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Synopsis

In this thesis we undertake studies of few important aspects of kinetics

of phase transitions in model magnetic, binary mixture and active matter

systems. In the magnetic case we confine ourselves to para- to ferromagnetic

transitions. In the first chapter we discuss the prerequisites for the works

to be presented in the subsequent chapters. Important aspects like pattern

formation, growth, persistence and aging are introduced in significant depth.

We provide relevant theoretical background and discuss crucial analytical

and computational techniques. On the technical side, emphasis has been put

on the difficulties related to simulations of phase transitions, e.g. critical

slowing down, finite-size effects, etc. State-of-the-art methods, like finite-size

scaling analysis, to overcome these problems, are discussed.

In chapter 2 we have studied the dynamics of ordering in Ising ferro-

magnets via Monte Carlo simulations. (This simulation method and model

are used in the next three chapters as well.) In this chapter, we present

results for domain growth and persistence probability in space dimensions

d = 2 and 3, for quenches from different initial temperatures (Ti). For the

decay (power-law) of persistence probability we make significant new obser-

vations: i) The exponent of the power-law for Ti = Tc is different from that

for Ti = ∞; ii) Intermediate values of Ti carry signatures of both the above

values of Ti. These results we understand via appropriate scaling analyses

involving the equilibrium correlation length at Ti. The domain growth, on

the other hand, appear insensitive to the variation in Ti.

One of the primary objectives in chapter 3 has been to investigate
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the dimensionality (df ) of the fractal pattern formed by persistent spins.

Like in the previous chapter, we study the dependence of this dimensionality

on initial temperature, in d = 2 and 3. It is observed that df has strong

dependence upon Ti, even though the effect is weaker in d = 3 than in

d = 2. In addition, we present results for the global persistence. Furthermore,

important observations on the domain growth and persistence probability are

reported for quenches from Ti = ∞ to the final temperature Tf = 0, in d = 3.

A controversy, related to the value of the exponent of the power-law growth

(with time), has been resolved.

In chapter 4, we continue with the coarsening dynamics for Ti = ∞

to Tf = 0 quenches. In addition to providing further discussion on the

domain growth and persistence, we present important new results on pattern

and aging. For d = 3, it has been shown that the pattern at Tf = 0 is

different from that for temperatures above the roughening transition and is

not describable by the well-known Ohta-Jasnow-Kawasaki form for the two-

point equal time correlation function. For the above mentioned choices of Tf ,

we demonstrate important difference in the aging phenomena as well. The

temperature dependence observed in d = 3 has been compared with that in

d = 2.

In chapter 5 we obtain accurate quantitative information on the time-

decay of the two-time order-parameter autocorrelation function, relevant for

understanding of aging phenomena, for quenches from Ti = ∞ to Tf = 0, in

d = 2 and 3, via finite-size scaling analysis. While the behavior in d = 2 is

found to be the same as that for Tf > 0, in the case of d = 3 we show that the

late time power-law decay is significantly slower than that for Tf > TR, TR
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being the roughening transition temperature. The corresponding exponent

(for Tf = 0 in d = 3) apparently violates a well-known lower-bound. This we

have understood via appropriate analyses of the structure.

In chapter 6, we have studied the kinetics of phase separation in a

two-dimensional model active matter system, via molecular dynamics simu-

lations. Results are presented on pattern, cluster growth and aging. These

are compared with the corresponding results from a relevant passive binary

mixture model. Note that the self-propulsion in our active matter model is

of Vicsek type where direction of motion of an individual is influenced by

its neighbors. Via demonstration of the well-known scaling properties of the

correlation function and structure factor, we confirmed the self-similarity of

structure during the growth process. The autocorrelation function is also

shown to scale in a fashion similar to standard passive phase ordering sys-

tems. Though various correlation functions show qualitatively similar behav-

ior in both active and passive cases, it is shown that there exist quantitative

discrepancies between the two cases. Furthermore, the exponent for the

(power-law) cluster growth in active system is found to be much larger than

the conserved passive dynamics.
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Chapter 1

Introduction

1.1 Phase Transition

Materials are found in multiple phases in the nature. A typical example

is water, which is commonly seen in solid, liquid and vapor phases. Various

equilibrium phases are decided by thermodynamic parameters like temper-

ature (T ), pressure (P ), magnetic field (h), etc. A phase transition [1–4]

occurs whenever the system undergoes a change from one equilibrium phase

to another with the variation of these parameters. Phase transition is also

observed in collective behavior of biological entities [5,6]. Here, unlike inan-

imate or “passive” objects, system constituents are self propelled. This type

of systems are called the “active” matter to distinguish them from the stan-

dard “passive” cases. In active matter transitions, usually a steady state is

the counterpart of above mentioned equilibrium state. Large portion of this

thesis deals with the passive systems. Therefore, unless mentioned explicitly,

we will refer to a “passive system” simply as a “system”.

1
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Figure 1.1: Phase diagram of a chemical substance in the P vs. T plane.
Various equilibrium phases, critical point (Tc, Pc) and triple point (Tt, Pt) are
marked on the figure.

In Fig. 1.1 we show a phase diagram of a standard chemical system

in pressure-temperature plane. Solid, liquid and vapor phases are marked.

These are separated from each other by the coexistence curves. Along each

of these curves two phases coexist. These boundaries are lines of first order

phase transitions [7]. The point (Tt, Pt), where these three lines merge, is

called the triple point. At this point all three phases coexist. The solid-liquid

line continues forever, whereas the gas-liquid coexistence curve terminates at

a point (Tc, Pc). This point is called the critical point and in the vicinity

of this point many static (e.g., specific heat, magnetic susceptibility) and
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dynamic (e.g., viscosity, thermal conductivity) quantities show singularity.

These facts are referred to as the critical phenomena [1, 4].

Figure 1.2: Phase diagram of the chemical substance of Fig. 1.1 in temper-
ature (T ) vs. density (ρ) plane, in the vicinity of the vapor-liquid critical
point. In real situations the coexistence curve is not perfectly symmetric like
the one drawn here.

In Fig. 1.2, we show the vapor-liquid coexistence curve in the temper-

ature vs. density (ρ) plane. Outside the coexistence curve, a system is in

a homogeneous density phase and inside the coexistence curve, it is in a

phase-separated state. The left branch corresponds to the low density va-

por phase and the right branch represents the high density liquid phase. In

the context of a binary mixture (A + B), similar diagram can be drawn to
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Figure 1.3: Phase behavior of a magnetic material in the external magnetic
field (h) vs. temperature (T ) plane. Above Tc, the system is in paramagnetic
phase and below Tc, it is in ferromagnetic phase.

describe the phase behavior for demixing transitions, if the abscissa is re-

placed by the concentration, say, xA, of one of the types of particles, A.

Here, xA = NA/(NA +NB), Ni (i = A,B) being the number of the ith kind

of particles. Outside the coexistence curve two types of particles are mixed

uniformly. Inside it, in equilibrium, the system is separated into A and B

particle dominant phases. The left branch of the coexistence curve will then

correspond to the B rich phase and right one to the A rich phase.
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Similar phase diagram can also be obtained for a magnetic material un-

dergoing paramagnetic to ferromagnetic phase transition, by replacing ρ by

magnetization m. In Fig. 1.3, we show the phase diagram for such a tran-

sition in a different plane, i.e., in the h vs T plane. At high temperatures

(> Tc, so called Curie temperature), the system is in a paramagnetic phase,

with random alignment of spins (atomic magnetic moments) resulting in zero

net magnetization. Below Tc, the spins tend to align in a particular direction.

In that case, the system has a nonzero value of m even for h = 0, a feature

of the ferromagnetic phase. A quantity which varies in this way, to indicate

different phases, is referred to as an order parameter [2, 3]. Order parameter

can be constructed for above mentioned other phase transitions too. For ex-

ample, in the case of gas-liquid phase transition a relevant order parameter

is the difference between the densities of the two phases, i.e., ρl − ρg, where

ρl and ρg are the densities of the liquid and gas phases respectively. At a

high temperature, the system being in a phase of uniform density (or zero

“magnetization”) the value of the order parameter is zero, and below Tc, in-

side the coexistence curve, it varies as a function of T as ∼ (T − Tc)
β, where

β is a critical exponent [4]. Such power-law behavior is observed in other

quantities as well. E.g. the correlation length, ξ, diverges as (T − Tc)
−ν . In

the thesis, we will deal with only scalar order parameter, though it can have

any number of components depending upon the system under consideration.
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1.2 Phase Ordering Dynamics

Here we discuss various aspects of the kinetics of different kinds of phase

transitions. One is interested in the nonequilibrium dynamics related to the

evolution of a system to a new equilibrium state, having been quenched from

a configuration prepared outside the coexistence curve to inside it. At high

temperature the system is in a homogeneous phase. If the temperature of the

system is quenched below Tc, the system becomes unstable to fluctuations

and tries to attain its new equilibrium state at that temperature. The process

is not instantaneous and comprises complex nonlinear dynamics, involving

the formation and growth (“coarsening”) of domains. This process is called

the phase ordering or domain coarsening [2, 3].

To illustrate, let us retort to the previously stated paramagnetic to fer-

romagnetic phase transition. As stated above, for T > Tc the system is in

the paramagnetic phase and below Tc it is in the ferromagnetic phase. In the

paramagnetic phase, the spins are disordered. If the system is now quenched

below the Curie temperature, it tries to obtain the ferromagnetic ordering

at that temperature. This equilibration process, as stated earlier, takes time

and final ordered state is reached via formation and growth of domains of like

spins. In the case of a binary mixture (A+B), outside the coexistence curve

both types of particles are homogeneously mixed. When quenched inside

the coexistence curve, the system falls out of the equilibrium and proceeds

towards the equilibrium phase-separated state via formation and growth of

A- and B-rich domains.

The domain pattern typically shows an interesting “scaling” dynamics [2].
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The patterns at later times are statistically similar to those at earlier times,

apart from a global change in length scale. As a consequence the two-point

equal time correlation function

C(r, t) = 〈ψ(~r, t)ψ(~0, t)〉 − 〈ψ(~r, t)〉〈ψ(~0, t)〉, (1.1)

r being the distance between two points, shows the scaling behavior

C(r, t) ≡ C̃(r/ℓ(t)), (1.2)

where ℓ(t) is the average size of domains at time t and C̃ is independent of

time. In addition to finding out the functional forms of C(r, t) for various

types of transitions, another natural question to ask is to how the charac-

teristic length scale (ℓ) grows with time (t). It is found that in many phase

ordering systems [2, 3]

ℓ(t) ∼ tα, (1.3)

where α is the growth exponent [2]. The value of α depends on order-

parameter conservation, number of components of the order-parameter, trans-

port mechanism, system dimensionality, etc.
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Figure 1.4: Snapshots during the evolution of an Ising ferromagnet. The dots
represent the spins in +1 state or the up direction and the unmarked sites
are the locations of down spins. Results are presented from four different
times which are mentioned on top of the frames, in units of Monte Carlo
steps (MCS).

1.2.1 Coarsening mechanisms and growth laws based

on order-parameter conservation

1.2.1.1 Nonconserved order-parameter dynamics

The phase ordering dynamics during the paramagnetic to ferromagnetic

phase transition is an example of nonconserved order-parameter (NCOP)
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dynamics [2,3]. There, one kind of domain grows at the expense of other, so

that the total system magnetization does not remain conserved throughout

the evolution. Snapshots of such evolution from different times are shown

in Fig. 1.4. These were obtained via Monte Carlo simulations of the Ising

model. See below for further details.

At the atomistic level, such systems can be studied via Monte Carlo

simulations by introducing the Glauber spin flip mechanism [8,9] in spin-1/2

Ising model [9]. The Hamiltonian of the Ising model is given by [9]

H = −J
∑

〈ij〉

SiSj, J > 0, Si = ±1, (1.4)

where J is the interaction strength, Si is the spin at the ith site of a regular

lattice . The angular brackets there indicate the consideration of only nearest

neighbor interaction. Starting from this model, using a master equation

involving the probability of a spin configuration in one state to go to another

and applying a mean field approximation one can obtain the time dependent

Ginzburg-Landau (TDGL) equation [2, 3]. In absence of external magnetic

field, the TDGL equation is given by [3]

∂

∂t
ψ(~r, t) = ψ(~r, t)− ψ(~r, t)3 +∇2ψ(~r, t), (1.5)

where ψ(~r, t) is a order parameter field, typically obtained by coarse-graining

the Ising spins over the equilibrium correlation length. One can study fer-

romagnetic ordering by numerically solving this equation. Because of the
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coarse-grained nature, in this case it is possible to access larger characteris-

tic length scales.

Now, to obtain the growth law, we consider a spherical domain of ra-

dius ℓ. Considering the curvature driven nature of the dynamics during the

evolution, the velocity of domain boundary can be expressed as

vℓ =
dℓ

dt
∼ 1

ℓ
, (1.6)

so that

ℓ ∼ t1/2. (1.7)

This is the Cahn-Allen (CA) growth law [10]. Numerical simulations carried

out for the Ising model (and the TDGL equation) confirmed the growth

exponent, with some exceptions [11–15].

1.2.1.2 Conserved order-parameter dynamics

In a conserved order-parameter (COP) dynamics [2, 3], the total order

parameter remains constant throughout the evolution process. A typical

example of COP dynamics is the phase separation in a solid binary mixture

when it is subjected to a quench from above Tc to a temperature below it.

Evolution snapshots in such a situation are presented in Fig. 1.5. The results

are obtained from Monte Carlo simulations of the Ising model with Kawasaki

exchange mechanism. Vapor-liquid phase transition and subsequent ordering

is also an example of such dynamics.

As stated above, at the microscopic level the kinetics of phase separation

in a solid binary mixture is studied via the Kawasaki exchange [2, 3, 9, 16]
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Figure 1.5: Snapshots showing the evolution of a conserved system, obtained
via Monte Carlo simulations of Kawasaki exchange Ising model, upon quench-
ing from a high temperature to a temperature T = 0.6Tc. The black dots
mark the locations of A particles (up spins) and the down spins (location of
B particles) are left unmarked.

Monte Carlo simulation of the Ising model. There the up and down spins

correspond to the two different types of particles. Again, like NCOP dy-

namics, via a master equation approach, one can arrive at a coarse-grained
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dynamical equation. This is written as

∂

∂t
ψ(~r, t) = −∇2[ψ(~r, t) +∇2ψ(~r, t)− ψ3(~r, t)], (1.8)

which is referred to as the Cahn-Hilliard (CH) equation [17]. There exists

phenomenological derivations as well for the TDGL and CH equations.

To obtain the growth law let us look at the mechanism of the enhance-

ment of length scale. Diffusion is the sole mechanism of transport for domain

growth in solids, the driving force coming from the chemical potential gra-

dient. Therefore, the interface velocity and the chemical potential can be

interconnected as

dℓ(t)

dt
∼ |~∇µ| ∼ σ

ℓ(t)2
, (1.9)

where σ is the A−B interfacial tension. Solving Eq. (1.9) one obtains,

ℓ(t) ∼ t1/3. (1.10)

This is known as the Lifshitz-Slyozov (LS) growth law [2, 3, 18].

In fluids the growth is much faster due to hydrodynamics. For the sake

of completeness, we briefly mention the effect of hydrodynamics [19, 20] in

COP dynamics for fluid systems. There exist three distinct regimes of growth.

Without getting into the details, below we quote the values of the growth
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exponent at different regimes [19, 20] (in order of their appearance):

ℓ(t) =































t1/3 (Diffusive Growth),

t (Viscous Hydrodynamic Growth),

t2/3 (Inertial Hydrodynamic Growth).

(1.11)

Figure 1.6: Schematic plots of the autocorrelation function Cag(t, tw), with
the variation of (t− tw), for three different values of tw.
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1.2.2 Aging Dynamics

Aging dynamics [3, 21–23] holds extreme relevance in the study of a sys-

tem driven out of equilibrium via external perturbation. When the system

tries to approach the equilibrium state at the given values of the thermody-

namic parameters, their relaxation time grows with the age of the system.

Essentially, an younger system relaxes faster than the older ones. This phe-

nomena is known as aging. As can be judged by the fact, aging is probed via

two time quantities such as single point two-time autocorrelation function,

Cag(t, tw) [3], dynamic susceptibility, R(t, tw), etc., that provide information

on the relaxation of a system with its age. Here, t is the observation time

and tw is the waiting time or the age of the system. Cag(t, tw) and R(t, tw)

are defined as [3]

Cag(t, tw) = 〈ψ(~r, t)ψ(~r, tw)〉 − 〈ψ(~r, t)〉〈ψ(~r, tw)〉, (1.12)

R(t, tw) =
δ〈ψ(t)〉
δ〈h(tw)〉

, (1.13)

where h(tw) is a weak perturbation imparted on the system at t = tw. In

the rest of the section and in the thesis we discuss Cag(t, tw) only. Fig. 1.6

shows a schematic diagram depicting the behavior of Cag(t, tw) as a function

of translated time t− tw for different values of tw. If the system had been in

equilibrium, all the plots would have collapsed on top of each other. This is

called the time translation invariance. However, in case of a nonequilibrium

system, since Cag(t, tw) decays slower with the age, this time translational



1.2 Phase Ordering Dynamics 15

invariance is violated.

The study of aging is of immense importance in the slowly relaxing sys-

tems, covering a wide range of topics such as structural and spin glass sys-

tems, phase-separating multicomponent mixtures, ferromagnetic ordering,

etc. One is interested in finding out and understanding the scaling prop-

erties of Cag(t, tw). From the study of spin glass systems, Fisher and Huse

(FH) predicted that Cag(t, tw) should scale in a power-law fashion [21,22,24]

as

Cag(t, tw) ∼
(

ℓ

ℓw

)−λ

, (1.14)

where λ is an aging exponent, and ℓ and ℓw are the domain lengths of the

system at t and tw, respectively. The value of λ depends on the conservation

of the order parameter, spatial dimensionality, effect of hydrodynamics, etc.

FH also proposed bounds on λ given as [21]

d

2
6 λ 6 d. (1.15)

Later Yeung, Rao and Desai (YRD) improved the bounds (by including both

NCOP and COP dynamics) to [24]

λ ≥ d+ β

2
, (1.16)

where β is related to the small wave-number (k) behavior of the structure
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factor S(k, t), which has the form

S ∼ kβ. (1.17)

Note that S(k, t) is the Fourier transform of C(r, t) and has the scaling form

S(k, t) ≡ ℓdS̃(kℓ), (1.18)

S̃, like C̃, is a time independent master function.

1.2.3 Persistence

Various correlation functions discussed above probe order parameter fluctu-

ations (in space and time) in both equilibrium and nonequilibrium systems.

In this context another important quantity is the persistence probability,

P (t) [25–29], which is defined as the probability that a given stochastic vari-

able φ(t) retains its sign during the time interval [0 : t]. In the thesis we are

concerned with the persistence in ferromagnetic ordering. In that case, P (t)

is defined as the fraction of spins that do not change sign (or flip) until time

t. In this case as well as in many other phase transitions, P (t) is observed

to exhibit a power-law behavior [25, 30, 31]

P (t) = t−θ. (1.19)

The (persistence) exponent θ depends upon the conservation of the order

parameter, spatial dimensionality, symmetry of the order parameter, etc.
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Figure 1.7: Snapshots of the persistent spins from four different times, dur-
ing the ferromagnetic ordering. The spins marked with dots represent the
persistent spins.

In Fig. 1.7 we have shown the snapshots of the persistent spins from four

different times during the evolution of nonconserved Ising model. Beautiful

fractal patterns [15, 32, 33] are observed. It is then natural to ask questions

related to the fractal dimensionality, df , of these pattens as well.

Above definition of persistence probability is related to the change of

sign of a single spin placed at a lattice site. However, if one is interested

in probing the change in sign of order parameter over large length scales,
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say over the whole system, the corresponding persistence is called the ’global

persistence’ [13,29] and the related decay exponent as the global persistence

exponent. Both kinds of persistence have been discussed in the thesis.

Figure 1.8: Picture of a school of fish. Picture courtesy: S. Paul, K. Das,
Nalina V.

1.3 Coarsening in Active Matters

Collective behavior [5, 6] of the biological systems has received a lot of

attention in the recent years. A school of fish, a herd of sheeps or a swarm

of bees move in a coherent manner, creating beautiful spatio-temporal pat-

terns. In Fig. 1.8, a school of fish is shown. However, when attacked by

some predator the coherence is lost. This can be seen as an order-disorder

transition [34]. Though, first observed in living objects, it is not confined

in the biological systems only. Various experiments have been set up with
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vibrating rods, polymers, etc., that show similar features. The primary in-

terest from physicists’ point of view would be to look for universality in this

kind of behavior. A good model to capture this sort of phase transition was

proposed by Vicsek et al. There exist reports in favor of existence of second

order transitions in such situations. This, however, still remains a matter of

controversy. While the standard literature in this field deals with the emer-

gence of such collective behavior, details of ordering or clustering dynamics

started receiving attention only recently. In the thesis we ask the same ques-

tions as in the context of phase ordering dynamics in passive systems. We

will provide further details on active matter later in this chapter.

1.4 Methodologies

In this thesis we have performed computer simulations of various atomistic

models. These or similar models are frequently used in the literature to

describe phase transitions in passive and active systems. In the domain

of passive phase transitions, we are interested in the para- to ferromagnetic

transition. For this purpose we have used the Monte Carlo (MC) simulations.

First we discuss methods related to this.

In the first step, the system is prepared at a desired temperature above

the critical temperature. The initial temperatures (Ti) of the configurations

play a pivotal role since the correlations within the systems are temperature

dependent. Close to Tc, the system has a large equilibrium correlation length
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ξ. Recall that [35]

ξ ∼ ǫ−ν (1.20)

where ǫ = |Ti−Tc| and ν is a static critical exponent. Between the two kinetic

mechanisms touched upon above, viz., the Glauber and Kawasaki, the former

is faster. In this method, a spin is randomly chosen and flipped. Nevertheless,

it would require long simulation runs for a single spin flip algorithm like

Glauber spin flip mechanism to prepare equilibrium configurations close to

Tc. To avoid the difficulty, we follow an algorithm proposed by Wolff, in

which a single cluster is grown and flipped subsequently.

The Wolff algorithm [36] starts with the random choice of single site on

the lattice. All nearest neighbors with the same state are then connected to

each other with the probability [9, 36]

p = 1− exp(−2βJ). (1.21)

This process is continued until no new bond is found. All the spins in the

connected cluster is then flipped. This method has its origin in the Fortuin-

kasteleyn theorem [9] which states that, it is possible to map ferromagnetic

Potts model onto a corresponding percolating model. Now in percolation

theory, states are generated by throwing particles or bonds in an uncorrelated

manner. Hence, there is no critical slowing down.

Next step of the simulation is the updation of the system with time, after

the quench. This we discuss following Ref. [9]. In our MC simulations we use
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the standard Metropolis algorithm [9], in which the transition from one state

to other depends on the energy difference between the final and the initial

states.

Let us introduce the time dependent probability Pn(t) of the system to

be at given state n of the system. The time dependent behavior of the states

of the system is captured by the master equation

∂Pn(t)

∂t
= −

∑

n 6=m

[

Pn(t)Wn→m − Pm(t)Wm→n

]

, (1.22)

where Wn→m is the transition rate for n → m. In equilibrium, there must

not be any current, so that

∂Pn(t)

∂t
= 0. (1.23)

Hence,

Pn(t)Wn→m = Pm(t)Wm→n. (1.24)

This expression is referred to as the detailed balance. The probability of a

classical system to be in the nth state is given by

Pn(t) =
exp(−En/kBT )

Z
, (1.25)

where Z is the partition function. The probability cannot be exactly calcu-

lated because of the lack of knowledge of the partition function. However,

if a Markov chain is considered, where a new state m is generated from the

preceding state n, then the transition probability depends only on the energy

difference between the two states. Now, any transition rate which satisfies
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the detailed balance is acceptable. The Metropolis form is given as [9]

Wn→m =















exp(−∆E/kBT ), ∆E > 0

1, ∆E ≤ 0,

(1.26)

where ∆E (= En−Em) is the energy difference between the two states. The

algorithm is implemented in computer simulation via the following steps.

(1) A particle (spin) or a cluster (of particles) i is randomly chosen.

(2) The energy change ∆E, which results due to the random displacement

or flipping, is calculated.

(3) A random number r is generated such that 0 < r < 1.

(4) If r < exp(−∆E/kBT ), the move is accepted.

Note that the kinetics, following the temperature quench, we have studied

via the Glauber spin-flip moves with Metropolis acceptance algorithm.

In active matters velocity field plays important role. We intend to study

such systems at the atomistic level. Thus, molecular dynamics (MD) simula-

tions [37,38] are well suited for that. In MD simulations, a smooth potential

is used as interparticle interactions and from there one calculates the force on

each particle. After computing the force, the Newton’s equation of motion

is needed to be solved. Various algorithms are proposed for this purpose. In

the thesis we have used the velocity Verlet algorithm [37]. In this algorithm,

the position update rule is governed by the following equation

~ri(t+∆t) = ~ri(t) + ~vi(t)∆t+
~fi(t)

2mi

∆t2, (1.27)
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where ~ri, ~vi, ~fi are the position, velocity and acceleration of the i-th particle

with mass mi. The velocity update in this formulation is given by

~vi(t+△t) = ~vi(t) +
~fi(t+△t) + ~fi(t)

2mi

△t. (1.28)

These equations can be shown to have the time reversal symmetry, an integral

part of the Newton’s equation.

In our study of active matter the self propelling activity is introduced by

using the Vicsek model [34]. In this model, at each discrete time step (∆t),

a particle moving with a constant velocity orients its direction depending

on the average direction of the particles within a radius of influence and an

external perturbation which is of thermal origin. The position updation rule

is given by

~ri(t+∆t) = ~ri(t) + ~vi(t)∆t. (1.29)

The velocity at time (t+∆t), ~vi(t+∆t), has an unchanged magnitude v and

the direction is given by

O(t+∆t) = 〈O(t)〉r +∆O, (1.30)

where 〈O(t)〉r is the average direction of the particles within radius r from

the particle and ∆O is the noise, which is chosen from a set of uniform

random number. In our active matter study we have combined the Vicsek

rule with inter-particle interaction. For the interparticle interaction part, we

have performed MD simulations.

To keep the temperature fixed, we performed MD simulations in canonical
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ensemble. Here, we use the the Langevin thermostat. There one solves the

Langevin equation

mi~̈ri = −~∇ui − γmi~̇ri +
√

6γkBTmi
~R(t), (1.31)

where ui is the interparticle potential, γ is the damping constant and ~R(t) is a

noise which is δ correlated in space and time. There exists other thermostats

in the literature. Unlike the Langevin one, some other thermostats satisfy

requirements of hydrodynamics.

Figure 1.9: A schematic diagram showing the equilibrium correlation length
ξ in a system of linear size L. Spins inside the shaded regions are correlated.
Maximum value of ξ can be equal to L.
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1.5 Finite-Size Effects in Numerical Simula-

tions and Finite-Size Scaling Analysis

The motto of statistical physics is to predict the thermodynamic behavior

of a system starting from the microscopic knowledge of the system. The

standard procedure is to calculate the partition function

PF =
∑

i

exp[−βEi], (1.32)

and then calculate the (relevant) free energy,

F = −kBT lnPF. (1.33)

Here, Ei is the energy of the the system in the ith state. Now, the occurrence

of second order phase transition demands the nonanaliticity of F at the

critical point. Here, we note that, this is only posssible in the thermodynamic

limit [35]. In computer simulations we deal with finite system sizes with

finite number of degrees of freedom. This means that the free energy is

analytic everywhere and “true” phase transition is not observed in computer

simulations. With smaller system sizes, the (pseudo) critical point for a

particular phase transition gets displaced further and further away from its

value in the thermodynamic limit. Furthermore, maximum limit of ξ being

at most the system size (see the depiction of ξ in Fig. 1.9), the divergence

is hindered by the finite-size effects (FSE). Nevertheless, such FSE can be

taken care of by the scaling analysis proposed by Fisher [39] in the context
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of equilibrium critical phenomena. In fact FSE can be used to our advantage

if such analysis is performed.

In critical phenomena the divergence of a quantity Z is expressed as

Z ∼ ǫ−z, (1.34)

where z is a critical exponent. To account for the size effects in finite systems

one introduces the scaling function Y (y) to write

Z ≈ Y (y)ǫz, (1.35)

where y = L/ξ is a dimensionless scaling variable. The function Y is in-

dependent of the system size. So data from different system sizes should

collapse on top of each other if the exponent is chosen appropriately. This

is the working principle of finite-size scaling analysis to quantify thermody-

namic limit behavior from systems of small sizes. Such analysis has gained

importance in domain coarsening phenomena as well. This we will discuss

as we address the relevant problems.
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Chapter 2

Decay of Persistence

Probability during Ordering in

Ising Ferromagnet: Role of

Initial Correlation

2.1 Introduction

When a homogeneous system is quenched below the critical point, the

system becomes unstable to fluctuations and approaches towards the new

equilibrium via the formation and growth of particle rich and particle poor

domains [1–4]. In such nonequilibrium evolutions, over several decades, as-

pects that received significant attention are the domain pattern [3,5–9], rate

of domain growth [5, 10–15], persistence [16–25] and aging [26–31]. Average

30
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size, ℓ, of domains typically grows with time (t) as [5]

ℓ ∼ tα. (2.1)

The value of the exponent α for nonconserved order-parameter dynamics

[5, 12], e.g., during ordering in an uniaxial ferromagnet, is 1/2, in space di-

mension d = 2. In addition to the interesting structures exhibited by the

domains of like spins (or atomic magnets) in a ferromagnet, the unaffected

or persistent spins also form beautiful fractal patterns [16–19, 21, 22]. Typi-

cally, fraction of such spins, henceforth will be referred to as the persistent

probability, P , decays as

P ∼ t−θ, (2.2)

with [20, 21] θ having a value ≃ 0.22 for the Ising model in space dimension

d = 2 and ≃ 0.18 in d = 3.

The values of the exponents mentioned above are understood to be true

for the perfectly random initial configurations, that mimics the paramag-

netic phase at temperature T = ∞. Another relevant situation is to quench

a system from finite initial temperature (Ti) with a large equilibrium cor-

relation length ξ. However, this problem has received only occasional at-

tention [32–35], though experimentally very relevant. In this context, the

behavior of the two-time equal point correlation function, relevant in the

aging phenomena, was studied [33, 34] in d = 2 for Ti = Tc, the critical

temperature. It was pointed out that such quenches would form a new uni-

versality class and was shown that the decay of the above correlation was

significantly slower for Ti = Tc than Ti = ∞. In view of that, a slower decay
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of P is also expected [35]. On the other hand, the behavior of P and ℓ are

expected to be disconnected [36]. Nevertheless, the rate of growth of ℓ may

be different for Ti = Tc and Ti = ∞, at least during the transient period.

In this chapter, we address the Ti dependence for persistence and domain

growth in a ferromagnet, via Monte Carlo (MC) simulations [37] of nearest

neighbor Ising model [37]

H = −J
∑

<ij>

SiSj; Si = ±1, J > 0, (2.3)

in d = 2 and d = 3, on square and simple cubic lattices, respectively.

Starting from a high value, as Ti approaches Tc [37] [≃ 2.27J/kB in d = 2

or 4.51J/kB in d = 3, kB being the Boltzmann constant], a two-step decay in

P becomes prominent, except for Ti = Tc. For the latter initial temperature,

power-law behavior with exponents much smaller than the ones observed for

quenches from Ti = ∞ lives forever. In addition to identifying these facts,

a primary objective of the chapter is to accurately quantify these decays

and find out the influence of dimensionality. For the domain growth, on the

other hand, we do not observe a modification to the time dependence with

the variation of Ti, almost from the very beginning.

The rest of the chapter is organized as follows. In section 2.2 we briefly

describe the methods. Results from both the dimensions are presented in

section 2.3. Section 2.4 concludes the chapter with a summary and outlook.
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2.2 Methods

The nonconserved order-parameter dynamics in the MC simulations have

been incorporated via the Glauber spin-flip mechanism [38]. In this method,

a randomly chosen spin is tried for a change in sign which is accepted accord-

ing to the standard Metropolis algorithm [37]. We apply periodic boundary

conditions in all directions. Time is expressed in units of MC steps (MCS),

each MCS consisting of Ld trials, L being the linear dimension of a square or

cubic box. We have computed ℓ from the domain size distribution, Pd(ℓd, t),

as [15]

ℓ(t) =

∫

ℓdPd(ℓd, t)dℓd, (2.4)

where ℓd is calculated as the distance between two successive interfaces in

any direction. All lengths are expressed in units of the lattice constant a. We

present the results after averaging over multiple initial configurations. This

number ranges from 20 (for L = 1024) to 200 (for L = 400) in d = 2 and

from 10 (for L = 256) to 50 (for L = 64) in d = 3. The initial configurations

for Ti close to Tc were carefully prepared via very long runs. At Tc, for d = 2,

depending upon the system size, length of such runs varied between 5× 106

to 108 MCS.

2.3 Results

In this section we present the MC results and their analyses, first from

d = 2 (subsection 2.3.1), followed by d = 3 (subsection 2.3.2).
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Figure 2.1: Upper panels show snapshots during the evolution of the Glauber
Ising model with Ti = ∞, Tf = 0 and L = 512. The dotted regions represent
domains of up spins. The lower panels show the unaffected spins, marked by
dots, corresponding to the evolution snapshots above them. These results
are from d = 2.

2.3.1 d = 2

Growth of the domains have been demonstrated in the upper frames of

Fig. 2.1 for the system size L = 512 in d = 2. There we show snapshots

from two different times during the evolution of the Glauber Ising model. In

the lower frames of the figure, we show pictures marking only the persistent
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Figure 2.2: Plots of persistence probability, P , vs, time, on a log-log scale,
for quenches from Ti = ∞, with L = 512, in d = 2. Four different values of
Tf are included. The solid line there has a power-law decay with exponent
0.22.

spins. Beautiful patterns are visible. These results correspond to a quench

from Ti = ∞ to the final temperature Tf = 0.

Plots of P , for Ti = ∞ and few different values of Tf , vs t, are shown in

Fig. 2.2. The data for Tf = 0 and 0.25Tc are consistent with each other and

follow power-law, the exponent being θ ≃ 0.22. The flat behavior at the end

is due to the finite-size effects. This value of θ is consistent with the previous

observations [20, 21]. However, for higher values of Tf , as also previously

observed [18, 19], the decay is not of power-law type. This is thought to be

due to thermal fluctuation. When this fluctuation is taken care of, via the
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Figure 2.3: Log-log plots of P vs t, for quenches from different values of Ti(>
Tc), to Tf = 0, in d = 2 with L = 512. Continuous lines there correspond to
power-law decays with exponents 0.22 and 0.04.

method described below, we observe θ ≃ 0.22 for all the values of Tf included

in Fig. 2.2, in agreement with Ref. [20]. In zero temperature situation

spin-flips are related to the motion of the domain boundaries, leading to the

growth of ℓ. At nonzero temperature, on the other hand, thermal noise causes

flips in the bulk of the domains as well. Following Derrida [19], counting of

these bulk spins was discarded by simulating an ordered configuration. In

this method, flips common between the original (coarsening) system and

the ordered system were identified as part of bulk dynamics and thus were



2.3 Results 37

subtracted from the total number of flips, to stay only with the effects of

boundary motion.

It is thought that persistence and domain growth are not strongly con-

nected to each other. Interestingly, different behavior in Fig. 2.2 for Tf >

0.25Tc and Tf < 0.25Tc is strongly reflected in the domain growth also. Es-

sentially a faster early time growth is observed for Tf . 0.25Tc. This we will

briefly discuss later.

In Fig. 2.3 we show P vs t plots, on a log-log scale, for quenches to Tf = 0,

from a few different values of Ti, all for the same system size L = 512. It

appears that, in the long time limit, for Ti > Tc, the decay is power-law,

with the same exponent θ ≃ 0.22. Crossover to this exponent gets delayed

as Ti approaches Tc. In the pre-crossover regime, another power-law decay,

with smaller exponent, to be represented by θI, becomes prominent with the

decrease of Ti. Such a slower decay becomes ever-lived for Ti = Tc. The

exponent for the latter case will be denoted by θc [= θI(Ti = Tc)].

In Fig. 2.4 we present the instantaneous exponent, θi, calculated as [14,15]

θi = −d lnP
d ln t

, (2.5)

vs 1/ℓ, with the objective of accurate quantification of the second step of the

decays for Ti close to, but greater than, Tc. For the abscissa variable we have

adopted 1/ℓ, instead of 1/t, to visualize the long time limit better. This is due

to the fact that when plotted vs 1/t, overall abscissa range increases which

makes appreciation of an extrapolation difficult for the data sets correspond-

ing to lower Ti. Within statistical error, for all the presented temperatures,



2.3 Results 38

Figure 2.4: Instantaneous exponents θi are plotted vs 1/ℓ, for the quenches
in Fig. 2.3, excluding Ti = Tc case. Here we have included only the late time
behavior. The dashed lines in this figure are guides to the eyes.

it appears that the values of θ are consistent with that for the quench from

Ti = ∞ to Tf = 0. From this exercise we conclude θ = 0.225± 0.005.

Next we move to identify the exponent for Ti = Tc and Tf = 0. In

Fig. 2.3, it appears that the Ti = Tc data are reasonably consistent with

θc = 0.04. Nevertheless, before the final finite-size effects appear (showing

flat nature at very late time), there is a faster decay, albeit for a brief period.

This can well be due to the fact that for a finite system, ξ is not infinite

at T = Tc, effectively implying that the initial configurations are prepared

away from Tc. Thus, in this problem, finite-size effects have two sources.
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Figure 2.5: Instantaneous exponents θi are plotted vs 1/ℓ for two of the
quenches in Fig. 2.3. Here we have focused on the first step of the decays,
exponents for which are obtained from the flat regions. The values of θI(Ti),
for different Tis are extracted from the horizontal lines. The results are for
d = 2 in a square lattice with L = 512.

One coming from the finiteness of the equilibrium correlation length, other

being faced when the nonequilibrium domain size is close to the system size.

Thus, a quantification of the exponent θc via finite-size scaling [39] becomes

a challenging task. However, we appropriately take care of the shortcoming

below, in various different ways which provide results consistent with each

other.

In Fig. 2.5 we show the instantaneous exponents θi, vs 1/ℓ, with the
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Figure 2.6: The values of θI, obtained from the exercise in Fig. 2.5, are
plotted vs ǫ = Ti−Tc. The continuous line here is a power-law fit (see text).

objective of quantifying the first step of the decays, for two values of Ti,

close enough to Tc. As demonstrated, from the flat regions we identify the

exponent θI, which exhibits Ti dependence. These numbers are plotted in

Fig. 2.6 as a function of ǫ = Ti−Tc. The continuous line there is a fit to the

form

θI(Ti) = θc + Aǫx, (2.6)

providing θc = 0.034, A = 0.15 and x = 0.54. Recall that θc is the only decay

exponent for Ti = Tc.

To verify the above value of θc further, in Fig. 2.7 we present an exercise
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Figure 2.7: Log-log plots of P vs t, for two different system sizes, with Ti = Tc
and Tf = 0. The results correspond to d = 2.

with different system sizes. Here, we present P vs t data, for Ti = Tc, from

two different values of L. It is seen that with the increase of the system size,

there is a tendency of the data to settle down to a power-law for a longer

period of time, following a marginally faster decay at very early time. In Fig.

2.8 we show θi vs 1/ℓ for three different system sizes with Ti = Tc. The early

time behavior appears linear, extrapolation of which leads to θc ≃ 0.029.

However, if the data in the figure is closely examined, as already mentioned

above, this part corresponds to the preasymptotic behavior, thus, should be

discarded from the analysis. Actual exponents should be extracted from the
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Figure 2.8: Plots of θi vs 1/ℓ, for three different values of L, with Ti = Tc.
The dashed line is a linear extrapolation using data in the small ℓ region.
The flat regions, marked by the horizontal solid lines, provide the value of L-
dependent instantaneous exponents, θc(L). The results are from simulations
in d = 2.

flat regions of the plots. In the plots of θi vs 1/ℓ, the flat portions appear very

short. But the actual time (or length) range over which the flat behavior,

before deviating due to finite-size effects, extends, is reasonably long, say, a

few hundred MCS for the largest system size. The numbers obtained from

these flat parts, as discussed, differs due to the finite-size effects and thus,

should be extrapolated to L = ∞ appropriately. These L-dependent values,

θc(L), are plotted in Fig. 2.9 as a function of 1/L. A very reasonable linear
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Figure 2.9: The L-dependent exponents, θc(L), obtained from flat regions of
the plots (see the horizontal solid lines) in Fig. 2.8 are plotted vs 1/L. The
solid line there is a linear fit.

fit (see the solid line) is obtained, providing θc = θc(L = ∞) = 0.035. On the

other hand, a nonlinear fit (by adding a quadratic term) provides θc = 0.037.

From all these exercises we conclude that θc = 0.035 ± 0.005. This picture

remains true for quenches from Tc to nonzero values of Tf as well, if thermal

fluctuation effects are appropriately taken care of. On this issue of thermal

fluctuation, here, as well as for Ti = ∞, our conclusions are based on studies

with small system sizes.

The decay of the previously mentioned two-time correlation is also of

power-law type. For quenches from Ti = Tc, the value of the exponent for this
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quantity in d = 2 gets reduced by a factor ≃ 10, compared to Ti = ∞. In the

present case the reduction factor is ≃ 6.3. While there may be connection

between the two phenomena, but a search for matching between the two

factors may not be justified. As we will see, this reduction factor is much

smaller in d = 3. This fact, however, is consistent with the corresponding

prediction for aging dynamics [34].

It is certainly relevant to ask, if, like the decay of the persistence probabil-

ity and the two-time correlation [33], the growth of the average domain size

also exhibits initial temperature dependence. While it is expected [32–34,36]

that the long time behavior will be similar, there may be difference at the

transient level. For this quantity we make direct examination only for the

cases Ti = ∞ and Ti = Tc, for quenches to Tf = 0. Conclusion drawn from

these cases will be indirectly shown to be true for other Ti values later.

In Fig. 2.10 we present the ℓ vs t plots for these two cases, using a log-log

scale. Both the data sets appear to grow slower than t1/2, even if marginally.

This can well be due to the presence of significantly big initial length ℓ0,

which we examine below. While from this figure it is difficult to identify

any difference in the growth exponent between the two cases, there certainly

exists visible difference in the finite-size effects, noting that L = 512 in both

the cases.

To learn better about the exponents, in Fig. 2.11 we present the instan-

taneous exponents [14, 15]

αi =
d ln ℓ

d ln t
, (2.7)

with the variation of t. Here, while calculating αi, we have subtracted ℓ0
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Figure 2.10: Average domain sizes, ℓ(t), are plotted vs t, for quenches to
Tf = 0 from Ti = ∞ and Tc, in d = 2. The solid line represents t1/2 behavior.
Results are obtained from simulations in d = 2, on a square lattice with
L = 512.

which are ≃ 2 and ≃ 6.65, respectively, for Ti = ∞ and Tc. This subtraction

is meaningful, considering the fact that the pure scaling with respect to time

is contained in ℓ− ℓ0. Calculation of αi, without such subtraction, provided

early time exponents much smaller than the theoretical expectation for the

conserved dynamics [14]. This has previously been understood to be due to

the curvature dependent correction in small domain size limit. Such confusion

has recently been corrected [15]. Note that, there may be a delay time for

a system to become unstable following a quench. Thus, for an even more
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Figure 2.11: Instantaneous exponents, αi, corresponding to the plots in Fig.
2.10, vs 1/t, are shown. Long time limit data, suffering from strong finite-size
effects, have been discarded.

appropriate understanding of a time dependent exponent, the value of ℓ0

need not be treated as the length at t = 0, rather as the (fluctuating) length

at which the system falls unstable. Via finite-size scaling analysis, this was

demonstrated in a recent work [15]. Here, however, we do not undertake such

a task.

For the analysis related to Fig. 2.11, the value of ℓ0, as mentioned above,

was taken to be that of ℓ at t = 0. Thus, ℓ0 may be treated as the length

proportional to ξ at T = Ti. Question, however, may be raised that the



2.3 Results 47

value of ℓ0 should then match the system size L for Ti = Tc, since ξ is of

the order of L at Tc. Note here that, at criticality fluctuations exist at all

length scales, giving rise to clusters of all possible sizes, the average, ℓ0 here,

being much smaller than L. These estimates, even though obtained as first

moments of the cluster size distributions, are also related to the decay of the

two-point correlation functions. The latter function, at the critical point, has

power-law decay. The exponential part, that contains information on ξ, is

unity at criticality due to diverging value of ξ. Our calculation of ℓ0 cannot

thus be directly related to ξ, particularly close to Tc.

First important observation from Fig. 2.11 is that the value of αi ap-

proaches 1/2 from the upper side. This fact remains true for Tf . 0.25Tc, as

previously mentioned. This is in contrast with the corresponding behavior

for the conserved order parameter dynamics with Tf very close to zero [40].

In the latter case, the early time dynamics provides a growth exponent much

smaller than the expected asymptotic value 1/3. Second, after t ≃ 5, both

the data sets practically follow each other, implying no difference in the

growth of ℓ almost from the beginning!

From the length (or time) dependence of αi, one can write

αi = α + f(1/ℓ), (2.8)

to obtain
∫

dℓ

αl
[

1 + 1
α
f(1/ℓ)

] = ln t. (2.9)

If f(1/ℓ) can be quantified accurately from the simulation data, a full time

dependence of ℓ is obtainable. E.g., if f(1/ℓ) is a power law, Aβ/ℓ
β, Aβ being
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a constant, by taking αlβ > Aβ, one finds

ln
ℓ1/α

t
∼ 1

α2βℓβ
. (2.10)

Assuming that a correction disappears fast, such that ℓ ≃ tα, we obtain

ℓ ∼ tα exp(− C

αβtαβ
), (2.11)

C being a constant. Such full forms are useful for a finite-size scaling analysis

to accurately quantify the exponent α. It appears that even for a power-law

behavior of f(1/ℓ), the asymptotic behavior in the growth law is reached

exponentially fast. Of course, from least square fitting exercise of the ℓ vs

t data also one can aim to obtain the early time corrections. However, this

method is more arbitrary. Often derivatives help guessing the functional

forms better. This full form with the exponential correction factor provided

a good fitting to the simulation data from which we obtain α within less than

2% deviation from the expected number 0.5.

Before moving on to presenting results in d = 3, we discuss the issue of

persistence again. The essential feature in the initial configurations prepared

at different temperatures is the variation in the equilibrium correlation length

ξ. The basic question, prior to the study, one asks, how does the value of ξ

affect the decay of persistence probability? For each value of ξ, do we have a

unique exponent describing the full decay? The answer, as we have observed,

is certainly not in affirmative. Essentially, the decay exponent for Ti = ∞ is

recovered for all ξ (< ∞) in the long time limit. Only the crossover to this
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asymptotic behavior gets delayed with the increase of ξ. It is then relevant to

ask if this crossover occurs when ℓ crosses ξ, an expectation naturally occurs

from renormalization or coarse-graining point of view. Of course a confir-

mation on this expectation can be obtained from scaling plots (see below)

of P (t) by invoking the critical singularity of ξ. However, without detailed

knowledge about the finite-size effects of P and ξ, we take an alternative

route, by appropriately estimating the crossover length ℓc, from the available

simulation data.

Figure 2.12: Scaling plot of persistence probability, P , versus t/tc where the
crossover time (to the asymptotic behavior) tc has been used as an adjustable
parameter to obtain optimum data collapse. All results were obtained using
L = 512 in d = 2.
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Figure 2.13: Double log plots of ℓc − 1 versus ǫ. The circles correspond to
estimates of ℓc from tc, where we obtain the tc values from the exercise as in
Fig. 2.12. The squares are directly obtained from the scaling plots of P vs
ℓ/ℓc. The solid line has d = 2 Ising critical divergence of correlation length.
See the text for further details.

In Fig. 2.12 we show plots of persistence from different values of Ti, for

quenches to Tf = 0. Here the time axis is scaled by appropriate factors (pro-

portional to cross over time tc) to obtain collapse of data in the asymptotic

regime. Quality of collapse, on top of the Ti = ∞ data set, again confirms

that θ ≃ 0.225 in the t→ ∞ limit for all Ti (> Tc). From the square roots of

these Ti dependent scaling factors, one can obtain ℓc (within a proportionality
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Figure 2.14: Plots of P (t)(ℓ/ℓc)
2θ, θ being set to 0.225 [see Fig. 2.4], vs the

scaled variable ℓ/ℓc, for several values of Ti, using linear scale. Results are
presented using L = 512 in d = 2.

factor) which is expected to scale as

ℓc ∼ ξ ∼ ǫ−ν . (2.12)

Note that for the Ising model ν = 1 in d = 2 and ≃ 0.63 in d = 3. Consid-

ering that the Ti = ∞ data have been used as the reference case, it will be

appropriate to fit the data set for ℓc to the form ℓc − 1 = Acǫ
−ν , since (for

the current method of estimation) ℓc → 1 for Ti = ∞. Unless we are very

close to Tc such additional term cannot be neglected. In Fig. 2.13 we have
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Figure 2.15: Same as Fig. 2.14 but on a log-log scale and only for Ti = 2.35.
The continuous line there is a fit to Eq. (2.13) (see text for details).

plotted ℓc − 1 as a function of ǫ, on a log-log scale. The data set (circles)

appear consistent with ν = 1. When ℓc is extracted from tc, a more careful

exercise requires incorporation of ℓ0 and growth amplitude for each Ti. To

avoid this problem, we have also obtained ℓc directly from the scaling plots

of persistence data vs ℓ/ℓc [see this exercise in Fig. 2.14]. These values of

ℓc are represented by squares. Both data sets appear nicely consistent with

each other. Least square fittings of these data sets provide ν ≃ 0.95.

As mentioned above, in Fig. 2.14 we show scaling plots of the persistence
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probability as a function of ℓ/ℓc, for three values of Ti. There, in the ordinate,

P (t) has been multiplied by (ℓ/ℓc)
2θ, the factor 2 in the exponent coming from

the expectation that α = 1/2 for all values of Ti. For θ, we use 0.225, the

value we obtained from the analysis in Fig. 2.4. The regions of the data sets

that suffer from finite-size effects have been carefully discarded. The nice

collapse of the data and flat behavior in the long time limit reconfirms the

following facts: α = 1/2 for all values of Ti and, for ℓ > ℓc ∼ ξ, in all cases,

P (t) decays as t−θ.

It will be interesting to extract the crossover behavior from the transient

(first step) to the asymptotic (second step) decay. For this purpose, in Fig.

2.15 we have plotted the Ti = 2.35 data set on a log-log scale, for better

visibility of the early time regime. In critical phenomena, in the finite-size

scaling analysis of simulation results [41, 42], there have been long-standing

interest in obtaining such crossover functions involving thermodynamic and

finite-size limit behaviors. There typically one aims to identify if these two

limits are bridged by a power-law or by an exponential function. Along the

same line we write

P (t)x2θ = A

(

x

g(x) + x

)φ

; x = ℓ/ℓc. (2.13)

For an exponential convergence to the asymptotic behavior we write

g(x) =
B0

1 + B1 exp(x)
, (2.14)
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and for a power-law one

g(x) =
C0

1 + C1xψ
. (2.15)

In the limit x → 0, P (t)x2θ ∼ xφ, for both the forms of g(x). This limiting

behavior was set by considering the fact that for ℓ < ξ, there exist a power-

law decay in P (t) with an exponent θI, different from θ. For Ti = 2.35, this

value is θI = 0.073 [see Fig. 2.5]. In that case φ ≃ 0.304, taking θ = 0.225.

The constant A in Eq. (2.13) sets the value of the plateau in the plots of Fig.

2.14, since for x → ∞, P (t)x2θ → A. It appears that fit to the power-law

form of g(x) looks better and is best for the integral value ψ = 2. Other best

fit parameters are A = 1.52, C0 = 3.52 and C1 = 0.033. The correctness in

the value of A can straightway be checked from the figure. The continuous

line in Fig. 2.15 represents the corresponding full function of Eq. (2.13). It

will be interesting to see if such empirical full form can be confirmed via first

principle analytical calculations.

2.3.2 d = 3

In this subsection we explore d = 3. All the important facts being discussed

in the previous subsection, here we straightway present the results. Noting

that nothing remarkable happened for domain growth in the lower dimension,

we do not present any direct results for this aspect. However, remarks will

be made from indirect analysis.

In Fig. 2.16 we show the P vs t plots for quenches from Ti = ∞ and

Ti = Tc, keeping Tf = 0 in both the cases. For each value of Ti, results from

two different system sizes are presented. The data for Ti = ∞ are consistent
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Figure 2.16: Log-log plot of P vs t, for quenches from Ti = ∞ and Ti = Tc,
to Tf = 0. In each of the cases results from two different system sizes are
included. The solid lines have power-law decays with exponents 0.1 and 0.18,
as indicated on the figure. All results correspond to d = 3.

with θ = 0.18, reported previously [20]. Thus, here we aim to accurately

quantify the value of θc only.

Even though, for Ti = Tc, data from both the system sizes in Fig. 2.16

look consistent with each other, finite-size effects are detectable from a closer

look. In Fig. 2.17 we plot θi versus 1/ℓ for a few different values of L. Like

in d = 2, from the flat regions we identify system size dependent θc, a plot

of which is shown in Fig. 2.18. Again, the θc(L) vs 1/L data exhibits a

reasonable linear trend and an extrapolation to L = ∞ provides θc = θc(L =
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Figure 2.17: Instantaneous exponents θi are plotted vs 1/ℓ, for quenches from
Ti = Tc to Tf = 0 in d = 3. Results from different values of L are included.
The horizontal solid lines are related to the estimation of L-dependent θc.

∞) ≃ 0.106.

Similar to d = 2, for Tc < Ti < ∞, two step decays exist in d = 3 as

well. In Fig. 2.19 we have demonstrated the estimation of θI corresponding

to the first step, for two representative values of Ti. In Fig. 2.20 we have

plotted these exponents as a function of ǫ. A fit of this data set to the form

in Eq. (2.6) provides θI(Ti = Tc) = θc = 0.103, A = 0.074 and x = 0.47.

Note the similarity in the values of x in d = 2 and 3. This value of θc is in

good agreement with the one obtained from Fig. 2.17. In d = 3, we quote

θc = 0.105 ± 0.005. Thus, the effect of growing correlation length in the
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Figure 2.18: Plot of θc(L) vs 1/ℓ (see Fig. 2.17). The continuous line there
is a linear fitting (see text for details).

initial configurations certainly appears weaker in this space dimension. Even

though, in both d = 2 and 3, fits to the power-law form in Eq. (2.6) appear

good, due to the similarity of the values in different dimensions, x cannot be

connected to any of the other exponents ν and α, used in this chapter, in a

simple way. In this work, thus, we treat this exercise only as a reasonably

accurate numerical analysis whose validity is justified by the fact that the

derivatives of the corresponding (original) simulation data sets, with respect

to ǫ, in both dimensions, provide linear looks on double-log plots.

In Fig. 2.21 we show scaling plots of P , vs ℓ/ℓc, using data from different

values of Ti, with L = 128. Collapse of data is again good. The late time
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Figure 2.19: Plots of θi vs 1/ℓ, for two different values of Ti. Estimation
of θI corresponding to the first step in decay has been done following the
procedure used in Fig. 2.5. Here, L = 256 and d = 3.

behavior is power-law and is consistent with a decay exponent 0.54. Consid-

ering that θ ≃ 0.18 in d = 3, this implies α = 1/3 in d = 3. The nice collapse

of data sets in Fig. 2.21, for all values of Ti, implies the initial configuration

independence of this exponent. As stated in Ref. [43], deviation of α, in this

dimension, from 1/2, is not yet understood. To avoid this fact, as well as to

get rid of the influence of Ti dependent ℓ0 and growth amplitude, we have

obtained ℓc from these plots only and no attempts have been made to extract

it from scaling plots vs t/tc.

As we will see in later chapters, at very late time α = 1/2 even for d = 3.
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Figure 2.20: Plot of the Exponent θI as a function of ǫ. The continuous line
is a non-linear fitting. Further details are provided in the text. Presented
results are for L = 256 in d = 3.

Absence of this regime in the analysis of the results here do not alter our

conclusions or prescriptions to achieve various scaling properties, including

the one involving the equilibrium correlation length.

In Fig. 2.22 we plot ℓc − 1 as a function of ǫ, on a log-log scale, for two

different system sizes. The divergence of the length scale is consistent with

a power law exponent 0.63 which is the critical exponent for ξ in d = 3. The

deviation from this exponent at smaller values of ǫ is due to finite-size effects.

It is clearly seen that for the bigger system (L = 256) the effects are much

less pronounced. Note that in d = 3 it is extremely time consuming to deal
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Figure 2.21: Scaling plot of P , versus ℓ/ℓc, for three different Ti values in
d = 3, for L = 128, in log-log scale. The solid line has a power-law decay
with exponent 0.54.

with bigger systems, including initial configuration preparation at Ti = Tc.

To save time for the preparation of initial configuration, in this dimension

we have used a combination of Wolff algorithm [44] and Glauber kinetics. In

both d = 2 and 3, behavior of ℓc, as a function of ǫ, have been analyzed for

Ti values deviating by maximum of 10% from Tc.

An exercise similar to Fig. 2.14 is shown in Fig. 2.23, for d = 3. In

this case the exponent on the ordinate is 3θ, instead of 2θ. This is due to a

different value of α in the present dimension. Here also we see nice collapse
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Figure 2.22: Double-log plot of ℓc − 1, in d = 3, versus ǫ. The solid line
there has d = 3 Ising critical divergence of ξ. We have presented results for
L = 128 (circles) as well as L = 256 (squares).

for all the three sets of data we have presented. In Fig. 2.24 we do the

exercise related to the crossover function, using Ti = 4.6 data set. Here the

value of φ was set to 0.17, in accordance with the first step of the decay.

Again a power-law form of g(x) with the integral value of ψ = 2 provides

best fit, with other parameters being A = 1.76, C0 = 12.46 and C1 = 0.055.

Corresponding full function is represented by the continuous line in the figure.

In both d = 2 and 3, expectation from coarse-graining point of view that

when ℓ exceeds the value of ξ(Ti), P (t) decays with the exponent θ, has been
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Figure 2.23: P (t)(ℓ/ℓc)
3θ, with θ = 0.18, are plotted vs ℓ/ℓc, for quenches

from three values of Ti to Tf = 0, in d = 3, using linear scale.

confirmed. In the present case, the value of ξ at Tf is zero. It remains to be

seen how ξ(Tf ), for Tf 6= 0, interferes with the crossover. Even though we

have studied cases where both ξ(Ti) and ξ(Tf ) are nonzero, this particular

aspect requires more careful study.

2.4 Conclusions

In conclusion, we have studied phase ordering dynamics in Ising ferromag-

nets for various combinations of initial (Ti) and final (Tf ) temperatures in

d = 2 and 3. In this work, the primary focus has been on the persistence
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Figure 2.24: Log-log plot of P (t)(ℓ/ℓc)
3θ vs ℓ/ℓc for Ti = 4.6. The continuous

line is a fit to the function in Eq. (2.13). Further details are provided in the
text.

probability, P , and its connection with the growth of average domain size, ℓ,

as well as with the equilibrium initial correlation length ξ.

Our general observation has been that, irrespective of the value of Ti, the

decay of P becomes faster with the increase of Tf , after a certain critical

number for the latter. This is understood to be due to spins affected by

thermal fluctuations. When this effect is taken care of [19], the long time

decay appears to be power law with exponent [20,21] consistent with the one

for quench to Tf = 0.
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As Ti approaches Tc, two-step power-law decay becomes prominent, the

second part having exponent θ ≃ 0.225 in d = 2 and ≃ 0.18 in d = 3,

same as Ti = ∞ and Tf = 0 case. For Ti = Tc, thought to provide a new

universality class, the first part of the two-step process lives for ever. The

corresponding values of the exponent have been identified to be θc ≃ 0.035 in

d = 2 and θc ≃ 0.105 in d = 3. Thus the decay of persistence probability is

strongly connected with the initial correlation length. It has been shown that

the crossover length to the second step of decay diverges as the equilibrium

correlation length in both the dimensions. This leads to the question of

difference in the fractal dimensions in the pre- and post-crossover regimes.

Our preliminary study in this respect confirms the expectation that, for finite

Ti, in the post-crossover regime only the fractal dimension is same as the

Ti = ∞ case. We have also estimated the crossover function between the

two steps. It appears, a convergence to the asymptotic decay occurs in a

power-law manner, as a function of ℓ/ξ.

We have not observed any initial configuration dependence of the growth

of the average domain size. This is consistent with a previous study [36]

but more explicitly demonstrated here. Essentially, even the transients are

only weakly affected due to change in initial temperature. However, stronger

finite-size effects are detected for lower values of Ti. For domain growth,

a striking observation is that the early time exponent is much higher than

the asymptotic value, despite Tf being zero. This is at variance with the

conserved order parameter dynamics. These are all interesting new results,

requiring appropriate theoretical attention.

In future we will focus on persistence for the conserved order parameter
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dynamics. For the conserved dynamics, initial temperature dependence of

aging and domain growth are also important open problems.

The materials of the chapter are taken from the following article, with

kind permission of The European Physical Journal (EPJ): Saikat Chakraborty

and Subir K. Das, “Role of Initial Correlation in Coarsening of a Ferromag-

net”, Eur. Phys. J. B 88, 160 (2015).
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Chapter 3

Fractality in Persistence Decay

and Domain Growth during

Ferromagnetic Ordering:

Dependence upon Initial

Correlation

3.1 Introduction

Kinetics of phase transitions [1–4] remains an active area of research for

several decades. In this area, typically one is interested in the nonequilib-

rium dynamics related to the evolution of a system to a new equilibrium

state, having been quenched from a configuration prepared outside the coex-

istence curve to inside it, via the variation of temperature (T ), pressure, etc.

70
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In this work, our focus is on the paramagnetic to ferromagnetic transition [5].

When a system is quenched, via variation of T , from the paramagnetic phase

to ferromagnetic one, domains rich in like spins form and grow with time [2].

Aspects that drew attention of researchers, in this problem, are understand-

ing of domain patterns [2], growth of domains [2], aging properties of the

evolution [6–8], as well as the pattern (and corresponding dynamics) exhib-

ited by atomic magnets (or spins) that did not change orientation till time t,

referred to as persistent spins [4, 9–25]. This work deals with issues related

to domain growth and persistence.

During the process of ferromagnetic ordering (where the order parameter

is a nonconserved quantity), the average domain size, ℓ, increases as [2]

ℓ ∼ tα, (3.1)

where α, the growth exponent, may have dependence upon system dimen-

sionality (d) based on the order-parameter symmetry. This growth occurs

via motion and annihilation of defects, facilitated by change in orientation of

the spins, Si, the subscript i being an index related to an atom or spin, typi-

cally considered to be located on a regular lattice. In this work we study the

spin-1/2 Ising model, to be defined later, for which defects are the domain

boundaries. In this case, Si is a scalar quantity which gets affected only

via (complete) flipping or change in sign. For this model, the theoretical

expectation for α is same in both d = 2 and 3.

The persistence probability, P , defined as the fraction of unaffected spins,
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typically decays as [4]

P ∼ t−θ, (3.2)

where θ is expected to have dependence upon d. The persistent spins ex-

hibit interesting fractal pattern with dimensionality [17] df whose depen-

dence upon θ will be introduced later. Unless mentioned otherwise, all our

results on this issue correspond to local persistence, probability for which, as

already mentioned, is calculated by counting unaffected “microscopic” spins.

There has also been interest in the calculation of such probability by dividing

the system into blocks of linear dimension ℓb and counting the persistence

of coarse-grained or block spin variables [14, 15]. In the limit ℓb → a, the

microscopic lattice constant, such block persistence probability, Pb, will cor-

respond to P , the “local or site persistence” probability. On the other hand,

for ℓb → ∞, one obtains “global persistence” probability, further discussion

and results for which will be presented later.

For Ising model, values [2, 17, 19] of α, θ and df are accurately esti-

mated via Monte Carlo (MC) simulations, in d = 2, for quenches from initial

temperature Ti = ∞ to the final value Tf = 0. It is reasonably well estab-

lished [2,4,11–19,24] that, in this case, the values of α, θ and df are 1/2, 0.225,

and 1.58. However, the conclusions, if exists, on the corresponding numbers

for d = 3 are questionable [26–28]. Recent focus, on the other hand, for per-

sistence as well as for other aspects of coarsening, has been on [23–25,29–31]

quenches from temperatures providing large equilibrium correlation length ξ.

In this context, in a recent work [24], we have explored the initial correlation

dependence of α and θ. Our observation was, while α is insensitive to the
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Figure 3.1: Log-log plots of local persistence probability, P (t), vs t, for
quenches (of the Glauber Ising model) from different values of initial tem-
perature Ti ( ≥ Tc, the critical temperature), to the final value Tf = 0. All
results correspond to space dimension d = 2 and square lattice, with linear
dimension of the square box being L = 2048, in units of the lattice constant
a. The lines represent various power-law decays, values of the exponents
being mentioned in appropriate places.

variation of Ti (at least in d = 2), P (and thus θ) is strongly influenced by

the choice of the latter, viz., we obtained for d = 2 and 3, θ = θc ≃ 0.035

and ≃ 0.105 for Ti = Tc, the critical temperature (see Fig. 3.1 for d = 2).

The numbers quoted above are significantly different from those for Ti = ∞.

For intermediate temperatures, as seen in Fig. 3.1, two step decays can be
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noticed. A slower decay was observed for ℓ < ξ. The corresponding expo-

nent θI approaches θc as ξ → ∞, i.e, when Ti → Tc. For ℓ ≫ ξ, behavior

consistent with Ti = ∞ was obtained. This implies, dynamics of the spins

is strongly influenced by the relative values of nonequilibrium domain length

ℓ and the equilibrium correlation length ξ in the initial configuration. The

overall time decay of P , for all Ti, was empirically constructed to be [24]

P (t)x2θ = A

(

x

g(x) + x

)φ

; x = ℓ/ξ, (3.3)

with

g(x) =
C0

1 + C1xψ
, (3.4)

where A is the amplitude of the long time decay, φ = (θ − θI)/α, ψ ≃ 2,

whereas C0 and C1 are dimension dependent constants.

An extension of a study [17] (via a different model in d = 1) predicts

df = d− zθ, (3.5)

where z, to be more formally defined later, is a dynamical exponent related

to the growth of the persistence pattern. From previous studies [24,31], even

though it has been reported that the decay of P is disconnected with the

growth of ℓ, z and α may be related. Nevertheless, since such a connection

is unclear, to gain knowledge about the variation of df , as a function of Ti,

estimation of z is needed. Even if such a connection exists, as mentioned, the

value of α in d = 3 is not unambiguous. In this dimension, the theoretically

[2] expected value of α (= 1/2) disagrees with some computer simulations [14]
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which report numbers close to 1/3. This difference can possibly [26] be due

to long transient period. Thus, lengthy simulation runs with large systems

are needed. It will be interesting to see if such long simulation, luck favoring,

can provide the theoretically expected value. If yes, in that time regime, do

we see change in other quantities as well?

In this work, our objective thus, is to estimate df , z, α and θ, for Ti = ∞

and Ti = Tc, in space dimensions 2 and 3, for quenches to Tf = 0. For the

ease of reading, in Table 3.1 we provide a list of values of these quantities,

obtained from computer simulations. While the ones with asterisks, to the

best of our knowledge, will be calculated (or the simulation results will be

shown to be consistent with corresponding theoretical expectations) for the

first time, the numbers appearing inside the parentheses are improvements

over the existing ones that appear outside. We will start presenting results

with the objective of calculating df . Other quantities will be needed for this

purpose and will be estimated in due course.

Table 3.1: List of some nonequilibrium exponents for Ising model.

Case α z θ df
d = 2, Ti = ∞ 1/2 2 0.225 1.58 (1.53)
d = 2, Ti = Tc 1/2 2∗ 0.035 1.92∗

d = 3, Ti = ∞ 1/3 (1/2) 2∗ 0.18 (0.15) 2.65∗

d = 3, Ti = Tc 1/2 2∗ 0.105 2.77∗

In Fig. 3.2 we show persistence snapshots for Ti = ∞ and Tc, both from

t = 104 Monte Carlo steps (MCS), this time unit to be defined soon, for

d = 2 Ising model. It is clear that the patterns are different and so, different

values of df are expected. In Fig. 3.3, snapshots from an intermediate
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Figure 3.2: Snapshots of the persistent spins are shown for quenches from
Ti = ∞ and Tc, to Tf = 0. The results correspond to d = 2, L = 2048 and
t = 104 MCS. In both the cases only parts of the boxes are shown. The
persistent spins are marked in dots.

Figure 3.3: Snapshots of the persistent spins from different times, mentioned
on the figure, are shown for Ti = 2.4 and Tf = 0. Other details are same as
Fig. 3.2.

temperature Ti = 2.4 (> Tc), for d = 2, are presented. The first frame

corresponds to a time falling in the slower decay regime of Fig. 3.1 (for the

corresponding temperature), whereas the second one is from the faster decay
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regime, implying ℓ ≫ ξ. The earlier time snapshot resembles the Ti = Tc

picture of Fig. 3.2 and the second one has similarity with Ti = ∞ pattern.

This justifies our focus only on these two limiting initial temperatures with

ξ = 0 and ∞, rather than exploring a wide temperature range, to accurately

quantify df and z.

The rest of the chapter is organized as follows. In the next section we

describe the model and method. Section 3.3 provides a brief overview of

an earlier work. Results are presented in section 3.4. Finally, section 3.5

concludes the chapter with a brief summary and outlook.

3.2 Model and Method

As already mentioned, we study the Ising model [5], on square or sim-

ple cubic lattice systems, depending upon the dimensionality, with nearest

neighbor interactions. The Hamiltonian for the model is given by

H = −J
∑

<ij>

SiSj; Si = ±1, (3.6)

where J is the interaction strength (> 0) and < ij > implies interaction

among nearest neighbors. The values of Tc for this model in d = 2 and 3

are respectively [32] ≃ 2.27J/kB and ≃ 4.51J/kB, kB being the Boltzmann

constant.

Kinetics in this model was introduced via Glauber spin-flip mechanism

[32, 33]. In this MC approach, a trial move consists of changing the sign

of a randomly chosen spin. Since our quenches were done to Tf = 0, a
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move was accepted only if it had reduced the energy. Needless to say, initial

configurations were prepared at nonzero T values. In that case, the Metropo-

lis criterion for the acceptance of a move was implemented via appropriate

calculation of the Boltzmann factor [32] and its comparison with a random

number, ranging between 0 and 1, whenever the move brought an increment

in the energy. For preparation of initial configurations at temperatures very

close to Tc, in addition to the Glauber spin-flip moves, we have applied Wolff

algorithm [34] as well, which facilitates faster equilibration. Time, in our

simulations are measured in units of MCS, each MCS consisting of Ld steps,

L being the linear dimension of a square or cubic box. Periodic boundary

conditions were applied in all directions. Final results are presented after

averaging over multiple initial realizations, the number ranging from 20 to

70. In d = 2 all results are for L = 2048. In d = 3, the results for Ti = ∞

are for L = 512 and for Ti = Tc, we presented results from L = 400 and 256.

3.3 An Overview of the Background On frac-

tality of persistence pattern

In this section we provide a discussion on the theoretical background for

fractality of the structures formed by persistent spins, following the work by

Manoj and Ray [17].

From a density correlation function, D(r, t), isotropic in an unbiased sys-

tem, total mass or number of particles in a circular or spherical (depending
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upon dimensionality) region of radius R can be obtained as

M(R, t) ∼
∫ R

0

D(r, t)rd−1dr, (3.7)

r (= |~r|) being the scalar distance of a point in that region from the central

one. An appropriate correlation function in the present context is

D(r, t) =
〈ρ(~r0, t)ρ(~r0 + ~r, t)〉

〈ρ(~r0, t)〉
, (3.8)

with ρ being unity at a space point if the spin there did not flip till time t

and zero otherwise. The average order parameter for the persistent pattern

is

〈ρ(~r, t)〉 =
∫

d~rρ(~r, t)
∫

d~r
= P (t). (3.9)

This being a nonconserved (time dependent) quantity and, since, in the def-

inition of D(r, t), the average value is not subtracted from ρ, decorrelation

here means, decay of D(r, t) to a “non-zero” value (=P (t)), for t < ∞.

The distance, ℓp(t), at which D(r, t) reaches this plateau is the characteristic

length scale of the pattern. In that case, there may exist scaling of the form

D(r, t)

P (t)
≡ f(r/lp). (3.10)

For x (≡ r/lp) > 1, f should be unity. On the other hand, for fractal

dimension df and x < 1, one should have

f(x) ∼ xdf−d, (3.11)
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since

M ∼ xdf . (3.12)

Considering that P (t), the plateau value, decays in a power-law fashion,

a power-law behavior of f(x) is indeed expected, once scaling is achieved. A

continuity, at r = ℓp, in such a situation demands

t(df−d)/z = t−θ, (3.13)

providing Eq. (3.5), where z is the dynamic exponent characterizing the

growth of the persistence pattern, mentioned before, as

ℓp ∼ t1/z. (3.14)

For this model, as mentioned, value of α has been estimated [24] for various

Ti values in d = 2. However, a priori it is unclear whether there is a general

validity of the relation

zα = 1. (3.15)

Then it is necessary to calculate both z and θ, for correlated and uncorrelated

initial configurations, to validate Eq. (3.5). On the other hand, as already

mentioned, the value of α is ambiguous in d = 3.

3.4 Results

In Fig. 3.4 we show D(r, t) as a function of r for Ti = 2.4, from two different

times, mentioned on the figure, for d = 2. As expected, the correlation
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Figure 3.4: Density correlation functions, D(r, t), related to the persistent
spins, are plotted vs r. Results are presented from two different times, for
Ti = 2.4 and Tf = 0. The system dimensionality is d = 2 and value of L is
2048.

function decays to different constant value, P (t), at different length ℓp, for

different times. Before decaying to the plateau, the early time data appear

to obey a power-law. The later time data, for smaller r, follows the same

power-law before crossing over to another, faster, power-law decay. This

implies, there exist two length scales in the problem, below and beyond

the equilibrium scale ξ. Inside the larger structure, the small length scale

structure remains hidden, which will become irrelevant in the long time limit.

For ξ = ∞, i.e., Ti = Tc, however, the latter will be the only structure and

remain for ever. The exponent for large r, for Tc < Ti < ∞ and t ≫ 0,
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should be related to the df value for Ti = ∞ case whereas, in case of small r,

the exponent should be connected to df for Ti = Tc case. Below we focus on

these two cases, i.e., Ti = ∞ and Ti = Tc, separately, first for d = 2, followed

by d = 3. As need occurs, we will present results related to α, θ and z.

Figure 3.5: Scaling analysis of D(r, t) for the d = 2 Ising model, with Ti = Tc
and Tf = 0, where f(x) is plotted vs x = r/ℓp, using data from different times
after the quench, on log-log scale. The solid line corresponds to a power-law
decay with an exponent 0.09. The value of L is 2048 for all the results.

In Fig. 3.5 we present a scaling exercise [17, 19] for D(r) where we have

plotted f(x) as a function of x, using data from different times after quench,

for Ti = Tc and d = 2. Scaling appears good and gets better with the progress

of time. On this log-log plot, look of the data appear, before decaying to

unity, linear, implying a power-law decay. The exponent appears to be ≃
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Figure 3.6: Same as Fig. 3.5 but for Ti = ∞. The solid line here has the
power-law decay exponent 0.45.

0.09. In Fig. 3.6, we show analogous exercise for Ti = ∞. Even though this

case in this dimension was studied by Jain and Flynn [19], for the sake of

comparison and completeness, we present it here from our own simulations.

In this case, the exponent for the power-law decay appears consistent with

0.45. Then, in d = 2, for Ti = ∞, the fractal dimensionality is 1.55 and for

Ti = Tc, the number is 1.91, if Eq. (3.11) is valid.

We show the plots of ℓp vs t in d = 2, for Ti = ∞ (Fig. 3.7) and Ti = Tc

(Fig. 3.8), on log-log scales. In both the cases the data appear consistent

with z = 2, validating Eq. (3.15) (note that α is established to be 1/2

in d = 2). Nevertheless, we intend to make more accurate quantification.
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Figure 3.7: Log-log plot of persistence length scale, ℓp, as a function of t, for
d = 2 Ising model, following quench from Ti = ∞ to Tf = 0, with L = 2048.
The solid line represents a power-law growth with the exponent 1/2.

For this purpose, in Fig. 3.9 and Fig. 3.10 we have shown instantaneous

exponents (dash-dotted lines), zi, calculated as [35]

1

zi
=
d ln ℓp
d ln t

, (3.16)

vs 1/ℓp. In both the cases we obtain the value of z via linear extrapolation

(see the consistency of the simulation data with the solid line) to ℓp = ∞.

For Ti = ∞, from this exercise, we quantify z = 2.15 and for Ti = Tc,
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Figure 3.8: Same as Fig. 3.7, but here Ti = Tc. The solid line corresponds
to power-law growth with exponent 1/2.

we obtain the number z = 2.02 (see the dashed horizontal lines). These

numbers, in addition to verifying Eq. (3.15), are also consistent with the

numbers obtained via least square fitting of the ℓp vs t data to the form

ℓp = ℓ0z + Azt
1/z, (3.17)

where ℓ0z and Az are positive constants. This consistency may imply, early

time corrections to the exponents are insignificant. Note here that, in absence
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Figure 3.9: Instantaneous exponent, zi, obtained using the data in Fig. 3.7.
The horizontal dashed line correspond to our estimate for z, whereas solid
line is guide to the eyes.

of any correction, one expects [36, 37]

1

zi
=

1

z

[

1− ℓ0z
ℓp

]

, (3.18)

a linear behavior of 1/zi, when plotted vs 1/ℓp, with slope −ℓ0z/z. A positive

slope in both is due to the fact that we have presented inverse of the quantity

discussed in Eq. (3.18). Using these values of z, and numbers for θ, men-

tioned earlier, in Eq. (3.5), we obtain df = 1.93 for Ti = Tc and df = 1.51
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Figure 3.10: Same as Fig. 3.9, but here Ti = Tc. The dashed and the solid
lines have the same meaning as in Fig. 3.9.

for Ti = ∞. These values, within computational errors, are consistent with

the conclusions from Fig. 3.5 and 3.6. Next we present results from d = 3.

In d = 3, we start by presenting results for the growth of ℓ, considering the

controversy [14,24,26] on the value of α discussed above. In d = 2, we avoided

presenting results on this aspect with the understanding that the issue there

is well settled. Nevertheless, in the context of global persistent decay, we will

make indirect conclusion about it. Here note that the estimation of ℓ was
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done from the first moment of domain size distribution, p(ℓd, t), as

ℓ(t) =

∫

ℓdp(ℓd, t)dℓd, (3.19)

where ℓd is the distance between two domain boundaries in a particular di-

rection. Fig. 3.11 shows a plot of ℓ vs t, on log-log scale, for quenches of

Figure 3.11: Log-log plot of ℓ vs t, in d = 3, for Ti = ∞. The solid lines
correspond to different power laws, exponents for which are mentioned.

the d = 3 Ising system from Ti = ∞ to Tf = 0. There exists an interme-

diate time regime, extending over more than two decades, during which the

simulation data show consistency with an exponent α = 1/3, in agreement

with previous results [14]. However, as discussed and a trend demonstrated
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in Ref. [26], the discrepancy in the earlier reports from the theoretical num-

ber 1/2 can be due to long transient. Thus, long simulation runs with large

systems are necessary. We have simulated a system with L = 512 for time

longer than any of the previous works, to the best of our knowledge. Indeed,

it appears that the long time behavior, over the latest time decade in the

presented time range, is consistent with α = 1/2. In Fig. 3.12 we show the

Figure 3.12: Plot of instantaneous exponent αi, as a function of 1/ℓ. The
dashed horizontal lines represent exponent values 0.36 and 0.48. The results
are for Ti = ∞ and d = 3.

instantaneous exponent

αi =
d ln ℓ

d ln t
, (3.20)
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as a function of 1/ℓ. This provides an accurate picture, the long time ex-

ponent being within 5% of the theoretical value. One may then ask, is the

value of θ going to change, beyond this crossover time? Even if θ has no

dependence on the value of α, such a change may still occur. Note that

conclusion on the value of θ, in earlier works [16, 24], were drawn from runs

shorter than this. Indeed, a jump in θi, calculated from

θi = −d lnP
d ln t

, (3.21)

occurs (see Fig. 3.13 and Fig. 3.14) from an early time value of ≃ 0.18 to

Figure 3.13: Log-log plot of P (t) vs t, for d = 3 and Ti = ∞.

≃ 0.15. This may, of course, be due to statistical or other reasons. However,
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Figure 3.14: Instantaneous exponent θi is plotted as a function of 1/ℓ. Hor-
izontal dashed lines are for θ = 0.176 and 0.15. The results correspond to
Ti = ∞ and d = 3.

since the jump in αi occurs around the same time as the one for θi and

fluctuation is seen around stable mean values, in both αi and θi, we accept

this as the correct number for θ in the asymptotic time limit.

Whether due to lattice anisotropy [14] or anything else, the solution to

overcome such long transient is certainly related to being able to access large

length scales. For Ti close to Tc, since this is automatically the case, due to

large initial correlation, we expect an enhanced value of α from early time.

Corresponding ℓ vs t data are presented in Fig. 3.15. On the log-log scale,

this data set shows consistency with α = 0.45. Here we mention that study
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for Ti = Tc has additional problems related to longer equilibration time at the

initial temperature and stronger finite-size effects during the nonequilibrium

evolution [24]. The latter remark can be appreciated from the plot in Fig.

Figure 3.15: Log-log plot of ℓ vs t, for d = 3, L = 400 and Ti = Tc. The solid
line corresponds to a power-law growth with exponent 0.45.

3.15 where a bending of the data set (from the power-law behavior) is visible

from t = 103. This should be compared with the corresponding data in Fig.

3.11 for Ti = ∞. Thus, accessing very large length scales, without finite-size

effects, in this case is extremely difficult. The P vs t data, shown in Fig.

3.16, exhibit consistency [24] with θc ≃ 0.105. Since, α is very close to 1/2

already, we do not expect much change in θc even in true asymptotic length
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or time limit. The calculations of αi and θi in this case provide numbers

consistent with the ones quoted above.

Next, we come back to the issue of fractality. For d = 3 Ising model, our

results in this context are entirely new irrespective of the value of Ti.

Figure 3.16: Plot of P vs t, for d = 3, Ti = Tc and Tf = 0, on log-log scale.
The solid line there represents a power-law decay with exponent 0.105.

Fig. 3.17 is analogous to Fig. 3.6 (Ti = ∞ results for f(x)) but here

it is for d = 3. The corresponding f(x) vs x scaling plot for Ti = Tc in

d = 3 is presented in Fig. 3.18. Again, for both Ti = ∞ and Ti = Tc, good

data collapse are obtained for results from different times, in these scaling

plots. For both values of Ti, we have used data sets lying in the time ranges



3.4 Results 94

Figure 3.17: Scaling function f(x) is plotted vs x, for d = 3, Ti = ∞ and
Tf = 0, using data from few different times. The solid line has a power-law
decay with exponent 0.38. The results were obtained for simple cubic lattice
with L = 256.

that provide consistency with the expected theoretical number for α. In the

relevant region, the Ti = Tc results have power-law decay with exponent 0.24.

In case of Ti = ∞, the value of this exponent is approximately 0.38. These

numbers imply df = 2.76 and 2.62 for Ti = Tc and Ti = ∞, respectively.

We show ℓp vs t plots from d = 3 for Ti = ∞ and Ti = Tc in Fig. 3.19 and

Fig. 3.20 respectively. In the long time limit, the results, in both of them,

appear consistent with growth having z = 2. This is in agreement with Eq.

(3.15). From the log-log plot for Ti = ∞, like ℓ vs t, a long time transient is
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Figure 3.18: Same as Fig. 3.17 but for Ti = Tc. Here the solid line has a
power-law decay exponent 0.24.

clearly visible. To quantify z more accurately (in the t→ ∞ limit), for both

Ti = ∞ (Fig. 3.21) and Ti = Tc, (Fig. 3.22) we have shown the instantaneous

exponents, vs 1/ℓp. From there, we extract z = 2.1 for Ti = ∞ and 2.15 for

Ti = Tc. Alongwith the above mentioned numbers for z, using the values

of θ for quenches from Ti = Tc and Ti = ∞, we obtain df ≃ 2.78 and 2.68.

These numbers are consistent with those obtained from the scaling plots in

Fig. 3.17 and 3.18, providing higher confidence on our estimation of θ from

long time limit, for Ti = ∞. An interesting exercise here would have been to
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Figure 3.19: Log-log plot of persistence length scale, ℓp, as a function of t, for
d = 3 Ising model, following quench from Ti = ∞ to Tf = 0, with L = 512.
The solid lines correspond to power-law growths with exponents mentioned
there.

plot ziαi vs t. However, a constant value of unity cannot be obtained because

of the fact that ℓ and ℓp have different initial off-sets. This is evident from

Fig. 3.12 and Fig. 3.21. While for the time dependence of ℓ, a long transient

with α ≃ 1/3 is visible, this is not so for the time dependence of ℓp. Thus,

because of the off-set related reason mentioned above, ziαi = 1 is expected

to be valid only in the t→ ∞ limit.
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Figure 3.20: Same as Fig. 3.19, but here Ti = Tc and L = 256.

Finally, we turn our attention to the block persistence which was intro-

duced by Cueille and Sire [14]. The corresponding probability Pb, as already

mentioned, is related to the change in the order-parameter variable obtained

by coarse-graining the site or microscopic spin variables over a block of linear

size ℓb. It is expected that the decay of this probability will be significantly

slower than the site or local persistence probability, to which the former

should cross over only for ℓ > ℓb. This two time-scale behavior is desirable

by considering that, in the early time regime, a slower decay is forced by the

fact that a sign change in block spin variable happens only when ℓ becomes
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Figure 3.21: Instantaneous exponent, zi, obtained using the data in Fig. 3.19,
is plotted vs. 1/ℓp. The horizontal dashed line correspond to our estimates
for z and the solid line there is guide to the eyes.

comparable to ℓb and in the large ℓ limit, the blocks effectively appear as

sites. It is expected then that a scaling should be obtained as [14]

Pbℓb
θ0/α ≡ h(t/ℓb

1/α), (3.22)

where θ0 is the exponent of the early part of the decay or global persistence

exponent in the sense that when ℓb → ∞, this is the only exponent. In d = 2,

we will see that the best scalings, in accordance with Eq. (3.22), are obtained
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Figure 3.22: Same as 3.21, with Ti = Tc and L = 256.

for α = 1/2, irrespective of the value of Ti. In d = 3, on the other hand, due

to long transient in the dynamics, we avoid presenting these results.

In addition to the above mentioned understandings, calculation of per-

sistence probability via such blocking may have advantage for quenches to

nonzero temperature. Note that for Tf 6= 0, thermal fluctuation from bulk

of the domains affects the calculation when done via standard method. Con-

sidering that domain growth occurs essentially due to spin flips along the

domain boundaries, in the calculation of P , dynamics inside the domains

needs to be discarded. In a method, prescribed by Derrida [12], this is done
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by simulating an ordered system, alongside the coarsening one, and subtract-

ing the common flipped spins, identifiable as the bulk flips, between the two

systems, from the total, thus sticking to the effects of only the boundary

motion. In the block spin method, if ℓb is significantly larger than ξ at Tf ,

thermal fluctuations will not alter the sign of block spins and in the large

ℓ (> ℓb) limit, as previously stated, one expects the decay to be consistent

with local persistence. This saves computational time for simulating the

additional systems with ordered configurations.

Figure 3.23: Plots of block persistence probabilities, Pb(t), vs t, from different
values of ℓb, for Ti = Tc, in d = 2. We have used L = 2048.

In Fig. 3.23 we show Pb vs t plots from d = 2, for a few different values
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Figure 3.24: Scaling plots of the persistence probabilities in Fig. 3.23. The
scaling function h(x) is plotted, on a log-log scale, vs x = t/ℓb

1/α. Various
power-law decays are shown by solid lines with the exponent values being
mentioned next to appropriate lines.

of ℓb and Ti = Tc. It appears, as discussed, there exist two step decays

and crossover to the faster (consistent with the local persistent decay) one is

delayed with increasing ℓb.

In Fig. 3.24 we show a scaling exercise using the data of Fig. 3.23

where we have plotted h(x) vs t/ℓb
1/α. For obtaining collapse of data, we

have adjusted θ0 and α. The value of α used here is 0.49, that provides
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Figure 3.25: Scaling plot similar to Fig. 3.24 is presented for Ti = ∞ with
d = 2 and L = 2048. Solid lines in the figure represent various power-laws
with exponents mentioned there.

the best collapse. This number is certainly consistent with 1/2, within nu-

merical error. Early time behavior corresponds to global persistence with

θ0 = 0.002 and the late time behavior is consistent with our previous esti-

mation of θc ≃ 0.035, for the site persistence probability. In Fig. 3.25 we

have shown corresponding scaling results for Ti = ∞, for which θ0 and θ

values (mentioned on the figure) are consistent with previous findings [14].

The value of α that provides the best collapse here is 0.5. Note that in our

earlier work such independence of α from Ti was directly (from the analysis
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of ℓ vs t data) checked for this dimension.

3.5 Conclusion

We have presented results for coarsening dynamics in Ising model, with

nonconserved order parameter, from space dimensions d = 2 and 3. The

results include domain growth law and persistence, for quenches with initial

configurations of varying correlation length ξ. While presented results for

persistence are mostly related to local order parameter [9–13], for the global

case [14,15] we have obtained new exponent for quench from initial temper-

ature Ti = Tc, in d = 2. For local persistence, our results are summarized in

the next paragraph.

A central objective of this chapter has been to identify the differences

in the patterns formed by persistent spins when systems are quenched from

Ti = ∞ and Ti = Tc, to the final temperature Tf = 0. For both the cases,

corresponding fractal dimensionalities df , as well as the exponent z, related

to the growth of the persistent pattern, have been obtained in various di-

mensions. A scaling law connecting df , d, z and θ, predicted by Manoj and

Ray [17], has been observed to be valid, irrespective of the values of d and

Ti. Combining various methods, we quote, for Ti = ∞,

df = 1.53± 0.02, d = 2,

df = 2.65± 0.03, d = 3,

(3.23)
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and for Ti = Tc,

df = 1.92± 0.02, d = 2,

df = 2.77± 0.02, d = 3.

(3.24)

On the standard domain growth problem, it is shown that the values

of α in both dimensions for all initial temperatures are consistent with the

theoretical expectation α = 1/2. This number describes the growth of the

persistent pattern as well, validating Eq. (3.15) and confirming that domain

growth occurs essentially due to dynamics of spins along the domain bound-

aries. This resolves a controversy in d = 3 for which some previous computer

simulations reported α = 1/3. As mentioned in Ref. [26], this discrepancy

must have been due to lack of data for extended period of time. Long sim-

ulations in our work, in addition to resolving this controversy, corrects the

value of θ as well in this dimension.

In future we will address similar issues for conserved order parameter

dynamics, including aging phenomena. For both conserved and nonconserved

dynamics, scaling properties and form of the two-point correlation function

will be an important problem for the case of correlated initial configurations.

The materials of the chapter are taken from the following article, with

kind permission of American Physical Society (APS): Saikat Chakraborty

and Subir K. Das, “Fractality in Persistence Decay and Domain Growth
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during Ferromagnetic Ordering: Dependence upon initial correlation”, Phys.

Rev. E 93, 032139 (2016).
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Chapter 4

Kinetics of Ferromagnetic

Ordering in 3D Ising Model for

Zero Temperature Quench

4.1 Introduction

When a paramagnetic system is quenched inside the ferromagnetic region,

by a change of the temperature from Ti (> Tc) to Tf (< Tc), Tc being the

critical temperature, it becomes unstable to fluctuations [1–5]. Such an out-

of-equilibrium system moves towards the new equilibrium via the formation

and growth of domains [1–3]. These domains are rich in atomic magnets

aligned in the same direction and grow with time (t) via the curvature driven

motion of the interfaces [2, 3, 6]. The interface velocity scales with ℓ, the

average domain size, as [2, 6]

109
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dℓ

dt
∼ 1

ℓ
. (4.1)

This provides a power-law growth [2, 6]

ℓ ∼ tα, (4.2)

with α = 1/2. Depending upon the order-parameter symmetry and system

dimensionality (d), there may exist corrections to this growth law [2].

Apart from the above mentioned change in the characteristic length scale,

the domain patterns at different times, during the growth process, are sta-

tistically self-similar [2, 3]. This is reflected in the scaling property [2],

C(r, t) ≡ C̃(r/ℓ), (4.3)

of the two-point equal-time correlation function C, where r (= |~r1 − ~r2|) is

the scalar distance between two space points and C̃ is a master function,

independent of time. A more general correlation function involves two space

points and two times, and is defined as [3]

C(~r1, tw;~r2, t) = 〈ψ(~r1, tw)ψ(~r2, t)〉 − 〈ψ(~r1, tw)〉〈ψ(~r2, t)〉, (4.4)

where ψ is a space and time dependent order parameter. The total value of

the order parameter, obtained by integrating ψ over the whole system, is not

time invariant for a ferromagnetic ordering [2]. Thus, the coarsening in this

case belongs to the category of “nonconserved” order parameter dynamics
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[2]. For ~r1 = ~r2, the definition in Eq. (4.4) corresponds to the two-time

autocorrelation function, frequently used for the study of aging properties

[3, 7, 8] of an out-of-equilibrium system, tw(≤ t) being referred to as the

waiting time or the age of the system. For the two point equal-time case, on

the other hand, tw = t. The autocorrelation will henceforth be denoted as

Cag(t, tw). This quantity usually scales as [3, 7–12]

Cag(t, tw) = C̃ag(ℓ/ℓw), (4.5)

where C̃ag is another master function, independent of tw, and ℓw is the value

of ℓ at tw. Another interesting quantity, in the context of phase ordering

dynamics, is the persistence probability P [13–20]. This is defined as the

fraction of unaffected atomic magnets (or spins) and decays in a power-law

fashion with time as [13]

P ∼ t−θ. (4.6)

In the area of nonequilibrium statistical physics, there has been immense

interest in estimating the exponents α and θ, as well as in obtaining the

functional forms of C̃ and C̃ag, via analytical theories and computer simula-

tions [2, 3, 13].

In this work, we study all these properties for the nonconserved coarsening

dynamics in the Ising model [21],

H = −J
∑

<ij>

SiSj, J > 0, Si = ±1, (4.7)

via Monte Carlo (MC) simulations [21]. We focus on d = 3 and study ordering
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at Tf = 0, for rapid quenches from Ti = ∞. This dimension, particularly for

Tf = 0, received less attention compared to the d = 2 case. In d = 2, the MC

results for C(r, t) are found to be in nice agreement with the Ohta-Jasnow-

Kawasaki (OJK) function [2, 3, 22] (D being a diffusion constant)

C(r, t) =
2

π
sin−1

[

exp

(

− r2

8Dt

)]

. (4.8)

This expression also implies α = 1/2, validity of which has been separately

checked [2, 3]. For the latter dimension (d = 2), in the long time limit, the

autocorrelation is understood to scale with x (= ℓ/ℓw) as [7, 9, 12, 23]

Cag(t, tw) ∼ x−λ, (4.9)

with λ following a lower bound,

λ >
d

2
, (4.10)

predicted by Fisher and Huse (FH) [7]. In this case, also the persistence

exponent θ has been estimated [17, 18, 24, 25] for quenches to Tf = 0. Fur-

thermore, a few of these aspects, viz., the equal-time correlation function (for

large r) and domain growth, are understood to be independent of the value

of Tf .

While the above aspects were studied in d = 3 as well, our interest in

the zero temperature quench in this dimension was drawn by works [26–29]

that reported much slower domain growth than the theoretical expectation.
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Here we mention that below and above the roughening transition temper-

ature (TR), value of which is nonzero [29] (≃ 0.57Tc) in d = 3, there exist

differences in structural properties [27]. Above TR interfaces are rounded

and the corresponding width (in equilibrium) logarithmically diverges with

the system size. Below TR, on the other hand, the interfaces are flat and

the width has no such system-size dependence. Thus, it may be natural to

expect that the dynamics will also be different for Tf < TR and Tf > TR. As

stated above, in this work we study structure and dynamics of coarsening

for Tf = 0 and compare some of these results with those for Tf = 0.6Tc that

lies above TR. Here note that the coarsening dynamics for Tf > TR is well

understood [5].

The ordering dynamics of d = 3 Ising model at Tf = 0 were studied

by other authors as well [30–32]. For Tf = 0 sponge-like structure was

reported [31, 32] in d = 3 and late time behavior, from simulations of small

system sizes, of the domain growth was shown [31, 32] to be extraordinarily

slow. Our focus here, thus, will be to probe the dynamics over long time

without being affected by finite size of the systems. Here we also mention that

the zero-temperature late time dynamics of the time dependent Ginzburg-

Landau (TDGL) model in this dimension was shown [33] to be consistent

with theoretical expectation. Thus, it is important to establish that Ising

model is not different. For experimental results in this context, see Ref. [5].

While addressing this issue, via simulations with large system sizes over

long period, we made further interesting observations in other quantities. In

this chapter, we present these results on pattern, growth, aging and persis-

tence. While our studies for pattern and aging are new, the results for growth
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and persistence are presented in forms different from a previous work [34],

to bring completeness to the discussion. It appears, previous conclusions on

the value of α was led by the presence of an exceptionally long transient

period, which was later hinted in Ref. [29]. In the “true” long time limit,

the growth exponent is indeed 1/2. Such a trend we observe in the decay

of the persistence probability as well. On the other hand, the pattern and

aging properties do not seem to exhibit any crossover. These results are very

much different from those obtained for quenches to a temperature above the

roughening temperature. Such temperature dependence does not exist in

the d = 2 case. Wherever necessary we presented results from the latter

dimension as well.

The rest of the chapter is organized as follows. In section 4.2 we describe

the methods. Results are presented in section 4.3. Finally, we conclude the

chapter in section 4.4 by presenting a summary.

4.2 Methods

All our results were obtained via MC simulations of the Ising model us-

ing Glauber spin-flip moves [21, 35], where, in each trial move the sign of

a randomly chosen spin was changed. Here we use the name Glauber only

to emphasize that the trial moves are related to flipping of single spins, to

distinguish it from the exchange moves of Kawasaki, involving pairs of spins,

that provide conserved order-parameter dynamics [21]. Algorithm for ac-

cepting these moves are described below. For Tf = 0, a move was accepted

if it brought a negative change in the energy. Here note that in the zero
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temperature case moves that bring no change in energy are accepted with

different probabilities [31,32], viz., 0, 1/2 and 1, results from which are con-

sistent with each other. In this work we accept such moves with probability

1. On the other hand, for Tf > 0, whenever a trial move brought a higher

energy contribution, the acceptance was decided by comparing the corre-

sponding Boltzmann factor with a random number (drawn from an uniform

distribution), a standard practice followed in the Metropolis algorithm [21].

As stated in Ref. [21], the conclusions should remain same if one uses the

Glauber acceptance algorithm instead.

In d = 2 we have used square lattice and for d = 3 the results are from

simple cubic lattice. All simulations were performed in periodic boxes of

volume V = Ld, L being the linear dimension of a box, in units of the lattice

constant. For this model, the d-dependent critical temperatures [21] are

Tc ≃ 2.269J/kB (d = 2) and Tc ≃ 4.51J/kB (d = 3), kB being the Boltzmann

constant. Time in our simulations was measured in units of MC step (MCS),

each MCS consisting of Ld trial moves [21]. Unless otherwise mentioned,

all results are presented after averaging over at least 10 independent initial

configurations, with L = 512. For the rest of the chapter we set kB, the

lattice constant and the interaction strength (J) to unity.

The average domain size was calculated in two different ways: (i) from

the first moment of the domain size distribution Pd(ℓd, t) as [36]

ℓ =

∫

ℓdPd(ℓd, t)dℓd, (4.11)

ℓd being the distance between two successive interfaces along any direction,
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and (ii) using the scaling property of the correlation function as [2]

C(ℓ, t) = 0.1. (4.12)

The average domain size can also be calculated from the first moment of the

structure factor (to be introduced later) as well as from the excess energy

above the ground state [37]. The results from all these methods should be

proportional to each other in the dynamical scaling regime. This fact we

have checked by working with a number of methods in other works. Unless

otherwise mentioned, presented results in this work are from Eq. (4.11). For

this purpose, we have eliminated the noise in the configurations at nonzero

temperatures, by applying a majority spin rule [36]. Note that the order-

parameter ψ here is equivalent to the Ising spin variable Si. Thus, further

discussions on the calculation of the other quantities are not needed since

those are clearly understandable from the definitions.

4.3 Results

We start by showing the plots of ℓ vs t, for d = 2 and 3, at Tf = 0, on a

log-log scale, in Fig. 4.1. The system size considered here is comparable to

the early studies [26, 27] in d = 3. The data for d = 2 is clearly consistent

with the exponent α = 1/2, for the whole time range [2, 3]. On the other

hand, after t = 10 the d = 3 data appear parallel to α = 1/3. For accurate

estimation of the exponent for a power-law behavior it is useful to calculate
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Figure 4.1: Log-log plots of the average domain length, ℓ(t), vs time, for
Tf = 0. Results from both d = 2 and 3 are presented. In both the cases
linear dimension of the system is L = 200. The solid lines correspond to two
different power-law growths, exponents being mentioned in the figure.

the instantaneous exponent [38]

αi =
d ln ℓ

d ln t
, (4.13)

as well as perform finite size scaling (FSS) analysis [21, 39]. In Fig. 4.2 we

plot αi as a function of 1/ℓ. Clearly, for d = 3, the convergence of the data

set, in the limit ℓ = ∞, is consistent with α = 1/3, while the d = 2 data

converge to α = 1/2. Since the data for large ℓ in this figure are noisy, to
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Figure 4.2: Plots of the instantaneous exponent, αi, vs 1/ℓ, obtained from
the data in Fig. 4.1.

understand the stability of the d = 3 exponent over long period, we perform

the FSS analysis (see Fig. 4.3). We do not perform this exercise for d = 2,

since, in this case we have already seen that the data are consistent with the

theoretical expectation, as established previously [2, 3]. In fact, from here

on, unless otherwise mentioned, all results are from d = 3 and Tf = 0.

In analogy with the critical phenomena [39], a finite-size scaling method

in the domain growth problems can be constructed as [36, 40,41]

ℓ(t) = LY (y), (4.14)
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Figure 4.3: Finite-size scaling exercise for the d = 3 results for ℓ(t). Here we
have shown the scaling function Y with the variation of the dimensionless
quantity y. Y was obtained from the best collapse of data from three different
system sizes (mentioned in the figure). The solid line corresponds to a power
law decay with exponent 0.35. These results are from Tf = 0.

where the finite-size scaling function Y is independent of the system size but

depends upon y (= L1/α/t), a dimensionless scaling variable. In the long

time limit (y → 0), when ℓ ≃ L, Y should be a constant. At early time

(y >> 0), on the other hand, the behavior of Y should be such that Eq.

(4.2) is recovered (since the finite-size effects in this limit are non-existent).

Thus

Y (y >> 0) ∼ y−α. (4.15)

In the FSS analysis, α is treated as an adjustable parameter. For appropriate
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choice of α, in addition to observing the behavior in Eq. (4.15), data from

all different values of L should collapse onto a single master curve. In Fig.

4.3 we have used α = 0.35. The quality of collapse and the consistency of

the power-law decay of the scaling function with the above quoted exponent,

over several decades in y, confirm the stability of the value. Thus, it was not

inappropriate for the previous studies [26, 27] to conclude that the growth

is much slower. Nevertheless, given the increase of computational resources

over last two decades, it is instructive to simulate larger systems over longer

periods [29], to check if a crossover to the theoretically expected exponent

occurs at very late time.

Figure 4.4: Log-log plot of ℓ(t) vs t, for d = 3 and Tf = 0, with L = 512.
The rest of the results are presented for this particular system size. The solid
lines indicate different power-law growths, the exponents being mentioned.

In Fig. 4.4 we present the ℓ vs t data, on a log-log scale, from a much
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larger system size [34] than the ones considered in Fig. 4.1 to Fig. 4.3.

Interestingly, three different regimes are clearly visible. A very early time

regime shows consistency with α = 1/2. This is followed by an exponent

1/3, that stays for about three decades in time. Finally, the expected α =

1/2 behavior is visible, for nearly a decade, before the finite size effects

appear. In this case, an appropriate FSS analysis, to confirm the later time

exponent, requires even bigger systems with runs over much longer times,

which, given the resources available to us, was not possible. Thus, for an

accurate quantification of the asymptotic value of α, we restrict ourselves

to the analysis via the instantaneous exponent [38]. In Fig. 4.5, we have

Figure 4.5: Plot of instantaneous exponent αi as a function of t, the x-axis
being in log scale, for the data presented in Fig. 4.4. The horizontal solid
lines there correspond to α = 1/3 and 1/2.
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plotted αi as a function of t. The quantity shows a nice late time oscillation

around the value 1/2. This is at variance with the data at high temperature.

See the ℓ vs t data, on a log-log scale, from Tf = 0.6Tc, in Fig. 4.6. Here

we observe α ≃ 1/2 for the whole time range. For this data set as well we

avoid presenting results from further analyses. We have not been able to

understand the multiple scaling regimes in the Tf = 0 data. As mentioned

above, for Tf = 0, similar results [33] with different regimes were observed in

the TDGL model as well.

Figure 4.6: Same as Fig. 4.4 but for Tf = 0.6Tc. The continuous line there
corresponds to a power-law growth with exponent 0.48.

For Tf = 0, the crossover that occurs in the time dependence of ℓ, may

be present in other properties as well [34]. These we check next. For the
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Figure 4.7: Log-log plot of the persistence probability, P (t), as a function of
t, for d = 3, Tf = 0 and L = 512.

persistence probability, the value of θ was previously estimated [18], also

from smaller system sizes, to be ≃ 0.17. In Fig. 4.7 we show a log-log plot

of P vs t and the corresponding instantaneous exponent θi (see Fig. 4.8),

calculated as [38]

θi = −d lnP
d ln t

, (4.16)

vs t, for the same (large) system as in Fig. 4.4. The early time data is

consistent with the previous estimate. At late time there is a crossover [34]

to a smaller value ≃ 0.15, the crossover time being the same as that for the

average domain size. Here note that, despite improvements [16, 28, 34], the
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Figure 4.8: Instantaneous exponent, θi, vs t, x-axis being in a log scale. The
horizontal solid lines there correspond to the ordinate values 0.176 and 0.15.

situation with respect to the calculation of persistence at non-zero tempera-

ture may not be problem free, for the reason stated below. Curvature driven

coarsening essentially occurs due to flipping of spins in the domain-boundary

regions. However, for Tf > 0, spins inside the domains also flip. Even though

the growth mechanism is same, such microscopic dynamics for Tf > 0, due to

thermal fluctuation, affects the calculation of P . To overcome the problem,

Derrida [16] proposed simulations of ordered systems as references so that the

bulk spin-flips can be appropriately discounted. While we have checked that

this method works reasonably well for Tf close to 0, at very high tempera-

ture calculations may still suffer from errors because of interface broadening
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effect. Thus, for this quantity we avoid presenting results from Tf = 0.6Tc.

Figure 4.9: Log-log plots of the autocorrelation function, Cag(t, tw), vs ℓ/ℓw,
for Tf = 0 and 0.6Tc. For each value of Tf , results from multiple ages are
presented. The solid line corresponds to a power-law decay, exponent for
which is mentioned on the figure.

In Fig. 4.9 we show the plots of Cag(t, tw), vs ℓ/ℓw, from Tf = 0 and

0.6Tc, on a log-log scale, for different values of tw. Good collapse of data,

for both the values of Tf , are visible over the whole range of the abscissa

variable. This, in addition to establishing the scaling property of Eq. (4.5),

implies the absence of the finite-size effects [23,42]. On the issue of the finite

size effects for the nonconserved Ising model, a previous study [23] showed

that such effects become important only for ℓ > 0.4L. The length of our
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simulations were set in such a way that we are on the edge of this limit. For

Tf = 0, this can be appreciated from the ℓ vs t data in Fig. 4.4. Here note

that for conserved Ising model the finite-size effects start appearing when ℓ

is approximately 3/4th of the equilibrium domain size limit [36]. Thus, the

effects are rather strong here and this fact is consistent with the late time

dynamics reported elsewhere [31, 32].

From a Gaussian auxiliary field ansatz, in the context of the time depen-

dent Ginzburg-Landau model [2], Liu and Mazenko (LM) [9] constructed a

dynamical equation for C(~r1, tw;~r2, t). For t ≫ tw, from the solution of this

equation, they obtained (see Eq. (4.9)) λ ≃ 1.67 in d = 3. The solid line in

Fig. 4.9 represents a power-law decay with the above mentioned value of the

exponent. The simulation data, for both values of Tf , appear inconsistent

with this exponent. Rather, the simulation results on the log-log scale exhibit

continuous bending. Such bending may be due to the presence of correction

to the power law decay at small values of x. Thus, more appropriate analysis

is needed to understand these results.

In Fig. 4.10 we plot the instantaneous exponent [9, 23, 38]

λi = −d lnCag

d ln x
, x =

ℓ

ℓw
, (4.17)

as a function of 1/x, for Tf = 0.6Tc. A linear behavior is visible, extrapolation

of which, to x = ∞, leads to λ ≃ 1.63. The latter number follows the FH

bound [7] (see Eq. 4.10)) and is in good agreement with the theoretical

prediction of LM [9]. Inserting the linear trend of λi in its definition (Eq.
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Figure 4.10: Plot of the instantaneous exponent, λi, vs 1/x, for Tf = 0.6Tc,
with tw = 300 MCS. The solid line is a guide to the eyes.

(4.17)), one obtains a full form for the autocorrelation function to be [23]

Cag = C0exp

(

− B

x

)

x−λ, (4.18)

where C0 and B are constants. This empirical form was obtained by keeping

in mind its usefulness in estimation of an accurate value for λ via finite-

size scaling analysis. In fact, such an analysis [23] provided a value 1.66 ±

0.03 which, though closer to the LM one, is slightly higher than a previous

estimate [43]. Here note that there already exists [12] a full form, derived

from the local scale invariance, for the decay of Cag during coarsening in
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Figure 4.11: Log-log plot of the ratio, R, between the master curves for the
autocorrelations at Tf = 0.6Tc and 0, as a function of x.

the ferromagnetic Ising model. Validity of this has been demonstrated in

studies [44] of q (> 2)-state Potts model. The accuracy of our expression can

be justified by comparing it with the latter. However, even though derived

from a rigorous theoretical method, this expression contains a large number

of unknowns which are not easy to estimate via fitting of the simulation data.

In d = 2, for which the values of the unknowns were provided by the authors,

we have checked that our equation is a reasonable approximation to this.

The decay of Cag, as seen in Fig. 4.9, for Tf = 0 appears slower than that

for Tf = 0.6Tc. To confirm that, in Fig. 4.11 we plot the ratio R, between

Cag for Tf = 0.6Tc and Tf = 0, on a log-log scale, vs x. Over the whole range
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of x, that covers pre- as well as post-crossover regimes for domain growth, the

data exhibit power-law behavior that can be captured by a single exponent

≃ 0.15. This implies an absence of crossover in the decay of this quantity and

λ ≃ 1.5, a number significantly smaller than that for Tf = 0.6Tc. Irrespective

of whether the FH lower bound has actually been violated or not, such small

value of λ, compared to the Tf = 0.6Tc case, is an interesting observation

which calls for further discussion and calculation of the structural properties.

Yeung, Rao and Desai (YRD) made a more general prediction of the lower

bound [11], viz.,

λ >
d+ β

2
, (4.19)

where β is the exponent [45, 46] for the small wave-number (k) power-law

enhancement of the structure factor (the Fourier transform of C(r, t)):

S(k) ∼ kβ. (4.20)

Here note that S(k, t) has the scaling form (for a self-similar pattern) [2]

S(k, t) ≡ ℓdS̃(kℓ), (4.21)

where S̃ is a time independent master function. We call Eq. (4.19) a more

general lower bound because of the fact that this was derived by keeping

both conserved and nonconserved order-parameter dynamics in mind. For

nonconserved order parameter [11], as in the present case, β = 0. Thus the

YRD lower bound in this case is same as the FH lower bound. Also note

here that originally the FH bound was predicted from the studies of spin-glass
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systems which later was found to be relevant in coarsening systems like the

one considered here, as also was hinted by these authors. The YRD result,

on the other hand, was derived by focusing on coarsening in ferromagnets

and multicomponent mixtures. The FH bound can as well be appreciated

Figure 4.12: Scaling plot of the two-point equal time correlation functions
from Tf = 0 and d = 3. The distance along the abscissa has been scaled by
the average domain sizes at different times from which data are presented.
The solid curve corresponds to the OJK form (see Eq. (4.8)).

from the OJK expression for the general correlation function [3, 22] of Eq.

(4.4). This has the form

C(r; t, tw) =
2

π
sin−1 γ, (4.22)
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with

γ =

(

2
√
ttw

t+ tw

)d/2

exp

[

− r2

4D(t+ tw)

]

. (4.23)

For t = tw, this leads to Eq. (4.8). For r = 0 and t >> tw, Eq. (4.23)

provides

Cag(t, tw) ∼
(

t

tw

)−d/4

. (4.24)

For α = 1/2, the exponent in Eq. (4.24) provides λ = d/2, which coincides

with the FH lower bound. Since the latter bound is embedded in Eq. (4.22)

Figure 4.13: Same as Fig. 4.12, but for Tf = 0.6Tc. The solid curve there
represents the OJK form (see Eq. (4.8)).

and the violation of it for Tf = 0 is a possibility, it is instructive to calculate

the structural quantities, viz., C(r, t) and S(k, t), given that Eq. (4.22)
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contains expressions for the latter quantities as well.

Figure 4.14: Scaled correlation functions from different Tf in d = 2. The
continuous curve is the the OJK function of Eq. (4.8).

In Fig. 4.12 we show a scaling plot of C(r, t), vs r/ℓ, for Tf = 0, ℓ being

extracted from Eq. (4.12). Nice collapse is visible for data from wide time

range. Given that no crossover in C(r, t) is observed and aging property is

strongly related to the structure, it is understandable why a crossover in the

autocorrelation is nonexistent. The continuous line in this figure is the OJK

function [2, 3, 22] of Eq. (4.8). There exists significant discrepancy between

the analytical function and the simulation results. This is expected, given

the sponge-like structure [31, 32] observed for Tf = 0. In Fig. 4.13 of this

figure we plot the corresponding results for T = 0.6Tc which, on the other
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hand, shows nice agreement with Eq. (4.8). Here note that in d = 2 such

temperature dependence does not exist [3]. For the sake of completeness,

this we have demonstrated in Fig. 4.14. Data from all the temperatures in

this case are nicely described by the OJK function.

Figure 4.15: Plots of the structure factors, from Tf = 0 and 0.6Tc, vs k.
The solid line represents the Porod law. For both the temperatures, we have
presented results from t = 5000. These results are from d = 3.

In Fig. 4.15 we show a comparison between the structure factors from

Tf = 0 and Tf = 0.6Tc, in d = 3. The k−4 line in this figure corresponds

to the Porod law [2, 3, 47] for the long wave-number decay of S(k, t), a con-

sequence of scattering at sharp interfaces like facets at Tf = 0. Data from

both the temperatures show reasonable consistency with this decay, even in

intermediate range of k. For the sake of bringing clarity in the small k region,



4.3 Results 134

we did not present the results for the whole range of k. In the smaller wave-

number region, disagreement between the slopes in the two cases is visible.

This may provide explanation for the small value of λ for Tf = 0. For this

purpose, below we provide a discussion on the derivation of YRD. Starting

from the equal-time structure factors at tw and t, YRD arrived at [11]

Cag(t, tw) ≤ ℓd/2
∫ 2π/ℓ

0

dkkd−1[S(k, tw)S̃(kℓ)]
1/2. (4.25)

To obtain the lower bound, they used the small k form for S(k, tw), as quoted

in Eq. (4.20). In Fig. 4.15 we see that, compared to Tf = 0.6Tc, the the

structure factor for Tf = 0 starts decaying at a smaller value of k, providing

an effective negative value for β. The statement on the negative value of β

can be further appreciated from the fact that the upper limit of integration

in Eq. (4.25) is higher for Tf = 0 given that average domain size in this case

is smaller. This is the reason for such a small value of λ. In future, we intend

to calculate λ more accurately for Tf = 0.

Given that Tf = 0.6Tc lies above the roughening transition temperature,

possibility exists [29] that the observed differences between kinetics at the two

different values of Tf may be related to this transition [48]. Here note that the

results for Tf = 0.6Tc are in agreement with our preliminary results for even

higher values of Tf . Systematic studies, however, are needed below TR to rule

out that these are not zero-temperature properties, thereby confirming the

above mentioned possibility. We mention here, most of the previous studies

with nonconserved Ising model focused on d = 2, for which there is no non-

zero TR. Furthermore, question remains, why the crossovers, exhibited by the
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growth of domains and the decay of persistence, are missing in the structure

and aging? This fact, e.g. for aging, may have similarity with outcomes

from some studies in upper critical dimension. If t and tw are chosen to be

very large, it will be difficult to identify any correction that appears only

additively to the leading order scaling form [49,50].

Even though the focus of the chapter is on the coarsening dynamics at

Tf = 0, we would like to further discuss the results for Tf > 0. We restate

the fact that for nonzero temperature C(r, t) and ℓ(t) were calculated after

eliminating the thermal noise from the original configurations via a majority

spin rule. This exercise essentially makes the interfaces sharp and provides

“pure” domain structure in the bulk, facilitating appropriate identification

of the domain length by washing out fluctuations at the scale of equilibrium

correlation length. Almost perfect match of the OJK function of Eq. (4.8)

with the simulation data is because of this reason. If the noise is not elim-

inated, there will be discrepancy in the small r region, reason for deviation

from the Porod law in large k limit. This was pointed out by Oono and

Puri [51]. The corresponding modified form [4,5,51] of C(r, t) contains a fac-

tor (1 + aω2/t)−1, appearing in front of the exponential in Eq. (4.8), where

a is a constant and ω is the interface width. Given that there now exist

multiple unknowns, extraction of ℓ(t), as well as ω, via fitting of the sim-

ulation data (obtained from original configurations) to this modified form,

is less reliable. Our noise elimination exercise is performed by keeping such

problem in mind. However, the values of ℓ(t), obtained from such noise-free

configurations, contain ω as well. One important question can now be asked:

whether the true domain size should include ω or not. If the answer is in
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Figure 4.16: Log-log plots of ℓ vs t, with (modified) and without (original)
subtracting the interface width (ω(t)) from ℓ(t). The solid line represents a
power-law with α = 1/2.

affirmative, all our analyses and conclusions are correct. Otherwise, ω should

be appropriately subtracted. Abraham and Upton [52] pointed out that in

d = 3, above the roughening transition, ω ∼ (lnt)1/2. Further analyses for

Tf = 0.6Tc (in d = 3) have been performed by subtracting such logarith-

mic time dependence of ω from ℓ(t). This way, compared to Fig. 4.6, the

early time log-log data for ℓ vs t appear more consistent with the exponent

α = 1/2. Such an exercise, however, does not alter our conclusion on the

late time behavior. This is expected, since the (weak) correction is additive.

Similar fact we observe in the aging exponent λ. These results are presented
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Figure 4.17: Plots of λi vs 1/x (x = ℓ/ℓw) with and without subtracting ω(t)
from ℓ and ℓw. The solid lines are guides to the eye. All results correspond
to d = 3 and Tf = 0.6Tc.

in Fig. 4.16 and Fig. 4.17 where the first figure contains the data for domain

growth and results for λi are shown in the latter. In both the cases we have

shown comparative pictures between the original and modified analyses. Of

course, Tf = 0 results do not require any such exercise.

4.4 Conclusion

We have studied kinetics of phase transition in 3D non-conserved Ising

model via the Monte Carlo simulations [21], following quench from Ti = ∞
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to Tf = 0. Results are presented for domain growth, persistence probability,

aging and pattern, all of which exhibit new features, compared to studies in

d = 2 and quenches to higher temperature for d = 3. The time dependence

of the average domain size shows consistency with the expected theoretical

behavior only after an exceptionally long transient period [29, 34]. This is

reflected in the persistence probability [34]. However, no such transient was

observed for quenches to a temperature above the roughening transition.

The two-point equal time correlation function does not follow the Ohta-

Jasnow-Kawasaki form [22], derived for the nonconserved order-parameter

dynamics with scalar order parameter. The latter form, however, is found

to be consistent with the simulation data above the roughening transition

temperature. Unlike the domain growth and persistence, we did not observe

any time dependence (crossover) for this observable. This is reflected in the

decay of the autocorrelation function. The latter quantity, at Tf = 0, appears

to have a power-law decay exponent marginally satisfying the Fisher-Huse

lower bound. These results are at deviation with those from d = 2 for which

there is no non-zero roughening transition.

It will be important to understand the temperature dependence in all

these quantities via more systematic studies. This may as well provide im-

provements in the inputs for the derivation of the OJK function. Further-

more, the reason for long transient in domain growth and persistence deserves

attention. These we aim to address in future works.
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The materials of the chapter are taken from the following article, to be

published in Eur. Phys. J. Spec. Top., with kind permission of The European

Physical Journal (EPJ): Subir K. Das and Saikat Chakraborty, “Kinetics

of Ferromagnetic Ordering in 3D Ising Model: How far do we understand the

case of zero temperature quench?”
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Chapter 5

Aging during Coarsening in

Ferromagnetic Ising Model for

Zero Temperature Quench

5.1 Introduction

Following quench from a homogeneous configuration to a state inside the

coexistence curve, as a system evolves towards the new equilibrium, various

correlation functions exhibit interesting scaling properties [1–10]. A rather

general correlation function involves two space points (~r1, ~r2) and two times

(t, tw), and has the definition [2]

C22(~r1, ~r2; t, tw) = 〈ψ(~r1, t)ψ(~r2, tw)〉 − 〈ψ(~r1, t)〉〈ψ(~r2, tw)〉. (5.1)

145



5.1 Introduction 146

Here ψ is a space and time dependent order-parameter field. For isotropic

structures, which we assume to be true for the cases addressed in this chapter,

the space dependence in C22 comes through r = |~r1 −~r2|, the scalar distance

between ~r1 and ~r2. For t = tw, C22 is referred to as the two point equal time

correlation function [1, 2], to be denoted by C(r, t). On the other hand, for

~r1 = ~r2, C22 is referred to as the two-time autocorrelation function [2]. The

latter quantity, to be represented by Cag(t, tw), is often used for studying

aging in nonequilibrium systems [2, 3], where tw (< t) is referred to as the

age of the system.

The two point equal time correlation function follows the scaling behavior

[1, 2, 9]

C(r, t) ≡ C̃(r/ℓ(t)), (5.2)

where C̃ is a time independent master function [1] and ℓ is the average length

of domains, rich or poor in particles or spins of particular type. Typically, ℓ

grows as a power-law [1] with exponent α (ℓ ∼ tα). The scaling property in

Eq. (5.2) implies that the structures at two different times differ from each

other only by a change in length scale [1]. On the other hand, Cag(t, tw), in

many situations, exhibits the scaling form [2–4,6–8,10–12]

Cag(t, tw) ≡ C̃ag(x); x = ℓ/ℓw, (5.3)

where ℓw is the characteristic length scale of the system at time tw.
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There has been serious interest in understanding the forms of these corre-

lation functions for coarsening dynamics with and without conservation [1,2]

of the total value of the order parameter (=
∫

V
d3~rψ(~r, t), V being the system

volume). Remarkable progress has been made with respect to the noncon-

served order-parameter case [1, 2]. Most of these studies are related to the

coarsening in ferromagnetic Ising model [1, 2] (〈ij〉 stands for nearest neigh-

bors)

H = −J
∑

〈ij〉

SiSj, Si = ±1, J > 0, (5.4)

or the time dependent Ginzburg-Landau (TDGL) model [1, 2], a coarse

grained version of the kinetic Ising model.

Ohta, Jasnow and Kawasaki (OJK) [9], via a Gaussian approximation of

an auxiliary field [1, 2, 9], obtained an expression for C22 that reads

C22(r; t, tw) =
2

π
sin−1 γ, (5.5)

where

γ =

(

2
√
ttw

t+ tw

)d/2

exp

[ −r2
4D(t+ tw)

]

, (5.6)

d being the system dimension and D a diffusion constant. For t = tw, from

Eqs. (5.5) and (5.6) one obtains

C(r, t) =
2

π
sin−1

[

exp

(−r2
8Dt

)]

. (5.7)
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On the other hand, for r = 0 and t >> tw, we have

Cag(t, tw) ∼
(

t

tw

)−d/4

. (5.8)

Given that [1, 2, 13] the value of α is 1/2 for the nonconserved Ising model,

Eq. (5.8) implies

Cag(t, tw) ∼
(

ℓ

ℓw

)−λ

; λ =
d

2
. (5.9)

Liu and Mazenko (LM) [4], via similar Gaussian approximation of the aux-

iliary field of the order parameter in the TDGL equation, obtained different

values for λ. Exact solution of the dynamical equation for C22, that LM con-

structed, provides the result same as the OJK one in d = 1. Approximate

solutions in d = 2 and 3 provide [4] λ ≃ 1.29 and ≃ 1.67, respectively.

For the exponent λ, Fisher and Huse (FH) [3] provided the bounds

d

2
≤ λ ≤ d, (5.10)

that apply to nonconserved order parameter dynamics. Later, Yeung, Rao

and Desai (YRD) [6], by incorporating the structural differences between

conserved and nonconserved dynamics, obtained more general lower bounds

as

λ >
d+ β

2
, (5.11)

where β is a power-law exponent related to the small wave-number (k) en-

hancement of the structure factor [14, 15]:

S(k, t) ∼ kβ. (5.12)
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It has been shown that β = 0 for nonconserved dynamics. This leads to the

FH lower bounds. Here note that S(k, t) is the Fourier transform of C(r, t)

and has the scaling form [1,2]

S(k, t) ≡ ℓdS̃(kℓ), (5.13)

where S̃(kℓ) is a time independent master function.

Predictions of both OJK and LM follow the FH bounds. Simulations of

the nonconserved Ising model in d = 2 showed consistency [2, 16] with the

OJK function in Eq. (5.7) and the LM value [11] for λ. The latter fact

appeared true [11, 16] in d = 3 as well for quenches to a nonzero tempera-

ture (Tf ) from an initial temperature (Ti) far above the critical value (Tc).

However, the d = 3 Ising model appears to be different and difficult [17–23]

for Tf = 0. There exists difference (with respect to the theoretical expec-

tation [13]) in the time dependence of ℓ. In a recent work [23], we showed,

via simulations of very large systems, that the expected power-law with ex-

ponent α = 1/2 becomes visible only at very late time. Studies with smaller

systems revealed interesting behavior with respect to achieving the expected

ground state [21, 22]. Interesting structural aspects were also reported. In

the structural context, we showed that C̃, unlike the d = 2 case, differs from

that at high temperatures [16]. Given the connection between structural and

aging properties discussed above, it is then a natural question to ask, does

there exist difference in the values of λ for Tf = 0 and Tf > 0? Our previ-

ous study [16], in fact, suggested the possibility of violation of the FH lower

bound for Tf = 0 in d = 3. To confirm that, better analysis of data are
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needed.

In this chapter, for the nonconserved Ising model we present results for

the decay of Cag(t, tw), for Tf = 0, in d = 2 and 3. Via state-of-the-art finite-

size scaling [11, 12, 24, 25] analysis of the Monte Carlo (MC) simulation [25]

results, we arrive at the following conclusions. As previously observed, we

do not notice any temperature dependence in the case of d = 2. For d = 3,

the estimated value of the exponent, obtained from significantly long period

of simulations, indeed violates the FH lower bound. This however can be

explained via the structural consideration of YRD.

The rest of the chapter is organized as follows. In Section 5.2, we discuss

the methods. Results are presented in Section 5.3. Finally we summarize

our results in Section 5.4.

5.2 Methods

Coarsening in the nearest neighbor Ising model is studied via MC sim-

ulations [25] in periodic square (d = 2) or cubic (d = 3) boxes. We have

used square lattice in d = 2 and simple cubic lattice in d = 3. The values

of Tc for this model [25] in d = 2 and 3 are respectively ≃ 2.269J/kB and

≃ 4.51J/kB, kB being the Boltzmann constant. We have used the Glauber

spin-flip moves [26], a standard method to introduce kinetics for noncon-

served case. Essentially, for a trial move, the sign of a randomly chosen spin

is changed. The move is accepted if such a change lowers the energy of the

system. For no energy change, one can use different probabilities for accept-

ing the moves [21, 22]. In this work all such moves were accepted. Time
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in our simulations was measured in units of MC steps (MCS) [25], one step

consisting of Ld trial moves, L being the linear dimension of a system (in

units of the lattice constant). For the sake of convenience, in the rest of the

chapter we set kB, J and the lattice constant to unity.

For the calculation of length [16], we have identified the size, ℓd, of various

domains by scanning the systems in all possible directions. Two successive

changes in sign in any direction identified a domain and the distance between

the locations of sign changes provided the the corresponding length. The

average value, ℓ, was obtained from the first moment of the time dependent

distributions thus obtained. Here note that ℓ can be obtained from the scaling

properties [1, 2] of C(r, t) and S(k, t) as well. The measures from different

functions are expected to be same, apart from constants of proportionality.

Note that the spin variable Si is similar to the order parameter field ψ.

Thus, the calculations of various correlation functions do not require any

further discussion.

All our results are presented after averaging over a minimum of 10 inde-

pendent initial configurations. Other than the finite-size scaling analysis, all

presented data are for L = 512.

5.3 Results

For the sake of completeness, we start by showing the results for domain

growth in Fig. 5.1. There we have presented ℓ vs t data for both d = 2

and 3, on a log-log scale. The solid lines represent power-laws with the

exponent values mentioned next to them. Clearly, for d = 2, the data set
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Figure 5.1: Plots of the average domain size, ℓ, vs time, on a log-log scale.
Results from both d = 2 and 3 are included. The solid lines represent power-
laws, exponents for which have been mentioned. The horizontal dashed line
marks the location of the appearance of finite-size effects.

for the whole presented time range show consistency with α = 1/2. The

deviation at the end is related to the finite-size effects which appear when [11]

ℓ ≃ 0.4L. The data from d = 3, on the other hand, show different trend.

After a very brief initial period, the result is consistent with α = 1/3 over

a few decades [23]. Towards the end, there, of course, exists consistency

with [23] α = 1/2. Appearance of the finite-size effects again is consistent

with the number mentioned above. The behavior in the finite-size affected

regime is rather complex, leading to difficulty in arriving at the final ground

state [21, 22].

Next, in Fig. 5.2 and Fig. 5.3 we demonstrate the scaling property of
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Figure 5.2: Log-log plots of the correlation function Cag(t, tw), vs ℓ/ℓw, for
d = 2. Results from a few different values of tw are shown. The solid line
corresponds to a power-law decay with exponent λ = 1.29.

the autocorrelation function [16]. Here Cag(t, tw) is plotted as a function

of ℓ/ℓw, for different values of tw. Results in Fig. 5.2 are from d = 2,

whereas the d = 3 data are presented in Fig. 5.3. Very nice collapse of data

can be appreciated for both the dimensions. Deviations from the scaling,

in the case of d = 2, is related to finite-size effects [11, 12]. This appears

at a smaller value of x for a larger value of tw, as expected. For d = 3,

the presented data are from the finite-size unaffected region. The solid lines

in these figures are power-laws with LM values of λ. Clearly, there exist

discrepancies between the LM exponents and the simulation results. We

observe continuous bending [11] in the scaling functions obtained from the

simulations. This is possible when there exist corrections [11]. In such a
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Figure 5.3: Same as Fig. 5.2, but here it is for d = 3. The solid line here has
the power-law exponent 1.67.

situation, calculation of the instantaneous exponent [4, 11, 12, 27]

λi = −dCag

dx
, (5.14)

can provide useful information. In Fig. 5.4 we show λi, as a function of

1/x, for the d = 2 case. Results for two different values of tw are included.

Data for the larger value of tw deviates from a small x linear behavior, as x

increases. This is due to finite-size effects and can be appreciated from the

continued linear trend exhibited by the data from the smaller value of tw. A

linear extrapolation to x = ∞ provides a value λ ≃ 1.3. Invoking the linear

behavior in the definition in Eq. (5.14) one obtains an exponential correction
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factor [11, 12], i.e.,

Cag(t, tw) = Ae−
B
x x−λ, (5.15)

A and B being constants. Thus, one obtains a power law only in the t >> tw

Figure 5.4: Instantaneous exponent, λi, for the d = 2 Ising model, is plotted
as a function of ℓw/ℓ. The values of tw are mentioned on the figure. The
solid line is a guide to the eye.

limit. Similar behavior is observable in Fig. 5.5 where we have presented data

for d = 3. Here the strong oscillation of the larger tw data is related to the

statistical fluctuation. In this case the data exhibit convergence to a value

λ ≃ 1.2. While for d = 2 the convergence is consistent with that for higher

temperature, there exists serious departure in the case of d = 3 from the

LM prediction. Note that the LM prediction in d = 3 matches well with the
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Figure 5.5: Same as Fig. 5.4, but here it is for d = 3.

the conclusions from the simulation studies at higher temperature [11]. In

fact λ = 1.2 is far below the lower bound of FH. Even though reasonably

accurate estimate is possible from such extrapolations, one can do better by

performing finite-size scaling analysis [11, 12], given that the data at large

x may suffer from statistical error and finite-size effects. A finite-size data

collapse exercise (using different system sizes) will also be useful for bringing

confidence in the form of Eq. (5.15), which essentially is an empirical form.

In Fig. 5.6 and Fig. 5.7 we present Cag vs ℓ/ℓw results from different

system sizes, by fixing the value of tw, in d = 2 and d = 3, respectively.

Results from smaller systems deviate from the master curves for large value

of x. In a finite-size scaling method one looks for collapse of data from
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Figure 5.6: Same as Fig. 5.2, but here we have fixed the value of tw and
presented data from different L in d = 2. The value of tw is mentioned.

various system sizes [24, 25]. Such a method for the analysis of the data

for autocorrelation function was recently constructed [11, 12]. Like in the

critical phenomena [24, 25], here also one introduces a scaling function Y ,

independent of system size, as

Cag(t, tw) = Ae−
B
x x−λY (y), (5.16)

where y is a dimensionless scaling variable. In the present case this should

be the ratio between x′ (= L/ℓw) and x. The choice of x′ is driven by the

dimension of x and the fraction of the total system size available to explore,

given that the measurement starts at tw. Thus, y = L/ℓ.
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Figure 5.7: Same as Fig. 5.6, but here it is for d = 3 and tw value is different.

The behavior of Y , to be obtained from collapse of data from different

values of L (as mentioned above), can be described as follows. For large y,

i.e., ℓ << L, we do not expect finite-size effects. In that case, inspection of

Eq. (5.16) states that Y should be a constant. For small y, i.e., as ℓ → L,

from the behavior of Cag (in Fig. 5.6 and Fig. 5.7), it is clear that Y should

decrease. Such characteristic features, as well as a collapse of data from

various different system sizes can be realized if λ is chosen appropriately,

alongside the constant B. In our data collapse exercise we will treat these

two quantities as adjustable parameters.

Given that the autocorrelations are normalized to unity for x = 1, the

value of A should be 1. At nonzero temperatures, there exists coupling

between equilibration of domain magnetization and that of the whole system
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[2]. For low value of Tf , the relaxation related to the domain magnetization

occurs very fast to a value almost unity. Thus scaling of Cag, with respect to

Figure 5.8: Finite-size scaling analysis of the autocorrelation function in
d = 2. Here we have obtained the scaling function Y from the collapse of
data from different system sizes, for a fixed value of tw, mentioned on the
figure.

ℓ/ℓw, is expected to be observed from rather small values of tw. Nevertheless,

minor mismatch at early time is observed even in the Tf = 0 case for different

system sizes. This may have to do with sponge like structure formation

[21, 22], particularly in d = 3. Thus, we will avoid very small x limit data

and normalize the rest of the data sets in such away that there is matching

in the value of A for data coming from all system sizes, before performing

the finite-size scaling analysis. Even though in an earlier study [11], we have

obtained good data collapse by using finite-size ℓ in the scaling variable y,



5.3 Results 160

Figure 5.9: Same as Fig. 5.8, but here we do the exercise for d = 3.

ideally one should use the thermodynamic limit value. For d = 2, we will use

ℓ ∼ t1/2, since this behavior is observed from very early time. On the other

hand, the d = 3 case is rather complex. In this case, we will use the ℓ values

from ℓ = 512 since this data set does not suffer from finite-size effects in the

time period over which Cag has been calculated.

Results from the finite-size scaling analysis are presented for d = 2 in Fig.

5.8, whereas same results for d = 3 are presented in Fig. 5.9. In the case of

d = 2, very good collapse of data is obtained for λ = 1.32 and B = 0.80. This

value of λ, within statistical error, is in agreement with a previous study [11]

for Tf = 0.6Tc and consistent with the prediction of LM. For d = 3, on

the other hand, the number (λ = 1.1) is very different from that at higher

temperature [11]. Here note that the high temperature result is in good
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Figure 5.10: Scaling plot of the structure factor in d = 2. The solid line
represents a power-law, exponent for which is mentioned in the figure.

agreement with the LM value. Furthermore, the value of λ at Tf = 0 is far

below the lower bound of FH, the conclusion being consistent with that from

the analysis of the instantaneous exponent. The question then comes, is it a

true violation of the bound? This can be understood from the derivation of

YRD.

In Fig. 5.10 and Fig. 5.11 we show the plots of S(k, t) from d = 2 and 3

respectively. Our focus here is to obtain the scaling behavior of Eq. (5.13).

Nice collapse of data, in both the dimensions, signify that the chosen values

of tw for the finite-size scaling analyses are well inside the scaling regime. The

power-laws with exponent −3 and −4 represent the Porod laws [28]. Starting

from the equal time structure factors at tw and t, YRD, for the derivation of
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Figure 5.11: Same as Fig. 5.10, but here it is in d = 3.

Figure 5.12: Plots of the structure factor, vs k, on a double log scale, for
d = 2 and d = 3.
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the lower bound, used the small k behavior of S(k, tw) [cf. Eq. (5.12)] in

Cag ≤ ℓd/2
∫ b

0

dkkd−1[S(k, tw)S̃(kl)]
1/2, (5.17)

where b, the upper limit of the integration, equals 2π/ℓ. In Fig. 5.12 we

present S(k, t) vs k plots on a log-log scale. For both d = 2 and 3, we have

chosen t = 2000 MCS. The vertical dashed lines there correspond to the

upper limit b for different dimensions, corresponding to a time (104 MCS)

reasonably larger than 2000 MCS. It appears, the upper limit of integration

for d = 3 covers a significant range of k over which S(k, t) decreases, providing

a negative value of β. Given that the growth of ℓ is much slower in d = 3

than in d = 2 over a long intermediate period, one needs to go to very

large ℓ to access β = 0 behavior. Thus, even if a crossover occurs to the

value predicted by LM, simulations with much larger systems with orders of

magnitude longer period of time will be needed to observe that.

5.4 Conclusion

We have studied the aging property of the nearest neighbor ferromagnetic

Ising model via Monte Carlo simulations [25] using Glauber spin flip [25,26]

moves. Our focus was on zero temperature quench for d = 2 and 3. Quanti-

tative information on the decay of the two time autocorrelation function was

obtained via finite-size scaling [11,12] and other methods of analysis. These

were discussed with reference to the corresponding results for quenches to

nonzero temperatures [11].
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The autocorelations exhibit nice scaling with respect to x (= ℓ/ℓw). The

late time behavior is described by power-laws, Cag(t, tw) ∼ x−λ. At early

time there exists exponential correction factor. These features are very much

similar to those for high temperature quenches [11].

In d = 2, the value of λ is in agreement with the LM value. However, the

d = 3 result differs significantly from the nonzero temperature result [11],

the latter being consistent with the LM value. The estimated value not only

differs from the LM prediction, it appears to be far below the lower-bound of

FH. We argue, via analysis of the structure factor, in line with the derivation

of YRD, that this is not a true violation if the small k behavior of S(k, t) is

appropriately accounted for.
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Chapter 6

Pattern Formation, Growth

and Aging in a 2D Active

Matter Model

6.1 Introduction

Collective movements [1] performed by a school of fish, flock of birds,

herd of sheeps, etc., give rise to fascinating phenomena. These systems are

different from the “passive” systems (i.e., traditional systems composed of

particles or spins), because the constituents of the former are self-propelling

in nature. From this point of view, these systems are “active”. In the theo-

retical literature of active matters, phase behavior [2–5] and various critical

exponents have been calculated for simple model systems [6–8]. With respect

to the phase behavior there exist experimental works as well [9,10]. Recently,

168
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there is a steady growth of interest in the kinetics of phase transitions in ac-

tive matters [11–14], i.e., to learn, how a system, starting from a state in the

disordered or homogeneous phase, moves towards the ordered or clustered

phase.

In this chapter we focus on the kinetics of clustering [15, 16] in a model

active matter system. Interesting recent results [17] in spatial dimension

d = 3 motivated us to undertake this study in d = 2. The questions are

similar to those for passive systems, viz., the formation and growth of pattern

[15,16,18], aging [16,19,20], etc.

Patterns in out-of-equilibrium systems are probed via the equal time two-

point correlation function C(r, t), defined as [16]

C(r, t) = 〈ψ(~r, t)ψ(~0, t)〉 − 〈ψ(~r, t)〉〈ψ(~0, t)〉, (6.1)

where ψ is a space (~r) and time (t) dependent order parameter. One of the

important properties exhibited by many of the systems undergoing phase

ordering is structural self-similarity. This is reflected in the dynamic scaling

[15] of the above correlation function:

C(r, t) ≡ C̃(r/ℓ), (6.2)

where C̃ is a time independent master function and ℓ is the characteristic

length scale or average domain size of the system. The latter usually grows

with time as [15, 16]

ℓ ∼ tα, (6.3)
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where α is the growth exponent. The value of α depends on the spatial

dimensionality, conservation and symmetry of the order parameter, transport

mechanism, etc. In active matter systems, self-propulsion can give rise to

more directed mobility of the particles, affecting the value of α.

While C(r, t) provides information on the pattern, the relaxation of a

nonequilibrium system starting from different times, i.e., aging of a system,

is studied via two time quantities like the autocorrelation function [16]

C(t, tw) = 〈ψ(~r, t)ψ(~r, tw)〉 − 〈ψ(~r, t)〉〈ψ(~r, tw)〉, (6.4)

where t is the observation time and tw is the waiting time or the age of the

system. In the passive cases, Cag exhibits scaling [16,19–23] as

Cag(t, tw) ≡ C̃ag(ℓ/ℓw), (6.5)

where ℓ and ℓw are the average domain lengths corresponding to the times t

and tw. In a good majority of cases, the master function C̃ag has a late time

power-law behavior:

C̃ag ∼
(

ℓ

ℓw

)−λ

, (6.6)

where λ is referred to as an aging exponent. For this exponent, Yeung, Rao

and Desai (YRD) provided the dimension dependent lower bounds as [21]

λ >
d+ β

2
, (6.7)
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where β is a power-law exponent related to the small wave-number (k) be-

havior of the structure factor [16]:

S(k, t) ∼ kβ. (6.8)

The structure factor is the Fourier transform of C(r, t) and has the scaling

form [16]

S(k, t) = ℓdS̃(kℓ), (6.9)

where S̃ is another time independent master function.

In this work, we try to examine the above mentioned scaling properties,

via Molecular Dynamics (MD) simulations of a system of particles having

both interparticle interaction and self-propulsion. We compare these results

with those for the passive systems, wherever necessary. Unless otherwise

mentioned, all results are from active systems.

The rest of the chapter is organized as follows. In section 6.2 we describe

the model and methods. Results are presented in section 6.3. Finally, we

conclude the chapter in section 6.4 by presenting a summary.

6.2 Model and Methods

We incorporate the two-body interparticle interaction (r is the distance

between two particles) via a potential [24, 25]

u(r) = U(r)− U(rc)− (r − rc)

(

dU

dr

)

r=rc

, (6.10)
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where U(r) has the standard Lennard-Jones (LJ) form

U(r) = 4ǫ

[(

σ

r

)12

−
(

σ

r

)6]

, (6.11)

rc (= 2.5σ), ǫ and σ being the cut-off radius, interaction strength and particle

diameter, respectively. Here note that the cut-off was introduced for faster

computation. Given that the LJ potential is a short range one, introduction

of rc does not alter the critical universality class. After the cut, the potential

is made continuous by shifting it to zero at r = rc. However, a discontinuity

in the force still remains. This is removed via the introduction of the last

term [25] in Eq. (6.10). For this passive model, the critical temperature (Tc)

and density (ρc) have the values [26] ≃ 0.41σ/kB and ≃ 0.37, respectively,

in d = 2, where kB is the Boltzmann constant. The (number) density is

measured as N/A, N and A being respectively the number of particles and

area of the system.

The self-propulsion is invoked in the model via the Vicsek model [6]. As

is well known, in the Vicsek model the direction of a particle’s motion is

influenced by that of its neighbors. This was implemented here by applying

an external force (fA = 1, in dimensionless unit) to each particle, at every

time step of our simulations, in a direction defined by the average velocities of

all the particles contained in the radius of influence rc. Follwing this exercise

the magnitudes of the velocities of the particles were restored to the original

values. Thus, like in the Vicsek case, this whole exercise changes only the

direction of motion of the particles. Such directional feature in the Vicsek

model is very much physical. Often in an assembly of active particles, the
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motion of an individual is decided by its neighbors.

With this model we performed MD simulations [24, 25] in a square box

of linear dimension Lσ, where the temperature (T ) was controlled via the

Langevin thermostat [27]. At every MD step, for each particle, we have

solved the Langevin equation

m~̈ri = −~∇ui −mγ~̇ri +
√

6mγkBT ~R(t), (6.12)

where m is the mass of a particle, ui is the energy originating from interparti-

cle potential, γ is a damping constant and ~R(t) is a noise having δ correlation

in space and time. We have used the velocity Verlet algorithm [24] to solve

Eq. (6.12), with ∆t = 0.002, in units of
√

mσ2

48ǫ
. For the rest of the chapter m,

ǫ, σ, γ and kB have been set to unity. It is clear that Eq. (6.12) deals with

only the inter-particle potential. At the end of every MD step, the Vicsek

rule was imposed.

The systems were initially thermalized at T = 4 and then quenched to

T = 0.25, with density ρ = 0.35. All results are presented for L = 256 and

after averaging over at least 10 initial realizations.

6.3 Results

We begin by showing the snapshots of the active system in Fig. 6.1 from

four different times, during the process of evolution. The particles form

clusters of elongated shape which grow with time. Even though the total

order-parameter is conserved here, the structure is different from that of the
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Figure 6.1: Evolution snapshots of the active system from four different
times. The locations of the particles are marked by dots.

conserved passive case (see the upper frames of Fig. 6.2 where we show

evolution snapshots from the conserved dynamics of the Ising model). It has

more similarity with that of the nonconserved Ising model - corresponding

snapshots are shown in the lower frames of Fig. 6.2. Note that the results for
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Figure 6.2: Upper frames: Evolution snapshots from the Kawasaki exchange
Monte Carlo simulations of the Ising model. Lower frames: Same as above
but from Glauber kinetics. The times are in units of number of Monte Carlo
steps.

the conserved and nonconserved Ising models were obtained via Monte Carlo

simulations [28] (at T = 0.6Tc) using Kawasaki exchange kinetics [28, 29]
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and Glauber spin-flip mechanism [28, 30], respectively. For the quantitative

undrstanding of the pattern and its self-similarity, we calculate C(r, t). For

this purpose we have mapped the continuum configurations into (square)

lattice ones. To a lattice site, we have assigned the order parameter value

ψ = −1, if it is empty, otherwise we have put ψ = +1.

In Fig. 6.3, we plot the scaled correlation functions. Nice collapse of data

for different times is observed, as in most passive cases. This implies that

the morphology of the system is statistically self-similar in nature. However,

C(r, t) does not show the strong oscillatory behavior [16] that is expected

in the case of the passive counter part of the system. In the inset of this

figure we have shown plots of correlation function for both passive conserved

and passive nonconserved Ising models. The plot for the passive conserved

case was obtained via Kawasaki exchange Monte Carlo simulations. For

the nonconserved case, we have shown the analytical form derived by Ohta,

Jasnow and Kawasaki (OJK) (via a Gaussian auxilliary field ansatz). Clearly,

as stated above, the active matter C(r, t) has more resemblance with the OJK

function. There exists differences, of course, which we intend to understand

in future.

The scaling in C(r, t) is expected to be reflected in S(k, t) also. This

exercise has been performed in Fig. 6.4. At large k regime the Porod behavior

[31],

S(k, t) ∼ k−(d+1), (6.13)

a consequence of scattering from sharp interfaces, can be observed. Difference

in the large r regime of C(r, t) between the active and (conserved) passive
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Figure 6.3: Scaling plot of the two-point equal time correlation function, for
the active system. Data from four different times are presented. The symbols
in the inset show C(r, t) from the conserved Ising model, simulated by using
the Kawasaki exchange Monte Carlo method. The solid curve there is the
Ohta-Jasnow-Kawasaki (OJK) function, that matches with the correlation
function for the nonconserved order-parameter dynamics of the Ising model.

system is expected to affect the small k behavior in S(k, t). Indeed, we notice

that in the value of the exponent β. In the case of conserved dynamics, in

the scaling regime the value [21] of β for the passive system is 4, whereas

for the active system we observe β ≃ 1.35. This is more close to the passive

nonconserved value β = 0.
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Figure 6.4: Log-log plot of the scaled structure factor. The solid lines there
represent different power laws, the exponents of which are mentioned.

In Fig. 6.5, we have plotted the average domain length ℓ as a function of

time. The values of ℓ were extracted from the scaling property of Eq. (6.2).

Essentially, we have used

C(ℓ, t) = 0.1. (6.14)

After an initial slower growth (with an exponent α = 2/3), at long time the

value of α seems to be 1. The bending of the data points for very large t is

due to the finite-size effects. To quantify the growth exponent α better, we
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Figure 6.5: Plot of the average domain length, ℓ(t), vs t, in a double log
scale. The solid lines represent various power-laws, exponents for which are
mentioned.

calculate the instantaneous exponent αi, defined as [32]

αi =
d ln ℓ

d ln t
, (6.15)

and plot it as a function of 1/ℓ. We show this plot in Fig. 6.6. This indeed

shows that the data set, in the limit ℓ → ∞, converges to 1. This value is
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Figure 6.6: Instantaneous exponent for domain growth, αi, is plotted as a
function of 1/ℓ. Solid lines there are guides to the eye. The early time data
is consistent with 2/3. The late time data show convergence towards 1.

much larger than that in the conserved order parameter dynamics (without

hydrodynamics) in passive systems. In the latter case, the growth mecha-

nism is diffusive and the Lifshitz-Slyozov (LS) growth law [33] with α = 1/3

is observed. Here note that our MD simulations do not use hydrodynam-

ics preserving thermostat. The fast growth in the active system can then

be attributed to coherent motion of the self-propelling particles [17] due to
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Figure 6.7: Plots of the autocorrelation function, Cag, vs translated times
t− tw. We have presented data from three different values of tw.

velocity parallelization coming from Vicsek activity.

In Fig. 6.7, we plot Cag vs (t − tw). The nonscaling behavior of data

from different tw values implies that the time translational invariance is not

obeyed during the evolution of the system, which we expect for an out-of-

equilibrium system. The figure reveals that the younger system relaxes faster

than older ones, the basic fact of aging. In Fig. 6.8, the plots of Cag as a

function of ℓ/ℓw are presented. Reasonably good data collapse is observed
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Figure 6.8: The autocorrelation function, Cag, is plotted vs ℓ/ℓw. The values
for tw are mentioned on the figure.

for data sets from different times. Thus the qualitative feature in this case

also is very similar to the passive cases. This is interesting by considering

the fact that, in the passive case the approach of the systems is towards an

equilibrium state, whereas the active matter systems move towards a steady

state. To establish quantitative similarity, first one needs to see if the decay

of Cag is a power-law and if so, next task is to estimate the aging exponent

λ. Since the system size is small the finite-size effects appear rather fast,
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bringing in serious difficulties in the proper identification of such feature. In

future we would like to quantify this. Given that β = 1.35 here, the YRD

lower bound is 1.675. A quantitative agreement thus, between the active and

passive cases is not truely expected. It is to be seen, how close the actual

value of λ (if the decay is a power-law) is to this lower bound.

6.4 Conclusion

We have studied the kinetics of phase separation in a 2D active matter

model, via Molecular Dynamics simulations (using Langevin thermostat).

The focus is on quantifying morphological features, domain growth and aging

property. Discussions of these results by comparing them with the existing

results for the passive systems are provided.

The two-point equal time correlation function C(r, t) and the structure

factor S(k, t) show scaling, confirming the self-similarity in the growth pro-

cess. Unlike passive systems no strong oscillation is observed in C(r, t) for the

active case. The domain growth exponent α is found to be 1, which is much

higher than the diffusive growth in passive systems. It will be interesting to

find out the details of the mechanism.

The autocorrelation function exhibits quite good scaling with respect to

ℓ/ℓw. In the small wave number (k) limit, the power-law enhancement ex-

ponent β of S(k, t) is much smaller than the passive case. This reduces

the lower bound of λ, compared to the passive case. Proper quantification

of this exponent and other observables require much better statistics and

further analyses with larger systems. These we aim to undertake in future.
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