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Synopsis 

Many interesting and counter intuitive properties have been predicted over decades in low-dimensional 

systems i.e. systems confined to less than three dimensions. In this thesis, we have investigated the 

electronic structure and optical properties of a few low-dimensional systems viz., graphene, graphene 

nanoribbons, single-walled carbon nanotubes and chlorophylls. 

 In chapter 1, we gave a brief introduction to low-dimensional systems and we have mentioned 

some exotic properties of all the low-dimensional systems which we investigated in this thesis. In this 

chapter we also introduced the computational and theoretical methods like DFT, TDDFT etc. which we 

have used to determine the electronic structure and optical properties of the materials. 

 In chapter 2, we applied density functional theory (DFT) to understand the interaction of 

halogen/ interhalogen molecules with nanocarbons (graphene and carbon nanotubes). Previous 

experimental studies on halogen-nanocarbon composites show a charge transfer from nanocarbon to 

halogens and correspondingly a shift in the Raman G-band of nanocarbons. In our study, we find shifts 

in the Fermi-level of nanocarbons up on the adsorption of halogen/ interhalogen molecules. Our 

findings shows that shift in the Fermi-level and the Raman G-band are in accordance with each other 

and the amount of shift in Fermi-level or Raman G-band depends on the electron affinity character of 

halogen/ interhalogen molecules. 

 In chapter 3, we investigated the effect of axial ligation on the structural, redox and absorption 

properties of a newly discovered chlorophyll, named chl f, and explained the reasons for the observed 

changes. We have also given the reason for the red-shift in the Qy band of chl f compared to other chls, 

like chl a and chl b, based on the time dependent density functional theory studies.  

 Chapter 4 is the final chapter and it is a presentation of work in progress. In this chapter, we 

studied the structural dependency of the nonlinear optical (NLO) properties of graphene nanoribbons 

(GNRs). In particular, we considered zigzag GNRs (ZGNRs) of various sizes, both in length and 

width, and studied the variation in linear and hyper-polarizability by changing the size of ZGNRs. We 

find that hyper-polarizability value of ZGNRs increases with an increase in the conjugation and the 

values are large enough to use ZGNRs as donor-acceptor bridges.  Calculations of polarizability and 

hyper-polarizability of ZGNRs attached with different donors and acceptors are in progress.  
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Chapter 1 

Introduction 

The term, “low dimensional system”, refers to those materials which are finite along at least one 

dimension.  In these systems motion of microscopic degrees of freedom, such as electrons, phonons or 

photons, is constrained because of their low dimensionality. This constraint to move in three 

dimensions makes them as hosts for quantum confinement effects. [1-7] Although one would not, 

traditionally, consider the natural low-dimensional entities such as atoms and molecules as low-

dimensional systems, but some of the most exciting recent developments in the field have involved the 

use of molecules and even biologically important materials, such as DNA, chlorophylls etc. and had 

blurred the boundaries between the subject and other physical and life sciences. [8] Numerous 

discoveries in these systems, fascinated researchers for a great part of the last century, and in the last 

two decades they become one of the primary centers of interest in both condensed matter and materials 

research.  

 Mono-layers, thin films, surfaces like graphene are the examples of two-dimensional systems. 

One-dimensional systems include nanotubes, nanowires and nanorods. Clusters of atoms and quantum 

dots are examples of zero-dimensional systems. In all these systems there is a reduction in the 

coordination number at the surface because of the reduction in any one dimension. This creates a high 

surface to volume ratio which arise new properties that are different from bulk. Many exotic quantum 

phenomena, such as Aharonov-Bhom effect, persistent currents, phase-coherent transport, quantum 

Hall-effect and Luttinger liquid [9-21], arise in these systems out of disorder, strong electron-electron 

interactions and restricted boundary conditions. Low-dimensional systems also admit ordering 

tendencies which are difficult to realize in three-dimensional materials.  Prominent examples are spin- 

and charge-density waves in quasi-one-dimensional organic compounds and spontaneous circulating 

currents in two dimensions. [22] 

 The physics of low-dimensional and bulk systems are often different. A full quantum 

mechanical treatment of the confined degrees of freedom is required to study these systems. 

Emergence of experimental techniques such as Scanning tunneling microscopy, Transmission electron 

microscopy (TEM), molecular beam epitaxial growth of thin-films, chemical vapor deposition, atomic-

force microscopy, Ion-beam sputtering, X-ray photoelectron spectroscopy, Auger electron 

spectroscopy, Electron energy loss spectroscopy, Magnetic force microscopy, High-resolved TEM, 
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High temperature XRD etc. [23-38] provided the path for characterization and fabrication of several 

novel low-dimensional materials. 

 In this chapter we will discuss briefly about the low-dimensional materials that we have studied 

and the computational and theoretical methods which we have used to study these materials. Mainly, 

we are interested in understanding the electronic and charge transfer properties of these materials. 

These systems have potential applications in future electronics and our studies give the mechanism of 

charge transfer and its consequences in these systems. In what follows, we will give a brief overview 

of graphene, graphene nanoribbons and carbon nanotubes which are two-dimensional, quasi one-

dimensional and one-dimensional systems, respectively, in sections 1.1.1 – 1.1.3. In section 1.1.4, we 

introduce chlorophyll, a zero-dimensional molecule, and we will discuss its importance in 

photosystems. Section 1.2 gives a brief introduction to nonlinear optics and nonlinear optical 

properties. Theoretical and computational methods which we used to perform our calculations are 

mentioned in section 1.3 followed by an outline of the thesis in section 1.4.  

 

1.1 Low Dimensional Systems 

1.1.1 Graphene 
Apart from the well known allotropes of carbon viz., graphite, amorphous carbon and diamond, 

scientists have discovered, recently, its other exotic allotropes which include zero-dimensional 

fullerenes (1985), one-dimensional nanotubes (1991) and very recently graphene (2004), the two 

dimensional allotrope of carbon. Among the exotic allotropes of carbon, the discovery of graphene was 

unprecedented in that there were established theoretical concepts precluding its existence. Theoretical 

argument by Landau and Peirels says that, in low-dimensional crystals, at finite temperatures, thermal 

fluctuations lead to atomic displacements in the order of inter-atomic distances, and hence, two-

dimensional crystals are thermodynamically unstable and could not exist .This argument was latter 

supported by Mermin and by other experimental observations. [39-43]. 

  Despite of these arguments, there are several attempts to isolate graphene using chemical 

exfoliation but they resulted in new 3D materials [44] and there are cases in which scientists have 

grown single and few-layer graphene [45, 46] but their quality and continuity are not known. For the 

first time, in 2004, physicists from Manchester University extracted high quality graphene crystallites 
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by the micro mechanical cleavage of bulk graphite, for which they were awarded the 2010 Noble prize 

in physics. [47, 48] 

 Experimental discovery of graphene didn’t violate the above theoretical arguments and is 

justified by the observation of the ripples in the so-called 2D graphene which affect its properties. [49]. 

Indeed, it can be argued that, thermal fluctuations and other crystal defects cannot occur in these 2D-

crystals because of their small size (<<1 mm) and strong inter-atomic bonds. [40, 43] 

 Graphene has generated great sensation because of its wondrous properties that may find 

potential applications. Many groups have been investigating chemically derived graphene as a 

transparent conductive electrode. [50] For lithium secondary batteries, graphene has shown to be a 

potential candidate with high lithium storage capacity and this capacity can be further increased by 

adding other nanocarbons like CNTs and C60. [51] Single-layer graphene is theoretically predicted to 

have a large surface area of 2600 m2/g, and experimental findings shows an uptake of 3 wt % for H2 at 

100 bar and 300 K and  35 wt % for CO2 at 1 atm and 195 K for few-layer graphene. [52] Magnetic 

properties of graphene shows that dominant ferromagnetic interactions coexist along with anti-

ferromagnetic interactions somewhat similar to frustrated systems. Elastic modulus and hardness of 

polyvinyl alchol and poly (methyl methacrylate) composites have been shown to increase significantly 

when they are reinforced with small quantities of few-layer graphene. [53]  

 Finally, exotic electronic properties of graphene, reflects its structural flexibility. [54] Single 

layer graphene is a 2D zero-gap semiconductor with a linear dispersion relation near the K-point of the 

Brillouin zone resembling the Dirac spectrum for massless ferimons. [55, 56] This linear dispersion 

relation can be easily derived using the tight binding approximation including the nearest neighbors. 

[57] Graphene also acts as a platform to observe several exotic phenomena, like, ballistic electron 

transport, anomalous integer quantum Hall effect at room temperatures and fractional quantum Hall 

effect at low temperatures [58], Klein-paradox [59] etc. Electronic and magnetic properties of graphene 

can be tuned by doping or molecular interactions. Changes in these properties due to molecular charge 

transfer can be observed clearly using Raman spectroscopy and should be explored for applications. 

 

1.1.2 Graphene Nanoribbons (GNRs) 
These are the quasi-one-dimensional materials obtained by the finite termination of graphene along 

one direction, the other direction being infinite. Depending on their edge geometry GNRs are divided 

into two classes, namely, zigzag GNRs (ZGNRs) and Armchair GNRs (AGNRs). Because of their 

contrasting boundary conditions, which arise because of their different edge geometries, these 
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nanoribbons show different electronic structure properties. These systems can be prepared 

experimentally either through “top-down approach”, which includes techniques like etching graphene 

with a STM tip, Lithographic patterning on epitaxially grown graphene, unzipping and unrolling of 

carbon nanotubes by epoxidation of CNTs etc., or through “bottom-up approach”, which includes 

combining small organic molecules to build giant carbon structures using elegant synthetic methods.  

  Among these GNRs, ZGNRs exhibit interesting electronic properties due to the 

presence of localized electronic states, known as edge states, which are absent in the case of AGNRs. 

Edge states allow fine tuning of the electronic structure and band gap of ZGNRs through structural or 

chemical modifications along with doping and external perturbations. Metal free magnetism can be 

achieved using semiconducting ZGNRs as they show semi-metallic behavior under external 

perturbations [60]. By selective doping ZGNRs can be tuned to use as spin filters and spin transistors. 

[61-63]  

 Because of their finite width along one direction, optical response of GNRs is anisotropic for 

transversely polarized and longitudinally polarized photons. Transverse and longitudinal polarized 

components are energetically well separated in the case of AGNRs and are mixed for the case of 

ZGNRs. [64] There are few studies on the nonlinear optical properties of GNRs and recent 

experimental reports shows that because of their integrated crystalline structure and electronic 

conjugation, GNRs exhibit stronger third-order nonlinearities and optical limiting responses compared 

to the graphene oxide nanoribbons. In addition, ZGNRs are predicted to possess open-shell singlet 

ground states with diradical characteristics. [65-67] Considering these facts we investigated the first 

hyper-polarizability of ZGNRs of various widths in chapter 4.  

 

1.1.3 Carbon Nanotubes 

These are the one-dimensional allotropes of carbon and can be visualized as a graphene sheet rolled 

into a cylinder. Their discovery marks a major event in the area of carbon materials and more so in one 

dimensional materials. CNTs are characterized by a pair of chiral indices (n, m), with n and m being 

two integers, which specify the CNT uniquely. [68] The integers n and m denote the number of unit 

vectors along two directions in the honeycomb crystal lattice of graphene. Nanotubes are called zigzag 

if m=0 and are called armchair if n=m. Otherwise, they are called chiral. Their electronic structure is 

either metallic or semi-conducting depending on (n, m). [51]  

 Multi-walled carbon nanotubes (MWNTs) were first prepared by arc discharge of graphite [69] 

and several alternative methods of synthesis were also reported later. [70, 71] The properties of Single 
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walled carbon nanotubes (SWNTs) are of special interest for applications, since these materials possess 

interesting electronic band structure. Electronic band structure of SWNTs can be derived easily from a 

graphene sheet while neglecting hybridization effects due to the finite curvature of the tube structure. 

Because of its electronic structure, CNTs acts as ideal test beds for studies of quantum confinement 

effects like ballistic conductance [72], Kondo effect and spin-injection [73, 74], Luttinger liquid 

behavior [75], and single and double quantum dot states. [76] 

 SWNTs and polyvinyl alcohol composite fibers show toughness unmatched in the man-made 

and natural worlds. [77] Semiconducting SWNTs have a channel conductance that can be modified by 

orders of magnitude (105 ) by an externally applied gate voltage, very similar to that of a MOSFET. 

[78] Dispersion of carbon nanotubes in synthetic graphite (ca. 3 wt %) give rise to a continuous 

conductive network as well as a mechanically strong electrode, resulting in a doubled energy 

efficiency of lithium-ion-batteries. [79] SWNTs have been employed in gas-sensors and have 

advantages over conventional metal-oxide-based sensors in terms of power consumption, sensitivity, 

miniaturization, and reliable mass production. [80] Electronic and molecular properties of CNTs can 

also be tuned by doping or through molecular charge transfer, similar to graphene. Once again, Raman 

spectroscopy can be used as a probe to understand the changes due to charge transfer. Interaction of 

SWNTs with electron withdrawing and electron donating molecules shows stiffening and softening in 

the G-band of Raman spectra, respectively. [81] Effect of charge transfer due to halogen molecules on 

CNTs and graphene are explored in chapter 2 of this thesis. 

 

1.1.4 Chlorophylls 

Chlorophyll is an essential and abundant pigment present in the plants, algae and cyanobacteria. [82] 

Chlorophyll is vital for photosynthesis, a process in which solar energy is converted into chemical 

energy. Chlorophyll molecules are presented in and around photosystems which in turn present in the 

thylakoid membranes of chloroplasts (see figure 1).  

  Chloroplasts are organelles found in plant cells and other eukaryotic organisms. It consists of a 

material called as “stroma”. The sub-organelles, thylakoids, are presented as stacks within the stroma. 

[83] Empty area inside the thylakoid is called as thylakoid space or “lumen”. The membrane separating 

the stroma from lumen is called as thylakoid membrane and photosynthesis takes place on this 

membrane. Light harvesting complexes (LHC) also present in thylakoid membranes and each LHC 

consists of light-absorbing pigments, including chlorophylls, carotenoids and proteins, which funnel 

the incident solar energy to reaction centre through resonance energy transfer. In photosystem II (PSII) 
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affected by the substituents on the ring and the metals present at the centre of the ring. It should be 

emphasized that, four-orbital description is generally accurate for Q-bands but not for B-bands. 

  In porphyrin, HOMOs with a1u and a2u symmetry are nearly degenerate and LUMOs with eg 

symmetry are degenerate. Excitations between these four orbitals will lead to two transitions of y-

symmetry (i.e., transition dipole moment in the ‘y’–direction) and two transitions of x-symmetry. (i.e., 

transition dipole moment in the ‘x’–direction). The two lower transitions among these four are termed 

as Q-bands (Qy and Qx) and the upper transitions are termed as B-bands (By and Bx). A transition 

dipole moment which passes through the two opposite pyrrole rings along the y-axis of the porphyrin 

characterizes a Qy band. [86] In the case of porphyrin, as both the transitions, a1u → eg and a2u → eg of 
1Eu character are nearly degenerate, mixing of these transitions leads to a lower intense Q-band and a 

higher intense Soret-band. [46] 

 In the case of chlorin, reduction in symmetry lifts the degeneracy of the LUMOs which causes 

a decrement in the mixing of excitations. As excitations are not mixed much, intensities of both the Q 

and B-bands remain high. Once there are substitutions on the chlorin ring symmetry of the ring will be 

completely destroyed and this leads to an increment in the intensity of Q-band. Increase in the intensity 

of Q-band reflects the fact that, there is a greater absorption probability and this helps for efficient 

energy transfer between the component chromophores, which is important for photosynthetic systems. 

[86] 

 In this thesis, we studied newly discovered chlorophyll, named as, chlorophyll f. Chl f can 

perform oxygenic photosynthesis and its Qy absorption maximum in the infrared region. This shows 

that, in low light conditions also chl f can perform oxygenic photosynthesis. As mentioned by Prof. 

James Barber, this ability of chl f can be used for the design of photovoltaic cells. [89] This is because, 

over half of the light from the sun comes in at infrared wavelengths and the makers of photovoltaic 

panels have been working on ways to extend the section of the spectrum that solar cells can absorb to 

beyond red. By the discovery of chl f, now, we can absorb the infrared region of solar spectrum by chl 

f. Chl f can also be used for the artificial photosynthesis technology. [89] Considering these facts, we 

studied the effects of axial ligation and the cause for the red-shift in the Qy absorption maximum of chl 

f. 
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1.2 Nonlinear Optics 

When a material is exposed to an external electric field, it becomes polarized with an induced 

dipolemoment. If the incident field is weak one can write polarization as 

     P = χ E          (1.2.1) 

where, χ is called the polarizability of the medium.  At molecular regime, this external electric field 

distorts the electron distribution in the molecule which leads to the molecular polarization (μ) given by  

      μ = α E            (1.2.2), 

where, α is the polarizability of the atom or molecule and is directly proportional to the number of charges 

present in the system. Thus, for atoms or molecules the polarizability increases with their size. If the 

incident field is strong then equation 1.2.1 changes to 

       P = χ (1) E + χ (2) EE + χ (3) EEE + …            (1.2.3), 

 where, χ (n) is the nth – order susceptibility of the medium and is a tensor of rank (n+1) . [90] Thus, the 

optical characteristics of a material, such as refractive-index, dielectric-permittivity etc. which depend on 

the susceptibility, become as a function of the electric field if the incident electric field is strong, i.e. they 

are no more linear with the applied electric field. This nonlinear optical (NLO) behavior can be clearly 

seen by substituting a sinusoidal field 

       E = E0 + E1 (cos ωt)           (1.2.4), 

 ω being the frequency of the incident electric field, in the equation (1.2.3).  Substituting 1.2.4 in 1.2.3 

gives 

P = [E0 + E1 (cos ωt)] χ (1) + [E0 + E1 (cos ωt)]2 χ (2) + [E0 + E1 (cos ωt)]3 χ (3) + …       (1.2.5). 

Using trigonometric identities and rearranging the terms in 1.2.5 one obtains, 

P = [E0 + E1 (cos ωt)] χ (1) + [E0
2 + (1/2) E1

2 + 2 E0 E1(cos ωt) + (1/2) E1
2 (cos 2ωt)] χ (2) + [E0

3 + (3/2) E-

0E1
2 (1 + cos 2ωt) + 3E0

2E1 (cos ωt) + (3/4) E1
3 (cos ωt + cos 3ωt)] χ (3) … (1.2.6). 

  In the above equation, the processes associated with χ (2) are called second-order optical processes 

and the processes associated with χ (3) are called third-order optical processes. Observation of second-order 
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optical processes are restricted to non-centrosymmetric medium, whereas, the third-order optical processes 

can take place in any random or ordered medium.  

 NLO phenomena includes light mediated processes like second harmonic generation (SHG), 

optical-Pockels effect, optical-Kerr effect, two-photon absorption (TPA) etc.  [90, 91] For a material to 

exhibit interesting NLO properties both the individual molecular hyper-polarizability (β or γ) and the 

orientation effects have to be optimized. In general, charge distribution due to π-electrons is easily 

deformable and hence, they give rise to large molecular hyper-polarizabilities. In this thesis, we mainly 

consider those NLO properties of graphene nanoribbons (GNRs) which are mostly governed by the 

polarizations of the electronic states i.e. applied electric field will not affect the lattice structure. To be 

clear, we will calculate the linear polarizability (α) and the second hyper-polarizability (γ) of GNRs of 

varying length and width. Methods which we followed to calculate γ and its relation with χ (3) are given in 

chapter 4. 

 

1.3 Theoretical and Computational methods 

1.3.1 Density Funcional Theory: 

Methods based on many-electron wave functions are often found to be very computationally expensive 

and difficult for many-electron systems. An alternative to the many-electron wave function based methods 

is density functional theory (DFT) which is essentially derived from the Thomas-Fermi-Dirac equations. 

[92] The rigorous foundation of DFT is based on the two Hohenberg-Kohn theorems.  

• The Hohenberg and Kohn existence theorem: This states that the ground state energy and all other 

ground state molecular properties are uniquely determined by the ground state electron density. That is, 

the energy of an electronic system can be expressed in terms of the electron probability density ρ(r) which 

represents the total electron density at a particular point in space r. The electronic energy E [ρ(r)] is said to 

be a functional of the electron density. Thus, for every given density there is a specific energy. 

• The Hohenberg-Kohn variational theorem: This theorem introduces the variational principle into 

the DFT. It states that the ground state energy can be obtained variationally and the density which 

minimizes the total energy is the exact ground state density. In other words, for every trial electron 

density ρ(r), the computed E [ρ(r)] is greater than or equal to exact ground state energy E [ρo(r)]. 
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1.4 Outline of the thesis 

This thesis consists of 4 chapters. In chapter 2, we studied the changes in the electronic structure of 

graphene and carbon nanotubes up on their interaction with halogen/ interhalogen molecules. Our 

study gives an insight for the cause for changes observed in the Fermi-level shift. In chapter 3, reason 

for the red-shift in the Qy band of chl f compared to its structural isomer chl b is given. Effects of fifth 

coordination on structural, redox and absorption properties of chl f are studied using several axial 

ligands which are highly available in nature as fifth coordination. Finally, in chapter 4 we studied the 

changes in polarizability and hyper-polarizability of ZGNRs with a change in their length and width. 

Our results show that these ZGNRs can be used as donor-acceptor bridges to get materials with high 

NLO activity.  
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Chapter 2 

Interaction of Halogen Molecules with SWNTs and Graphene 

 

2.1  Introduction 

Nanomaterials based on carbon such as single walled carbon nanotubes (SWNTs) and graphene have 

emerged as exciting materials owing to their interesting properties, the most important ones being 

related to their electronic structure.[58, 95] These properties of SWNTs and graphene can lead to many 

potential applications,[96, 97] specially in electronic devices.[98, 99]  The ability to tune the Fermi 

level in these materials by selectively filling (depleting) electrons to the conduction (valence) band 

therefore becomes relevant, if device applications are to become a reality.  Molecular and 

electrochemical doping provide possible methods of tuning the electronic structure of SWNTs and 

graphene[100] and the doping level is readily probed by Raman spectroscopy which is useful to 

examine changes in electronic structure because of the strong electron-phonon correlation in these 

materials.[100-103]  Raman spectroscopy is also a non-invasive technique and can be used in 

conjunction with other experimental methods. The changes in the electronic band structure of SWNTs 

and graphene can also be monitored by employing electronic absorption spectroscopy which gives 

useful, statistically averaged data.[104, 105] Such changes can be understood microscopically through 

theoretical calculations.  

Doping SWNTs is amphoteric as can be seen from the various reports in the literature on the 

interaction of SWNTs with various electron donor and acceptor molecules [51, 81, 106, 107]. SWNTs 

can exchange electrons from the dopants irrespective of whether they are electron donating or 

withdrawing in nature. Thus, an electron-donating molecule such as tetrathiafulvalene (TTF) causes 

changes in the spectroscopic signatures opposite to those due to an electron-withdrawing molecule 

such as tetracyanoethylene (TCNE).[81] The S22 band in the electronic absorption spectrum of 

SWNTs[81] shifts to higher energy on interaction with TCNE compared to that of undoped SWNTs 

while the shift is in the opposite direction in the case of TTF (i.e. S22 band shifts to lower energy).  The 

Raman spectrum of SWNTs is markedly affected on interaction with these molecules.  Coulombic 
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charge-transfer from metals like gold and platinum to SWNTs also induces significant changes in the 

Raman spectra of the SWNTs, especially the G-band ( ~1567 cm -1), indicating that the shift in Raman 

frequency is associated with the shifts in the Fermi level of SWNTs.[81]  Similar charge-transfer has 

been found to occur in the case of metal nanocluster decorated graphene.[108]  Studies on the 

interaction of electron donor and acceptor molecules with graphene have demonstrated similar changes 

in the Raman spectrum of graphene wherein electron donor molecules such as aniline and TTF shows 

softening of the G-band.[81] Nitrobenzene and TCNE, on the other hand, stiffen the G-band,[81] a 

behaviour similar to that of SWNTs.  These experimental observations on molecular doping of 

graphene and SWNT have been corroborated by theoretical studies.[109, 110]  

Halogens such as I2 have traditionally been used as electron withdrawing species to examine 

their interaction with aromatic molecules.[111-113]  It was, hence, of interest to study the interaction 

of different halogen molecules with extended ߨ-systems like SWNTs and graphene by employing 

Raman and electronic absorption spectroscopy.  There are some reports in the literature on the 

chemical doping of SWNTs by I2 and Br2 ,[114, 115]  but the spectroscopic changes associated with 

the accompanying charge-transfer interaction have not been properly delineated or explained.  

Interaction of single layer and bilayer graphenes with I2 and Br2 have been reported recently,[116] 

even though graphite intercalation compounds of halogens have been studied extensively.[117]  

In this chapter, we describe the results of our detailed studies on the interaction of SWNTs and  

graphene with different halogen molecules probed by first-principles calculations. We also presented a 

breif report of the corresponding results obtained by the experiment probed by spectroscopy. In the 

experiment, as-prepared SWNTs produced by the arc-discharge method are subjected to interaction 

with halogen(Br2 and I2)and interhalogen molecules (ICl and IBr) which would have different electron 

affinities, the expected order being ICl>Br2>IBr>I2 based on electronegativity considerations.  The 

halogens are expected to p-dope SWNTs to varying degrees. The halogen-doped samples are 

characterized using Raman and electronic absorption spectroscopy. Few layer graphene (FLG) 

prepared by the exfoliation of graphite oxide and arc-discharge methods are also interacted with the 

halogens and the samples studied by spectroscopic methods. The changes in the spectroscopic 

signatures of both these nanocarbons are found to depend on the level of doping and also on the 

varying electron-withdrawing ability of the halogens. These experimental findings have been 

rationalized by ab-initio DFT investigations.  
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2.2  Computational Details 

All the electronic structure and energetic calculations are performed using the linear 

combination of atomic orbital density functional theory (DFT) within the generalized gradient 

approximation (GGA), considering the Perdew – Burke – Enzerhof (PBE) [118] exchange and 

correlation functional and using the double zeta polarized basis set (DZP) for all atoms as implemented 

in the SIESTA package. [119] Although, it is known that DFT poorly describes dispersion forces for 

the physisorption of the molecules, the molecules under consideration, owing to their lack of π-surface, 

render dispersion forces less important and hence the qualitative estimations of the obtained results 

wouldn’t change much. This is evident from the large number of studies involving the same method 

for gas molecule adsorption in the literature. [109, 110, 120-123] It should also be noted that local 

density approximation (LDA) overestimates the adsorption energy [124] for the weakly bound charge 

transfer systems and hence, we believe that GGA is an appropriate choice for our calculations 

describing the interaction between the halogens and the nanocarbons.  

We have considered the norm conserving pseudo potentials [125] in the fully non-local 

Kleinman – Bylander form [126] and are constructed from 7 valence electrons for all the halogens. A 

real space mesh cut off of 400 Ryd is used for both graphene and SWNTs. For complete relaxation and 

for structural relaxation, a Monkhorst k-point grid of 1×1×20 and 12×12×1 are used, respectively for 

systems involving SWNTs and graphene. Systems are considered to be relaxed when the forces acting 

on all the atoms are less than 0.04 eV Å-1. A large vaccum separations are used to supress spurious 

interactions in the non-periodic direction. We have considered graphene in the xy-plane and to create a 

sufficient vacuum along the z-direction a translation vector of 25 Å is considered to ensure the energy 

convergence. In the case of SWNTs, translational vectors of 25 Å are considered along x and y 

directions to avoid unwanted interactions. We separately relaxed the structures of pristine graphene (52 

atoms) and SWNT (66 and 62 atoms for semiconducting and metallic, respectively), halogen 

molecules and also halogen-nanocarbon-complex supercells at the same level of calculation.  
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different halogens as in the case of SWNTs. Electron absorption spectroscopy results supported the 

Raman spectroscopy results.  

 

2.3.2 Theoretical 

For a microscopic understanding of these experimental results, we have performed ab-initio DFT 

computations on the various halogen-nanocarbon-complexes. The details of the calculations are 

provided in the computational methods. In case of SWNTs, the theoretical studies are performed on 

model metallic (5, 5) and semiconducting (8, 0) nanotubes. Adsorption energies of the different 

halogen-nanocarbon-complexes are calculated to understand their relative stability. The adsorption 

energy per adsorbate molecule is calculated as the energy difference between the optimized total 

energy of the halogen-nanocarbon-complex and the individual optimized energies of the halogen 

molecule and the pristine nanocarbon. 

     E (adsorption) = E (halogen-nanocarbon-complex) – E (halogen molecule) – E (pristine nanocarbon)          (2.1) 

 

Table 2.1 Adsorption energy and optimized distance (between nanocarbon and X2) of X2 adsorbed nanocarbons 

  CNT (5, 5)  Graphene  CNT (8, 0) 

Molecule 

Equilibrium 

distance 

(Å) 

Adsorption 

energy 

(eV) 

Equilibrium 

distance 

(Å) 

Adsorption 

energy 

(eV) 

Equilibrium 

distance 

(Å) 

Adsorption 

energy 

(eV) 

Br2  3.03  ‐2.00  2.81  ‐1.88  2.82  ‐1.87 

IBr  3.07  ‐1.82  3.06  ‐1.71  2.83  ‐1.70 

I2  3.27  ‐1.09  3.05  ‐1.52  3.05  ‐1.54 

ICl  3.18  ‐1.10  3.09  ‐1.01  3.16  ‐0.98 

 

  The various adsorption parameters concerning the different halogen-nanocarbon-systems viz. 

adsorption energies and equilibrium distances of separation between nanocarbons and adsorbed 

halogens are presented in Table 2.1 and the corresponding optimized structures are shown in Figure 

2.2. The stronger the interaction between the halogens and the nanocarbons, the greater will be the  
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electron affinities is found to be exactly similar to the order of interaction energies i.e. Br2 > IBr > I2 > 

ICl, which leads us to conclude that higher the electron affinity of the halogen greater will be its 

interaction with the nanocarbon. Interestingly, the adsorption energies of most of the halogens to the 

nanocarbons follows the order CNT (5, 5) > Graphene > CNT (8, 0). This indicates that the extent of 

interaction of a halogen to the nanocarbons increases in the order semiconducting < semi-metallic < 

metallic i.e. in the order of abundance of electrons in the nanocarbon.  Thus, from the order of 

adsorption energies of the halogens with different nanocarbons, we find that molecules with higher 

electron affinities interact strongly to the electron rich nanocarbons. From Mülliken population 

analysis, we find that the extent of charge transfer is relatively small (only ~ 0.2 % charge transfer is 

observed). We also calculated the first ionization energies of all the molecules using same level of 

theory, to compare the electron donating capability of the molecules and we find that the electron 

donating order is I2 > IBr > Br2 > ICl.  

To understand the effect of halogen adsorption on the electronic properties of nanocarbons, the 

band diagrams and the corresponding density of states (DOS) are plotted together with the  projected 

DOS (PDOS) for all the systems as shown in figures 2.3, 2. 4, 2.5 for Graphene, CNT (5, 5) and CNT 

(8, 0) respectively. Halogen adsorption changes the DOS of graphene (figure 2.3) near the Fermi 

energy significantly, whereas, for the case of CNT (8, 0) and CNT (5, 5) changes are comparatively 

lesser (figures 2.4 and 2.5). We also find that the energy band gap of nanocarbons changes upon 

halogen adsorption and the changes follow the same order as the electron affinity of the halogen 

molecules for SWNTs (i.e. Br2 > IBr > I2 > ICl) but for graphene it follows the ionization energy order. 

Moreover, the linear band dispersion behavior at the Fermi level in pristine graphene is destroyed with 

a generation of energy band gap (in the order of ~ 0.088 eV to 0.27 eV) at the Fermi level after the 

adsorption of molecular species. Near the Fermi level there are discrete molecular bands which are 

essentially a superposition of bands from both the graphene and that of the adsorbate, with larger 

contribution from adsorbed molecules, as can be seen from the DOS and PDOS of the complexes 

(figure 2.3). In case of SWNTs (i. e. for both (8, 0) and (5, 5)), there is a change in the band structure 

near the Fermi level (see fig 2.4, 2.5) due to the presence of adsorbed molecules which is not so 

pronounced in the case of graphene. Compared to the pristine semiconducting SWNT (8, 0), some 

extra bands are found to originate slightly below the Fermi level for X2 adsorbed CNT (8, 0). These 

energy levels arise from the adsorbed molecules as illustrated in the projected density of states of these 

particular complexes. Band structure for the halogen adsorbed SWNT (5, 5), however, doesn’t change 

much near the Fermi level.  
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The Fermi energy shifts for the nanocarbons upon halogen adsorption follow exactly the same 

trend for both the nanocarbons viz. I2 > IBr > Br2 > ICl which is in accordance with the electron 

donating capability of the halogen species. This can be explained on the basis of the fact that as the 

electrons are added to the conduction band, there should be an upward shift in the Fermi energy, which 

essentially is what we observed. Iodine has less ionization energy (or more electron donating 

capability) and hence the Fermi energy shift is more for iodine adsorbed nanocarbons.  

The order of the shifts in the Fermi energy for other molecules can be explained in a similar 

manner. It is well known that [81, 100, 109, 114, 116, 127, 128] greater the amount of charge 

transferred (to) from the nanocarbon greater will be the (softening) stiffening of the G-band. In 

accordance with the above argument for the order of Fermi energy shift, iodine should stiffen the G-

band less as compared to others and iodine monochloride should stiffen the G-band more and the order 

should be ICl > Br2 > IBr > I2 which qualitatively matches with the experimental G-band shift for 

SWNTs. Electron affinity order obtained for these molecules, supports the above shift in G-band order 

(except for ICl). The electron affinity order obtained from theoretical calculations is Br2 > IBr > I2 > 

ICl and the experimental G-band stiffening varies in the order ICl > Br2 > IBr > I2. Thus, the order of 

electron affinity matches with that of experimental G-band stiffening.  
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Interestingly, both CNT (8, 0) and CNT (5, 5) ICl adsorption leads to a finite DOS at the Fermi 

level. From the PDOS of ICl adsorbed CNT (5, 5) (fig 2.4) one can notice that there is a significant 

contribution from the iodine and chlorine atoms to the DOS at the Femi energy for this complex, thus 

results in a metallic behavior. Unlikely, for the case of CNT (8, 0) the contribution to the DOS at the 

Fermi energy mainly comes from the carbon atoms. The reason for the metallicity could be mainly 

because of the structural distortion and the presence of the DOS of adsorbate or of carbon at the Fermi 

energy rather than the charge transfer, because, the change in the charge of the nanocarbons is very 

insignificant (only 0.2 %) to account for such a huge change in band structure.  

 

2.4  Conclusions 

In conclusion, doping by molecular charge-transfer induced by interaction of different halogen 

molecules with SWNTs and few-layer graphene has been investigated. The spectroscopic signature of 

doping is more pronounced in case of SWNTs than with graphene. Adsorption energy values, obtained 

from theory, clearly indicates that the halogen molecules are physisorbed on nanocarbon surfaces and 

higher the electron affinity of the halogen the greater is its interaction with the electron rich 

nanocarbon. The Fermi energy shifts for the nanocarbons upon halogen adsorption follow exactly the 

same trend for both the nanocarbons and the order of the expected G-band shift from theory, obtained 

using the calculated electron affinity values and Fermi energy shifts, matches qualitatively with the 

experimental G-band shift for SWNTs. 

 The varying electron withdrawing ability of the different halogens (manifested by their 

electron affinity) produces differences in the spectral properties of doped samples of both SWNTs and 

graphene which are confirmed by the theoretical results. On an average, the observed changes in the 

Raman spectra of SWNTs and graphene brought about by the halogens confirm to the order of, 

ICl>Br2>IBr>I2. Hence, theoretical calculations supported the experimental studies.  
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  Important peaks of the absorption spectra of chls include low energy Qy bands and high energy 

Bx and By bands. The Qy absorption wavelengths of the chls are: chl a (665 nm), chl b (652 nm), chl d 

(696 nm) and chl f (706 nm). [130, 132-134]   Among all these chls, the Qy absorption maximum of chl 

f is red–shifted and it is in the infrared (IR)–region. Chen et. al.,[134] discovered chl f from 

cyanobacteria and reported preliminary structural and spectroscopic studies. However, they did not 

focus on the reason behind this huge red–shift in the Qy band of chl f, when compared with other chls. 

The present study is done to understand the underlying cause for this red–shift. It is also important 

because this indicates that the chl f can perform “oxygenic photosynthesis” in low light conditions. 

 Though all chls are interesting, our study only focuses on chl f and its structural isomer chl b. 

Chl b and chl f structurally differs from each other only by the position of – CHO group (see figure 3. 

1). This makes the system interesting for electronic structural studies, because just by changing the 

position of a functional group, there is a huge shift in the Qy band (54 nm). To understand the reason 

behind such a huge shift we have employed the theoretical methods such as DFT and TDDFT.  

To determine the structure of a chl within the complex protein environment is a vast challenge. 

In many chl proteins, the Mg–atom exhibits penta-coordination, [135, 136] where the fifth 

coordination may be with an amino acid residue or with a water molecule. There are a few theoretical 

papers which considered the effects of axial ligation in chl a. [85, 137-139] To our knowledge no work 

has been done on the affect of axial ligation to chl f. The present study focuses on the structural and 

excited state properties of chl f in the presence and absence of axial ligands (such as Histidine, 

Aspartate, Serine, Tyrosine and water). The obtained structural changes are well supported by the 

computed NMR results. We also have studied the redox potentials of these molecules, since chls in 

photosystem are involved in electron transfer.  

  In what follows, we have given the details of our computational methods and how we 

modelled our systems in section 3.2. Structural differences among chl f, chl b and chl a are reported, 

along with the structural changes in chl f upon axial ligation, in sections 3.3.1 and 3.3.2. Redox 

properties are discussed in section 3.3.3. Section 3.3.4 is devoted to the changes in the absorption 

spectra among different chl molecules, in particular, the reasons for the red–shift in chl f, followed by 

the conclusions in section 3.4. 

 

3.2. Computational Details 
 Initial structures of chl f and chl b are created from the XRD structure of chl a presented at 2.5 

Å resolutions (1JBO.pdb). [140] The long phytol chain attached to the pyrrole ring II is modelled as –
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CH3 group in order to reduce the computational cost (see figure 3.1). Removal of phytol chain is 

considered as a reasonable approximation from several previous computational studies on chl a. [85, 

137-139, 141, 142] 

 As there are two conformers possible with respect to the –CHO group for chl f and chl b, 

geometry optimizations are performed to find the conformer with minimum energy and this minimum 

energy conformer is considered for further calculations. Five neutral axial ligands are considered in our 

study. 'Histidine' is modelled as "Imidazole", 'Aspartate' as "CH3COOH", 'Serine' as "CH3OH", 

'Tyrosine as "Phenol” and 'water' as "H2O". These are the axial ligands which occur frequently in 

photosystems of cyanobacterium. [85]  

All the geometry optimizations and energy calculations are performed with the Density 

Functional Theory (DFT). The three–parameter hybrid functional B3LYP (Beke exchange with Lee, 

Yang and Parr correlation) [143-145]with 6–31+G (d) basis set is used for all the atoms as 

implemented in the Gaussian 03 program package. [146] We choose the B3LYP functional, because, it 

is found to be one of the appropriate functional [85, 137-139, 141, 142] for the prediction of electronic 

structure for the various oxidation states of chls. We are aware that this DFT functional is not fully 

adequate to describe the long–range dispersion forces or stacking interactions, but, we do not expect 

them to play an important role in the single unit chl molecule investigated here. The computed energies 

are corrected for basis set superposition error (BSSE) using counterpoise method. [147, 148]All the 

molecular properties are calculated at the same level of theory and using the Gaussian 03 program 

package. [146] 1H–NMR chemical shielding values are calculated using Gauge Including Atomic 

Orbital (GIAO) method. [149-153] Time Dependent DFT (TDDFT) [154, 155]  is used to calculate the 

absorption properties of the optimized geometries.  

In this work we did not include the implicit solvent effect, since it is already proven that in the 

continuum model, solvent effect on the neutral ligated chl a molecules are negligible [85] and the 

initial molecular structures are obtained from 1JBO.pdb crystal structure, where all environmental 

effects have implicitly been included. In addition, it is known that in the protein environment, the 

inter–molecular H–bonding interaction between axial ligands and the surrounding environment will be 

dominant, which cannot be mimicked using implicit solvent model. To use an explicit solvent will be 

expensive and hence, in this work we report only the gas phase results.  
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3.3 Results and Discussions 
3.3.1 Structural Changes 

 In this section we discuss the structural differences among chl f, chl a and chl b along with a 

structural comparison between the two conformers of chl f. In addition, structural changes due to axial 

ligation are also discussed.  

 
Table 3.1 Computational and experimental 1H NMR chemical shift values (ppm) for the Ha, Hb, Hc and formyl 

hydrogen atoms for the various Chls studied in this paper. Hydrogen labelling schemes are shown in the figure 3.1. 

 

 

Among the many conformers of chl b, the two conformers, S–cis chl b (chl b’) and S–trans–chl 

b (chl b) are reported to be more stable and close in energy. [142, 158] We have found the same, where 

the S–trans conformer turns out to be more stable than S–cis conformer only by 5 kcal mol–1, and 

hence, both conformers can be present in the gas phase. However, one of the conformer might be 

stabilized in the protein environment due to the presence of an inter–molecular hydrogen bonding 

Molecule  Method  Ha  Hb  Hc  Formyl hydrogen 

Chl a 
Computational 

Experimental[156] 

9.28 

9.29 

9.67 

9.54 

8.51 

8.32 

––– 

––– 

Chl b 
Computational 

Experimental[157] 

10.93 

10.04 

9.48 

9.64 

8.17 

8.20 

11.35 

11.22 

Chl b’  Computational  9.73  9.71  8.31  11.83 

Chl f 
Computational 

Experimental[134] 

9.60 

9.79 

9.57 

9.86 

10.17 

9.77 

11.51 

11.35 

Chl f ’  Computational  9.84  9.64  8.95  11.71 

H2O  Computational  9.57  9.54  10.20  11.55 

His  Computational  9.60  9.48  10.15  11.49 

Ser  Computational  9.59  9.63  10.09  11.45 

Asp  Computational  9.44  9.66  10.21  11.16 

Tyr  Computational  9.43  9.77  10.15  11.17 
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The affect of the functional groups (R, R′ and R′′) on chlorin ring can further be understood by 

comparing the structure of chl f with chl a and chl b (see figure 3. 1). The affect of the changes in the 

functional groups are clearly reflected in the Mg– N1 and Mg–N4 bond distances and 1H–NMR 

chemical shift values of Ha and Hc as shown in the tables 3.1 and 3.2. The Mg–N1 bond of chl f (2.039 

Å) is longer than that of the Mg–N1 bond in Chl a (2.033 Å) and Chl b (2.030 Å), due to the presence 

of the electron withdrawing –CHO substituent at the corresponding pyrole ring (ring I) of chl f (see 

table 3.2). Presence of the – CHO substituent at ring I in chl f is also the reason for the downfield shift 

of Hc by 1.66/2.00 ppm when compared to chl a /chl b. Similarly, the presence of –CHO group at ring 

IV in chl b results in longer Mg–N4 bond (2.083 Å) than chl f (2.077 Å) and chl a (2.070 Å) (see table 

3.2). In addition, 1H–NMR chemical shielding value of the Ha of chl b is shifted downfield by 

1.33/1.65 ppm when compared to the Ha hydrogen of the chl f /chl a. (see table 3.1) 

The above mentioned results provide an evidence for the most possible chl f conformer in the 

gas phase. However, the Mg atom of chl f could be penta–coordinated in protein environment, as 

observed earlier in chl a and chl b. [85, 138, 139, 159-161] As mentioned in the computational section, 

we have considered five neutral ligands for our studies. Coordination of Mg with neutral ligands does 

not change the order of Mg–N bond distances: Mg–N2 > Mg–N4 > Mg–N1 > Mg–N3 (see table 3.2), 

however, Mg–N bonds are elongated by 0.01–0.04 Å and Mg atom is displaced from the plane of the 

macrocycle by 0.2 – 0.4 Å (see figure 3.3). The amount of the displacement of Mg atom is shown by 

computing out of plane distance (d OOP) by,  

dOOP = [Cos (θ/2) * (d1+d3)] / 2, 

 where, θ is the N1–Mg–N3  bond angle; d1 = Mg–N1 bond distance; and d2 = Mg–N3 bond distance. 

 

dOOP distances of Mg are in the order: Mg–His [Mg–N] (0.3681 Å) > Mg–Ser [Mg–O] (0.270 

Å) > Mg–Tyr [Mg–O] (0.258 Å) ≈ Mg–Asp [Mg–O] (0.254 Å) > Mg–H2O [Mg–O] (0.242 Å). dOOP 

distance highly depends on the steric hindrance of the ligated atom (see table 3.2). There is one 

exception from the trend, Ser, for which dOOP distance is larger than Tyr and Asp. This is due to 

orientation of CH3 group of serine, which is very close to macrocycle (see figure 3. 3d).  
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Table 3.2 Computed important bond distances (Å) and Mulliken charges (e) for chl a, chl b, chl b′, chl f, chl f′, 

neutral ligand ligated chl f and negative charge ligand ligated chl f. 

 

Molecules  Mg–N1  Mg–N2  Mg–N3  Mg–N4 
Mg–

ligand 
dOOP 

Mulliken atomic charge 

Mg 
Ligated 

atom 

Chl a  2.033  2.150  2.020  2.074  –  0.019  0.841  – 

Chl b  2.030  2.149  2.021  2.083  –  0.026  0.861  – 

Chl b′  2.029  2.151  2.019  2.083  –  0.024  0.822  – 

Chl f  2.039  2.146  2.020  2.077  –  0.024  0.818  – 

Chl f ′  2.039  2.146  2.021  2.075  –  0.022  0.802  – 

H2O  2.058  2.166  2.044  2.108  2.169  0.242  0.419  –0.843 

His  2.076  2.197  2.058  2.120  2.190  0.368  –2.042  –0.274 

Ser  2.067  2.183  2.042  2.102  2.139  0.270  –0.512  –0.467 

Asp  2.058  2.168  2.031  2.094  2.246  0.224  –1.233  –0.431 

Tyr  2.066  2.174  2.035  2.100  2.191  0.258  –1.391  –0.473 

Negatively charged ligands 

Ser–  2.106  2.24  2.075  2.136  1.953  0.536  –0.2438  –0.076 

Asp–  2.119  2.326  2.082  2.159  1.964  0.616  –0.269  –0.219 

Tyr–  2.086  2.211  2.068  2.128  2.02  0.485  –1.437  –0.084 
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Additionally, axial ligation to chl f  follow the similar trend of the chemical shielding values as in 

chl f, i.e., the formyl hydrogen is always in downfield when compared to the Ha, Hb and Hc. But, there 

are small changes in the chemical shielding values depending upon the orientation of the axial ligands. 

The presence of electron donating neutral axial ligands shifted the chemical shielding values of Ha, Hc, 

formyl hydrogens by 0.02–0.35 ppm towards upfield (see table 3.1) and Hb by 0.03–0.20 ppm towards 

downfield. There are three exceptions from this trend. 

(i) The inter–molecular hydrogen bonding interaction between H2O and formyl group is the 

reason for the downfield shift in formyl, Hc and the upfield shift in Hb proton. 

(ii) The orientation of His shifts the Hb chemical shielding value towards upfield and 

(iii) The H-bonding interaction between the acidic hydrogen of Asp and –CHO is the reason for 

the downfield shift in the Hc.  

 
Table 3.3 Computed reduction potential (RP1, RP2 in eV) and BSSE corrected Mg–ligand bond dissociation 

energies (EBDE, KJ mol–1) for chl f and axial ligated chl f. 

Molecules 
RP1 = E (N ‐ 1) –E (N) ‐ 4.43 

 eV 

RP2 = E (N) – E (N + 1) ‐ 

4.43 

 eV 

BSSE corrected EBDE  

KJ mol–1 

chl f  2.073  –2.199  0.000 

H2O  1.910  –2.253  –45.263 

His  1.665  –2.471  –70.704 

Ser  1.856  –2.308  –48.624 

Asp  2.019  –2.144  –25.654 

Tyr  1.883  –2.253  –34.184 

 

3.3.2 Bond Dissociation Energy (EBDE) of Axial Ligated Chl f 

Mg–ligand bond dissociation energy (see table 3.3) is a measure of its bond strength, which is 

calculated by, 

EBDE = E [chl f–Ligand] – E [chl f] – E [Ligand], 
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 where, E [chl f–Ligand] , E [chl f]  and E [Ligand] are the BSSE corrected energies of the corresponding 

molecules. 

Negative EBDE values of axial ligated chl f molecules, shows their stability. The stability order 

of ligands bonding to chl f is: His > Ser > H2O > Tyr > Asp (table 3.3). The EBDE values are in the same 

order as the Mg–ligand bond distances (see table 3.2) as expected except for His, which has large EBDE 

value in spite of its large bond distance. The similar larger EBDE value was observed earlier also for His 

ligated chl a.[85] The reason for strong binding of His is the direct coordination between aromatic 

imidazole ring and Mg. 

 

3.3.3 Redox properties of Chl f and Axial ligated Chl f Molecules. 

 One of the major roles of chls in photosystem is they can involve in electron transfer process, 

which can be defined by computing reduction potentials (RPs). The reduction potential (RP) is a 

measure of the ability of a compound to acquire electrons and get reduced.  Herein, we have 

considered a redox reaction with three oxidation states, since chl can accept/donate electron during the 

electron transfer process in photosystem.  

 
where, N is the number of electrons. RP1 and RP2 are reduction potential for chls (N-1) / chls (N) and 

chls (N) / chls (N+1) redox pairs respectively. RP1 and RP2 values are computed for relaxed 

geometries of chls using below equations 

                                   RP1 = E (N-1) – E (N) – 4.43  

                                   RP2 = E (N) – E (N+1) – 4.43 

where the factor 4.43 eV is an estimate of the reduction potential of the standard hydrogen electrode 

[162] and E is the BSSE corrected energy of the corresponding oxidation states.  

  In general, all the highest occupied and lowest unoccupied molecular orbitals of the chl f and 

axial ligated chl f have localized π molecular orbital, which shows that the redox process has major 

contributions from the macrocycle ring rather than from the axial ligands.  However, addition of axial 

ligands to chl f decreases the RP1 and RP2 values by ~0.05 – 0.4 eV. Thus, electron donating axial 

ligands brings stabilization to oxidised state (see table 3.3) except Asp, which stabilizes the 

corresponding reduced (N+1) state (see RP2 value of Asp).  

 If one compares two compounds, one with more positive RP1 or RP2 will acquire the electrons 

from the other acting as an oxidizing agent to the other. Our results provide an evidence that the Asp 

chls
(N)

chls
(N-1)

chls
(N+1)

RP1 RP2
-e

+e+e
-e
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with more positive RP1 and RP2 values can act as electron acceptor and His with less positive RP1 and 

RP2 values can act as electron donor, when compared with other ligands. In addition, it is clear that the 

order of RPs is in exactly reverse to the order of EBDEs. The order of RPs is: Asp > H2O > Tyr > Ser > 

His. The order of the RPs of these axial ligated chls in an increasing manner might suggest the electron 

transfer pathway in any photosystem.  

 
Table 3.4 Computed excitation wavelength (nm) for the chl a, chl b, chl f and axial ligated chl f molecules. Major 

orbital contributions for the corresponding excitations are also given. In this table ‘H’ denotes HOMO and ‘L’ 

denotes LUMO. 

 

Molecules  Nature 
Excitation 

Wavelength (nm) 
Major molecular orbital contributions 

chl a 
Qy 

By 
Bx 

589 
379 
319 

H to L (0.71) 
H–1 to L+1 (0.57) 
H–1 to L+2 (0.72) 

chl b 
Qy 

By 
Bx 

577 
419 
331 

H–1 to L+1 (0.27) and H to L (0.65) 
H–1 to L+1 (0.20) and H to L+1 (0.24 ) 

H to L+2 (0.74) 

chl f 
Qy 

By 
Bx 

615 
396 
353 

H to L (0.72) 
H–1 to L+1 (0.61) 
H–1 to L+2 (0.61) 

H2O 
Qy 

By 
Bx 

618 
408 
359 

H to L (0.71) 
H–1 to L+1 (0.53) 
H–1 to L+2 (0.57) 

His 
Qy 

By 
Bx 

622 
413 
365 

H to L (0.71) 
H–1 to L+1 (0.42 ) 
H–1 to L+2 (0.47 ) 

Ser 
Qy 

By 
Bx 

617 
406 
361 

H to L (0.72) 
H–1 to L+1 (0.50) 
H–1 to L+2 (0.54) 

Asp 
Qy 

By 
Bx 

619 
407 
353 

H to L (0.71) 
H–1 to L+1 (0.33) 
H–1 to L+2 (0.64) 

Tyr 
Qy 

By 
Bx 

620 
403 
359 

H to L (0.72) 
H–1 to L+1 (0.32 ) 
H–1 to L+2 (0.59 ) 
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3.3.4 Excited State Properties 

 Absorption spectra of chl a, chl b and chl f are shown in figure 3.4. The main peaks of the 

spectrum are the low energy Qy band (600–700 nm), the high energy Bx and By bands (300–500 nm). 

Many computational studies have been carried out for understanding the absorption properties of chl a, 

chl b and other similar molecules, [87, 88, 158, 163] however the substituent effect to the absorption 

spectra is not studied yet. The main emphasis in this work is to understand the underlying reason for 

the red–shift of Qy band of chl f compared to chl a and chl b. This can be explained by computing 

molecular orbital contributions and their energies to each band as shown in the table 3.4 and figures 3.5 

and 3.6. The computed Qy bands for chl a, chl b and chl f are 589 nm, 577 nm and 615 nm respectively. 

The shift in the Qy bands of chl b and chl f with respect to the Qy bands of chl a is –12 nm and +26 nm, 

which are comparable with the experimental shifts of –13 nm and +41 nm, respectively. The small 

differences might be due to the absence of protein environment in our studies.  

 

 From the TDDFT calculations one can see that the major contributions to the Qy band involves 

the excitations from HOMO to LUMO (in the range of 0.65 to 0.72) and HOMO–1 to LUMO+1 (in the 

range of -0.19 to -0.21). The orbital energy differences between the corresponding orbitals on chl a, chl 

b and chl f clearly reflects these shifts (see figure 3. 5).  In the case of chl a, it is clear that the larger 

excitation energy is due to the absence of electron withdrawing –CHO group. The presence of electron 

withdrawing –CHO group stabilizes the orbital energy of LUMO for chl f and LUMO+1 for chl b (see 

figure 3.6). Among these two, the HOMO–LUMO excitation has major contribution (in the range of 

0.65 to 0.72) in the Qy band rather than the HOMO–1 to LUMO+1(in the range of -0.19 to -0.21). This 

shows that the specific coordination between the π orbital of macrocycle ring and the –CHO unit is the 

primary reason for the red shift in chl f when compared with chl b.  
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Figure 3.4 Absorption spectra of chls a, b and f where FWHM= 2500. 

 

 
Figure 3.5 HOMO–LUMO energy plots of various chls in eV. 
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Figure 3.7 Absorption spectra of chl f and H2O ligated chl f. 

   

HOMO and HOMO–1 of both chl f and chl b have the same amount of contribution from the – 

CHO group 15–16 % and 3–4 % respectively, and also, they have similar energy values.  However, the 

LUMO of chl f has 31 % contribution from – CHO group, which stabilizes the LUMO level by 0.3 eV 

than its corresponding chl b LUMO orbital which has only 3 % – CHO group contribution (see figure 

3.6). Similarly LUMO+1 of chl f with smaller –CHO contribution (13 %) destabilizes the orbital by 0.1 

eV than the LUMO+1 of chl b, which has larger 46 % -CHO contribution. This shows that the MO 

with more contribution from – CHO group stabilizes and vice versa. The π (LUMO) orbital which has 

larger –CHO contributions in the chl f has major contribution to the Qy band which is the main reason 

for huge red shift.  

     The changes in the – CHO  local contribution in the specific molecular orbital is also shown in 

the lower energy Bx (370-400 nm) and By (300-350 nm) bands, which corresponds to the excitation 

from HOMO-1/HOMO to LUMO+2 and HOMO–1/HOMO to LUMO+1 respectively (see table 3.4 

and figure 3.6). The contribution of HOMO and LUMO+2 to the Bx band of chl f is the reason for its 

red shift (20 nm). Similarly the contribution of HOMO–1 and LUMO of chl f is the reason of 20 nm 

blue shift in the chl f when compared with chl b. 

 Note that, all three excitation bands have major contribution from the π orbital of macrocycle 

chlorin ring, which are not affected by axial ligation. However, all bands of chl f are red–shifted on 

axial ligation (see figure 3.7).  Our calculations show a shift of about 5 – 10 nm in the Qy band 
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depending on the nature of the ligand, which can be understood, again, by observing the changes in the 

energies of HOMOs and LUMOs up on addition of axial ligand (table 3.4).  All the MOs of axial 

ligated chl f are destabilized during the addition of axial ligands, which is the reason for a red shift in 

Qy, Bx and By bands (see table 3.4).  

 

3.4. Conclusions 
Density functional theory and time dependent density functional theory computations have been 

carried out to understand the different electronic excited state properties of chl f, compared to its 

structural isomer chl b. For chl f and chl b, computed 1H-NMR chemical shielding value clearly show a 

downfield chemical shift for formyl hydrogen than Ha, Hb and Hc, which compares well with the 

experimental value. Axial ligation to chl f distorts Mg atom from its plane, however, it follows the 

similar trend of the chemical shielding values as in chl f, where the formyl hydrogen is always in 

downfield when compared to the Ha, Hb and Hc.  

 In general, low energy Qy and high energy Bx and BY bands are observed for all chls, which 

have a major contribution from macrocycle ring localized π molecular orbitals (HOMO, HOMO-1, 

LUMO, LUMO+1 and LUMO+2). The computed Bx, By and Qy bands excitation energies of chl a, chl 

b and chl f are in good agreement with experimental and already theoretically reported values. We have 

found that the LUMO of chl f is stabilized due to the larger contribution of –CHO substituent, which is 

the reason for its red shift when compared with chl b. Even in the presence of axial ligation, the 

macrocycle chlorin ring plays a major role in the excitation and the redox processes. Axial ligation 

shows red–shift in the Qy band. Our results provide evidence that the Chl f-Asp with more positive 

reduction potential values can act as electron acceptor and His with less positive reduction potential 

values can act as electron donor, when compared with other ligands studied in this work. 
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Chapter 4  

Size Effects on the Nonlinear Optical properties of Zigzag Graphene 

Nanoribbons: A Semi-empirical Study 
 

4.1 Introduction 
Conjugated nonlinear optical substances (NLOs) are a region of interest for both experimentalists and 

theoreticians [164] over the past three decades, due to their high efficiency and tunability. NLOs have 

been studied extensively because of their future applications in photonics such as three-dimensional 

memory, optical limiting, optical switching and photodynamic therapy. [165-171] NLO properties can 

be tuned by understanding the nature and length of the conjugated linkers, [172-174] donor/acceptor 

substituents [175-180] etc. Graphene families including graphene oxide nanosheets, graphene oxide 

nanoribbons, graphene nanosheets and graphene nanoribbons (GNRs) have been investigated recently 

[181-184] to observe the NLO and optical limiting properties of these substances. Nonlinear scattering 

mechanism is found to be the cause for the existence of these properties in these graphene families. 

However, most of these studies including optical and optoelectronic properties of graphene are of 

theoretical interest only because of the absence of band gap in graphene. This made GNRs a very 

promising candidate material for applications in carbon-based photonic and optoelectronic devices, 

because, GNRs have a finite band gap which can be tuned through structural or chemical modifications 

along with doping and external perturbations. [60, 181] 

 To the best of our knowledge, investigations on the NLO properties of GNRs, in particular 

zigzag GNRs (ZGNRs), till now, mainly focused on the third order NLO properties and are mainly 

calculated using finite field approach. ZGNRs have been predicted to be open-shell singlet ground 

states with di-radical characteristics. [66, 67] However, there are no studies focused on the linear and 

second hyper-polarizability of GNRs. In this chapter, we study the changes in the linear and second 

hyper-polarizability of GNRs as a function of their length and width using the sum-over-states (SOS) 

approach which is explained in the computational details section. Because of their inherent symmetry 

nanoribbons posses nearly zero dipole-moment which brings down the first hyper-polarizability values 

to zero. This made us to study the linear and second hyper-polarizability of ZGNRs.   
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4.2 Theory 
The crucial nonlinear optical property of the material is the nonlinear response to an electric field given 

by the macroscopic 3rd order optical susceptibility, χ (3). The 3rd order polarization component from 

equation 1.2.6 has the form  

P (3) = [E0
3 + (3/2) E0E1

2 (1 + cos 2ωt) + 3E0
2E1 (cos ωt) + 

    (3/4) E1
3 (cos ωt + cos 3ωt)] χ (3)     (4.2.1) 

Thus the 3rd order macroscopic polarization component is dependent on the 3rd order optical bulk 

susceptibility, χ (3) and χ (3) is obtained from the corresponding microscopic (molecular) non-linear 

second hyper-polarizability, γ, using a sum of molecular coefficients over all molecular states. This 

sum consists of oriental distribution and a local field operator F which accounts for the correction from 

the electric field due to its interaction with surrounding molecules. [185]Thus χ (3) can be related to γ as 

       χ (3) = F ∑ γ୧ሺθ,φሻ                  (4.2.2) 

where the sum is over all the molecular sites and (θ, φ) measure the relative orientation of the 

molecules with respect to each other. Hence, for a macroscopic system to be highly NLO active, both 

the individual molecular hyper-polarizability and the orientation effects have to be optimized.  

Although Finite-Field-Approach (FFA) is very popular we used sum-over-states (SOS) approach to 

calculate linear and hyper-polarizabilities, because, in FFA energies need to be highly accurate to 

calculate its derivatives for obtaining β or γ and this accuracy is rarely achieved in quantum chemical 

calculations. [185] 

 Orr and Ward developed this SOS approach [186] based on the perturbation theory to 

understand the changes in the electronic distribution of a moelcule caused due to the external electric 

field. This oscillating external electric field is added to the original Hamiltonian as a perturbation and 

is given by 

    H′ = - e (Er) sin ωt        (4.2.3) 

where, E is the amplitude of the field and r is a coordinate associated with the position of the electrons. 

Polarizability and second hyper-polarizability are expressed as infinite sums over excited states. The 

expression for the polarizability is given by 
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density functional theory (DFT) within the generalized gradient approximation (GGA), considering the 

Perdew – Burke – Enzerhof (PBE) exchange [118] and correlation functional and using the double zeta 

polarized basis set (DZP) for all atoms as implemented in the SIESTA package. [119]We have 

considered the norm conserving pseudo potentials [125] in the fully non-local Kleinman – Bylander 

form[126] and are constructed from 4 valence electrons for carbon and one electron for hydrogen. A 

real space mesh cut off of 400 Ryd is used for the optimization of all graphene nanoribbons. Systems 

are considered to be relaxed when the forces acting on all the atoms are less than 0.04 eV Å-1. The 

calculations are performed in supercells with sufficient vaccum in all three directions to avoid 

unwanted interactions. Optimized structures of all the ZGNRs are presented in figure 4.1. We used 

Zerner’s intermediate neglect of differential overlap (ZINDO) method [187] under the sum-over-states 

approach to calculate the linear and second hyper-polarizabilities of the GNRs. 

 

4.4 Results and Discussions 

In figure 4.1, we present the optimized structures of ZGNRs used for this study. The magnitudes of the 

components of linear polarizability (αij) and second hyper-polarizability (γijkl) for these ZGNRs at 

different exciting frequencies are reported from the ZINDO calculations. We report the magnitude for 

the tumbling average α′ and γ′ (see table 4.1 and 4.2), which are defined as  

 

      α′ = ଵ
ଷ
∑ α             (4.2.6) 

and 

        γ′ = ଵ
ଵହ
∑ 2γ  γ         (4.2.7) 

 

where, the sums are over the coordinates x, y, z (i, j = x, y, z). 

 

 The tumbling average, α′, of these ZGNRs increases with an increase in the width of the GNR 

as shown in figures 4.2 (a) and 4.2 (b). It also increases with an increase in the length of the GNR as 

shown in figure 4.3. The reason for the increase in α′ with length or width might be because of the 

increased conjugation. Increase in conjugation will increase the number of π-electrons in the system. 

As π-electrons are weakly held by atoms compared to σ-electrons, polarizability of a system will 

increase as the number of π-electrons increases in the system.  This can be clearly seen by the higher α′ 

values for ZGNRs with length 2 compared to ZGNRs of length 1. As one goes from ZGNRs with 
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Figure 4.3 Variation in α′ (atomic units) with length of the ZGNR and with the excitation frequency (eV)  

 

Figure 4.4 Variation in α′ (atomic units) with a variation in the length of the ZGNR at different excitation 
frequencies, 0 and 1 eV 
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  The tumbling average of second hyper-polarizability, γ′, of ZGNRs also increases with increase 

in the width and length of the GNR (see figure 4.5). In figure 4.5, γ′ values for different ZGNRs are 

plotted at two different excitation frequencies, viz., 0 and 1 eV. One can see that there is a huge 

increase in γ′ as one goes from length 1 to 2 and this change is in the order of 104 (as can be seen from 

Table 2 and fig 4.5). But, unlikely there is no significant increment in the γ′ value for ZGNR (7, 2) 

when the length of the GNR increased from 1 to 2 as shown in figure 4.5. Although the γ′ values of 

ZGNR (7, 2) are larger than the γ′ values of ZGNR (7, 1) at all excitation frequencies, this increase is 

so less compared to the other ZGNRs of length 2 (see fig 4.5 )  

 
Figure 4.5 Variation in γ′ (atomic units) with a variation in the length of the ZGNR and with excitation frequency 

 

4.5 Conclusions  
  In conclusion, we considered ZGNRs of different length and width and we found that tumbling 

average of linear polarizability and second hyper-polarizability increases with an increase in length or 

width of the ZGNRs because of the increment in the conjugation. But the increment of γ′ in the case of 

ZGNR (7, 2) is less compared to other ZGNRs of length 2. In spite of this, γ′ values of length 2 

ZGNRs are large enough to show promising applications if one can tune these NLO properties by 

utilizing these ZGNRs as donor-acceptor bridges. Our work is in progress to design these types of 

materials.  
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