332
23	4078	4078 DAE/ТКК	5,011	0	0	0	0	0	0	5,011	0
24	4079	4079 DBT/NS	36,982	0	0	0	0	0	0	36,982	0
25	4082	4082 DRDO/KSN	0	887	0	0	0	0	O CONOS	0	887
									10.0		


26	4083	DST/MI	10,856	0	0	0	0	0	0	10,856	0
27	4084	4084 DBT/HB	0	79,865	0	0	0	0	0	0	79,865
28	4085	4085 TWAS/CNR	0	65,891	0	0	0	0	0	0	65,891
29	4086	4086 MULTIMEDIA	18,500	0	0	0	0	0	0	18,500	0
30	4087	IJMM/CNR-OB	4,50,000	0	0	0	0	0	0	4,50,000	0
31	4089	INSA/MM	0	576'66'9	0	0	0	0	0	0	6,99,975
32	4093	4093 CSIR/SN	2,250	0	0	0	0	0	0	2,250	0
33	4095	4095 DST/DRF/TKK	0	12,129	0	0	0	0	0	0	12,129
34	4096	4096 DST/SN	0	1,500	0	0	0	0	0	0	1,500
35	4097	JNC/NS	0	3,00,492	0	0	0	0	0	0	3,00,492
36	4098	DST/TKK	2,75,295	0	0	0	0	0	0	2,75,295	0
37	4099	4099 DST/GUK	97,970	0	0	0	0	0	0	026'26	0
38	4100	4100 CSIR/SKP	2,527	0	0	0	0	0	0	2,527	0
39	4102	4102 DBT/DG/AA	0	67,035	0	0	0	0	0	0	67,035
40	4104	INSA/KSV	1,05,343	0	0	0	0	0	0	1,05,343	0
41	4105	4105 ICMR/NS	301	0	0	0	0	0	0	301	0
42	4106	4106 DST/AKR	10,312	0	0	0	0	0	0	10,312	0
43	4107	4107 DSERT	1,19,464	0	0	0	0	0	0	1,19,464	0
44	4109	AECOM/RUK	5,836	0	0	0	0	0	0	5,836	0
45	4111	DBT/SB	0	9,655	0	0	0	0	0	0	9,655
46	4113	4113 ICMR/AA	0	2,29,542	0	0	0	0	0	0	2,29,542
47	4114	4114 IUPAC/CNR-EQUIP.	0	5,69,013	0	0	0	0	0	0	5,69,013
48	4115	4115 DBT/RUK	237	0	0	0	0	0	0	237	0
49	4116	DST/SKP	18,548	0	0	0	0	0	0	18,548	0
20	4117	DST/EDCS	326	0	0	0	0	0	0	326	0
51	4119	4119 DBT/AA	17,17,113	0	0	0	0	0	0	17,17,113	0
52	4121	4121 ISRO-LPSC/ARR	0	72,153	0	0	0	0	0	0	72,153
53	4122	4122 MIT/KSN	32,794	0	0	0	0	0	0	32,794	0
54	4123	DST-VDPL/RUK	73,642	0	0	0	0	0	0	73,642	0
52	4124	DRDO/RN	22,425	0	0	0	0	0	0	22,425	0
26	4126	4126 DUPONT/UW	0	1,62,570	0	0	0	0	0	0	1,62,570
57	4127	4127 SOP/	0	1,41,885	0	0	0	0	0	0	1,41,885
28	4128	4128 DST/PFNT	10,18,907	0	1,30,59,781	0	0	28,40,484	6,65,437	0	85,34,953
										100	

59	4129 DBT/MI	35,463	0	0	0	-4,406	3,581	-34,638	0	0
09	4130 DAE/BRNS/CNR	0	2,41,551	0	0	0	0	0	0	2,41,551
61	4131 CSIR/HB	81,231	0	0	0	0	0	0	81,231	0
62	4132 DBT/RUK	10,338	0	0	0	0	0	0	10,338	0
63	4133 CSIR/HB	1,64,849	0	0	0	0	0	0	1,64,849	0
64	4134 ICMR/RUK	15,141	0	0	0	0	0	0	15,141	0
65	4135 DST/MIPL/RUK	1,28,765	0	1,24,814	0	0	0	-3,951	0	0
99	4136 DST/AJ	18,509	0	0	0	0	0	0	18,509	0
29	4137 DBT/MRS.RAO	1,63,923	0	0	0	0	0	0	1,63,923	0
89	4138 NPOL/RG	65,453	0	0	0	0	0	0	65,453	0
69	4139 NPOL/KRS	38,614	0	0	0	0	0	0	38,614	0
70	4140 DST/GUK	0	34,52,216	0	0	0	0	0	0	34,52,216
71	4141 DST/SB	84,400	0	0	0	0	0	0	84,400	0
72	4142 IDS/RN	0	3,56,244	0	0	0	0	0	0	3,56,244
73	4143 CSIR/SB	21,028	0	0	0	0	0	0	21,028	0
74	4144 CSIR/MI	1,18,646	0	0	0	0	0	0	1,18,646	0
75	4145 DBT/TKK	1,01,515	0	0	0	0	0	0	1,01,515	0
92	4146 SMALL BALCONTING.	0	6,89,158	0	0	0	0	0	0	6,89,158
77	4147 UGC-CONTINGENCY	0	1,82,576	0	0	0	0	0	0	1,82,576
78	4148 CSIR-CONTINGENCY	0	4,29,860	0	0	0	0	0	0	4,29,860
79	4150 DBT/TKK	1,94,103	0	0	0	0	0	0	1,94,103	0
80	4152 ICMR/TKK	2,47,382	0	0	0	0	0	0	2,47,382	0
81	4153 DST/RUK	0	1,53,454	0	0	0	0	0	0	1,53,454
82	4154 DAE/TKK	1,64,301	0	0	0	0	0	0	1,64,301	0
83	4155 DBT/NS	0	14,253	0	0	0	0	0	0	14,253
84	4157 CSIR/MRS RAO	7,483	0	0	0	0	0	0	7,483	0
82	4158 DBT/MI	0	4,26,528	0	0	0	0	0	0	4,26,528
98	4159 DAE/AA	0	2,15,630	0	0	0	0	0	0	2,15,630
87	4161 DBT/NS	1,05,786	0	0	0	0	0	0	1,05,786	0
88	4163 IFCPAR/NC	322	0	0	0	0	0	0	355	0
88	4164 DST/JCB/MRS	25,813	0	0	0	0	0	0	25,813	0
90	4165 AECOM/RUK	1,60,261	0	0	0	0	0	-1,40,261	20,000	0
91	4166 DBT/RUK	42,600	0	0	0	0	0	Goup	42,600	0
								00		

0 3,260 0	-	0 0 0	0 0,34,213	0 0	0 21,016 0	0 1,91,625	0 3,35,703	0 98,108	0 6,37,635	0 0 52,507	0 1,483 0	0 0 01	0 0 74,616	0 0 5,80,015	0 12,32,132 0	0 0 12,713	0 12,318 0	0 0	0 0,766	0 94,586 0	0 32,000	0 84,050	0 37,731 0	0 50,309 0	0 97,682	0 24,769	0 13,32,342 0	7 14,55,836 0	0 3,62,295 0	0 4,01,722	0 2,48,986	20.050
0		0	0	2 66,000	0	0 21,408	0 2,24,691	0	0	0	0	0 -11,630	0	0	0	0	0	2 -2,30,442	0	0	0	12,241	0	0	0	0 65,674	0	0 5,677	0	0	0	COOD
		-2,24,691	0	0 75,147	0	0	0	0	0	0	0	0	0	0	0	0	0	0 43,852	0	0	0	0	0	0	0	0	0	0	0	0	0	•
C	•	02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
_	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
_	•	0	2,34,213	1,41,147	0	2,13,033	5,60,394	98,108	6,37,635	52,507	0	0	74,616	5,80,015	0	12,713	0	0	1,766	0	32,000	96,291	0	0	97,682	90,443	0	0	0	4,01,722	2,48,986	
	3,260	2,24,691	0	0	21,016	0	0	0	0	0	1,483	11,630	0	0	12,32,132	0	12,318	1,86,590	0	94,586	0	0	37,731	20,309	0	0	13,32,342	14,50,159	3,62,295	0	0	0
	CSIR/KS	ICMR/NS	DBT/NS	4173 DST/NS	4175 DST/VK	4176 DST/KRS	ICMR/NS	BRUCKER AXS	4180 CSIR/SMD	4181 IFCPAR/SHN	MIPL/SHN	MIPL/UW	CSIR/SKP	4187 GTRE/SMD	4189 DBT/AA	4190 MPI/MA	DST/KSN	DST/KS	4193 DBT/TKK-EM	4195 DST/TKM	4196 DST-FIST/KBS	4197 P&G/UW	4198 AOARD/SKP	4199 DBT/MRS	4200 IFCPAR/TKK	4201 AOARD/KRS	DST/TNCV	ICPCNN/GUK	4208 DBT/KS	4209 DST/SMD	4210 ICAR/TKK	24L/ 211/ 711 O/ 114X 27C
	4169	4170	4171	4173	4175	4176	4178	100 4179	4180	102 4181	103 4182	104 4183	105 4185	106 4187	107 4189	108 4190	109 4191	110 4192	111 4193	112 4195	113 4196	114 4197	115 4198	116 4199	117 4200	118 4201	119 4203	120 4206	121 4208	122 4209	123 4210	t

		20,30,203	0	0	>	>	0	0	30,30,285	5
4215 DAE/KSN		0	10,000	0	0	0	0	0	0	10,000
4216 BARC/MA	A	362	0	0	0	0	0	0	362	0
4218 DST/SKP		19,189	0	0	0	0	0	0	19,189	0
4219 DST/INS&T		48,928	0	0	0	0	0	0	48,928	0
4220 IUSSTF/GUK		9,16,740	0	0	0	0	0	0	9,16,740	0
4222 DBT/TKK		2,51,521	0	0	0	0	0	0	2,51,521	0
4223 IBM/UW		0	1,22,567	0	0	0	0	0	0	1,22,567
4225 DST/SS	2,17	2,17,136	0	0	0	0	0	0	2,17,136	0
4227 ICMR/RUK	Ϋ́	0	7,936	0	0	0	0	0	0	7,936
4228 DST/SHN		1,57,085	0	0	0	0	0	0	1,57,085	0
4229 DST/HB		0	40,831	0	0	0	0	0	0	40,831
4230 DBT/MI	28	28,939	0	0	0	0	0	-28,939	0	0
4231 DBT/HB	46	46,243	0	0	0	0	0	0	46,243	0
4232 CSIR/TNCV		1,52,544	0	0	0	0	0	0	1,52,544	0
4233 DBT/AA	2,06	2,06,789	0	0	0	0	0	0	2,06,789	0
4234 NAL/RN		0	6,145	0	0	0	0	0	0	6,145
4235 DST/SMS	S	0	62,793	0	0	0	0	0	0	62,793
4237 INSA/HI	43	43,427	0	0	0	0	0	0	43,427	0
4238 VGST-SOP,	JP/	0	16,42,830	0	0	0	0	0	0	16,42,830
4239 DST/RUK		2,49,927	0	0	0	0	0	0	2,49,927	0
4240 DST/TG	7,52	7,52,659	0	0	0	0	0	0	7,52,659	0
4241 NGS/TNCV		36,500	0	0	0	0	0	0	36,500	0
4242 NPOL/KRS		6,09,511	0	0	0	0	0	0	6,09,511	0
4243 NPOL/KRS	RS	0	4,52,016	0	0	0	0	0	0	4,52,016
4247 SRC/SHN	7	0	5,47,873	0	0	0	0	0	0	5,47,873
4248 ICMR/RUK		6,67,842	0	0	0	0	0	0	6,67,842	0
4251 AOARD/UW		24,192	0	0	0	0	0	-24,192	0	0
4252 DST-JCB/TKK		39,548	0	19,35,451	0	0	13,81,100	4,99,667	0	15,136
4253 DST/SKD		1,15,419	0	0	0	0	0	0	1,15,419	0
4254 DST/JH	3,12	3,12,285	0	0	0	0	0	0	3,12,285	0
4257 NAL/SMD		4,33,230	0	0	0	0	0	0	4,33,230	0
4258 DST/AKM	101101	101	(•						

158 425	4259 DST/UW	1,56,934	0	0	0	0	0	0	1,56,934	0
159 426	4262 DST/HB	3,60,110	0	0	0	0	0	0	3,60,110	0
160 426	4263 DST/TKK	16,674	0	0	0	0	0	0	16,674	0
161 426	4265 DAE/MA	1,39,028	0	0	0	0	-1,12,500	-26,528	0	0
162 426	4266 CSIR/HI	74,971	0	0	0	0	0	0	74,971	0
163 426	4267 GEGR/UW	0	1,62,265	0	0	0	0	0	0	1,62,265
164 426	4268 SRL/NC	5,594	0	0	0	0	0	0	5,594	0
165 427	4270 DST/RUK	0	20,000	0	0	0	0	0	0	20,000
166 427	4272 DST/UKG	3,219	0	0	0	0	0	0	3,219	0
167 427	4273 WT-DBT/RM	2,41,233	0	2,41,233	0	0	0	0	0	0
168 427	4274 DBT/KS	5,83,343	0	0	0	0	0	0	5,83,343	0
169 427	4275 NMRL-DRDO/SB	0	8,977	0	0	0	0	0	0	8,977
170 427	4276 DBT/TG	12,163	0	0	0	0	0	189	12,352	0
171 427	4277 SHELL/SB	0	7,63,521	0	0	0	0	7,668	0	7,55,853
172 427	4279 DST/GUK	166	0	0	0	0	0	0	166	0
173 428	4280 DST/GP	3,08,285	0	0	0	0	0	0	3,08,285	0
174 428	4281 DST/BMP	4,19,901	0	0	0	0	0	0	4,19,901	0
175 428	4282 DBT/TKK-RUK	0	3,14,167	0	0	0	0	0	0	3,14,167
176 428	4283 NCI/EM	0	92,001	0	0	0	0	43,398	0	48,603
177 428	4284 DBT/TKK-EM	0	30,162	0	0	0	0	0	0	30,162
178 428	4285 WT/MI	25,970	0	0	0	0	0	0	25,970	0
179 428	4286 DST/GUK	0	57,84,550	-1,01,818	0	32,49,341	0	4,98,996	0	19,34,395
180 428	4287 ADE/KRS	0	9,712	0	0	0	0	0	0	9,712
181 428	4288 INTEL/RN	6,16,803	0	0	0	0	0	0	6,16,803	0
182 428	4289 INTEL/SMD	1,80,424	0	0	0	0	0	0	1,80,424	0
183 429	4290 INTEL/SA	0	79,002	0	0	0	0	0	0	79,002
184 429	4292 SERB/AJ	0	11,12,771	4,13,366	0	0	9,85,630	4,30,034	0	1,10,473
185 4293	93 SERB/KB	9,55,091	0	0	0	0	0	0	9,55,091	0
186 429	4294 DST/SB	0	91,13,766	40,83,449	0	16,96,805	23,53,556	8,25,966	0	83,20,888
187 429	4295 DFRL/GUK	19,092	0	0	0	0	0	0	19,092	0
188 429	4297 UGC-DAE/SCP	99,865	0	0	0	0	0	0	99,865	0
189 429	4298 LEOS-ISRO/NC	7,37,221	0	0	0	0	0	0	7,37,221	0
190 430	4300 DBT/TKK	19,02,409	0	0	0	0	0	0	19,02,409	0

430T DDI/N3	1,89,347	0	0	0	0	0	0	1,89,347	0
4302 SERB/RD	1,07,814	0	0	0	0	0	0	1,07,814	0
4307 DBT/MI-HB	4,49,626	0	27,116	0	0	0	0	4,22,510	0
HPCL/RM	0	2,39,309	0	0	0	0	0	0	2,39,309
4311 DST/RN	8,56,113	0	0	0	0	0	0	8,56,113	0
4312 DBT/KS	1,52,000	0	0	0	0	0	0	1,52,000	0
4313 ICMR/NS	0	9,61,929	0	0	0	0	7,60,743	0	2,01,186
CSIR/TG	3,77,469	0	0	0	0	0	0	3,77,469	0
DST-JCB/SKP	4,698	0	000'00'6	0	0	3,52,067	5,43,235	0	0
4317 DBT/KS	0	4,405	0	0	0	0	4,405	0	0
4318 SERB/KS	1,212	0	0	0	0	0	0	1,212	0
4319 ICMR/AA	0	6,54,036	0	0	0	4,93,023	1,76,998	15,985	0
DST/RV	62,558	0	0	0	0	0	0	62,558	0
4323 DBT/MI	0	3,71,685	0	0	0	67,916	3,03,769	0	0
4324 EU/SKP/SJG	0	29,99,307	19,24,534	76,591	0	7,78,000	10,84,077	0	31,38,355
4325 INCOIS/CPR	0	24,994	0	0	0	0	0	0	24,994
4326 DST-JCB/UW	0	4,50,811	12,15,553	0	0	10,17,623	7,05,754	57,013	0
SERB/SKN	47,323	0	0	0	0	0	0	47,323	0
4330 SERB/MRS	1,58,506	0	28,28,009	0	0	11,62,753	15,04,717	0	2,033
4331 SERB/KBS	0	22,572	28,78,505	0	0	8,44,800	18,24,895	0	2,31,382
4332 SERB/RJNMEETING	0	2,38,928	3,54,299	0	0	0	4,77,079	0	1,16,148
SERB/TG	4,83,351	0	0	0	0	0	0	4,83,351	0
4334 SERB/JC	5,93,576	0	0	0	0	-27,048	-25,394	5,41,134	0
4335 UKIERI/UW	0	1,218	0	0	0	0	0	0	1,218
4336 IKST/UW	0	29,75,413	0	0	0	5,13,000	6,64,457	0	17,97,956
4337 DBT/MRS	3,42,306	0	48,18,966	0	0	8,43,675	25,36,179	0	10,96,806
SHELL/SN	0	26,693	0	0	0	0	0	0	26,693
4340 DST/JH	14,447	0	14,447	0	0	0	5,233	5,233	0
4341 SERB/RUK	7,458	0	7,458	0	0	0	0	0	0
4342 SHELL/EM	0	12,57,713	0	0	0	0	1,84,755	0	10,72,958
DST/KSN	0	3,75,732	11,862	0	80,825	1,03,120	2,72,576	68,927	0
4344 CSIR/SCP	31,768	0	0	0	0	0	77,682	1,09,450	0
4345 DBT/EM	0	13,612	0	0	0	0	13,612	0	0

0 14,35,426	0 0	0 0	0 0	0 1,22,311	0 772	205 0	0 6,04,76,709	0 4,00,369	342 0	0 0	0 3,85,715	0 72,78,747	0 4,31,725	0 4,81,381	379 0	0 96,011	0 90,266	0	929	0 1,15,783	0 0	0	0	728 0	0 4,000	0 0	3,00,204	3,61,896	0 20,37,35,114	9,71,906	0 260	
					59,277	6,92,505			63,842						7,35,879				41,564		10,064			5,10,728							3,42,097	
4,78,818	-1,81,720	3,76,637	3,35,633	5,52,840	4,20,044	48,192	13,51,64,453	2,95,910	1,95,699	-1,13,575	15,43,416	49,64,478	7,07,163	3,31,802	2,69,490	1,02,191	3,60,997	7,35,964	2,19,915	15,97,444	99,857	30,738	-11,472	56,038	0	6,86,207	9,06,515	7,88,957	4,22,54,518	87,694	721,72	
0	0	76,937	0	7,23,458	0	0	1,61,677	0	0	0	0	2,27,000	14,07,647	46,800	3,90,000	0	2,02,297	0	0	3,00,000	3,54,839	0	0	7,74,800	0	0	2,87,083	33,500	73,96,578	0	0	
1,69,365	0	0	1,768	19,41,663	0	0	16,54,95,728	0	0	0	0	0	0	0	0	0	0	0	0	0	82	0	0	0	0	-51,256	0	-17,678	15,04,85,984	0	0	
0	0	0	0	8,361	0	0	2,64,510	0	0	0	0	0	0	0	0	0	0	0	0	14,007	0	0	0	0	0	0	0	0	15,500	0	0	
75,470	-13,500	0	1,57,565	16,37,379	4,844	45,500	18,78,20,935	0	98	0	10,000	1,05,58,085	15,54,657	5,12,898	0	2,50,000	8,00,000	0	11,315	17,90,185	4,00,000	3,28,181	0	12,282	0	0	0	8,18,968	4,21,31,737	0	15,000	
20,08,139	0	4,53,574	1,79,836	16,94,532	3,55,923	0	17,32,13,122	6,96,279	1,31,771	0	19,19,131	19,12,140	9,91,878	3,47,085	0	0	0	7,35,964	1,67,036	2,09,035	44,714	0	0	3,07,828	4,000	6,34,951	14,93,802	3,47,707	36,17,24,957	10,59,600	0	
0	1,68,220	0	0	0	0	6,89,813	0	0	0	1,13,575	0	0	0	0	76,389	51,798	1,46,440	0	0	0	0	2,97,443	11,472	0	0	0	0	0	0	0	3,29,970	
4346 AOARD/UW	CEFIPRA/UW	DBT/TG	SERB/JB	4350 BARC/MA	DBT/TKK	CEFIPRA/SN	DST-PETRA/NC	РНЕ/ЈН	SERB/SA	MDPL/RUK	ICMR/AA	DST/KB	SERB-JCB/KSN	4360 MOES/CPR	4361 DBT/RUK	SERB/AS	SERB/SCP	DST/KSN	DAE/KB	SERB-JCB/SS	SERB/VG	HPCL/KRS	AOARD/SKP	DST/TKK	SHELL/UW	SERB/VKS	рвт/нв	SERB/HB	DST-TRC/KSN	IKST/SN	SRISTI/JH	
	4347	4348	4349	4350	4351	4352	4353	4354	4355	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4371	4372	4373	4374	4375	4376	4377	4378	t
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	

		24,54,762	0	0	4,00,800	22,67,788	0	14,000
0 2,84,599		7,59,010	0	0	3,67,251	3,82,047	0	2,94,311
0 73,848		1,15,448	0	0	0	1,89,296	0	0
0 8,08,590		11,863	0	0	3,38,893	5,46,826	65,266	0
0 23,08,465		1,01,33,597	0	0	0	29,23,856	0	95,18,206
0 3,23,92,933		53,68,576	0	1,05,43,870	31,57,833	2,28,91,183	0	11,68,623
0 4,15,93,800	_	17,00,178	0	1,87,27,350	5,09,516	1,00,58,751	0	1,39,98,361
0 9,20,959	6	2,33,727	0	0	4,31,947	5,85,743	0	1,36,996
0 62,415	[2	8,09,093	0	0	000'09'9	73,612	0	1,37,896
0 44,447	17	3,276	0	0	0	1,82,857	1,35,134	0
0 4,199	66	0	0	0	0	4,199	0	0
0 1,81,910	10	7,261	0	0	25,667	2,02,428	38,924	0
0 1,37,703	33	0	0	0	0	0	0	1,37,703
0 2,08,888	8	14,14,000	0	0	3,84,000	11,45,714	0	93,174
13,62,804	74	23,882	0	2,60,400	1,21,680	8,82,185	0	1,22,421
3,26,766	99	0	0	0	58,777	0	0	2,67,989
0 69,55,169	0	0	0	27,54,729	2,14,500	5,25,713	0	34,60,227
1,971	0	7,84,251	0	0	5,63,109	59,646	0	1,59,525
982,06	0	0	0	0	0	0	90,586	0
0 89,712	12	42	0	0	1,75,645	1,71,460	2,57,351	0
79,281	0	15,67,106	0	0	3,97,673	7,46,035	0	3,44,117
0 1,88,578	78	0	0	0	0	1,88,578	0	0
2,48,492	0	0	0	0	0	0	2,48,492	0
99,223	0	3,00,274	0	0	2,20,000	-3,548	15,401	0
14,514	0	0	0	0	000'09'9	1,10,232	7,84,746	0
25,671	0	25,70,569	5,90,370	5,90,370	8,05,087	10,07,567	0	7,32,244
13,23,442	42	9,25,719	0	9,44,146	5,79,098	3,02,913	0	4,23,004
0 2,70,236	98	2,33,904	0	0	0	4,80,052	0	24,088
0 2,85,439	39	0	0	0	0	2,85,439	0	0
0 1,62,693	93	4,006	0	0	908'09	2,17,616	1,11,723	0
0 13,61,458	28	72,423	0	11,00,427	3,90,000	7,00,098	7,56,644	0
0 6,62,609	60	11,83,181	0	0	4,31,900	5,83,612	0	8,30,278
0 1,09,637	137	0	0	0	0	10,45,282	9,35,645	0

290	4415	4415 TRC-JNC/TKM	0	10,31,987	0	0	3,20,127	2,71,200	45,043	0	3,95,617
291	4416	TRC-JNC/KSN	0	49,48,463	16,20,000	0	7,33,639	0	3,66,216	0	54,68,608
292	4417	4417 TRC-JNC/SCP	0	10,66,321	0	0	1,90,723	3,60,360	64,714	0	4,50,524
293	4418	4418 DST/RG	2,52,580	0	17,25,018	0	0	15,37,431	4,42,936	5,07,929	0
294	4419	SRISTI/SG-JH	0	2,455	0	0	0	0	0	0	2,455
295	4450	CEFIPRA/SCP	0	3,98,695	060'68'6	0	0	4,68,000	2,15,792	0	6,53,993
596	4422	4422 WT-DBT/SSA	0	25,10,125	30,49,415	56,556	20,41,404	8,95,597	12,80,176	0	13,98,919
297	4423	4423 SHELL/UW	0	3,00,000	14,16,000	0	0	0	6,27,986	0	10,88,014
298	4424	SERB/SSA	0	3,83,233	7,10,355	0	2,93,400	2,05,798	6,97,060	1,02,670	0
299	4425	NIH-UNMC/RUK	31,18,092	0	49,23,968	28,000	0	18,56,560	59,35,229	59,57,913	0
300	4426	TRC-JNC/TG	0	19,58,961	0	0	0	7,48,339	10,38,380	0	1,72,242
301	4427	DST-SJF/TG	0	1,26,80,391	28,05,178	0	1,20,00,000	10,16,625	16,07,335	0	8,61,609
302	4428	DST/SMS	0	6,54,12,623	17,26,155	0	3,86,33,489	18,51,123	68,08,872	0	1,98,45,294
303	4430	DST-RUS/AS	0	7,92,245	2,67,437	0	0	1,12,945	11,19,163	1,72,426	0
304	4431	DAE-BRNS/CPR	0	37,027	13,12,407	0	0	5,65,200	3,41,033	0	4,43,201
305	4432	DAE-BRNS/JH	0	7,61,435	3,52,850	0	0	2,38,333	4,10,772	0	4,65,180
306	4433	DST-SJF/RG	0	986'85'09	97,148	0	38,48,403	3,00,000	10,27,671	0	090'08'6
307	4434	SERB/MS	0	48,145	7,07,451	9,935	0	2,50,000	2,82,058	66,527	0
308	4435	SERB/PP	0	1,16,983	7,00,000	0	0	1,28,333	1,50,827	0	5,37,823
309	4436	ICAR/KRS	0	3,75,534	3,06,227	0	97,880	2,99,583	3,21,766	37,468	0
310	4438	CEFIPRA/KS	0	2,72,525	9,28,093	0	0	4,00,234	6,52,504	0	1,47,880
311	4439	4439 SERB/SKP	2,38,797	0	8,06,143	0	0	2,32,700	2,92,134	0	42,512
312	4440	4440 SERB/JH	0	5,16,015	3,08,840	0	0	5,61,600	13,56,747	10,93,492	0
313	4441	SERB/S.BANDI	0	45,834	8,00,000	0	0	6,13,871	3,20,369	88,406	0
314	4442	SERB/A.SINGH	13,949	0	8,00,000	0	0	6,05,000	2,38,707	22,656	0
315	4443	4443 DST/SJ	0	5,03,445	12,18,225	0	2,08,950	12,48,480	40,334	0	2,23,906
316	4444	4444 SERB/RV	0	5,32,768	18,594	0	0	0	1,14,403	0	4,36,959
317	4445	SERB/MI	0	15,99,367	84,964	0	0	2,68,918	25,36,613	11,21,200	0
318	4446	ICMR/AA	2,50,970	0	16,70,650	0	0	70,150	8,48,415	0	5,01,115
319	4447	CEFIPRA/SS	0	26,76,549	8,27,311	0	25,25,776	5,36,439	50,403	0	3,91,242
320	4448	DST/CSARASWATHI	0	29,453	8,00,000	0	0	000'09'9	1,26,798	0	42,655
321	4449	SERB/SKV	0	4,24,767	7,11,816	0	0	6,60,000	1,78,908	0	2,97,675
322	4450	SERB/IP	0	47,572	7,83,000	0	0	000'09'9	2,69,266	98,694	0
									(100)		

323	4451	SERB/SRC	0	46,812	9,17,226	0	0	5,10,968	2,32,124	0	2,20,946
324	4452	SERB/S. SEN	0	61,053	9,13,887	0	0	6,60,000	3,56,966	42,026	0
325	4453	GTRE/RN	54,696	0	34,324	0	0	-41,600	21,228	0	0
326	4454	4454 HIPL/NC	0	2,02,873	5,31,000	0	0	0	7,33,873	0	0
327	4455	4455 LIPL/TG	0	2,37,298	0	0	0	0	39,004	0	1,98,294
328	4456	SERB/P.SATHE	0	52,925	8,00,670	0	0	6,60,000	1,41,210	0	52,385
329	4457	DAE-BRNS/SSA	0	4,52,120	3,52,344	0	0	3,40,708	5,39,656	75,900	0
330	4458	DBT/KS	0	1,459	5,95,542	0	0	0	6,00,873	3,872	0
331	4459	SERB/AN	0	1,64,421	9,19,070	0	0	6,60,000	3,30,360	0	93,131
332	4460	4460 SERB/SHASHIDHAR	0	1,30,002	8,90,767	0	0	6,60,000	2,30,831	0	1,29,938
333	4461	SERB/SD	0	2,88,162	9,25,759	0	0	6,60,000	1,57,526	0	3,96,395
334	4462	SERB/RB	0	2,46,379	0	0	0	74,516	2,00,000	28,137	0
335	4463	DBT/KS-RM	0	16,73,475	15,73,168	0	7,46,819	0	13,72,498	0	11,27,326
336	4464	SERB/DSV	0	30,72,037	6,70,050	0	24,09,507	2,80,000	5,00,832	0	5,51,748
337	4465	4465 TRC-JNC/JH	0	59,92,477	0	0	60,81,831	0	0	89,354	0
338	4466	4466 TRC-JNC/SCP	0	95,06,427	10,00,000	0	62,70,000	3,13,625	77,193	0	38,45,609
339	4467	HPCL/SA	1,28,968	0	6,72,000	0	0	3,64,000	2,49,604	70,572	0
340	4468	DST/SCP	0	5,16,037	16,871	0	0	0	2,50,770	0	2,82,138
341	4469	DST/SB	0	12,53,093	42,539	0	0	1,42,690	75,332	0	10,77,610
342	4470	4470 SERB/SY	0	2,18,244	9,10,928	0	0	1,82,742	30,322	0	9,16,108
343	4471	4471 SERB/MN	0	1,73,777	9,21,081	0	0	6,45,806	3,48,434	0	1,00,618
344	4472	SERB/HR	0	2,17,241	9,20,592	0	0	6,60,000	3,53,409	0	1,24,424
345	4473	SERB/SP	0	1,01,338	0	0	0	1,10,000	1,13,150	1,21,812	0
346	4474	DBT/KS	0	1,66,073	7,38,673	12,000	0	3,58,000	4,79,856	0	78,890
347	4475	4475 SRISTI/K RAJASE	0	53,725	3,77,811	0	0	0	1,87,838	0	2,43,698
348	4476	4476 DST/SS	0	12,64,523	16,969	0	8,36,724	5,41,974	1,23,525	2,20,731	0
349	4477	DST/MA	0	24,88,138	8,67,833	0	8,00,419	10,80,188	5,10,275	0	9,65,089
350	4478	SERB/CM	0	50,318	7,86,789	0	0	6,06,774	2,42,863	12,530	0
351	4479	SERB/LV	0	2,52,089	9,22,214	0	0	6,60,000	2,96,908	0	2,17,395
352	4480	4480 SERB/S.DEY	0	2,05,331	7,88,712	0	0	6,60,000	2,29,074	0	1,04,969
353	4482	4482 SERB/D R	0	1,33,172	7,83,191	0	0	6,06,774	3,52,000	42,411	0
354	4483	DST/RV	0	9,33,105	26,363	0	0	3,21,100	1,33,655	0	5,04,713
355	4484	SERB/PS	0	30,91,479	67,671	0	20,52,778	3,90,000	5,15,981	0	2,00,391
										2000	

356	4485 DST/KS	0	1,37,373	49,607	0	0	0	98,760	0	88,220
357	4486 TRC-JNC/EM	0	1,05,61,176	11,10,000	0	97,03,062	4,37,955	869'86'8	0	6,31,461
358	4487 SERB/GLB	0	1,43,920	8,04,478	0	0	000'09'9	3,37,007	48,609	0
359	4488 SERB/MUDS	0	1,43,210	8,00,253	0	0	6,60,000	1,96,597	0	86,866
360	4489 SERB/K SHARMA	0	22,860	8,13,071	0	0	6,60,000	1,66,638	0	9,293
361	4490 SERB/MK	0	1,83,602	3,224	1,15,498	0	1,10,000	1,89,100	0	3,224
362	4491 DST/SS	0	15,72,705	43,134	0	0	5,55,969	3,34,947	0	7,24,923
363	4492 DBT/NS	0	25,32,300	83,069	0	-38,030	5,34,049	6,53,083	0	11,66,267
364	4493 LSRB/RM	0	13,76,684	32,751	0	0	3,23,500	12,49,946	1,64,011	0
365	4494 RHSPL/EM	0	3,52,050	30,000	0	0	0	1,58,625	0	2,23,425
366	4495 DST-JSPS/SJG	0	1,24,060	3,907	0	0	0	21,329	0	1,06,638
367	4496 RGUHS/SA	0	6,07,200	17,514	0	0	2,26,290	61,740	0	3,36,684
368	4497 DST/KB	0	60,21,772	1,76,871	0	43,133	5,02,723	10,04,937	0	46,47,850
369	4498 DBT/EM	0	8,92,596	29,815	0	0	97,500	1,44,759	0	6,80,152
370	4499 DST-VBU/KSN	0	13,03,267	1,47,502	0	0	2,47,604	7,25,327	0	4,77,838
371	4500 DST/UW	0	79,35,800	1,83,577	0	0	3,83,354	46,57,118	0	30,78,905
372	4501 DBT/TKK	0	81,55,800	2,02,525	0	17,69,528	7,17,224	29,14,584	0	29,56,989
373	4502 JNC/RN	0	0	13,00,000	0	0	7,58,838	4,55,235	0	85,927
374	4503 DBT/RUK	0	15,40,000	15,37,887	0	15,00,000	3,57,500	14,66,473	2,46,086	0
375	4504 DST/KSN	0	0	11,61,900	0	0	2,73,629	9,14,420	26,149	0
376	4505 SUNRISE/KSN	0	0	14,66,706	0	0	3,05,500	15,99,962	4,38,756	0
377	4506 DBT/MI-VN	0	0	40,75,104	1,50,368	20,19,912	62,660	17,54,820	0	3,88,080
378	4507 DST/KB	0	0	4,07,134	0	0	0	99,223	0	3,07,911
379	4508 IUSSTF/SS	0	0	5,73,030	0	0	0	3,47,944	0	2,25,086
380	4509 SERB/ASHUTOSHKR	0	0	9,71,777	0	0	6,17,419	2,72,044	0	82,314
381	4510 DST/SJG	0	0	4,18,646	0	0	0	3,12,521	0	1,06,125
382	4511 DST/JH	0	0	8,08,376	0	0	0	1,22,223	0	6,86,153
383	4512 TRC-JNC/PS	0	0	75,36,044	0	1,38,277	44,662	1,06,594	0	72,46,511
384	4513 TRC-JNC/GS-DSV	0	0	45,24,000	0	8,92,500	50,000	20,407	0	35,61,093
382	4514 DST-SJF/SJG	0	0	2,26,01,520	0	25,587	5,92,382	8,19,044	0	2,11,64,507
386	4515 DBT-LSRET/VN	0	0 1	18,33,44,172	0	9,83,092	4,10,800	1,56,45,492	0	16,63,04,788
387	4516 ICMR/KS	0	0	23,41,356	0	0	3,80,100	8,97,687	0	10,63,569
388	4517 TRC-JNC/KRS	0	0	3,00,00,000	0	2,05,645	0	28,379	0	2,97,65,976
									2000	

389 4518	4518 SERB/JC	0	0	11,12,650	0	0	960'68	8,30,135	0	1,93,419
390 4519	DBT/RM	0	0	9,74,002	0	0	81,774	2,21,362	0	6,70,866
391 4520	EMBO/JC	0	0	30,72,986	59,249	0	0	31,32,235	0	0
392 4521	LSRET-JNC/AA	0	0	2,00,000	0	0	0	1,29,794	0	3,70,206
393 4522	4522 LSRET-JNC/TKK	0	0	2,00,000	0	0	0	4,77,325	0	22,675
394 4523	LSRET-JNC/NS	0	0	5,10,000	0	0	0	3,04,190	0	2,05,810
395 4524	LSRET-JNC/MI	0	0	10,16,000	0	0	0	9,19,073	0	96,927
396 4525	LSRET-JNC/KS	0	0	12,00,000	0	0	0	4,79,017	0	7,20,983
397 4526	LSRET-JNC/RM	0	0	5,00,000	0	0	0	5,00,000	0	0
398 4527	4527 LSRET-JNC/HB	0	0	5,00,000	0	0	0	4,68,644	0	31,356
399 4528	4528 LSRET-JNC/RUK	0	0	5,00,000	0	0	0	4,99,576	0	424
400 4529	LSRET-JNC/VN	0	0	5,00,000	0	0	0	0	0	5,00,000
401 4530	LSRET-JNC/MRS	0	0	5,00,000	0	0	0	5,31,280	31,280	0
402 4531	LSRET-JNC/JC	0	0	2,00,000	0	0	0	4,38,325	0	61,675
403 4532	LSRET-JNC/SV	0	0	5,00,000	0	0	0	1,54,240	0	3,45,760
404 4533	LSRET-JNC/NC	0	0	5,00,000	0	0	0	0	0	5,00,000
405 4534	LSRET-JNC/TG	0	0	10,00,000	0	0	0	0	0	10,00,000
406 4535	LSRET-JNC/JH	0	0	5,00,000	0	0	0	1,23,978	0	3,76,022
407 4536	LSRET-JNC/SSA	0	0	5,00,000	0	0	0	3,24,956	0	1,75,044
408 4537	LSRET-JNC/SS	0	0	2,00,000	0	0	0	0	0	2,00,000
409 4538	4538 LSRET-JNC/SKP	0	0	2,00,000	0	0	0	0	0	2,00,000
410 4539	4539 LSRET-JNC/SKD	0	0	3,00,000	0	0	0	3,00,000	0	0
411 4540	LSRET-JNC/MKP	0	0	2,00,000	0	0	0	64,856	0	1,35,144
412 4541	LSRET-JNC/GS	0	0	2,60,000	0	0	0	2,60,000	0	0
413 4542	LSRET-JNC/AJ	0	0	4,00,000	0	0	0	0	0	4,00,000
414 4543	4543 LSRET-JNC/TNCV	0	0	4,00,000	0	0	0	1,18,617	0	2,81,383
415 4544	4544 LSRET-JNC/KSN	0	0	4,00,000	0	0	0	83,696	0	3,16,304
416 4545	LSRET-JNC/SB	0	0	4,00,000	0	0	0	2,44,374	0	1,55,626
417 4546	LSRET-JNC/EM	0	0	4,00,000	0	0	0	11,100	0	3,88,900
418 4547	LSRET-JNC/TKM	0	0	4,00,000	0	0	0	0	0	4,00,000
419 4548	LSRET-JNC/SJG	0	0	4,00,000	0	0	0	3,98,182	0	1,818
420 4549	4549 SERB/NSV	0	0	15,65,540	0	0	1,62,500	1,27,902	0	12,75,138
421 4550	4550 LSRET-JNC/KJ	0	0	2,00,000	0	0	0	0	0	2,00,000
									000 V	

	Soup.										
4,27,67,788	0	63,96,609	34,42,984	1,19,37,596	2,43,571	3,57,15,744	2,85,85,662	0	6004 SSL/CNR	6004	454
33,00,847	0	0	21,70,745	0	0	0	54,71,592	0	CSIR-COE/CNR	6003	453
33,60,116	0	0	0	28,11,315	0	2,18,111	59,53,320	0	6002 DRDO/CNR	6002	452
2,84,70,063	0	0	0	1,71,39,500	0	5,35,072	4,50,74,491	0	6001 SSL/CNR	6001	451
0	24,28,431	0	0	0	0	0	0	24,28,431	5105 DST-ICMS/CNR	5105	450
0	29,10,103	0	0	0	0	0	0	29,10,103	5104 CSIR-COE/CNR	5104	449
0	1,64,650	0	0	0	0	0	0	1,64,650	DST/CNR	5103	448
0	8,000	-773	0	0	0	0	0	8,773	DRDO/CNR	5102	447
0	5,73,994	0	0	0	0	0	0	5,73,994	5101 DST/SAC-PM/CNR	5101	446
0	4,10,730	-36,216	0	0	0	0	0	4,46,946	5100 CSIR/COE	5100	445
3,35,000	0	0	0	0	0	3,35,000	0	0	4577 SERB-TARE/UW	4577	444
0	2,44,180	2,44,180	0	0	0	0	0	0	SERB-JCB/VN	4576	443
9,00,000	0	0	0	0	0	9,00,000	0	0	BIAL/KRS	4575	442
70,648	0	618	0	0	0	71,266	0	0	4573 DST/KS	4573	441
8,40,000	0	0	0	0	0	8,40,000	0	0	4572 DST-BRICS/AS	4572	440
42,36,700	0	0	0	0	0	42,36,700	0	0	4571 SERB/RV	4571	439
1,16,600	0	0	0	0	0	1,16,600	0	0	4568 TIGS/MI	4568	438
35,23,290	0	2,76,710	0	0	0	38,00,000	0	0	4566 SERB/MRS	4566	437
10,11,667	0	11,284	22,000	0	0	10,77,951	0	0	DST/SHWETHA P	4565	436
3,27,743	0	7,257	0	0	0	3,35,000	0	0	4564 SERB-TARE/HB	4564	435
9,55,430	0	4,570	0	0	0	9,60,000	0	0	4563 SERB/MKB	4563	434
9,60,000	0	0	0	0	0	000'09'6	0	0	4562 SERB/KAUSHIK K	4562	433
10,50,000	0	0	0	0	0	10,50,000	0	0	DBT-RLF/K.BANSA	4561	432
0	87,547	87,547	0	0	0	0	0	0	LSBU/KSN	4560	431
3,26,738	0	9,166	0	0	0	3,35,904	0	0	SERB-TARE/SSA	4559	430
3,10,904	0	25,000	0	0	0	3,35,904	0	0	4558 SERB-TARE/SCP	4558	429
39,90,000	0	0	0	0	0	39,90,000	0	0	4557 TRC-JNC/KB	4557	428
1,40,857	0	2,50,000	54,553	0	0	4,45,410	0	0	4556 IISER/NC	4556	427
5,25,255	0	3,48,545	70,200	0	0	9,44,000	0	0	IRTSPL/TKM	4555	426
7,60,265	0	10,78,000	71,226	0	0	19,09,491	0	0	SERB-JCB/SKP	4554	425
40,85,000	0	48,392	0	0	0	41,33,392	0	0	4553 DST/NC	4553	424
14,37,385	0	34,857	0	1,16,902	0	15,89,144	0	0	4552 SERB/TNCV	4552	423
0	83,216	5,83,216	0	0	0	2,00,000	0	0	4551 IKST/UW	4551	422

455	6005	6005 JNCASR	0	0	3,59,031	0	0	0	20,981	0	3,38,050
456	9001	SWAPAN K PATI	0	68,951	28,356	0	0	0	0	0	97,307
457	9002	TAPAS K MAJI	0	9,971	34,467	0	0	0	25,904	0	18,534
458	9003	9003 MANEESHA S INAM	0	53,574	48,800	0	0	0	49,947	0	52,427
459	9004	9004 S.RAJARAM	0	56,712	28,358	0	0	0	0	0	85,070
460	9005	9005 RAVI MANJITAYA	0	72,327	68,578	0	0	0	8,528	0	1,32,377
461	9006	TKK-EM	0	14,992	20,000	0	0	0	0	0	34,992
462	9007	KANISHKA BISWAS	0	39,697	1,60,364	0	0	0	51,943	0	1,48,118
463	9008	9008 RANJANI VISWANA	0	51,425	10,000	0	0	0	31,349	0	30,076
464	6006	SEBASTIAN PETER	0	96,598	47,918	0	0	0	79,941	0	64,575
465	9010	9010 SARIT S AGASTI	0	4,18,057	53,096	0	0	0	32,939	0	4,38,214
466	9011	GOVINDARAJUT	0	12,649	20,000	0	0	0	19,528	0	13,121
467	9012	SHIVAPRASAD SM	0	1,94,252	0	0	0	0	0	0	1,94,252
468	9013	SUNDARESAN A	0	13,328	17,000	0	0	0	12,941	0	17,387
469	9014	9014 RAJENDRAN C P	0	18,742	12,510	0	0	0	15,747	0	15,505
470	9015	9015 JAYANTA HALDAR	0	17,268	35,226	0	0	0	13,145	0	39,349
471	9016	9016 SREENIVAS K R	0	7,225	6,400	0	0	0	0	0	13,625
472	9017	NAGARAJ KK	0	40,000	0	0	0	0	40,000	0	0
473	9018	SAJAD AHMED BHA	0	453	0	0	0	0	453	0	0
474	9019	SHAILENDRA K SI	0	21,113	13,074	0	0	0	34,187	0	0
475	9020	9020 SHAFEEKH K MEET	0	806'6	0	0	0	0	806'6	0	0
476	9022	9022 KAMALI KESAVAN	0	19,946	0	0	0	0	19,946	0	0
477	9023	9023 VIJAYKUMAR S MA	5,431	0	0	0	0	0	-5,431	0	0
478	9024	AMIT GUPTA	0	20,000	0	0	0	0	0	0	20,000
479	9025	LAKSHMI GARIMEL	0	20,000	0	0	0	0	0	0	20,000
480	9056	9026 RAJESH GANAPTI	0	0	20,000	0	0	0	0	0	20,000
481	9027	9027 PROVAS PAL	0	20,760	16,329	0	0	0	37,089	0	0
482	9028	9028 SUKANTA MONDAL	0	22,849	0	0	0	0	22,849	0	0
483	9029	SHIVANNA M	0	23,233	16,767	0	0	0	40,000	0	0
484	9030	S.BANDI	0	11,110	0	0	0	0	11,110	0	0
485	9031	HEMALATHA BALAR	0	68,200	34,000	0	0	0	0	0	1,02,200
486	9032	9032 ASHISH SINGH	0	21,699	0	0	0	0	21,699	0	0
487	9033	SOUMALYA JOARDA	0	7,000	0	0	0	0	7,000	0	0
					I			-		Gono	

9035 CSARASWATHI 9036 SUBHENDU ROY CH 9037 NARASIMHA R	•)	2=2/:
SUBHENDU ROY NARASIMHA R	0	18,828	0	0	0	0	18,828	0	0
7 NARASIMHA R	0	20,000	20,000	0	0	0	40,000	0	0
O IVALICATING CANIVAL	0	63,750	0	0	0	0	0	0	63,750
& KAUSIUV SAINTAL	0	29,000	61,464	0	0	0	11,717	0	78,747
9039 DIWAKAR S VENKA	0	33,210	33,210	0	0	0	0	0	66,420
9040 RANGA UDAY KUMA	0	1,92,776	1,03,806	0	0	0	0	0	2,96,582
9041 INIYAVAN P	0	20,000	0	0	0	0	20,000	0	0
9042 MEHEBOOB ALAM	0	2,076	47,312	0	0	0	0	0	49,388
9043 PARDHASARATHI S	0	13,763	0	0	0	0	13,763	0	0
9044 CHANDRAIAH M	0	0	20,000	0	0	0	20,000	0	0
9045 LAXMINARASIMHAR	0	20,000	20,000	0	0	0	40,000	0	0
9046 SUBARNA DEY	0	13,333	20,000	0	0	0	33,333	0	0
9048 DARSI RAMBABU	0	12,903	20,000	0	0	0	32,903	0	0
9049 SANDRA DIAS	0	20,000	20,000	0	0	0	40,000	0	0
9050 RUCHIKA BHARADW	0	20,000	0	0	0	0	20,000	0	0
9051 ESWARAMOORTHY M	0	10,000	20,000	0	0	0	0	0	30,000
9052 SHRINKA SEN	0	20,000	20,000	0	0	0	40,000	0	0
9053 ASWATHY NARAYAN	0	20,000	20,000	0	0	0	40,000	0	0
9054 MAMTA NEGI	0	20,000	20,000	0	0	0	40,000	0	0
9055 MD.HASHIM REZA	0	20,000	20,000	0	0	0	40,000	0	0
9056 SHWETA PANCHAL	0	20,184	0	0	0	0	20,184	0	0
9057 SRIKANTH SASTRY	0	1,26,063	36,332	0	0	0	3,625	0	1,58,770
9058 PREMKUMAR SENGU	0	282	14,138	0	0	0	0	0	14,725
9059 G L BALAJI	0	20,000	20,000	0	0	0	40,000	0	0
9060 MEHRAJ UD DIN S	0	10,611	20,000	0	0	0	30,611	0	0
9061 KAMAN SHARMA	0	13,366	20,000	0	0	0	33,366	0	0
9062 MOKURALA KRISHN	0	10,166	0	0	0	0	10,166	0	0
9063 SUMAN YADAV	0	20,000	0	0	0	0	20,000	0	0
9064 SHASHIDHARA ACH	0	20,000	20,000	0	0	0	40,000	0	0
9065 SAMPATH KUMAR V	0	20,000	0	0	0	0	20,000	0	0
9066 NAMITA SUROLIA	0	695	16,000	0	0	0	0	0	16,695
9068 UMESH V WAGHMAR	0	0	54,208	0	0	0	0	0	54,208

26,696	11,666	1,94,368	12,467	13,635	6,971	36,244	20,600	20,000	32,79,62,928	32,860	4			
		1,							32,79,	1,09,19,	, ///	/	संपद पात्रा	लेखा-अधिकारी
0	0	0	0	0	0	0	0	0	0	5,40,50,192	7	7	÷	नेखा-
5,637	0	5,632	0	0	0	18,756	0	0	14,09,48,635	49,78,42,776 5,40,50,192 1,09,19,32,860				
0	0	0	0	0	0	0	0	0	0	8,32,55,397				
0	0	0	0	0	0	0	0	0	0	32,56,37,003 48,70,84,710 8,32,55,397				
0	0	0	0	0	0	0	0	0	32,39,92,487	32,56,37,003				
32,333	11,666	2,00,000	12,467	13,635	6,971	55,000	20,600	20,000	0	72,13,78,901				
0	0	0	0	0	0	0	0	0	14,49,19,076	1,10,47,59,755				
0	0	0	0	0	0	0	0	0	0	কুল 4,57,10,108 1,10,47,59,				
9070 NARAYAN K S	9071 SUBI JACOB GEOR	9072 NAGARAJA V	9073 JAMES CHELLAIAH	9074 VIDHYADHIRAJA N	9075 TNC VIDYA	9076 CHANDRABHAS N	9077 SANTOSH ANSUMAL	9078 MRS RAO	OTHER CREDIT BALANCES	छक्				
9020	9071	9072	9073	9074	9075	9026	2206	8206						
521	522	523	524	525	526	527	528	529	530					

