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Preface

This thesis consists of three chapters. First chapter gives an introduction to struc-

tural glasses and sheared glasses. We have also motivated our work with experi-

mental and numerical studied on amorphous systems. Chapter two has description

of homemade experimental setup for carrying out our experiments on bubble rafts.

In chapter three, we have shown that binary amorphous rafts show yielding. We

have connected this yielding behaviour to non-affine microscopic events called T1

events. Temporal evolution of these non-affine events is studied and observed to

saturate to a steady state value which is dependent on the applied strain ampli-

tude. These steady stare value which is dependent on applied strain amplitude

serves an an order parameter and a relaxation time obtained from the temporal

evolution of number of non-affine events characterise an absorbing phase transition

at a critical strain associated with yielding in our system. Interestingly, with in

the experimental certainty, we have observed a roughening transition at a critical

strain which coincides with the yielding. This thesis consists of three chapters.

First chapter gives an introduction to structural glasses and sheared glasses. We

have also motivated our work with experimental and numerical studied on amor-

phous systems. Chapter two has description of homemade experimental setup for

carrying out our experiments on bubble rafts. In chapter three, we have shown that

binary amorphous rafts show yielding. We have connected this yielding behaviour

to non-affine microscopic events called T1 events. Temporal evolution of these non-

vii



affine events is studied and observed to saturate to a steady state value which is

dependent on the applied strain amplitude. These steady stare value which is de-

pendent on applied strain amplitude serves an an order parameter and a relaxation

time obtained from the temporal evolution of number of non-affine events charac-

terise an absorbing phase transition at a critical strain associated with yielding in

our system. Interestingly, with in the experimental certainty, we have observed a

roughening transition at a critical strain which coincides with the yielding.
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CHAPTER 1

INTRODUCTION

1.1 Structural Glasses and Glass Transition

Structural glasses are widely used in material and aerospace industry. Glasses

with desirable mechanical and optical properties can be designed according to the

microscopic understanding of the glassy state which remains a challenge for con-

densed matter physicists[1; 2]. While glasses are mechanically rigid like that of

crystalline solids, their microstructure is analogous to a liquid. Since rigidity is

associated with broken translational symmetry, it remains a challenge to explain

the rigidity of the glassy state. Upon cooling a liquid, molecular dynamics slows

down and if cooled slowly across its freezing temperature Tm, it adapts to a crys-

talline state which is a first order transition[3]. But on cooling rapidly molecules do

not have sufficient time for rearrangements and the system appears frozen on the

experimental time scale. The temperature below which this state is achieved is the

glass transition temperature Tg[4]. This description is represented graphically in

Figure 1.1 which shows the temperature dependence of liquid’s volume at constant

pressure.

1.2 Glasses under Shear

Deformation in crystalline materials is characterised by dislocations present

in them[5]. When a shear stress is applied to the material as shown in Figure 1.2, it

1
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Figure 1.1: Temperature dependence of a liquid‘s volume V or enthalpy H at
constant pressure. Tm is the melting temperature. A slow cooling rate gives a glass
transition at Tga; faster cooling rate produces a glass transition at Tgb. Adapted
from[4].

deforms along the slip plane by means of dislocation motion. Amorphous systems

do not have any topological order and at present the deformation mechanisms for

glasses remain unclear.

The study of deformation and flow of amorphous materials/glasses can answer

questions related to efficient mechanical properties of glasses. Be it amorphous

or crystalline solid, the deformation has to involve structural rearrangements[6].

However, the length scales at which these happen are too small and time scales are

too short in atomic systems.

Soft matter systems are ideal to study the dynamics of glassy state at observable

time and length scales experimentally. Colloidal assemblies[7], emulsions, foams,

and also granular matter are different soft matter systems and can exhibit glassy

behaviour. Deformation and flow (rheology) of these complex fluids is a fascinat-

ing phenomena because they are viscoelastic - they have mechanical properties
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Figure 1.2: Arrows show the direction of applied stress; Dislocation motion is
showed from (a) -(c); in (c) unit step of slip is shown. Adapted from google images.

in between elastic solids and viscous liquids[8]. Direct real space visualization of

microstructural rearrangements can be possible with sheared colloidal systems[9].

Results from numerous experiments on sheared colloidal systems have shown that

microstructural dynamics of amorphous systems show yielding at a critical shear

strain([10; 11]). Colloidal systems are thermal as they diffuse and exhibit Brownian

motion. But what is the case for systems where there is no role of temperature

i.e., in the limit thermal fluctuations are zero? How are the microstructural dy-

namics and rheology of athermal glasses related? Argon and Kuo in 1979[12; 13]

first proposed a model system for studying sheared athermal amorphous systems.

Raft consisting of particles of two different sizes roughly in equal numbers forms

amorphous system and has structural characteristics of metallic glass.

1.3 Bubbles rafts as Soft Matter

Bubble rafts are dispersions of gas bubbles in surfactant solution at air liquid

interface. The size of each bubble is 1 mm to 1 cm and thickness of the liquid films

separating neighbouring bubbles is generally between 10 nm to a few µ m. Every

bubble of the raft is considered as an atom as capillary forces between the bubbles
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Figure 1.3: Bubble raft showing hexagonal packing in 2 dimensions. Adapted from
[14].

are analogous to interatomic forces that are used to model atomic systems[14][15],

Figure 1.3. They resemble other complex systems such as emulsions, gels and

vesicles. These systems show yielding at the cross-over of solid-like and liquid-

like behaviours, jamming and slow relaxation dynamics characterizing soft glassy

rheological behaviour[16]. These mesoscale systems are easy to track using video

microscopy and microscopical physical phenomena can be studied elegantly.

Bubble rafts and granular systems are soft systems in zero temperature limit

and hence are athermal systems. They both share many similar characteristics.

But in contrast, the grains of granular systems are incompressible, and pack at

packing fractions below random close packing (84% for 2D systems and 63% for

3D systems), while bubbles of the raft can readily deform and squashed together

and pack above random close packing. Also grains of granular systems are subjected

to static and sliding friction as well as to collisions, whereas bubble contacts are

through a liquid film that typically do not support static friction. These simplify
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the interpretation of deformation in bubble rafts and is the subject of focus for the

remaining part of this thesis.

1.4 Shearing bubble rafts

As described in previous section, in molecular glasses, structural relaxation on ap-

proaching Tg is due to activated thermal motion and results in aging. In case of

foams, the thermally energy is zero and non-thermal effects like coarsening, coa-

lescence and drainage describe aging process. When bubble raft is subjected to a

steady shear, at high strain rate it behave like a Herschel-Bulkley[17] fluid and in

the limit of zero strain it exhibits a bifurcation in viscosity[18] and a time evolution

in viscosity[19]. Under oscillatory shear, for small strain amplitudes they behave

predominantly like elastic solids and for large strains they behave predominantly

like viscous liquids with viscosity that decreases with shear rate (shear thinning).

Oscillatory rheology allows one to probe quasistatic elastic response of the system

by increasing the driving frequency. Unlike polycrystalline materials, when shear

stress is applied, they undergo change in shape due to sharp shear translation be-

tween adjacent close packed rows in the raft. Shear translation is the result of

stress relaxation and these stress relaxing regions are termed as Shear Transforma-

tion Zones (STZ), Figure 1.4. The term STZ is first coined by Ali Argon to explain

metallic glass deformation[12]. In these STZs due to absence of long range order,

topological rearrangements named as T1 events and T2 events occur.

Bubble raft when sheared, stores elastic energy in the form of bubble deforma-

tions and then system subsequently relaxes through bubble rearrangements. These

topological events that results in stress drop in the system stochastically are T1

events. T1 event is a neighbour switching among four particles as shown in Figure
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Figure 1.4: (a) A shear transformation zone visualized as a nanoscopic dislocation
loop. Under stress, the top half of the blue atoms shift with respect to the bottom
half, but the surrounding disordered yellow atoms prevent the displacement from
propagating beyond a distance of 1-2 nm. (b) Only blue atoms from (a) are shown
with two different set of close packed rows. Adapted from [12].

1.5. In configuration-1 particles labelled 1, 2 are nearest neighbours and particles

labelled 3, 4 are next nearest neighbours. When a steady shear is applied on to

the system, particles labelled 3, 4 become nearest neighbours and particles labelled

1, 2 become next nearest neighbours as shown in configuration-2. The change in

configuration from 1 to 2 accounts for one T1 event. In case when an oscillatory

shear is applied to the system, two possibilities arise. One, at the end of a cycle

configuration-1 goes to configuration-2 and returns back to configuration-1 which

is a reversible T1 event or an affine transformation and system retains its original

configuration. Second, at the end of a cycle configuration-1 goes to configuration-2

and to configuration-3 which is an irreversible T1 event or a non-affine transfor-

mation and system attains new configuration. Number of irreversible T1 events

is characteristic of plastic deformation in amorphous systems. Diffusive wave mi-

croscopy was used to detect T1 events in 3D foams directly[20][21][22][23]. But
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Figure 1.5: T1 event among four particles of an amorphous system when sheared.
Configuration-1 to Configuration-2 is a reversible T1 event. Configuration-1 to
Configuration-3 is an irreversible T1 event.

this technique does not provide good spatial resolution because of which rheologi-

cal measurements on foams are now focused on 2D systems.

Mechanical deformation of 2D foams have been rigorously studied both numer-

ically [23][24][25][26][27][28] and experimentally[29][30][31][32]. Bubble rafts when

sheared in a Couette geometry, due to zero velocity at the no slip boundary (at

the rim), the velocity profile resembles a plug flow as shown in the Figure 1.6[33]

for different shear rates. It was also shown that the viscosity liquid layer that is

present between two bubbles plays an important role in studying dynamics be-

yond yield point where foam behaves like a viscous fluid[23]. When amorphous

systems are subjected to small deformation, they follow deformation induced con-

tinuous changes in the local minimum. hence every particle tracks energy local

minimum. Within the elastic limit, particle returns to its original position after

every cycle as shown in Figure 1.7, reversible elastic step[34]. With increase in shear

strain/deformation, chance of returning back to the original position decreases as

shown in Figure 1.7, irreversible plastic step.

When a viscoelastic solid is sheared with strain, γ(t) = γosin(ωt), steady state
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Figure 1.6: The scaled velocity profile as a function of scaled position (y/〈d〉) for
three different rates of strain for a system with Couette geometry, where 〈d〉 is the
average bubble diameter.Adapted from [33]

Figure 1.7: A schematic representation of deformation-induced changes of a local
minimum in the potential energy landscape. The shape of the landscape varies
continuously as the strain is increased going from left to right with both the location
and height of the minimum changing. Adapted from [34]



1.4 Shearing bubble rafts 9

Figure 1.8: Numerically computed storage modulus G′(open symbols) and loss
modulus G′′(filled symbols) rescaled with varying distance to jamming ∆z (legend).
Adapted from [35]

stress is also sinusoidal and has both in-phase (elastic/Storage component) and

out-of-phase (viscous/loss components) contributions, σ(t)/γo = G′(ω)sin(ωt) +

G′′(w)cos(ωt). These two components together define frequency dependent com-

plex shear modulus, G∗ = G′ + iG′′. In a slowly sheared viscoelastic solid, G′

approaches quasistatic shear modulus Go. Also G′′ = ηoω is linear in frequency

(Newtonian) where ηo is the dynamic viscosity. Figure 1.8 shows numerically com-

puted elastic and viscous moduli from bubble raft model[35]

Rheological measurements of 2D forms using oscillatory strain were well stud-

ied by Kabala and Debregeas[36][37]. Numerically they have modelled quasi-two

dimensional foam system which consists of monolayer of bubbles with two different

sizes confined between two horizontal plates. Experimentally they have studied

2D foams under oscillatory shear. These systems are aimed to understand connec-

tions between mechanical properties and microstructure. Velocity flow profiles as

described in earlier works can arise due to the geometrical constraint of the exper-



10 Chapter 1.

imental system (Couette geometry). So, simulation work has considered parallel

plate geometry where shear stress is homogeneous and geometry does not play a

role. Mechanical properties of the system are observed to evolve with time and this

evolution is explained using evolution of shear bands. Shear bands are observed

to evolve above a critical strain and tend to saturate This is correlated with the

increase number of non-affine rearrangements and their tendency to move to the

side of moving plate. Stress versus strain plot, Figure 1.9(a) shows a linear increase

showing the elastic behaviour of the system and for γo >= 1 shear banding occurs

and shear stress overshoots and saturates showing avalanche of rearrangements.

Also number of T1 events are less and randomly distributed for γo < 1 and for

γo >= 1 , T1 events gather in a narrow region close to the moving plate as shown

in Figure 1.9(b). When T1 event occurs, it triggers an avalanche of events in the

near neighbourhood region. A powerlaw decay of the avalanche size distribution

is observed with an exponent of -3/2 which is close to mean field value. It is in

agreement with the numerical studies of Chen, Bak and Obukhov(1991) and Oku-

zono and Kawasaki(1995) on elastic disordered systems. This suggests that the

exponent value is generic feature of these systems.

1.4.1 Fluctuations in static stress field

To understand the spatial fluctuations of static stress field developed due

to avalanche of T1 events, a section of the system which is radially symmetric

and having a width of one bubble diameter is considered. To characterise these

fluctuations, a quantity called bubble shear stress deviation defined for each bubble

in this section as, δsσi = σi(t) − 〈σ(y, t)〉 〈σ(y, t)〉 is the mean shear stress in the
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Figure 1.9: Evolutions of (a) the shear stress, (b) the positions of the T1 events
within the gap (geometry) as a function of the applied strain (data from the sim-
ulation). Adopted from [37]
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corresponding section. Figure 1.10 shows the distribution of bubble shear stress

in both experiment and simulation at shear band and region located 10 particle

diameters from shear band. Variance of these plots is wider at the location of shear

band than in other regions.

1.4.2 Understanding Shear-banding instability

Wider is the variance of stress distribution, greater is the probability of finding

clusters of bubbles subjected to large strains. These regions are more likely to

yield plastically with increase in shear stress. Therefore it is reasonable to associate

wider variance of stress distribution to decrease in the yield stress. To explain this

assumption, two distinct regions of the foam are considered whose initial stress

distributions are same. With the increase in mean shear stress, T1 events start

appearing and trigger an avalanche of rearrangements. This triggering breaks the

symmetry of the system which results in onset of shear-banding.

1.4.3 Fluctuations in dynamic stress field

Dynamic shear stress deformation for each bubble for a section of raft (as described

earlier) is given as, δdσi(t,∆t) = δsσi(t + ∆t)− δsσi(t). In the same way as static

stress distribution, variance of dynamic stress distribution decreases on moving

away from shear band and the decrease is more pronounced. Thus, shear-band

instability helps in understanding the two regimes of mechanical response of glass

when subjected to a mechanical deformation (shear strain).

As fundamental problem in the physics of amorphous materials/structural glasses

is to understand reversible elastic behaviour to irreversible plastic behaviour and

its connections to yielding, above described approaches can provide more insights
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Figure 1.10: Distribution of the bubble shear stress deviation δsσi to the local
mean value (a, b) in the experiment and (c, d) in the simulation, in the steady-
state regime. Two different regions are analysed: (a, c) the shear band, and (b,
d) a region located 10 bubble diameters away from the shear band. The regions
correspond to strips of width 1 bubble diameter in the experiment, and 2 bubble
diameters in the simulation. Adopted from [37]
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into understanding of microstructural relaxations in structural glasses.

1.5 Foam flow as a Self-Organised criticality

The dynamics and rheology of foams can be understood using the concept of self-

organised criticality[38]. Vertices of cellular patterns of foams are considered to

model the system and mechanical properties are calculated. The dynamical be-

haviour of the system has similarities with stick-slip process of earthquake models

that exhibit self organised criticality. So the time series analysis of interfacial en-

ergy, E(t) and average stress tensor,τxy(t) was analysed and power spectrum for

both of the quantities are defined probability density of avalanche sizes, P (s) for

E(t) and P (s′) for τxy(t) are plotted as shown in the Figure 1.12 and Figure 1.13.

Avalanche size is defined as the total energy density for an avalanche. Both P(s)

and P(s’) show power-law behaviour P (s) ∼ s1−τ and P (s′) ∼ s′1−τ with almost

same exponents. τ is close to mean-field value 5/2 for sandpile model. Hence there

is a possibility that rheological behaviour of 2D foams can be understood using the

concept of self-organised criticality which explains the time evolution of mechanical

properties[39].

1.6 Background and motivation for the present work

1.6.1 Chaotic dynamics in sheared suspensions

A Newtonian fluid at low Reynolds number, Re when sheared between two con-

centric cylinders also known as circular Couette flow, is time reversible. This

behaviour is consistent with the reversibility of Stokes equations or creeping flow
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Figure 1.11: Doubly logarithmic plot of the probability density P (s) of the
avalanche size appears to obey a power law. The dashed line has the slope −3

2
,

which is the mean-field value.Adopted from [38]

Figure 1.12: Doubly logarithmic plot of the probability density P (s
′
) of the stress

jump in an avalanche appears to obey a power law with almost the same exponent
as that of P (s). The dashed line has the slope −3

2
. Adopted from [38]
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equations which govern low Re behaviour of non-brownian suspensions. In order

to demonstrate this, consider three particles falling through a viscous liquid. If the

trajectories of each particle is tracked in time, and compared with respect to the

other, they are observed to be chaotic[40] as explained by Taylor[41]. Hence, chaos

is an intrinsic property of sheared non-brownian suspensions at low Re. Mean

squared displacements (MSDs) for such systems is studied and is as shown in Fig-

ure 1.13[42], one along shear direction and other in perpendicular direction to the

shear. MSDs are linear in time and are of different magnitude in the two direc-

tions. This anisotropy induced by the shear flow in the system is a consequence of

Taylor dispersion[43]. Diffusivities calculated from MSDs are as shown in Figure

1.14 in the numerical study and experiment on a similar system. Upon shearing

above a critical strain, there is a rapid onset of irreversibility in the system. This

irreversibility can be understood by computing the time evolution of phase space

trajectories of two nearby particles. Separation between these trajectories, δ(t) is

observed to increase exponentially in time characterised by Lyapunov exponent,

λ[42]. Figure 1.15 shows the increase in the positive Lyapunov exponent as a func-

tion of strain. Increase in positive λ signifies chaotic nature of the system. Thus

irreversible behaviour in the particle dynamics observed in [42] is due to chaotic

nature of hydrodynamic interactions between the suspensions of non-brownian par-

ticles. But what happens to the dynamics of the similar systems when oscillatory

shear is applied? This question was answered by Pine et al., through an experi-

mental study.
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Figure 1.13: The filled and open squares are the mean square displacements 〈x2〉
and 〈z2〉 respectively. Adopted from [42]

Figure 1.14: Experimental effective diffusivities Dx (filled circles) and Dz (open
circles) as a function of the oscillatory strain amplitude, on a logarithmic scale for
volume fraction φ = 0.40. Adopted from [42]
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Figure 1.15: Numerically computed Lyapunov exponent λ versus strain amplitude
γo. Adopted from [42]

1.6.2 Random organisation in periodically driven systems

Experimental system used by Pine et al., consists of a Taylor-couette cell filled

with viscous liquid (Re → 0) into which density and index matched particles are

loaded (30% volume fraction). Then inner cylinder is then rotated back and forth

with different amplitudes, amplitudes. It is observed that at small amplitudes,

trajectories are reversible and particles return back virtually to the initial position.

But at large amplitudes particles do not return to their original position and tra-

jectories are irreversible. This imply there is a sharp transition from reversible to

irreversible behaviour with increase in amplitude of rotation. In order to under-

stand this transition, they have performed experimental and numerical study on

non-brownian suspensions driven periodically.

Figure 1.6 (a, b)[44] shows the system of 2D non-brownian particle suspension

for an area fraction φ = 0.2 subjected to oscillatory strain amplitudes, 3,2. Filled

circles represent active particles. In both the cases, initial configuration is random
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Figure 1.16: Simulation results for the 2D model, showing particle activity above
and below the strain threshold as a function of number of shear cycles. (a) (b) are
snapshots of the particle distributions for two strain amplitudes 3.0 and 2.0, for
area fraction 0.2 and particle number 1,000. Filled black circles indicate particles
that are active and thus be irreversibly displaced in the next shear cycle; open
circles indicate particles that are reversible. The shear flow direction is horizontal..
Adopted from [44]

and when sheared, generates many collisions in the initial shear cycles. These two

suspensions are subjected to constant oscillatory strains, γo = 3 for Figure 1.6

(a) and γo = 2 for Figure 1.6 (b). These are observed to evolve in time. After

few hundreds of cycles, for γo = 2, configuration in Figure 1.6 (b) evolves to an

steady state where there are no active particles and is termed as absorbing steady

state. For γo = 3, configuration in Figure 1.6 (a) evolves to a steady state where

there are finite number of active particles and is termed as fluctuating steady state.

Recent studies have shown that non-equilibrium systems can undergo a phase tran-

sition from fluctuating dynamical steady state into an absorbing state[45]. These

transitions have signatures of critical phase transition.

Number of active particles in both the cases,γo = 3 and γo = 2 is plotted as a
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Figure 1.17: Fraction of active particles per cycle fa as a function of number
of shear cycles for the two different strain amplitudes, 3.0 (red) and 2.0 (blue).
Inset: Fraction of active particles in steady state as a function of strain amplitude.
Adopted from [44]

function of number of cycles in Figure 1.17. These relaxation curves are fitted to

the function form, fa(t) = (f 0
a − f∞a ) e

t
τ

tδ
+ f∞a f 0

a , f∞a are respectively initial and

steady state values of fa. fa(t) exhibits a crossover from exponential to power-law

behaviour as critical phase transition. Fraction of active particles in steady state is

plotted as a function of number of cycles and is observed to be zero below critical

strain and tend to increase above it. Hence there is a clear transition from absorbing

state to fluctuating steady state. Hence, steady state active fraction serves as an

order parameter and above the critical strain it can be fitted to f∞a ∼ (γo − γco)β,

with β = 0.450.02

The characteristic time τ taken for the system to reach steady state is obtained

from functional form fit to fraction of active particles and plotted as a function

of active particle number as shown in Figure 1.18. Divergence is observed at the

same critical strain amplitude as that of active particle fraction and this follows a
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Figure 1.18: Simulation results for the characteristic time τ to reach steady state
as a function of the strain amplitude γ0 for an area fraction of φ = 0.20 and 1,000
particles. Blue symbols, below transition (γ0 < γc0); red symbols, above transition
(γ0 > γ0). Adopted from [44]

power-law above the critical strain given by, τ = |γo − γco|−ν , with ν = 1.33± 0.02.

1.6.3 Simulations of irreversibility and Chaos in amorphous sys-

tems

For dilute suspensions of non-brownian particles, a critical phase transition is ob-

served from an absorbing steady state to fluctuating steady stare. Also, chaotic

nature is observed in their dynamics. What is the case if dense systems are consid-

ered? Unlike dilute suspensions, dense amorphous systems rearrange their positions

in a non-trivial manner causing non-affine deformations whose displacement field

is quadrapolar as discussed above in section- 1.2.

Amorphous systems under periodic shear have been studied numerically[46].
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For small strain amplitudes after certain number of cycles, material becomes com-

pletely repetitive. This is observed from potential energy per particle site as a

function of accumulated strain. With increase in strain amplitude, above a certain

critical strain, system does not reach a stable limit cycle. For such systems, time

taken to reach stable limit cycle can be obtained from cycle decorrelation function

for potential energy of the system,R(n) =
∫
|U(t, n) − U(t, n − p)|dt. This func-

tion reaches zero after certain number of cycles (depending on the strain) for small

strain amplitudes. But for larger strain amplitudes, the function relaxes to some

asymptotic finite value. Figure 1.19 shows R(n) as a function of cycle number,n.

Figure 1.20 shows the relaxation time, time taken by R(n) to reach below 1% of its

initial value. This parameter follows a power law with critical strain as γc = 0.11.

This critical strain is close to yield strain as shown in Figure 1.21. Again in this

case, the increase in positive lyapunov exponent above yield strain corresponds to

transition to chaos.

1.6.4 Athermal glass under oscillatory shear

Many computational studies have been carried out to understand behaviour of

amorphous systems at zero temperature. 3D binary Lennard-Jones model is used

to model athermal systems for numerical simulations[47]. When these systems are

sheared, for low strain amplitudes, system reaches non diffusive state retaining

memory of initial conditions. When sheared at high strain amplitudes, they are

diffusive characterised by diffusion coefficient and are independent of initial condi-

tions. Because oscillatory strain is applied, at the end of every cycle, particle attains

a configuration with γ = 0 which are called zero strain configurations. Average

potential energy per particle in zero strain configuration is plotted as a function
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Figure 1.19: Cycle decorrelation function as a function of the number of
cycles, for system size N = 16384 particles for strain amplitudes γ =
0.06, 0.07, 0.75, 0.85, 0.88, 0.09, 0.093, and 0.095 (from left to right). Inset: The
same function for strain amplitudes γ = 0.12 (blue circles) and γ = 0.15 (green
rectangles). Adopted from [46]

Figure 1.20: Log-log plot of the typical number of cycles n before reaching periodic
behaviour as a function of the strain amplitude γ. Adopted from [46]
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Figure 1.21: Stress-strain curve from molecular dynamics simulations for 16 384
particles under quasistatic shear. Red dots represent the number of cycles, n,
required to reach periodic behaviour under oscillatory shear (the scale is on the
right side of the figure in red). The vertical red line is the strain amplitude for
which the time to reach reversible behavior diverges. Inset: stress-strain behaviour
for the same parameters as the solid green curve but with different initial particle
configurations the vertical red line is the same as in the main figure. Adopted
from [46]

of accumulated strain γacc, as shown in Figure 1.22. These curves are fitted to a

stretched exponential and a characteristic relaxation strainγcacc is extracted. γmax

is the maximum amplitude of strain oscillation cycle. Figure 1.23 shows γcacc as a

function of γmax. This plot resembles active particle fraction as a function of cycle

number in [44]. MSDs obtained for particles at small strains, tend to saturate

where as for large strains it is diffusive. Diffusivity D extracted from MSD is zero

below a critical strain,γc and increases rapidly as shown in Figure 1.24. Above crit-

ical strain this can be fitted to a power law and exponents are obtained depending

on γc. Stress strain curves for this system shows a hysteresis and hysteresis area

increases with increase in γmax.
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Figure 1.22: Potential energy per particle E for zero-strain configurations, for differ-
ent values of γmax averaged over different runs with samples of N = 4000 particles
at T = 0.466 (closed symbols) and T = 1.0 (open symbols). Adopted from [47]

Figure 1.23: γcacc as a function of γmax. Adopted from [47]
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Figure 1.24: Diffusivity D extracted from MSD by fitted to a power law as a
function of γmax. Inset: γc vs inverse system size 1/N . Adopted from [47]

1.6.5 Experimental evidence for phase transition near yielding

Rheological studies of soft systems give insight into their mechanical response. Re-

lationship between microstructure and rheological response was studied by Keim

and Arratia by carrying out interfacial rheology of soft particles[48]. As described

above, amorphous systems, when sheared undergo structural rearrangements quan-

tified by T1(non affine) events. Net number of irreversible T1 events ploted as a

function of accumulated strain,γacc−4Nγo where N = Cycle number is as shown in

Figure 1.25. From the plot it is evident that there is a critical strain below which

system evolves to a reversible state signified by the T1 event number saturating to

zero. At large strain amplitudes (above a critical strain), it saturates roughly to

a constant number. This result is supported by steady sate oscillatory rheology of

the bulk material measured in the same experiment simultaneously. Elastic storage



1.6 Background and motivation for the present work 27

modulus,G′ and viscous loss modulus, G′′ measured are as shown in Figure 1.26.

From the figure it is clear that for small strain amplitudes, the system is elastic

and at γo ∼ 0.03 it began to loose rigidity. For large strain amplitudes, G′ and

G′′ are nearly the same which is typical behaviour of soft glassy materials[49][16].

Hence the rheological yield strain for this system is 0.020 ≤ γrhy ≤ 0.042 and yield

stress is 5.8 ≤ σrhy ≤ 11.7. This yield strain is in accordance with the yield strain

obtained from microstructural analysis,Figure 1.25.

Figure 1.25: Net number of irreversible T1 events ploted as a function of accumu-
lated strain,γacc − 4Nγo. Adopted from [48]

It has been observed in colloidal systems, that periodic deformation depends

on applied strain amplitude. For small strains, particles are reversible after a short

time. But for large strains, a finite fraction of particles are irreversible. Recently,

experiments probing the connections between yielding and the onset of irreversibil-

ity has been carried out in our laboratory on a binary colloidal glasses[50]. They
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Figure 1.26: Elastic storage modulus,G′ and viscous loss modulus,G′′ measured as
a function of γo. Adopted from [48]

have quantified an absorbing phase transition at the yield point in terms of irre-

versible particle fraction, fIR measured stroboscopically where fIR serves as order

parameter. fIR and viscous loss modulus,G′′ are observed to saturate to steady

state values similar to [44]. fIR ∼ 0 for strains below critical strain and fIR > 0

above critical strain as shown in Figure 1.23. It is a characteristic of absorbing phase

transition[44] and in fact belongs to the conserved direct percolation (C −DP ) of

universality class[51]. Relaxation time as a function of strain in this case fits to

the power law, with exponent, α = 1.1 ± 0.3 and order parameter with exponent,

β = 0.67 ± 0.09. These values are close to exponents of (C − DP ) universality

class[51].

Motivated by the above numerical and experimental studies, we want to under-

stand the yielding of an amorphous system at zero temperature limit, i.e., athermal
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Figure 1.27: f∞IR as a function of γo. Inset: f∞IR |γo − γMi
c |, Mi corresponds to f∞IR

obtained from microscopic analysis. Adopted from [50]

binary amorphous system. Using colloidal systems one cannot access the velocity

gradient direction where most of the dynamics can be observed. Hence 2D sys-

tems are ideal to probe the dynamics. As an athermal systems we have chosen

bubble rafts where there is no thermal motion and friction between the particles.

Near yielding, what are the mechanisms that shape the microstructure? Can we
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see a phase transition in such systems? Is the dynamics of the system above

yield point chaotic? To answer these questions, we have conducted experiments on

sheared bubble rafts using rheometry and high speed camera where dynamics can

be probed at high spatial and temporal resolution.



CHAPTER 2

EXPERIMENTAL SECTION

As explained in previous chapter, out motivation is to investigate yielding and

microstructural dynamics of bubble rafts. In order to shear the bubble raft we

have developed a homemade apparatus. This chapter contains description of the

set up, interfacial rheometery (interfacial rheometer is used to shear the system

of bubble raft) and the procedure to obtain bubble rafts that are stable for long

duration.

2.1 Interfacial Rheology

Three dimensional bulk rheology uses continuum mechanics (hydrodynamics) to

determine velocity fields, contact forces and the rate of deformation of fluid ele-

ment in response to an applied shear. In case of interfacial rheology, the continuum

is two-dimensional, contact forces are proportional to contact line length and field

forces are proportional to unit contact area. When the two fluids that make the in-

terface are simple and pure, interfacial tension has one value and characterises the

interface. But the interfaces seen everyday are complex which requires understand-

ing of interfacial viscosity, molecular forces acting in the thin interface layer and

surface effects arise due to Marangoni flows. Confining particles, macromolecules,

surfactants to an interface induce microstructures with mechanical strength. These

microstructures due to hydrodynamic forces gives rise to non-linear rheological

31
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properties that link deformation of interface to the surface stress. Study of com-

plex fluid interfaces give insights into interfacial rheology of foams and emulsions.

An interface can respond to applied surface strain, γ with a corresponding sur-

face stress, and relation between them is given by, τij = σδij+
σ

γij
where, stress and

strain are in tensorial notation. Surface stresses that are present at the interface

can induce flow phenomena and flow instabilities. The basis for these phenomena

is understood by the equation, (τ
(1)
ij −τ

(2)
ij )+

σ

xi
−σ(∇.n)ni = 0. Superscripts 1 and

2 refer to the separate fluid phases on either side of the interface. This condition

shows that the two surface tension contributions balance the stress difference across

the interface. The second term in the equation arises due to gradients in surface

tension and the third term gives the viscous stress difference. When surface tension

acts on interfaces, the resultant stresses are responsible for thinning in liquid films

due to capillarity. These capillary forces pump the liquid away from the centre thus

subjecting fluid to extensional deformation called the Marangoni effect. For fluid

like interfaces with Newtonian behaviour, there is a Boussinesq-Scriven law that

relates surface stress to the surface rate of deformation depending on the surface

dilation viscosity, µd and surface shear viscosity, µs. Boussinesq number is defined

as the ration of interfacial stresses to bulk stresses given by, Bo = ηs
ηL

= surfacedrag
subphasedrag

.

For elastic interfaces, surface dilation elastic modulus is defined as,E = A(
γ

A
),

where A is the surface area. It describes the resistance of interface against surface

tension gradient. Surface dilation viscosity affects the rate at which these surface

gradients vanish. If the surface if dilated with a frequency f , its response is de-

scribed by a complex surface dilation modulus, E∗(f) = E ′(f) + iE ′′(f) At high

frequency, interface behaves as an insoluble monolayer, E ′ → E∞ the limiting elas-

ticity and E ′′ = 2fd. In the zero frequency limit, surfactant exchanges between

the bulk and surface and interface does not resist dilation. At intermediate fre-
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quency, the interface is viscoelastic. For viscoelastic interfaces, Bo[52] is given by,

Bo = G
′′
s (ω)−iG

′
s(ω)

ωLη
= η

′′
s (ω)−iη

′
s(ω)

Lη

2.1.1 Shear measurements at constant area

Interfacial shear rheology is conducted at constant surface area. In these mea-

surements, interfacial flows are generated either by moving solid boundaries within

the interface or by applying gradient in surface pressure. Interfacial rheometers

can measure stress and deformation history for fluid interfaces. They also measure

fundamental material functions such as shear rate dependent viscosity, linear vis-

coelastic moduli. Gradients in surface tension should be avoided because they will

induce Marangoni effects. Also, Bo should be large enough to trust the measured

material properties. This number can be increased by minimizing the character-

istic length scale of geometry, L. Interfacial rheomerty is used for fatty acids and

alcohols, phospholipids, proteins and colloidal particles (spherical and elliptical).

Monolayer of colloidal particles at interface exhibit viscoelastic properties.

Based on above discussed factors, results have been obtained. Figure 2.1 shows

interface rheological measurements of polystyrene colloidal monolayer at interface

of aqueous solution of 0.1M sodium chloride and decane. This monolayer behaves

like a viscoelastic interface[53]. The interface is elastic at low frequencies and vis-

cous at high frequencies.

2.1.2 Interfacial Rheometer

Measurement of interfacial properties is challenging due to complexity of flow be-

tween interface and bulk. In such cases, Bo becomes a guiding parameter to con-

struct interfacial rheometer. In the Bo as described above, L is length scale of the
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Figure 2.1: Master curve showing log plots of the scaled values of (open sym-
bols) G

′
and (solid symbols) G” against the scaled frequency for the monolayer of

colloidal particles. The arrow indicates the direction of increasing surface concen-
tration, which coincides with increasing magnitude of modulii. The inset shows an
exponential divergence of the elastic modulus as the concentration approaches the
close-packing fraction. Adapted from [53]

measuring probe related to ratio of area of measuring probe to the perimeter in

contact with the interface. When Bo is larger than 1, drag experienced by the probe

at interface dominates and when Bo is smaller than 1, mechanical responses from

surrounding sub phases are measured. Hence, main goal of the surface/interface

rheometry is to provide greater extent of sensitivity to measure interface properties

alone. Thus for an interfacial rheometer very small value of L is recommended.

Based on above mentioned criteria, various viscometers were developed. Mayers

and Harkins first reported the development of a 2D capillary viscometer which is

guided by surface pressure-driven flow in a channel. Rotational devices offer more

flexibility and induce several 2D equivalents of (i) Couette geometry, which is a

bicone rheometer or (ii) double wall couette geometry, which is double-wall ring

geometry rheometer. Another type is interfacial rod rheometer which is equivalent
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to sliding plate rheometer in 3D.

2.2 Experimental Setup

For our experiments we have used MCR 301 Anton Paar rheometer, Germany with

a bicone measuring system geometry. Experimental setup is as shown in Figure 2.2.

The setup consists of liquid solution in a cylindrical container to generate amor-

phous raft. A biconal disc is integrated with low friction motor of the rheometer.

Figure 2.3 shows the schematic experimental setup. The disc is placed at the sur-

face of liquid which is also an interface between liquid and air. Capillary bore

of 0.3 mm attached to an aquarium air pump is used to diffuse air into liquid in

a controlled fashion to produce bidispersed rafts by varying depth below the liq-

uid surface. Thus formed raft is stabilised by maintaining humidity (covering the

raft). Shear stress either oscillatory or steady is applied on to the raft through

the measuring system. The microstructure dynamics is captured using a Photron

fast camera SA4 (3600 frames per second; at 1024 X 1024 pixels), attached with

a Nikon 60 mm/f2.8D AF Macro lens. A light emitting diode board illuminates

the raft uniformly from below. The camera views the raft through a front coated

mirror placed 45o to the raft. Both, rheometer and fast camera are connected to

work stations and data is collected. The camera can image at very high frame rates

and microstructural dynamics is captured at high spatial and temporal resolution.

2.2.1 Stability of the raft

For a long experiment, highly stable raft is required. It is achieved in the manner as

described below. To prepare this solution, we have taken equal volumes of glycerol,

toy bubble solution (available from super market) and 0.017M Sodium Stearate.
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Figure 2.2: Schematic of Experimental setup showing all the instruments and ap-
paratus used

Figure 2.3: Schematic of a biconal disc coupling with a commercial bulk rheometer.

It is observed that the solution ages with time and produce stable rafts. In our

experiment, we have observed that the raft is stable for 8-10 hours.

2.2.2 Steps describing how we arrived at the setup

Step-1: We have taken a glass cylindrical cell and roughened the periphery using

3 mm glass beads so that the raft pins to the boundary (ensures no slip).
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Step-2: The cell is placed on the rheometer stage plate and rheometer spindle

is brought in place. We have designed the geometry of the spindle as bicone with

groves at the rim so that raft gets pinned to it and hence no wall slip at the inner

boundary as well.

Step-3: Bubble solution is then transferred into it gently and bubbles of two

sizes were blown which makes a binary amorphous system.

Step-4: Thus formed raft at the interface of solution and air is stabilised by

covering the raft that can maintain humidity.

Step-5: The raft is then illuminated with a series of LED diodes connected in

parallel and spread on a board and placed under the cylindrical cell to give uniform

illumination.

Step-6: A front coated mirror is then placed above the raft at an angle of 45o

Step-7: Photron fast camera is then focused and a time series images of the raft

are captured.

Step-8: Oscillatory shear strain is applied to the system through the measuring

system (spindle) and mechanical response from the raft and microscopic rearrange-

ments of the raft are simultaneously captured. (Oscillatory rheology is explained

in the next section)

Step-9: Time series images obtained from video microscopy are analysed using

Image J and Matlab. (Image processing is explained in the next section)

2.3 Oscillatory Rheology

Mechanical deformation of many soft systems is complex due to the fact that they

are viscoelastic. In such cases, oscillatory rheology can quantify both elastic-like

and viscous-like properties of these soft solids at different time scales. Hence it is



38 Chapter 2.

an important tool to understand microstructural and dynamic properties of these

systems. Rheometer consist of a measuring system with different geometries and

can be rotated with a desired angular frequency through which an oscillatory strain

is imposed onto the system.

The basic principle of oscillatory rheology is to impose a sinusoidal shear defor-

mation(strain) and measure the resultant stress response from the system. Time

scale at which system is probed is determined from frequency of oscillation, ω of

the imposed shear strain. Imposed strain is given by, γ(t) = γsin(ωt) and mea-

sure stress response is given by, σ(t) which is complex in nature for viscoelastic

materials. Applied strain, measured stress for a elastic solid, a viscous liquid and

viscoelastic fluid is as shown in Figure 2.4. For purely elastic /Hookean solid, stress

is proportional to strain and proportionality constant is shear modulus. Stress is

always in-phase with applied strain. For purely viscous/Newtonian liquid, stress

is proportional to rate of strain and proportionality constant is viscosity of the

fluid. Stress is out-of-phase with applied strain by a phase angle,π
2

where ω is the

frequency of applied strain. Viscoelastic materials show a stress response that is

both in-phase and out-of-phase with the applied strain. As a result stress response

shows a phase shift with strain which lies between 0 and π
2
. Hence viscoelastic

behaviour of the system at a given ωis characterised by the storage modulus,G′(ω)

(solid-like behaviour) and loss modulus,G′′(ω) (liquid like behaviour). Thus, for

a sinusoidal shear deformation(strain) γ(t) = γsin(ωt), stress response for a vis-

coelastic material is given by σ(t) = G′(ω)γsin(ωt) +G′′(ω)γcos(ωt).

For a typical oscillatory rheology experiment, G′(ω) and G′′(ω) are measured

at a fixed r or as a function of r at fixed ω. Nonlinear viscoelastic measurements

provide valuable information about wide range of soft materials called soft glassy
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Figure 2.4: Schematic stress response to oscillatory strain deformation for
Hookean/elastic solid, Newtonian/viscous liquid, viscoelastic material.

materials[16]. Underlining physics of glassy systems suggests that microstructural

relaxation is linked with nonlinear viscoelastic response[54]. At low frequencies,

G′(ω) is dominated and with increase in ω, G′′(ω) initially increases to a peak and

and decreases at large strains. Hence oscillatory rheology is a beneficial tool to

measure complex properties of soft glasses.

2.4 Image processing

Photron fast camera SA4 (maximum frame rate = 3600 frames per second) is used

to capture images of the raft at 30 frames per second. Figure 2.6 shows the image

of the bubble raft with centres tracked using ImageJ software. Distribution of sizes

of the particles is plotted as shown in Figure 2.7. The raft consists of particles of

2 sizes with small particle to big particle number ratio of 2.4.
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Figure 2.5: Oscillatory measurements of G‘ (solid circles) and G“(open circles) for
a typical soft glass. Adopted from [55]

Figure 2.6: Image captured by video microscopy and tracked using ImageJ software.
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Figure 2.7: Distribution of sizes of particles of the raft obtained from processing
images obtained from video microscopy.





CHAPTER 3

YIELDING AND ONSET OF IRREVERSIBILITY

IN ATHERMAL AMORPHOUS RAFTS

Although there is growing experimental and theoretical evidence that yielding

of soft solids has the hallmarks of a phase transition, experiments thus have suffered

from various limitations. These are, (1) Brownian motion is very likely to smear out

a sharp transition in colloidal systems. (2) the relevant plane for probing dynamics

is the velocity (V), velocity gradient(∇V ) plane which is very difficult to access in

colloid experiments due to imaging limitations and the dynamics is often probed

in the velocity (V), velocity vorticity(∇xV ) plane.

In our experiments, we have used bubble rafts which are two dimensional sys-

tems where dynamics is observed in V, ∇xV plane unlike colloidal systems. Using

bubble rafts we wish to understand yielding in athermal amorphous systems and

connect it to the onset of irreversible microstructural changes.

3.1 Measurement of yield strain

We have measured the yield strain by performing a linear viscoelastic rheology

experiment at a fixed ω of 0.5 rad/s and sweeping across the strain amplitude,

γo. The elastic storage modulus, G′ and the viscous loss modulus, G′′ for bubble

solution alone and for solution with raft as a function of strain amplitude, γo is

plotted in Figure 3.1 (a) and Figure 3.1 (b) respectively. The linear viscoelastic

43
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response of the raft was obtained by subtracting the contribution of solution from

the measurements of solution with raft. This plot shows a crossover of G′ and

G′′ as shown in Figure 3.2. For small γo behaviour of the raft is predominantly

elastic (solid like) which is characterised by higher value of storage modulus,G′

in comparison to loss modulus,G′′. For high γo, raft is predominantly viscous

(liquid like). Therefore, γo that separates elastic and viscous response of the raft

is identified as an yield strain, γy. According to generic behaviour for soft glassy

materials[16], sheared amorphous systems initially deform elastically due to stored

elastic energy up to yield point. Similar behaviour is observed in our system (G′

greater than G′′). G′′ for soft glasses increases (less than G′) till yield point and then

decreases while being higher than G′. This shows a maximum dissipation energy at

the yield point. In contrast to this we have observed G′′ to decrease continuously

across yield point. In an earlier experiment Keim and Arratia have measured

the viscous behaviour of colloidal particles at the oil-water interface. However,

they have been unable to measure rheological response beyond the crossover owing

to the experimental limitations. In our apparatus we have used a conventional

rheometer coupled to a homemade cell through which we have been able to access

the response beyond the yield strain. Subsequently, experiments were done at a

fixed ω and the dynamics of the system was studied as a function of the number

of imposed oscillation cycles for various γo across γc.

3.2 Microstructural changes accompanying yielding

As described in Chapter 1, amorphous rafts yield through shear induced topo-

logical rearrangements, T1 and T2 events. In order to understand the crossover

of G′ and G′′ at γc = 0.11 we have processed and analysed the data captured
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Figure 3.1: Elastic storage modulus, G′ (black)and viscous loss modulus, G′′ (red)
plotted as a function of applied strain,γ for (a)solution/solvent and (b)solvent along
with raft.

from the fast camera. Since our experimental system facilitates tracking of indi-

vidual particles we have identified non-affine events (irreversible T1 events) that

leads to plasticity. During every run in the experiment we have not observed any

T2 events(refer to section-1.4) and the system is stable. In order to get a micro-

scopic understanding of yielding in amorphous systems, we have studied temporal

evolution of irreversible T1 events that leads to the onset of irreversibility.

3.2.1 Algorithm to obtain T1 events

Time series images/frames obtained from the fast camera are preprocessed

and particle dynamics is tracked in time following the Matlab codes. Voronoi cell

for every particle is constructed and vertices(V ), edges(E) and cell numbers( C)

are obtained in every frame. Using these V , E, C nearest neighbours (N) and

next nearest neighbours (NN) for every cell are identified as shown in Figure 3.3.

All N pairs and NN pairs are mapped in time. In order to obtain irreversible
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Figure 3.2: Elastic storage modulus, G′ and viscous loss modulus, G′′ plotted as a
function of applied strain,γ for raft (olive green and navy blue - filled circles). γy
is approximately 0.116.

T1 events, frames are considered stroboscopically (end of each cycle). List of N

pairs and NN pairs are now compared and if N th pair in frame at the beginning

of the cycle is the NN th pair at the end of cycle, it is picked as a T1 event. Hence,

NN pair in frame one is N pair in frame two and vice versa. A pair of N and

NN constitute one T1 event. When an oscillatory shear strain is applied in one

cycle, four particles participating in a T1 event change their configuration and

the changed configuration continues after end of the cycle which explains change

in microstructure. To calculate reversible T1 events, frames at the end of every

half cycle are considered. This is because reversible events in the positive cycle of
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applied shear, change their configuration and comes back to original configuration

in negative half cycle. As a result no T1 event is captured. Algorithm described

here is shown as a flow chart in Figure 3.4.

Figure 3.3: Finding nearest neighbours: Red particles are nearest neighbours (N)
and blue are next nearest neighbours (NN) for particle marked yellow.

Figures 3.5,3.6,3.7 shows the temporal evolution of # T1 events for γo, 0.02,0.10,0.32

respectively for cycle, t = 1,6,24. Particles marked red are nearest neighbours and

marked blue are next nearest neighbours. A pair if nearest neighbours and a pair

of next nearest neighbours constitute a T1 event. For γo = 0.02 # T1 events goes

to zero where as for γo ≥ 0.10 # T1 events shows a finite value even at long times

(cycle number).

3.2.2 Irreversible T1 events

The total # irreversible T1 events for every cycle (fT1(t)) obtained from above

described algorithm is plotted as a function of cycle number(t) as shown in Figure

3.8. # irreversible T1 events are initially very large and decays to zero for small
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Figure 3.4: Flow chart explaining the algorithm to find T1 events.

strain amplitudes, suggesting that the system has attained a steady state. For

large strain amplitudes, number of irreversible T1 events decays to a finite value

is the characteristic of fluctuating steady state. The initial value of # T1 events

is denoted by f 0
T1 and steady state value by f∞T1. To probe the connection between

yielding and microscopic irreversibility, we now focus on the temporal evolution of

irreversible T1 events as a function of γo at fixed ω.

3.2.3 Steady state Irreversible T1 events as order parameter

We have characterised γo dependence of # irreversible T1 events at steady

state denoted by f∞T1 and is plotted as a function of γo as shown in Figure 3.9.
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Figure 3.5: Temporal evolution of # T1 events for γo = 0.02. Cycle numbers for
corresponding figure is given below the figure.

f∞T1 is almost zero for small γc and shows a sudden increase beyond certain γo and

saturates to a higher value at very large γc. This shows that there is a sharp onset
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Figure 3.6: Temporal evolution of # T1 events for γo = 0.10. Cycle numbers for
corresponding figure is given below the figure.

of irreversibility beyond certain γo and we consider this γo as a critical strain γc.

Above the critical strain, γc, f
∞
T1 plotted as a function of (γ−γc) on log-log scale is
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Figure 3.7: Temporal evolution of # T1 events for γo = 0.32. Cycle numbers for
corresponding figure is given below the figure.

shown in Figure 3.9(Inset). f∞T1 data is best fitted to the power law, f∞T1 = (γ−γc)β

forγc = 0.1 which coincides with γy, where the exponent β = 0.34±0.05. Although
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the value of exponent obtained does not coincide with colloid experiment, the

behaviour of f∞T1 versus γo is reminiscent of an absorbing phase transition and

hence f∞T1 serves as an order parameter for this transition.

Time at which fT1 saturates to a steady state shows a critical divergence in

Figure 3.8: Number of irreversible T1 events plotted as a function of cycle number.
Individual strain is marked by the colour code shown.

the vicinity of γc. In order to extract relaxation time τ , fT1(t) for all strains is

smoothened to remove noise. It is then fitted to the functional form, fT1(t) =

(f 0
T1 − f∞T1) e

t
τ

tδ
+ f∞T1 which captures the transition from exponential to powerlaw

behaviour in the vicinity of the critical point [41][44]. τ is the relaxation time (in

terms of cycles) for fT1(t) to reach a steady state, t is the cycle number and δ is the

power law exponent which is almost constant for all the strains. The time scale,

τ plotted as a function of γo as shown in Figure 3.10 is suggestive of divergence
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Figure 3.9: Number of irreversible T1 events at steady state, f∞T1 is plotted against
applied strains (corrected strains).Inset: f∞T1 above critical strain, γc is plotted as
a function of (γ − γc). Exponent obtained is β = 0.34± 0.05.

at critical strain. Within the experimental certainty, γc from the fits was found to

be remarkably close to the γy obtained from rheology measurements. Figure 3.10

inset shows τ plotted as a function of |γo − γc| (log-log plot) fits to the power law,

τ = (|γo − γc|)ν , where the exponent is obtained to be ν = 0.83 ± 0.18 for data

below γc.

3.3 Interface fluctuations

In experiments, granular/amorphous systems are observed to shoe shear band-

ing. Since T1 events in our experiment are found to evolve in time, we want to
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Figure 3.10: Relaxation time,τ as a function of applied strain (γo). Solid curve
is the power law fit to the data. Inset: Exponent obtained for power law fit
τ = (|γo − γc|)ν is ν = 0.83± 0.18. Blue for data below γc and red for data above
γc

investigate their consequences on the evolution of shear bands. To connect the

evolution of number of irreversible T1 events to the shear banding, we have looked

at the fluctuations of the shear band interface. Owing to the radial symmetry of

the system, we have divided the system into sections/bands whose width is roughly

one particle diameter. velocity profile of the raft is plotted as a function of radius,r

as shown in Figure 3.11. While for small strains, γo < 0.1, V(r) only shows small

deviation from linearity, for γo > 0.1 In order to understand the dynamics of shear

band interface, we have plotted velocity profile for first ten oscillatory strain cycles

for the interface which is seven particle diameters from the spindle. The velocity

profile was then divided into two linear regions and the intersection their intersec-

tion is identified as the shear band which is six to seven particle diameters (σ) from
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Figure 3.11: VelocityV (θ) as a function of distance from the spindle.

the spindle as shown in Figure 3.12. Further velocity profile was found to evolve

in time. For γo < 0.1 while the V (r) reaches a steady state in about fifteen cycles,

for γo > 0.1 V (r) shows larger fluctuations which is consistent with T1 events sat-

urating at a finite value giving rise to irreversibility.It is observed to evolve in time

as shown in Figure 3.13.

In order to quantify the spatial fluctuations of the shear band interface as a

function of γo, we have calculated d‘(x, t) = d(x, t) − 〈d(x)〉t. d‘(x,t), distribution

of interface fluctuations is plotted as shown in Figure 3.14 and observed that width

of these distributions increase with γo. Figure 3.15 shows width of the distribution

as a function of γo. From the figure it is clear that there is a change in slope for

the curve near the critical strain γc. The γc obtained from Figure 3.15, coincides
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Figure 3.12: VelocityV (θ) for γo = 0.47as a function of distance from the spindle
showing change in slope at the interface.

with the yield strain γy obtained from rheology measurements. This behaviour is

typically seen in the roughening transition of interfaces[56] and it is tempting to

wonder if a similar behaviour is occurring in the vicinity of γc.

3.4 Steady state measurements of G′ and G′′

Elastic storage modulus, G′ and viscous loss modulus, G′′ are measured as a

function of number of cycles (τ) and plotted as shown in Figure 3.16 and Figure

3.17. G′ for all strains increases and then saturates to a finite value after certain

number of cycles (it shows a trend). G′′ shows an increase below critical strain and
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Figure 3.13: VelocityV (θ) as a function of distance from the spindle for first 10
cycles.
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Figure 3.14: Distribution of interface fluctuations d‘(x, t).
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Figure 3.15: Width of distribution of interface fluctuations as a function of γo.

increase then decrease above critical strain. Efforts are underway to understand

these results.

3.5 Conclusion

The experimental setup is efficient for studying microstructural dynamics of

athermal system for longer duration experiments. Having commercial rheometer

coupled with bubble raft cell, we were able to measure mechanical response of the

raft beyond yield point unlike in other experiments. Connections between yielding

and microstructural behaviour of the raft has been studied. The relaxation time

τ is suggestive of a divergence at γc and f∞T1 serves as an order parameter and

is indicative of an absorbing phase transition near γy. Our results complement
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Figure 3.16: Elastic storage modulus, G′ as a function of cycle number,τ . Individual
strain is marked by the colour code shown.

Figure 3.17: Elastic storage modulus, G′′ as a function of cycle number,τ . Individ-
ual strain is marked by the colour code shown.
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experiments on colloidal systems where an absorbing phase transition near yielding

was recently observed. It is tempting to speculate that the behaviour observed in

our system is generic to other soft solids such as gels, emulsions etc.

3.6 Future of our experiments

Similar to granular systems that can undergo transition from chaotic (char-

acterised by Lyapunov exponent) to jammed state[57], there is a possibility that

bubble rafts can exhibit a transition to chaotic state. This is evident from Figure

3.5, T1 event number above critical strain (yield point) is finite in the fluctuating

steady state. So our future experiments are aimed to understand the chaotic na-

ture of the system and characterize it using Lyapunov exponent. Because we have

access to look at deformation/strain field and can measure forces on individual

particles, we want to connect irreversible T1 events that occur in group/clusters

and force chains. Moreover our results suggest that there is a roughening transition

at γo which is in agreement with yielding. Hence we planned to investigate and

understand this smooth to roughening transition at the yield/critical strain, γc/γc

and quantify roughness of the interface.
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