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Synopsis

Objective of this thesis has been to understand a few equilibrium

and nonequilibrium properties of materials, in connection with phase transi-

tions of different types, viz., paramagnetic to ferromagnetic transition, solid-

solid transition, vapor-solid transition and vapor-liquid transition. The first

chapter provides theoretical background on various structural and dynam-

ical aspects of first and second order phase transitions; describes important

models and necessary tools for computational studies of problems associated

with dynamic critical phenomena, kinetics of phase transitions and aging

properties; introduces a few methods to analyze related simulation data. Be-

low we provide a brief overview of the problems that will be discussed in the

subsequent chapters.

In Chapter 2 we have studied the phase behavior and the dynamic

critical phenomena for a single component three-dimensional Lennard-Jones

(LJ) fluid that exhibits vapor-liquid transition. The phase diagram is ob-

tained via Gibbs ensemble Monte Carlo (GEMC) simulation method. For

the dynamics, we have computed the bulk viscosity and thermal conductiv-

ity using Green-Kubo relations, by taking inputs from molecular dynamics

simulations in microcanonical ensemble. The critical singularities of these

transport properties were quantified via the application of finite-size scaling

theory and compared with the existing theoretical predictions.

Chapter 3 contains the results for the kinetics of vapor-liquid phase

transitions in a single component two-dimensional LJ fluid. Again, the phase

diagram has been obtained via the GEMC simulation method. We quench



very low density homogeneous systems inside the miscibility gap. Following

such quenches, disconnected circular liquid clusters appear in the system.

We identified that these clusters exhibit diffusive motion in the background

vapor phase and grow via sticky collisions among them. The growth has been

quantified as a function of time and is found to be in nice agreement with

a theoretical prediction. In this chapter we also present some results for the

quenches with critical density.

In Chapter 4 we have studied the kinetics of vapor-solid phase transi-

tion for the same model and dimension as in Chapter 3. Systems with overall

density close to the vapor branch of the coexistence curve have been quenched

to very low temperatures. Following such quenches, we observe appearance

of disconnected liquid clusters (of circular shape) at early time. Growth

of these clusters occur due to the deposition of particles on them from the

background vapor phase. Gradually, crystallization occurs inside the clusters

and at the same time the density of the vapor phase saturates to a very low

value. These solid clusters move ballistically through the low density vapor

phase and grow via inter-cluster sticky collisions. The slow relaxation inside

these solid clusters cannot compete with the fast growth via such ballistic

aggregation mechanism. This gives rise to fractality in the structure which

as well plays important role in further enhancement of the growth rate. We

provide quantitative understanding of the structure-dynamics relation, as a

function of temperature.

In Chapter 5 we have studied aging property during ordering in fer-

romagnets, using the time dependent Ginzburg-Landau equations, in space

dimensions d = 2 and 3. Our focus has been on the behavior of the two



time order-parameter autocorrelation function, C(t, tw). We have observed

scaling of C(t, tw) with respect to ℓ/ℓw, where ℓ and ℓw are the characteristic

length scales at times t (observation time) and tw (waiting time), respec-

tively. We have obtained a full form of the scaling function from appropriate

analyses of the simulation data. The scaling function has the late time form

(ℓ/ℓw)
−λ

ag

. In both the dimensions, we have accurately estimated the val-

ues of the exponent λ
ag

, via first application of the finite-size-scaling theory.

These results are compared with those from the Ising model with noncon-

served order-parameter dynamics.

Finally, in the last (6th) Chapter we have presented the results for ag-

ing dynamics during demixing transitions in solid binary mixtures, obtained

via the numerical solutions of the Cahn-Hilliard equations, in space dimen-

sions d = 2 and 3. Here also, as in the previous chapter, we have observed

scaling of C(t, tw) with respect to ℓ/ℓw. An empirical full form is obtained

which again exhibits power-law decay at late time. The exponents in dif-

ferent dimensions have been calculated via the finite-size scaling analyses.

In both the chapters, 5 and 6, it has been shown that the estimated values

of the exponents satisfy the theoretically predicted (dimension dependent)

bounds.
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Chapter 1

Introduction

1.1 Phase transitions

Phase transitions are very commonly observed in nature and related topics

are of much research interest [1–26]. The change of phase in a system takes

place due to variation in different thermodynamic variables, like pressure (P ),

temperature (T ), magnetic field (h), etc. In addition to being fundamental

to the understanding of matter, knowledge of it is important in technological

developments. In Fig. 1.1 we show a schematic phase diagram [1] of a normal

chemical substance in the P −T plane. The three distinct phases, viz., solid,

liquid and gas, in this figure, are separated by different coexistence curves,

along each of which two phases coexist with each other in equilibrium. For

example, along the red curve, referred to as the fusion curve [1], solid and

liquid phases coexist. The gas-solid (pink curve) and gas-liquid (green curve)

coexistence curves are referred to as the sublimation and the vaporization

curves, respectively [1]. All these curves meet at a point, referred to as

1
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Figure 1.1: A schematic phase diagram of a normal chemical substance

in the P − T plane. Various phases are separated from each other by the

coexistence curves. The point (Tc, Pc) represents the critical point for the

gas-liquid transition.

the triple point [1], implying coexistence of all the three phases. Unlike the

fusion curve, which does not terminate, the vaporization curve terminates at

a critical point (Tc, Pc), Tc and Pc being respectively the critical temperature

and pressure [1]. At this point the value of the order-parameter [2–8] ψ, the

density difference between liquid (ρℓ) and gas (ρg) phases, vanishes. On the

other hand, ψ is nonzero in the coexistence region, implying a jump in density

(ρ) as one moves from one phase to another. Such a transition is referred

to as the first order phase transition [1–8], since the jump is related to the

first derivative of an appropriate free energy. In the case of a transition at

the critical point, the first derivative is continuous; however, various second

derivatives exhibit nontrivial singularities or divergences. This is referred to
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as the continuous or second order phase transition [1–8].

Figure 1.2: Phase diagram of a normal chemical system in the temperature

vs density plane. The regions outside and inside the coexistence curve provide

homogeneous and phase-separated states, respectively.

In Fig. 1.2 we have shown the phase diagram related to vapor-liquid

coexistence in T −ρ plane [1]. Here, (ρc, Tc) is the critical point, ρc being the

critical density of the system. Above Tc the system is in a homogeneous state,

i.e., a state where the gas and liquid phases are not separately identifiable.

As stated, inside the curve we observe phase coexistence of gas and liquid, as

depicted in the figure. There the right and left branches of the coexistence

curve correspond to the high density liquid and the low density gas phases,
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respectively. In the case of a binary (A + B) mixture (binary alloy or fluid)

also the coexistence curve [6,13] is very similar. However, the density in the

abscissa has to be replaced by the concentration of any one of the species, say

xA (=
NA

N
, NA being the number of A particles and N the total number of

particles). In that case, the right branch will correspond to the concentration

of the A-type of particles in the A-rich phase and the left branch will be the

concentration of A-type of particles in the B-rich phase.

Figure 1.3: Schematic phase diagram for a para- to ferromagnetic transition

in the h − T plane. In the figure the large black dot is the location of

Curie temperature, Tc. Below the Curie temperature the system acquires a

spontaneous magnetization.

For a magnetic system, exhibiting para- to ferromagnetic transition [4,6],

the phase diagram is shown Fig. 1.3, in the h − T plane. (The T vs ψ
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diagram again has a look similar to the one in Fig. 1.2). In this case, the

critical temperature Tc is often referred as the Curie temperature. Above Tc

the system is in a disordered paramagnetic state with net magnetization (ψ)

zero, if h = 0. On the other hand, for T < Tc one observes a ferromagnetic

state, even for h = 0, where most of the spins are aligned in a particular

direction. This means that the system acquires a spontaneous magnetization

ψ ?= 0.

In the vicinity of a critical point various interesting phenomena happen

which are referred to as the “critical phenomena” [1, 3, 7, 8, 12–16]. Some

details of these are given below.

1.2 Critical phenomena

The central quantity in critical phenomena is the correlation length (ξ)

that provides an understanding of the crucial fact of order-parameter fluctu-

ation [1]. In the thermodynamic limit of the system size, ξ diverges at the

critical point. In addition, number of other static and dynamic quantities

also show singular behavior [1,3,12,13,15,16,27–38]. These singularities are

mathematically expressed as power-laws in terms of the reduced temperature

ǫ (= |T − Tc|/Tc). In Table 1.1, we have listed some of the static quantities,

along with the values of the corresponding exponents as classified according

to different universalities (to be discussed below) [1, 12], which show such

anomalous behavior at Tc. All of these critical exponents are not indepen-

dent of each other, they follow certain scaling relations [1, 7, 8]. E.g., some
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relations connecting the static exponents are [1, 7, 8]

Rushbrooke relation: α + 2β + γ = 2; Fisher relation: γ = ν(2− η)

Josephson relation: νd = 2− α; Widom relation: γ = β(δ − 1).

Table 1.1

Static quantities

3−d Ising universality

class

Classical universality

class

Order-parameter: ψ ∼ ǫ
β

β = 0.325 β =
1

2

Susceptibility: χ ∼ ǫ−γ γ = 1.239 γ = 1

Specific heat: C ∼ ǫ−α α = 0.11 α = 0

Correlation length: ξ ∼ ǫ−ν ν = 0.63 ν =
1

2

Table 1.1: Power-law singularities of the static quantities at the critical point,

along with the exponent values in different universality classes.

The exponents are universal in the sense that their values do not depend

much on the microscopic details of the system, understanding of which ad-

vanced significantly due to the Renormalization Group (RG) theory [7, 8].

Depending upon the type of interaction, short- or long-range, there exits two

universality classes for static quantities, viz., Ising universality class and the

classical universality class [7, 8], for a scalar order parameter. The values of

the static exponents for 3 − d Ising universality class as well as for classical

universality class have been quoted in Table 1.1. The universality picture

holds irrespective of the choice of materials and type of transition, e.g., all

of vapor-liquid, liquid-liquid, para-to-ferromagnetic transitions will have the
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same set of exponent values.

Table 1.2

Dynamics exponents for 3− d fluid universality class

Relaxation time: τ ∼ ξz; z = 3.068

Diffusivity: D ∼ ξ−xD ; xD = 1.068

Shear viscosity: η ∼ ξxη ; xη = 0.068

Bulk viscosity: ζ ∼ ξxζ ; xζ = 2.893

Table 1.2: Singularities and exponents for dynamic quantities for 3− d fluid-

fluid transitions.

The dynamic universality is not as robust as static [12, 39]. For exam-

ple, the value of the exponent z, providing information on the relaxation

time (τ ∼ ξ
z
), can vary from ensemble to ensemble [12, 39]. The dynamic

exponents also follow scaling relations [1, 3] such as

xD = 1 + xη; z = 3 + xη; xζ = z −
α

ν
. (1.1)

According to the theories based on a field theoretic model, referred to as the

model H [4, 6, 12], the values of the dynamic critical exponents will be same

for all materials if the transitions are of fluid-fluid type. These values are

quoted in Table 1.2.
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1.3 Phase ordering dynamics

When a system, prepared at temperature T > Tc, is quenched inside

the coexistence curve, it becomes unstable to fluctuations. Such an out-of-

equilibrium system, during a first order transition, evolves towards a new

(ordered) equilibrium state via the formation and growth of domains of like

particles or spins. Dynamics of such evolution is referred to as the “phase

ordering dynamics” or “coarsening dynamics” [3–6]. This can be illustrated

via the Landau free energy function [4, 7, 8]

F [ψ, T ] = a0(T − Tc)ψ
2
+ b0ψ

4
, (1.2)

plots of which for various temperatures are shown in Fig. 1.4. Here, a0 and

b0 are positive constants. From Eq. (1.2) it is clear that the minimization

of F with respect to ψ provides two lowest energy states, as marked by “P ”

and “Q” (see Fig. 1.4), for T < Tc. These correspond to nonzero values

of ψ and imply ordering. For T > Tc, on the other hand, there exists one

minimum at the equilibrium order-parameter value ψ = 0, corresponding to

a homogeneous configuration. The latter becomes a maximum for T < Tc.

Thus, when a homogeneous system is quenched below Tc, it moves towards

the ordered states with ψ ?= 0. The length scale of the ordered phases,

following a quench, increases [4] with the progress of time, as different broken-

symmetry phases compete with each other to select the final equilibrium

state. During this evolution process, ψ is thus a function of space (?r) and

time (t).
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Figure 1.4: Plots of the Landau free energy, F (ψ), vs ψ, for three different

temperatures, viz., T > Tc, T = Tc and T < Tc.

Depending upon the type of transition, the total value of the order-

parameter may or may not remain conserved with time [4]. While the

ordering in a ferromagnet is an example of nonconserved order-parameter

dynamics, kinetics of phase separation in a binary mixture belongs to the

category of conserved order-parameter dynamics. For conserved case, de-

pending upon the regions inside coexistence curve, the coarsening can occur

via “spinodal decomposition” or “nucleation and growth” [3–6,40], which we

discuss below.
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1.3.1 Spinodal decomposition

Spinodal decomposition [3–6] is observed if a system is quenched with

an overall density or composition close to the critical value, as shown in

Fig. 1.2 with one of the down-arrows. In this case, the system falls out-

of-equilibrium almost instantaneously. So, the phase ordering or coarsening

starts immediately after the quench.

Let us consider the phase separation in a solid binary (A + B) mixture.

Starting from a homogeneous state, say, with critical composition (mixture of

50% A-type and 50% B-type of particles), the system is quenched inside the

coexistence curve. The system will then evolve towards the new equilibrium

state via the formation and growth of domains ofA-rich and B-rich phases. In

Fig. 1.5 we show some snapshots during such a evolution, obtained from the

numerical solutions of the Cahn-Hilliard equation (will be discussed later) [6].

It is clear from these snapshots that the growing domains are percolating in

nature.

Typically, coarsening phenomena are multiplicatively self-similar in na-

ture [4, 6], which may as well be appreciated from these snapshots. This

property provides a power-law growth of the average domain size ℓ [4, 6] as

ℓ(t) ∼ t
α
. (1.3)

The value of α depends upon the number of components of the order pa-

rameter, the range of interaction, the conservation of order-parameter, space

dimension, hydrodynamics, proximity to the coexistence curve, etc. [4,6,40].

Shortly we will discuss some of the growth laws, which are relevant for this
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thesis.

Figure 1.5: Snapshots during the evolution of a phase separating solid binary

(A + B) mixture, in space dimension d = 2. These are obtained for critical

composition (50% A and 50% B particles) quench of the system inside the

miscibility gap, from a high temperature homogeneous state. The orange

and the white colors in the snapshots correspond to the A-rich and the B-

rich phases, respectively. The results were obtained via numerical solutions

of the Cahn-Hilliard equation.

1.3.2 Nucleation and growth

The regions very close to the coexistence curve offer metastability to

a quenched system. There the phase-separation occurs via nucleation and

growth [5, 6, 40, 41]. In this case, to make the system unstable, long wave-

length fluctuations are needed. These fluctuations try to accumulate particles

(spread over wide regions) to form stable nuclei which can grow with time.

Since such fluctuations are rare, nucleation may get delayed.

There exists two broad types of nucleation, heterogeneous nucleation (oc-

curs in the presence of external agent) and homogeneous nucleation (occurs

in absence of external agents) [5]. Here we are interested in the latter one,
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i.e., nucleation in pure substances.

The formation of a nucleus introduces a boundary between the two phases.

For example, in case of gas-liquid transitions, when a system is quenched close

to the vapor branch of the coexistence curve from a homogeneous state, a

liquid droplet with radius R is formed, which is separated from the back-

ground gas phase by an interface, as shown in Fig. 1.6(a). The presence of

interfaces introduces a barrier, ∆F , in free energy, which can be understood

from the construction [5, 6]

∆F (R) = −
4

3
πR

3
Fv + 4πR

2
γ. (1.4)

In Eq. (1.4), the first part is the volume term, while the second one is due

to the presence of the interface. Here, Fv and γ are the volume free energy

density and surface tension, respectively. The plot of ∆F (R) is shown in Fig.

1.6(b). The stability of a nucleus is decided by the competition between the

volume and surface terms, as depicted in Fig. 1.6(b). If the droplet radius

is larger than a critical value Rc, obtainable from the optimization in Eq.

(1.4), it becomes a stable droplet which can grow with time.

In Fig. 1.7 we have presented a few snapshots from an evolving solid

binary (A + B) mixture which has been quenched with an off-critical com-

position (20% A particles and 80% B particles), again obtained using the

Cahn-Hilliard model [6]. Thus, the phase separation occurs via nucleation

and growth. In this case, as seen in this figure, the morphology consists

of disconnected droplets. Like in spinodal decomposition, growth of such

droplets also exhibit statistical self-similarity and power-laws [19].
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Figure 1.6: (a) Schematic picture of a liquid droplet (of radius R) in the

background of a gas phase. (b) Plot of free energy, ∆F , vs radius of a droplet.

The maximum of the free energy occurs at R = Rc, referred to as the critical

size for a stable nucleus.

1.4 Typical models and growth laws related

to coarsening dynamics

We will first consider the case of nonconserved order-parameter dynamics.

We confine ourselves to scalar order parameter only.

1.4.1 Nonconserved order-parameter dynamics

In the nonconserved order-parameter case [4,6,18] the value of the global

order-parameter (integration of the order-parameter over the whole space,

?

ψ(?r, t)dr3) is not constant during evolution. As stated earlier, an example

of this is ordering in a ferromagnet, having been quenched from a disordered

paramagnetic state. For T > Tc, as already stated, the average magnetiza-

tion, ψ (order-parameter of the system), is zero. Finally, as it reaches the

ferromagnetic equilibrium state, most of the spins are aligned in the same

direction, giving rise to a nonzero value of ψ. Thus, the total value of the
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Figure 1.7: Evolution snapshots for an phase-separating off-critical binary

(A + B) alloy, in space dimension d = 2. The results are obtained from the

numerical solutions of the Cahn-Hilliard equation with 20:80 ratio of numbers

of A and B particles.

order-parameter is not respected.

To understand such ferromagnetic ordering, in the atomistic level one

typically considers the Glauber spin flip Monte Carlo simulations [39, 42] of

the Ising model that has the Hamiltonian [39]

H = −J

?

<ij>

SiSj; Si = ±1; J > 0. (1.5)

Here, Si = +1(−1) corresponds to an up (down) spin on a regular lattice, at

a site i, < ij > stands for a sum over the nearest neighbors. A positive value

of the interaction strength J implies ferromagnetic state. In Glauber spin

flip Monte Carlo [42], one chooses a spin randomly, flips it and calculates

the energy difference, ∆E, between the original and tried states. The trial

is accepted according to the standard Metropolis algorithm [39]. Details will

be discussed later.
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The ordering in a ferromagnet has also been well captured, at the macro-

scopic level, by the coarse-grained version of the Glauber Ising model, re-

ferred to as the time dependent Ginzburg-Landau (TDGL) [4, 6] equation.

The TDGL equation is written as

∂ψ(?r, t)

∂t
= p0ψ(?r, t)− q0ψ

3
(?r, t) + r0∇

2
ψ(?r, t), (1.6)

where, p0, q0 and r0 are temperature dependent positive coefficients given

respectively by p0 = Γ(Tc − T ), q0 = Γ
T

3

?

Tc

T

?3

and r0 = Γ
a2Tc

q
, Γ being

a damping coefficient. The TDGL equation can be phenomenologically ob-

tained by considering the relaxation of a ferromagnetic system in an over-

damped situation as [4]

∂ψ(?r, t)

∂t
∝ −

δF [ψ(?r, t)]

δψ(?r, t)
, (1.7)

where F is the standard Ginzburg-Landau (GL) free energy functional [4,6],

given by

F

kBT
=

?

d?r

?

−
1

2

?

Tc

T
− 1

?

ψ
2
+

1

12

?

Tc

T

?3

ψ
4
+
Tc

2qT
a
2
(?∇ψ)

2

?

. (1.8)

For non-conserved order-parameter dynamics, the coarsening of domains

occurs due to curvature driven motion of domain walls. For this, one writes

dℓ

dt
∼

1

ℓ
. (1.9)
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This provides

ℓ(t) ∼ t
1/2
, (1.10)

which is known as the Chan-Allen growth law [4,6,43]. The derivation ignores

system dimensionality.

1.4.2 Conserved order-parameter dynamics

In conserved order-parameter dynamics [4,6,44], the global order-parameter

value remains constant during the entire process of evolution. An example

is phase separation in a solid binary (A + B) mixture. When a binary mix-

ture is quenched from a high temperature (T > Tc) homogeneous phase to a

low temperature phase-separated state, it goes to a new equilibrium via the

formation and growth of A-rich and B-rich domains. Here, the continuity

equation [4, 6]

∂ψ(?r, t)

∂t
= −?∇ · ?J , (1.11)

is valid. In Eq. (1.11), ?J is the concentration current, which is related to

the chemical potential µc as

?J = −D?∇µc(?r, t), (1.12)

where D is a diffusion constant. The chemical potential can be obtained

from the functional derivative of free energy F (defined above), with respect

to ψ, as

µc =
δF [ψ(?r, t)]

δψ(?r, t)
. (1.13)
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Combining the Eqs. (1.11), (1.12) and (1.13), one arrives at [4, 6]

∂ψ(?r, t)

∂t
= −∇

2
?

p0ψ(?r, t)− q0ψ
3
(?r, t) + r0∇

2
ψ(?r, t)

?

, (1.14)

which is referred to as the Cahn-Hilliard (CH) equation [4, 6, 44, 45], where

p0, q0 and r0 are temperature dependent positive coefficients. In Eq. (1.14),

like the TDGL equation, the value of ψ(?r, t) can take values between +∞ to

−∞. The positive values of ψ imply A-rich regions, while the negative values

stand for B-rich regions. We solve Eq. (1.14) using the Euler discretization

technique [6], to be described later.

The demixing transition in solid binary mixtures can also be studied

via the Kawasaki spin exchange Monte Carlo simulations [39] of the Ising

model, the Hamiltonian of which is given above. In this case, Si = +1

and −1 correspond to A- and B-type of particles, respectively. In Kawasaki

exchange Monte Carlo simulation, one picks up a pair of nearest neighbor

particles randomly and interchanges their positions. This trial exchange is

accepted or rejected via the Metropolis algorithm [39].

For conserved dynamics in solid binary mixtures the coarsening of do-

mains occurs due to the diffusion of particles. The gradient in the chemical

potential provides the drive for such transport. The interface velocity can

thus be written as [23]

dℓ(t)

dt
∼ | ?∇µc| ∝

γ

ℓ2(t)
, (1.15)
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where γ is the interfacial tension. The solution of Eq. (1.15) gives

ℓ(t) ∼ t
1/3
, (1.16)

referred to as the Lifshitz-Slyosov (LS) growth law [6,23,46]. This law is valid

in different dimensions. Kinetics of phase separation in fluids, on the other

hand, is a more complex phenomena, with strong influence from dimension

and other facts. This we discuss separately in the next subsection.

1.4.3 Fluid systems

In fluids, due to hydrodynamics, the growth is typically much faster than

the cases which have been discussed above. Here the growth exponent de-

pends upon morphology as well as dimensionality [19, 40, 47–51]. To study

the kinetics of separation in fluid phase transitions, typically one considers

model H [12], lattice Boltzmann simulation [6], molecular dynamics simula-

tion [52, 53], etc.

At the very early stage of phase separation in a fluid system the domain

coarsening occurs via the particle diffusion mechanism (due to chemical po-

tential or concentration gradient), providing α = 1/3 as in solid binary mix-

tures [46]. At a later time, when the domains are large, hydrodynamic effects

become important. First we focus on the percolating morphology. In this

case, fast advective transport of materials occurs through the interconnected

channels due to pressure gradient, obtainable from the interfacial tension [49].

This hydrodynamic regime is divided into two sub-regimes, viz., viscous and

inertial hydrodynamic regimes [4, 6]. Before getting into further discussion



1.4 Typical models and growth laws related to coarsening dynamics 19

on that we introduce the model H below.

Model H is essentially a combination of the CH equation and Naiver-

Stokes (NS) equation [3,6,12]. There one writes the dynamical equations for

the order-parameter and velocity field as

∂ψ

∂t
+ ?v · ?∇ψ = D∇

2
µ, (1.17)

ρ
D

Dt
?v − ηρ∇

2
?v = −?∇p− ψ?∇µ. (1.18)

In Eqs. (1.17) and (1.18), D is the diffusion constant, p is the pressure

and the operator
D

Dt
should be expanded as

d

dt
+ (?v · ?∇). Starting from the

Navier-Stokes equation for incompressible fluid, via dimensional analysis,

Farukawa [47, 48] arrived at (f is a friction coefficient)

dℓ

dt
+ fℓ

?

dℓ

dt

?2

=
t0γ

ηξρ
, (1.19)

t0 being the relaxation time, related to the equilibrium distance ξ, given as

t0 =
ξ2

D
. (1.20)

Using the expressions for t0, η (via the generalized Stokes-Einstein-Sutherland

relation [3, 54]) and the critical singularity [3] of γ (∼ ξ
−2
), it can be shown

that the right hand side of Eq. (1.19) is a constant. Note here that on the

other side of Eq. (1.19) the first term stands for dissipative friction and

the second one corresponds to internal friction. At intermediate time scale,

the dissipative (viscous) term dominates, whereas the inertial term becomes
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more important at very late time. Under such considerations, following the

LS value [46], there will be a crossover to α = 1 which will give way to

α = 2/3 at very late time. According to San Miguel et al. [55], however, the

stripes (analog of tubes) in d = 2 will be stable under weak perturbations.

In this case, they propose an interface diffusion mechanism that provides

α = 1/2. There is, on the other hand, reasonable consensus on the very late

time 2/3 value of α, even in this dimension.

For off-critical quench one observes disconnected, droplet-like domain

morphology [19, 40] which invalidate the above descriptions of growth. This

is because, there cannot be continuous flow of matter due to advection,

a key hydrodynamic transport feature for tube-like interconnected domain

morphology. In the disconnected case, phase separation occurs via droplet

collision and coalescence mechanism [40, 49], i.e., two droplets collide and

merge with each other to form a single larger droplet. This is also known as

Binder-Stauffer (BS) mechanism [40]. Even though contribution from parti-

cle diffusion will be there, the latter will provide a much slower growth. For

the BS mechanism, the droplet density (n) decays with time. For the time

dependence of n, one writes

dn

dt
= −Dℓn

2
, (1.21)

D being a length scale dependent diffusion constant. Since the droplets move

diffusively, the Stoke-Einstein-Sutherland relation provides a constant value
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for Dℓ. Incorporating this fact and using n ∼ 1/ℓd in Eq. (1.21) one obtains

dℓ

dt
∼

1

ℓd−1
. (1.22)

Solving Eq. (1.22) one gets ℓ(t) ∼ t1/d. Thus, α = 1/3 in d = 3, same as the

LS value, though the mechanisms are completely different. Difference be-

tween the two cases will be seen in the growth amplitudes [41], BS providing

a higher value. In table 1.3 we summarize all the growth laws for kinetics of

fluid phase separation.

Another important aspect of coarsening phenomena is aging [6,22,24,56,

57]. This we will discuss briefly later.

Table 1.3

Critical quench

Growth Mechanism d=3 d=2

Diffusive growth α =
1

3
α =

1

3

Viscus Hydrodynamic growth (d = 3),

Interface diffusion (d = 2)

1
1

2

Inertial Hydrodynamic growth
2

3

2

3

Off-critical quench

Growth Mechanism d=3 d=2

Particle diffusion mechanism α =
1

3
α =

1

3

Droplet diffusion and collision mecha-

nism

1

3

1

2



1.5 Finite-size effects in computer simulations 22

Table 1.3: Domain growth-laws in fluids, for critical and off-critical quenches,

in various space dimensions.

1.5 Finite-size effects in computer simulations

In computer simulations, one faces serious problems with respect to the

finite-size effects. For systems with growing length scales, these effects cannot

be taken care of even via the application of periodic boundary conditions.

As discussed, for a thermodynamically large system the correlation length

diverges at the critical point [1]. Whereas, for a finite system the divergence

of ξ will be restricted by the system size [13,39] L, i.e., ξ = L at T = Tc. Fig.

1.8 schematically shows [1] how ξ increases as one approaches Tc. Because

of the above mentioned finite-size restriction on ξ, close to the critical point

the behavior of various static and dynamic quantities will be affected.

Figure 1.8: Schematic snapshots showing the increase of the static corre-

lation length, ξ, as one approaches Tc. The brown blocks are regions over

which correlation has developed. For a finite system, at T = Tc the correla-

tion length attains the system size L.

The finite-size effects are also problematic in the domain growth problems
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Figure 1.9: Schematic representation of the phase coexistence of a symmetric

(50:50) binary (A + B) mixture in equilibrium. The domain length, ℓ, for

both the phases, can attain the maximum value equal to L.

[17]. For example, let us consider the phase separation of a binary mixture

with 50% A particles and 50% B particles. In equilibrium, the domain length

of a particular phase (A- or B-phase) can attain the maximum value L (see

the Fig. 1.9). Thus, for a finite system the behavior of ℓ(t) deviates from

the expected power-law divergence as ℓ → L. As a result, often it does

not become possible to come up with correct conclusions about the growth

exponents.

In absence of adequate computational resources, the way to overcome

such problems is the application of the finite-size scaling theory [13]. This

sophisticated method was first introduced by M.E. Fisher, in the context of

equilibrium critical phenomena. This we discuss in the next section.
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1.6 Finite-size scaling analysis

This technique [13] has extensively been used in the equilibrium critical

phenomena [39] as well as in the nonequilibrium domain coarsening problems

[17, 51, 58]. Here we briefly discuss how this technique can be used in the

context of equilibrium critical phenomena. Let us consider a quantity Z

which shows singularity at the critical point as

Z = Z0ǫ
z
, (1.23)

where z is the critical exponent and Z0 is critical amplitude of Z. For a finite

system, the critical enhancement of Z will be restricted by system size L. To

account for that one should introduce a scaling function, Y (y), such that

Z = Z0Y (y)ǫ
z
. (1.24)

The scaling function Y (y) should be independent of the system size. This is

possible if the scaling parameter y is a dimensionless quantity. The appro-

priate choice y = L/ξ, the ratio of two length scales, provides information on

the deficiency of the system size. A plot of Y vs y, using data from different

system sizes, will show a master curve for the correct choice of z.

In the domain growth problem the same technique can be used to esti-

mate the growth exponent. There ℓ and 1/t should be treated as quantities

analogous to ξ and ǫ, respectively.
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1.7 Quantities of interest

In phase transitions, depending upon interests, one focuses on various

quantities. In this section, we will briefly discuss a few quantities, relevant

primarily in our studies of kinetics. For dynamic critical phenomena, we will

provide details in the next chapter.

1.7.1 Two-point equal time correlation function

In coarsening phenomena, one observes interesting patterns. As discussed,

such patterns exhibit statistical self-similarity [4]. This means, if the pattern

at a given time is enlarged by a certain factor it will overlap with another

pattern at a different time, in statistical sense. This property as well as

the type of pattern can be studied via the two-point equal time correlation

function, C(r, t), defined in an isotropic situation as [4, 6]

C(r, t) =< ψ(?r0 + ?r, t)ψ(?r0, t) > − < ψ(?r0, t) >< ψ(?r0 + ?r, t) > . (1.25)

In Eq. (1.25), r = |?r| and the angular brackets correspond to statistical

averaging, means averaging over different initial configurations as well as

averaging for different choices of the reference point ?r0. When the above

mentioned self-similarity exists, C(r, t) shows scaling behavior as [4]

C(r, t) ≡ C̃(r/ℓ(t)), (1.26)

where C̃ is a time independent master function. This is demonstrated in

Fig. 1.10. The overlap of the data from different times, mentioned in the
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Figure 1.10: Plot of C(r, t) vs r/ℓ(t), for the d = 2 TDGL equation. We

have presented data from thee different times.

figure, lead to such a master curve. This multiplicative scaling property is

consistent with the power-law growth of ℓ(t). One can measure the domain

length from the decay of C(r, t) as C(r = ℓ(t), t) = h0, where h0 is constant.

This correlation function is useful in the studies of equilibrium critical

phenomena as well. In the latter case, one can extract the correlation length

ξ from its decay.
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1.7.2 Structure factor

Instead of C(r, t), experiments directly probe the structure factor [4],

S(k, t) (k = |?k|, being the scalar wave vector), the Fourier transform of

C(r, t):

S(?k, t) =

?

d?r e
i?k·?r
C(?r, t). (1.27)

Once again, for isotropic systems the quantity can be averaged over all di-

rections for a fixed magnitude k of the wave vector. For self-similar patterns,

the scaling property of S(k, t) can be shown to be [4]

S(k, t) ≡ ℓ
d
(t)S̃[kℓ(t)], (1.28)

where S̃ is another time independent master function and d is the dimension-

ality of the system. In the large k limit, S(k, t) follows a power-law decay [4]

as

S(k, t) ∼ k
−(d+n′)

, (1.29)

where n
′
is the number of components of the order-parameter. This is referred

to as the Porod law [4], which is observed for sharp domain boundaries. For

rough domain boundaries one observes slower decay of S(k, t) than in Eq.

(1.29), which has connection with the fractal dimensionality of the domain

structure [21]. Similarly, in small k limit (k → 0) also S(k, t) follows power-

law behavior, i.e., S(k, t) ∼ kβ
′

, where again the exponent β
′

depends upon

system dimensionality, in addition to its dependence on the conservation of

order-parameter. It is understood that in the scaling regimes β
′

= 0 for

nonconserved dynamics [22] and β
′

= 4 (for d ≥ 2) for conserved dynamics
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[22].

Figure 1.11: Scaling plot of the structure factor, ℓ−dS(kℓ) vs kℓ, for the d = 2

TDGL equation. The solid lines correspond to power-laws with exponents 0

and −3.

In Fig. 1.11, we show the plot of S̃[kℓ(t)], vs kℓ, for the d = 2 TDGL

equation. There also we observe nice collapse of data from all the t values

mentioned in the figure. In the large k limit, the data is consistent with

the solid line with exponent −3, which is the expected Porod law. On the

other hand, in the small k limit, the flat behavior of S(k, t) implies β
′

= 0,

as expected for nonconserved order-parameter dynamics. Inverse of the first

moment of the structure factor also provides the domain length.
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1.7.3 Two-time order-parameter autocorrelation func-

tion

In the out-of-equilibrium context, the two-time order-parameter autocor-

relation function, C(t, tw), is used to study the aging dynamics [6, 24, 59].

This quantity is defined as [6]

Figure 1.12: Plots of C(t, tw), vs the translated time, (t − tw), for different

tw values, are shown schematically, for coarsening dynamics.

C(t, tw) = ?ψ(?r, t)ψ(?r, tw)? − ?ψ(?r, t)??ψ(?r, tw)?. (1.30)
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In Eq. (1.30), t is the observation time and tw is the waiting time, often

referred to as the age of a system. C(t, tw) goes to zero for t >> tw. In

equilibrium context autocorrelations of different types of current are often

calculated to estimate various transport properties [54]. There such decay

exhibits time translational invariance with respect to the translated time

(t − tw), i.e., the decay of C(t, tw) is independent of the different choices

of tw. But, in nonequilibrium context, time-translation invariance property

breaks down [6] due to slower decay of C(t, tw) with the increase of age, as

schematically shown in Fig. 1.12. Such aging phenomena is of interest in

kinetics of phase transitions, glassy systems and in other situations with slow

relaxation. In kinetics of phase transitions, C(t, tw) exhibits scaling [22,24,57]

as

C(t, tw) ∼ (ℓ/ℓw)
−λ

ag

, (1.31)

in the long time limit. In Eq. (1.31), ℓ and ℓw are the average domain lengths

at times t and tw, respectively. In this sub area, interest is in obtaining the

full form of the autocorrelation function, as well as the exponent λ
ag

for the

late time decay. Understanding of this property is relatively poorer compared

to that of domain growth.
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1.7.4 Radius of gyration

If an object consists of N number of particles, (say, of equal mass) then

the radius of gyration, Rg, is defined as [60, 61]

Rg =

?

1

N

N
?

i=1

(?ri − ?rcm)
2

?1/2

(1.32)

=

?

1

N(N − 1)

N−1
?

i=1

N
?

j=i+1

(?ri − ?rj)
2

?1/2

,

where ?rcm is the center of mass of the object and ?ri is the position of the

i’th particle. The total mass of the object, M , is connected to Rg as [62]

M ∼ R
df
g . (1.33)

In Eq. (1.33), the variation of M with Rg provides information about the

compactness of the object [62]. For df < d the object is a fractal one.

To understand the growth of fractal structures, calculation of Rg becomes

essential.

1.7.5 Center of mass of a composite object in periodic

boundary conditions

The center of mass (CM) of a composite object is a unique point about

which the entire mass is distributed in such a way that the application of

an external force on that will generate only translational motion. For an
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N -particle system the CM is calculated as [61]

?rcm =

?

N

i=1
mi?ri

?

N

i=1
mi

=
1

N

N
?

i=1

?ri. (1.34)

In the last step we assumed mi = m for all i.

Let us consider a situation where the mass is placed as shown in Fig. 1.13.

In this case, if we calculate the CM in the typical way, using Eq. (1.34), it will

be at C1, which is indeed the correct position. But, in computer simulation,

often we consider periodic boundary conditions to avoid surface effects. In

that case, C1 is not certainly the correct location of the CM. In such a

situation, one way to calculate the CM of the object, using Eq. (1.34), is by

shifting the particles in the right side of the box to the left, by appropriately

translating x- coordinates of the particles. To achieve the objective this way,

one may need to manually visualize the configurations, before instructing the

computer program. On the other hand, this difficulty can easily be overcome

in the following way, if one works in the polar coordinate system [63]. Let us

define

θi = 2π
xi

L
, (1.35)

where xi is the x-component of the position vector ?ri and L is the length of

the box in the x-direction. This provides a new set of points

Xi = cos θi, Yi = sin θi. (1.36)
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Figure 1.13: A liquid droplet is in a square box (of linear dimension L)

under periodic boundary conditions. C1 and C2 are locations of the center

of mass, obtained via different methods. See text for details.

Then we calculate the average of these two new quantities as

X̄ =
1

N

N
?

i=1

Xi, Ȳ =
1

N

N
?

i=1

Yi, (1.37)

and map these to a new coordinate θ̄ as

θ̄ = atan2[−Ȳ ,−X̄ ] + π, (1.38)

where the function atan2 computes angles between −π to π, by taking care
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of the signs of both X̄ and Ȳ . Here, θ̄ is the correct value of CM in the polar

coordinate system. Finally, the CM of the object in the Cartesian coordinate

can be obtained as

xcm = L
θ̄

2π
. (1.39)

In similar way one can calculate ycm and zcm, for an object in d = 3. Now,

using the above mentioned method, if we calculate the CM of the object in

Fig. 1.13, it will be at C2, which is the correct location of the CM in the

presence of periodic boundary conditions.

1.8 Simulation methods

This thesis contains simulation studies of systems that exhibit phase

transitions. Here we have looked at various types of phase transitions in the

atomistic as well as coarse-grained levels, focusing on equilibrium and non-

equilibrium aspects. Thus, different simulation methods became necessary.

These we discuss below.

1.8.1 Euler discretization technique

The Euler discretization is a popular technique [64] for solving nonlinear

ordinary or partial differential equations. It works in an iterative way via the

discretization of total time into number of steps with small intervals δt. For

illustration, let us consider a general differential equation

∂ψ(?r, t)

∂t
= f [ψ(?r, t)], (1.40)
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where the value of ψ at ?r is known at a time t0. Then we can obtain the

value of ψ at a later time t0 + δt as

ψ(?r, t0 + δt) = ψ(?r, t0) + δtf [ψ(?r, t0)]. (1.41)

This way, one can obtain a reasonably accurate solution of Eq. (1.40) if δt

is chosen to be very small. We have used this technique to solve the TDGL

and the CH equations.

1.8.2 Monte Carlo simulation

In Statistical mechanics, the expectation value of a physical quantity A

is defined as [39]

< A >=

?

i
A e

−βEi

Z
, (1.42)

where Ei is the energy in the ith state and Z is the partition function, defined

as [39]

Z =

?

i

e
−βEi. (1.43)

In both the above equations, the summations run over all states. Here,

β = 1/kBT , kB being the Boltzmann constant. Even for very simple Hamil-

tonians, carrying out such calculations becomes nontrivial, analytically as

well as computationally. As an example, let us consider the case of Ising

model, on a square lattice in d = 2. The Hamiltonian for the model is given
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in Eq. (1.5). On a computer, the calculation of Z even for a 10 × 10 lat-

tice system requires dealing with 2100 ∼ 1032 number of microstates. This

difficulty can be overcome by using Monte Carlo (MC) simulations [39, 52].

There one draws N
′
microstates, from a given equilibrium distribution

p
eq
i

=
1

Z
exp[−βEi], (1.44)

following a Markovian chain process [39], which satisfy the detailed balance

conditions (in equilibrium). Thus, the average of A can be obtained from

MC simulations as [39]

Ā =
1

N ′

N ′

?

i=1

Ai, (1.45)

Ai being the value for ith state. Any statistical error that may occur will

vanish when N ′ → ∞.

The sampling of the phase space can be achieved by using Metropolis

algorithm. The steps are the following [39].

1. Randomly select a state i with energy Ei.

2. Via a trial move go to a new state j with energy Ej .

3. Calculate the energy difference, ∆E = Ej − Ei, between the two states.

4. Accept the trial move if rn < exp(−∆E/kBT ), rn being a random number

between 0 and 1, taken from an uncorrelated set with uniform distribution.

This is the general procedure for MC simulation [39]. The specific trial

moves for the Glauber and Kawasaki exchange cases have been mentioned
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above. Below we discuss a more specialized case that has also been used in

the thesis.

Gibbs ensemble Monte Carlo simulation

The Gibbs ensemble Monte Carlo (GEMC) [52,65] simulation, devised by

Panagiotopoulous, is an useful technique to calculate the phase coexistence

of single or multicomponent fluids. Below we discuss the case for a single

component system undergoing vapor-liquid transition. The GEMC simula-

tion is performed in two separate boxes, viz., Box 1 and Box 2. The total

number of particles, N (= N1+N2, N1 and N2 being the number of particles

in the Box 1 and Box 2, respectively), and total volume, V (= V1 + V2, V1

and V2 being the volumes of Box 1 and Box 2, respectively), remain fixed

during entire period of a simulation. The thermodynamic requirements for

phase coexistence are that the two boxes should maintain the internal equi-

librium, i.e., the temperature, the pressure and the chemical potential of the

two boxes should be equal. In this method, three types of perturbations or

trial moves are considered, viz., particle displacements in each of the boxes,

volume change of both the boxes and particle transfer between the boxes.

These are schematically shown in Fig. 1.14. These moves will be accepted

or rejected according to the Metropolis algorithm. Further discussion on the

moves are given below.

Particle displacement: A particle is picked up randomly from Box 1 and

provided a small displacement in a random direction. This trial move is
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accepted with a probability

Pdisplacement = min[1, exp(−β∆E1)], (1.46)

where ∆E1 (= E
new
1

−Eold
1

) is the energy difference between the states after

and before the displacement of the particle in Box 1. Similarly, Eq. (1.46) is

valid for moving a particle in Box 2.

Volume move: Suppose ∆V is the amount of volume increase in Box 1. As

the total volume is fixed, then same amount of volume has to be decreased

for Box 2. The acceptance criterion for this move is

Pvolume = min

?

1, exp

?

−β∆E1−β∆E2+N1 ln
V1 +∆V

V1
+N2 ln

V2 −∆V

V2

??

,

(1.47)

∆E1 and ∆E2 being the energy changes in Box 1 and Box 2, due to the trial

move.

Particle transfer: The acceptance criterion for particle transfer from Box

1 to Box 2 (or vice versa) is

Ptransfer = min

?

1,
N1V2

(N2 + 1)V1
exp

?

− β∆E1 − β∆E2

??

. (1.48)
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Figure 1.14: A schematic representation to show different trial moves in

the Gibbs ensemble Monte Carlo simulation. The first column shows the

particle displacement moves in each of the boxes, the middle one corresponds

to the volume change of the boxes and the last column illustrates the particle

transfer move between the boxes.

1.8.3 Molecular dynamics simulation

Molecular dynamics (MD) simulations [52, 53, 66] are commonly used to

study dynamics in complex systems, at the atomistic level. In classical MD

simulations, one essentially solves the Newton’s equations of motion for a

large number of particles interacting with each other via relevant potential.

Although several techniques have been developed to solve these equations

computationally, we will use the most popular Verlet-Velocity algorithm [52,

53]. In this method, to update the position and velocity of a particle i one
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uses the equations (we set mi, the mass of the ith particle, to unity)

xi(t+∆t) = xi(t) + ∆tv
x

i
(t) +

∆t
2

2
f
x

i
(t), (1.49)

and

v
x

i
(t+ ∆t) = v

x

i
(t) +

∆t

2
[f

x

i
(t) + f

x

i
(t+∆t)]. (1.50)

Here, xi and v
x

i
are the x-component of the position and velocity of the ith

particle, whereas f
x

i (t) is the x-component of the force acting on the ith

particle at time t, which can be calculated from the potential energy Ui, i.e.,

?fi = −?∇Ui, assuming that there is no external force. Below a flow chart is

given for MD simulation.

In this thesis we have performed MD simulations in NV E (microcanon-

ical) ensemble as well as in NV T (canonical which keeps temperature con-

stant) ensemble. In NV E simulations, the total energy of the system is

constant although the potential and kinetic energies can fluctuate. In canon-

ical ensemble, the temperature of a system is controlled by using a ther-

mostat [52]. Essentially, the system is coupled with a heat reservoir. All

the available thermostats control temperature to a good extent but only a

few of them preserve hydrodynamics. Below we discuss different types of

thermostats.
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Initialization:

Generate positions xi(t)

and velocities vx
i
(t)

Start MD

Calculate

force at time t:
?fi(t) = −?∇Ui(r)

Update positions

at time t + ∆t

Calculate force

at time t + ∆t

Time

loop

Update velocities

at time t + ∆t

Calculate

quantities

of

interest

Stop

Flow diagram 1: This diagram explains the steps of a molecular dynamics

simulation.
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Andersen thermostat

Like Monte Carlo, the Andersen thermostat (AT) [52] is stochastic in

nature and does not preserve hydrodynamics. The prescription for the AT

is the following. At an MD step, one randomly selects some fraction of

particles from the given system and draw their momentum from a Maxwellian

distribution (m set to unity)

P(v) =

?

1

2πkBT

?3/2

exp

?

−
v2

2kBT

?

, (1.51)

at the desired temperature [52]. This brings an imaginary coupling of the

system with an external heat reservoir, maintained at a constant temperature

T . The particles are thought to be hitting and exchanging their momentum

with the heat reservoir. The strength of the coupling is controlled by a pa-

rameter Γ. In simulation, this can be implemented in two different ways:

1. At each MD step, a fixed percentage of particles, depending upon the

value of Γ, is selected randomly and they are made to collide with the heat

reservoir to exchange their momentum.

2. After a certain number of MD steps, again decided by the value of Γ,

one allows all the particles to collide with the heat reservoir simultaneously.

Both the ways are efficient to control the temperature and generate correct

canonical ensemble properties of the system.
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Lowe-Andersen thermostat

The Lowe-Andersen thermostat (LAT) [67, 68] is said to be a hydrody-

namics preserving thermostat, the basic principle of which is similar to the

AT. There, instead of selecting individual particles, pairs of particles (ij)

with relative velocities ?vij (= ?vi − ?vj, ?vi and ?vj being the velocities of the

ith and jth particle, respectively) are selected randomly. These particles are

made to collide with heat reservoir, maintained at the assigned temperature

T . The velocities of the particles are updated via the following equations:

?v′
i
(t) =















?vi(t) Γ∆t < ξ1

?vi(t) +
µij

mi

?

|?v′ij | − ?vij · σ̂ij

?

σ̂ij Γ∆t > ξ1

(1.52)

?v′
j
(t) =















?vj(t) Γ∆t < ξ1

?vj(t) −
µij

mj

?

|?v′ij | − ?vij · σ̂ij

?

σ̂ij Γ∆t > ξ1.

(1.53)

Here, ?v′i and
?v′j are new velocities of the ith and jth particles, respectively,

µij

?

=
mimj

mi+mj

?

is the reduced mass and σ̂ij is the unit vector along the line

joining the two particles. In the above equations, Γ is the coupling constant

and ξ1 is a random number between 0 to 1, drawn from a uniform distribution.

The collision frequency Γ∆t is compared with ξ1. When Γ∆t > ξ1, then one

allows a selected pair of neighboring particles (i, j) to collide with the heat

reservoir to maintain the temperature at a constant value. After collision,

new set of velocities are assigned to the particles according to the relations

noted down in second lines of these two equations. From these relations it is

clear that local momentum remains conserved. Thus, this thermostat serves
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the purpose of studies relating hydrodynamic effects.

Dissipative particle dynamics thermostat

The dissipative particle dynamics thermostat (DPDT) [52, 69] preserves

hydrodynamics in the local scale like the LAT. In this method, there are

three types of force acting on the particles, viz., dissipative force, ?F
D
, random

force, ?FR, and conservative force, ?FC . Here ?FD and ?FR are not independent,

they are connected via the fluctuation dissipation theorem with the assigned

constant temperature of the system embedded in it. Thus, the net force on

particle i is given by

?fi =

N
?

j ?=i

(?F
C

ij
+ ?F

D

ij
+ ?F

R

ij
), (1.54)

where

?F
C

ij
= −?∇

?

u(rij)

?

, (1.55)

?F
D

ij
= −w

D

0
ω
D
(rij)[σ̂ij · ?vij ]σ̂ij , (1.56)

and

?F
R

ij
= w

R

0
ω
R
(rij)θij σ̂ij . (1.57)

Here, u(rij) is the relevant interaction potential of the particles, ?vij is the

relative velocity and σ̂ij is the unit vector along the line joining the ith and

jth particles. Further, wR
0 is the strength of the random force and wD

0 is

the friction constant, and they satisfy the relation [wR

0
]2 = 2kBTw

D

0
. In the
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above equations, ωD and ωR are the space dependent weight functions, which

satisfy

[ω
R
(rij)]

2
= ω

D
(rij) =















1− rij/rc r < rc

0 r ≥ rc.

(1.58)

The form in the last part of the equation is a popular choice, however, is

not unique [70, 71]. In Eq. (1.57), θij is a Gaussian white noise with zero

mean and unit variance. It should be delta correlated in space and time as

< θij(t)θkl(t
′) >= (δikδjl + δilδjk)δ(t− t

′).

Nosé-Hoover thermostat

The idea of the Nosé-Hoover thermostat (NHT) [52, 72] comes from the

extended Lagrangian formalism and was introduced by Nosé. Subsequently,

improvement was made by Hoover. There, it is considered that the heat

reservoir is an integral part of the original system. This provides an additional

degree-of-freedom, “s”, position of the imaginary heat reservoir, having the

conjugate momentum, ps. In addition to that, a parameter Q = ps/ṡ is

introduced, which is the “effective mass” of the reservoir, often referred to as

a coupling constant. The Hamiltonian of the combined system is written as

HNose =

N
?

i=1

p2i

2ms
+ U +

p2s

2Q
+ (3N + 1)kBT ln s. (1.59)
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Further, a new parameter, ξ ′ = Qṡ, known as the friction parameter, is

introduced. Following this, the equations of motion for NHT read as

d?ri

dt
= ?vi, (1.60)

d?vi

dt
= −

1

mi

∂U(?rN )

∂t
− ξ

′
?vi, (1.61)

dξ ′

dt
=

?

N
?

i=1

mi|?vi|
2
− 3NkBT

?

/Q, (1.62)

d ln s

dt
= ξ

′
. (1.63)

From the above set of equations it is clear that the friction parameter ξ ′ in-

fluences the velocity equation if the instantaneous temperature of the system

deviates from the desired temperature. Whenever the instantaneous value

tries to increase or decrease, the parameter ξ ′ always resists and brings it

down to the assigned value. This way the temperature of the system fluctu-

ates around the desired value. The strength of this fluctuation can be con-

trolled by the coupling constant Q. It has been reported that NHT preserves

the hydrodynamics and generates all the properties of canonical ensemble.

Incorporating the above facts, the position and velocity update equations for

NHT can be written as

xi(t+∆t) = xi(t) + v
x

i
(t)∆t +

∆t2

2
[f

x

i
(t)− ξ

′
(t)v

x

i
(t)], (1.64)
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and

v
x

i
(t+∆t) = v

x

i
(t) +

∆t

2

?

f
x

i
(t) + f

x

i
(t +∆t)− 2ξ

′
(t)v

x

i
(t)

?

−
∆t2

2

?

ξ ′(t)

2

?

f
x

i (t) + f
x

i (t+∆t) − 2ξ
′
(t)v

x

i (t)

?

+ v
x

i
(t)

?

N
?

j=1

v
x

j
(t)

2
− 3NkBT

?

/Q

?

. (1.65)

1.9 Overview of the thesis

Main objective of this thesis is to understand various equilibrium and

nonequilibrium properties related to phase transitions of different types, viz.,

paramagnetic to ferromagnetic transition, solid-solid transition, vapor-solid

transition and vapor-liquid transition. We have addressed questions related

to dynamic critical phenomena as well as queries concerning domain growth

and aging during phase transitions. For each of the problems, addressed in

subsequent chapters, we have performed computer simulations. The simu-

lation results are interpreted via finite-size scaling and/or other methods of

analysis. These are compared with available theoretical predictions. In case

of unavailability of such predictions, we made an effort to understand these

by new analytical arguments or calculations. Since the synopsis contains

brief descriptions of the problems, we do not repeat those here.
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Chapter 2

Finite-size scaling study of

dynamic critical phenomena in

a vapor-liquid transition

2.1 Introduction

Understanding of the anomalous behavior of various static and dynamic

quantities, in the vicinity of the critical points [1–24], is of fundamental im-

portance. The critical behavior of the static quantities have been understood

to a good extent via analytical theories, experiments and computer simula-

tions [1–5, 7, 9]. On the other hand, the situation with respect to dynamics

is relatively poor. Simulation studies, that helped achieving the objective

for the static phenomena, gained momentum in the context of dynamic crit-

ical phenomena only recently [25–38]. Such a status is despite the fact that

adequate information on the equilibrium transport phenomena is very much

54
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essential for the understanding of even nonequilibrium phenomena like the ki-

netics of phase transitions [9,39]. For example, the crossovers and amplitudes

in the growth-laws during phase transitions are often directly connected to

the quantities like diffusivity and viscosity [39, 40].

The static correlation length, ξ, diverges at the critical point [2], i.e.,

ξ → ∞ as the temperature T → Tc, Tc being the critical point value for

the latter. As a result, various other static as well as dynamics quantities

show singularities in approach to the criticality. These singularities are of

power-law type, in terms of the reduced temperature (ǫ = |T − Tc|/Tc), such

as [1–3, 5, 9]

ξ ∼ ǫ
−ν
, ψ ∼ ǫ

β
, C ∼ ǫ

−α
, χ ∼ ǫ

−γ
. (2.1)

Here, ψ, C and χ are the order-parameter, specific heat and susceptibility,

respectively. Typically, singularities for various dynamic quantities, viz.,

mutual or thermal diffusivity (D), shear viscosity (η), bulk viscosity (ζ),

thermal conductivity (λ), etc., are expressed in terms of ξ as [4, 8, 11]

D ∼ ξ
−xD , η ∼ ξ

xη , ζ ∼ ξ
x
ζ , λ ∼ ξ

x
λ . (2.2)

The static critical exponents do not depend upon the choice of material

and the type of transition. In a particular dimension (d), if the interaction

among the particles or spins are of same type, i.e., either of short or long

range, and the order parameters have the same number of components, the

exponents will have the same values, giving rise to well defined universality

classes. For short range interactions with one component order-parameters,
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the exponents belong to the Ising universality class [1–3,5,6]. The universal-

ity of the critical exponents in statics, thus, is very robust, viz., paramagnetic

to ferromagnetic, liquid-liquid, vapor-liquid transitions will all have the same

set of exponent values depending upon the interaction range. Values of the

above mentioned static exponents for the d = 3 Ising class are [6]

ν ≃ 0.63, β ≃ 0.325, α ≃ 0.11, γ ≃ 1.239. (2.3)

On the other hand, the universality of the dynamic exponents is con-

siderably weaker. For example, the value of the exponent z, related to the

longest relaxation time [7]

τ ∼ ξ
z
, (2.4)

can vary depending upon the choice of statistical ensemble [7–9]. Neverthe-

less, the exponents for liquid-liquid and vapor-liquid transitions should be

same, given by the fluid or model H universality class [8–10]. The values of

these exponents for this class are

x
D
≃ 1.068, x

λ
≃ 0.902, x

η
≃ 0.068, x

ζ
≃ 2.893. (2.5)

These numbers are obtained via the dynamic renormalization group and

mode-coupling theoretical calculations and found to be in agreement with

experiments [8–24]. Like the static case, the dynamic exponents are also

not all independent of each other, they follow certain scaling relations. E.g.
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starting from the generalized Stokes-Einstein-Sutherland relation [2,9,19,41]

D =
RDkBT

6πηξ
, (2.6)

kB being the Boltzmann constant and RD another universal constant [19],

one obtains [2]

x
D
= 1 + x

η
. (2.7)

Unlike the static case, the computational estimation of the dynamic

critical exponents started only recently, as mention above. In this work, we

have presented simulation results for the critical dynamics of a three dimen-

sional single component Lennard-Jones (LJ) fluid that exhibits vapor-liquid

transition. We focus on the bulk viscosity and the thermal conductivity.

There, of course, exist simulation studies on dynamics in vapor-liquid tran-

sitions [26, 28, 31, 42]. In fact, in some previous studies [26, 42] both these

transport properties were calculated in the vicinity of critical points. How-

ever, presumably due to computational difficulty with respect to the calcula-

tion of collective transport properties, corresponding critical exponents were

not quantified in those [26, 42] works. On the other hand, even though the

critical behavior of the thermal diffusion constant was studied in Ref. [28],

the associated conductivity was not separately looked at.

For this purpose, we have performed molecular dynamics (MD) simula-

tions and analyzed the results via appropriate application of the finite-size

scaling (FSS) theory [43]. Prior to that, we have studied the phase behavior

of the model by using the Gibbs ensemble Monte Carlo (GEMC) simulation

method [44] as well as successive umbrella sampling technique [45] in NPT
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ensemble [46, 47] (N and P are the total number of particles and pressure,

respectively). The critical temperature (Tc) and critical density (ρc) were

estimated accurately via appropriate FSS analyses [48–50].

The rest of the chapter has been organized as follows. In section 2.2 we

have discussed the model and methodologies. The results are presented in

section 2.3. Finally, in section 2.4 we have summarized our results.

2.2 Model and Methods

As stated, we have considered a single component LJ fluid. In our model,

a pair of particles, i and j, separated by a distance r (= |?ri − ?rj|), interact

via the potential [51]

U(r) = u(r)− u(rc)− (r − rc)
du

dr

?

?

?

r=rc

, for r ≤ rc

= 0, for r > rc, (2.8)

where rc (= 2.5σ, σ being the particle diameter) is a cut-off distance, intro-

duced to accelerate the computation. In Eq. (2.8), u(r) is the standard LJ

potential [51, 52]

u(r) = 4ε

??

σ

r

?12

−

?

σ

r

?6?

, (2.9)

with ε being the interaction strength. For the sake of convenience we set σ

and ε to unity. The last term in the first part of Eq. (2.8) was introduced

to correct for the discontinuity in the force at r = rc that occurs after the

cutting and shifting of the potential.

The GEMC simulations [44, 52], for the study of the phase behavior
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of the model, were performed in two separate boxes, as discussed below.

The total number of particles in and the total volume (V ) of the two boxes

were kept fixed, though the numbers of particles (N1 and N2) in as well

as the volumes (V1 and V2) of the individual boxes were varied during the

simulations. We considered three types of perturbations or trial moves, viz.,

particle displacement in each of the boxes, volume change of the individual

boxes and particle transfer between the boxes. Thus, this is a combination

of simulations in constant NV T , NPT and µcV T ensembles, µc being the

chemical potential. At a late time, one observes coexistence of the vapor

phase (in one of the boxes) with the liquid phase (in the other box), if

a simulation is performed at a temperature T < Tc. Thus, by running the

simulations at different temperatures and obtaining the equilibrium densities

(ρα = Nα/Vα, α standing for liquid or vapor) of the individual phases, the

whole phase diagram can be drawn, which, of course, will provide information

about the critical temperature and critical density.

The phase diagram was also obtained via successive umbrella sampling

[45] MC simulations in NPT ensemble [46,47]. Like the grandcanonical case,

the overall density fluctuates in this ensemble as well. While in the former

the fluctuation is a result of particle addition and deletion moves, in the

case of NPT simulations the volume moves give rise to the fluctuation. The

NPT ensemble has advantage over the former when overall density is rather

high. In the implementation of successive umbrella sampling technique, for

overall density ∈ [0, 1], the corresponding volume range is divided into small

windows. In each of these windows simulations were performed over long
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periods of time. For T < Tc, these simulations provide double-peak distribu-

tion for specific volume vsp (= V/N). The peak at the smaller value of vsp,

at a particular temperature, corresponds to a point on the liquid branch of

the coexistence curve. The coexisting vapor density is given by the position

of the peak at the higher value of vsp. While the coexistence curve data will

be presented from the GEMC simulations, for the estimation of critical pa-

rameters, particularly ρc, we will rely on the simulations in NPT ensemble.

Here note that our results on the phase behavior are consistent with the data

from the simulations in grandcanonical ensemble which are made available

online [53].

To study the transport properties we have performed MD simula-

tions [51, 52, 54]. There we first thermalize the systems, using the stochastic

Andersen thermostat [52], to generate the initial configurations. Finally, for

the production runs we performed MD simulations in the microcanonical

(constant NV E, E being the total energy) ensemble that preserves hydro-

dynamics, essential for the calculations of transports in fluids [52].

The transport quantities have been calculated by using the Green-Kubo

(GK) formulae [41,51]. The GK relations for the viscosities and the thermal

conductivity are connected to the expressions [41, 51]

Y =
1

kBTV

?

t

0

dt
′
< σ

′

µs
(t

′
)σ

′

µs
(0) >; µ, s ∈ [x, y, z], (2.10)

and

λ =
1

kBT
2V

?

t

0

dt
′
< j

s

T
(t)j

s

T
(0) >; s ∈ [x, y, z]. (2.11)
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In Eq. (2.10), σ′µs is related to the pressure tensor σµs, defined as

σµs =

N
?

i=1

?

miviµvis +

N
?

j=i+1

(µi − µj)Fsj

?

, (2.12)

where Fsj is the sth component of the force on the jth particle, mi is the

mass of the ith particle (chosen to be equal to m for all), viµ(s) is the µ(s)
th

component of velocity for particle i and µi(j) is the Cartesian coordinate for

particle i(j) along the µ-axis. For the diagonal elements σ′µµ = σµµ− < σµµ >

and Y = ζ + 4/3η, whereas for the off-diagonal elements (σ′
µs

= σµs) Y = η.

In Eq. (2.11), js
T
is the thermal flux along any particular axis, defined as

j
s

T =
1

2

N
?

i=1

vis

?

m|vi|
2
+

N
?

j ?=i

U(r)

?

−
1

2

N
?

i=1

N
?

j ?=i

?vi · ?r
∂U(r)

∂s
, (2.13)

where vis is the velocity component of the ith particle along s-axis. In U(r)

it is understood that the energy comes from the interaction between particles

i and j, vector distance between them being represented by ?r. This justifies

the summation over j in the last equation.

All our simulations were performed in cubic systems of linear dimen-

sion L and in the presence of periodic boundary conditions in all possible

directions. In our MD simulations, time was measured in an LJ unit t0

(=
?

mσ2/ǫ) and the integration time step was set to dt = 0.005t0. All the

results related to transport properties are presented after averaging over 64

initial realizations. From here on, for the sake of convenience, we set m, kB

and t0 to unity. Note that the time in MC simulations is expressed in units

of number of Monte Carlo steps (MCS). In the case of GEMC method, each
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step consists of 75% displacement moves, 10% volume moves, and 15% par-

ticle transfer moves, of a total of N trials. There was no particular order for

the execution of these moves. Results for the coexistence curve are presented

after averaging over 15 initial configurations.

2.3 Results

A. Phase Behavior

In Fig. 2.1 we show the density profiles inside the two boxes, vs time,

obtained from a typical run in the GEMC simulations [44] at T = 0.86. For

each of the studied temperatures, we started with density ρ = 0.3, in each

of the boxes. Gradually, the density in one of the boxes increases with time,

while it decreases in the other box, if T < Tc. Finally, the densities inside

both the boxes saturate and fluctuate around the mean values, as shown

in this figure. The distribution of the densities, obtained from the profiles

in Fig. 2.1, has been presented in Fig. 2.2. The appearance of the two

peaks is expected (given that the profiles are well separated) and implies

the coexistence of vapor and liquid phases. There the locations of the peaks

correspond to the equilibrium density values of the vapor and liquid phases,

for the studied temperature.

In Fig. 2.3 we have presented the phase diagram for the model, in the

temperature vs density plane. We obtained this by plotting the equilibrium

coexistence densities of the two phases at different temperatures. Accuracy of

these results are checked by comparing with the ones obtained from umbrella
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Figure 2.1: Density profiles inside the two boxes, during a Gibbs ensem-

ble Monte Carlo run with V = 2 × 123, are plotted vs time. The results

correspond to T = 0.86.

sampling simulations in the NPT ensemble. From this figure, it is clear that

the value of the order-parameter ψ (= ρℓ − ρv, ρℓ and ρv being respectively

the liquid and vapor densities) is approaching zero with the increase of tem-

perature. In Fig. 2.3, we do not present data from temperatures very close

to critical point, since they suffer from the finite-size effects. The finite-size

effects were appropriately identified by comparing the results from different

system sizes.
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Figure 2.2: Plot of the density distribution function, P (ρ), vs ρ, for the

density profiles in Fig. 2.1.

The values of Tc and ρc can be calculated by using the equations [52]

ψ = ρℓ − ρv = A(Tc − T )
β
, (2.14)

and

ρd =
ρℓ + ρv

2
= ρc + B(Tc − T ), (2.15)

where A and B are constants. For fitting the simulation data to Eq. (2.14),

to obtain Tc, we choose β = 0.325, which, as already mentioned, is its value

for the d = 3 Ising universality class. Since LJ potential is a short-range
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one, this value is expected. For the same reason, we will adopt the Ising

value for ν, while analyzing the transport properties. This exercise provides

Tc = 0.939± 0.004. This is in good agreement with a previous estimate via

grandcanonical simulations, for the same model [55].

Estimation of ρc, on the other hand, will suffer from error, if made via

fitting to Eq. (2.15). This is because, Eq. (2.15) should contain additional

terms in powers of (Tc − T ), due to field mixing [48–50]. Accurate finite-size

scaling analyses [48,49] have been performed to extract ρc, that take care of

these singularities. In some of these previous studies [48, 55] only the term

proportional to ǫ1−α have been considered. More recently, it has been stressed

that the leading singularity [49,50] is ǫ2β and should be considered for more

accurate estimation of ρc. Here we perform finite-size scaling analysis using

this dominant contribution. For this exercise we have used data from NPT

simulations at Tc. Recall that, like L in the grandcanonical ensemble, here

N is kept fixed and we treat it as L3.

In Fig. 2.4 we show ρd (upper curve) as a function of L−2β/ν(=1.032). This

scaling form comes from the fact that ξ ∼ L at Tc. Linear extrapolation of the

data set to L = ∞ provides ρc ≃ 0.317. In this figure we have also included

the mean value of ρ (ρ̄) (see lower plot), estimated from the inverse of the

average specific volume. This also exhibits a linear behavior, extrapolation

of which leads to ρc ≃ 0.315. From these exercises we take ρc = 0.316. Given

that the behavior of data for ρ̄ is better we put more weight to the value

obtained from its convergence and we will present transport quantities at

ρ = 0.315. In Fig. 2.3, the cross mark is the location of the critical point. The

simulation data in this figure show nice consistency with the continuous line,
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Figure 2.3: Phase diagram of the 3D LJ fluid in the T − ρ plane, obtained

via the Gibbs ensemble Monte Carlo simulations. The cross mark in the

figure is the location of the critical point. The continuous line represents

the Ising critical behavior of the order parameter. The results correspond to

V = 2× 123.

which has the Ising behavior. Our estimation of ρc is reasonably consistent

with the previous [55] grandcanonical estimate (0.320). Little more than 1%

difference that exists may well be due to the fact that in this earlier work

data were not analyzed by considering the leading singularity. Nevertheless,

in view of this difference, we have calculated transport properties over a

wide range of density, viz. [0.31, 0.32]. While we will present results at our
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estimated value of ρc, outcomes from other densities will be mentioned in

appropriate place.

Figure 2.4: Demonstration of the estimation of ρc via finite-size scaling

analysis. Here we have plotted ρd (upper curve) and ρ̄ (lower curve), obtained

from NPT simulations at Tc, vs L
−2β/ν .

Note that the values of Tc and ρc were estimated previously [48, 52] for

the vapor-liquid transitions in similar LJ models. However, those studies

either used different values of rc or did not consider the term related to

force correction. The difference in the numbers between our study and these

previous ones are related to these facts. In fact, the cut-off dependence of the

critical temperature is nicely demonstrated by Trokhymchuk and Alejandre
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[56]. However, we cannot use the information from this work because of the

force correction that we use.

Before proceeding to show the results for dynamics, in Fig. 2.5 we show

the two-dimensional cross-sections of two typical equilibrium configurations

at T = 0.95 and 1.4. Structural difference between the two snapshots is

clearly visible. The one at T = 0.95 shows density fluctuations at much

larger length scale, implying critical enhancement in ξ. The values of ξ, as

well as χ, can be calculated from the density-density structure factors by

fitting the small wave-vector data to the Ornstein-Zernike form [2].

B. Dynamics

All the results for dynamics are presented from temperatures above the

critical value, by fixing ρ to ρc. In Fig. 2.6, we show the plots of ζ+
4

3
η and λ,

vs time, as obtained from the GK formulas, at T = 0.96, on a semi-log scale.

We extract the final values for these quantities from the flat regions. From

this figure it is clear that a transport quantity having higher critical exponent

settles down to a flat plateau at a later time. This states about the difficulty

of calculating a transport coefficient with strong critical divergence, like the

bulk viscosity (ζ), particularly close to Tc. The difficulty gets pronounced

with the increase of system size, consideration of which is essential to avoid

the finite-size effects in the critical vicinity. However, in our simulations we

have used relatively small system sizes and relied on the FSS theory [43] for

the estimation of the critical exponents.
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Figure 2.5: Two-dimensional slices of typical equilibrium configurations at

T = 0.95 and 1.4. The dots mark the locations of the particles.

The temperature dependence of the bulk viscosity and the thermal con-

ductivity, obtained from the plateaus of GK integrations, have been presented

in Fig. 2.7 and Fig. 2.8, respectively. The enhancement in these quantities

can be observed for both the presented system sizes, mentioned in the figure,

close to Tc, represented by the dashed lines. Weaker enhancement for the

smaller system, for both ζ and λ, signify finite-size effects.

In Fig. 2.9 we show the plot of ζ vs ǫ, using data from the larger system

size that has been used in Fig. 2.7, on a log-log scale. We observe that the

simulation data are in disagreement with the theoretically predicted solid line

(having exponent x
ζ
ν = 1.82). The reasons for the disagreement could be the

finite-size effects as well as the presence of a background contribution [57],

the latter arising from small wavelength fluctuations. We observe similar

disagreement for λ, presented in the inset of Fig. 2.9, for the same system size.

These two serious issues, viz., finite-size effects and background contributions,
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Figure 2.6: Plots ζ +
4

3
η and λ, vs t, in a semi-log scale, at T = 0.96, with

L = 30.

have to be appropriately taken care of during the estimation of the critical

exponents, along the line discussed below.

A quantity, say X , that exhibits singularity at the critical point, can be

decomposed into two parts [19, 29, 30, 57] as

X = ∆X(T ) +X
b
, (2.16)



2.3 Results 71

Figure 2.7: Plots of ζ vs T for two different system sizes. Close to the critical

point the error bars are of the order of the symbol sizes. The dashed line in

the figure is the location of the critical temperature.

where ∆X(T ) comes from the critical fluctuations and is strongly temper-

ature dependent. On the other hand, Xb, the background, is only weakly

temperature dependent and is often treated as a constant [29, 30]. This lat-

ter contribution should also be independent of the system size. The presence

of such a term, particularly in computer simulations, where one works with

finite systems, can lead to a misleading conclusion. To extract the correct

critical divergence one needs to subtract it appropriately from the total value,
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such that

∆X(T ) = X −Xb ∼ ξ
x
, (2.17)

where x is the critical exponent for X . We have estimated Xb by treating

it as an adjustable parameter in the FSS analysis that we describe below.

One might as well have aimed to obtain the background contributions from

Fig. 2.9 by looking at the behavior of the data sets far away from Tc. Even

though these plots certainly provide hint on the presence of nonzero Xb, even

a weak temperature dependence of the latter may cause significant error while

analyzing data close to Tc, if estimated from high T convergence.

As stated above, at the critical point the correlation length is restricted

by the system size, i.e., ξ ∼ L at T = Tc, so that [7]

∆X(Tc) ∼ L
x
. (2.18)

Far from Tc, the finite-size effects will be absent, i.e., the data will be indepen-

dent of L. To describe the thermodynamic limit (L≫ ξ) and finite-size limit

data by a single equation, one should introduce a bridging or FSS function

Y (y), to write

∆X(T ) ∼ Y (y)L
x
. (2.19)

In Eq. (2.19), Y (y) is independent of the system size and depends upon

the scaling variable y (= (L/ξ)1/ν ∼ ǫL1/ν), the latter being a dimensionless

quantity. In the limit y → 0, i.e., T → Tc, Y must be a constant so that Eq.

(2.18) is recovered. On the other hand, in the limit y → ∞ (ξ << L, ǫ≫ 0),
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Figure 2.8: Plots of λ vs T . Data from two different system sizes are shown.

Close to the critical point the error bars are of the order of the symbol sizes.

The dashed line marks the location of the critical temperature.

Y should exhibit a power-law decay

Y (y) ∼ y
−xν
, (2.20)

so that the data are described by Eq. (2.17). A plot of Y vs y, obtained

by taking data from different system sizes, will exhibit data collapse, for

appropriate choices of Xb, x and ν. Also, for the best data collapse, the large

y behavior of Y will be consistent with Eq. (2.20).
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Figure 2.9: Plot of ζ vs ǫ, on a log-log scale, for L = 30. The solid line

corresponds to the theoretical expectation. Inset shows the same exercise for

λ.

In Fig. 2.10, we have presented the FSS analysis result for ζ , by plotting

Y (y) vs y, using data from different system sizes, mentioned on the figure.

To show consistency with the theoretical predictions, in this analysis we have

used ζb (background contribution for ζ) as adjustable parameter and fixed ν

and xζ to their theoretical values. The presented result corresponds to best

collapse which is obtained for ζb = 0.40. Given the difficulty one encounters

in calculating bulk viscosity, even a reasonably better collapse would require

significant additional effort. In the limit y → 0, the master curve approaches
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Figure 2.10: Finite-size scaling plot for the bulk viscosity. The scaling

function Y (= ∆ζL
−x

ζ ) is plotted vs the scaling parameter y (= ǫL1/ν), on

a log-log scale, using data from different system sizes. The solid line in the

figure corresponds to the theoretical expectation.

a constant value, as expected from the construction of Y . On the other

hand, for y → ∞, the master curve is showing a power-law decay with the

exponent xζν = 1.82. Similar exercise we have performed for λ, the results

for which are presented in Fig. 2.11. Here note that, since ∆λ ∼ Tǫ−0.57, the

ordinate contains the factor T−1. In this case we have obtained best collapse

for λ
b
= 1.34.
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Figure 2.11: Finite-size scaling exercise for the thermal conductivity. Here

we show Y (= ∆λT−1L−x
λ ) vs y (= ǫL1/ν) on a log-log scale. The solid line

in the figure corresponds to the theoretical expectation.

2.4 Summary

We have studied the phase behavior and the dynamic critical phenom-

ena for vapor-liquid transition in a single component Lennard-Jones fluid in

space dimension d = 3. The phase behavior was obtained via Monte Carlo

simulations [44]. To study the dynamic critical phenomena, we performed

molecular dynamics simulations [51,52,54] in microcanonical ensemble. The

Green-Kubo relations [41] were used to calculate the transport quantities,

viz., the bulk viscosity and the thermal conductivity. We observe strong
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finite-size effects, similar to the case of liquid-liquid transitions [29,32]. Our

finite-size scaling analyses, however, show that that the simulation data are

consistent with the theoretically predicted critical divergences. In fact, to the

best of our knowledge, this is the first time the critical exponents for bulk

viscosity and thermal conductivity have been quantified for a vapor-liquid

transition.

Our results, along with the ones for the binary fluid [29,32], are compat-

ible with the expectation that the dynamic critical phenomena of the vapor-

liquid and liquid-liquid transitions belong to the same universality class, de-

fined by model H [8]. Here note that the theoretical numbers for x
ζ
for

vapor-liquid and liquid-liquid transitions are slightly different [23, 24]. This

difference is within the error bars of computation via molecular dynamics.

Despite the similar critical exponents in vapor-liquid and liquid-liquid

transitions, we have observed some differences between the two cases. Our

observation of the critical range in this work is less wide compared to that

of the liquid-liquid transition [29, 32]. We also have observed that the back-

ground contribution for the bulk viscosity is nonzero (though small), whereas

in the liquid-liquid transition it was not needed in the analysis [32]. Sim-

ilarly, for thermal conductivity the background term plays very important

role. These differences may have some connection with the symmetry of the

model in the liquid-liquid case, but further investigations will be needed to

confirm it.
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Chapter 3

Droplet growth during

vapor-liquid transition in a 2D

Lennard-Jones fluid

3.1 Introduction

When a homogeneous system is quenched inside the miscibility gap, it

falls unstable to fluctuations and moves towards the new equilibrium via the

formation and growth of particle-rich and particle-poor domains [1–5]. In

addition to being of interest from the fundamental scientific point of view,

understanding of associated phenomena has many important technological

consequences [4]. The nature of a domain pattern is quantitatively studied

via, among other quantities, the two-point equal time correlation function,
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which, in an isotropic situation, has the definition [4, 5] (r = |?r|)

C(r, t) =< ψ(?0, t)ψ(?r, t) > − < ψ(?r, t) >
2
, (3.1)

where ψ is a space (?r) and time (t) dependent order-parameter. The angular

brackets in Eq. (3.1) are related to the statistical averaging, involving space

and initial configurations. Typically, during the growth, the structures at

different times are self-similar [4, 5] (in statistical sense). As a consequence,

C(r, t) exhibits the scaling property [4, 5]

C(r, t) ≡ C̃(r/ℓ). (3.2)

In Eq. (3.2), ℓ is the average size of the domains or clusters, which usually

exhibits power-law growth with time as [1, 2, 4, 5]

ℓ ∼ t
α
. (3.3)

The exponent α depends upon the system and order-parameter dimension-

ality [4, 5], transport mechanism [4–13], order-parameter conservation [4, 5],

as well as the type of pattern [9–11, 14].

For a vapor-liquid transition, relevant nonequilibrium order-parameter

can be constructed from the local density field ρ?r(t). We define ψ(?r, t) =

ρ?r(t) − ρc, the latter being the (equilibrium) critical density. Integration of

this scalar quantity over the whole system remains constant with time. For

quenches close to ρc, say via the variation of temperature (T ), one expects

an interconnected domain structure [4, 5, 14, 15]. On the other hand, close
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to the coexistence curve, one of the phases (liquid or vapor) fails to perco-

late [9,10,14,16,17]. There has been significant recent interest in the kinetics

with such morphology [14, 16–26]. For overall density close to the vapor

branch, circular or spherical liquid droplets, depending upon the system di-

mension (d), nucleate [27–29]. Associated problems have direct relevance in

the context of cloud physics [30, 31].

The above mentioned droplets should retain their shape while growing

[14, 18, 19]. During phase separation in solid binary mixtures [4, 8], such

droplets, formed by the minority particles in an asymmetric composition,

are typically static [21] and growth in the system occurs via an evaporation-

condensation mechanism, proposed by Lifshitz and Slyozov (LS) [8]. In this

mechanism, particles from a smaller droplet get detached, to be diffusively

deposited on a larger droplet. The value of α in that case is 1/3, irrespective

of the value of d. In fluids, on the other hand, these droplets are expected

to move [9, 10, 14]. For the diffusive motion of the droplets and coalescence

following collisions, the growth law is predicted by Binder and Stauffer (BS)

[9–11]. For this mechanism, solution of the equation [11]

dn

dt
= −Bn

2
, (3.4)

n being the droplet density (∝ 1/ℓd) and B a constant, provides

α =
1

d
. (3.5)

The right side of Eq. (3.4) is related to the collision frequency. Assuming
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that the collisions are sticky, this is equated with dn/dt. For the mechanism

under discussion, B is a product of ℓ and the droplet diffusivity D, the latter

being a function of ℓ. This product can be treated as a constant, accepting

the validity of the generalized Stokes-Einstein-Sutherland relation [32, 33].

The value of B, however, may have dependence upon temperature [32, 33].

This will modify the growth amplitude, depending upon the depth of quench.

Though the growth exponent in Eq. (3.5) was predicted for the liquid-

liquid transitions, it was recently shown [14, 18, 19], from studies in d = 3,

that even for the vapor-liquid transitions this theory works, if the background

vapor density is reasonably high with long range fluctuations. But in d = 3,

the value of the exponent is same as the LS one. Thus, d = 2 provides a

better ground for the confirmation of the mechanism, since the BS value is

different in this dimension from the LS one.

In this chapter we study the kinetics of phase separation in a single com-

ponent Lennard-Jones (LJ) system, via the molecular dynamics (MD) simula-

tions [34,35] in d = 2. For a very low overall density, at temperatures reason-

ably close to the critical value, we observe nucleation and growth of circular

liquid droplets in the vapor background. Via the calculation of the mean-

squared-displacements (MSD) of the centers of mass (CM) of the droplets we

confirmed their diffusive motion. It has been shown that between collisions,

the change in the number of particles in a droplet is negligible, implying

growth via the inter-droplet collisions. Finally, the exponent α = 1/2, as

predicted by BS [9, 10], is observed. For choosing a region of interest inside

the miscibility gap, appropriate knowledge of the coexistence curve becomes

essential. This we have obtained via the Monte Carlo simulations [36].
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3.2 Model and Methods

In our model, particles i and j, at a distance r from each other, interact

via [35]

U(r) = u(r)− u(rc)− (r − rc)
du

dr

?

?

?

r=rc

, (3.6)

where u(r) is the standard LJ potential [35]

u(r) = 4ε

??

σ

r

?12

−

?

σ

r

?6?

, (3.7)

σ being the particle diameter and ε the interaction strength. The cut-off

distance rc (= 2.5σ), in Eq. (3.6), was introduced to facilitate faster com-

putation. The discontinuity in the force, thus appears, was taken care of by

the introduction of the last term in Eq. (3.6).

The phase behavior, along with the critical values for temperature (Tc)

and density, were obtained via the Gibbs ensemble Monte Carlo (GEMC)

simulation method [34,36,37]. For the kinetics, we have performed MD sim-

ulations in the canonical ensemble, using various hydrodynamics preserving

thermostats [34,38–41], the results from all of which match with each other.

For the sake of convenience, we present results only from the Nosé-Hoover

thermostat (NHT) [34] which controls the temperature better.

The GEMC simulations [34] were performed in two boxes, for each com-

bination of T and ρ, the latter being the overall density. There we have

allowed three different types of trial moves, viz., particle displacements in

and volume change of each of the boxes, as well as particle transfer from one
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box to the other, by keeping the total number (N) of the particles and total

area (V ) of the boxes fixed. We have fixed the overall density (ρ = N/V ) to

a value 0.3. This procedure, in the long time limit, leads to different constant

density profiles (with fluctuations around the mean values) for the two boxes,

one corresponding to the vapor phase and the other to the liquid phase, if

the chosen temperature is below the critical value. The phase diagram was

obtained by plotting these mean values as a function of temperature.

All the simulations for kinetics were performed in periodic square boxes

with area V = L2, L (= 2048 in units of σ) being the linear system dimension.

Other than the snapshots, the results are presented after averaging over at

least 15 independent initial configurations. Unless otherwise mentioned, for

all the simulations, we fixed ρ to 0.03 and T to 0.35ε/kB. Time in our MD

simulations was measured in units of
?

mσ2/ε, where m is the mass of the

particles. From here on, for the sake of convenience, we set m, σ, ε and kB

to unity.

For the calculation of the C(r, t), used for the verification of the self-

similarity property [5] and obtaining the values of ℓ, we have mapped the

continuum systems onto the (square) lattice ones. If the density (calculated

by considering the nearest neighbors) at a lattice point is higher than the

critical value, ψ is assigned the value +1, otherwise −1. We have obtained

the values of ℓ from

C(ℓ, t) = 0.25, (3.8)

as well as from the first moment of the domain size distribution function,
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P (ℓd, t) [15], as

ℓ =

?

ℓd P (ℓd, t) dℓd, (3.9)

where ℓd is the distance between two successive interfaces along any direction.

Results from the two methods are proportional to each other. Except for Fig.

3.4, we have used ℓ from Eq. (3.9).

3.3 Results

In Fig. 3.1 we show the coexistence curve, in T vs ρ plane, for the model

system. The circles are from the GEMC simulations [34, 37]. The values of

Tc and ρc were estimated via appropriate analyses of the simulation data, by

using the facts (A and A
′
are constants)

ρℓ − ρv = A(Tc − T )
β
, (3.10)

and

ρℓ + ρv

2
= ρc + A

′
(Tc − T ), (3.11)

where ρℓ and ρv are the densities along the (higher density) liquid and the

(lower density) vapor branches of the coexistence curve, respectively. In the

fitting exercises (using the above equations) we have set β to 1/8, the d = 2

Ising critical exponent for the order parameter. Given the short range of the

LJ interaction, it is expected that our model will belong to the Ising critical

universality. This exercise provides Tc = 0.415±0.005 and ρc = 0.350±0.005,
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represented by the cross. The continuous line in Fig. 3.1 represents the Ising

critical behavior, with which the simulation data are in nice agreement.

Figure 3.1: Vapor-liquid coexistence curve for the considered two-

dimensional (2D) Lennard-Jones fluid, in temperature vs density plane. The

circles are from the Gibbs ensemble Monte Carlo simulations and the con-

tinuous curve is obtained by fitting the simulation data to the theoretical

form corresponding to the criticality in the 2D Ising model. The cross mark

is the location of the critical point. For the simulation results we have used

V = 1250.

Fig. 3.2 shows the evolution snapshots following the quench of a high

temperature homogeneous system, with ρ = 0.03, to T = 0.35. Here note

that, because of the very low overall density, nucleation of stable droplets [27,

28] requires fluctuations over long distances. Such fluctuations are, however,

rare. Thus, the onset of phase separation gets delayed. This fact can be
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appreciated from the first snapshot that contains clusters of very small sizes,

despite the value of t being quite large. Following nucleation, rather fast

growth of the disconnected clusters is clearly visible.

The presence of the circular symmetry, as seen in Fig. 3.2, in the structure

of the clusters is related to the minimization of the interfacial free energy.

The minor fluctuations that are noticeable in the boundary regions of these

droplets are due to the proximity to the critical point that provides low

surface tension and large equilibrium correlation length [2, 42].

In Fig. 3.3 we present a few evolution snapshots for a high overall density,

viz., ρ = 0.35, the value of T remaining the same as in Fig. 3.2. The pattern

in this case is contrastingly different from that in Fig. 3.2; the high density

quench provides an elongated, interconnected morphology [4, 5, 14, 15]. The

mechanisms of growth in the two cases are also expected to be different [9–13].

However, in the rest of the chapter we will focus only on the off-critical

quench.

First, to check for the self-similar property [5] of the structures at different

times, in Fig. 3.4 we show the scaling plot of the two-point equal time

correlation function. Nice collapse of data from different times, when plotted

vs the scaled distance r/ℓ, confirms that the patterns at different times differ

from each other only by a change in length scale. Here we mention, for

the bicontinuous structure (that we observed for ρ = 0.35), the correlation

function exhibits prominent oscillation, albeit damped, around zero. This

has connection with the fact that the integration of the C(r, t) over space is

related to the total system order-parameter [4,5], the latter being zero (in the

language of ψ) for ρ close to ρc. Observation of only a very shallow minimum
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Figure 3.2: Snapshots during the evolution of the LJ fluid, having been

quenched from a high temperature homogeneous state, with overall density

ρ = 0.03, to a temperature T = 0.35, inside the coexistence curve. The

dots mark the location of the particles. Though the results are obtained for

L = 2048, we have shown only small parts (400×400) of the original system.

in the present case is due to the fact that, for ρ << ρc, the composition with

respect to negative and positive values of ψ is highly asymmetric.

To understand the mechanism of growth, next we calculate the MSD [32]

of the CMs of the droplets as

MSD =

??

?RCM(t
′
)− ?RCM(0)

?2?

, (3.12)
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Figure 3.3: Same as Fig. 3.2 but for overall density ρ = 0.35. These results

correspond to L = 512, unlike all the other results related to kinetics with

NHT. Little higher density of the vapor phase that appears here, compared

to that in Fig. 3.2, is because of the fact that in Fig. 3.2 we presented

400× 400 cuts (from a larger system).

where ?RCM(t
′
) is the location of a cluster CM at time t

′
. For this purpose,

the droplets were appropriately identified by using the connectivity of regions

with the positive values of ψ. The MSD for a typical CM is presented in the

main frame of Fig. 3.5, as a function of time, on a log-log scale. Here t′ is

not the simulation time, it is measured from the moment a probe starts.

As mentioned above, the growth of the droplets during kinetics of phase



3.3 Results 94

Figure 3.4: Scaling plot of the two-point equal time correlation function.

Here we have plotted C(r, t) as a function of the scaled distance r/ℓ, using

data from three different times.

separation in solid binary mixtures occurs via the diffusion of particles from

smaller droplets to larger ones, the CMs of the droplets remaining essentially

fixed. However, as expected [9, 10, 14], Fig. 3.5 shows that the droplets can

move in fluids. At early time, say upto t′ = 100, the data are reasonably

proportional to t′2, implying ballistic motion [32]. After this time, the data

gradually turn over to a linear behavior, that corresponds to diffusive motion

[32]. Such a diffusive motion can be appreciated from the inset of this figure

where we show a trajectory of the droplet under consideration.
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Figure 3.5: Mean-squared-displacement (MSD) for the center of mass of

a typical liquid droplet is plotted vs time, on a log-log scale. The power-

law regimes, parallel to t′2 and t′, correspond, respectively, to ballistic and

diffusive motions. The inset shows the trajectory of the center of mass of the

droplet over a period of time.

The mobility of the droplets will allow them to collide with each other.

We have checked that such collisions are sticky in nature. Given that the

droplets are in the liquid phase, mobility of the constituent particles, with

respect to the CMs, is rather high. This fact allows a noncircular cluster,

that has formed after a collision between two droplets, to gain circular shape,

that is required to minimize the interfacial free energy, before it undergoes a

collision. This explains the structural self-similarity, thus the scaling property

of C(r, t).
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Figure 3.6: Plots of the numbers of particles in a few droplets, with the

variation of time, the later being calculated from the beginning of the probes.

During this period the droplets do not undergo collisions with any other

droplet.

Despite growth via the diffusive motion of the droplets and sticky colli-

sions among them, contribution to the growth due to the LS mechanism [8],

i.e., via evaporation of particles from a smaller droplet and their condensa-

tion on a bigger one, is still possible. To check for that, in Fig. 3.6 we show

the numbers of particles in a few droplets, over the time scale of typical col-

lision interval. These plots convey the massage that the sizes of the droplets

do not change between collisions. Thus, the growth essentially occurs via

the diffusive droplet coalescence mechanism [9–11]. In that case, we expect

a power-law growth with α = 0.5.
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Figure 3.7: The average radius of the liquid droplets is plotted as a function

of time, on a log-log scale. The solid line represents a power-law growth with

exponent 0.5.

In Fig. 3.7 we show ℓ as a function of t, on a log-log scale. The late

time data appear quite straight, implying power-law. The solid line there

represents the BS growth-law with which the simulation data are very much

consistent. Slightly faster trend in the simulation data, during an inter-

mediate time regime, can be explained in the following way. Given that a

perfect linear behavior in the MSD of cluster CMs appears at a rather late

time, many collisions, particularly during the above mentioned regime, occur

while the participating droplets are moving ballistically. This brings a shorter

time scale in the problem during which the collision partners might not have
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Figure 3.8: Same as Fig. 3.7, but the data set was obtained via the appli-

cation of Andersen thermostat in our MD simulations. Unlike the previous

results for kinetics (all of which were obtained using NHT), these results are

presented after averaging over five independent initial configurations with

L = 512.

gained a proper circular shape, from which they departed during the previous

collisions. Presence of such non-circular shape or fractality (see the snapshot

at t = 2.5×10
4
) during ballistic aggregation can enhance the growth rate [43].

On the other hand, the slower growth at very early time can be attributed to

the LS mechanism [8]. During this period, the (unequilibrated) vapor phase

density is rather high, leading to slow movement of the droplets. In that case

growth can be dominated by evaporation-condensation mechanism, which is
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also favored by rather low average distance between neighboring droplets.

Nevertheless, we caution, the data from this early period should not be in-

terpreted too seriously, for the reason stated above, i.e., the density inside

the clusters is still changing, altering the value of ℓ even if the number of

particles inside the droplets remain same. Such a time scale will be longer as

one quenches the systems to temperatures closer to the critical value. This

is due to the divergences of the correlation length and the relaxation time

over that equilibrium length scale [2, 36, 42]. On the other hand, choice of

temperature far below Tc does not allow us to study the kinetics of vapor-

liquid transition, due to crystallization [43]. In the latter situation, the above

mentioned fractality of the clusters become very prominent and growth may

occur via the ballistic aggregation mechanism for the entire period due to

very low density of the vapor phase [43]. In this case the self-similarity is

also violated.

Finally, in Fig. 3.8 we show a plot of ℓ vs t from MD simulations using the

Andersen thermostat (AT) [34]. The AT being a stochastic thermostat, it

does not preserve hydrodynamics [32]. We have checked that for this method

the droplets remain static. Thus, the only possibility of growth is via the LS

mechanism. The consistency of the data set with the t1/3 behavior, at late

time, confirms this fact, alongside making sure that the BS mechanism is an

hydrodynamic effect.
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3.4 Summary

We have presented results related to the phase behavior and kinetics for

the vapor-liquid transition in a two-dimensional Lennard-Jones model. While

the phase diagram was obtained via the Monte Carlo simulations [36,37], for

the kinetics we have performed molecular dynamics (MD) simulations [34]

with hydrodynamics preserving thermostats. Even though MD simulations in

the microcanonical ensemble preserves hydrodynamics perfectly, simulations

in the canonical ensemble become essential to study the kinetics of phase

separation, particularly for the transitions driven by temperature. This is

due to the fact that with the increase of domain size, as the potential energy

of the system decreases, simulations in the microcanonical set up will provide

continuous increase in the kinetic energy, since the total energy is conserved

in this ensemble [34, 36]. Thus, eventually the system temperature will go

above the critical value, discarding the objective.

We have pointed out the structural difference between the high and the

low density quenches. For the low density quench we have demonstrated

the structural self-similarity, identified the growth mechanism and quantified

the power-law growth exponent. We have shown that the growth essentially

occurs due to the diffusive motion of the droplets and sticky collisions among

them. The identified growth exponent matches well with the value predicted

by Binder and Stauffer [9–11], for such a mechanism.

For the low temperature quenches with similar density we observe inter-

esting disconnected fractal clusters, growth of which violate the “standard”

self-similarity property discussed above [43]. Growth in this case occurs via
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the ballistic aggregation mechanism, that provides an exponent much higher

than the BS value [43].
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Chapter 4

Cluster growth during

vapor-solid transition in a 2D

Lennard-Jones system

4.1 Introduction

Universality in dynamics of phase transitions is not as robust as statics [1].

E.g. each of solid-solid [2–8], fluid-fluid [3, 5, 9–25] and solid-fluid [23, 26, 27]

transitions may have different relaxation mechanism. In kinetics, the average

size (ℓ) of domains, rich in one or the other type of particles, grows with time

(t) as [3] ∼ tα. Growth in solid mixtures [6] occurs via particle diffusion,

providing α = 1/3. In fluids [1, 3], hydrodynamics is important and the

related mechanism depends upon the region of quench inside the miscibility

gap [3,9–15,17–21]. For disconnected spherical clusters, close to a coexistence

curve, the fluid-fluid phase separations proceed via the cluster diffusion and

106
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coalescence mechanism [9–11], for which α = 1/d in space dimension d. In

the fluid-solid case, interplay between hydrodynamic and particle-diffusion

mechanisms can provide new picture. Despite diverse relevance [26–31], other

than condensed matter physics, understanding in this variety remains poor,

due to difficulties with the identification of phases and slow nucleation.

Despite weak universality, self-similarity [3, 9] is a robust phenomenon

exhibited by structures during phase transitions. E.g. the above men-

tioned spherical clusters retain their shape at all times. As a consequence, in

usual scenario, the two-point equal-time correlation function [3] C(r = |?r|, t)

(=< ψ(?0, t)ψ(?r, t) > − < ψ(?r, t) >2, ψ being a time and space (?r) depen-

dent order-parameter), obeys the scaling property [3, 9] C(r, t) ≡ C(r/ℓ(t)),

meaning, structures at two times differ only by size. Though found to

hold [7–9, 18, 19, 21, 32] in diverse situations, validity of this scaling remains

unknown for the fluid-solid case. A crucial general question in this context

is related to the consequence on growth if this “simple” scaling is absent.

Here we study vapor-solid transitions in a Lennard-Jones (LJ) model via

hydrodynamics preserving molecular dynamics (MD) simulations. While the

results are expected to have general validity, here we focus on d = 2, relevant

in contexts like active matter [33, 34] and bio-membranes [26]. Strikingly,

for quenches with low overall density, the above scaling property in C(r, t)

is absent due to the formation of disconnected fractal solid domains, which,

in turn, have significant influence on the kinetics. The fractal structure

forms due to the existence of two well-separated time scales in the problem

that do not allow the interfacial energy to minimize. One time scale comes

from the slow particle mobility inside the rigid solid clusters and the other
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from the fast ballistic-like transport of the clusters through the low density

vapor phase. Sticky collisions among such ballistically moving fractal objects,

having strong experimental relevance in the contexts of clustering in a cosmic

soup [28–31, 35] and various aerosols (including growth of ice crystals in

clouds [36]), lead to a new growth picture that has been understood via a

nonequilibrium kinetic theory [28, 31, 37].

4.2 Model and Methods

For the kinetics, we perform MD simulations using a model [8, 18, 38]

where particles, at r distance apart, interact via U(r) = u(r)− u(rc) − (r −

rc)(du/dr)r=rc, u(r) being the standard LJ form [38] u(r) = 4ε[(σ/r)12 −

(σ/r)6)]. Here, ε has the dimension of energy, σ is the interatomic diame-

ter, and rc (= 2.5σ) is a cut-off distance. In d = 2, the vapor-liquid phase

diagram for this model was estimated by us via the Monte Carlo [39] sim-

ulations in a Gibbs ensemble, the critical values of T and number density

(ρ) being respectively Tc = (0.415 ± 0.005)ǫ/kB and ρc = 0.350 ± 0.005, kB

being the Boltzmann constant. Fixing ρ to 0.03, we explore very low T ,

to access the vapor-solid coexistence with disconnected morphology. Unless

otherwise mentioned, our results are for T = 0.25ǫ/kB. The MD simula-

tions were performed in canonical ensemble, with the Lowe-Andersen [40],

dissipative particle dynamics [41] and the Nosé-Hoover thermostats [42, 43]

(NHT), which preserve hydrodynamics. We, however, have presented results

only from the NHT that appears to us a better temperature controller. We

note that, even though the thermodynamic properties are independent of
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the choice of a thermostat, the kinetics is very sensitive to it. To study ki-

netics in connection with fluids, conservation of local momentum and other

hydrodynamic properties is necessary, which is not possible with stochastic

thermostats. All our simulations were performed in periodic square boxes

of linear dimension L = 2048σ. The quantitative results are presented after

averaging over a minimum of 10 initial configurations. The time in our MD

simulations was measured in units of (mσ2/ε)1/2, m being the the mass of a

particle. For all presentation purposes we set m, σ and ε to unity. For the

calculation of C(r) we have mapped our system [18,19,21] onto a binary one

by assigning the values ±1 to ψ depending upon whether the local density

is higher or lower than the critical value.

4.3 Results

Figure 4.1 shows three evolution snapshots. Following nucleation, at initial

stage the circular clusters are in liquid phase. These liquid drops grow due to

the deposition of individual particles on them as well as via the mechanism

consisting of droplet diffusion and coalescence [9]. Gradually, crystallization

inside the droplets occurs and density in the vapor regions saturates to a

very low value. The solid clusters move rapidly through the low density

background phase, to provide fast ballistic-like aggregation that leads to

the fractal structure, as seen in the later time snapshots. We will provide

details in support of this latter mechanism. With a stochastic (Andersen)

thermostat [43] we obtain circular pattern at all times. This already states

that the fractality is a result of hydrodynamics.
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Figure 4.1: Snapshots during the evolution of the Lennard-Jones system,

having been quenched from a high temperature homogeneous state to the

state point (ρ = 0.03, T = 0.25) inside (and close to the vapor branch of) the

coexistence curve. Only 400×400 parts of the original systems (L = 2048) are

shown from three different times. Because of this reason, the last snapshot

appears like an interconnected structure in spinodal decomposition.

In Fig. 4.2 we show the ℓ vs t plot. This quantity was calculated

via a standard method [8, 18, 19, 21] followed in phase ordering dynamics

(see caption). In fluid-fluid phase separation, for disconnected droplet mor-

phology and growth via droplet-diffusion and coalescence mechanism, one

writes [9–11]

dn

dt
= −Bn

2
, (4.1)

where B (= Dℓ, D being a diffusivity) is a positive constant, decided by

the Stokes-Einstein-Sutherland relation [44], and n is the droplet density.

Solution of equation (4.1), taking n ∝ 1/ℓd, provides α = 1/d. But the late

time data appear consistent with α = 1/3 which points towards the particle-

diffusion mechanism in solid mixtures [1–6]. However, as seen in Fig. 4.3,

the number of particles in a droplet, before it undergoes a collision, remains
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Figure 4.2: Average domain size, ℓ(t), obtained from the the length distri-

bution P (ℓd, t) as ℓ(t) =
?

P (ℓd, t) ℓd dℓd, a standard method [8, 18, 19, 21]

followed in phase ordering dynamics, ℓd being the distance between two suc-

cessive interfaces along any direction, is plotted vs t, on log-log scale. The

solid line corresponds to t
1/3

behavior.

constant. Thus, the growth occurs via collisions. The consistency of the data

with α = 1/3 is thus accidental. In fact a closer look suggests continuous

bending in the data set.

As seen in Fig. 4.4, there exists severe lack of scaling [45] in the C(r, t)

which may in general be due to a disproportionate growth in the structure.

E.g. in a fractal morphology the branches may have a different widening rate

compared to the rate of increase in the overall length [46]. In the present
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Figure 4.3: Plots of number of particles, Np, vs translated time, for three

different droplets.

case this can be due to two time scales, coming from different transport

mechanisms. While the overall growth occurs due to motion of the clusters

and collisions among them, the structural change of the clusters, following

the collisions, is related to the dynamics of the constituent particles. The

mobility of these particles, in their cluster reference frame, can be low, de-

pending upon the phase of the clusters which will be addressed later. In

such cases, scaling property of C(r, t) involves the fractal dimensionality and

extraction of a characteristic length via the standard procedure (mentioned

above - see caption of Fig. 4.2) is not meaningful. An alternative is to look

for the growth of the average mass (M), appropriate [47] for non-percolating
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Figure 4.4: Two point equal time correlation functions from three different

times are plotted vs r/ℓ.

structures as in the present case, and connect it to the average radius of

gyration [34, 48] (Rg). The latter is the true characteristic length scale, and

is different from ℓ for the present problem.

In Fig. 4.5 we present a plot ofM vs Rg. This shows a power-law behavior

M ∼ R
df
g . (4.2)

The data appear consistent with df = 1.6, the fractal or mass dimensional-

ity [48] of the structure. The dimensionality is low, even compared to the
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Figure 4.5: Log-log plot of average (time dependent) cluster mass (M) vs the

average radius of gyration (Rg). The solid line is a power-law with exponent

df = 1.6.

structures formed in diffusion limited aggregation [49]. This we will explain

later. To apply equation (4.1), we need to know about the nature of mo-

tion of these fractal objects. Note that despite the dominant mechanism

being collision, if the droplet motion is not diffusive and the structure is not

circular, B need not be a constant. In Fig. 4.6, we show the mean-squared-

displacement (MSD) [44] (= ?| ?RCM(t)− ?RCM(0)|2?) for the center of mass

(CM) of a cluster (?RCM being the position vector for the CM), vs time.

The robust t
2
behavior over long time confirms that the motion is practically
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Figure 4.6: Mean-squared-displacement of a typical cluster is plotted, on a

log-log scale, vs t. The t2 line corresponds to ballistic motion.

ballistic. Such a transport is due to the low viscosity of the vapor phase and

can be understood from the perspective of hydrodynamic theory [44] with

the following input. Given that the density is uniform in the vapor phase

and Reynolds number is very high, the terms related to pressure gradient,

diffusion and advection will be absent in the Navier-Stokes equation. These

ballistically moving clusters grow due to sticky collisions among them, be-

cause of strong attraction among particles in the peripheral regions of the

colliding clusters. In a stochastic thermostat, in every step, the particles are
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provided with random velocities. This will prevent coherency in particle mo-

tion, necessary in getting such ballistic cluster motion. In that case cluster

growth will occur via evaporation-condensation mechanism of Lifshitz and

Slyozov [2, 3], applicable for kinetics of phase separation in solid mixtures.

The findings from Figs. 4.5 and 4.6 necessitate the call for the theory of

Figure 4.7: Root-mean-squared velocity, vrms, of the clusters is plotted, on

log-log scale, vs M . The solid line has a power-law decay with exponent 1/2.

ballistic aggregation, having the equation [28, 37]

dn

dt
= −“collision-cross-section” × < v

rel
> × n

2
. (4.3)
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A continuum hydrodynamic theory is not needed for the understanding, since

the events of interest are collisions among clusters with large average distance

of separation. This is different from the case of high T quenches close to the

critical density, for which one obtains percolating liquid-domain morphology,

requiring a continuum hydrodynamic description with the above mentioned

terms in the Navier-Stokes equation.

The current problem has some similarity [28, 35] with the clustering in a

system of sticky hard spheres (SHS). The difference between the SHS case

[28,35] and the problem addressed in this chapter is that the former is not a

phase transition, particles there are non-interacting, surface tension is absent

and fractality is naturally expected due to sticky collisions. Nevertheless,

in the case of SHS, fractality of the structure was not considered, neither

in theory nor in simulation, which we explicitly include here. Thus, the

current study, even though designed for phase transitions, provides better

description of experimentally observed clustering phenomena in diverse fields

quite naturally.

In d = 2, the “collision-cross-section” is a “length”, equaling Rg. For

uncorrelated motion of the droplets [28], the mean relative velocity, < v
rel
>,

of the clusters should be the root-mean-squared velocity, vrms, which, as seen

in Fig. 4.7, varies with M as

vrms ∼ M
−1/2

, (4.4)

expected for Maxwellian distribution of kinetic energy, validity of which is

separately checked. Incorporating these facts in equation (4.3), along with
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Figure 4.8: Log-log plot ofM vs t. The solid line corresponds to a power-law

growth with the exponent 1.15. This number is stable against system sizes.

n ∝ 1/M , we obtain

dM

dt
∼ M

2−df

2d
f , (4.5)

providing

M ∼ t
β
0 ; β

0
=

2df

3df − 2
. (4.6)

The value of the exponent β
0
for df = 1.6 is approximately 1.143. In Fig. 4.8

we show a plot ofM , vs t. In the long time regime, the data exhibit a power-

law behavior. The exponent is very much consistent with the predicted value.
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This implies

Rg ∼ t
0.72
, (4.7)

the exponent being rather high for a 2D phase separation. Given the clean

nature of the data we do not aim for a finite-size scaling analysis [20,39,50].

In Fig. 4.9 we show the growth exponent β
0
vs temperature. These are in

nice agreement with the values obtained from Eq. (4.6). Note that with the

change of T , the rigidity of the cluster changes, providing different values of

df .

Figure 4.9: Plot of the exponent β
0
as a function of temperature.
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On the question of another (slower) time scale being the origin of frac-

tality, we intend to show the existence of a rigid crystalline order. In Fig.

4.10(a) we show the snapshot of a part of a cluster and in Fig. 4.10(b)

the corresponding structure factor [44], S(k), vs the wave number k. These

clearly confirm the presence of a crystalline order. Nevertheless, because of

only quasi-long-range order [51] (in d = 2) in a soft background and the

possibility that frequent particle exchanges between the solid and the vapor

phases can take place in the interfacial regions, one should examine the rigid-

ity to validate the solid state transport properties. In Fig. 4.10(c), we show

trajectories of three particles, belonging to the same cluster, with respect to

the cluster CM. All the scalar distances remain constant. The circular shape

of the trajectories confirm rotation of the cluster. Such rotations make the

collisions more probable in the peripheral regions, perpendicular to the ma-

jor cluster-axes. This explains the very low value for the fractal dimension.

In Fig. 4.10(d), we show the x-component of the intermediate trajectory, vs

time. It appears, the typical time period of rotations is comparable to the

time scale of the collisions. This also confirms the rigidity of the clusters

over a long time. Thus, the origin of the fractal domain structure lies in

the rigid crystalline order. The constituent particles of a non-circular cluster

cannot rearrange themselves to provide the latter a circular shape before it

undergoes a collision.
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Figure 4.10: (a) Snapshot of a part of a cluster at t = 10
5
. (b) The structure

factor S(k) (=<
?

N

i=1,j=1
exp(i?k · ?r) > /N ; ?r = ?ri − ?rj , N being the number

of particles in the considered cluster), for the snapshot in (a), is plotted vs

the wave number k. (c) Relative positions of three particles with respect to

the center of mass of a cluster to which these particles belong. (d) Plot of

x-component for the intermediate circle in (c), vs translated time.

4.4 Summary

In conclusion, for overall density close to the vapor branch, the vapor-

solid transition proceeds unusually fast, via the ballistic aggregation mech-

anism [28]. In kinetics of phase transition, two mechanisms are known for
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disconnected cluster growth, viz., Lifshitz-Slyozov particle diffusion mecha-

nism and Binder-Stauffer droplet diffusion and coalescence mechanism. In

this work we have demonstrated that ballistic aggregation is another mech-

anism if the background density is very low. The standard self-similarity,

usually observed in phase transitions, is violated during the growth process,

due to the formation of filament-like fractal pattern. Invoking the fractality,

along with the mass dependence of the mean relative velocity of the clusters,

in a general formalism [28], we have obtained the growth law, exponent of

which depends strongly upon fractality, thus the temperature, as observed in

simulations. The identified mechanism has similarity with that for the for-

mation of clusters in cosmic dust [28] and in coarsening in active matters [34]

where the particles in a domain move coherently, in addition to other con-

densed matter systems. The fractality observed by us is common in many

physical situations, where solid clusters are of varying shapes, e.g. needles,

dendrite, etc. [36], with dimensionality much smaller than that of the system.

Thus our results are relevant for true physical phenomena, e.g. growth of ice

crystals in cloud via collisions [36].
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[42] S. Nosé, J. Chem. Phys. 81, 511 (1984).

[43] D. Frenkel and B. Smit, Understanding Molecular Simulations: From

Algorithm to Applications, Academic Press, San Diego, 2002.

[44] J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic

Press, London, 2008.

[45] S.K. Das, S. Puri and M.C. Cross, Phys. Rev. E 64, 46206 (2001).

[46] R.L. Jack, M.F. Hagan and D. Chandler, Phys. Rev. E 76, 021119

(2007).

[47] S. Paul and S.K. Das, EPL 108, 66001 (2014).

[48] T. Vicsek, M. Shlesinger and Matsnshita (eds.) Fractals in Natureal

Sciences, World Scientific, Singapore, 1994.

[49] T.A. Witten Jr. and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

[50] M.E. Fisher and Michael N. Barber, Phys. Rev. Lett. 28 1516 (1972).

[51] N. Goldenfeld, Lectures on Phase Transitions and the Renormalization

Group, Addison-Wesley, 1992.



Chapter 5

Aging in ferromagnetic

ordering: Full decay and

finite-size scaling of

autocorrelation

5.1 Introduction

Understanding of the decay of two-time (t, tw; t > tw) correlations

C(t, tw) = ?ψ(?r, t)ψ(?r, tw)? − ?ψ(?r, t)??ψ(?r, tw)?, (5.1)

ψ being a space (?r) and time dependent field, is crucial in the study of

equilibrium and nonequilibrium dynamics [1]. In equilibrium, this exhibits

127
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time translation invariance, i.e., results do not change due to the displace-

ment t − tw. But in nonequilibrium situations [2–4], the above invariance

breaks down. E.g., in kinetics of phase transitions, with a growing length ℓ,

as the system approaches the new equilibrium, i.e., with increasing age tw,

often referred to as the waiting time, the decay of the order-parameter au-

tocorrelation becomes slower [4]. Such aging phenomena is an active area of

research [5–16], with systems of interest ranging from biology to cosmology.

In many nonequilibrium problems with growing ℓ, there exists scaling of

C(t, tw) as [4, 5, 17–20]

C(t, tw) ∼ x
−λ

ag

; x = ℓ/ℓw, (5.2)

in the limit x → ∞, where ℓ and ℓw are the characteristic lengths at t and

tw. However, agreements between analytical theories, computer simulations

and experiments are poor for the values of the exponent λ
ag

. The scaling

form for arbitrary x, of course, is a more general question to ask, answer to

which is unsatisfactory. This holds true even for the simplests of the model

systems.

In this chapter, we address the issue of aging following quench of a system

from para- to ferromagnetic phase, in space dimensions d = 2 and 3. For

such a transition, the bounds

d

2
≤ λ

ag

≤ d, (5.3)

provided by Fisher and Huse (FH) [18], justifiable (including the expectation
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for a power law) [19] from the average order-parameter values at times tw and

t within a region of the system, work well. There also exist [19] analytical

calculations that predict the values of λ
ag

in various dimensions. Due to the

lack of knowledge about the small x behavior of C(t, tw) and finite-size effects

in computer simulations, these numbers are not appropriately confirmed. In

this work, we obtain a full form of the autocorrelation function, empirically.

Via finite-size scaling analysis [21, 22], using this full form, we estimated

λ
ag

rather accurately, for a Ginzburg-Landau model in d = 2 and 3, which

is necessary to understand the behavior of autoresponse function as well.

Further, our study provides useful information on the finite-size effects. The

method used here to obtain the full form using the numerical data is unique.

This full form facilitated the application of finite-size scaling. Due to the lack

of a “workable” full form of the autocorrelation function, finite-size scaling

study of the aging problem was never done before.

5.2 Models and Methods

At the atomistic level, one typically considers the nearest neighbor Ising

model [2, 22]

H = −J

?

<ij>

SiSj; Si = ±1; J > 0, (5.4)

where Si = +1(−1) corresponds to an up (down) spin on regular lattice, at

a site i. This spin variable is equivalent to the order parameter ψ. Following

quench from a high temperature (T ) random phase to a temperature below
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the critical value Tc, one studies aging, related to the evolution of domains,

rich in up or down spins, via spin-flip Glauber (used for nonconserved order-

parameter dynamics) Monte Carlo (MC) simulations [22].

In this chapter we, however, have presented results from a macroscopic

model, which is the coarse-grained version of the nonconserved Ising model,

known as time-dependent Ginzburg-Landau (TDGL) equation [4]

∂ψ(?r, t)

∂t
= −

δF [ψ(?r, t)]

δψ(?r, t)
, (5.5)

where F is the standard Ginzburg-Landau (GL) free energy functional, given

by

F

kBT
=

?

d?r

?

−
1

2

?

Tc

T
− 1

?

ψ
2
+

1

12

?

Tc

T

?3

ψ
4
+
Tc

2qT
a
2
(?∇ψ)

2

?

, (5.6)

with kB, a and q being respectively the Boltzmann constant, the lattice

constant and coordination number. The TDGL equation is solved via the

standard Euler discretization technique [4]. Since no noise term is present

in Eq. (5.5), this belongs to the mean field variety and thus Tc = qJ/kB.

Typically, one uses a scaled version of the free energy where ψ is normalized

by the equilibrium temperature dependent order parameter. Thermal noise

being in-built in the MC simulations of the Ising model, this study provides

us with a comparison of dynamics in the mean field and the “exact” mod-

els. Note that we will only state the Ising model results here, instead of

presenting.
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All simulations were performed at T = 0.6Tc. Periodic boundary condi-

tions were applied in all the directions. The average domain size was calcu-

lated from the probability distribution function P (ℓk, t) as [23]

ℓ(t) =

?

dℓk ℓk P (ℓk, t), (5.7)

ℓk being obtained as the distance between two successive interfaces in any

direction, in units of lattice constant. For the TDGL equation, as we observe,

even though the order-parameter varies continuously between −1 and 1, we

have used hard-spin configurations for this and other calculations. Note that

in principle the order-parameter can take any value between +∞ and −∞.

Time was calculated in a suitable dimensionless unit and for the solutions

of these equations, we have used the space and time discretizations ∆x = 1

and ∆t ≤ 0.025, respectively. All presented observables were averaged over

multiple independent initial configurations, for smallest systems the numbers

being 200 in d = 2 and 100 in d = 3; while for the largest systems the numbers

are 80 and 40.

5.3 Results

In Fig. 5.1 we show evolution snapshots from four different times, in d = 2,

where the orange dots represent ψ > 0. The growth observed in Fig. 5.1 is

quantitatively demonstrated in Fig. 5.2 where we show a log-log plot of ℓ(t)

vs t. Here note that for nonconserved scalar order parameter, ℓ(t) ∼ t1/2,

driven by interface curvature. The discrepancy of the simulation data, from
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the continuous line, representing t1/2, particularly at early time, is due to the

presence of a nonzero initial length ℓ0, such that [23]

ℓ(t) = ℓ0 + Aℓt
1/2
. (5.8)

In fact, a value of ℓ0 of the order of only a few lattice constants can provide

a misleading look on a double-log plot, for orders of magnitude in time. For

the form in Eq. (5.8), the instantaneous exponent [24], αi = d ln ℓ/d ln t, has

the behavior [23, 25]

αi =
1

2

?

1−
ℓ0

ℓ

?

. (5.9)

Thus, if one obtains a linear behavior for αi, as a function of 1/ℓ, with slope

and intercept respectively equaling −ℓ0/2 and 1/2 , the growth exponent

is 1/2 starting from the very initial time. This is depicted in the inset of

Fig. 5.2, from where the value of ℓ0 turns out to be ≃ 2.6 which is a very

reasonable number for a random initial configuration.

Results for C(t, tw) are presented in Fig. 5.3, as a function of ℓ/ℓw,

for different values of tw, with L = 1024. In Fig. 5.3, a nice collapse of

data from all values of tw demonstrate that scaling is obtained from rather

early time. Deviation from this scaling at late times is due to the finite-

size effects. Interestingly, the decay becomes faster at the finite-size affected

region. The solid line in Fig. 5.3 corresponds to a power-law decay with

λ
ag

= 1.29. This value for λ
ag

was predicted by Liu and Mazenko (LM) [19]

who, using a Gaussian auxiliary field ansatz, in the limit t≫ tw, constructed
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Figure 5.1: Evolution snapshots from TDGL equation simulations in d = 2

with L = 1024. Pictures from four different times are shown where the

orange dots mark the locations of up spins.

the dynamical equation

∂C(?R, t, tw)

∂t
= ∇2C(?R, t, tw) +

K

t
C(?R, t, tw), (5.10)

where C(?R, t, tw) is a more general two-time correlation function involving

two points separated by ?R in space, thus, C(t, tw) = C(0, t, tw). In Eq. (5.10),

K = π/8µ, µ being a d-dependent constant ≃ 1.1042 and 0.5917 in d = 2 and
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3, respectively [26]. In the asymptotic limit, from the solution of Eq. (5.10),

LM obtained [19] C(t, tw) ∼ ℓ(t)
−(d−π/4µ), which provides λ

ag

= 1.2887 and

1.6726 in d = 2 and 3. These numbers certainly obey the FH bounds. In Fig.

5.3, a power-law fit to the region unaffected by finite system size provides

a value much lower than 1.29. Nevertheless, the data appear to converge

towards the exponent 1.29, from the lower-side. In such a situation, it is

instructive to calculate the instantaneous exponent [18, 19, 24]

λ
ag

i
=
d ln[1/C(t, tw)]

d ln x
. (5.11)

Results for λ
ag

i , with L = 1024 and tw = 100, are presented in Fig. 5.4, as

a function of ℓw/ℓ. Here we avoided data for very small x, related to decay

to domain magnetization, and in region affected by finite system size. The

presented data look quite linear

λ
ag

i = λ
ag

−
Ac

x
, (5.12)

which, however, does not have the same consequence as that in Eq. (5.9).

Using Eqs. (5.11) and (5.12), one obtains a full scaling function as

C(t, tw) = Bx
−λ

ag

exp(−Ac/x), (5.13)

which, for x → ∞, converges to the scaling form (5.2). By fixing C(t, tw)

to 1 at x = 1, one can obtain the normalization constant B. But we will

keep it soft, to avoid difficulty due to fast decay for x very close to 1. For
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Figure 5.2: Plot of average domain size, ℓ(t), as a function of time, for 2− d

TDGL equation with L = 1024. The continuous line there represents t1/2

behavior. The inset shows corresponding instantaneous exponent, αi, as a

function of 1/ℓ.

simulation data, where one deals with finite systems, ℓ is never much larger

than ℓw. In that case, knowledge of such correction is important. Here

we mention that there have been efforts [5] to obtain the full scaling form

of C(t, tw) from analytical theories. The best available expression [5], also

shown [6] to be valid for q-state Potts model (q > 2), obtained by using local

scale invariance, is certainly not simple and contains number of adjustable

parameters more than five, excluding λ
ag

. There [5, 6], value of λ
ag

, to the

best of our understanding, was obtained from the extrapolation of λ
ag

i
, thus
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accepting the exponential factor obtained by us. While we do not claim that

Eq. (5.13) is the exact description of C(t, tw), accuracy of it can be checked

from more sophisticated analysis, e.g., finite-size scaling (FSS) [21,22], which

in turn can provide the value of λ
ag

. Here we mention that FSS with only the

power-law failed to obtain collapse of data from different system sizes. On the

other hand, FSS with the expression of Ref. [5] is rather inconvenient due to

the large number of adjustable constants. Of course, one could have obtained

the value of λ
ag

by extrapolating λ
ag

i
. But often numerical derivatives involve

huge errors and fluctuations. Also finite-size effects can lead one to wrong

conclusions. We mention here that λ
ag

i
in the Fig. 5.4 extrapolates to λ

ag

≃

1.30, in very nice agreement with the LM value. Authenticity of this number,

fearing any size effects, we aim to justify via application of FSS.

In the FSS analysis, to account for the size effects, we introduce a finite-

size scaling function Y (y = L/ℓ) such that

Y (y) = C(t, tw)x
λ
ag

exp(Ac/x). (5.14)

When λ
ag

and Ac are chosen appropriately, Y should be independent of the

system size, thus, providing a collapse of data coming from different system

sizes. In the large y limit, Y should be a constant providing the value of B.

As the finite-size effects come (at small enough value of y), Y should start

decreasing.

In Fig. 5.5 we show the finite-size data collapse in d = 2. Data from four

different system sizes are used, all for tw = 100. Here we have fixed λ
ag

to the

LM value and adjusted Ac. The data collapse certainly looks very good. The



5.3 Results 137

Figure 5.3: Plots of autocorrelation function, C(t, tw), vs x, for three dif-

ferent values of tw, as indicated on the figure. These results are from the

numerical solutions of d = 2 TDGL equation, with L = 1024. The results

are normalized such that C(t, tw) = 1 at x = 1.

best collapse, however, is obtained for Ac = 0.68 and λ
ag

= 1.30. In Fig. 5.6,

we demonstrate the same exercise for d = 3 TDGL equation, with tw = 10,

by fixing λ
ag

to the LM value again. In this case, the best collapse parameters

are Ac = 0.96 and λ
ag

= 1.66. Needless to mention, in both the dimensions,

values of λ
ag

are in very good agreement with the LM predictions. Recalling

that no noise term [2–4] was used in the TDGL equation, if the values of

λ
ag

quoted above are in agreement with the nonconserved Ising model, that

contains noise in Monte Carlo simulations, one can conclude that, at least
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asymptotically, the noise is irrelevant in such nonequilibrium dynamics. In

the equilibrium critical phenomena, however, absence of noise makes the

Ginzburg-Landau model belong to an universality class other than the Ising

one. Another important observation here is that Ac is higher in d = 3,

implying a stronger deviation from the power-law behavior, for small x, than

in d = 2.

Figure 5.4: Plot of instantaneous exponent, λ
ag

i
, as a function of 1/x, for

d = 2, tw = 100 and L = 1024.

To obtain [27] the λ
ag

values for the Ising model, the same analysis tech-

nique was used. There the best data collapse was obtained for Ac = 0.80

and λ
ag

= 1.32 in d = 2; Ac = 1.13 and λ
ag

= 1.69 in d = 3. These numbers
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for λ
ag

are certainly consistent with those obtained for the TDGL equation.

However, the Ising values are systematically higher than the TDGL ones, al-

beit marginally, that can have route other than noise as well, e.g., truncation

of the GL free energy after the fourth order term. Higher values of Ac, in

both d = 2 and d = 3, is indicative of strong correction in Ising case than in

TDGL.

Figure 5.5: Finite-size scaling function Y is plotted vs y, for d = 2 TDGL

equation. Data from four different system sizes are used.

From the deviation of flat behavior in these finite-size scaling plots, one

can estimate the on-set of finite-size effects. This, for the TDGL equation

appears when the average domain size becomes approximately 30% of the
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system size. On the other hand, for Ising case, it has been checked that, finite-

size effects appear when ℓ = 0.4L. Whether this difference and the above

are due to noise or truncation of higher order terms in the GL Hamiltonian

requires very careful study.

Figure 5.6: Finite-size scaling function Y is plotted vs y, for d = 3 TDGL

equation. Data from four different system sizes, L = 400, 256, 200 and 128,

are used.

Previously, a number of simulations reported values of λ
ag

reasonably

close to the LM one in d = 2, though did not exclude [5,6] the possibility
5

4
.

In data fitting procedure, the obtained value depends upon the chosen region,

statistical fluctuation in the data, finite-size effects, etc. These negative

features, however, are better taken care of by finite-size scaling analysis. On
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the other hand, most reliable past study [19] in d = 3 reported a central value

= 1.84 with huge error bar. Our estimates for λ
ag

in both the dimensions

are very close to LM values, showing deviation within 2% only.

Figure 5.7: C(t, tw) vs x from TDGL equation solutions in d = 2 and 3.

The value of tw is mentioned on the figure. The continuous lines correspond

to Eq. (5.13) with best parameter values, mentioned in the text.

Finally, in Fig. 5.7 we show the plots of C(t, tw) as a functions of ℓ/ℓw in

d = 2 and d = 3. There, the continuous lines are the full form (5.13) with

the best parameter values obtained from FSS. It is seen that a rather wide

range of data are consistent with this functional form.
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5.4 Summary

Aging in ferromagnetic ordering has been studied via time-dependent

Ginzburg-Landau equation in d = 2 and 3. We have obtained a full scaling

form of the autocorrelation function empirically. This was used to obtain the

power-law exponent in the asymptotic limit via application of the finite-size

scaling analysis. This study provides accurate information on the exponents

for late time power-law decay of C(t, tw). These values are consistent with

those from the Ising model both in d = 2 [λ
ag

= 1.30 ± 0.03 (TDGL);

1.32±0.04 (Ising)] and 3 [λ
ag

= 1.66±0.03 (TDGL); 1.69±0.04 (Ising)],

which are in excellent agreement with the theoretical calculations by Liu and

Mazenko (LM) [19]. Even through, due to the approximate nature of the

exponential correction factor, our analysis is unable to rule out the value

λ
ag

= 5/4 in d = 2, the closeness of our values, in both d = 2 and 3, to

the LM theory is suggestive of validity of the latter. Unfortunately, despite

more concrete nature of the work on the full form of the autocorrelation

function in Ref. [5], it is not suitable for a finite-size scaling analysis. It

will be interesting to apply our method to obtain the exponents for auto-

response function. Even though there is a belief that the exponents for the

two cases should be same, there is no proof for it [28]. Furthermore, we

have obtained important information on the finite-size effects. Our study

obtains slightly smaller aging exponents for the TDGL equation, that lacks

thermal noise, compared to Ising model. This information should be subject

to further check. A study of the time-dependent Ginzburg-Landau equation

by incorporating noise, in accordance with fluctuation-dissipation rule, will
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be useful in this context.

Even though the values of λ
ag

are within the bounds predicted by Fisher

and Huse [18], in case of conserved order-parameter dynamics this may not

be the case. Yeung, Rao and Desai [17] obtained more general lower bounds,

involving both conserved and nonconserved dynamics, from the analysis of

the behavior of equal time structure factor. These converge to the Fisher

and Huse bounds in the nonconserved case. Nevertheless, the situation with

respect to the actual values of the autocorrelation exponent, and even an

understanding whether the scaling of it, with respect to ℓ/ℓw, exists, are

unsatisfactory for dynamics with conserved order-parameter. For the latter,

some preliminary studies [15, 16] recently reported an exponential decay of

C(t, tw) in the hydrodynamic regime of fluid phase separation. These studies

are based on molecular dynamics simulations of atomistic models. Consider-

ing the demanding nature of molecular dynamics, it has only been possible

to access a limited part in the hydrodynamic regime. Thus, further studies

are needed to arrive at satisfactory understanding in these more complex

systems.
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Chapter 6

Dimensionality dependence of

aging in kinetics of diffusive

phase separation: Behavior of

order-parameter

autocorrelation

6.1 Introduction

Understanding of aging phenomena in out of equilibrium systems, except

for special situations like steady state, is of fundamental importance [1].

There have been serious activities on this issue concerning living [2,3] as well

as nonliving matters, especially in problems related to domain growth [1, 4–

14] and glassy dynamics [15–19]. Among other quantities, aging phenomena

147
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is studied via the two-time autocorrelation function [4]

C(t, tw) = ?ψ(?r, t)ψ(?r, tw)? − ?ψ(?r, t)??ψ(?r, tw)?, (6.1)

where ψ is a space (?r) and time dependent order parameter, tw is the waiting

time or age of the system, t (> tw) is the observation time and the angular

brackets represent statistical averaging over space and initial configurations.

In phase ordering systems [20], though time translation invariance is bro-

ken, C(t, tw) is expected to exhibit scaling with respect to t/tw. Important

examples are ordering of spins in a ferromagnet, kinetics of phase separation

in a binary (A + B) mixture, etc., having been quenched to a temperature

(T ) below the critical value (Tc), from a homogeneous configuration. Though

full forms are unknown even for very simple models, asymptotically C(t, tw)

is expected to obey power-law scaling behavior as [4, 6]

C(t, tw) ∼ x
−λ

ag

; x = ℓ/ℓw. (6.2)

In Eq. (6.2), ℓ and ℓw are the average sizes of domains, formed by spins or

particles of similar type, at times t and tw, respectively. Typically ℓ and t

are related to each other via power-laws.

For nonconserved order-parameter dynamics, e.g., ordering in a ferromag-

net, such scaling has been observed and the values of the exponent λ
ag

have

been accurately estimated [6, 14] in different space dimensions d. There the
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exponents follow the bounds

d

2
≤ λ

ag

≤ d, (6.3)

predicted by Fisher and Huse (FH) [4]. In kinetics of phase separation in solid

mixtures, for which the order parameter is a conserved quantity, the state

of understanding is far from satisfactory, due to various difficulties. There,

values of λ
ag

remain unknown, except for lower bounds discussed below.

Yeung et al. [7] put a more general lower bound on λ
ag

as

λ
ag

≥
(β ′ + d)

2
, (6.4)

where β ′ is the exponent for small wave-vector power-law enhancement of

equal time structure factor which, depending upon the dynamics, becomes

important for tw ≫ 1, as stated below. In nonconserved dynamics, β ′ = 0

and so the FH lower bound is recovered. For conserved order parameter

dynamics, on the other hand, β ′ = 4 in both d = 2 and 3 at late time.

Thus, the FH upper bound is violated. Simulations of the Cahn-Hilliard

(CH) equation [20]

∂ψ(?r, t)

∂t
= −∇

2

?

ψ(?r, t) +∇
2
ψ(?r, t)− ψ

3
(?r, t)

?

, (6.5)

by Yeung et al. [7], observed λ
ag

> 3 in d = 2, consistent with their bound.

From these simulations, the authors, however, did not accurately quantify

λ
ag

; scaling of C(t, tw) with respect to t/tw was not demonstrated; focus was

rather on the sensitivity of the aging dynamics to the correlations in the
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initial configurations. Situation is far worse in d = 3, with respect to the CH

equation as well as the conserved Ising model [1, 20]

H = −J

?

<ij>

SiSj; Si = ±1; J > 0. (6.6)

In this chapter, we have presented results from the CH model, used for un-

derstanding diffusive phase separation in solid mixtures, in d = 2 (on regular

square lattice) and d = 3 (on simple cubic lattice), via extensive simulations,

to quantify the decay of C(t, tw). Though the presented results are from CH

model, the conserved Ising model results will be stated (without present-

ing) for comparison. We observe scaling of C(t, tw) with respect to x which

tends to a power-law for large x. Via computations of the instantaneous

exponent [21–23]

λ
ag

i
= −

d ln[C(t, tw)]

d lnx
, (6.7)

and application of the finite-size scaling technique [24,25], we find that λ
ag

≃

3.6 in d = 2 and ≃ 7.5 in d = 3. Though these numbers respect the bounds

of Yeung et al. [7], the high value in d = 3 is surprising. Furthermore, a

general form for the full scaling functions has been obtained empirically.

Rest of the chapter is organized as follows. We describe the methodology

in section II. Results are presented in section III. Finally, section IV concludes

the chapter with a brief summary and discussion.
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6.2 Methods

We numerically solve the CH equations on a regular lattice (applying

the periodic boundary conditions in all possible directions) via Euler dis-

cretization method. Due to the coarse-grained nature of the CH equation,

one can explore large effective length in simulations. There the order param-

eter corresponds to a coarse-graining [26] of the Ising spins, typically over

the equilibrium correlation length ξ. Then, a positive value of ψ means an

A-rich region and for a B-rich region, ψ will have a negative number. For

the calculation of C(t, tw), we have used hardened configurations for ψ with

numbers +1 and −1. A noise term is intentionally omitted to investigate if

there is any strong effect of the latter, since in the Ising model it is auto-

matically included and the results will be discussed in comparison with the

latter. We state at the beginning, within the accuracy of the simulations,

we do not observe any significant difference between the CH model and the

conserved Ising model results.

The average domain length, ℓ, was measured from the first moment of

domain size distribution, P (ℓd, t), as [23]

ℓ =

?

ℓd P (ℓd, t) dℓd, (6.8)

where ℓd is the distance between two successive domain boundaries in any

direction. Throughout the chapter, all lengths are presented in units of the

lattice constant a. The time t is expressed in dimensionless units [27]. All

results, for both the dimensions, are presented after averaging over at least

50 initial realizations, for quenches from random configurations, mimicking
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T = ∞, to T = 0.6Tc. Such value, instead of 0, of T was chosen to avoid

metastability that is often encountered in conserved dynamics at low T .

6.3 Results

In Fig. 6.1 we show evolution snapshots from two different times, for the

d = 2 CH equation, where the orange and the white colors represent A- and

B-rich regions, respectively. The growth of domains that we observe in Fig.

6.1 is quantitatively demonstrated in Fig. 6.2 where we have plotted ℓ as a

function of t, on log-log scale. In this figure, the late time simulation data

are very much consistent with the solid line, that corresponds to a power-

law with exponent 1/3. This confirms the validity of the Lifshitz-Slyozov

growth-law which is expected for conserved order-parameter dynamics with

single particle diffusion.

In Fig. 6.3 we present quantitative results for the structure shown in Fig.

6.1. There we have plotted ℓ−dS(k, t) as a function of kℓ. Recall that S(k, t) is

the Fourier transform of the two point equal time correlation function C(r, t).

Nice collapse of data from different times implies self-similarity. The solid

line in the large kℓ region corresponds to the Porod law. On the other hand,

the power-law enhancement in the small abscissa region has the exponent

β ′ = 4, confirming the expectation for conserved dynamics, as stated above.

This value remains the same in d = 3. In the inset of this figure we show the

corresponding results for the TDGL equation. In this case we have β ′ = 0.

In Fig. 6.4, we present the plots of C(t, tw), vs x, for different values

of tw, from the solutions of the CH model in d = 2. As seen, one needs
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Figure 6.1: Evolution snapshots at two different times from the d = 2 CH

model with L = 400. In the figure the orange and the white dots are marking

the locations of the A- and B-types of particles, respectively.

large enough value of tw to observe appropriate scaling behavior (collapse

of data), compared to ordering in ferromagnets [14]. It appears that late

occurrence of scaling in conserved dynamics is due to slow domain growth.

Our observation suggests, scaling is visible from ℓw ≃ 10 lattice constants,

irrespective of conservation of the order parameter. Between the two data

sets with largest values of tw, the deviation from each other, for large x, is

due to the finite-size effects. Similar plots for d = 3 are presented in Fig.

6.5. Here we have chosen tw values from the scaling regime only. Compared

to d = 2, scaling in d = 3 starts earlier because of the fact that the domain

growth amplitude is larger in the latter dimension. Again, deviation from the

master curve, starting at different values of x for different tw, are primarily

related to the finite-size effects. In both these figures, 6.4 and 6.5, the system

sizes are kept fixed, only the values of tw are varied. A similar observation,
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Figure 6.2: Plot of average domain length, ℓ, vs t, on log-log scale, for d = 2

CH equation. The simulation data are nicely consistent with the solid line

that corresponds to a power-law with exponent 1/3.

with respect to the above mentioned deviation for different choices of tw, can

be made, when, for same value of tw, data are presented for different system

sizes.

In the scaling parts, both in Figs. 6.4 and Fig. 6.5, continuous bend-

ing is observable, in these log-log plots. Thus, power-laws, if exist, carry

corrections. The solid lines in these figures are power-law decays with expo-

nents 3 and 3.5, respectively, corresponding to the bounds of Yeung et al. [7].

For large x, simulation data in d = 2 appear reasonably consistent with the

bound. The asymptotic exponent, in d = 3, on the other hand, appear much



6.3 Results 155

Figure 6.3: Scaling plot of the structure factor, ℓ−dS(kℓ) vs kℓ, for the 2D

CH equation. The solid lines correspond to power-laws with exponents 4 and

−3. The inset shows the same exercise for the 2D TDGL equation. The solid

lines there have power-law exponents 0 and −3.

higher than 3.5.

With the expectation that power laws indeed exist asymptotically, in Fig.

6.6 we present plots of instantaneous exponents [6, 14, 21–23] λ
ag

i , for both

d = 2 and 3, vs 1/x. In addition to providing λ
ag

, from the extrapolations to

x = ∞, such exercise may be useful for obtaining crucial information on the

full forms of C(t, tw). For d = 2, the data are obtained for tw = 5× 103, and

for d = 3, the data correspond to tw = 10
3
. In both the cases, the results

appear reasonably linear [6, 14]. The solid lines there are extrapolations to
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Figure 6.4: Autocorrelation function, C(t, tw), from the d = 2 Cahn-Hilliard

model, are plotted vs x (= ℓ/ℓw), for different values of tw (fixing the L value

at 256). The solid line there corresponds to a power-law decay with exponent

3.

x = ∞, accepting the linear trends. These indicate λ
ag

≃ 3.60 in d = 2 and

≃ 7.80 in d = 3. Again, while the value in d = 2 is consistent and close to

the bound of Yeung et al. [7], the observation of surprisingly high number

in d = 3 is certainly interesting. We intend to obtain more accurate values

via appropriate finite-size scaling analyses [24, 25]. This is considering the

fact that the choice of the regions in Fig. 6.6, for performing least-square

fitting, is not unambiguous due to finite-size effects and strong statistical

fluctuations at large x. Also, for very small x (data excluded), there is rapid
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decay of C(t, tw) related to the fast equilibration of domain magnetization

ψ. Here note that this latter contribution decays from (1− ψ2) to 0. At this

temperature (noting that critical phenomena is typically observed within 10%

of Tc, we are significantly below the critical regime), thus, the time scale of

this equilibration is short and so the analysis gets affected only very close to

x = 1.

Figure 6.5: Same as 6.4 but for the d = 3 CH model with L = 200. The

solid line there has a power-law decay exponent 3.5.

Since the corrections to the asymptotic decay laws are seen to be strong

for finite x, a reasonable idea about the full forms of the decays is essential

for accurate finite-size scaling analyses. Those, however, are nonexistent in
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the literature. Here we obtain the forms empirically. Assuming power-law

behavior of the data sets in Fig. 6.6, we write

λ
ag

i
= λ

ag

−
Ac

xγ
′
, (6.9)

Ac, γ
′ being constants. This, via Eq. (6.7), provides

C(t, tw) = C0 exp

?

−
Ac

γ ′
x
γ′

?

x
−λ

ag

, (6.10)

C0 being a constant. For finite-size scaling analysis, one needs to introduce

a scaling function

Y (y) = C(t, tw) exp

?

Ac

γ ′
x
γ′

?

x
λ
ag

; y = L/ℓ. (6.11)

The variable y gets separated from x because of the fact that y =
L/ℓw

x
and

x contains ℓw in the denominator. For appropriate choices of Ac, γ
′ and λ

ag

,

one should obtain a master curve for Y , when data from different system

sizes are used. If the above mentioned factorization between x and y truly

holds, we should obtain collapse of data for different values of tw as well. We

will demonstrate that this indeed is true. The behavior of Y should be flat in

the finite-size unaffected region and a deviation from it will mark the onset

of finite-size effects.

By examining the data in Fig. 6.6, we fix γ ′ to 1. In Fig. 6.7, we show

a finite-size scaling plot for data from the d = 2 CH model, using different

values of L and tw. The presented results correspond to best collapse, ob-

tained for Ac = 2.25 and λ
ag

= 3.47. The value of tw used for different L is
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Figure 6.6: Instantaneous exponents λ
ag

i
are plotted vs 1/x, in both d = 2

and 3. The solid lines are guides to the eye. The d = 2 data are for tw =

5× 103 with L = 400. In d = 3 the numbers are 103 and 200.

10
4
. For L = 200 we have used two different tw values, viz., 10

4
and 5× 10

3
.

A similar exercise for the d = 3 CH data is presented in Fig. 6.8. In this

case we have fixed tw and varied only L. Again the data collapse looks quite

reasonable and was obtained for Ac = 5.1 and λ
ag

= 7.30. The value of tw, in

this case, was set to 103. The reason behind choosing smaller value of tw in

d = 3, than in d = 2, is computational difficulty. It is extremely difficult to

accumulate data for further decades in time, starting from very high value of

tw, particularly in d = 3. Nevertheless, this chosen value of tw falls within the
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scaling regime. As already mentioned, for similar temperatures, amplitude

of growth is larger in d = 3 and the scaling of C(t, tw) is related more closely

to the value of ℓw.

Figure 6.7: Finite-size scaling plot of C(t, tw) for d = 2 CH model. The

scaling function Y is plotted vs y, using data from different system sizes and

tw values. The optimum collapse of data, the presented one, was obtained

for λ
ag

= 3.47.

The scaling of C(t, tw) has also been studied [28] for conserved Ising model

in d = 2 and 3. There it is observed that, unlike the CH model, the scaling

starts for large tw values and data exhibit stronger statistical fluctuations

(because of lack of coarse-graining in space and time). Despite these, it

is shown that the decay of C(t, tw) follows a power-law, at late time, as a
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function of x. In this case, various methods of analysis provided λ
ag

≃ 3.60

and ≃ 7.30 in d = 2 and 3, respectively. These values are in agreement with

the ones obtained for the CH model.

Figure 6.8: Same as Fig. 6.7, but for the CH model in d = 3. Here the value

of λ
ag

is 7.30.

In Fig. 6.9 we show plots of C(t, tw)exp(Ac/x), from d = 2, on log-

log scale, vs x (= ℓ/ℓw). The result is consistent with the power-law with

λ
ag

= 3.6, represented by the solid line. The value of L here is much larger

than the previous figures. This value of L was used with the objective of

confirming the finite-size scaling conclusions (from relatively smaller systems)

via brute force method. Given that the scaling starts for large tw, range of x
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is significant. As shown in the inset, the results span several decades in t/tw.

Figure 6.9: C(t, tw)exp(Ac/x) is plotted vs x, for the d = 2 CH model, on

log-log scale. Results from L = 1024 are shown. The solid line represents a

power-law decay with λ
ag

= 3.6. The inset shows the same result vs t/tw.

The solid line there has a power-law decay with exponent 1.2.

Figure 6.9 verifies that the conclusions drawn from the finite-size scaling

analyses, involving smaller systems, indeed are appropriate. The exponents

for the power-law decays in the main frame and the inset are consistent with

each other, since α = 1/3 (see Fig. 6.2). Analogous results from d = 3 CH

model are shown in the Fig. 6.10. In both the Figs. 6.9 and 6.10, we have

used the earliest available values of tw for which scaling is observed. This
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helps exploring reasonably large range for x, without encountering finite-size

effects, i.e., ℓ being significantly smaller than L. In Fig. 6.9, e.g., data

for more than two decades in t/tw correspond to L/ℓ > 5. This picture

holds for more than a decade in t/tw in Fig. 6.10. We note here, recently

it was convincingly demonstrated [23] that finite-size effects in conserved

order-parameter dynamics appear only when ℓ is as large as 3/4th of the

equilibrium limit. Thus, presented results in Figs. 6.9 and 6.10 are free from

finite-size effects.

Figure 6.10: Same as Fig. 6.9 but from d = 3. The decay exponents for the

solid lines are mentioned on the figure. In the plots we have used the values

of Ac as obtained from the finite-size scaling analyses in d = 3.
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6.4 Summary

We have studied aging dynamics for the phase separation in solid binary

mixtures via Cahn-Hilliard model. Results for the two-time autocorrelation,

C(t, tw), are presented from simulations in both d = 2 and 3. Decays of

C(t, tw) appear power law in large x limit. The exponents for these power

laws were obtained via various different analyses, including finite-size scaling.

For the finite-size scaling analysis, full forms of the autocorrelations were es-

sential which we obtained empirically. All these methods provide consistent

values of the decay exponent λ
ag

. These are λ
ag

≃ 3.6 in d = 2 and λ
ag

≃ 7.5

in d = 3, within 5% error. To construct a dimension dependent expression

for λ
ag

, one needs to study the phenomena in more dimensions. In this con-

text, in d = 1 one should exercise the caution that β ′ (= 2) has a different

value [29].



Bibliography

[1] Kinetics of Phase Transitions, edited by S. Puri and V. Wadhawan

(CRC Press, Boca Raton, 2009).

[2] R.M.Z. dos Santos and A.T. Bernardes, Phys. Rev. Lett. 81, 3034

(1998).

[3] M. Costa, A.L. Goldberger and C.-K. Peng, Phys. Rev. Lett. 95,

198102 (2005).

[4] D.S. Fisher and D.A. Huse, Phys. Rev. B, 38, 373 (1988).

[5] G.F. Mazenko, Phys. Rev. B 42, 4487 (1990).

[6] F. Liu and G.F. Mazenko, Phys. Rev. B 44, 9185 (1991).

[7] C. Yeung, M. Rao and R.C. Desai, Phys. Rev. E 53, 3073 (1996).

[8] G.F. Mazenko, Phys. Rev. E 69, 016114 (2004).

[9] J.F. Marko and G.T. Barkema, Phys. Rev. E 52, 2522 (1995).

[10] S. Puri and D. Kumar, Phys. Rev. Lett. 93, 025701 (2004).

165



Bibliography 166

[11] S. van Gemmert, G.T. Barkema and S. Puri, Phys. Rev. E 72, 046131

(2005).

[12] S. Ahmad, F. Corberi, S.K. Das, E. Lippiello, S. Puri and M. Zannetti,

Phys. Rev. E 86, 061129 (2012).

[13] S. Majumder and S.K. Das, Phys. Rev. Lett. 111, 055503 (2013).

[14] J. Midya, S. Majumder and S.K. Das, J. Phys.: Condens. Matter, 26,

452202 (2014).

[15] B. Abou and F. Gallet, Phys. Rev. Lett. 93, 160603 (2004).

[16] G.G. Kenning, G.F. Rodriguez and R. Orbach, Phys. Rev. Lett. 97,

057201 (2006).

[17] L. Berthier, Phys. Rev. Lett. 98, 220601 (2007).

[18] E. Buchbinder and J.S. Langer, Phys. Rev. E 83, 061503 (2011).

[19] J. Bergli and Y.M. Galperin, Phys. Rev. B 85, 214202 (2012).

[20] A.J. Bray, Adv. Phys. 51, 481 (2002).

[21] D.A. Huse, Phys. Rev. B, 34, 7845 (1986).

[22] J.G. Amar, F.E. Sullivan and R.D. Mountain, Phys. Rev. B 37, 196

(1988).

[23] S. Majumder and S.K. Das, Phys. Rev. E 81, 050102 (2010).

[24] M.E. Fisher in Critical Phenomena, editedby M.S. Green (Academic

Press, London, 1971).



Bibliography 167

[25] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in

Statistical Physics, Cambridge University Press, 3rd Edition (2009).

[26] A. Onuki, Phase Transition Dynamics (Cambridge University Press,

Cambridge, 2002).

[27] K. Binder, S. Puri, S.K. Das and J. Horbach, J. Stat. Phys. 73, 182

(1994).

[28] J. Midya, S. Majumder and S.K. Das, Phys. Rev. E 92, 022124 (2015).

[29] S.N. Majumdar, D.A. Huse and B.D. Lubachevsky, Phys. Rev. Lett.

138, 51 (2010).


