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Abstract.

Asan aid towardsimproving the treatment of exchange and correlation effectsin electronic struc-

ture calculations, it is desirable to have a clear picture of the errorsintroduced by currently popular appro-
ximate exchange—correlation functionals. We have performed ab initio density functional theory and density
functional perturbation theory calculationsto investigate the thermal properties of bulk Cu, using both the local
density approximation (L DA) and the generalized gradient approximation (GGA). Thermal effectsaretreated
within the quasihar monic approximation. Wefind that the LDA and GGA errorsfor anharmonic quantitiesare
an order of magnitude smaller than for harmonic quantities; we arguethat this might be a general feature. We
also obtain much closer agreement with experiment than earlier, mor e approximate calculations.
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1. Introduction

The devdopment of dendty functiona theory (Hohen-
berg and Kohn 1964; Kohn and Sham 1965) has revolu-
tionized  computationa  condensed < matter  physics,
making it possible to compute most properties of solids
ab initio, with no empirica input apat from the aomic
numbers of dements. In the process of mapping the
many-electron Schrodinger equation onto a  one-dectron
equation, an exchange-corrdaion (XC) term is intro-
duced into the one-dectron Hamiltonian, which contains
dl the many body effects. The man problem in the fied
of ab initio dectronic dructure cdculations is that we do
not know this XC potentia exactly. Though the two most
commonly used approximations, the loca densty appro-
ximaion (LDA) and the genegdized gradient approxima
tion (GGA) work wel for many systems, they do
introduce errors, which become particularly serious for
srongly corrdated systems. Understanding and  improv-
ing the approximations for the XC potentids is one of the
main gods in the fidd of dectronic structure cdculations
today.

In the LDA, the XC term is gpproximated by the XC
potentid for a homogeneous dectron gas of the loca
densty. It is wel known that the LDA tends to overbind,
giving latice congats that are too smdl, and cohesve
energies that ae too high. The GGA includes terms
involving the gradient of the loca dendity, and therefore
might be expected to work better; however, experience
has shown that this is not aways the case. Frequently, the
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GGA appears to overcorrect for the LDA erors, giving
an underbinding. Systemdtic dudies (Favot and Dd
Corso 1999) have shown that these trends are dso meani-
fested in harmonic properties, with the LDA giving pho-
non frequencies and bulk moduli tha ae too high
(compared to experiment), and the GGA giving vaues
that are too low. In our work, we wish to go beyond this
ealier work on datic and harmonic properties, and exa
mine what happens for anharmonic properties.

The anharmonic terms in the Hamiltonian (third and
higher order powers in a Taylor-series expanson of the
Hamiltonian in powers of aomic displacements away
from equilibrium) lead to the latice congtant, bulk
modulus and phonon frequencies changing as a function
of temperature and/or pressure. We will compute these
effects for copper, for which experimentd data has been
avaldble for decades While there ae some previous
cdculations on the thermd behaviour of copper (Mac-
Dondd and MacDondd 1981; Moruzzi et al 1988; Cadin
et al 1999), these have dl involved additiond agpproxi-
mations ether adbout the form of the interatomic poten-
tids or aout the treatment of themd effects. The
agreement  between these earlier cdculaions and  experi-
mental data is not paticulaly good, and we would dso
like to see whether it is possible to do a better job, within
the limitations imposed by the approximate nature of the
XC potentias used.

2. Abinitio calculations

We have peformed densty functiond theory cdcula
tions usng the packages PWSCF and PHONON (Baroni
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et al 2001). The nuclear potentid has been described by
an \ultrasoft pseudopotentia  (Vanderbilt 1990), and the
Kohn-Sham equdions ae expanded in a plane wave
bass st with a cut-off of 30Ry (increased to 300 Ry for
the expanson of the augmentation charges introduced by
the use of the ultrasoft pseudopotentid). Totad energies
and phonon dynamicd matrices ae evauaed usng a
grid of 60k points in the irreducible Brillouin zone. To
ded with possble convergence problems, we use both
the Methfessd—Paxton smearing scheme (Mehfessd and
Paxton 1989) and smearing udng the Fermi-Dirac occu-
pation factor corresponding to the temperature of interest.
Phonon dynamicd matrices ae evauaed usng dendty
functiona perturbation theory (Baroni et al 1987) on a
4”47 4 grid in the firg Brillouin zone the dynamica
matrices for a 20° 20 20 grid ae then obtaned by
Fourier interpolation. Two different XC potentids ae
used: for the LDA, the parametrization by Perdew and
Zunger (1981); and for the GGA, the Perdew—Burke-
Ernzerhof form (Perdew et al 1996).

3. Results

At zero temperaure, we find the totd energy for a range
of latice congtants, a, usng both LDA and GGA. Upon
fitting these results to the fourth-order Birch-Murnaghan
equation of date (Birch 1947), our results for the datic
lattice congtant, ag, the bulk modulus, By, and the pressure
derivative of the bulk modulus, By, ae 6%1 bohr,
1¥2MBar and 59 respectivdy when using the LDA; the
corresponding GGA  results are 694 bohr, 128 MBar and
541, respectivdy. The experimentd vaues (a room
temperature) of ag and By ae 682 bohr and 1587, respec-
tivey (Kittd 1996); there is a wide scatter in the experi-
mentaly reported vaues for Bp¢ These results ae
consstent with the tendency mentioned above, that the
LDA ovehbinds and the GGA underbinds. One striking
feature of these reaults is that while the LDA and GGA
vaues for the harmonic quantity, By, differ by the rather
large amount of 29%, the LDA and GGA results for the
anharmonic quantity, B¢, differ only by 2%.

Usng the vaues obtained for the datic lattice constant,
we have evauated the phonon frequencies, wy  (which
ae hamonic quantities) and the mode Grindsen para
meters, @, (the coresponding anharmonic  quartities,
describing how the phonon frequencies vary with vol-
ume), dong high-symmetry directions of the Brillouin
zone. These results are plotted in figure 1, dong with
expeimental  results for the phonon frequencies (Drexd
1972; Nilson and Rolandson 1973; Lynn et al 1973).
Once again, we notice that: (i) the experimenta vaues lie
sandwiched between LDA and GGA vaues and (ii) the
discrepancy between LDA and GGA vdues for the (ha-
monic) phonon frequencies is dgnificantly larger  than
that between LDA and GGA vaues for the (anharmonic)

Gringsen paramees. Averaged over the Brillouin  zone,
the discrepancy in the phonon frequencies is  11%6%,
which is dgnificantly higher than the discrepancy in the
Griineisen parameters of 16%.

In addition to examining how quantities change with
the application of pressure, one can adso examine how
properties vay as a function of temperature. When ana
lysing the effects of XC potentid a harmonic and higher
orders, it should be noted that quantities such as the co-
efficient of therma expandon depend upon both har-
monic and anharmonic terms in the Hamiltonian. To
incorporate the effects of finite temperature, we will
meke use of the quashamonic gpproximation for the
free energy of the crystal at temperature, T,

F(aT)= Eqa(a)+ksTQ |n} 25inh§%l @ % @

q 1 ZKBT Qb

where Egq(a) is the datic energy et lattice constant a, and
the second tem involves summing over dl  phonon
modes (with wavevector, g and polarizaion, 1), the
vibrationd free energy of a sngle harmonic osdllaor of
frequency, wy; kg and 7 ae Boltzmann's congtant and
Planck’s congant, respectively. There is no explicit anhar-
monicity in this quasharmonic expresson; however, the
anharmonicity is implicitly included by dlowing the
phonon frequencies to depend on the lattice constant, a,
and we use dengty functionad perturbation theory to
compute vy (a) for arange of |attice constants.

At each temperature, T, the curve obtaned usng (1)
for F(a,T) is fit to the fourth-order Birch-Murnaghan
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Figure 1. Dispersion aong high-symmetry directions of the
Brillouin zone of (a) phonon frequencies, wy and (b) mode
Griineisen parameters, g, evaluated at the static lattice con-
stant. The solid and dashed lines are the results obtained using
LDA and GGA, respectively, the dots are experimental points
at room temperature (Drexd 1972; Nilsson and Rolandson
1973; Lynn et al 1973). Note that the discrepancy between
LDA and GGA resultsismuch lessin (b) thanin (a).
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equation of dtate so as to obtain ag, By and By¢ as a func-
tion of temperature. Figures 2(@ and (b) show our results
for By and YBo/fT as a function of temperature, aong
with the experimentd results (Chang and Hultgren 1965).
From these figures, it is cear tha, yet again, while both
the LDA and GGA make rdativdy large (and opposite)
arors in the harmonic quantity, By, the discrepancy bet-
ween LDA and GGA reallts and the eror reaive to
expaiment ae dgnificatly  reduced  upon  looking
ingtead at the anharmonic quantity, By/1T.

Findly, in figure 3, we have plotted our results for the
coefficient of liner expandon a as a function of tem-
perature, obtaned by differentiating our results for the
latice congant as a function of temperature. It is seen
from the figure tha the LDA underesimates not only the
datic lattice congtant (es mentioned above), but dso the
coefficient of thema expanson a dl temperaures,
therefore, the LDA eror in the ldtice congtant increeses
with temperature. The same is true for the GGA error in
the lattice congtant, though in this case a and a ae over-
estimated, not underestimated. It is important to note that
the error in a can be traced dmogt entirdly to errors made
a hamonic order, Ince a=gCyv/3By, where Cy is the
specific heat capacity a condant volume, and g is a
weighted average of the Grineisen paamges evduaed
over the entire Brillouin zone. Especidly a temperatures
above the Debye temperature, where dl modes are excited
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Figure 2. Variation with temperature, T of (a) the bulk
modulus, By, and (b) 1By/1T, the rate of change of the bulk
modulus with temperature. The solid and dashed lines are the
results obtained using LDA and GGA, respectively, the dots are
experimental points (Chang and Hultgren 1965). Note that
though LDA and GGA make relatively large errors in By(T),
TB/IT is obtained very accurately.

and Cy hes reached its maximum vdue of 3kg, the errors
in a must aie from erors in g andlor By. While the
former eror is negligible it can be seen from figure 2(a
that the later error is farly large. By evduating this
expresson, we have verified that the eror in a is dmost
entirdy due to the lage eror in By, We have dso
checked that the errors made in Cy ae negligible a lower
temperatures (Narassmhan and de Gironcoli 2002).

4. Discussion

From the results given in the previous section, one very
cler trend that is immediately obvious is that the errors
due to udng an approximate XC functiond (LDA or
GGA) ae lager by aout an order of magnitude for har-
monic properties than for the corresponding anharmonic
properties. This is an important result that does not
aopear to have been pointed out before for any system.
However, in retrospect, this result can be understood
quite smply, if one assumes that the root cause of the
LDA and GGA erors in datic, harmonic and anharmonic
properties is the incorrect value obtained for the latice
condant. Evauating the various quantities considered in
this paper corresponds to computing various derivetives
of the energy with respect to aomic coordinates, and the
erors in these quantities arise from our having evauated
these deiveatives a the wrong equilibrium pogtions.
However, if the energy is expanded as a polynomid in
powers of aomic coordinates, the dependence on lattice
congant of the nth derivative becomes progressively
sndler as n increeses. Thus, the eror in harmonic quan-
tities (arisng from evduating the second derivative at the
wrong ldtice congtant) can be expected to be larger then
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Figure 3. Coefficient of linear expansion, a, as a function of
temperature, T. The solid and dashed lines are the results obtai-
ned using LDA and GGA, respectively, the dots are experi-
mental points (from AlP Handbook of Physics 1973). Note that
LDA and GGA make opposite errors in a, and that these errors
increase with T.
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the eror in anharmonic quantities (arisng from evduat-
ing third and higher order derivatives a the wrong lattice
constant).

Another concluson that can be drawn from the results
in the previous section is tha the eror in the lattice con-
gant will increase with temperature, for both LDA and
GGA; this could be important to note when peforming,
for example, ab initio molecular dynamics smulaions a
high temperatures.

Though we have peformed cdculaions for just one
dement, copper, we have reason to bdieve that these
features (much smdler erors in anhamonic than in har-
monic quatities, and an increese in the LDA and GGA
arors with temperature) might hold for al materids, due
to the generdity of the arguments cited above. However,
we plan to cary out caculaions on other materids to
confirm whether thisisindeed the case.

In this paper we have focussed mainly on the errors
made due to the approximae nature of the XC potentia
used. However, it should be pointed out tha the agree-
ment between our results and experimentd data is dill
quite good, and is in fact better than that obtained in ear-
lier cdculdions in which dthe an empiricd mode
potentid was used (MacDondd and MacDondd 1981,
Caoin et al 1999) and/lor thermd effects were treated in
an goproximate way (MacDondd and MacDondd 1981;
Moruzzi et al 1988).

5. Summary

We have invedigaed the peformance of the locd den
Sty agpproximation and the generdized gradient approxi-
mation in predicting the therma properties of copper ab
initio, usng the quasharmonic gpproximation for the
free energy. We find that the LDA and GGA erors in
anharmonic quantities are smdler by an order of magni-
tude than the errors in harmonic quantities, this can be
explaned by dmple aguments We dso obtan much

better agreement with experiment than earlier more appro-
ximate calculaions.
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