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Synopsis

This thesis is divided into five chapters.

(A)The first chapter in the thesis gives a brief introduction and motiva-

tion for studying low dimensional systems. We have discussed about how the

properties change very drastically when going from bulk to a lower dimen-

sional scale. The importance of theoretical calculations and how it can help

in the study of such materials are discussed. Computational science can help

suggest new materials with desired properties, and can also help understand

and explain experimental results by analysing the factors involved separately.

The theoretical tools used for the calculations in the work reported in this

thesis are briefly mentioned.

(B)The second chapter of the thesis gives a brief description on density

functional theory (DFT). An introduction to the many-body problem and the

approximations involved are discussed. The techniques used for implement-

ing the density functional theory like plane-wave basis set, k-point sampling

and smearing are explained. The theory of calculating forces on the atoms

by the Hellmann-Feynman theorem is discussed. The framework of spin-

polarised DFT used for the calculation of magnetic properties of systems is

also briefly described.

vii



(C) The third chapter is dedicated to the study of “Surface alloys on a

W(110) substrate”. It deals with two-dimensional systems of surface alloys,

obtained by mixing two different metals over the surface of another metal.

Metals that do not form alloys in the bulk phase may allow an atomic level

mixing at the surface. Surface alloys become even more interesting when at

least one of the constituents is magnetic, as both lower coordination at the

surface and the change in effective coordination number due to alloying can

have significant impact on the magnetic properties of the system.

We chose eight different metals, three magnetic and five non-magnetic

metals, belonging to a range of sizes and studied the surface alloy forma-

tion over the W(110). We studied the properties of the single-component

monolayers of these metals over W(110). We calculated preferred surface

sizes of the atoms on the W(110) surface using stress calculations. We also

investigated the stability and the magnetic property of the alloys formed

(four configurations of alloys considered for every pair of magnetic and non-

magnetic metals considered by us). We have tried to analyse the stability of

these surface alloys by separating the elastic and chemical contributions to

the energy.

(D) The fourth chapter is devoted to the study of “Controlling morphol-

ogy of Au clusters by substrate doping”. We have carried out first principles

investigations on the stable geometry and morphology of a 20-atom Au clus-

ter. Au20 clusters are found to be catalytically active and this property is

especially desirable for oxidation reactions as Au clusters were found to ad-

sorb oxygen molecules strongly and cause an activation of the O-O bond.

The Au clusters were found to be more catalytically active when they were



deposited on defect-rich MgO (F-center defects) than on MgO without any

defects. This is due to the formation of slightly negatively charged Au cluster

on defect-rich MgO. It was futher calculated and experimentally proven that

Au clusters on Mo-supported thin film of MgO preferred a two dimensional

planar geometry than the stable tetrahedral geometry of the free cluster.

Here, the planar geometry was found to be more negatively charged than the

tetrahedral geometry and hence, the catalytic activity of the planar cluster

was predicted to be higher. In this project, we have developed a strategy to

alter the tetrahedral geometry of the free cluster to the catalytically more

active planar geometry by depositing the cluster over Al-doped MgO.

(E) In the fifth chapter the salient features of the findings of the thesis

are summarised and some outlook for future projects are discussed.
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Chapter 1

Introduction

In this thesis, we wish to present some theoretical studies on the properties

of some examples of low dimensional systems. The main theme is to explore

new ideas for controlling the miscibility and morphology of these low dimen-

sional systems. The properties of such systems differ very drastically from

their corresponding homogeneous bulk form. Extrapolation of the properties

of the bulk systems does not always seem to describe or predict the behaviour

of the same system at lower dimensions. Some of the properties of the bulk

may be enhanced or diminished in the nano-regime. In some cases, novel

properties seem to arise, and properties characteristic of the bulk may dis-

appear completely when the dimensions are reduced to the nanometre scale.

The study of these materials is very fundamental and interesting. The devel-

opment of nanomaterials is very promising as it can lead to miniaturization

of devices. The properties of the materials can be tuned or manipulated

according to the need of the application. Even small changes in the sizes

within the nanoscale regime can create differences in quantities such as band
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gaps or surface properties. If nanoparticles can provide desired effects simi-

lar or better than the bulk material, this will also lead to lesser quantity of

materials used, and will thus reduce the expense and also reduce the waste

produced.

1.1 Low dimensional systems

In low dimensional systems, the properties are significantly affected by the

fact that they are finite along at least one-dimension. Examples of two-

dimensional systems are surfaces, thin films or monolayers. Nanotubes,

nanowires and nanorods are examples of one-dimensional systems, and clus-

ters of atoms and quantum dots are examples of zero-dimensional systems.

Reduction in dimension in all these cases result in the reduction of atomic co-

ordination number at the surface. Since the surface-to-volume ratio is high,

this results in very different properties from the bulk. Structural or geomet-

rical rearrangements may occur more easily depending on the environment

of the system.

Some of these features are studied in this thesis. The first part deals

with the two-dimensional systems of surface alloys, obtained by mixing two

different metals over the surface of another metal. Metals that do not allow

formation of alloys in the bulk phase may allow atomic level mixing at the

surface. These calculations were done at the request of experimentalists,

to suggest which choice of metals would give a stable long range ordered

surface alloy, hopefully with interesting magnetic properties. The general

approach to the study was to compute the stability of many systems with

2



different configurations. We then tried to understand the factors that govern

the mixing and formation of such materials. We calculated properties like

the magnetic moments, the stresses induced, and the elastic and chemical

interaction contributions to the formation of the surface alloy.

The second part of the thesis involves the study of a zero-dimensional

system which is a cluster of twenty gold atoms. The properties of clusters of

elements or compounds are found to be drastically different from their bulk

form. The high surface-to-volume ratio, and the low coordination number

of the atoms on the surface, make these clusters highly reactive. The size

and geometry of these clusters are very interesting to study. It is found that

clusters with certain number of atoms are especially stable. The mass spectra

of clusters, both metallic and non-metallic, show a pronounced intensity for

certain numbers of atoms [1, 2]. These numbers are termed magic numbers.

These magic numbers may have structural or electronic origin. Often the

crystal structure of a large nanocluster is the same as the bulk structure

of the material, with slightly contracted lattice parameters from the bulk.

Intermediate size clusters show altered crystal shapes where the total energy

is minimized; the exact morphology depends on the surface energies related

to the specific crystal facets of the material. Still smaller clusters typically

show structures that are completely different from the bulk. A general feature

for small clusters is that several structural isomers are close in energy. The

properties of these isomers may vary strongly with structure. For application

purposes, a certain geometry may be more preferable than another and ways

to control this geometry need to be developed. We have tried to come up

with a simple prescription for tailoring the geometry and morphology of a

3



Au20 cluster.

1.2 Experiments and Theory

The substantial development in experimental techniques has led to many

new discoveries in the last few decades. Theory is also fast developing to

understand these discoveries. Theory is an effective tool not only to under-

stand the properties of bulk and nanomaterials, but also to search for new

materials and/or novel properties.

Theory can help in understanding the origin of properties in a material by

disentangling the several factors that contribute to any particular property.

For example, experimentally it is difficult to separate out the effect of mag-

netism on a system. However, theory can compute properties of the material

in the presence and absence of its magnetism, that is it can study the effects

of magnetism on the properties of the system by switching it on or off. Fur-

ther, experimentally, a material may occur in one or very few structures, so

the information to be gathered is very limited. Theoretical calculations can

study a range of hypothetical structures even if they do not exist in nature,

and understand the reasons for the stability of the nature-selected structures.

In the first part of this thesis on surface alloys, we have done studies on

15 systems (with four different configurations each) of a pair metals over a

tungsten substrate. This would be very tedious to do experimentally. Calcu-

lations can help reduce the wastage of materials and save a lot of time of the

experimentalists by suggesting the ideal system with the desired property.

The second part of the thesis involving Au clusters is motivated by the idea

4



of designing a novel method to control the morphology of the cluster. We

wish to suggest to experimentalists this method of manipulating the sub-

strate by doping it, to induce a structural or dimensionality change in the

Au cluster.s

1.3 Theoretical Tools

Depending on the time and length scales involved in the study, many the-

oretical tools are available to study different phenomena. Theoretical stud-

ies of properties of materials became much more practicable and accurate

with the formulation of density functional theory (DFT) by W. Kohn, P.

Hohenberg and L.J. Sham. [3,4]. This is one of the most sophisticated tech-

niques currently available to study the quantum many-body problem. It is,

in principle, exact, and and in practice it allows the calculation of several

properties of the system with reasonable accuracy. These calculations are ab

initio first-principles electronic structure calculations. The only input is the

atomic number of the elements and no other empirical inputs are needed.

The DFT technique has been implemented in many packages like SIESTA,

VASP, WIEN2k, ABINIT, Quantum-ESPRESSO, etc. We have used the

Quantum-ESPRESSO package [5] in the studies discussed in this thesis.

1.4 Outline of the Thesis

This thesis comprises of four chapters. Chapter 2 provides a description of

DFT and the techniques related to performing DFT calculations, such as

5



pseudopotentials, choice of basis sets, smearing, calculation of forces and

stresses, etc.

In Chapter 3, we present our studies on surface alloys. The chapter

includes an introduction to the subject, the methods used for the study, the

discussion of the results we obtained, and finally the summary.

In Chapter 4, we study the morphology of Au20 clusters. We have sug-

gested a neat and relatively easy technique to manipulate the substrate such

that it controls the morphology of the Au20 cluster. This chapter consists of

an introduction, methods used, discussion of results and a summary.

In Chapter 5, we conclude by listing out the major results in our work.

We also discuss an outlook for future work.
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Chapter 2

Density Functional Theory

2.1 The many-body problem

The Schrödinger equation (SE) for a many-body interacting system can be

written as given below.

{Hion +Hel +Hion−el}Ψtot = EΨtot, (2.1)

where the subscripts ion and el refer to the nuclei and electrons respectively,

Ψ represents the wavefunction of the system and E represents the energy

eigenvalue of the Hamiltonian. The first two terms Hion and Hel are contri-

butions to the Hamiltonian from the nuclei and electrons respectively. They

include the kinetic and potential energy terms. The third term Hion−el refers

to the interaction between the nuclei and the electrons. The wavefunction Ψ

contains all information about the system. Every term in the equation brings

7



up mathematical complications, and the complexity of the many-body prob-

lem makes solving the equation impossible. Three major approximations are

applied for an efficient and accurate approach to the problem:

• The Born-Oppenheimer adiabatic approximation for decoupling the nu-

clear and electronic degrees of freedom.

• Density functional theory for handling the term involving electronic

interactions in Hel.

• The plane wave pseudopotential approximation which simplifies the cal-

culation of the interaction between the nuclei and electrons in Hion−el.

These approximations are discussed further below.

2.2 Born-Oppenheimer approximation

The difference in mass of electrons and ions lead to faster electronic motion

and a comparatively sluggish behaviour of nuclei. By this approximation [6],

it is possible to decouple the nuclear degrees of freedom from those of the

electrons. If Ψi is a set of eigen functions and εi are the corresponding

eigenvalues which are solutions to the Hamiltonian H when masses of nuclei

(MI) are taken to be very large (or ∞):

{

lim
MI→∞

H

}

Ψi(R, r) =

{

−~
2

2me

∑

j

∇2
j + V (R, r)

}

Ψi(R, r) = εi(R)Ψi(R, r),

(2.2)
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where me is the mass of the electron, V is the potential and ~ is Planck’s

constant divided by 2π. R and r refer to the positional coordinates of the

nuclei and electrons respectively, and j is an index running over all the elec-

trons in the system. The adiabatic approximation [7] states that the particle

in the nth eigenstate of the initial Hamiltonian will be carried on to the nth

eigenstate of the final Hamiltonian after the Born-Oppenheimer approxima-

tion. The approximation improves as the nuclear mass increases. Since the

coupling between ground and excited states are minimum, the adiabatic ap-

proximation holds true and the total wavefunction Ψtot(R, r) can be written

as a single term, a function of the ground state wavefunction Ψ0(R, r):

Ψtot(R, r) ≈ Ψ0(R, r)Φ0(R). (2.3)

The total Hamiltonian within the ground state adiabatic approximation

is given by:

{

−~
2

2

∑

I

∇2
I

MI

+ εi(R)

}

Ψ0(R, r)Φ0(R) ≈ EΨ0(R, r)Φ0(R). (2.4)

The electronic wavefunction Ψ0 has a weak dependence on nuclear coor-

dinates and hence all kinetic energy observables of Ψ0 can be ignored. The

nuclear kinetic energy operator acts solely upon the Φ0 component of wave-

function.
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2.3 Density Functional Theory

Several methods were developed to tackle the many-body Schrödinger equa-

tion. Physicists developed the diagrammatic perturbation theory, Green’s

functions and the Hartree-Fock formulation. In chemistry, configuration in-

teraction methods, based on systematic expansion in Slater determinants

were used. These latter calculations are expensive computationally and are

almost impossible for large and complex systems.

A landmark development in the field of computational science was the

formulation of the Density Functional Theory. This enabled the applica-

tion of electronic structure theory to real problems, and led to the Nobel

Prize in Chemistry (1998) for Walter Kohn. Density functional theory repre-

sents a complete reformulation of the Schrödinger equation. The many-body

N -electron wavefunction is replaced by the electronic density as the basic

variable. It makes the problem much simpler as it implies that the electronic

density that depends on only position (3 variables) can give us all the infor-

mation contained in the 3N -variable quantity wavefunction. Here electron

density, which was earlier just an observable of the wavefunction becomes

the key variable. The electron density is defined as:

n(r) = N

∫

d3r2

∫

d3r3...

∫

d3rNΨ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN). (2.5)

The prime simplification of the problem relates to considering the many-

body interacting system as a one-body non-interacting system by including a

term that deals with the exchange and correlation or the many-body effects
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of the system.

2.3.1 Hohenberg-Kohn (H-K) Theorem

The Hohenberg-Kohn theorem [8] states that given a ground state density

n0(r), its corresponding ground state wavefunction Ψ0[n0(r)] can be calcu-

lated. It implies that the external potential can also be estimated from the

ground state density within an additive constant. The essence of the H-K

theorem lies in the fact that the ground state expectation value of any observ-

able is a functional of n0(r). Energy, which is the most important observable,

can also be written as a functional of the particle density:

E0 = E[n0]. (2.6)

The energy corresponding to the ground state density will always be lower

than the energy derived from any other density. If e is the electronic charge,

me is the mass of the electron and ri is the position vector of the ith electron,

the energy is given by the expectation value of the electronic Hamiltonian

He, which is uniquely determinable from the ground state electronic density:

He = Hel +Hel−ion =
−~

2

2me

∑

j

∇2
j +

1

2

∑

j 6=k

e2

| rj − rk |
+

∑

j

Vext(rj), (2.7)

where j and k run over the electrons in the system.

E0 ≡ 〈Ψ0[n0] | He | Ψ0[n0]〉 = Tel[n0] + Eel−el[n0] +

∫

Vext(r)n0(r)dr, (2.8)
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where the terms Tel and Eel−el represent the kinetic energy and the interactive

potential energy between the electrons respectively and Vext gives the external

potential felt by the electrons due to the presence of the nuclei. The nuclear-

nuclear interaction potential term is omitted from this expression and can

be added later easily.

The H-K theorem further defines a universal functional F [n] which is a

quantity independent of the system. The functional F [n] is written as the

sum of the internal kinetic and potential energies of the system, and

E[n0] = F [n0] +

∫

Vext(r)n0(r)dr. (2.9)

The true form of the functional is unknown and approximations are involved

in calculating this term. The external potential energy term is on the other

hand exact.

2.3.2 Kohn-Sham Representation

The Kohn-Sham treatment [4] maps the problem of a many-body interacting

system onto a single-particle problem. The Schrödinger equation for a non-

interacting system is given as:

{

−~
2

2me

∑

j

∇2
j + Vext(r)

}

ψi(r) = εψi(r), (2.10)

where ε is the energy eigen value. For an interacting system, two terms con-

sidering the Coulomb interaction between electrons as well as the exchange

correlation effects in the system are added:
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{

−~
2

2me

∑

j

∇2
j + Vext(r) + VH(r) + Vxc(r)

}

ψi(r) = εψi(r), (2.11)

or
{

−~
2

2me

∑

j

∇2
j + Veff (r)

}

ψi(r) = εψi(r), (2.12)

where VH(r) is the Hartree potential which gives the electrostatic interaction

between the electrons in the interacting system. The term Vxc is a non-

classical term that takes into consideration the exchange and correlation

effects between the electrons (discussed in the next section). The expression

of the Hartree potential is as shown:

VH(r) =
e2

2

∫ ∫

n(r)n(r′)

| r − r′ |
drdr′. (2.13)

It is clear from the equations that the many-body interacting system can

be treated like a single-body system with the Vext term being replaced by an

effective potential Veff known as the Kohn-Sham potential which includes all

the many-body effects. It can be solved exactly like the one-electron system.

The ground state charge density, n(r), is expressed in terms of one-electron

orbitals (K-S orbitals), ψi(r):

n(r) =
N

∑

i

| ψi(r) |
2 . (2.14)

where N is the number of electrons. The total energy is given by:
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EHK [n0] = T [n0] +

∫

Vext(r)n0(r)dr +
e2

2

∫ ∫

n0(r)n0(r
′)

| r − r′ |
drdr′ + Exc[n0],

(2.15)

where T [n0] is the kinetic energy corresponding to the ground state density,

and Exc[n0] is the corresponding exchange-correlation energy.

The method of density functional theory is employed by solving the set of

equations self consistently. The common procedure followed is listed below.

1. A value of the electronic density is guessed, e.g., from the superposition

of the atomic orbitals in the system.

2. The corresponding Kohn-Sham potential is calculated.

3. Using the potential, the Hamiltonian is diagonalized to estimate the

Kohn-Sham orbitals ψj(r).

4. The newly obtained electronic density is checked for convergence by

comparing with the initial guess.

5. A certain combination of the two densities gives a new guess, and the

process is repeated until a predefined convergence threshold is achieved.

2.3.3 Exchange-Correlation Functional

The exchange-correlation functional is a term that arises in the Kohn-Sham

equations that takes into consideration the many-body effects of the system.

Apart from the Coulombic interaction, there exists an effective interaction

between electrons due to their spin. The Pauli exclusion principle forbids
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two electons of the same spin to co-exist in the same orbital. The interaction

between two electrons of like spin is termed the exchange energy, whereas the

correlation energy is defined as the difference between the exact energy and

the Hartree-Fock energy. The exact formulation of the exchange-correlation

functional is not known. The most commonly used forms are the local density

approximation (LDA) and the generalized gradient approximation (GGA).

In the local density approximation [9] the system is replaced locally by a

homogeneous electron gas with a constant density. The-exchange correlation

energy is calculated by integrating over space the energy density ehomo
xc for

a homogeneous electron gas, with the density being replaced by the actual

electronic density at each point of the inhomogeneous system:

ELDA
xc =

∫

ehomo
xc [n0(r)]n0(r)dr. (2.16)

The exchange-correlation potential is given as the functional derivative

of the energy with respect to the electronic density:

Vxc =
δExc[n]

δn(r)
. (2.17)

Initially it was thought that the LDA could be appropriate only to systems

with a slowly varying density; however it has been shown to work well even

for fairly inhomogeneous distributions. The LDA is exact for a uniform

electron gas, but it fails for strongly correlated systems like heavy fermions.

It also generally overbinds, i.e., it gives lattice constants that are too small

and cohesive energies that are too large.
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A modification of the LDA which supplements the density with the gra-

dient of the density, is the generalized gradient approximation (GGA) [10].

It has the general form:

EGGA
xc =

∫

ehomo
xc (n(r))Fxc[r, n(r),∇n(r)]dr. (2.18)

Here Fxc is termed the enhancement factor and is a functional of the electronic

coordinates, electron density and the gradient of the electron density. The

forms suggested by Perdew and Wang (PW91) [10] and by Perdew, Burke

and Ernzerhof (PBE) [12,13] are two popularly used functional forms of the

GGA. They vary in the Fxc term. These approximations generally reduce

the binding energy, unlike the LDA, thus often leading to better agreement

with experiments.

2.4 Plane wave pseudopotential framework

2.4.1 Plane wave basis set

The selection of a basis set to represent a problem is an important step

in the wavefunction characterization. For isolated systems such as atoms

and molecules, the most commonly used approaches are Gaussian or atomic

orbital basis sets. For extended systems, it is convenient to represent them

by a basis set of mutually orthonormal plane waves.

In principle, to study an infinite system, a full treatment of the infinite

number of electrons is required. The natural periodicity of the lattice saves

us from this impossible task. The extended system can be considered as an
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infinitely repeating array of supercells. The electrons feel a periodic external

potential Vext(r) = Vext(r + R), where R is a lattice vector.

Bloch’s theorem states that the wavefunction of an electron placed in a

periodic potential can be written as the product of a plane wavefunction and

a periodic function as shown below:

ψjk(r) = ujk(r)e
ik.r. (2.19)

Here ujk is a function that has the same periodicity as the nuclear potential

Vext and the exponential term is a plane wave. The additional index k is used

to describe the wavefunction. The wave vector k is stipulated to lie within

the first Brillouin zone. The periodic part ujk can be expressed in terms of

the reciprocal lattice vectors G as given:

ujk(r) =
∑

G

Cjk(G)eik.r. (2.20)

For studying non-periodic systems like surfaces, a certain space of vacuum

is added to the repeating cell, such that the atoms do not have a spurious

interaction with their periodic images in the next cell. For studying isolated

systems, the system can be considered to be in a box of dimensions much

larger than its lattice dimensions and calculations are carried for a periodic

array of these boxes.

The electronic density of the system can be calculated by summing the

square of the norms of the wavefunctions or the occupied Bloch states at a

given k point and then integrating over all k-points within the Brillouin zone:
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n(r) =
BZ
∑

k,G

occ
∑

j

fj | ψjk(r) |
2, (2.21)

where j runs over all the ocuupied states of the system. The factor fj defines

the occupancy of the jth state. The size of the basis set G is infinite, but

it can be restricted or decided by a parameter, known as the energy cutoff.

The kinetic energy of the plane wave is given by the expression:

T|k+G| =
~

2 | k + G |2

2m
. (2.22)

Retaining only those plane waves with a kinetic energy below some predefined

cutoff Ecut results in a finite basis set.

Plane wave basis sets have advantages over other sets. They are delocal-

ized and independent of atomic positions, making them ideal for calculations

on extended systems. They also make the evaluation of energies, forces and

stresses easier. Another notable advantage is that the size and quality of the

basis set can be controlled by a single parameter, the kinetic energy cutoff.

The main disadvantage of using plane waves as the basis set arises due to

complications in the core region of the atom. The core electron wavefunc-

tions are highly peaked and the valence electron wavefunctions show many

oscillations in the vicinity of the nucleus. This complexity is simplified by

creating a pseudo wavefunction with a pseudopotential which mimics the be-

haviour of the original potential and at the same time, reduces the number

of plane waves needed to adequately describe the pseudo wavefunction.
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2.4.2 Pseudopotential approximation

The term ion is redefined to include the atomic nuclei as well as the core

electrons. The core electrons are tightly bound to the nuclei and contribute

very little to chemical bonding. Most of the physical properties of the atom

depend on only the valence electrons. Here, the electrons are redefined to

refer only to the valence electrons.

The wavefunctions of the valence electrons are altered to remove the os-

cillations in the core region. A cutoff radius rc is decided beyond which the

pseudo wavefunction is identical to the all-electron wavefunction. The mod-

ification of the wavefunction occurs only in the core region where a nodeless

pseudo wavefunction capable of reproducing the correct valence behaviour is

created.

The problem now remains of obtaining optimal transferability. (A trans-

ferable pseudopotential is one that will be effective irrespective of the chem-

ical environment of the atom). As the cutoff radius increases, the number of

plane waves for the pseudo wavefunction decreases but leads to poor trans-

ferability. Good transferability requires that the pseudo system can replicate

the chemical hardness, the excitation energies and the scattering properties

of the original system.

Norm conserving pseudopotentials [17] were introduced in 1979 by Har-

mann, Schluter and Chiang. The norm of the all-electron wavefunction in

the core region (0 to rc) remains conserved in the pseudo wavefunction. The

charge of the core, and the scattering properties, are maintained in the pseudo

system. This improves the transferability of the pseudopotential.
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Another beautiful alternative to the norm-conserving pseudopotential was

introduced by Vanderbilt [18] in 1990. Certain atoms like the 2p, 3d and 4f

elements have highly localized charge densities in their valence shells as well

as the core. The norm conserving pseudopotential then becomes ineffective in

reducing the number of plane waves required by the problem. The ultrasoft

prescription neglects the norm conserving constraint, generates a smoother

function and substantially reduces the size of the required plane wave basis

set. It involves multiple reference configurations. The value of rc can be

increased without sacrificing transferability. The ultrasoft pseudopotential is

directly involved in solving the Kohn-Sham equations and so the changes in

the charge configuration are taken into account in every iteration.

2.5 k-point sampling

The calculation of electronic density or energy involves a continuous sum

over every k-point in the system. In principle, there are an infinite number

of k-points in the first Brillouin zone (BZ). In practice, it is sufficient to

replace the integral with a sum over discrete k-points, usually a Monkhorst

Pack grid [19] which is designed according to the symmetry of the system.

A uniform set of points is determined using the formula:

kn1,n2,n3
=

3
∑

i

2ni −Ni − 1

2Ni

bi (ni = 1, 2, 3, ..., Ni), (2.23)

where Ni is the number of special points in the set and b1,b2 and b3 are the
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primitive reciprocal lattice vectors.

Based on the symmetry of the system, a reduced number of k-points

can be chosen. For large supercells the integral can be sampled only at

the Brillouin zone origin k = (0, 0, 0), also known as the Γ point. This is

done as the BZ corresponding to a supercell of a perfect crystal contains

folded contributions from each component of the unit cell. Single k-point

sampling can also be carried out for low symmetry systems, as the inclusion

of other points might yield very little information. The accuracy of the Γ

point sampling improves as the size of the supercell increases.

For metals, more k-points are required to study the intricate features like

crossing of bands. The number can be reduced by employing techniques like

smearing or broadening.

2.6 Smearing

The position of the Fermi level with respect to the forbidden gap in the band

structure tells us about the nature of the material. In an insulator, the Fermi

level lies in the gap, whereas for a metal, it falls where there is a finite (non-

zero) density of states. The integration over all k-points for insulators poses

no problem and is well behaved, as the density of states goes smoothly to

zero before the Fermi level. At finite temperatures the occupancies become

continuous similar to the case if the bands were smeared in energy. For finite

temperature DFT calculations, Mermin introduced the concept of smearing

bands in energy near the Fermi level.

This introduces an entropic term to the total energy and it necessitates
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the minimization of the free energy F = E − TS rather than the total

energy, where F , T and S represent the free energy, temperature and entropy

respectively. If the entropic contribution to the free energy can be accurately

calculated, we can always recover the zero temperature result.

The total occupancy in the system is an integral over the occupancies at

each k point in the first Brillouin zone:

I =

∫

BZ

f(E)[1 − Θ[E(k) − EF ]]dk, (2.24)

where f(E) denotes the occupancy of the state, Θ is the Heaviside step

function and E(k) is the energy at k. The occupancies will be one or zero

depending on whether they lie below or above the Fermi level. For metals,

the step function Θ at EF is very difficult to resolve in plane waves, so it

is replaced by a smoother function (an approximation to the delta function)

which allows partial occupancies at EF . So, for metals, the occupancies are

smeared or broadened near the Fermi level.

Various techniques are used for this purpose, the common ones being

Gaussian smearing, Methfessel-Paxton smearing and Marzari-Vanderbilt cold

smearing. In Gaussian smearing [20], the levels are broadened by Gaussian

functions. For the Methfessel-Paxton smearing [21] the step function is ex-

panded in terms of Hermite functions which are actually products of Hermite

polynomials and Gaussian functions. The major drawback in this method is

negative occupation values. This result is unrealistic and causes problems in

visualizing density of states.

To treat the problems introduced by negative occupancies, a new method
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was developed by Marzari and Vanderbilt [22]. Here the delta function is

approximated by a Gaussian function multiplied by a first order polynomial.

2.7 Hellmann-Feynman Forces

The Hellmann-Feynman theorem [23] relates the derivative of energy with

respect to a parameter and the expectation value of the derivative of the

Hamiltonian with respect to that same parameter. It is given by the expres-

sion:

∂E

∂λ
=

∫

Ψ∗(λ)
∂H

∂λ
Ψ(λ)dτ (2.25)

where, the integration is over the domain of the wavefunction with the pa-

rameter taken to be λ. The most important application of the Hellmann-

Feynman theorem is the calculation of the intramolecular forces in a molecule

or extended system.

Earlier, forces were calculated though the agency of energy and its changes

with changing configuration of the atoms. To calculate the force on a nucleus

in a particular configuration, it was necessary to determine the energy for

two or more different and neighbouring configurations. In this way, a plot of

energy vs. nuclear coordinates was obtained, the slope of which gave the force

on the nucleus. The disadvantage of this method was that it required the

calculation of the wavefunctions and energy at the different configurations.

Hellmann and Feynman introduced a new method for the calculation of

forces using their theorem with the parameter λ replaced by the nuclear
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coordinate. It is designed to obtain forces at a given configuration without

the need for calculations at neighbouring configurations. For a system in

a steady state, we can define force as the negative of the derivative of the

average energy of the system with respect to the nuclear coordinate. If E is

the energy of the system with the Hamiltonian H and eigenfunction Ψ, then

the force on the nuclei is given by:

Fλ = −
∂E

∂λ
= −〈Ψ |

∂H

∂λ
| Ψ〉 (2.26)

For a molecule with 1 ≤ i ≤ N number of electrons with coordinates ri =

(xi, yi, zi) and 1 ≤ α ≤ M number of nuclei with their spatial coordinates

Ri = (Xα, Yα, Zα) and nuclear charge Zα, the Hamiltonian is defined as:

H = T + U −

N.M
∑

i,α

Zαe
2

| ri − Rα |
+

M,M
∑

α,β

ZαZβe
2

| Rα − Rβ |
(2.27)

Only two components of the Hamiltonian contribute to the calculation

of force, the interaction terms between electron-nucleus and nucleus-nucleus.

Hence, the derivative of the Hamiltonian will be given by:

∂H

∂Xγ

=
∂

∂Xγ

[ −

N,M
∑

i,α

Zαe
2

| ri − Rα |
+

M,M
∑

α,β

ZαZβe
2

| Rα − Rβ |
] (2.28)

= Zγe
2

N
∑

i

xi −Xγ

| ri − Rγ |3
− Zγe

2

M
∑

α 6=γ

Zα

Xα −Xγ

| Rα − Rγ |3
(2.29)

Inserting this into the Hellmann-Feynman expression gives us the x-

component of the force on the given nucleus in terms of electronic density
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ρ(r) and atomic coordinates and nuclear charges:

F γ
X = −Zγe

2

∫

drρ(r)
x−Xγ

| r − Rγ |3
−

M
∑

α 6=γ

Zαe
2 Xα −Xγ

| Rα − Rγ |3
. (2.30)

2.8 Stress Calculation

A system is said to be in equilibrium when the internal stress equals the exter-

nally applied stress. In our work, stress is calculated using a theorem derived

by Nielsen and Martin [24–26], where stress is expressed as the derivative of

energy with respect to the strain tensor ǫαβ per unit volume. The definition

of stress is given by:

σαβ =
1

Ω

∂Etot

∂ǫαβ

, (2.31)

where α and β are cartesian coordinates.

2.9 Spin-Polarised Density Functional The-

ory

Until now, we have considered only the spin-degenerate charge density n(r)

of electrons. That is, the number of electrons with up-spin is equal to the

number of electrons having a down-spin. Magnetism arises when this number

differs. Here, the charge densities of the electrons with up-spin and down-

spin need to be considered separately. The charge densities can be written
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in terms of the spin-up and spin-down Kohn-Sham orbitals ψ↑
i (r) and ψ↓

i (r)

as:

n↑(r) =
∑

i

|ψ↑
i (r)|

2,

n↓(r) =
∑

i

|ψ↓
i (r)|

2. (2.32)

The magnetisation density will be given as:

m(r) = n↑(r) − n↓(r). (2.33)

The charge density n(r) and the three components of the vector m(r)

constitute the basic variables of the spin density functional theory. The

Kohn-Sham equations then become:

{

−~
2

2me

∑

j

∇2
j + V ↑↓

eff (r)

}

ψ↑↓
i (r) = ε↑↓ψ↑↓

i (r), (2.34)

where the effective Kohn-Sham potential is of the form

V ↑↓
eff (r) = Vext(r) + VH(r) + V ↑↓

xc (r). (2.35)

Here, the spin dependent exchange correlation potential V ↑↓
xc (r) is the func-

tional derivative of the exchange correlation energy Exc[n
↑(r), n↓(r)] with

respect to the charge density n↑↓(r).

Like DFT, spin polarised DFT is also, in principle, an exact formulation.

Approximations are involved in the exchange-correlation functionals Exc and

26



V ↑↓
xc which carry all the many-body effects of the system. The LDA has

been modified considering the spin-spin interactions to give the local spin

density approximation (LSDA). GGAs for spin polarised systems have also

been similarly developed.
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Chapter 3

Surface alloys on a W(110)

substrate

3.1 Introduction

Alloys are defined as solid solutions of one or more elements in a metallic ma-

trix. The phenomenon of alloying on surfaces to form surface alloys involves

a two-dimensional mixing of atoms over a substrate. It can be the mixing of

one metal on the surface of another metal, or the mixing of two metals over

the surface of a third metal. This can result in periodic or irregular patterns

the surface. The properties of these alloys can be drastically different from

the alloys in the bulk phase.

The stability of a bulk alloy is governed by a set of rules, called the

Hume-Rothery rules [27]. These rules describe the conditions under which

one metal can easily dissolve in another metal: (i) the difference in sizes

of the atoms should not be more than 15%, (ii) an element with a lower
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valency can dissolve more easily in an element with a higher valency; for

maximum solubility, the solute and solvent need to be of the same valency,

(iii) the crystal structures of the elements should be similar, and (iv) the

electronegativity difference between the atoms should not be too much.

In the case of surface alloys, these rules do not seem to hold. Atoms of

different sizes are found to form stable surface alloys by means of reducing

stress. It was initially believed that if two atoms of different atomic sizes

were made to form an alloy over a substrate with its lattice spacing equal to

the average of their sizes, they would form stable surface alloys. A seemingly

good candidate for such a system might be Co and Ag alloying over Ru(0001).

The bond distances in Co and Ag are 2.52 Å and 2.89 Å respectively. The

lattice spacing of the substrate Ru is 2.70 Å and is close to the average of

the bond distances of Co and Ag. However, experiments [28] on this system

show that there is no atomic level mixing between the two species and they

form an irregular network of Ag islands in a Co matrix.

The field of surface alloys gained much attention when it was discovered

that even bulk-immiscible metals can form stable surface alloys as a result

of the different environment at the surface. It was found that Au, being

completely insoluble in bulk Ni, replaces Ni surface atoms in the first surface

layer forming a surface Au-Ni alloy [29]. Other examples of surface alloys of

this kind are monolayer confined mixing at the Ag-Pt(111) interface [30] and

Fe atoms embedded directly in the surface layer of a Pt(997) substrate [31].

In both cases the mixing is confined to the topmost layer of the Pt(111) and

Pt(997) surface respectively. On the surface, the atoms are poorly coordi-

nated and the bond lengths are different from the bulk.
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Pt Ag Au Cd Pb
Fe 2.63 2.69 2.68 2.73 2.99
Co 2.64 2.70 2.70 2.74 3.00
Ni 2.63 2.69 2.69 2.73 2.99

Table 3.1: The average of the nearest neighbour bonds, (aM + aN)/2, for
every pair of M and N considered by us. All the values are in Å. Most values
are comparable to the nearest neighbour bond length of W in bulk which is
2.76 Å. In this table, all the values used are experimental values [35].

Surface alloys become even more interesting when at least one of the

constituents is magnetic, because both the lower coordination at the surface

and the change in effective coordination number due to alloying can have

a significant impact on magnetic properties [32]. The magnetic moment of

the surface alloy per magnetic atom is found to be enhanced compared to

the bulk magnetic moment. Lowering of symmetry at the surface, enhanced

orbital contribution to magnetism, the narrowing of the d bands and the

increased value of the density of states at the Fermi level are reasons for the

increased magnetic moment at the surface [33]. An example of such a system

is Fe/W(110). Fe has a bulk magnetic moment of 2.2 µB, and when placed

on W(110) it shows a magnetic moment of 2.56 µB [34]. For the purpose

of magnetic memory storage devices, it can be convenient to have a surface

with patterns of magnetic and non-magnetic domains. For higher storage

and stability, a high magnetic moment and high magnetic anisotropy of the

system would be desired.

We have chosen eight different metals to consider the formation of alloys

over the substrate W(110). Three of the metals, Fe, Co and Ni (M) are

small and magnetic and the other five are non-magnetic and belong to a
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range of sizes from Pt, Ag, Au, Cd to Pb (N). The metals (M and N) were

chosen such that the lattice constant of W lies in between the bulk nearest

neighbour (NN) bond distance values of M and N. The average of the bulk

NN bond distances of every pair of M and N considered are tabulated in

Table 3.1. Most of these combinations of MN are bulk-immiscible except for

the alloys with Pt. Different compositions of the alloy and their arrangements

are studied. The elastic and the chemical contributions to the stability of

the system are extracted separately and looked into.

Earlier studies have been done with different substrates like Ru(0001) [36]

and Rh(111) [37]. They have done calculations of the same alloys over these

substrates, and analyzed the heat of formation and the magnetic moments

of the alloys formed. They have also split the total energy into elastic and

chemical contributions and studied their contribution towards the stability of

the alloys. A comparison of the alloys over the two substrates was also carried

out [38]. The alloys in the cases described were deposited over triangular

lattices of the Rh or Ru surfaces. (Rh and Ru have a face centered cubic and

hexagonal close packed lattice in the bulk respectively). The coordination

number of an isolated atom placed in a hollow site over these surfaces would

be three (nine for an atom in a monolayer). In our study we have used

another metallic substrate, tungsten. Tungsten has a body centered cubic

(BCC) lattice in bulk, and when exposed at the (110) surface, it displays

a centered rectangular lattice. An isolated atom placed pseudomorphically

above this surface would have a coordination number of only two (six for an

atom on a pseudomorphic monolayer). By studying the formation of alloys on

the tungsten (110) surface we hope to gain insights on the effects of geometry
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and coordination number on the stability and interesting properties of the

alloys formed.

Stress is of key importance while discussing effects like forces acting in a

surface layer of the metal, surface morphology, surface reconstruction, surface

diffusion and adsorbate induced changes of forces between surface atoms.

We have considered the stress experienced by the atoms on the W surface

to compute its effective size on the surface. The W(110) surface is highly

anisotropic [39]. The magnitude of the adsorbate-induced surface stress was

therefore found to be different along the [001] and [110] directions.

3.2 Method

Bulk and surface calculations were performed using the quantum-ESPRESSO

package [5] which is based on spin polarised Density Functional Theory [3].

The Kohn-Sham wavefunctions [4] were expanded in a plane wave basis set

with kinetic energy cut off of 40 Ry. Exchange and correlation effects were

treated using the Generalised gradient approximation (GGA) [10]. Ultrasoft

(Vanderbilt) pseudopotentials were employed to approximate the interaction

between the ion cores and electrons [18]. Brillouin zone sums were carried

out using Monkhost-Pack meshes [19]. Convergence was aided by using the

Methfessel-Paxton smearing [21] technique with the smearing width set equal

to 0.05 Ry. All structures were optimised to obtain stable geometries with

minimum total energy. To do this, the Hellmann-Feynman forces [23] were

calculated and convergence was assumed to have been achieved when forces

on all atoms were smaller than 0.001 Ry/Bohr .
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Surface properties of the W(110) surface were calculated using a 1 × 1

cell with one atom per layer. Monolayers of M/W(110) or N/W(110), where

M and N refer to magnetic and non-magnetic elements respectively, were

constructed and studied using the same cell. A 2 × 2 cell was constructed

when studying binary alloys of the form, MxN1−x/W(110) where x is the

fraction of magnetic metal included. An 8 × 8 × 1 k-point mesh of was used

for calculations on the W(110) surface and monolayers over W(110), and a

4 × 4 × 1 mesh was used for systems with alloys over the W(110) surface.

For stability and magnetic moments calculations of the alloys on tungsten,

an asymmetric slab consisting of four layers of tungsten with one layer of the

alloy above, and 11.3 Å of vacuum along the [110] direction, was considered.

For stress calculations and evaluation of effective surface sizes of the atoms

over the W(110) surface, a symmetric 1 × 1 slab of six layers of W, with

monolayers of atoms on both sides of the slab, and 11.3 Å of vacuum, was

considered.

3.3 Results and Discussions

3.3.1 Bulk and Surface calculations on W.

Bulk calculations for tungsten yielded results for the equilibrium lattice pa-

rameter to be 3.19 Å. This is close to the experimental value of 3.16 Å. The

bulk modulus was calculated to be 296.1 GPa which is in reasonable agree-

ment with the experimental value of 310 GPa [35]. A slab of tungsten with

(110) surfaces was considered to study the surface properties. A 1 × 1 cell
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with one atom per layer was constructed for the calculations. Six atomic lay-

ers with a vacuum of around 11.3 Å were included in the slab. The surface

energy of the slab was computed by the expression:

Surface energy =
Eslab − (nEbulk)

2A
, (3.1)

where Eslab and Ebulk are the energies of the relaxed structure of the slab

and the bulk, n is the number of layers in the 1 × 1 slab and A is the area

of the cross-section of the slab. It was calculated to be 0.193 eV/Å2 which

is comparable to earlier experimental results [41]. The relaxed inter-layer

spacing between the first and second layer, and second and third layer of the

W(110) slab were computed to be 2.170 and 2.257 Å respectively. These may

be compared to the bulk inter-layer spacing which is 2.256 Å.

3.3.2 Single-component monolayers of different metals

over W(110)

Single-component monolayers of magnetic metals Fe, Co and Ni, and non-

magnetic metals, Ag, Au, Cd, Pb and Pt, were considered on the W(110)

surface. Four different positions of the top layer (relative to the substrate)

were considered as shown in Fig. 3.1. In all calculations the monolayer and

two W layers beneath it were relaxed in the z direction. The pseudomorphic

positions (at the BCC sites) were found to be the most favourable (lowest

energy) site in all cases considered. The results of the calculations and the

final energies with respect to the most stable configuration for Fe/W(110)
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Position Final Energy (eV)
BCC positions (A) 0.00

top of W (B) 0.926
centroid (C) 0.590

edge (D) 0.425

Table 3.2: Various positions of Fe over W(110) and their corresponding ener-
gies. The positions are marked in Fig. 3.1 The pseudomorphic BCC position
is found to have least energy, thus making it most stable.

Figure 3.1: The W(110) surface geometry is depicted in this figure. The
positions labeled A, B, C and D are the four positions over the substrate
considered for monolayer formation over W(110). They are called the pseu-
domorphic positions, atop W, centroid and edge positions respectively by
us. The violet and blue spheres represent the W atoms on the (110) surface.
Note the anisotropy of the surface.

are listed in the Table 3.2. The energies, stresses, magnetisation and inter-

layer distances computed for the monolayers in their stable pseudomorphic

positions on the surface on W(110) are given in Table 3.3. For the system

Fe/W(110) we obtain a magnetic moment of 2.57 µB, which is very close to

earlier results of 2.56 µB [34]. It is interesting that a monolayer of Ni on

W(110) is found to be non-magnetic.

The surface stress experienced by these monolayers of atoms over the

W(110) surface was computed. To compute surface stresses, symmetric slabs

of six layers of W with monolayers of M or N metals on both surfaces, along
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Monolayer Etot (Ry) Magtot (BM/cell) σxx (Ry/Bohr3) σyy (Ry/Bohr3) d12 (Å)
Fe -692.5424 2.57 -0.000405 -0.000403 1.97
Co -711.1480 1.40 -0.000513 -0.000476 1.90
Ni -722.6669 0.00 -0.000335 -0.000237 1.86
Ag -710.4007 0.00 -0.000185 -0.000276 2.41
Au -724.5567 0.00 -0.000182 -0.000244 2.39
Cd -751.5183 0.00 -0.000311 -0.000432 2.54
Pb -756.9550 0.00 0.000432 0.000231 3.08
Pt -723.4349 0.00 -0.000261 -0.000207 2.12

Table 3.3: The energies (Etot), magnetisation (Magtot), stresses (σxx and σyy)
and the inter-layer distance between the monolayer atom and the W substrate
(d12) are listed in the table.

with five layers of vacuum, were considered for calculation. Only the surface

atoms M or N were allowed to relax. The surface stress can be extracted

from the stresses of the slabs of monolayers on W(110) and the stresses in

a similarly oriented and distorted slab of bulk W. The W(110) surface is

highly anisotropic, and the surface stress tensor is therefore not symmetric

in x and y. For extracting parameters from surface stress calculations, the

yy component of the stress tensor was considered. The expression used is

derived below:

Consider slabs consisting of atomic layers oriented perpendicular to [110].

Let σslab
αα be the αα component of the ”volume stress” for the M/W(110) or

N/W(110) slabs (it has dimensions of force per unit area, as opposed to

surface stress which has dimensions of force per unit length) with n number

of atomic layers and length Lz (5 layers of vacuum included) along the z

direction. σsurf (lxy) is the surface stress at an intraplanar bond length lxy

and σbulk
αα is the αα component of the volume stress for the bulk W cell

oriented in the same direction as the slab with the in-plane bond length

same as lxy. c is the repeating unit in the z direction in the bulk W. (The
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Figure 3.2: A slab of Fe/6 L W(110)/Fe is shown here.The grey and red
spheres represent the W and Fe atoms respectively. The bulk inter-planar and
intra-planar forces are shown. The inter-planar forces between the monolayer
and the bulk W layers is denoted by F12 and is labelled in the figure.

repeating unit has a ABAB stacking and so the interplanar distance is given

by c/2). As an example, Fig. 3.2 shows a slab of Fe/W(110) with 6 W layers

and 2 monolayers of Fe. The inter-planar forces between the bulk layers

(F bulk
inter), inter-planar forces between the monolayer and the W layers (F12)

and intra-planar forces in the W layers (F bulk
intra) are labelled. Forces only

along the nearest neighbour bonds are considered.
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Figure 3.3: The surface geometry of the W(110) surface is shown here. The
rhombus formed has an angle (as shown in figure) θ = 54.735o. The diagonals
(or x and y dimensions) are of length 2b sin θ and 2b cos θ.

σslab
yy =

F slab
y,tot

LxLz

(3.2)

=
2F surf

y + (n− 2)F bulk
y,intra + (n− 3)F bulk

y,inter + 2F12

LxLz

(3.3)

=
2F surf

y + (n− 3)F tot,bulk
y + F bulk

y,intra

LxLz

(3.4)

σslab
yy Lz = 2σsurf

yy +
(n− 3)F tot,bulk

y + F bulk
y,intra

Lx

(3.5)

For bulk W,

F tot,bulk
y

Lxc/2
= σbulk

yy (3.6)

F tot,bulk
y

Lx

=
cσbulk

yy

2
(3.7)

39



i.e.,

σbulk
yy =

Fy,intra + Fy,inter

Lxc/2
(3.8)

σbulk
yy c/2 =

Fy,intra + Fy,inter

Lx

(3.9)

Fy,intra

Lx

=
σbulk

yy c

2
−
Fy,inter

Lx

(3.10)

=
σbulk

yy c

2
−
kb(b− b0)cotθ

b
(3.11)

From the geometry of the surface seen in Fig. 3.3, it can be shown that

Fy,inter = 2kb(b− b0)cosθ, where b0 is the nearest neighbour distance in bulk

W, b is the preferred bond distance (where the surface stress goes to zero), and

kb is the spring constant of the bond considering it as a harmonic oscillator.

Here θ is the angle shown in Fig. 3.3 and Lx = 2bsinθ.

In order to obtain an expression for kb(b−b0)
b

we use:

σbulk
zz =

F bulk
z,tot

LxLy

(3.12)

=
2kb(b− b0)sinθ

LxLy

(3.13)

kb(b− b0)

b
=

4b2sinθcosθσbulk
zz

c
(3.14)

Now going to our earlier equation 3.11 we have:

Fy,intra

Lx

=
σbulk

yy c

2
−

4b2cos2θσbulk
zz

c
. (3.15)
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Figure 3.4: The surface stresses σyy for the single-component monolayers of
metals (M or N) on W(110) are plotted as a function of lattice mismatch, de-
fined as (a−as)/(

a+as

2
), where a is the calculated nearest neighbour distance

in bulk metals and as is the nearest neighbour spacing in the W substrate.

So now we have,

Lzσ
slab
yy = 2σsurf

yy +
(n− 3)cσbulk

yy

2
+
σbulk

yy c

2
−

4b2cos2θσbulk
zz

c
(3.16)

2σsurf
yy = σslab

yy Lz −
(n− 2)σbulk

yy c

2
+

4b2cos2θσbulk
zz

c
(3.17)

σsurf
yy =

σslab
yy Lz

2
−

(n− 2)σbulk
yy c

4
+

2b2cos2θσbulk
zz

c
. (3.18)

For our system, n is 8 atomic layers, with 6 W layers and 2 monolayers

with 5 layers of vacuum, so we have:

σsurf
yy =

σslab
yy 13c

4
−

6σbulk
yy c

4
+

2b2cos2θσbulk
zz

c
(3.19)

The surface stresses σyy for M/W(110) and N/W(110) are plotted against
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Figure 3.5: Surface stresses σyy computed for the monolayers of M and N
over W(110) are plotted in this graph for varying intra-planar distances.
The point where the graph cuts the x axis gives the preferred intra-atomic
spacing for the monolayer of M or N. The vertical dotted line shows the
nearest neighbour spacing in bulk W.

lattice mismatch of each metal with W(110) in Fig. 3.4. The in-plane dis-

tances were then varied, over a range that included both compression and

tension. They were distorted isotropically such that the angles between the

bonds remained constant, only the bond lengths were stretched or com-

pressed. The inter-layer spacing was kept constant at the relaxed equilibrium

spacing between the monolayer and the W layer at lxy. The surface stress

σyy experienced by the atoms at varying lattice spacing in the x-y plane was

calculated using equation 3.19 and is plotted in Fig. 3.5 for each monolayer

M or N/W(110).

The interaction potential between two NN atoms in the monolayer can
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be considered to be of the form of a Morse potential:

Vij = Aij
0 [1 − exp[−Aij

1 (r − bij)]]2, (3.20)

where r is the nearest neighbour distance between the two atoms i and j

on the surface, bij is the equilibrium bond length between i and j, and Aij
0

and Aij
1 are parameters with the units of potential and inverse of length

respectively. As stress can be related to the derivative of the Morse potential,

the surface stress graphs of the systems were fitted with the derivative of the

Morse potential, and the parameters, Aij
0 , Aij

1 and bij were extracted.

The surface stress σsurf
yy is given by the expression:

σsurf
yy =

Fy

Lx

. (3.21)

It can be shown that,

σsurf
yy = −

cotθ

b

∂V

∂b
(3.22)

= −
cotθ

b
2A0A1exp[−A1(b− A2)][1 − exp[−A1(b− A2)]] (3.23)

bσsurf
yy = 2A0A1cotθexp[−A1(b− A2)][1 − exp[−A1(b− A2)]] (3.24)

The parameters obtained are listed in the Table 3.4. The Morse potentials

for the M-M and N-N bonds when placed over the tungsten slab (at substrate

spacing) can be evaluated from these constants.
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Metal (M/N) A0 (eV) A1 (Å−1) b (Å) acalc
bulk (Å)

Fe 9.396 0.573 2.63 2.47
Co 3.223 1.053 2.60 2.49
Ni 2.643 1.440 2.76 2.49
Pt 9.653 0.739 2.82 2.83
Au 3.972 1.124 2.75 2.93
Ag 3.740 1.055 2.72 2.95
Cd 5.536 0.893 2.76 3.04
Pb 18.377 0.528 3.06 3.56

Table 3.4: This table gives the Morse parameters for the interatomic nearest
neighbour (NN) bonding interactions (considered as a form of Morse poten-
tial) when monolayers of these metals are placed over W(110). The value
of b gives the preferred inter-atomic spacing for a monolayer of M or N on
W(110) and the last column acalc

bulk gives the bulk nearest neighbour spacing.

3.3.3 Alloys of magnetic and non-magnetic metals over

W(110)

Using a 2 × 2 surface unit cell, we have constructed four different configura-

tions of magnetic-nonmagnetic metal alloys on the tungsten(110) substrate

(four layers of W considered) as shown in Fig. 3.6.

It is interesting to note that there are two possible arrangements for the

50% compositions, namely the striped and the checker-board arrangement.

Calculations were done allowing the alloy atoms and two layers of W beneath

it to relax in the z direction. Spin polarised calculations were carried out to

study the magnetization of the resulting surface alloy.

Stability of Surface alloys, Enthalpy of Formation

The enthalpy of formation for the surface alloys was calculated using:
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x = 0 x = 0.25 x = 0.5 (A)

x = 0.5 (B) x = 0.75 x = 1

Figure 3.6: A top view of the systems with different compositions of the
alloys MxN(1−x)/W(110) and their arrangements over the 2× 2 cell of the W
slab considered by us. The brown spheres represent the W surface, and the
blue and orange spheres show the positions of the magnetic and non-magnetic
atoms respectively.

∆H = E(MxN1−x/S)/4 − xE(M/S) − (1 − x)E(N/S), (3.25)

where E(MxN1−x/S), E(M/S) and E(N/S) are the total energies of the

relaxed structures of the alloy MxN1−x/W(110), and monolayers of the mag-

netic and non-magnetic atoms, respectively, over the tungsten slab.

Fig. 3.7 shows the calculated enthalpy of formation for all the alloys.

The more negative the enthalpy of formation is, the higher is the miscibility.

It can be observed from the graph that a few of the metals like silver and

gold in their 50% composition with the magnetic metal prefer the striped

arrangement. The metals like lead and platinum seem to be more stable in
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Figure 3.7: Enthalpy of formation of alloys of various compositions. Solid
lines go through the x = 0.50 striped arrangement, while the dashed lines go
through the x = 0.50 checker-board configuration.

the checker-board arrangement. Surprisingly, cadmium is found to prefer the

striped arrangement in the alloy with Fe whereas it favours the checker-board

arrangement when alloying with Co and Ni. Alloys of Ag are found to give

positive enthalpy of formation for most compositions, rendering them to be

the least stable among all the alloys.

Elastic and Chemical contributions

The stability of such surface alloys is generally determined by two main con-

tributions: elastic interactions and chemical interactions between the atoms

on the surface [36]. To study these contributions it is first necessary to sep-

arate them out from the total energy.

The elastic energy for the various compositions can be expressed as the
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sum of interaction energies of all the NN bonds in the cell, including the M-

M, N-N and M-N bonds. For the structures considered by us, the relations

giving the elastic contribution to the formation energy can be derived and

are as follows:

∆Hela
0.25 = 4VMN(as) − 2VMM(as) − 2VNN(as), (3.26)

∆Hela
0.5striped = 4VMN(as) − 2VMM(as) − 2VNN(as), (3.27)

∆Hela
0.5checker−board = 8VMN(as) − 4VMM(as) − 4VNN(as), (3.28)

∆Hela
0.75 = 4VMN(as) − 2VMM(as) − 2VNN(as). (3.29)

where ∆Hela
x is the elastic contribution to the total energy for a composition

of MxN(1−x). VMN(as), VMM(as) and VNN(as) are the Morse potential values

for M-N, M-M and N-N bonds when the in-plane spacing is the equilibrium

W substrate spacing as. Note that the equations 3.26, 3.27 and 3.29 are

identical. To evaluate the potential between the M and N atoms, we need

to extract the Morse parameters for the M-N bonds from the M-M and N-N

parameters we know. In analogy with the Lorentz-Berthelot mixing rules,

we have the expressions:

AMN
0 =

√

AMM
0 ANN

0 , (3.30)

AMN
1 =

√

AMM
1 ANN

1 , (3.31)

bMN =
bMM + bNN

2
. (3.32)
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bMN (Å) Ag Au Cd Pt Pb
Co 2.66 2.68 2.68 2.71 2.83
Fe 2.68 2.69 2.70 2.72 2.84
Ni 2.74 2.76 2.76 2.79 2.91

Table 3.5: This table gives the values of bMN for every pair of M and N. It is
the average of the preferred nearest neighbour spacing on the surface.These
values can be compared to our calculated value of 2.76 Å for the NN distance
on the W substrate.

Here, Aij
0 , Aij

1 and bij are the Morse parameters for an i-j bond, where i and

j can be M or N. The average of the preferred atomic spacings of every pair

of magnetic and non-magnetic metals is calculated and is shown in Table 3.5.

This gives us an idea of the inter-atomic spacing the atoms of the alloys will

adopt so as to minimize the elastic energy.

The individual contribution of the Morse potential terms to the total

elastic contribution for the x = 0.25 ( 3.26), x = 0.5 ( 3.27, striped arrange-

ment and x = 0.75 ( 3.29 compositions of the alloys are shown in Fig. 3.8.

Pb-Pb bonds are found to have a high negative contribution to the elastic

contributions to the energies of its alloys.

The graphs which show the elastic contribution to the formation energy

in the various systems is shown in Fig. 3.9. It can be seen clearly that all

the alloys except Ni-Ag have a negative elastic energy contribution. The

contributions for 25%, 50% (striped) and the 75% alloys are the same as the

number of nearest neighbour MN bonds in the surface are the same. The

checker-board arrangement in the 50% alloy involves formation of double the

number of M-N bonds, and hence we see a higher contribution of the elastic

interactions towards the stability of these alloys.

The chemical contribution to ∆H can be calculated as the difference

48



-1

-0.5

0

0.5

Ag Au Cd Pb

Fe

Pt

-1

-0.5

0

0.5

Co

MN MM NN

-1

-0.5

0

0.5

MN MM NN MN MM NN MN MM NN MN MM NN

Ni
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between the enthalpy of formation and the corresponding elastic contribution

to ∆H:

∆Hchem
x = ∆Hx − ∆Hela

x . (3.33)

The chemical contributions to the formation energies computed for all the

systems are presented in the graph in Fig. 3.10. Here we can see that for the

checker-board arrangement of the 50% alloy, the chemical interaction terms

are highly positive. The formation of the chemical bonds in the Fe and Co

alloys is unfavourable. In the case of the Ni alloys, the alloys with Ag, Au

and Cd are found to have a favourable chemical interaction contribution to

the stability of the alloys.

Magnetic Moments

It is expected that the magnetic moment of a magnetic metal increases when

placed upon a non-magnetic substrate. The bulk magnetic moments of Fe

and Co are 2.2 and 1.7 µB respectively and are found to be altered to 2.57 µB

and 1.4 µB respectively when placed over W(110). Alloying of these metals

with non-magnetic metals leads to changes in the value of magnetic moments

and a general trend of decreasing moments with decreasing percentage of

magnetic atom can be observed. Only alloys of Fe and Pt as well as Fe

and Au (25% and checker-board 50% arrangement) seem to show higher

magnetic moment than Fe monolayers over W(110). Generally the checker-

board arrangements seem to cause a higher moment than the corresponding

striped arrangements with the exceptions of Fe-Pb, Fe-Cd and Co-Pb. The

51



0 0.25 0.5 0.75 1
Fraction of Fe (x)

0

0.5

1

1.5

2

2.5

3

M
ag

ne
tic

 m
om

en
t/m

ag
ne

tic
 a

to
m

 (
B

M
/c

el
l)

Ag
Au
Cd
Pb
Pt

0 0.25 0.5 0.75 1
Fraction of Co (x)

0

0.5

1

1.5

2

2.5

3
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magnetic moment of 1.7 µB

differences between the magnetic moments of the two 50% arrangements are

more pronounced in the Co alloys than in the Fe alloys, except in the case of

Pt, as can be seen from Fig. 3.11. Ni which has a low bulk magnetic moment

of 0.6 µB when placed over W(110), gives zero magnetic moment. This is a

surprising result.

We tried to understand the factors governing the stability of the striped

and checker-board arrangements. A graph depicting the effective coordina-

tion of the atoms in the two configurations, their stability and their magnetic

moment is seen in Fig. 3.12.

By projecting the charge density onto atomic orbitals, the moments on

individual atoms can be extracted. We find an anti-ferromagnetic interaction
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between the W atoms and the magnetic atom. The relatively low magnetic

moment obtained from the surface alloys on W(110) compared to surface

alloys on other surfaces like Ru(0001) and Rh(111) [38] may be attributed to

this finding. As an example, the density of states for the magnetic atom, non-

magnetic atom and the magnetized substrate atoms are shown in Fig. 3.13

for the striped arrangement of the Fe and Cd alloy.
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3.3.4 A comparative study: magnetism of the surface

alloys on Ru and Rh substrates

Comparing our results on surface alloys over W(110) with earlier results on

different substrates Ru(0001) and Rh(111) [38], we find that the effect of

the substrate in determining the miscibility of the surface alloys is not very

significant. In all three cases, we find that the mixing at the atomic level is

not favoured for Ag alloys, all other combinations have a negative enthalpy

of formation.

The preferred surface sizes of the of Fe and Co were found to be larger on

the W(110) than the sizes preferred on Ru(0001), where as the non-magnetic

metals except Pt were found to prefer smaller surface sizes on W(110) than

Ru(0001) [36]. The coordination numbers of atoms in the monolayers over

W(110) and Ru(0001) are 6, 9 and 9 respectively.

Upon placing monolayers of Fe and Co on the substrates, the net magnetic

moments are found to be significantly largest for Fe and Co on Rh(111) (3.32

and 2.67 µB respectively). On Ru(0001), the moments are found to be 2.80

and 1.83 µB respectively for Fe and Co. The least magnetic moment is found

for Fe and Co on W(110), 2.57 and 1.4 µB respectively.

3.4 Summary

We have found that bulk-immiscible metals form stable alloys on the surface

of W(110). The surface sizes of the atoms over the W(110) layer were shown

to be different from their bulk sizes. The nearest-neighbour (NN) spacing
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of W is slightly larger than the NN spacing in Ru and Rh, but the surface

sizes adopted by the metals over the W(110) surface were found to be smaller

than their corresponding sizes on Ru(0001) and Rh(111). This is presum-

ably because of the lower coordination on the W(110) surface. The effective

atomic sizes were found to be larger than the bulk sizes in magnetic atoms

and smaller than their bulk sizes in non-magnetic atoms.

The magnetic moment of the monolayer of Fe on W(110) (2.57 µB) was

found to be higher than its bulk magnetic moment (2.2µB). This is in close

agreement to earlier results [34]. The antiferromagnetic interaction of the

Fe layers with the W substrate and the non-magnetic metal reduces the

magnetic moment considerably in the alloys. All alloys of Co show a lower

magnetic moment per Co atom that the bulk magnetic moment of 1.7 µB.

We found that there are three main factors determining the stability of a

surface alloy: (1) the elastic interaction between the atoms of the alloy on the

surface, (2) elastic interaction of the phase segregated monolayer on W(110)

and (3) the chemical interaction between the atoms forming the alloy on the

W(110) surface. A simple analogy of the Hume-Rothery rule relating the size

of the atoms and the miscibility could not be established for surface alloys.
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Chapter 4

Controlling morphology of Au

clusters by substrate doping

4.1 Introduction

Until the late twentieth century, gold was considered to be unreactive and

noble. The importance of gold in society is related to the very fact that it

is the least reactive of all metals. The unreactive property of bulk gold or

extended gold surfaces is not however due to the inability to form chemical

bonds. Gold is found to form very stable alloys with many metals. A study

on the nobleness of gold [42] led to the understanding that the inertness of

the material in forming bonds at the surface is due to two factors: (i) the

degree of filling of the antibonding states on adsorption and (ii) the degree

of orbital overlap with the adsorbate. Previous authors have studied the

reactivity of extended transition metal surfaces like Ni, Cu, Pt and Au for H2

molecule adsorption [42]. The reaction can be divided into a simple two-level
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problem. First, the interaction of the H 1s state with the 4s or 6s state of the

metal leads to a low energy bonding state and an empty antibonding state.

This causes an attractive interaction between the metal and the H2 molecule

for all four metals. The next step is the interaction of the bonding state

with the metal d states. This shifts the bonding state further lower and the

antibonding state higher above the metal d bands. The d-shell configurations

of Cu and Au are such that these antibonding orbitals get filled, resulting in

a repulsive interaction. The hybridization of two orbitals dictate that they

are orthogonal to each other and to make two orbitals orthogonal to each

other, it requires energy. This orthogonalization energy increases with the

orbital coupling matrix element. In the case of Au, the extended 5d states

increase the magnitude of the coupling matrix element and thereby increase

the orthogonalization energy cost.

The position of gold in the periodic table is unique. The d-shell filling

increases when moving to the right along the transition metals in the periodic

table. On reaction with any atom or molecule with a filled one-electron level

below the Au d bands, the antibonding orbitals get filled and hence they

create weak bonds. The size of the coupling matrix element increases down

the group in the periodic table making the 5d metals the least reactive. The

ability of Au to break the intermetallic bonds determines its tendency to

form bulk compounds like oxides, carbides or hydrides or even alloys. This

introduces a new factor, i.e., the cohesive energy of the metal. In the periodic

table, the 5d metals have the largest cohesive energy. Considering these three

factors, Au can be considered as the least reactive metal among all the other

transition metals.
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For a long time, Au was considered to have very low catalytic activity and

therefore only its co-ordination and organometallic compounds were investi-

gated intensively. In 1935, for the first time, AuCl and AuCl3 were found

to catalyse the chlorination of naphthalene to octachloronaphthalene [43].

These were further used for many organic syntheses. A surprising finding

which changed the field of Au catalysis was made by Haruta and his cowork-

ers. They found gold nanoparticles supported on semiconducting transition

metal oxides catalysing CO oxidation efficiently at low temperatures [44].

This drew a lot of interest towards these unrecognised properties of gold.

Small nanosized particles of Au were found to have different physical and

chemical properties than their bulk counterparts.

Mass spectra of clusters show a pronounced intensity for certain numbers

of atoms, and these numbers of atoms have been termed magic numbers. The

origin of the magic numbers may be due to electronic or geometric structural

stabilization of the Au core. It is known that the magic numbers for free

Au clusters are 8, 18, 20, 34, 40, 58, 92, 138,..., which is explained in terms

of closure of the electronic shells created by spherical potentials [45, 46].

The Au8 cluster was found to be the smallest cluster which was both stable

and catalytically active [47]. The Au20 cluster was also found to be highly

catalytically active due to its electronegativity [48]. Experimental studies

on these clusters by photoelectron spectrocopy revealed that this cluster has

an extremely large energy gap and a high electron affinity [48]. These

observations suggest that a 20-atom Au cluster should be highly stable and

chemically inert. This property is an important criterion for a cluster to

be used as a potential building block for cluster-assembled materials. The
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large energy gap between the highest occupied molecular orbital (HOMO)

and the lowest unoccupied molecular orbital (LUMO), and a closed electron

configuration, also lead to the chemical stability of the cluster. The HOMO-

LUMO gap was measured to be 1.77 eV and the electron affinity of the

cluster was found to be 2.745 eV [48]. Relativistic density functional theory

calculations found that the Au20 clusters possess a tetrahedral structure [48],

which is a fragment of the face-centered lattice of the bulk gold with a small

structural relaxation.

As size selective methods of preparation of these clusters have become

possible, there has been a huge wave of research towards the study of these

clusters, their nature, stability and structures. Au clusters were found to

be oxidation resistant [49], they were found to enable selective binding of

DNA [50] and have potential applications in nanoelectronics [51]. The cat-

alytic property of Au20 clusters was found to be desirable for many oxidation

reactions. This led to the study of how one can improve the catalytic prop-

erties of the clusters by; (1) manipulating the atomic structure, morphology

and shape of the catalyst; (2) changing the support (composition, structure

and thickness) [52, 53] or (3) the application of external electric fields [54].

Changing any of these characteristics of the system may alter the adsorption

energies and the reaction barriers involved in the catalytic reaction.

Studies were carried out to understand and control the various properties

of these clusters. The Au20 cluster was found to be extremely robust to

distortions when supported over an MgO surface, keeping its tetrahedral

structure [55]. The catalytic CO oxidation by Au was studied as a function

of the charged state of the cluster, and it was observed that while the neutral
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cluster was only moderatively active, the negatively charged cluster showed

excellent CO conversion yields and rates [55]. Molecular oxygen adsorbing

on the surface of the negatively charged Au atoms gets activated to a peroxo

state via the occupation of the antibonding 2π∗ orbital. An attempt to create

negatively charged Au clusters involved the introduction of F-center defects

in MgO, making it very defect-rich. These defects act as anchor sites for

the cluster and also initiate a charge transfer towards the cluster, making it

slightly negative. The negatively charged cluster was found to be catalytically

more active than its neutral counterpart [56].

It was predicted that CO oxidation by Au clusters may be enhanced if

the ground state tetrahedral geometry of the Au20 cluster could be changed

to a flat or two-dimensional structure [53]. Many attempts have been made

to control the geometry of the clusters. Au20 clusters were supported on

MgO over Mo(100) (which is a low work-function metal), and the clusters

were found to prefer a two-dimensional planar geometry (P) over the sta-

ble tetrahedral structure (T) with an energy difference of 3.3 eV [57]. The

thin film of MgO (1-7 layers) enables a charge tunneling from the Mo sub-

strate, through the MgO film to the Au20 clusters. The charge transfer to

the T and P clusters were calculated to be 1.06 and 1.62 e respectively. The

increased number of contacts with the substrate leading to a larger accu-

mulation of interfacial charge, and the electrostatic attraction between the

negatively charged Au atoms and the underlying metal, may be the source

of the stabilization for the planar geometry. Further methods were sought

out to control the morphology of these Au20 clusters, One of them included

the application of electric field (in a calculation) when the cluster was placed
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over MgO supported on Ag(100) [54]. On bulk MgO, and for more than 7

layers of MgO/Ag(100), the T cluster was found to be more stable. The effect

of many layers of MgO on Ag was reversed in a field of 1 V/nm where the

planar cluster placed on MgO (8 layers) / Ag(100) was found to be favoured

over the tetrahedral structure of the cluster.

In this work of ours, we have proposed a method to control the morphol-

ogy of the cluster by doping the MgO substrate with Al atoms. Doping of the

substrate is a relatively much easier method of preparation than preparing

thin films of MgO on metals. We find that the doping of the MgO causes

similar effects to that of a thin layer of MgO on Mo(100). The charge transfer

from the substrate to the Au20 cluster allows it to lie flat over the substrate.

We also show that a linear relation exists between the dopant concentration

and the energy difference between the P and T configurations.

4.2 Method

We have employed Density Functional Theory (DFT) [3] as the method to

study the charged state and the shape selectivity of the Au20 clusters over

the doped magnesium oxide substrate. The quantum-ESPRESSO package,

[5] within the framework of spin-polarised DFT was used. The Kohn-Sham

wavefunctions [4] were expanded in a plane-wave basis set with a plane-wave

energy cut off of 30 Ry and a charge density cut off of 240 Ry. For the self

consistent calculations, convergence was assumed to be achieved when the es-

timated energy error was less than 10−8 Ry. The exchange-correlation effects
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were treated with the generalised gradient approximation (GGA) (Perdew-

Wang 91) [58]. The pseudopotentials used to approximate the interactions

between the core and the valence electrons were ultrasoft (Vanderbilt) pseu-

dopotentials [18]. Scalar relativitic pseudopotentials were used for Au atoms.

All calculations on the doped system with and without the cluster were

hastened by smearing the occupations using Marzari-Vanderbilt cold smear-

ing [22] with a broadening width of 0.068 eV.

All atoms in the calculations were relaxed. The forces on the atoms

were calculated by the Hellmann-Feynman theorem [23]. The convergence

criterion for the ionic minimization was satisfied when all components of the

forces on the atoms were less than 10−3 Ry/Bohr and the energy difference

between two consecutive ionic steps was less than 10−4 Ry.

MgO has a face centered cubic (FCC) crystal system. The MgO(001)

surface was considered as the support for the gold cluster adsorption. This

surface can be considered as a square lattice with a two-atom basis. The

properties of bulk MgO and aluminium-doped MgO were compared using a

3 × 3 × 3 cell. The doped MgO was created by replacing one of the 27 Mg

atoms by Al, resulting in a dopant concentration of 3.7 %. The calculations

on the 20-atom clusters of gold were carried out with the Makov-Payne cor-

rection [59]. This is employed when the system needs to be considered as

an isolated system. The measurements on the Au20 cluster adsorbed on the

MgO (doped and undoped) were carried out on a 6× 6 surface unit cell of 4

layers, with 36 atoms of Mg and 36 atoms of O per layer. The Au20 clusters

were placed directly above one of the Al atoms in the substrate. A vacuum

of thickness around 14 Å in the [001] direction (distance calculated from the
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top of the Au cluster to the bottom of the next repeating slab) was used for

these calculations. Due to the artificial perriodicity generated by the slab

calculations, all calculations done with the clusters on the slabs were done

with a dipole correction to the cell [60].

In order to compare with the calculations of previous authors, we also

performed a few calculations on metal-supported thin films of MgO. A system

with four layers of Mo(100) and a single layer of MgO was used. The O

atoms were placed above the Mo atoms, and the Mg atoms occupied the

body centered cubic pseudomorphic positions. Calculations on the slab were

carried out on a 1 × 1 cell. In all calculations, the bottom two layers of Mo

was considered static and all other atomic coordinates were relaxed.

k-point sampling for the cells with the clusters was done only at the zone

center, whereas the sampling for the unsupported slabs of undoped MgO

were done using a 2 × 2 × 1 Monkhorst-Pack mesh [19].

4.3 Results

4.3.1 Bulk calculations on pure and Al-doped MgO,

Au and Mo.

The FCC lattice constant for bulk MgO was computed to be 4.26 Å which

is close to the experimental value of 4.21 Å. The bulk modulus of MgO was

found to be 146.3 GPa which is in reasonable agreement with the experi-

mental result of 155.0 GPa [35]. The bulk calculations on Au (FCC lattice)

yielded results of lattice parameter and bulk modulus to be 4.15 Å and 144.3
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GPa, compared to the experimental results of 4.08 Å and 180.0 GPa respec-

tively [35]. We also computed the bulk lattice constant and bulk modulus of

Mo (which has a body centered cubic lattice) to be 3.21 Å and 264.6 GPa re-

spectively, which are in good agreement with the corresponding experimental

values of 3.15 Å and 230 GPa.

Two dopant concentrations of Al in the pure MgO system were considered.

In the first case, one Mg atom out of a 2 × 2 × 2 cell was replaced by Al

giving a concentration of 12.7%. In the second case, one Mg atom out of

a 3 × 3 × 3 cell was replaced by Al, giving a concentration of 3.7%. As we

will show below, the extra electron is delocalised and its main effect is to

shift the Fermi level. Qualitatively similar results are obtained for dopant

concentrations of 12.7 % and 3.7 %.

Fig. 4.1 shows the band structures of the undoped primitive cell of bulk

MgO and a 3 × 3 × 3 cell of 3.7% Al-doped MgO. From the graphs, we can

see that MgO is surely an insulator with a direct gap of around 4.78 eV. The

experimental value of the band gap is around 7.8 eV. The underestimation

of band gaps is a well known feature of DFT, as is seen in this case. In the

case of the doped system, we can observe a clear shift in the Fermi level of

about 1.39 eV into the conduction band.

The density of states (DOS) for these systems is plotted in Fig. 4.2. The

DOS is more or less unchanged upon doping with Al; the main effect of the

doping is to shift the position of the Fermi level into the conduction band.
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Figure 4.1: The calculated band structures of (a) pure MgO and (b) 3.7%
Al-doped MgO along high-symmetry directions of the Brillouin zone. The
energy is plotted with respect to the Fermi level, which is indicated by the
horizontal dotted line.
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Figure 4.2: The graph shows the DOS of the pure MgO (black) and Al-doped
MgO (red) system. The shaded area shows the forbidden gap of the MgO
insulator, and the dotted line shows the Fermi level of the Al-doped MgO
system.

66



4.3.2 Slab calculations on Al-doped MgO (001) sur-

face and Mo (100) supported MgO single layer

surface.

Three concentrations of Al-doped MgO, 2.78%, 1.39% and 0.69%, were stud-

ied. One Mg atom of a 3 × 3 cell, two Mg atoms of the 6 × 6 cell and one

Mg atom of the 6 × 6 cell were replaced by Al atoms to give the respec-

tive concentrations. Four layers of MgO and a vacuum spacing of 14 Å in

the [001] direction were used. The structures of the systems are shown in

Fig. 4.3. As a test, the calculations on the 2.78% Al-doped MgO were carried

out also allowing spin polarisation, to see if the extra electron in the system

provided by the Al would create any magnetic effect. The magnetic moment

of the system was found to be zero. Based upon this finding, most further

calculations were performed without permitting spin polarisation. Further

studies into the surface properties of the Al-doped MgO were carried out on

the system with 2.78% Al dopant concentration.

The work-function of a system is computed by the following method: the

Hartree Fock and bare potentials are extracted from the energy calculations,

and the planar average of their sum as a function of the z direction is ob-

tained. The calculations are done using a dipole correction in the system

to rule out any dipolar interactions between the artificially created repeat-

ing cells in the [001] direction. The difference between the potential in the

vacuum and the Fermi energy of the system gives the work function of the

material.
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Figure 4.3: These are the structures of the cells used for calculations. Dopant
concentrations of (a) 2.78%, (b) 1.39% and (c) 0.69% were used. The green,
red and violet spheres represent Mg, O and Al respectively. 1 Mg atom in
the 3 × 3 cell, 2 Mg atoms in the 6 × 6 and 1 Mg atom in the 6 × 6 were
replaced by Al atoms to give the corresponding dopant concentrations.
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Figure 4.4: The planar average of the potential energy with respect to the
distance in the z direction for the 2.78% Al-doped MgO system is shown in
this figure. Vz and EF denote the potential along z axis and the Fermi energy
respectively.
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Figure 4.5: The planar average of the potential energy with respect to the
distance in the z direction for a single layer of MgO over four layers of Mo
is shown in the figure. Vz and EF represent the potential in the z direction
and Fermi energy respectively.

Fig. 4.4 shows the planar average of the potential energy of the 2.78% Al-

doped MgO slab with respect to the distance in the [001] (z) direction. The

work-function of the system was calculated to be 1.81 eV. The work-function

of the slab of a single layer of MgO supported over a Mo (100) surface was

also calculated and was found to be 2.67 eV. This is higher than the work-

function of the Al-doped system, signifying that charge transfer from the

doped substrate to the cluster is easier than the tunneling of charge from

the Mo substrate through the undoped MgO to the cluster. The potential

energy with respect to the distance in the z direction is shown in Fig. 4.5

The projected density of states on individual atoms was calculated for

the systems of Al-doped MgO slab (Fig. 4.6) and the MgO layer over Mo

slab (Fig. 4.7). In the atom-projected DOS of the Mo-supported MgO film,

the position of the Fermi level in the density of states of the Mg and O atoms
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spin projected density of states of the 3.7% Al-doped MgO system. The
projected density of states of the dopant Al atom, nearest neighbour (NN)
O atom and a next nearest neighbour (NNN) Mg atom are shown. Energy
is plotted with respect to the Fermi energy.

shows that they have acquired a metallic character and will allow the easy

tunnelling of charges through them from the metal support to a cluster lying

above. A similar observation can be made from the graph of spin-polarised

projected DOS of the Al-doped MgO system. The Fermi level of the system

lies in the conduction bands built out of Mg and O orbitals. The black and

red lines represent the up-spin and down-spin density of states respectively.

Since the system is non-magnetic the DOS of up-spin and down-spin are

identical.
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Figure 4.7: These graphs show the projected density of states on the Mg,
O and Mo atoms of the first and second layer in the system MgO/Mo(001).
The Fermi level of the system lies in the conduction band of the Mg and O
atoms and this enables tunneling of charge through them.

4.3.3 Au cluster calculations in the gas phase

The Au20 clusters were considered in two geometries, the tetrahedral (T)

and planar (P) geometries. Au20(T) was considered in a cubic box size of

16.4 Å, and the Au20(P) was considered in a tetragonal cell of dimensions

20.1 × 20.1 × 9.5 Å. The relaxed structures of the clusters are shown in

Fig. 4.8. The tetrahedral geometry is favoured over the planar geometry in

the gas phase by an energy difference of 1.52 eV. These calculations were done

using a Makov-Payne correction which assumes the cluster to be isolated and

negates any effects created due to the periodicity of the cells considered in

the calculations. The tetrahedral geometry is more compact compared to the

planar cluster with one atom sticking our of the closed hexagonal geometry.
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Figure 4.8: The relaxed structures of the (a) tetrahedral and (b) planar Au20

clusters (in vacuum) are shown in the figure.

The binding energy (BE) of the 20-atom cluster in vacuum was calculated

as: BE = Energy of Au20(P/T) - 20*Energy of a single isolated Au atom. It

was computed to be -1.14 and 1.06 eV/atom respectively for the tetrahedral

and planar geometries respectively of the Au20 cluster.

4.3.4 Au20 clusters over unsupported MgO.

In the case of Au20 over unsupported MgO (four layers), a 6 × 6 cell was

considered in order to prevent the interaction between images of the Au20

clusters of two neighbouring cells. The Au20 clusters of T and P shape were

placed over the slab systems and the energies of the relaxed structures in the

corresponding supporting substrates were compared.

When placed on unsupported pure MgO, we found that the Au20 clusters

preferred to adopt a tetrahedral geometry rather than a planar geometry,

with an energy difference of 0.604 eV. The relaxed structures of the systems

are shown in Fig. 4.9. The charge density difference at every point in the
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Figure 4.9: The relaxed structures of the (a) tetrahedral and (b) planar Au20

clusters over unsupported pure MgO are shown in the figure.

system was calculated by the relation: Charge density difference = charge

density(Au20/MgO) - charge density(MgO) - charge density(Au20). The pla-

nar average of the charge difference for every x− y plane was calculated and

the integral of the charge from the point of zero charge transfer (between the

Au cluster and the substrate) to the vacuum was computed. This quantity

is shown in Fig 4.10. The charge transferred from the MgO substrate to the

Au20 (T) and Au20 (P) were 0.596 e and 0.909 e respectively.

4.3.5 Au20 clusters over Al-doped MgO.

Au20 clusters were considered over Al-doped MgO with the Al concentration

considered being 2.78%, 1.39% and 0.69%. All calculations were done using

a 6 × 6 substrate cell. Most configurations considered consisted of the Al

atom substituting a Mg atom in the second layer from the surface. A single

calculation with dopant concentration 2.78%, with the Al atoms substituting

Mg atoms in the third layer, was also carried out to study the effect of
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Figure 4.10: The average of the charge density difference δρ(z) calculated at
every x-y plane for the (a) Au20(T) and (b) Au20(P) on MgO. The integral
of the charge from the point of zero charge denisty difference between the
Au cluster and the substrate (horizontal dotted line), to the vacuum give the
total charge transferred from the substrate to the Au cluster. The red dots
give the atomic positions along the z direction.
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distance between Al and the cluster on the geometry of the Au20 cluster.

The binding energy is calculated according to the relation below: B.E.

(P/T) =E(Au20(P/T)/Al-doped MgO) -E(Au20(P/T)) - E(Al-doped MgO).

Here, E is the total energy of the corresponding system as computed by DFT

calculations.

The binding energy of the P and T clusters on 2.78% Al-doped MgO was

calculated to be -12.293 eV and -6.978 eV respectively. This can be compared

to earlier results for the binding energy obtained for P and T clusters on Mo

supported MgO film (-12.50 eV and -5.73 eV respectively) [57].

A graph of the energy difference between the T and P configurations with

respect to dopant concentration is shown in Fig. 4.11. We find a remarkably

linear relationship between the two. The higher the concentration of Al in the

substrate, the higher is the energy difference between the P and T clusters

over the doped substrates. The least concentration of Al required to favour

the planar geometry over the tetrahedral geometry is 0.38%. The energy

difference between the tetrahedral and planar clusters is found to increase

slightly in magnitude from -3.796 to -3.862 eV when the Al is moved from

the second layer to the third layer. On Mo-supported MgO [57], the energy

difference between the P and T clusters over the substrate was found to be

-3.3 eV. The more negative the energy difference the more stable the planar

geometry is with respect to the T geometry, and the P geometry is found to

be more favoured over the T geometry when it is placed on Al-doped MgO

than on Mo-supported MgO.
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Figure 4.12: The projected density of states of the Au atoms of the P struc-
ture are shown above.
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Figure 4.13: The projected density of states of the Au atoms in the T struc-
ture are shown.

Choosing a particular case, further analysis was done with the 2.78%

Al-doped MgO system. The projected density of states for this system was

calculated. The density of states of the 20 individual Au atoms can be seen

in Figs. 4.12 and 4.13.

We also examined the charge density of these systems. The charge den-

sity difference between the Au cluster on the doped substrate and the Au

cluster alone and doped substrate alone were calculated. The charge transfer

between the 2.78% Al-doped MgO substrate and the cluster is plotted in

Fig. 4.14. The isosurfaces of 0.0025 e/Å3 for the T cluster and 0.0013 e/Å3

for the P cluster are shown. The isosurface plot of the charge transfer for the

P cluster system clearly shows an accumulation of charge at the interface of

the cluster and the substrate. A planar average of the charge density differ-

ence in the x-y plane with respect to the z direction is shown in Fig. 4.14.

The charge transferred was calculated by integrating the plot from the region

where the graph cuts the y-axis (point of zero charge transfer between the
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Figure 4.14: The isosurface plots for the values 0.0025 e/Å3 and 0.0013 e/Å3

are shown for the Au20 clusters (P/T) over 2.78% Al-doped MgO. The green,
red, violet and yellow colour atoms represent Mg, O, Al and Au respectively.
The blue and pink isosurfaces show the regions of charge depletion and charge
accumulation respectively. The isosurface plot of the (a) Au20(P)/Al-doped
MgO top view, (b) side view and (c) a graph of the planar average of the
charge difference along the z direction can be seen. The bottom row shows
the isosurface plot of (d) Au20(T)/Al-doped MgO top view, (e) side view
and (f) a graph of the planar average of the charge difference along the z
direction. Note the excess electronic charge distribution for the planar Au20

cluster located at the interface between the cluster and the substrate.
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cluster and the substrate) to the vacuum. The values calculated for the T

and P supported clusters are 0.89 e and 1.12 e respectively. When the Al

atom was placed in the third layer, the charge transfer was found to increase

to 1.096 and 1.305 e respectively for the T and P clusters. In Mo-supported

MgO [57], the reported charge transfer to the T and P clusters are 1.06 and

1.62 e respectively.

4.4 Summary

The Au20 clusters are found to prefer a flat geometry when doping promotes

an increased charge transfer from the substrate to the Au cluster. We have

achieved this results by a simple method of doping the substrate MgO with

Al. The substitution of Mg with Al atoms creates a delocalization of an extra

electron (per Al atom) in the substrate which enables a strong charge transfer

towards the Au cluster. The positively charged Al ions in the substrate also

help lower the energy of the P cluster by the electrostatic energy between

them.

A linear relation between the concentration of the dopant in MgO and

the energy difference between the T and P geometries was observed. It shows

that we can control the geometry and the stability of the geometry of the

Au20 clusters quite effectively by just manipulating the dopant concentration

in the substrate. Earlier methods of placing Au clusters over metal supported

MgO [57] and application of electric field [54] give similar results though the

preparation of the thin films of MgO over Mo or Ag may be difficult in the

laboratory and the electric field suggested in the earlier calculations (1 V/nm)
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is impracticably high. In the method involving MgO/Mo, the stability of the

planar cluster over the tetrahedral cluster is controlled by the number of MgO

layers. The lesser the number of layers, the greater will be the stability of

the planar cluster. These experiments are very hard to do. Even if they are

successful experimentally, applying these techniques in practical realizations

is tedious. The metal support can make the system difficult to transport

and the application of electric field will be difficult. We have suggested an

approach which promises to be much simpler experimentally. The energy

barrier between the two cluster geometries can be controlled by just the

concentration of the dopant in the substrate. The system consists of doped

MgO which is light and very convenient to carry and transport.
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Chapter 5

Conclusions

In the first portion of the thesis we have investigated the miscibility of metals

over the W(110) surface. We have performed ab initio calculations on fifteen

combinations of metals involving a magnetic and a non-magnetic metal co-

deposited on W(110) substrate. Except for alloys with Ag, all other surface

alloys were stable. We found that even bulk-immiscible pairs of metals form

stable alloys over the surface of W(110). We have tried to analyse the factors

governing the energetics of these strain-stabilized surface alloys.

Alloys of Fe and Co were found to be magnetic in nature unlike the alloys

of Ni. Most alloys of Fe, except for Fe0.25Pb0.75/W(110), were found to show

an enhanced magnetic moment with respect to the bulk magnetic moment

of Fe. In agreement with previous authors [34], the magnetic moment of

the monolayer of Fe/W(110) was found to be enhanced by around 17% in

comparision to its bulk magnetic moment of 2.2 µB. In contrast to alloys of

Fe, all alloys of Co seem to show a lower magnetic moment per Co atom than

the bulk magnetic moment of Co which is 1.7 µB. W is found to interact
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anti-ferromagnetically with the magnetic atoms on the overlayer.

We find that the stability of the surface alloys do not follow a simple

size dependent rule that the mean atomic sizes of the atoms of the alloy

should be close to the substrate lattice spacing. This is due to the presence

of chemical interactions in addition to the elastic interactions between the

atoms of different sizes forming the alloy. Even in cases where the elactic

interaction may favour surface alloy formation, the chemical interaction can

be large enough to disfavour atomic level mixing of the atoms. The elastic

energies of the phase-segregated monolayers on the substrate also need to be

considered to analyse the stability of the strain-stabilized surface alloys. Due

to these three factors, it is difficult to formulate a single and simple rule to

dictate the stability of such alloys. An analogy to the first Hume-Rothery

rule for bulk alloys may not be possible for surface alloys.

The effective atomic sizes of the metals on the W substrate were also

computed. They were found to be different from the bulk; in the magnetic

atoms, they were found to be larger than the bulk size, and in case of the

non-magnetic atoms, the preferred sizes were found to be smaller than their

bulk sizes. Of all the alloys considered, Fe-Au, Co-Cd, Ni-Au, Ni-Cd and

Ni-Pt may be promising candidates that may be realizable experimentally.

Both chemical and elastic interactions favour the formation of these alloys.

As a future project, we wish to try to explain the factors determining the

surface sizes of the atoms on the W(110). We have considered only a small

2 × 2 surface unit cell in our calculations. We can do calculations on larger

unit cells and see if we can try to observe any trend favouring any particular

pattern over others and study the factors deciding them.
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In the second half of the thesis, we have probed the ability to control and

tune the morphology of a 20-atom Au nanocluster. For this purpose, we have

compared the energetics and stability of two forms of the cluster, the planar

(P) and the tetrahedral (T) geometry in vacuum, on pure MgO substrate,

and supported on Al-doped MgO.

Negatively charged Au clusters were found, by earlier authors, to be more

catalytically active, especially in oxidation reactions [56]. On adsorption of

an oxygen molecule on the Au cluster, the O-O bond gets activated due to the

occupation of electrons in the antibonding orbital of the oxygen molecule [55].

It was found that a planar Au cluster absorbs more charge from the substrate

than the tetrahedral cluster and hence it can be believed that the planar Au

cluster is more catalytically active than the tetrahedral cluster. Previous

authors have found that the geometry of the cluster can be altered from

the stable, higher symmetry tetrahedral structure to the planar, lower sym-

metry structure by using: (1) metal-supported thin films of MgO as the

substrate [57], or (2) applying an electric field to a metal supported thick

film of MgO [54]. We have attempted to produce the same result of these

techniques by a relatively simpler method: by the doping the substrate.

The preparation of thin films (less than seven layers) of MgO over Mo or

Ag can be very tedious and the electric field required (1 V/nm) to produce

the change in dimensionality of the cluster on these systems are impracticably

high. We wish to suggest the method of doping the substrate to experimen-

talists as a simpler method to control the geometry of a Au20 nanocluster.

The dopant atoms in the substrate may also act as an anchor site, and pre-

vent diffusion of the Au clusters over the surface. These properties can be
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very useful considering the catalytic property of Au nanoclusters. The planar

cluster has more surface area than the tetrahedral cluster and it is found to

have more sites of high charge accumulation, than the tetrahedral cluster.

These sites may be the active sites for various reactant molecules to adsorb.

We also found that the energy difference between the planar and tetrahe-

dral geometry has a linear relation to the dopant concentration. The higher

is the dopant concentration, the more stable is the planar geometry, with the

energy difference increasing in magnitude. The energy difference was found

to increase slightly when the dopant Al atom was shifted from the second

to the third layer from the surface. The electrostatic attraction between

the Al charge source and Au (negative) cluster stabilizes the cluster’s planar

geometry over the substrate.

For future projects, we can try to adsorb oxygen molecules onto the Au20

clusters and study the activation of the O-O bond in our system. We also

wish to try other sizes of Au clusters and see if we can observe similar results

for bigger clusters. We would also like to find out if the method of doping

can be a general technique to initiate charge transfer to a supported cluster

and creating a structural change in the cluster.
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