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Chapter 1

Introduction

1.1 Introduction to granular systems

A granular system is defined as a large collection of macroscopic grains (lin-

ear dimensions greater than 1 µm) of solid matter, with thermal fluctuations

being irrelevant. Some examples of granular matter are sand, rice, coffee,

salt, etc. This kind of matter is very important in industry. The second

most manufactured class of materials are in the form of granular matter [2].

Granular materials can flow like a liquid (like sand in an hourglass), resist

deformation like a solid (like the sand under feet at the beach), or quickly

transition between these states (like pebbles in a rockslide). Granular mate-

rials have properties that have no equivalent in regular materials like wood,

metal, or rubber. In solids like these a force applied to the surface propagates

through the material smoothly and predictably. If a uniform force is applied

to the surface of a material, every equally sized cross-section of that material

bears the same amount of load. In granular materials, however, the situation

is very different: in a sand pile under stress (that is, when a force is applied

to its surface), the force is distributed unevenly – some individual sand grains

bear far more load than others. Surprisingly, this remains true even when the

sand grains themselves are identical. Whats more, the load-bearing grains

connect to one another to make a fractal, lightning-like pattern inside the

1
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material, like that shown in Figure 1.1 [1]. These string-like arrangements of

load-bearing grains are called force chains.

Figure 1.1: Force chains in a computer simulation of a sand pile. Taken from
reference [1]. The thickness of a black line indicates the magnitude of the
force at that point inside the sand pile. The network of force chains (black
lines) form what we call a force network in the above pile of grains.

1.2 Force networks in static granular systems

The fascinating properties of static granular matter are closely related to

the organization of the interparticle contact forces into highly heterogeneous

force networks [2]. Force networks form the skeleton of static granular mat-

ter [3] [4]. They are the key factor that determines mechanical properties

such as stability, elasticity and sound transmission, which are important for

civil engineering and industrial processing [5].

In this thesis, we study cohesionless systems of hard disks which are in me-

chanical equilibrium. For a given arrangement of disks and boundary condi-

tions (the boundary conditions in the systems we consider are the external

forces acting at the boundary of the system), the unknowns are the contact

forces. The usual situation is that the total number of unknown forces is

significantly greater than the total number of balance equations requiring

mechanical equilibrium. The additional conditions are inequalities (for ex-

ample: requirement of no cohesion at each grain contact) that partly reduce

the space of admissible solutions1, but the multiplicity of the solutions that

1By a solution we mean a force network, the contact forces of which satisfy the balance
equations requiring mechanical equilibrium subject to additional constraints (if any).
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is left is still very large. As a simple illustration, it is obvious that since the

number of balance equations is fixed by number of particles, an increasing

number of contact per grain will lead to a larger number of undetermined

contact forces. In summary, the list of the position of all the grains and

contacts is in general not sufficient to determine the precise state2 of a static

packing of grains submitted to some given external load. That is, there are

more unknown forces to be determined than balance equations that require

mechanical equilibrium. This is also called the ‘hyperstatic case’. As we

shall see in Chapter 2, the hyperstatic case implies that there are infinite

number of force networks consistent with the force balance condition each of

which can hold the granular system in mechanical equilibrium. The space of

such solutions reduce when extra conditions, such as, zero cohesion at each

contact is imposed. This thesis aims at finding a minimum set of states or

force networks of a hyperstatic granular packing (consisting of cohesionless

grains) of given particle size, arrangement and boundary conditions using

which any other state or force network can be constructed. In addition to

seeking a minimum number of force networks that obey these constraints

we also characterise their space by changing parameters such as system size,

coordination number and geometry by taking some simple arrangement of

disks in 2-dimensions as described in the next section.

1.3 Polytopes in static granular systems

In order to understand the dependence of the minimum number of force net-

works necessary to build any other force network consistent with the force

balance condition and zero-cohesion we study some simple toy probelms of

different geometry and system sizes. For this purpose we consider three sim-

ple kinds of hyperstatic system. These systems consist of identical frictionless

hard disks in 2 dimensions which have repulsive forces at each contact. The

boundaries of the system are also assumed to be frictionless. The three kinds

2A state and a solution mean the same thing here. Figure 1.1 shows one force network
and thus corresponds to one state for the given pile of sand.
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of systems are:

1. Square lattice: Identical 2 dimensional disks packed in a 2 dimensional

square box.

  

Figure 1.2: The smallest square lattice. Contacts are also marked in
the figure. Each particle has four neighbours in contact.

2. Rhombic lattice: Identical 2 dimensional disks packed in a 2 dimen-

sional rhombic box.

  

θ

Figure 1.3: The smallest rhombic lattice. Also marked is the interior
acute angle of the rhombic lattice and contacts. Each particle has four
neighbours in contact.

3. Equilateral-triangular lattice: Identical 2 dimensional disks packed in

an equilateral trianglular box.
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1

2 3

a b

c d

e f

Figure 1.4: The smallest equilateral triangle lattice, with contacts
marked in the figure. The numbers and the letters will be later used
to identify the forces at contacts in section 2.1. The boundary forms
an equilateral triangle and disks in the interior for large lattice of this
kind will have six neighbours in contact.

In section 2.1 of Chapter 2 we show how one can associate, abstractly,

a convex polytope3 with each kind of these systems. For a given number

of disks, their arrangement and boundary conditions, the geometry of the

polytope and its orientation in space is fixed. Each vertex of this polytope

then corresponds to a force network, the forces of which obey the conditions

of mechanical equilibrium and zero cohesion. A complete list of these vertices

of the polytope is sufficient to construct any other force network that obeys

the constraints of mechanical equilibrium and zero cohesion. We elaborate on

these statements in section 2.1 of Chapter 2 by solving an example problem.

3A polytope is a geometric object with “flat” sides. It is a generalization in any number
of dimensions of the three-dimensional polyhedron. A convex polytope is a special case
of a polytope, having the additional property that it is also a convex set of points (see
section 2.1.4) in the n-dimensional space.
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1.4 Brief summary

We study the effect of coordination number and arrangement of particles on

the number of vertices of the polytope as a function of system size. This is

essential to determine the feasibility of finding the complete set of vertices

of polytopes corresponding to static granular systems that have very large

number of grains or particles. As stated before, the knowledge of complete

set of vertices, as we shall see in Chapter 2, will help us construct any force

network compatible with balance equations and additional constraints (for

example: requirement of zero cohesion at each contact) for a given pile of

grains. Based on the results of the three kinds of systems that we study we

show the following:

1. The number of vertices of the polytope corresponding to the equi-

triangular lattice increase exponentially with system size (system size

equals number of particles in the system).

2. The polytopes corresponding to square lattices are simplices.4 The

number of vertices of polytopes corresponding to square lattices in-

crease as a square root of the system size.

3. The coordination number – number of neighbours in contact with a

particle – plays a big role in determining the number of vertices of

the polytope for the same system size. For example, the growth of

the number of vertices of polytope corresponding to a rhombic lattice,

with θ(in figure 1.3) very close to but more than 60-degrees, could be

bounded polynomially with respect to system size, while at 60-degrees

this growth becomes exponential5.

4. For the same number of contacts and system size the arrangement of

particles also influence the total number of vertices. Rhombic lattices

4A simplex (plural: simplices) is a generalization of a tetrahedron to arbitrary dimen-
sions. The number of vertices of a simplex is exactly one more than the dimension in
which they lie.

5In figure 1.3, for large system size, it can be seen that when θ changes from an angle
greater than 60-degrees to 60-degrees the coordination number of particles in the interior
of rhombic lattice change from four to six.
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of a given system size with θ, as in figure 1.3, tending towards 60-

degrees have more vertices than ones tending towards 90-degrees. As

this angle varies from 90-degrees to 60-degrees the number of vertices

increase monotonically.

5. We also show, based on the results on square and rhombic lattices, that

for a lower coordination number of four the number of vertices with

respect to system size can be bounded polynomially. This implies that

it may be feasibile to find all the vertices of polytopes corresponding

to larger system sizes with lower coordination number.

6. We have also proposed and demonstrated methods to do the following:

(a) Bounding randomly oriented open polyhedra which have the prop-

erty that no two points in or on it subtend angle greater than or

equal to 90−degrees at origin.

(b) Approximating volume of randomly oriented polytopes.

The utility of these methods in regard to solving the main problem of

this thesis will become clear in the methods section.
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Chapter 2

Methods

As stated before, the aim of this thesis is to find a minimum set of states

of a hyperstatic granular packing (with cohesionless grains), for a given par-

ticle size, arrangement of particles and boundary conditions, using which

any other state can be constructed. A state corresponds to one network of

interparticle contact forces which can keep the system in mechanical equilib-

rium. To demonstrate how we achieve our objective we take a system of 3

frictionless disks in 2 dimensions packed in an equilateral triangular box.

2.1 A solved example: The snooker-triangle

problem

The smallest system consists of three disks as shown in the figure 2.1. The

disks are identical and frictionless in nature. The boundary is also considered

frictionless. Thus only normal force exist at each contact. The unknowns

are the contact forces (normal forces) which exist at the disk-disk and the

disk-boundary interface. These are also marked in the figure 2.1.

9
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1

2 3

a b

c d

e f

Figure 2.1: Smallest System Size

2.1.1 Contact Matrix A

The force balance condition for the ith disk can be written as:

~f i =
∑
j

~f ij = 0, (2.1)

where, ~f ij is the force acting on the ith particle due to jth contact. The jth

contact can be a neighbouring disk or the boundary.

We use a cartesian coordinate system to write down the force balance

equation for each disk shown in figure 2.1. The origin “O” is at the centre

of disk 2 and the positive x and y directions are assumed to be as shown

in figure 2.2. In two dimensional frictionless case each i, that is, each disk

contributes to two equations: one coming from balance of forces along x -

direction and the other from the balance of forces along y-direction.
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600

900 900

600

300

y

x

f 2a

f 23

f 21

f 2 e

900

900

900

O

Figure 2.2: Free body diagram of disk 2 in figure 2.1

The red arrows in figure 2.2 represent the assumed direction of unknown

forces acting on disk 2 of figure 2.1 due to contact with disk 1 and 3 and

the boundary. These forces fall along the line joining the centre of the circle

to the circumference because the disks are frictionless in nature. These are

represented as:

• ~f23: The force acting on disk 2 due to contact with disk 3.

• ~f21: The force acting on disk 2 due to contact with disk 1.

• ~f2a: The force acting on disk 2 due to contact with boundary at a

location a marked in figure 2.1.

• ~f2e: The force acting on disk 2 due to contact with boundary at a

location e marked in figure 2.1.

The particular angles (in degrees) at which these forces act as shown in

figure 2.2 is due to the fact that the boundary forms an equilateral triangle

and the disks are identical in nature. Equation 2.1 is a vector equation which

for disk 2 in the cartesian coordinate system give the following two equations:
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−f23 − f21 cos 600 + f2a cos 300 = 0, for x -direction,

−f21 sin 600 − f2a sin 300 + f2e = 0, for y-direction.

Where, fij represents the magnitude of the force acting on ith disk due

to jth contact. Collecting similar such equations for disk 1 and 3 we obtain

the following sytem of force balance equations:



−1 −0.5 0 0.866 0 0 0 0 0

0 −0.866 0 −0.5 0 0 0 1 0

1 0 0.5 0 −0.866 0 0 0 0

0 0 −0.866 0 −0.5 0 0 0 1

0 0.5 −0.5 0 0 0.866 −0.866 0 0

0 0.866 0.866 0 0 −0.5 −0.5 0 0


×



f23

f21

f31

f2a

f3b

f1c

f1d

f2e

f3f


=



0

0

0

0

0

0



(2.2)

Equation 2.2 is a system of equations which we refer to as Ax=01. Here,

A is a matrix, we call it the contact matrix, of size 6 × 9 and x is an

unknown vector whose components consist of the magnitude of ~f ij. While

writing equation 2.2 the force acting on the ith particle due to jth contact

is assumed to be acting towards the centre of the ith particle. We have also

made use of the Newton’s third law, that is, ~f ij = −~f ji via the free body

diagrams of disks and noting in equation 2.2 that the magnitude of force

acting on ith particle due to jth contact is same as the magnitude of force

acting on jth particle due to ith contact, that is, fij = fji. For example, in

addition to assuming that the force ~f 32 points towards the center of disk 3, a

replacement of the kind f32 = f23 has been made while writing equation 2.2.

Together they ensure that the Newton’s third law is obeyed for each particle

at each contact.

1In this thesis we will stick with the notation A to mean the contact matrix obtained
using equation 2.1 and x as a vector of unknowns consisting of magnitude of forces at each
contact.
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We note that the number of unknown forces is more than the number

of force balance equations. And therefore there will be infinite solutions to

Ax=0. This is the hyperstatic case.

2.1.2 Constraint on Ax=0

Since we are interested in cohesionless disks only we impose the following

constraint on the unknown vector x: xi ≥ 0 ∀ i. This ensures that the

normal force exerted on a given particle is compressive in nature.

We aim to find a minimum number of solutions to Ax=0 (subject to

xi ≥ 0 ∀ i) using which any other solution to Ax=0 (such that xi ≥ 0 ∀ i)
can be found.

2.1.3 The inequality representation of the problem: Zc

≥ 0

We now convert the problem into a more convenient form. Let the rank of

the contact matrix A be r. If A is of the size m × n and m < n (which is

true in our problem because the number of unknown contacts are more than

the number of force balance equations), then the space of solutions of Ax=0

is n− r dimensional. We call this n− r dimensional space the null-space of

matrix A. Let the vectors z1, ..,zn−r be an orthogonal set of basis vectors of

the null-space of matrix A. Then, any solution x of Ax=0 can be expanded

in the basis of null-space of A in the following way:

x = c1z1 + c2z2 + ..+ cn−rzn−r (2.3)

where, c1, c2, .., cn−r are the scalar expansion coefficients and z1, z2, ..,zn−r

are the basis vectors of the null space of matrix A2.

For the 3-disk problem, the rank of the matrix A in equation 2.2 is 6 and

its size is 6 × 9. Hence the nullspace of A (that is, the space of solutions

2Note that since A is of the size m × n and Ax=0, therefore, x is of the size n × 1.
Hence, the solutions x of Ax=0 are vectors with n components embedded in a space
which is n− r dimensional. This n− r dimensional space is the null-space of matrix A.
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to Ax=0) is 3-dimensional. Expanding the vector x in an orthogonal basis

(accurate upto first decimal place) of nullspace of A we get the following:



f23

f21

f31

f2a

f3b

f1c

f1d

f2e

f3f


=



−35 31 −22

45 18 −18

0 15 50

−14 46 −36

−40 45 3

26 27 47

52 29 8

32 39 −34

−20 35 45


×

c1c2
c3

 (2.4)

We refer to the above system of equations in equation 2.4 as x=Zc3. Where x

is the unknown vector in Ax=0 and Z consists of column vectors which form

an orthogonal basis of nullspace of matrix A. These basis vectors have the

same length in the space they lie. The c vector consists of the coefficients

that express the vector x in the basis of nullspace of matrix A. Imposing

the componentwise non-negativity constraint on vector x we get the

following system of inequalities:

3In this thesis we will stick with the notation Z to mean a matrix consisting of column
vectors which are basis vectors of nullspace of A matrix and c as a vector consisting of
components that are coeffiecients of expansion of x in the basis of nullspace of A. Also,
note that the column vectors of the Z matrix have been obtained by using the “null”
command available in MATLAB which gives an orthogonal basis of null-space of any
matrix A.
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

−35 31 −22

45 18 −18

0 15 50

−14 46 −36

−40 45 3

26 27 47

52 29 8

32 39 −34

−20 35 45


×

c1c2
c3

 ≥ 0 (2.5)

Equation 2.5 consists of nine inequalities in three variables c1, c2 and

c3 with a zero vector on the right hand side. We refer to the system of

inequalities in equation 2.5 as Zc ≥ 0. Now, instead of solving for unknown

vector x such that Ax=0 with component-wise non-negativity criteria on x,

that is, xi ≥ 0 ∀ i, we instead solve for unknown vector c such that Zc ≥ 0

and then use the relation x=Zc to obtain the actual force balanced solution4.

It should be noted that Z consists of column vectors which are independent,

and therefore by the relationship x=Zc, corresponding to a c vector there

exists a unique x vector.

2.1.4 Geometry and Boundedness of Zc ≥ 0

A convex region is a region such that, for every pair of points within the

region, every point on the straight line segment that joins the pair of points

is also within the region. Formally it is defined as follows:

If S is a convex region [10] in n-dimensional space, then for any collection

of r (r > 1) n-dimensional vectors u1, ...,ur in S, and for any nonnegative

numbers λ1, ..., λr such that λ1 + ...+ λr = 1, one has:

4We emphasise that an x vector consist of components which are magnitude of unknown
forces, see equation 2.2 for example. On the other hand a c vector consists of components
which are scalar expansion coefficients which express an x vector in the basis of nullspace
of matrix A, see for example equation 2.3 or 2.4.
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r∑
k=1

λkuk ∈ S

A vector of this type is known as a convex combination of u1, ...,ur.

Since an intersection of convex regions is convex [10] and a linear inequality

geometrically is a halfspace5 which is convex, the region defined by Zc ≥ 0,

which is an intersection of halfspaces, is also convex therefore.

  

c1

c2

O

θ

Figure 2.3: Convexity of Zc ≥ 0, for example, in two dimensional case implies
that θ ≤ 180-degrees

Next we use a cartoon figure of Zc ≥ 0 to highlight some of its basic

geometric properties. In figure 2.3, for the sake of simplicity, we have assumed

that the space of c vectors is 2-dimensional. The region in which Zc ≥ 0 will

be satisfied in this 2-dimensional space is shaded in grey. The boundaries of

this region are straight lines because Zc ≥ 0 consists of linear inequalities

only. In higher dimension these boundaries would become straight edges

and flat planes. In figure 2.3 one must also note that a line segment joining

any two points in the shaded region can not subtend an angle greater than

180 − degrees at the origin. This is true because the the region defined by

5A half-space is either of the two parts into which a plane divides an n-dimensional
space.
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Zc ≥ 0 is convex. This also implies that θ ≤ 180-degrees in figure 2.3. The

convex polyhedra defined by Zc ≥ 0 is also unbounded because the boundary

of a half-space corresponding to any inequality in Zc ≥ 0 passes through the

origin. The unboundedness of Zc ≥ 0 implies that we can find c vectors in

the shaded region which lie at infinite distance from origin.6

2.1.5 Bounding the polyhedra Zc ≥ 0

Our goal is to pick a point from every edge of the open polyhedra Zc ≥ 0. For

example, in figure 2.3 there would be two such points corresponding to the

two edges shown as solid black lines emanating from the origin. Using these

edge points we can obtain any other point c satisfying Zc ≥ 0 and hence by

the relationship x=Zc any force network that the three-disk system might

admit. We will demonstrate this through a cartoon figure as below:

  

c1

c2

O

θ

m

n

k

(p1 ,q1)

(p1 , q2)

(p1 , q3)

Figure 2.4: Spanning Zc ≥ 0 using vertices on the edges of Zc ≥ 0

We are in the space of c vectors7. In this space of vectors the shaded

6Note that in figure 2.3 a c vector has two components c1 and c2.
7If c is an n-dimensional vector then the space of c vectors would consist of all the

n-dimensional vectors that might exist. This space is a vector space by definition which
we also call the c-space later on in the thesis. The set of c vectors which satisfy Zc ≥ 0
is a subset of the c-space.
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region in figure 2.4 satisfy the set of linear inequalities Zc ≥ 0. We want to

show through figure 2.4 that knowing a point from every edge of the open

polyhedra Zc ≥ 0 can help us construct any other point c consistent with

Zc ≥ 0. To see this let us assume that we have found a point from each

edge of the open polyhedra Zc ≥ 0. These points are marked as k and m

with coordinates (p1, q3) and (p1, q1) respectively in figure 2.4. Now, a convex

combination of these two points gives a third point with coordinates:

(p1, q2) = λ1(p1, q1) + λ2(p1, q3) = (p1(λ1 + λ2), (λ1q1 + λ2q3)),

where, λ1 + λ2 = 1, and λ1, λ2 ≥ 0

It is easy to see through the above relationship that the third point with

coordinates (p1, q2) will lie on the line joining the points k and m. Let this

point with coordinates (p1, q2) be called as n as marked in the figure 2.4.

Now, if the coordinates of n is scaled by a non-negative number α, then

the resulting coordinate, that is, (αp1, αq2), will trace a straight trajectory

beginning at origin, passing through the point n, and travelling to infinity as

α is varied from 0 to∞. We thus can span the entire shaded region in figure

2.4, which is the solution to Zc ≥ 0, by varying λ1, λ2 and α, just by knowing

the coordinates of the points on the edges of Zc ≥ 0. It’s important to note

that there are infinite number of points on a given edge. However, we just

need one, any one, for our purpose. Now, given that we can construct any

vector c consistent with Zc ≥ 0, by the relationship x=Zc, means that we

can construct any force network that the three disk system might admit. So

finding points on the edges of Zc ≥ 0 suffices our purpose.
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Now, the method that we use to pick points on the edges8 of Zc ≥ 0 is

based on a method called the Simplex Method [11] which can only identify

vertices of a convex region. The region defined by Zc ≥ 0 has a trivial vertex

at origin, that is c=0, which, by the relationship x=Zc, corresponds to a

force network with all contact forces equal to zero. In order to pick points

from the edges of Zc ≥ 0 we must must first create them as vertices so

that the Simplex Method could identify them. This makes bounding Zc ≥ 0

important. The bounding of Zc ≥ 0 is achieved by removing the part of Zc

≥ 0 that extends to infinity9 that we summarise through the following steps

and then take a 2-dimensional geometric example to explain the idea.

Consider the c-space looked at from the point of view of a cartesian

coordinate system. Let a vector in c-space be represented by n-components

c1, .., cn. Also in the same vector space, let a unit vector êi represent the

ith coordinate direction. This implies that all the components of êi are zero

except the ith component which is equal to 1. Then following steps bound

the open polyhedra Zc ≥ 0:

2.1.5.1 Approach I of bounding Zc ≥ 0

(i) Construct a linear function of the form êi
Tc. We will call this function

an objective function. n distinct objective functions of the form êi
Tc

exist. Subject to the constraint Zc ≥ 0 perform minimisation and

maximisation of êi
Tc10 for different coordinate directions êi up until a

8If vector c has n-components, say c1, .., cn, then an edge would be defined as an
intersection of the bounding hyperplanes of any of the n − 1 inequalities in Zc ≥ 0 (A
bounding hyperplane is the boundary of a half-space. A half-space is either of the two
parts into which a plane divides an n-dimensional space. The region in which an inequality
a1c1 + a2c2 + .. + ancn ≥ 0 (where, a1, .., an are known scalar coefficients coming from a
row in Z matrix) holds true is a half-space. Its bounding hyperplane will be a1c1 + a2c2 +
.. + ancn = 0.). Of course such an edge might not satisfy all the inequalities in Zc ≥ 0.
But we are looking for points on those edges only which satisfy all the inequalities in Zc ≥
0. Note again that such edges will always emanate from the origin, see for example figure
2.3, where we would have picked points from the two edges which come out of the origin
and act as the boundaries of the shaded region in which Zc ≥ 0 holds true.

9This is what we mean by bounding the unbounded polyhedra Zc ≥ 0.
10A minimisation or a maximisation of a linear constraint êi

T c subject to a set of linear
inequalities Zc ≥ 0 was done using the “LINPROG” command in MATLAB.
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point at which we find an êi for which the minimisation or maximisation

of the objective function êi
Tc occurs at c=0.

(ii) Let’s say for some ith coordinate direction the objective function êi
Tc,

constrained by Zc ≥ 0, is extremised at origin c=0. Let us call such

an êi an ê∗
11. Use this ê∗ unit vector to construct an inequality of the

form ê∗
Tc ≤ d such that it satisfies c=0 and its bounding plane, that

is, êT∗ c = d has non-zero intersection with Zc ≥ 012.

(iii) The inequality ê∗
Tc ≤ d constraint when imposed on Zc ≥ 0 will then

eliminate the part of the region of Zc ≥ 0 that extends to infinity and

hence bound the polyhedra.

2.1.5.2 Approach II of bounding Zc ≥ 0

Approach I may fail due to step (ii) of Approach I not succeeding in finding

any êi which can become an ê∗. Conceptually, this may happen only if there

exist pairs of vectors, satisfying Zc≥ 0, having angles equal to or greater than

90-degrees between them. While we prove that the angle between any pair

of vectors, satisfying Zc ≥ 0, cannot be greater than 90-degrees (see section

2.1.5.6), they can be orthogonal to each other. However, in our numerical

calculations, we have not encountered any bounded polyhedra the vertices

of which are orthogonal to each other and we suspect that the occurence of

failure of step (ii) of Approach I is due to numerical inaccuracy that arise

when angle between vectors which satisfy Zc ≥ 0 is close to 90-degrees.

As a remedy, for bounding Zc ≥ 0, we resort to Approach II and continuing

with the assumption that a vector c in c-space has n-components, c1, .., cn,

we take the following steps to bound the polyhedra Zc ≥ 0:

(i) Construct inequality constraints of the form −β ≤ ci ≤ β for all i,

11In worst case, finding such an ê∗ will take n minimisation and n maximisation steps,
where, n is the dimensionality of the c-space.

12Whether the inequality ê∗
T c ≤ d satisfies c=0 and its bounding plane ê∗

T c = d has
a non-zero intersection with Zc ≥ 0 will depend upon the sign of the constant d. We
demonstrate steps to find the correct sign of such a constant d as we proceed ahead in this
section and explain by solving a 2-dimensional problem.
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where β > 0. Let these system of 2n inequalities be represented by

−β ≤ c ≤ β.

(ii) Choose any particular êi. Minimise êi
Tc subject to Zc ≥ 0 and −β ≤

c ≤ β. If the vector c that minimises êi
Tc, constrained by Zc ≥ 0 and

−β ≤ c ≤ β, is a non-zero vector then such a vector c will be called

as c∗. If the vector c that minimises êi
Tc, constrained by Zc ≥ 0 and

−β ≤ c ≤ β, is a zero vector then the êi will be called a c∗.

(iii) Use the c∗ to construct an inequality of the form cT
∗ c ≤ d such that

it satisfies c=0 and its bounding plane, that is, cT
∗ c = d has non-zero

intersection with Zc ≥ 0.

(iv) The inequality cT
∗ c ≤ d constraint when imposed on Zc ≥ 0 will then

eliminate the part of the region of Zc ≥ 0 that extends to infinity and

hence bound the polyhedra.

2.1.5.3 Illustrating Approach I

Let us now take a 2-dimensional example to see what the steps of Approach

I do to bound the Zc ≥ 0.

  

c1

c2

O

θ

ê1

g( p2 ,0) h(d ,0)

ê1

Figure 2.5: Bounding Zc ≥ 0
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Let us assume that the shaded region in figure 2.5 consists of all the c

vectors which satisfy Zc ≥ 0. We have again assumed for simplicity that

the c-space is 2-dimensional. Now, in figure 2.5, ê1 = (1, 0) is a unit vector

pointing along the c1 coordinate axis. Therefore, in figure 2.5, equation of a

straight line, with its normal pointing along c1 coordinate axis, say passing

through a point g with coordinates (p2, 0), is ê1
Tc=p2 or simply c1 = p2 (a c

vector has two components and therefore c= (c1, c2)).

Note that ê1 is a direction in which the value p2 of the function ê1
Tc

increases. Now, consider the minimization of ê1
Tc constrained by Zc ≥ 0.

This minimization will occur at a point c in the region Zc ≥ 0 where the

value p2 of the function ê1
Tc is a minimum. By the geometry of Zc ≥ 0 in

figure 2.5 it is clear that the minimization will happen at c=0 (note: c=0

satisfies Zc ≥ 0) because beyond that the value of the function ê1
Tc will start

increasing13. Such a coordinate direction êi for which êi
Tc, when subjected to

Zc ≥ 0, gets minimsed at c=0 will be called an ê∗
14 (Note for figure 2.5 this

ê∗ is ê1.). Now, consider the equation ê∗
Tc=0, that is, c1=0. This equation

intersects Zc ≥ 0 in one and one point only which is c=0. This is very useful

information because we can always generate, using an ê∗, a line (or an n− 1

dimensional plane when the c-space is n-dimensional) of the form ê∗
Tc=d,

shown as a line with normal vector ê1 (note ê1 = ê∗ in figure 2.5) passing

through a point h with coordinates (d, 0) in figure 2.5, that is c1 = d, such

that the line intersects all the edges of Zc ≥ 0 if the sign of the constant d is

chosen correctly. To find such a line we will have to find the correct sign of d

in ê∗
Tc=d (we shall see later that such a line helps us bound the polyhedra

Zc ≥ 0). The absolute value of d is allowed to be anything because that will

only determine where on the edges of Zc ≥ 0 the line intersects. And since

we are interested in picking any point on an edge of Zc ≥ 0 the absolute

value of d doesn’t matter as long as it is non-zero.

13Note that the orientation of the polyhedra Zc ≥ 0 is not known a priori and finding
the fact that ê1 can serve as a ê∗ in worst case could have taken 2 minimisations and 2
maximisations in figure 2.5.

14Such an ê∗ need not be unique and in fact for the particular geometry of Zc ≥ 0
considered in figure 2.5 both ê1 and ê2 could have served as an ê∗. For our purpose we
just need one, anyone. We will make further comments if such an ê∗ can always be found
and if its existence depends upon the geometry of Zc ≥ 0 in c-space.
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Before we proceed to find the correct sign of such a constant d we make

an important point. For any given d, ê∗
Tc=d will either intersect all the

edges of Zc ≥ 0 or will have no intersection with Zc ≥ 0 at all. This is true

because of two reasons:

(a) The region satisfying Zc ≥ 0 lies entirely in one half or the other that a

hyperplane ê∗
Tc=0 divides a c-space into. To see this, note that ê∗

Tc=0

and Zc ≥ 0 intersect at one point, that is, c=0, only.

(b) ê∗
Tc=0 and ê∗

Tc=d are parallel to each other and a non-zero distance d

apart in the c-space.

As an example, consider figure 2.6, where the line ê∗
Tc=0 divides the

2-dimensional c-space into two halves, one shaded in green and the other

shaded in yellow, and intersects Zc ≥ 0 (Zc ≥ 0 shaded in grey) at c=0.

The entire Zc ≥ 0 region then as a result is bound to be contained either in

the green or the yellow region and for the specific geometry of Zc ≥ 0 that

we have considered it will lie in the yellow region.

  

c1

c2

O

θ

ê*

^e*
T c=0

θ

ê*ê*

^e*
T c=−d

^e*
T c=d m(d ,q1)

k(d ,q3)

g(−d ,0) h(d ,0)

Figure 2.6: Bounding Zc ≥ 0 and intersection of ê∗
Tc=d and Zc ≥ 0

Now if the line ê∗
Tc=0 is pushed into the yellow region by changing zero

on the right hand side of the equation to a positive number d but with the



24 Chapter 2.

same unit normal vector ê∗ then it is visually suggestive that it is bound

to intersect all the edges of Zc ≥ 0. This line is shown as ê∗
Tc=d passing

through a point h with coordinates (d, 0) in the figure 2.6. Also shown is a

line in red joining the points k and m, with coordinates (d, q3) and (d, q1)

respectively, which is the intersection of ê∗
Tc=d and Zc ≥ 0 which will be

our next topic of discussion.

Since the geometry of Zc ≥ 0 is not known a priori we now therefore

proceed to devise a method to find what sign on d ensures intersection of

ê∗
Tc=d with Zc ≥ 0. Choose any finite number d. Minimise the function

ê∗
Tc subject to Zc ≥ 0 and ê∗

Tc=d. Then following steps will guide to ensure

whether ê∗
Tc=d intersects Zc ≥ 0 or ê∗

Tc=−d intersects Zc ≥ 0:

1. If a minimum value of ê∗
Tc doesn’t exist then this would mean that

the regions Zc ≥ 0 and ê∗
Tc=d have no point in common and hence

ê∗
Tc=d doesn’t intersect Zc ≥ 0. In which case the equation ê∗

Tc=−d
will intersect Zc ≥ 0.

2. If a minimum value of ê∗
Tc exists then ê∗

Tc=d intersects Zc ≥ 0.

  

c1

c2

O n(d ,0)

ê*

θ s

r

Figure 2.7: Bounded Zc ≥ 0 by imposing ê∗
Tc ≤ d on Zc ≥ 0

The reason why this method will successfully determine if ê∗
Tc=d inter-

sects Zc ≥ 0 is because an intersection of Zc ≥ 0 and ê∗
Tc=d is a constraint
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on minimisation of ê∗
Tc. And therefore if such an intersection doesn’t ex-

ist then the minimisation will fail because the constraints have no point in

common. Let’s say ê∗
Tc=d intersects Zc ≥ 0. The final operation is then

to convert the equality in ê∗
Tc=d to an inequality of the form ê∗

Tc ≤ d or

ê∗
Tc ≥ d whichever satisfies c=0. Let’s say ê∗

Tc ≤ d satisfies c=0. Then

the constraint ê∗
Tc ≤ d when imposed on Zc ≥ 0 bounds the polyhedra.

The bounded polytope is shown in figure 2.7.

2.1.5.4 Illustrating Approach II

Approach II generates a point c∗, satisfying Zc ≥ 0, lying either on the

boundary or the interior of Zc ≥ 0. This point is then used to construct a

linear function of the form cT
∗ c = 0 intersecting Zc ≥ 0 at one point , that

is, c=0 only.

  

c1

c2

O

θ

q (β ,0)p (−β ,0)

r (0,β)

s(0,−β)

Figure 2.8: Intersection of −β ≤ c ≤ β and Zc ≥ 0

Such kind of intersection has been observed to be true for all the systems

that we have considered in this thesis. This property then becomes a suffi-

cient condition for an inequality of the form cT
∗ c ≤ d to bound the polyhedra

Zc ≥ 0. As before, the sign of d is chosen such that cT
∗ c ≤ d satisfies c=0 and

the bounding plane of cT
∗ c ≤ d , that is, cT

∗ c = d has non-zero intersection

with Zc ≥ 0.
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We will now illustrate how such a c∗ is generated. In figure 2.8 the region

shaded in yellow corresponds to −β ≤ c ≤ β and the region shaded in grey

corresponds to Zc ≥ 0. If a vector c has to satisfy both −β ≤ c ≤ β and

Zc ≥ 0 then it must lie in the intersection of the grey and the yellow region.

We show intersection −β ≤ c ≤ β and Zc ≥ 0 in figure 2.9:

  

c1

c2

O

θ

p1

r1

q1(β ,β)

Figure 2.9: Intersection of −β ≤ c ≤ β and Zc ≥ 0

The points p1 and r1 lie on the boundary of Zc ≥ 0 and q1 lies in the

interior of Zc ≥ 0. A minimisation of êi
Tc, for any particular êi, subject

to Zc ≥ 0 and −β ≤ c ≤ β will generate one of the four points: c=0, p1,

q1 or r1 depending upon which êi is chosen and the geometry of Zc ≥ 0.

For example, if êi = (1, 0) is chosen then êi
Tc equals c1, and then for the

particular geometry in figure 2.9, a minimsation of c1, subject to −β ≤ c ≤ β

and Zc ≥ 0 will yield the point c=0 (that is c1 = 0 and c2 = 0). This then

according to step (ii) of Approach II implies that c∗ = êi. The inequality

cT
∗ c ≤ d, when imposed on Zc ≥ 0 bounds Zc ≥ 0 as shown in figure 2.10.

As discussed while illustrating Approach I, the sign of d is chosen such that

cT
∗ c ≤ d satisfies c=0 and the bounding plane of cT

∗ c ≤ d , that is, cT
∗ c = d

has non-zero intersection with Zc ≥ 0. In figure 2.10, the bounded polyhedra

which is the intersection of cT
∗ c ≤ d and Zc ≥ 0 is shown as shaded region in

grey. The bounding plane of cT
∗ c ≤ d, that is, cT

∗ c = d intersects the edges

of Zc ≥ 0 to give the points p2 and q2 also marked in the figure 2.10.
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c1
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O

c*=ê1=(1,0)

c*=ê1=(1,0)

θ

p2

q2

^c*
T c=d

d
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Figure 2.10: Bounded Zc ≥ 0 shaded in grey

Before we close our discussion on bounding of Zc ≥ 0 we would like

to make a final remark that other alternatives of bounding Zc ≥ 0 can be

invented by choosing an arbitrary point within Zc ≥ 0, differently from

Approach II, to find the hyperplane with the surface normal vector pointing

along the position vector of the chosen point. This hyperplane will bound Zc

≥ 0 if no pair of vectors satisfying Zc ≥ 0 have an angle equal to or greater

than 90-degrees between them. This completes our discussion on bounding

the polyhedra Zc ≥ 0. The goal was to create a point on each edge of Zc ≥
0. A knowledge of the coordinates of all such points helps us span the entire

set of c vectors which satisfy Zc ≥ 0.

2.1.5.5 Comments and comparison of Approach I and Approach

II of bounding Zc ≥ 0

• Approach I will succeed in bounding Zc ≥ 0 if no pair of vectors c1 and

c2, satisfying Zc ≥ 0, have angle greater than or equal to 90-degrees

between them. As has been seen, Approach I fails in bounding Zc ≥
0 for some systems considered in this thesis. The reason is not yet
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clear to us and would require further investigations and forms a part

of future directions of this project.

• Similar to Approach I, Approach II, will succeed in bounding Zc ≥ 0 if

no pair of vectors c1 and c2, satisfying Zc ≥ 0, have angle greater than

or equal to 90-degrees between them. But on the contrary, Approach

II has been observed to bound Zc ≥ 0 for all the systems that we have

considered in the thesis.

• The problem of minimising or maximising a linear function subject to

linear constraints is also called linear programming problem (LPP).

Approach I requires solving 2n LPPs inorder to bound Zc ≥ 0 but

needs 2n less inequality constraints to solve each LPP.

• Approach II solves one LPP to bound Zc≥ 0 but requires 2n additional

inequality constraints.

• The general strategy would be therefore to use Approach II directly to

bound Zc ≥ 0.

2.1.5.6 Some questions

Here we raise some questions to frame our study and provide answers.

Question 1: What motivates finding the extremal vertices of the bounded

polyhedra and how is it related to finding the force network of an under

determined static granular system?

Answer: Let’s say that the contact geometry of a system of granular

particles is given, then, an under-determined system of granular particles

has infinite number of force network solutions each satisfying the constraint

of mechanical equilibrium. The space of such solutions reduce when extra

constraints such as zero-cohesion is imposed at each contact between parti-

cles. The reduced space of solutions still contain an infinite number of force

network solutions. In this thesis this reduced space is denoted by Zc ≥ 0,

where, through the relationship x=Zc, different c vectors yield different force

network solutions. The geometry of Zc ≥ 0 is an unbounded polyhedra ex-

tending to infinite distance from c=0. We bound this polyhedra by imposing
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an inequality of the form ê∗
Tc ≤ d (or cT

∗ c ≤ d). This results into a set of

vertices and we identify all of them by finding their co-ordinates. As we have

shown before, knowing these extremal vertices is sufficient to construct any

c vector consistent with Zc ≥ 0.

We now point out that the value of d in ê∗
Tc ≤ d (or cT

∗ c ≤ d) is

arbitrary and, since x=Zc, determines the maximum magnitude of contact

forces existing in the granular system. Hence, d sets the force scale in the

granular system. Therefore, in order to determine the force network of an

under-determined system one must generate points, say c1, c2, .., cp, which

are spread uniformly in the space of intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d)

and Zc ≥ 0 and then take an average of these points15, which say is denoted

by cavg, to generate, by the relationship x=Zcavg, the force network for the

under-determined system. This of course has not been demonstrated in this

thesis and forms an important part of future directions of this project. The

role of the extremal vertices of the intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d) and

Zc ≥ 0 is to ensure that the uniformly generated points c1, c2, .., cp span

over all the feasible space of solutions which is the intersection of ê∗
Tc ≤ d

(or cT
∗ c ≤ d) and Zc ≥ 0.

Question 2: The success of bounding Zc ≥ 0 lies in the success of finding

an ê∗ (or c∗). Can an ê∗ (or c∗) always be found?

Answer: A necessary requirement for finding an ê∗ (or c∗) is that for any

pair of vectors c1 and c2, which satisfy Zc ≥ 0, the angle between them must

be less than 90-degrees.

We explain the necessity for such a requirement, firstly for Approach I,

using a 2-dimensional example. In figure 2.11, the regions shaded in red and

grey represent the two different ways in which the region satisfying Zc ≥ 0

could be oriented such that the angles θ1 and θ2 are less than 90-degrees due

to the requirement. Consider the case when Zc ≥ 0 is the grey region. Since,

the directions in which ê1
Tc and ê2

Tc increase are ê1 and ê2 respectively,

therefore, a minimisation of ê1
Tc or ê2

Tc against Zc ≥ 0, would both result

15This of course assumes that the corresponding force networks x1,x2, ..,xp, which are
solutions to Ax=0, obtained using the relationship x=Zc, are equally likely to exist in
the under-determined granular system. The ith component of cavg will be equal to the
average value of the ith component of the vectors c1, c2, .., cp.
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Figure 2.11: Approach I : Constraint on Zc ≥ 0. θ1, θ2 < 90-degrees

in the point c=0. Therefore, both ê1 and ê2 could become an ê∗. Now,

consider the case when Zc ≥ 0 is the red region. In this case, only the

minimisation of ê2
Tc against Zc ≥ 0 would result in the point c=0. A

maximisation of ê2
Tc, or, a minimisation or a maximisation of ê1

Tc, against

Zc ≥ 0, would all be unbounded and would not give c=0. Hence, only ê2

could become an ê∗. Any other possible orientation of Zc ≥ 0 in 2-dimension,

with θ < 90-degrees, would fall in one of the two categories shown in figure

2.11 and hence by making similar arguments as above one can say that an ê∗

can always be found16. We will now explain such a requirement in Approach

II using a 2-dimensional example. Approach II does one minimisation of

any particular êi
Tc (chose any one) against Zc ≥ 0 and −β ≤ c ≤ β. Two

possibilities exist:

(i) The minimisation happens at c=0.

16One may say that such a requirement need not hold for Zc ≥ 0 but we will prove that
angle between any pair of vectors c1 and c2, which satisfy Zc ≥ 0, will be less than or
equal to 90-degrees. While we prove that the angle between such pairs of vectors cannot be
greater than 90-degrees they can be orthogonal to each other. However, in our numerical
calculations, we have not encountered any bounded polyhedra the vertices of which are
orthogonal to each other and we suspect that the occurence of failure of being able to find
an ê∗ is due to numerical inaccuracy that arise when angle between vectors which satisfy
Zc ≥ 0 is close to 90-degrees.
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(ii) The minimisation happens at one of the points on the boundary or the

interior of Zc ≥ 0.

If case (i) is true then êi
Tc = 0 will intersect Zc ≥ 0 in one and one

point only, that is, c=0. This then implies that êi=c∗. This case puts no

restriction on the angles between pairs of vectors satisfying Zc ≥ 0. The

convexity of Zc ≥ 0 will ensure that an inequality of the form cT
∗ c ≤ d (for

a correct sign of d) bounds Zc ≥ 0.

If case (ii) is true then the minimisation will happen at p1, q1 or r1 shown

as points with co-ordinates (m1, β), (β, β) and (β,m2) respectively.

  

c1

c2

O

θ

q2=(β ,β)

r2=(β ,m2)

p2=(m1,β)

r1(β ,m2)

q1(β ,β)
p1(m1,β)

p2
T c=0

q2
T c=0

r2
T c=0

Figure 2.12: Approach II : Constraint on Zc ≥ 0, θ < 90-degrees

Say the minimisation in case (ii) happened at point p1. The co-ordinates

of the point p1 then serve as a vector p2 in determining the orientation of

a line pT
2 c = 0 such that the line is guaranteed, since θ < 90-degrees, to

intersect Zc ≥ 0 only at c=0. This then gives us c∗ = p2 which helps bound

the Zc ≥ 0. Note that if co-ordinates of any other point (q1 or r1) were chosen

in determining the orientation of such a line then the line were guaranteed,

since θ < 90-degrees, to have intersected Zc ≥ 0 only at c=0.

We state again that Approach II was able to bound every Zc ≥ 0 consid-

ered in this thesis corresponding to different systems (equi-triangular, square
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and rhombic lattice) and sizes. Approach I, however failed in bounding Zc

≥ 0 for some systems.

We will now prove that for frictionless granular systems, which obey the

constraint of zero cohesion at each contact, the angle between any two non-

zero vectors c1 and c2, each of which satisfy Zc ≥ 0, will be less than or

equal to 90-degrees. We don’t have a proof for such an angle to be not equal

to 90-degrees.

Consider any two vector solutions x1 and x2 of the force balance equation

Ax=0 (see equation 2.2 for example) and the constraint of zero cohesion.

The constraint of zero cohesion at each contact implies that all the compo-

nents of the vectors x1 and x2 are non-negative (see section 2.1.2 for example).

Since the components of x1 and x2 are non-negative, the dot product of the

vectors x1 and x2 will always be greater than or equal to zero. This implies

that the angle between the two vectors x1 and x2 is less than or equal to

90-degrees. Let us now for such an x1 and x2, which obey Ax=0 and com-

ponentwise non-negativity constraint on x, use the relationship x1=Zc1 and

x2=Zc2 to obtain c1 and c2 (note that such c1 and c2 will satisfy Zc ≥ 0).

We prove in the next section that the angle between x1 and x2 is same as

the angle between c1 and c2. This then implies that the angle between c1

and c2 will be less than or equal to 90-degrees.

Question 3: Can an ê∗ (or c∗) always be found for frictional systems?

Answer: It has been shown empirically for 3-dimensional frictional monodis-

perse system of spheres that the angle between any two x vectors17, when

constrained by zero cohesion at each contact is less than 90 − degrees [9].

Hence the method must work for such systems as well.

Question 4: What is the computational cost of finding such an ê∗ (or c∗)?

Answer: If the c-space is n dimensional then in the worst case finding

an ê∗ would require n minimisations and n maximisations of linear func-

tions subject to linear constraint Zc ≥ 0. On the other hand, finding a c∗

requires one minimisation only. The problem of minimising or maximising

17An x vector, which satisfies the force and torque balance equation Ax=0, would
contain normal and radial components of contact forces for a frictional granular system
and the constraint of zero cohesion would put the non-negativity constraint on the normal
components of contact forces contained in the vector x.
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a linear function subject to linear constraints is also called linear program-

ming problem(LPP). We solve such LPPs via the Simplex Method using the

“LINPROG” command in MATLAB. The Simplex Method in general tends

to run in time linear to the number of constraints of the problem but in

certain worst cases it tends to run in polynomial time algorithm. Examples

have also been constructed for which the worst case performance, measured

through the number of iterations required, was known to be exponential [17].

Another popular method which is used to solve LPPs is the Interior Point

Method but they haven’t been used or explored in this thesis.

2.1.5.7 A proof

We will now prove that the angle between x1 and x2 is same as the angle

between c1 and c2, that is:

x1
Tx2

|x1| |x2|
=

c1
Tc2

|c1| |c2|
(2.6)

where, x1, x2 are any two solutions to the force balance equation Ax=0

and x1 = Zc1 and x2 = Zc2.

Proof :

x1
Tx2

|x1| |x2|
=

(Zc1)TZc2

|x1| |x2|
(2.7)

=
c1

T (ZTZ)c2

|x1| |x2|
(2.8)

= k
c1

Tc2

|x1| |x2|
(2.9)

where we have used the following:

x = Zc (2.10)

ZTZ = kI (since Z is an orthogonal matrix) (2.11)

where, we chose to keep k as some non-zero positive scalar. Equation 2.11 just
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means that the column vectors in Z are obtained by scaling an orthonormal

basis18 by a positive factor k (can be 1).

Since,

x1
Tx1 = (Zc1)TZc1 = c1

T (ZTZ)c1

Therefore, |x1|2 = k|c1|2 (2.12)

Similarly, |x2|2 = k|c2|2 (2.13)

Using equation 2.12 and 2.13 (relates the length of vector x and vector

c) in equation 2.9 we get:

x1
Tx2

|x1| |x2|
=

c1
Tc2

|c1| |c2|

Thus proving equation 2.6.

We end the three disk problem by finding the vertices of the bounded

polyhedra19. The method of finding the vertices of a bounded polyhedra will

be discussed in section 2.4.

We list the coordinates of the vertices of the bounded polyhedra, exclud-

ing the trivial vertex at c=0, as row vectors of the V matrix, for a choice of

d = 100:

V =



60.5475 56.3607 −16.9082

−243.3962 490.5660 −147.1698

4.6595 42.6523 52.6882

4.2039 42.7746 53.0215

4.0486 42.9150 53.0364

−224.2424 442.4242 −118.1818

−249.8911 497.3856 −147.4946


18An orthonormal basis consists of vectors which are orthogonal to each other and are

of unit length.
19We use a freely available code developed and benchmarked by authors mentioned

in reference [13] in c-space. This code finds all the vertices of a convex region in an
n-dimensional space.
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The row vectors in V represent the coordinates of the extremal vertices

of the bounded polyhedra in c-space. Using these vectors one can span

all the c vectors that satisfy Zc ≥ 0 and by using x=Zc construct all the

force networks that the three-disk system might admit (the method for doing

so has already been discussed before in this chapter). Although we didn’t

have a mathematical proof but here it should be noted importantly that

the maximum of the angles between a pair of vertices listed in V is close

to 71-degrees which serves as an evidence that the angle between no pair of

solutions to Zc ≥ 0 is greater than or equal to 90-degrees.

Using x=Zc (A row vector of matrix V is nothing but a c vector satisfying

Zc ≥ 0), we obtain the following force balanced solution for the three-disk

system in figure 2.1:

F =



0 26964 0 12 22 24164 27410

4043 526 29 5 0 0 363

0 0 3274 3293 3296 727 86

2354 31272 0 0 8 27745 31688

64 31370 1891 1916 1928 28524 31936

2301 0 3749 3756 3757 561 0

4648 392 1901 1883 1879 224 250

4710 16347 21 0 0 14097 16416

1 15415 3771 3799 3808 14652 15769


The column vectors of the matrix F are the solutions to Ax=0 which also

satisfy the non-negativity constraint on put on the components of vector x.

2.1.6 Summary

We now list and summarise the steps that we followed to solve the 2-dimensional

3-disk frictionless problem:

(i) Construct the contact matrix A by writing down the force balance

equation for each particle in the system. The resulting system of linear

equations will be of the form Ax=0. Let A be of the size m × n and

rank equal to r. The number of rows, m, in matrix A equals 2N, where
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N is the number of particles in the system. The number of columns,

n, in matrix A equals L, where L is the total number of contacts in

the system. The force at each contact must satisfy the non-negativity

criteria as we are looking at systems with zero cohesion, also, such forces

point along the radial direction of a particle due to absence of friction.

The problem is to solve Ax=0 such that all the components of x are

positive20.

(ii) This problem is converted equivalently to another form by expressing

the x vector as a linear combination of the basis vectors of the nullspace

of matrix Ax=0 and then imposing the non negativity constraint on

the components of the vector x. This results into a system of linear

inequalities of the form Zc ≥ 0 where Z is a matrix of size n by n− r
and c is an unknown vector whose components are the coefficients used

to expand the vector x in the basis of nullspace of A.

(iii) The inequality Zc ≥ 0 describes an open convex polyhedra emanating

from the origin in an n−r dimensional space that we call a c-space. The

problem is now to pick a point from every edge of this open polyhedra

as a representation of all the solutions c which satisfy Zc ≥ 0. We solve

this problem by bounding the polyhedra Zc≥ 0 and then identifiying its

extremal vertices. Rescaling the convex combinations of the extremal

vertices of the bounded Zc ≥ 0 by non-zero scalars can generate any

solution to Zc ≥ 0 and hence by the relationship x = Zc any possible

force network.

2.2 The Simplex Method

In this section we describe and illustrate the Simplex Method using a text-

book reference [6]. In this thesis this method has been used to determine the

plane, identified by its surface normal vector ê∗, that bounds the polyhedra

20We write the force balance equation assuming that the contact force acting on a par-
ticle is directed towards itself. Hence, imposing the non-negativity criteria on components
of x ensures that the force at each contact is non-cohesive in nature.
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Zc ≥ 0. This method is also central to finding vertices of the polyhedra

Zc ≥ 0 after it has been bounded. The computational efficiency of Simplex

Method has been mentioned in section 2.1.5. We will now begin by taking a

simple example problem and solve it step by step. We then summarise the

steps and explain how it is used to find vertices of bounded polyhedra. We

have used the code which finds all the vertices of a bounded polyhedra which

is freely available due to [13]. We emphasise that in this section the notations

and their meaning have no connection with the same notation if/when used

elsewhere in this thesis.

2.2.1 Inroduction

An inequality divides an n-dimensional space into two halfspaces, one where

the inequality is satisfied and the other where it is not. A typical example

is x + 2y ≥ 4. The boundary between the two halfspaces is x + 2y = 4 (a

line) where also the inequality is satisfied. The picture would be almost the

same in three dimensions except that the boundary becomes a plane. In n-

dimensions we still call the n−1 dimensional boundary a ’plane’. In addition

to the inequalities of this kind there is another constraint fundamental to

the problems (these problems are called Linear Programming Problems)

that Simplex Method solves: x and y may be required to be non-negative.

This requirement itself is a pair of inequalities x ≥ 0, y ≥ 0. The important

step is to impose all the three inequalities x+ 2y ≥ 4, x ≥ 0, y ≥ 0 at once.

They combine to give the colored region in the figure 2.13.

The colored region is an intersection of the three halfspaces. It is no

longer a halfspace. It is called a feasible set. A feasible set is composed of

the solutions to a family of linear inequalities. A system of m-inequalities like

Ax ≥ b describes the intersection of m halfspaces. If we also require that

every component of x is non-negative (written as x ≥ 0), this adds n more

halfspaces. The more constraints we impose the smaller the feasible set. The

feasible set may be bounded, unbounded or empty. In linear programming,

we are interested in a particular point in the feasible set that maximizes or

minimizes a certain “cost function”. To the example x + 2y ≥ 4, x ≥ 0,
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Figure 2.13: Minimization of linear cost function against linear inequalities

y ≥ 0, we add the cost function (or the objective function) 2x + 3y (linear

cost function). Then the problem in linear programming is to find the point

x, y that lies in the feasible set and minimizes the cost. The problem

is illustrated by the geometry of the figure 2.13. The family of costs 2x+ 3y

gives a family of parallel lines and we have to find the minimum cost i.e.

the first line to intersect the feasible set. In the example figure 2.13 that

intersection occurs at point B where x∗ = 0 and y∗ = 2. The minimum

cost is 2x∗ + 3y∗ = 6. The vector (0, 2) is called feasible because it lies in

the feasible set, it is optimal because it minimizes the cost function and the

minimum cost 6 is the value of the program. We denote optimal vectors by

an asterisk. We see that the optimal vector occurs at the corner of the

feasible set. This is guaranteed by the geometry, because the lines that give

the cost function (or the planes when we get to more unknowns) are moved

steadily up until they intersect the feasible set. The first contact must occur

along its boundary. The Simplex Method will stay on the boundary, going
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from one corner of the feasible set to the next until it finds the corner with

lowest cost.

Note: With a different cost function the intersection might not just be a

single point. If the cost happened to be x+2y the whole edge between B and

A would intersect at the same time and there would be an infinity of optimal

vectors along that edge. The optimal value is still unique (x∗ + 2y∗ = 4

for all these optimal vectors) and therefore the minimum problem still has

a definite answer. On the other hand, the maximum problem with the cost

function x+2y would have no solution. On our feasible set this cost function

can go arbitrarily high and our max cost is infinite.

Every linear programming problem falls into one of two possible cate-

gories:

• The feasible set is empty.

• The cost function has a minimum (or maximum) on the feasible set

which could be a finite or an infinite value.

2.2.2 The Simplex method

The Simplex method is a standard method of extremising linear functions

which are subject to linear constraints and for a detailed discussion one can

look at [6]. We will choose to solve a problem in the following form to explain

briefly the steps involved:

Minimize dy, subject to y ≥ 0, Gy ≥ b

where, G is an m × n matrix, b is a column vector with m components

and d is a row vector with n components. The“optimal” vector is the feasible

vector of least cost and the cost is dy = d1y1 + ..+ dnyn

In this section we will see a mathematical description of making a choice

to move along the edge of the feasible set from a given vertex. We start with

rewriting Gy ≥ b in a different form by introducing slack variables. It is
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used so that only simple inequalities remain. We write slack variables as:

w = Gy − b

.

which goes in the matrix form as:

[
G −I

] [y
w

]
= b

Where, I is an identity matrix of the size m × m and w is m × 1. The

feasible set is governed by these m equations and the n+m simple inequalities

y ≥ 0, w ≥ 0. We rename the larger matrix A and the longer vector x.

The original cost vector d extended by adding m more components of all

zeros is renamed as c. The problem has now become:

Minimize cx subject to x ≥ 0, Ax = b

A corner is a point where n components of the new vector x are

zero. In Ax = b these n components are the co − basic variables and the

remaining m components are the basic variables. Then setting n co-basic

variables to zero the m equation Ax = b determine the m basic variables.

This solution x is called basic. It will be a feasible corner if its m non-zero

components are positive.

In order to move from a vertex to another we exchange one basic vari-

able with a cobasic variable. This cobasic variable is called the entering

variable(entering the basis) while the basic variable being removed is called

the leaving variable (leaving the basis). The cost function decides which

co-basic variable to bring into the basis. The co-basic variable in the cost

function whose coefficient has the most negative value is the entering vari-

able (since this reduces the objective function the most). As the entering

component of the vector x increases from zero, other components of x may

decrease(in order to maintain Ax = b). The first component that decreases

to zero becomes the leaving variable.

When we start at a corner the basic variables in the vector x in Ax = b
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may be mixed. We renumber them (at the current corner) so that the first

m components of x is basic(this amounts to rearranging the columns of A).

The last n components therefore is co-basic(zero value). The first m columns

of A now form a square matrix B (the basic matrix for that corner) and

the last n columns give an mxn matrix N . Similarly, the cost vector is split

into [cB cN ] and the unknown x into [xB xN ]T . At the corner xN = 0 and

Ax = b becomes BxB = b and determines the basic variables xB. The cost

at this corner is cx = cBxB. We now construct a large matrix or a tableau:

T =
A b

c 0

The tableau is m + 1 by m + n + 1. To operate with it we separate it into

basic columns first:

T =
B N b

cB cN 0

We do row operations to reach the following:

T ′ =
I B−1N B−1b

cB cN 0

To finish cB times the top part is subtracted from the bottom which gives:

T ′′ =
I B−1N B−1b

0 cN − cBB−1N −cBB−1b

We now interpret the table properly. To do this we rewrite Ax = b as

BxB +NxN = b. This can be written as:

xB +B−1NxN = B−1b

and the cost cx = cBxB + cNxN has been turned into:

cx = (cN − cBB−1N)xN + cBB
−1b
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The main point is that every important quantity appears in the tableau. On

the far right in T ′′ are the basic variables xB = B−1b (the co-basic variables

are just xN = 0). The current cost is cx = cBB
−1b which is in the bottom

corner with a minus sign. Most important, we can decide if the current corner

is optimal by looking at r = cN − cBB−1N (r is called the reduced cost). If

any entry in r is negative the cost can still be reduced. The optimal corner

is found when all entries in r are non-negative. For the current corner we go

from T to T ′′ and check the optimality condition put on r. If r has negative

components then the current corner is not optimal. We then choose entering

and leaving variables (going to an adjacent vertex) to reconstruct T . We

repeat this process until for a given corner all entries in r become positive in

the tableau T ′′.

We finally summarize the simplex method in steps:

1. Compute the row vector λ = cBB
−1 and the reduced costs r = cN−λN

2. If r ≥ 0 stop: current solution is optimal. Otherwise if ri is the most

negative component, choose the ith column of N to enter the basis.

Denote it by u.

3. Compute v = B−1u.

4. Calculate the ratios of B−1b to B−1u, admitting only the positive com-

ponents of B−1u. If there are no positive components, the minimal

cost is −∞. If the smallest ratio occurs at component k, then the kth

column of the current B will leave. This is also called the Minimum

Ratio Test.

5. Update B−1 and the solution xB = B−1b. Return to 1.

2.2.3 A solved example

A corner is a vector x ≥ 0 that satisfies the m equations Ax = b with at

most m positive components. The other n components are zero. (Those

are the free variables. Back substitution gives the m basic variables. All

variables must be nonnegative or x is a false corner i.e. not in the feasible
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set.) For a neighboring corner, one zero component of x becomes positive

and one positive component becomes zero.

The simplex method must decide which component “enters” by

becoming positive, and which component “leaves” by becoming

zero. That exchange is chosen so as to lower the total cost. This

is one step of the simplex method, moving toward x∗.

Here is the overall plan. Look at each zero component at the current

corner. If it changes from 0 to 1, the other nonzeros have to adjust to keep

Ax = b. Find the new x by back substitution and compute the change in

the total cost cx. This change is the “reduced cost” r of the new component.

The entering variable is the one that gives the most negative r. This is the

greatest cost reduction for a single unit of a new variable.

The more of the entering variable we include, the lower the cost. This has

to stop when one of the positive components (which are adjusting to keep

Ax = b) hits zero. The leaving variable is the first positive xi (calling it

as the ith component of the x vector) to reach zero. When that happens, a

neighboring corner has been found. Then start again (from the new corner)

to find the next variables to enter and leave. When all reduced costs are

positive, the current corner is the optimal x∗. No zero component of x∗ can

become positive without increasing cx∗. No new variable should enter. The

problem is solved.

Example:

Minimize the cost cx = 3x1 + x2 + 9x3 + x4. The constraints are x ≥ 0

and two equations Ax = b:

x1 + 2x3 + x4 = 4, m = 2 equations

x2 + x3 − x4 = 2, m+ n = 4 unknowns

A starting corner21 is x = (4, 2, 0, 0) which costs cx = 14. It has m = 2

nonzeros and n = 2 zeros. The zeros are x3 and x4. The question is whether

21In order to understand how such a starting corner is found refer [18].
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x3 or x4 should enter (become nonzero). Try one unit of each of them:

If x3 = 1 and x4 = 0, then x = (2, 1, 1, 0) costs 16

If x4 = 1 and x3 = 0, then x = (3, 3, 0, 1) costs 13

Compare those costs with 14. The reduced cost of x3 is r = 2, positive and

useless. The reduced cost of x4 is r = −1, negative and helpful. The entering

variable is x4. How much of x4 can enter? One unit of x4 made x1 drop from

4 to 3. Four units will make x1 drop from 4 to zero (while x2 increases all

the way to 6). The leaving variable is x1. The new corner is x = (0, 6, 0, 4),

which costs only cx = 10. This is the optimal x∗, but to know that we have

to try another simplex step from (0, 6, 0, 4). Suppose x1 or x3 tries to enter:

Start from the corner (0,6,0,4)

If x1 = 1 and x3 = 0, then x = (1, 5, 0, 3) costs 11

If x3 = 1 and x1 = 0, then x = (0, 3, 1, 2) costs 14

Those costs are higher than 10. Both r’s are positive-it does not pay to move.

The current corner (0,6,0, 4) is the solution x∗.

2.3 Finding redundant inequalities

If a vertex in an n-dimensional space, satisfies more than n inequalties

as equations then such a vertex is called degenerate. A vertex in an n-

dimensional space is non-degenerate if it satisfies exactly n inequalties as

equations. As we had discussed before, after bounding the polyhedra Zc

≥ 0 we use the vertex enumeration method to find all its extremal vertices

the relevance of which has already been discussed in section 2.1.5. Such a

bounded polyhedra contains origin, that is, c=0 which is trivially satisfied as

an extremal vertex. The number of inequalities in Zc ≥ 0 is equal to number

of rows in Z matrix and the number of variables that appear in each such

inequality is equal to the number of columns in Z. Since the system of force

balance equation Ax=0 is under-determined (number of rows in matrix A
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less than the number of columns in A) therefore the number of rows in Z

will always be greater than the number of columns in Z. And since each in-

equality in Zc ≥ 0 satisfies c=0 therefore this implies that the origin c=0 is

degenerate. Such degenerate vertices reduce the efficiency of the vertex enu-

meration method [19]. We would therefore like to remove those inequalities

in Zc ≥ 0 which are redundant (precisely defined below) which will reduce

the degeneracy of c=0 and make the enumeration of vertices efficient. Re-

fer [12] to find a detailed discussion of such a method that we summarise

below for the most general case:

Let Ly ≤ b, sTy ≤ t be a given system of m+1-inequalities in d-variables

y = (y1, y2, . . . , yd)
T . We want to test whether the subsystem of first m

inequalities Ly ≤ b implies the last inequality sTy ≤ t. If so, the inequal-

ity sTy ≤ t is redundant and can be removed from the system. A linear

programming (LP) formulation of this checking is rather straightforward:

f ∗ = maximize sTy

subject to Ly ≤ b

sTy ≤ t+ 1.

Then the inequality sTy ≤ t is redundant if and only if the optimal value

f ∗ is less than or equal to t. By successively solving this LP for each untested

inequality against the remaining, one would finally obtain a equivalent non-

redundant system.

2.4 Vertex Enumeration Method [13]

Before we introduce this method we begin by defining terms which we will use

later. These terms are commonly used in the literature of Graph Theory [8].

2.4.1 Definitions

• Graph: A graph is a structure amounting to a set of objects (called

nodes/vertices) in which some pairs of the objects are “connected”

(representatively by an edge).
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• Loop: A loop (also called a self-loop or a “buckle”) is an edge that

connects a vertex to itself.

• Cycle: A cycle is a path of edges and vertices wherein a vertex is

reachable from itself.

• Degree of a vertex: The degree (or valency) of a vertex of a graph is

the number of edges incident to the vertex, with loops counted twice.

In a regular graph, all degrees are the same, and so we can speak of

the degree of the graph.

• Path: A path in a graph is a finite or infinite sequence of edges which

connect a sequence of vertices which, by most definitions, are all distinct

from one another.

• Tree: A tree is an undirected graph in which any two vertices are

connected by exactly one path.

• Spanning Tree: An undirected graph G is a subgraph that is a tree

which includes all of the vertices of G, with minimum possible number

of edges.

• Forest: A forest is a disjoint union of trees.

• Undirected graph: An undirected graph is a graph in which edges

have no orientation.

• Spanning Forest: A graph consisting of a spanning tree in each con-

nected component of the graph.

• Directed graph: A directed graph (or digraph) is a graph that is a

set of vertices connected by edges, where the edges have a direction

associated with them.

• Simple Graph: Is an undirected graph in which both multiple edges

(more than one edge connecting a pair of vertices) and loops are disal-

lowed.
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• Regular Graph: A graph in which each vertex has the same number

of neighbours.

• Complete Graph: A graph in which each pair of vertices is joined by

an edge. A complete graph contains all possible edges.

• Root node/vertex: The vertex at which a directed graph begins.

• Depth First Search: It is an algorithm for traversing or searching

tree or a graph. The algorithm starts at a root node (selecting some

arbitrary node as the root in case of a graph) and explores as far as

possible along each branch before bactracking.

2.4.2 Introduction

We will now briefly describe the vertex enumeration method which is used

to identify all the extremal vertices of a bounded polyhedron obtained by

bounding Zc ≥ 0. The relevance of knowing all the extremal vertices of

such a bounded polyhedra has already been discussed in section 2.1.5. Let

us assume that an inequality of the form ê∗
Tc ≤ d bounds the polyhedra

Zc ≥ 0, as discussed in section 2.1.5. Let ê∗
Tc ≤ d and Zc ≥ 0 together

be represented as b + Zbc ≥ 0 where, the matrix Zb consists of all the row

vectors of Z and also an extra row vector, that is, ê∗
T that appears as the

last row in Zb. The vector b is of the form (0, 0, ..., 0,−d)T .

Let Zb be a matrix of size m× n and b be an m dimensional vector then

a polyhedron P is defined as:

P = {c ∈ Rn : b + Zbc ≥ 0}

Where the inequality in b + Zbc ≥ 0 implies a componentwise inequality

on the vector b + Zbc.

A point c ∈ P is a vertex of P if and only if it is the unique solution

to a subset of n inequalities solved as equations. The vertex enumeration

problem [7] is to output all vertices of a polytope P . A bounded polyhedron
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is called a polytope. Formally, a polyhedron P is bounded if there exists

M ≥ 0 , such that |c| ≤M, ∀ c ∈ P ).

The method of finding the vertices is known as Reverse Search for vertex

enumeration and is described in detail in [14]. Reverse Search is central

to vertex enumeration technique. It works as follows. Suppose we have

a system of m linear inequalities defining an n-dimensional polyhedra in Rn

and a vertex of that polyhedron given by the indices22 of n inequalities whose

bounding hyperplanes intersect at the vertex. These indices define a cobasis

for the vertex. The complementary set of m− n indices are called a basis (a

non-degenerate vertex will have exactly one basis while a degenerate vertex

in n-dimensional space will have as many as
(
k
n

)
= k!

n!(k−n)! bases, where, k

( > n) is the number of inequalities that the degenerate vertex c satisfies

as equations) and
(
k
n

)
represents the set of all n-combinations of a set with

cardinality k. For any given linear objective function, the simplex method

generates a path between adjacent bases(or equivalently cobases) which are

those differing in one index. The path is terminated when a basis of a vertex

maximizing this objective function is found. The path is found by pivoting,

which involves interchanging one of the hyperplanes defining the current

cobasis with one in the basis. The path chosen from the initial basis depends

depends on the pivot rule used, which must be finite to avoid cycling23 in

the graph [15]. If we look at the set of all such paths from all bases of the

polyhedron, we get a spanning tree of the graph of adjacent bases of the

polyhedron. The root of this tree is a basis of an optimum vertex. The

reverse search algorithm starts at this root and traces out its nodes in depth

first order by reversing the pivot rule. We will illustrate in the next section

how it works.

22Each index points to a unique inequality in the set of inequalities b + Zbc ≥ 0.
23Such cycling can prevent the path from terminating and the optimum vertex may

never be found.
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2.4.3 Illustrations

2.4.3.1 Graph (Nodes and edges) of the bounded polyhedra

Let us assume that the c-space is 3-dimensional. Let c1, c2 and c3 in figure

2.14 be the three coordinate directions and n0, n1, n2, n3, n4, n5, n6 be the

extremal vertices of the bounded polyhedra obtained as an intersection of

ê∗
Tc ≤ d and Zc ≥ 0 (see section 2.1.5 for detailed discussion).

  

n1

n2

n3
n4

n5

n6

n0 c0

c1

c2

c3

Figure 2.14: Graph of the bounded polyhedra

Note that the plane ê∗
Tc = d bounds the polyhedra Zc ≥ 0. The edges of

the bounded polyhedra are shown in solid red and green lines in figure 2.14.

All vertices except the origin (n0) lie in the plane ê∗
Tc = d (ê∗ is normal to

this plane) which bounds the open polyhedra Zc ≥ 0. The points, including

n1, n2, n3, n4, n5, n6, which lie within and on the boundary formed by the

green edges in this plane, ê∗
Tc = d, satisfy Zc ≥ 0, and the points in this

plane which lie outside the boundary do not satisfy Zc ≥ 0. The solid green

lines also represent the connectivity of n1, n2, n3, n4, n5, n6 in this plane. The

solid lines in red, the points on which also satisfy Zc ≥ 0, are the edges that

connect the origin, n0, to these vertices. Also, consider a plane with a unit

normal vector c0, see figure 2.14, such that c0 and ê∗ are orthogonal to each

other. The plane with c0 as a surface normal vector, shown in figure 2.14,
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appears as a straight line (shown in blue in figure 2.14) when viewed along

the normal vector ê∗.

2.4.3.2 Spanning tree on the graph of bounded polyhedra

  

n1

n2

n3
n4

n5

n6

n0

c0

c1

c2

c3

Root

Figure 2.15: Spanning tree on the Graph of the bounded polyhedra

Now, if a linear function of the form c0
Tc, with c0 same as described

in 2.14, is then minimized subject to the region described by the bounded

polyhedra in figure 2.14 then n5 becomes the optimum vertex. The simplex

method turns the connectivity of vertices in figure 2.14 into that of a ‘span-

ning’ tree as shown in figure 2.15. The arrows show the path traversed by

the simplex method from a given vertex to the optimum vertex. It must be

noted that the cycles that existed in the graph of the bounded polyhedra

are eliminated due to the simplex method. Degenerate vertices, such as n0,

may prevent the simplex method from reaching the optimum vertex. In such

case the simplex method uses a special pivot rule called Bland’s rule [15] to

resolve the problem. Usage of this rule for degenerate vertices ensures the

construction of spanning tree as shown in figure 2.15.

The reverse search for vertex enumeration starts at the optimum vertex

n5, also called the root of the search tree, and does a depth first search of
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the spanning tree in figure 2.15 to list all the vertices and thus giving us all

the extremal vertices that we desire.

For a polyhedron with m inequalities in d variables the vertex enumer-

ation method finds all bases in time O(md2) per basis. Thus, for example,

if a polyhedron has n vertices, and all non-degenerate, then the vertex enu-

meration method will list all the vertices in time O(nmd2).

2.5 Volume calculation of polytopes

The number of vertices of a bounded polyhedra may sometime become expo-

nentially large as we shall see in section 3.1. In this case we want to devise a

method to find a subset of vertices such that they can be used to span ‘most’

of the region contained in Zc ≥ 0, if not all of it.

If we pick points from all the edges of Zc ≥ 0 then using these points we

can span the entire space of solutions in Zc ≥ 0 and hence by the relationship

x=Zc can construct any possible force network that the system might admit.

But in figure 3.6 we will see that the number of such points grow exponentially

and therefore enumeration of all the points becomes infeasible. We would

therefore like to have a smaller subset of points/vertices (since we cannot

enumerate an exponential number of points/vertices) using which most of

the region in Zc ≥ 0 can be covered. This would help us construct most of

the force networks that a granular system might admit if not all of them.

In fact in section 3.1.6 we suggest and demonstrate a method to construct

a subset of vertices that we believe does well at approximating the volume

of the actual/original bounded polyhedra. In order to quantify the success

of such an approximation we must be able to calculate what fraction of the

actual volume of the bounded polytope is recovered using such subset of

vertices. This motivates our volume calculations.

All known algorithms for exact volume computation decompose a given

polytope into simplices and thus they all rely on the volume formula of a

simplex:

Vol(∆(v0,..,vd)) = | det(v1 − v0,..,vd − v0) | / d!
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where ∆(v0,..,vd) denotes the simplex in Rd with vertices v0,..,vd ∈ Rd.

There are two types of methods for volume computation, depending on how

a given polytope P is decomposed into simplices. They are the triangulation

methods and signed decomposition methods. We use triangulation methods

for volume calculation of our polytope.

A triangulation of a d-polytope P is a set (∆i : i = 1, ... , s) of d-simplices

such that

P =
s⋃

i=1

∆i

and no distinct simplices have an interior point in common. Then the volume

of P is simply the sum of the volumes of the simplices:

V ol(P ) =
s∑

i=1

V ol(∆i)

We use the free code developed by authors in [13] for volume calculation of

polytopes. It uses a triangulation method to do so. For more on how this

triangulation/decomposition of P is achieved please refer [16].
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Results

3.1 Snooker-triangle probem

3.1.1 Introduction to the system

We study the polyhedra corresponding to a system of 2-dimensional identical

hard disks contained in an equi-lateral triangular box. The smallest system

size would correspond to 3 disks as shown below:

  

1

2 3

a b

c d

e f

Figure 3.1: Smallest system in a snooker triangle

It is assumed that there exists no friction in the system. The unknown

contacts are marked in the figure 3.1. In figure 3.2 we show the scaling of the

53
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number of unknown contacts versus the number of particles in the system.

The slope of the curve in figure 3.2 is equal to three which means that the

number of unknown contacts, for such a system, is three times the number

of particles.
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Figure 3.2: Number of contacts vs System size

  

p

Figure 3.3: Equi-triangular system

If A is of the size m × n and the rank is r then dimensionality of the

space of solutions to Ax=0 is n − r. Let the number of particles touching

one side of the boundary of the triangle be p, as shown in figure 3.3. We

have assumed completely frictionless system in 2-dimensions. Therefore the
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number of force balance equations, m, will be p(p + 1) and the number of

unknown contacts, n, also marked as small dashed lines in figure 3.3, will be
3p(p+1)

2
. Now, the rank r of the contact matrix A for such system is equal

to the number of rows in A, that is, r = m1. Therefore, the dimensionality

of nullspace of A becomes n −m which is 3p(p+1)
2
− p(p + 1) = p(p+1)

2
. But

p(p+1)
2

equals the number of particles in the system. This implies that the

dimensionality of nullspace of A equals the number of particles in the system.

And, since the number of unknown contacts equal three times the number

of particles, therefore, the number of unknown contacts equal three times the

dimensionality of nullspace of matrix A.

3.1.2 Number of vertices (and bases) vs System size
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Figure 3.4: Number of vertices (and bases) vs System size

We show in figure 3.4 that, for equi-triangular systems, the number of

vertices of the bounded polyhedra, as obtained after bounding Zc ≥ 0, scales

exponentially with the number of disks/particles in the system.

It was noted in section 3.1.1 that the dimensionality of nullspace of the

contact matrix A equals the number of particles in the system. Since the

dimensionality of the nullspace of A also equals the dimensionality of the

1This is an empirical fact that we have noticed during our calculations.
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c-space2, therefore, dimensionality of the c-space equals the number of par-

ticles. Hence, we can say that for the equi-triangular systems the number

of vertices of the bounded polyhedra (note that such a polyhedra lives in c-

space) grow exponentially with the dimension of c-space. A typical polyhedra

which shows such kind of exponential scaling is a hypercube the number of

vertices of which grow as 2d, where, d is the dimensionality of the space in

which the hypercube lies.

If a vertex in an n-dimensional space, satisfies more than n inequalties as

equations then such a vertex is called degenerate. A basis of a vertex, in an

n-dimensional space, is a distinct set of n number of inequalities which when

solved as equations give the coordinates of that vertex in the n-dimensional

space. Let us say that a vertex in an n-dimensional space satisfies k ( > n)

number of inequalities as equations then the number of bases for such a

vertex will have
(
k
n

)
bases. If a vertex in an n-dimensional space, satisfies

exactly n inequalties (not more) as equations then such a vertex is called

non-degenerate. A non-degenerate vertex will therefore have exactly one

basis which is also equal to
(
n
n

)
.

In figure 3.4 we see that the number of bases are more than number of

vertices because c=0 is a degenerate vertex which satisfies Zc ≥ 0.

We will now give an upper bound on the number of vertices which will

serve as an evidence that an exponential scaling of vertices is possible. If the

contact matrix A is of the size m × n with rank r then Zc ≥ 0 will have

n inequalities in n− r variables. Also, let us assume that we have bounded

Zc ≥ 0 using the methods described in Chapter 2 and obtained a bounded

polyhedra. The number of vertices of the bounded polyhedra is then one

2Consider the system of force balance equation Ax=0 and the relationship x=Zc as
discussed in Chapter 2. Let A be of the size m × n and rank r. Then the solutions x to
Ax=0 are n-dimensional vectors (vectors with n-components) which all lie in an n − r
dimensional plane. This n− r dimensional plane is called the nullspace of the matrix A.
The Z matrix will consist of the basis vectors of nullspace of A. Hence the size of Z matrix
will be n × n − r. The c-space on the other hand would be an n − r dimensional vector
space consisting of all the possible vectors with n − r components (a vector in c-space is
denoted by c). A vector in c-space has n− r components while a vector in nullspace of A
has n components. The set of c vectors which satisfy the system of linear inequalities Zc
≥ 0 is a subset of the c-space. The polyhedra obtained after bounding Zc ≥ 0 is also a
subset of c-space therefore.
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more (due to the vertex at c=0) than the number of edges of the unbounded

polyhedra Zc ≥ 03. Such an edge is obtained by solving n−r−1 inequalities

of Zc ≥ 0 as equations, which also in addition, satisfy all the remaining r+1

inequalities in Zc ≥ 0. An upper bound on the number of such edges (such a

number can of course serve as an upper bound on the number of vertices as

each vertex of the bounded polyhedra, except c=0, corresponds to an edge

of the unbounded Zc ≥ 0) will be obtained if the edges, obtained by solving

n−r−1 inequalities of Zc ≥ 0 as equations, don’t necessarily have to satisfy

the remaining r + 1 inequalities in Zc ≥ 0. Obviously, this upper bound

would be
(

n
n−r−1

)
. We calculate this upper bound for different number of

particles for the equi-triangular system and obtain the result in figure 3.5 on

a log-linear scale.
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Figure 3.5: Upper bound on the number of edges of Zc ≥ 0

Figure 3.5 indeed suggests that the vertices can rise exponentially as a

function of system size since the upper bound on such vertices is exponential

3Let Zc ≥ 0 be n inequalities in n − r variables. As discussed in Chapter 2 we are
interested in picking points from each edge of the polyhedra Zc ≥ 0. Such an edge is
obtained by solving n− r − 1 inequalities of Zc ≥ 0 as equations, which also in addition,
satisfy all the remaining r+ 1 inequalities in Zc ≥ 0. Except the point c=0 each point of
the bounded polyhedra is a point on such an edge.
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in system size. It must be noted that for any given system size the value of

the upper bound is more than the corresponding number of vertices observed

in figure 3.4 obviously as expected.

Since the number of vertices grow exponentially and the vertex enumer-

ation method of finding vertices is at best linear in time with the number of

vertices enumerated [14] it is not feasible to enumerate all the vertices for

such systems of large sizes in practical time.

3.1.3 Removal of redundant inequalities in Zc ≥ 0

3.1.3.1 Motivation

We know that each inequality in Zc ≥ 0 satisfies c=0. This implies that the

origin c=0 is degenerate. Such degenerate vertices reduce the efficiency of

the vertex enumeration method [19]. We would therefore like to remove those

inequalities in Zc ≥ 0 which are redundant (defined precisely in section 2.3)

so that the degeneracy of c=0 is reduced and thus making the enumeration

of vertices more efficient than otherwise.

0 5 10 15
System size

1

10

100

1000

10000

1e+05

N
u
m
b
er
o
f
B
as
es
o
f
O
ri
g
in

Number of bases of origin vs System size

Figure 3.6: Number of bases of origin vs System size

Vertex enumeration method goes through each basis of a vertex before

listing it out. Our objective is to enumerate vertices for larger system sizes.
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Since the number of basis of the origin, c=0, which is a degenerate vertex,

grows exponentially, seen in figure 3.6, its important to check if fewer in-

equalities in Zc ≥ 0 can be used (and thus reducing the number of bases of

origin) to construct the same polyhedra to make the enumeration possible in

practical time. The inequalities which can be removed without affecting the

polyhedra formed by Zc ≥ 0 are called redundant.

3.1.3.2 Results

The method of obtaining the results in this section has been discussed in

section 2.3. We see that the number of redundant inequalities is nearly zero

for all system sizes making the enumeration infeasible for large system sizes

using the method in [14].

System size size of A number of redundant inequalities
3 6x9 2
6 12x18 0
10 20x30 1
15 30x45 0
21 42x63 0
28 56x84 0

Table 3.1: Number of redundant constraints vs sytem size

3.1.4 Volume computation and approximations

3.1.4.1 Motivation

If we pick points from all the edges of Zc ≥ 0 then using these points we can

span the entire space of solutions in Zc ≥ 0 and hence by the relationship

x=Zc can construct any possible force network that the system might admit

(see section 2.1.5 for details). But in figure 3.6 we saw that the number of

these points grew exponentially with system size and therefore enumeration

of all the points becomes infeasible for larger system size. We would therefore

like to have a smaller subset of points/vertices (since we cannot enumerate

an exponential number of points/vertices) using which most of the region
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in Zc ≥ 0 can be covered. This would help us construct most of the force

networks that the system might admit if not all of them.

3.1.5 Approximating the volume of the polytope

The goal is to find a subset of vertices of the polytope obtained after bounding

the open polyhedra Zc ≥ 0 so that using this subset of vertices we can

span as much space in Zc ≥ 0 if not all. The entire solution space Zc

≥ 0 can be sampled by taking convex combination of the vertices of the

bounded polyhedra (the polyhedra obtained after bounding Zc≥ 0) and then

multiplying the resultant vector by positive scalar. This had been discussed

before in section 2.1.5. If only a subset of vertices is known then only a

fraction of the region Zc ≥ 0 can be spanned.

We demonstrate a method which is based on geometric intuition and show

through simple volume calculations that the method does well at approxi-

mating the solution space Zc ≥ 0.

3.1.6 First strategy: Constructing the box

All the edges of Zc ≥ 0 we are interested in emanate from origin. The

polyhedra Zc ≥ 0 is unbounded. Consider cT
∗ c ≤ d or ê∗

Tc ≤ d, whichever

bounds Zc ≥ 0. Say, ê∗
Tc ≤ d bounds Zc ≥ 04. The bounding plane of

ê∗
Tc ≤ d that is ê∗

Tc = d intersects with the edges of Zc ≥ 0 in points. We

find a special subset of these points with a property that we describe and

illustrate now.

3.1.6.1 Method (Box fit method)

(i) Let the polyhedra Zc ≥ 0 lie in an n-dimensional c-space. Let us

assume that the constraint ê∗
Tc ≤ d bounds the polyhedra Zc ≥ 0.

Find a set of n− 1 unit vectors, say k1,..,kn−1, such that together with

ê∗ they form an orthonormal basis of the n-dimensional c-space. Such

4The method of approximating volume does not depend upon whether cT∗ c ≤ d bounds
Zc ≥ 0, or, ê∗

T c ≤ d bounds Zc ≥ 0. So one can simply replace ê∗ with c∗ in the entire
discussion of volume approximation of the bounded polyhedra.
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an orthonormal basis will not be unique. But we need one, anyone, for

our purpose.

(ii) Construct a set of n − 1 linear functions of the form kT
1 c,..,kT

n−1c (let

this set be labelled as S).

(iii) Do a minimisation and a maximisation of each linear function in the set

S constrained by ê∗
Tc = d and Zc ≥ 0 (The equality sign in ê∗

Tc = d

put as a constraint will help us keep strictly in the plane which holds

all the vertices except the trivial vertex c=0). This will give us a pair

of points/vertices corresponding to each linear function. The minimisa-

tion and maximisation of each n− 1 linear function generates 2(n− 1)

points/vertices. These 2(n−1) vertices of the bounded polyhedra along

with the vertex at the origin is a special subset of vertices which we show

through our volume calculations a good approximation of the solution

space Zc ≥ 0.

It must be noted that we do not claim to have found an upper or a lower

bound on the percentage of volume of the space of solutions recovered using

such an approximation.

3.1.6.2 Illustrating the Method

We now show what the vertices in this special subset look like using geometric

illustrations. We show in figure 3.7 a cartoon of the bounded polyhedra

obtained as an intersection of ê∗
Tc ≤ d and Zc ≥ 0 in a 3-dimensional space5.

Note that the figure 3.7 has the same description as was used to describe

figure 2.14 in section 2.4.3.1. The cartoon picture of the bounded polyhedra

has seven vertices n0, n1, n2, n3, n4, n5 and n6. Except the vertex n0 at origin,

all the vertices lie in a plane which is the bounding hyperplane of the half-

space that removes the part of the polyhedra extending to infininty, which

in other words mean that all the vertices of the bounded polyhedra, except

c=0, resulting from the intersection of ê∗
Tc ≤ d and Zc ≥ 0 are contained in

5Figures 3.7 and 3.8 are in 3-dimensional space and the three coordinate directions are
marked as c1, c2 and c3.
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Figure 3.7: Fitting the vertices in a box

the plane ê∗
Tc = d(See section 2.1.5 of Chapter 2 for details). The bounded

polyhedra can also be represented as a convex hull6 of its vertices. In figure

3.7 a convex hull of the vertices n0, n1, n2, n3, n4, n5 and n6 is the bounded

polyhedra. These two representations are equivalent because the bounded

polyhedra is a convex polytope and a convex polytope is a convex hull of its

vertices [10].

The box fit method suggests that in 3-dimensions we must have two unit

vectors k1 and k2 such that k1, k2 and ê∗ form an orthonormal basis of the

3-dimensional space. Let’s call k1 and k2 as c0 and d0, respectively, to have

notational consistency with figures 3.7 and 3.8.

The minimisation and maximisation of the linear functions cT0 c and dT0 c

against the constraints ê∗
Tc = d and Zc ≥ 0 (In figure 3.7 these constraints

will define a convex hull of n1, n2, n3, n4, n5, n6 which is nothing but only that

part of the bounding plane ê∗
Tc = d which has non-zero intersection with

Zc ≥ 0) amounts to saying that the four planes in solid blue color shown in

figure 3.8 touch the extreme points of the polytope from outside giving two

pairs of vertices. The pair n1 and n3 come respectively from minimising and

maximising dT0 c against ê∗
Tc = d and Zc ≥ 0 and the pair n5 and n2 come

6The convex hull of a set U of points in a Euclidean space is the smallest convex set
that contains U [10].
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Figure 3.8: A smaller solution space using the box fit

respectively from minimising and maximising cT0 c against ê∗
Tc = d and Zc

≥ 0. Thus we obtain a special subset of vertices which include n1, n2, n3 and

n5. Hence our approximation to the bounded polyhedra in figure 3.7 is a

convex hull of the special subset of vertices, that is, n0, n1, n2, n3 and n5. Of

course the volume of the convex hull of n0, n1, n2, n3 and n5 is only a fraction

of the volume of the convex hull of the vertices n0, n1, n2, n3, n4, n5 and n6.

We obtain the following results based on the box-fit method. These results

are for the equilateral-triangular system as discussed in section 3.1.1.

System size fraction of total vertices fraction of total volume
3 0.42 0.90
6 0.081 0.254

Table 3.2: Fraction of total vertices vs fraction of total volume

We calculate the volume of the convex hull of a subset of the vertices of

the bounded polyhedra obtained through the box-fit method. We see through

these results that for a system size of three knowing 42 % of the total number

of vertices of the bounded polyhedra through the box fit method helps us

cover 90 % of the solution space. And for a system size of six knowing 8.1
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% of the total number of vertices of the bounded polyhedra through the box

fit method helps us cover 25.4 % of the solution space.

The box in figure 3.7 (shown in solid blue lines) which covers the bounded

polyhedra from outside can be rotated about the ê∗ which is the surface

normal to the bounding plane ê∗
Tc = d, of Zc ≥ 0, to construct more boxes

which can then be used to generate more vertices when dealing with larger

systems in higher dimensions. This forms the basis of improvement of the

box fit method that we mention in next section.

3.1.7 Improvement over first strategy: Using two boxes

It is possible to improve upon the previous results. If we rotate the first box

by 45−degrees about the surface normal vector of the bounding plane we get

a second box (one more rotation by 45 − degrees about the surface normal

vector will give the original box). The first step of finding the second box is to

find a unit vector k2
1 (the superscript 2 implies that k2

1 belongs to the second

box) such that it is orthogonal to ê∗ and makes an angle of 45-degrees with

the unit vector k1 of the first box. Such a k2
1 will not be unique, however, we

need any one for our purpose. The second and final step of finding the second

box is to find a set of n − 2 unit vectors k2
2,..,k

2
n−1 such that k2

1,k
2
2,..,k

2
n−1

along with ê∗ form an orthonormal basis of the n-dimensional c-space.

Finally, once again, construct a set of n − 1 linear functions of the form

k2T
1 c,..,k2T

n−1c and do a minimisation and a maximisation of each of the linear

function constrained by ê∗
Tc = d and Zc ≥ 0 to obtain another 2(n− 1) set

of points.

Following such an approach we then compute the volume of the convex

hull of entire 2(n− 1) + 2(n− 1) points to see what percent of solution space

is covered for the equi-triangular system of system size six.

System size fraction of total vertices fraction of total volume
6 0.139 0.923

Table 3.3: Fraction of total vertices vs fraction of total volume

Significant improvement is observed by using two boxes. The strategy to
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approximate the bounded polyhedra then becomes to use multiple boxes in

the following way:

Let the number of boxes be L and the c-space n-dimensional. Also, let the

n− 1 unit vectors corresponding to the first box be represented by k1
1,..,k

1
n−1

(the superscript 1 implies that k1
1 belongs to the 1st box). As discussed before,

k1
1,..,k

1
n−1 together with ê∗ forms an orthonormal basis of the n-dimensional

c-space.

(i) Construct the first box using the box-fit method.

(ii) The nth box is then constructed by, first, finding a unit vector kn
1 (the

superscript n implies that kn
1 belongs to the nth box) such that it is

orthogonal to ê∗ and makes an angle of θ = (n − 1)(π/2)/L radians

with the unit vector k1
1 of the first box, and then, finding a set of n− 2

unit vectors kn
2 ,..,kn

n−1 such that kn
1 ,kn

2 ,..,kn
n−1 along with ê∗ form an

orthonormal basis of the n-dimensional c-space.

(iii) For each box find the 2(n− 1) vertices using the box-fit method. Then

for L boxes we get in total 2L(n− 1) vertices.

A convex hull of these 2L(n − 1) vertices and the vertex at origin ap-

proximates the solution space which through our volume calculations believe

approximates the solution space well.

3.1.8 Conclusion

We finally conclude by listing our observations for systems of frictionless

disks in equi-lateral triangular box in 2-dimensions.

(i) The number of vertices of the bounded polyhedra corresponding to

equilateral-triangular lattice scale exponentially with system size.

(ii) We use the method of authors in [14] to enumerate the vertices of the

bounded polyhedra. Since the method is at best linear in number of

vertices enumerated [14], an exponential number of vertices will take ex-

ponential time. Enumerating all the vertices of the bounded polyhedra

becomes infeasible therefore.
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(iii) Since the number of vertices become exponentially large we want to

make a choice of a subset of vertices, a convex hull of which, covers

as much of the volume of the bounded polyhedra. To do so, we have

proposed and demonstrated through preliminary volume calculations

that our method performs well.

3.2 Square lattice

We now study square and rhombic lattices with the aim to figure out what

causes an exponential rise in number of vertices of the polytope. More pre-

cisely we want to find out the role of co-ordination number of particles and

their arrangement in determining the number of vertices of the polytope.

3.2.1 Introduction to the system

  

p

Figure 3.9: Square Lattice

We study the polyhedra corresponding to a system of identical hard disks

arranged on a square lattice. The smallest system size would correspond to

4 disks as shown in figure 3.9.

If A is of the size m × n and the rank is r then dimensionality of the

space of solutions to Ax=0 is n−r. Let the number of particles touching one
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side of the square boundary be p, as shown in figure 3.9. We have assumed

completely frictionless system in 2-dimensions. Therefore the number of force

balance equations, m, will be 2p2 and the number of unknown contacts, n,

also marked as small dashed lines in figure 3.9, will be 2p(p + 1). Now, the

rank r of the contact matrix A for such system is observed to be equal to

the number of rows in A, that is, r = m (an empirical fact that we have

noticed during our calculations). Therefore, the dimensionality of nullspace

of A becomes n−m which is 2p(p+1)−2p2 = 2p. But p2 equals the number

of particles in the system. Therefore, the dimensionality of nullspace of A

equals the twice the square root of the number of particles in the system, that

is, 2
√
N , where N is the number of particles in the system.

It is assumed that there exists no friction in the system. Also, since the

number of unknown contacts equal 2p(p+1) and the number of disks/particles

in the system equals p2, therefore, the number of unknown contacts scales

as 2(N +
√
N), where, N is the number of particles in the system. This is

shown in the figure 3.10:
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Figure 3.10: Number of contacts vs System size

3.2.2 Number of vertices vs System size

We repeat the same exercise as in the snooker-triangle problem to obtain the

following result:
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Figure 3.11: Number of vertices vs System size

We see a contrasting change in the number of vertices and it’s scaling

with system size. The number of vertices scaled exponentially with system

size in the snooker triangle problem but in the case of square lattice it scales

as square root of the system size.

The force transmitted along a row or a column of the square lattice takes

a value that is constant across all the contacts in that row or column. The

rows are parallel to each other and so are the columns and since the the rows

and columns intersect at 90-degrees therefore the value of the constant can

be varied independently for each row or column. This implies that each row

or column of the square lattice contributes to one independent solution to

the system of force balance equation Ax=0. Since the number of rows and

columns add to 2
√
N , where, N is the number of disks, therefore the number

of independent solutions to Ax=0 for a non-cohesive system of disks on a

square lattice must also scale as 2
√
N . This explains our result.

3.2.3 Polytope corresponding to square lattice is a sim-

plex

In this section we show the variation of number of vertices with dimension

of space in which they lie. We observe in figure 3.12 that the number of
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vertices equals the dimension of null space of the contact matrix A. This

number does not include the trivial vertex at origin. Hence, counting that

in we see that polytopes corresponding to square lattices obey the following

relationship:

Number of vertices = {dimensionality of nullspace of the contact matrixA }+ 1

Hence we conclude that the polytope corresponding to a square lattice is a

simplex.
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Polytope corresponding to square lattice is a simplex

Figure 3.12: Number of vertices vs dimensionality of nullspace of the contact
matrix A

This result can be explained in the following way. If the contact matrix A

is of the size m× n and rank r then dimensionality of the space of solutions

to Ax=0 is n − r. It was found empirically that r = m for contact matrix

of square lattices. Since the nullspace of A is n−m dimensional, therefore,

the number of columns in Z equal n − m. And therefore, a c vector by

the relationship x=Zc must have n − m components. The c-space is an

n −m dimensional vector space which consists of all the possible vectors c

with n −m components and not just those c vectors which satisfy Zc ≥ 0.

Therefore, the set of c vectors satisfying Zc ≥ 0 is a subset of c-space. Note

that the dimension of nullspace of A and dimension of c-space both equal
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n−m and also that the polyhedra Zc ≥ 0 lies in c-space.

Since the number of vertices of the bounded polyhedra depends upon the

number of non-redundant (see section 2.3 for precise definition) inequalities

in Zc ≥ 0 we plot and compare the number of inequalities in Zc ≥ 0 and the

number of non-redundant inequalities in Zc ≥ 0 as a function of dimension

of nullspace of A as shown in figure 3.13.
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Figure 3.13: Number of inequalties and non-redundant inequalities vs Di-
mensionality of nullspace of contact matrix A for square lattices

For the square lattice, we find that the number of non-redundant inequal-

ities in Zc ≥ 0 equals the dimensionality of the nullspace of A. Therefore, if

a c vector has n−m components then the minimum number of constraints

representing the bounded polyhedra is n−m+1, of which, n−m constraints

are due to the non-redundant inequalties in Zc ≥ 0 and one more due to

the inequality constraint ê∗
Tc ≤ d (or cT

∗ c ≤ d) which bounds Zc ≥ 0. The

maximum possible number of vertices that can be obtained using n−m+ 1

inequalities in n − m variables is equal to n − m + 1 which is exactly the

number of vertices that would correspond to a simplex. Hence, the number

of non-redundant inequalities in Zc ≥ 0 corresponding to a square lattice is

just enough to form a simplex. This explains our result.
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3.2.4 Conclusion

We have shown the following for the system of frictionless hard disks on a

square lattice:

1. The polytope corresponding to hard disks on a square lattice is a sim-

plex. Each vertex of this simplex corresponds to a force network which

can hold the system in mechanical equilibrium.

2. The number of vertices of the polytope scales as 2
√
N , where, N is the

number of disks/particles in the system.

3.3 Rhombic lattice

3.3.1 Introduction to the system

  

θ

Figure 3.14: Smallest system on a rhombic lattice

Next, we study the polytope corresponding to a system of identical hard

disks arranged on a rhombic lattice. We do this to find out the effect of

relative arrangement of disks on the number of vertices of the polytope. We

achieve this by keeping the coordination number same as that of square

lattice which is 4. The smallest system size would correspond to 4 disks as

shown in figure 3.14.

Consider a rhombic lattice characterised by an acute angle, θ, enclosed be-

tween two adjacent sides of the rhombus. The unknown contacts are marked
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in figure 3.14. The number of contacts scale same as that for square lattices

with system size shown in figure 3.15.
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Figure 3.15: Number of contacts vs System size

If the contact matrix A is of the size m×n and rank r then dimensionality

of the space of solutions to Ax=0 is n − r. It was found empirically that

r = m for contact matrix of rhombic lattices. Since for a given number of

particles the number of unknown contacts in rhombic lattice is same as that

in a square lattice therefore the same two results hold even in the case of

rhombic lattices which are listed below (N is number of disks in the system):

(i) The number of unknown contacts scales as 2(N +
√
N).

(ii) The dimensionality of nullspace of A equals 2
√
N .

3.3.2 Number of vertices vs System size

We will now take rhombic lattices with angles ranging from θ = 61−degrees
to 85− degrees and see how the number of vertices scale with system size7.

A rhombic lattice at θ = 60− degrees develops extra contacts such that

the coordination number of disks in the interior of the rhombic lattice be-

comes six, same as that of disks in the interior of equi-lateral triangular

7Note: The rhombic angle θ cannot be less than 60− degrees because the disks would
then overlap.
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lattice. Hence, in order to probe if the coordination number is responsible

for an exponential rise in the number of vertices of the polytopes it suffices to

compare the system size dependence of the number of vertices corresponding

to rhombic lattice at θ = 60− degrees and θ > 60− degrees.
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Figure 3.16: Number of vertices vs System size

We observe in figure 3.16, on a log-log scale, that the number of vertices

generally increase with system size. The number of vertices for this system

scale much slower than a exponential function of system size. The black

curve corresponds to a rhombic lattice which is closest to the equi-triangular

case (rhombic angle=61− degrees) and could be temptingly close to a poly-

nomial function. When the rhombic angle changes by just another degree

and becomes=60 − degrees the coordination number changes from 4 to 6

and for this we have already shown that the increase in number of vertices is

exponential. Hence, we conclude that the transition to an increase in vertices

with respect to system size to an exponential is caused due to a change in

coordination number. Figure 3.16 also tells us that for a system of friction-

less particles in 2-dimensions with coordination number of 4 the number of

vertices could be bounded polynomially as a function of system size. Hence,
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it may be feasible to find all the vertices of bounded polyhedra corresponding

to large system sizes which have low coordination numbers.

3.3.3 Number of vertices vs Rhombic Angle

We will now show the effect of the rhombic angle θ on the number of vertices

at two different system sizes.
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Figure 3.17: Number of vertices vs Rhombic angle

At a given system size we see that as θ approaches 90 − degrees the

number of vertices converge to that of a square lattice. The number of

vertices increase monotonically with decreasing θ.

3.3.4 Conclusion

We have shown the following for a system of frictionless hard disks on a

rhombic lattice in 2-dimensions:

1. The number of vertices converge to that of a square lattice as θ ap-

proaches 90− degrees.
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2. As the rhombic angle θ approaches 60 − degrees the number of ver-

tices corresponding to a rhombic lattice is significantly different from

that of the equilateral-triangular case. This difference is attributed to

the difference in coordination number of 4 and 6. In rhombic lattice

(coordination number =4) as θ approaches 60−degrees the number of

vertices can be bounded by a polynomial function of system size while

exactly at θ = 60−degrees this becomes exponential which corresponds

to the equilateral-triangular case (coordination number =6).

3. For a given rhombic lattice (with θ < 90 − degrees) the number of

vertices generally increase with system size. The increase is more rapid

for lattices tending towards the equilateral-triangular case.
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Chapter 4

Summary and future directions

For a given contact geometry of a system of under-determined granular fric-

tionless particles the force balance equations result into a system of linear

equations of the form Ax=0. The matrix A is called the contact matrix

which becomes a known quantity once the contact geometry is fixed. The

vector x consist of magnitude of unknown forces which exist at contacts

between particles. Any solution x of Ax=0 can be written as a linear com-

bination of the basis vectors of the null space of matrix A. We represent such

an expansion of x by the relationship x=Zc, where, Z is a matrix which con-

sist of column vectors which are orthogonal to each other and form a basis

of the null space of A. If in addition the constraint of zero cohesion is put at

each contact then all the components of the vector x must also in addition

be constrained to be non-negative. Thus, the problem of solving for an un-

known x, which satisfies componentwise non-negativity criteria and Ax=0,

becomes a problem of solving a system of linear inequalities of the form Zc

≥ 0 for the unknown variable c.

We bound the polyhedra Zc ≥ 0 by imposing an inequality of the form

ê∗
Tc ≤ d (or cT

∗ c ≤ d) on Zc ≥ 0. We then identify all the vertices resulting

from the intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d, whichever bounds Zc ≥ 0)

and Zc ≥ 0. The knowledge of coordinates of these vertices is sufficient to

construct any c consistent with Zc ≥ 0 and hence by the relationship, x=Zc,

any force network that the system might admit. As pointed out through the

77
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answer of Question 1 posed in section 2.1.5 the value of d in ê∗
Tc ≤ d (or

cT
∗ c ≤ d) is arbitrary and, since x=Zc, determines the maximum magnitude

of contact forces existing in the granular system. And therefore, d sets the

force scale in the granular system.

In order to determine the force network of an under-determined system

one must generate points, say c1, c2, .., cp, which are spread uniformly in the

space of intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d, whichever bounds Zc ≥ 0)

and Zc ≥ 0 and then take an average of these points1, which say is denoted

by cavg, to generate, by the relationship x=Zcavg, the force network for the

under-determined system. This of course has not been demonstrated in this

thesis and forms an important part of future directions of this project. The

role of the extremal vertices of the intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d) and

Zc ≥ 0 is to ensure that the uniformly generated points c1, c2, .., cp span

over all the feasible space of solutions which is the intersection of ê∗
Tc ≤ d

(or cT
∗ c ≤ d) and Zc ≥ 0.

We have considered 2-dimensional frictionless disks on three simple kinds

of lattice: Equi-triangular, rhombic and square. It was found that the num-

ber of vertices of the polyhedra obtained as an intersection of ê∗
Tc ≤ d and

Zc ≥ 0 grow exponentially for the equi-triangular case, bounded polynomi-

ally for the rhombic case and goes as a square root for the square lattice

as a function of system size. We show through comparison of our results of

square and rhombic lattices that the exponential growth of vertices in the

equi-triangular case is due to a higher coordination number (six). An upper

bound on the number of vertices for equi-triangular systems also show expo-

nential behaviour as a function of system size. While we have given concrete

explanation for the results corresponding to square lattice case, the results

for the rhombic case remain un-explained.

These calculations suggest that finding all the extremal vertices of the

bounded polyhedra corresponding to granular systems which are densely

packed might not be feasible. The vertex enumeration method as discussed

1This of course assumes that the corresponding force networks x1,x2, ..,xp, which are
solutions to Ax=0, obtained using the relationship x=Zc, are equally likely to exist in
an under-determined granular system. The ith component of cavg will be equal to the
average value of the ith component of the vectors c1, c2, .., cp.
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in the methods section can not find all the vertices in practical time if their

number is exponentially large. Under such situations an approximation of the

solution space, which is the intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d, whichever

bounds Zc ≥ 0) and Zc ≥ 0, becomes necessary. We have demonstrated

a method to do so. The method which we call a box fit method generates

a subset of the extremal vertices of the region of intersection of ê∗
Tc ≤ d

(or cT
∗ c ≤ d) and Zc ≥ 0 in an attempt to approximate space of solutions

corresponding to the intersection of ê∗
Tc ≤ d (or cT

∗ c ≤ d) and Zc ≥ 0 as

closely as possible. We have demonstrated through volume calculations that

the approximated space of solutions become better by increasing the number

of boxes. The cost of finding such a subset of vertices has also been stated.

The box-fit method that we have suggested relies on finding an ê∗ or c∗ so

that an inequality of the form ê∗
Tc ≤ d or cT

∗ c ≤ d could bound Zc ≥ 0 and

an approximation of the resulting volume could be made. The computational

cost of finding an ê∗ is high as it requires solving 2n LPPs and is known not

to succeed for some Zc ≥ 0 corresponding to some systems considered in

this thesis. On the contrary, finding a c∗ is computationaly very cheap as it

requires solving only one LPP and has succeeded in bounding Zc ≥ 0 for all

the systems considered in the thesis. Thus, the general strategy for volume

approximation is to use Approach II to bound Zc ≥ 0 and then, using the

box-fit method, find multiple boxes to find a subset of vertices of the bounded

polyhedra.

While our calculations have been performed for frictionless systems the

same method can be used in finding the vertices (or a subset of vertices)

of polyhedra corresponding to frictional granular systems. The method

doesn’t depend on if the granular system is composed of 2-dimensional or

3-dimensional particles.
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Appendix

81





Here, we provide information regarding publicly available packages in ‘C’,

called ‘lrs’ and ‘redund’ which have been used to compute the following:

1. Finding extremal vertices of a bounded polyhedra: Computed using ‘lrs’.

2. Computation of the volume of a bounded polyhedra given by a list of

vertices. Computed using ‘lrs’.

3. Removal of redundant inequalities from the list of linear inequalities in

Zc ≥ 0. Computed using ‘redund’.

These packages can be found at the following locations:

lrs author: David Avis (avis@cs.mcgill.ca)
ftp site: http://cgm.cs.mcgill.ca/~avis/C/lrs.html

directory: Download/
file name: lrslib-061.tar.gz

redund author: David Avis (avis@cs.mcgill.ca)
ftp site: http://cgm.cs.mcgill.ca/~avis/C/lrs.html

directory: Download/
file name: lrslib-061.tar.gz

Installation and a guide to the usage of these libraries including the input

file format for doing a vertex enumeration, volume computation and finding

redundant inequalities can be found at: http://cgm.cs.mcgill.ca/~avis/

C/lrslib/USERGUIDE.html#InstallationSection

The calculation involving minimization of linear functions subject to the

linear inequality constraints were performed using the ‘LINPROG’ command

in MATLAB. Similarly, the basis of the null space of contact matrices were

obtained using the ‘null’ command in MATLAB.
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