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Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO 5
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The ferromagnetic structure of BIMRQT.=105 K, has been determined from powder neutron-diffraction
data collected at 20 K on a sample synthesized at high pressures using a cubic anvil press; BiMnO
distorted perovskite that crystallizes in the monoclinic space gr@2p with unit-cell parametersa
=9.5317(7) A,b=5.6047(4) A,c=9.8492(7) A, andR=110.6q1)° (Rp=6.78%, wRp=8.53%, re-
ducedy?=1.107). Data analysis reveals a collinear ferromagnetic structure with the spin directiofGl6hg
and a magnetic moment of 3uB. There is no crystallographic phase transition on cooling the polar room-
temperature structure to 20 K, lending support to the belief that ferromagnetism and ferroelectricity coexist in
BiMnOj;. Careful examination of the six unique Mn-O-Mn superexchange pathways between the three crys-
tallographically independent Mn sites shows that four are ferromagnetic and two are antiferromagnetic,
thereby confirming that the ferromagnetism of BiMn&ems directly from orbital ordering.
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[. INTRODUCTION as reported previoush. Powder neutron-diffraction data
were collected on the Hermes diffractometer on the JRR-3M
The remarkable magnetoelectric properties of BiMnO facility at the Japan Atomic Energy Research Institute with a
have attracted considerable attention during the last threean neutron wavelength of 1.8196 A. Data were analyzed
years. It is well established that BiMa®ecomes ferromag- by Rietveld refinement using thesas suite of programs?
netically ordered on cooling below 110 K3 and there is Neutron-scattering lengths of 8.531,—3.730, and
good reason to believe that the ferromagnetism coexists with.803(10 ® m) were used for Bi, Mn, and O, respectively.
ferroelectricity. This is to be contrasted with the behavior ofThe magnetic form factor of M was based upon the free-
the analogous LaMng)which orders antiferromagneticaly at ion calculations of Watson and Freeman.
150 K* Such biferroic behavior is very rare in a single phase
material®~’ The evidence for ferroelectricity,.however, has Ill. RESULTS AND DISCUSSION
largely been based upon informed speculafi@ithough a
structure determination by powder diffraction has indicated A careful comparison between the high angle portions of
that the space group at room temperatureC&° which  the neutron-diffraction data collected at 20 K and room
would be consistent with ferroelectricity. The reason for thetemperature revealed no evidence for a structural phase
uncertainty in this area is that the preparation of bulk
BiMnO; requires high pressures and temperature, so it is 1400
difficult to make large samples of high quality material. 300K
However, evidence for magnetoelectric behavior has recently_ 1200
been garnered from measurements on thin films and impureg ;g |
bulk samples, both of which show ferroelectric hysterisis =
loops below the Curie temperatufeThe low-temperature £ ** 7
crystal and magnetic structures of BiMp@ave not been 7, 60 1
reported, but would shed further light on the coexistence of 2 |
ferroelectricity and ferromagnetism. In the present work, we g
describe the determination of the crystal and magnetic struc

tures of BiMnQ; from a low-temperature, powder neutron- 0 T T " T
i i 20 25 30 35 40
diffraction study. Angle 26 (deg.)
Il. EXPERIMENT FIG. 1. A comparison of the low angle regions of the neutron

_ ' ' powder-diffraction pattern of BiMn@at 300 and 20 K. Note the
The preparation of a polycrystalline sample of BIMNO appearance of additional reflections at 20 K due to the onset of
was carried out using a cubic anvil press at 973 K and 6 GPdegrromagnetic ordering.

0163-1829/2002/66)/06442%4)/$20.00 66 064425-1 ©2002 The American Physical Society



A. MOREIRA DOS SANTOSet al. PHYSICAL REVIEW B 66, 064425 (2002

I T 1 T I I T TABLE Il. Selected bond lengths for BiMnQat 20 K.

wL |
- Mn1-01 2.11(1K2 Mn2-01 1.974)
oo Mn1-05 2.08(4x2 Mn2-02 1.904)
f = I Mn1-06 1.97(3K2 Mn2-03 2.304)
g Mn3-02 2.27(1K2 Mn2-04 2.063)
g wl | Mn3-03 1.86(4x2 Mn2-05 1.8:3)
£° Mn3-04 1.88(4x 2 Mn2—06 2.174)
ar . ] Bi1-O1 2.431) Bi2—0O1 2.362)
Bi1l-02 2.162) Bi2-01’ 3.022)
300 400 600 800 1000 1200 1400 Bfl_03 2.2%1) B!Z_OZ 2.582)
Angle 20 (deg.) Bi1-03' 3.202) Bi2—-03 2.832)
Bil-04 2.292) Bi2—-05 2.171)
FIG. 2. Observeddoty and calculatedline) profile of BIMnO; Bi1_04’ 2.642) Bi2—0O5’ 2.742)
at 20 K. A difference curve is also shown. The magnetic peaks argi1 _o4” 3.06(1) Bi2—05" 2.95(1)
indicated by an asterisk. Bi1-05 3.211) Bi2—06 2.181)

. . Bi1l-06 3.201) Bi2—06’ 2.812)
transition on cooling to low temperatures. The crystal struc-

ture of BIMnO; at 20 K was therefore refined using the

room-temperature structure in space gr&@® as a starting found to be 3.83) B, which is in the expected range for a

model. The low angle portion of the patterr40° 26), high spind* Mn®* ion and consistent with the previously

however, contained a small number of magnetic Bragg re- - . 3
) ; . reported magnetization curve of BiMg@neasured at 5 K
flections that could be indexed on the basis of the crystallo Selected bond lengths and bond angles for Bilra@e

graphic unit cell; the most intense features are th@@2), given in Tables Il and Ill, and the coordination environments
(~113), (311, and(202) reflections(see Fig. 1 These ob- for the Bi and Mn atoms are shown in Figs. 3 and 4, respec-

servations are consistent with the onset of ferromagnetic or-

dering, and we attempted to model the intensities of thesgvely' The BiQ, polyhedra are unsy_mmetncal as a conse-
duence of the stereochemical activity of the lone pairs of

magnetic peaks on the basis of a variety of plausible collin- lectrons on the BF ions. This asymmetry is believed to be

ear spin models. An excellent fit was obtained with a mode he major driving force behind the ferroelectric properties of
in which the spin vector was aligned along the uni¢00] BIMNO,, as it is in the behavior of REFTi, )0, (PZT)

axis of the monoclinic crystal structure, and a full Rietveld .
refinement of the crystal and magnetic structure was carrie nd reIatgd phases.. In both B'Mﬁ“aﬂd PZT for example,
e A cations are displaced approximately along the body

out on this basigsee Fig. 2 and Table.ILines from small . . i
amounts of impurity phagses were excluded from the analysisc.“agonal of the cubic perovskite subcell. The fact that there
One of the impurity phases was identified as(BiO);0,; IS no structural phase transition and that the distortions re-
3-2 (gnain substantially the same on cooling from room tempera-
u

the identity of the second phase could not be establishe . )
Isotropic temperature factors for each atom type were con- re to 20 K lends strong support to the belief that BiMnO

strained to be equal. The refined magnetic moment wakemains ferroelectric in the ferromagnetic phase.

TABLE |. Refined structural parameters for BiMpgOat TABLE llI. Selected bond angles for BiMngat 20 K.
20 K. Space groupC2, a=9.5317(7) A, b=5.6047(4) A,
c=9.8492(7) A,R=110.6q1)°, V=492.54(7) R. There were 01-Mn1-01 172.68) 01-Mn2-02 174.@)
1249 observations.Rp=6.78%, wRp=8.53%. Reduced y? 0O1-Mn1-05 91.01) 01-Mn2—04 90.2)
=1.107 for 20 variables. O1-Mn1-05 83.01) O1-Mn2—05 90.9)
S 01-Mn1-06 93.41) 01-Mn2-06 80.4)
Atom X y z Uiuer100 01-Mn1-06 91.81) 02-Mn2-04 91.8)
Bi(1) 0.1361) 0.0047) 0.3731) 0.4 01-Mnl1-05 83.2) 02-Mn2-05 86.8)
Bi(2) 0.3631) 0.0688) 0.1141) 0.4 01-Mnl1-05 91.) 02-Mn2-06 104.@)
Mn(2) 0 0 0 0.25 01-Mnl1-06 91.81) 04-Mn2-05 177.8)
Mn(2) 0.2504) 0.0369) 0.7543) 0.25 01-Mnl1-06 93.41) 04-Mn2-06 89.2)
Mn(3) 0.5 0.0784) 0.5 0.25 05-Mn1-05 84.@2) 0O5-Mn2-06 89.11)
o(1) 0.0922) —0.0259) 0.8342) 0.9 05-Mn1-06 170.®@) 03-Mn3-03 101.8)
0(2) 0.39712) 0.12898) 0.6732) 0.9 0O5-Mn1-06 87.4) 03-Mn3-04 165.8)
(0]fc)) 0.1392) 0.36719) 0.6222) 0.9 0O5-Mn1-06 87.4) 03-Mn3-04 85.6)
O(4) 0.3552) 0.3168) 0.42Q2) 0.9 0O5-Mn1-06 170.@) 03-Mn3-04 85.6)
o(5) 0.3002) 0.2258) 0.90712) 0.9 06-Mn1-06 100.2) 03-Mn3-04 165.4)
0(6) 0.1542) 0.2258) 0.1152) 0.9 04-Mn3-04 89.12)

064425-2



ORBITAL ORDERING AS THE DETERMINANT FOR . .. PHYSICAL REVIEW B56, 064425 (2002

Bi2 a) \ : b)
03 ;o L e
|

02

FIG. 3. Coordination environments of Bil and Bi2; showing the
shortest distances in bold and longer ones in dashed lines.
FIG. 6. The two-dimensional orbital ordering (8 LaMnQO; is
compared with the three-dimensional orbital ordering seetbjin
BiMnOj;. Bold lines represent the orientation of tig orbitals, as
revealed by the elongations of the Mgn©Octahedra.

Mn1 01 Mn2 06 Mn3 0
05

Each of the three Mn§polyhedra shows the axial elon-
05 o6 o1 - ©poly

gation that is typical of Jahn-Teller distortett cations in

& g perovskite systems. The orbital ordering that is associated
05 O4 02 ‘v 04 with these distortions in BiMn@is the same as that ob-
ol o6 ¢} 04 @02 served at room temperatuf€ig. 5), resulting in superex-

o ) _ change interactions that are largely ferromagn@iable 1V).

FIG._ 4. Coordination environment of the Jahn-Teller distorted|, tq,r of the six pathways, the orbital ordering ensures that
Mn cations; see Tables Il and IIl half filled d,2 orbitals point towards the empt2_,2 orbit-
als on the next manganese; such interactions are predicted to
be ferromagnetic according to the rules proposed by
Goodenough"!® and Kanamort? they are strongest when
the M-O-M bond angle is close to 180°. We note that three
of the four ferromagnetic Mn-O-Mn angles are significantly
larger than the antiferromagnetic on@@ble V). There is
no instance in which a half filled,2 orbital points towards
another half filledd,2 orbital (this would be strongly antifer-
romagneti¢, but two cases in which empty,2_,2 orbitals
point towards each othéthrough G4) and Q5)]. Optimally,
these interactions would be weakly antiferromagnetic, but
this cannot be accommodated in combination with the con-
straints of the strong ferromagnetic interactions, so the sys-
tem must be slightly frustrated.

It is interesting to compare the ferromagnetic structure of
BiMnO5 with the A-type antiferromagntic structure found in
the related perovskite, LaMnO This comparison has re-
‘Lently been discussed by Hill and Raband Wooet al 8
LaMnO; is also orbitally ordered® but in a simple manner
which leads to ferromagnetic sheets that are antiferromag-
netically aligned with respect to each other. Half filldgh
. _ . o orbitals point towards emptyg,2_,2 orbitals within the fer-

TABLE IV. Primary superexchange interactions in BiMp@  romagnetic sheets, but this results in emgiy_,2 orbitals
20 K. The bond angle estimated standard deviations-a0e3°. facing each other via the oxygens between the sheets, lead-
ing to the overall antiferromagnetic structuisee Fig. 6. It

FIG. 5. Three-dimentional magnetic exchange between the M
atoms; the thick lines correspond to the occupdedorbitals.

Pathway Angle Interaction is the substitution of La by Bi that is responsible for stabi-
Mn(1)—O(1)—Mn(2) 154.8 FM lizing a different structural distortion with different orbital
Mn(2)—0(2)-Mn(3) 147.0 FM ordering that leads to ferromagnetism. There are several fac-
Mn(2)—0(3)-Mn(3) 160.4 FM tors that may be responsible for this crucial difference. The
Mn(2)—0(4)—Mn(3) 148.8 AFM greater covalence of the Bi-O bonds compared with La-O
Mn(1)—0(5)-Mn(2) 149.5 AFM bonds will have an impact on the Mn-O-Mn interactions.
Mn(1)—O(6)—Mn(2) 158.7 EM Second, the bismuth lone pairs leadAocations displace-

ments along thé111) directions of the cubic perovskite sub-
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