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1
Introduction

Understanding the physics of interacting quantum many-body systems has

gained immense attention in recent years as this governs the behavior of a huge va-

riety of materials, such as, quantum magnetic materials, organic conductors [1] and

charge transfer systems [2], multiferroics [3] and magnetoelectrics [4], conventional as

well as high-Tc superconductors [5], superfluids [6], Kondo lattices [7], Quantum Hall

systems [8] and many more. Such strongly correlated materials have potential ap-

plications in a range of phenomena, from electronic, energy and memory devices

to spin and quantum computing.

Systems in which electrons can wander almost freely, or, in other words, have

a large kinetic energy with respect to the Coulomb interactions between them,

can be dealt with the formalism of single particle quantum mechanics. However,

interactions cannot always be neglected. For instance, in a class of f-electron

systems, called heavy fermion systems, [9,10] in which the effective mass of the elec-

trons are higher than their rest mass by several orders of magnitude. Thus, they

are no longer freely moving individual electrons as electronic correlations become

prominent. Still, many such interacting systems can be explained in the limits of

Fermi Liquid Theory [11,12], in which the collective behaviour of such heavy elec-

trons resemble that of non-interacting fermions with renormalized heavier masses.

1
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However, there is a class of systems called, Mott insulators [13], which cannot be

explained in the limits of Fermi liquid Theory, as the properties of those are solely

determined by the relative strength of electronic correlations. Many of the exotic

phenomena, like high Tc superconductivity, charge and spin density waves, Umk-

lapp processes [14] and charge and spin dynamics occur due to explicit electronic

correlations.

Furthermore, when the dimension is reduced to 1D or quasi-1D, long-range

correlations between electrons become stronger [15]. This makes it very difficult to

solve the Schrödinger equation for these systems. Many such systems do not have

a definite order in 1D. But these correlations are the key to all kinds of exotic

phases [16,17], like, different types of spin-ordered patterns, fractional quantum Hall

effects, superconducting and superfluid phases, etc. Moreover, due to the electronic

correlations, systems may show the exotic many-body localized phase [18] which

persists even at finite temperature.

With advances in experiments in recent years, cold atoms in optical lattices [19–21]

have been an ideal experimental platform to visualize the different models proposed

regarding interacting quantum many-body systems. Ultracold atoms are trapped

in the electromagnetic fields of arrays of counter-propagating laser beams, thus

mimicking a lattice. Such systems allow the tunability of every parameter by

controlling the laser pulse widths, trapping depth, constructive and destructive

interference, Feshbach resonance etc., thus making these systems very versatile.

To understand the physics of quantum many-body systems, different model

Hamiltonians have been introduced. One of the first models was proposed by

Warner Heisenberg in 1928 [22] to understand the underlying mechanism of ferro-

magnets, in which, localized spins interact among each other to give a long range

order. An exact solution for the ground state of the Heisenberg model was given

by Hans Bethe using his famous ansatz [23]. After the prediction of Mott insulators

by Sir Neville Mott in 1949, there have been several attempts to understand the
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mechanism behind them. In 1962, the celebrated Hubbard model for interacting

fermions was proposed by John Hubbard [24]. Soon after that, an exact solution

for the 1-dimensional case was given by Lieb and Wu [25]. Since that time, the

Hubbard Model has been an ideal model Hamiltonian to understand a variety of

phenomena, like various correlated insulators to high-Tc superconductivity. The

Heisenberg model has been derived in the strong repulsion limit of the Hubbard

model using second order degenerate perturbation theory. Subsequently differ-

ent kinds of models have been proposed to understand the effects of electronic

correlations in different systems.

The above mentioned models have been solved in different limits to explain dif-

ferent exotic phenomena. The XY model [26], for instance, which is derived from the

Heisenberg model in the limit of negligible interaction between the z-component of

the spins, has been successfully used to study topological phase transitions, such

as the Berezinskii-Kosterlitz-Thouless [27] transition in 2D. Another example is the

t-J model, derived from the Hubbard model, which has been used extensively to

study the high-Tc superconductivity.

Further generalizations have been introduced, by way of different models. The

Majumdar-Ghosh model [28,29], for spin-1
2

systems is an extension of the Heisenberg

model by adding next-nearest neighbour interactions. It gives a very clear visu-

alization of a dimerized ground state. Thereafter, a model has been suggested by

Affleck, Kennedy, Lieb and Tasaki [30] to understand topological order in the spin

model systems. Many of these models have been solved exactly, either in some

limits or in certain dimensions. Perturbative as well as mean field techniques also

give a substantial information regarding the physical properties of these systems,

but much needs to be explored in the non-perturbative limits an that is where the

numerical methods come in.
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1.1 Techniques for Effective Hamiltonian

The exact solution for a system of interacting particles is far from simple. There

have been many approaches that can interpret weakly correlated systems, such

as the Bloch band theory and ab-initio methods; but they fail to capture strong

correlations. This is why, constructing a model Hamiltonian is necessary, which can

capture the intricacies of the total Hamiltonian of an interacting system, however,

on a smaller, less complex scale.

For a system of Ne electrons and Nn nuclei, the total Hamiltonian would look

like :

Ĥ = T̂e(r) + T̂N(R) + ˆVext(r, R) + V̂ee(r) + ˆVNN(R) (1.1)

Expanding which we have,

Ĥ = −~2

2

Ne∑
i=1

∇2
i

m
−~2

2

Nn∑
I=1

∇2
I

MI

−
Ne∑
i=1

Nn∑
I=1

ZIe
2

|ri −RI |
+

Ne∑
i=1

Ne∑
j>1

e2

|ri − rj|
+

Nn∑
I=1

Nn∑
J>1

ZIZJe
2

|RI −RJ |
(1.2)

where, ~ is the Planck’s constant, m and M are the masses of electrons and nuclei

respectively, ∇2
i and ∇2

I are the Laplacians of the coordinates of the ith electron

and I th nucleus. ZI and ZJ are the atomic numbers of the I th and J th nuclei. ri

and RI are the spatial coordinates of the ith electron and I th nucleus. rj and RJ

are the spatial coordinates of the jth electron and J th nucleus. e is the electronic

charge.

The first two terms describe the kinetic energies of the electrons and nuclei re-

spectively. The third term is the Coulomb attraction term between electrons

and nuclei. The fourth and fifth terms describe inter-electron and inter-nuclear

Coulomb repulsion respectively.
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In practice, this amounts to a formidable task as one has to take into account all

the electrons and nuclei involved and the inter-particle electrostatic interactions

too, by means of different approaches. The Born-Oppenheimer Approximation

disseminates the electronic and nuclear motions and further approximations like

the Hartree theory, aims to solve Eq.1.2 by treating He as a sum of single particle

terms and considering a one-particle form for Ve−e, instead of its actual two par-

ticle nature.

i.e.

Ψ(R, r) =
∏
i

ψ(ri) (1.3)

Each one particle Schrödinger’s equation considers an effective potential that treats

the interaction with the other electrons in a mean field approach.

This also paved the way for a celebrated method, Density Functional The-

ory [31,32], proposed by Walter Kohn and Pierre Hohenberg in the ’60s. The

Hohenberg-Kohn theorems map the ground state electronic wave function to the

electronic density, so the density that minimizes the energy of the overall functional

is basically the solution of the full Schrödinger’s equation. Thus the problem of

interacting electrons in a static external potential is reduced to a problem of non-

interacting electrons moving in an effective potential . The Schrödinger’s equation

is now rewritten as

E[ρ] = F̂ [ρ] +

∫
drVext(r)ρ(r) (1.4)

where, ρ is the electron density and F̂ [ρ] is the universal functional of density.

The second term, or, the effective potential includes the external potential and the

effects of the Coulomb interactions between the electrons (exchange and correlation

effects).

Despite the upside of this simplification, the form of exchange correlation func-

tional in terms of electronic density is not exactly known, so in many cases DFT

resorts to semi-empirical parameters to approximate out such effects [33]. This
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creates loopholes, which can manifest into errors while predicting properties, par-

ticularly the excited state properties. However, DFT method is quite popular as

it predicts and accurately accounts for many ground state properties of systems

ranging from small molecular systems to various periodic crystals.

However, in this thesis, we have considered systems which are beyond the realm

of density functional theory, as all the systems are designed for ultra-cold lattice

model systems. It is thus necessary, to preserve the many-body nature of the

Hamiltonian, and this is where the knowledge of second quantization is availed of.

In second quantized notation, He may be written as –

He = −
∑
αβabσ

tLaLbRαRβ
c†RαLaσ

cRβLbσ

+
1

2

∑
αβγδ
abcd
σσ′

Vee(R, L)c†RαLaσ
c†RβLbσ′

cRδLdσ′cRγLcσ (1.5)

where the overlap integrals are given by

tLaLbRαRβ
=

∫
drϕ ∗RαLa (r)

{
~2∆
2m
− vext(r)

}
ϕRαLa(r)

Vee(R, L) =

∫
drdr′ϕ ∗RαLaσ ϕ ∗RαLaσ′ (r

′)
e2

r − r′
ϕRγLcσ′ϕRδLdσ

(1.6)

Here c† and c are the creation and annihilation operators respectively, which are

represented in terms of localized Wannier basis functions ϕ(r). L is the orbital

index and σ is the spin projection (↑ or ↓). Generally, in d or f electronic systems,

the Coulomb repulsion is the strongest when two electrons are in the same localized

Wannier orbital. Thus, to understand the many-body behaviour of such systems,

the Hubbard model was proposed, in which V (R,R,R,R) = U . Also, the overlap

integral is uniform over all sites and only the nearest-neighbor overlap or ’hopping’
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is prominent. Thus, the Hubbard model is given by

H = −t
∑
〈ij〉,σ

(
c†iσcjσ + h.c.

)
︸ ︷︷ ︸

T̂

+U
∑
i

ni↑ni↓ (1.7)

The Heisenberg model can be obtained from the Hubbard model at half-filling in

the limit of strong onsite Coulomb repulsion. In second order degenerate pertur-

bation theory, the energy correction is given by

E(2) = −
∑
m,n

〈m|T̂ |n〉〈n|T̂ |m〉
Em − En

(1.8)

To obtain an appropriate model, we consider two lattice sites and obtain the

Hamiltonian operator, which can be written in terms of perturbation theory, as

the square of the kinetic energy operator T̂ 2(see Eq. 4.4). In the limit for strong

onsite repulsion U � t, the hopping term (the kinetic energy term in 2nd quantized

lattice model) can be chosen as perturbation. In this limit, there are four possible

states, | ↑, ↑〉, | ↑, ↓〉 , | ↓, ↑〉 and | ↓, ↓〉, each of which is a ground state of the

Hubbard term U
∑
i

ni↑ni↓ with same zero energy. The numerator of the 2nd order

perturbed energy term can be written as

E(2) = − t
2

U

∑
e

〈g|
∑
σ

(c†1σc2σ + c†2σc1σ)|e〉〈e|
∑
σ′

(c†1σ′c2σ′ + c†2σ′c1σ′)|g〉 (1.9)

As can be seen, there are two exited states, namely, |0, ↑↓〉 and | ↑↓, 0〉. The U term

in the denominator comes because the transition of any state from ground state

to the excited states (whichever is allowed) costs an energy, U , i.e. Ee − Eg = U .
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Considering only the operator, we get

H(2) = − t
2

U

∑
σ,σ′

(c†1σc2σ + c†2σc1σ)(c†1σ′c2σ′ + c†2σ′c1σ′)

= − t
2

U

∑
σ,σ′

(
c†1σc2σc

†
1σ′c2σ′ + c†2σc1σc

†
2σ′c1σ′ + c†1σc2σc

†
2σ′c1σ′ + c†2σc1σc

†
1σ′c2σ′

)
(1.10)

For σ = σ′, The first 2 terms become zero as can seen by taking the annihilation

operators to the right. Also, we define ni = ni↑ + ni↓. Thus

H(2)
σ=σ′ = − t

2

U

{∑
σ

n1σ(1− n2σ) + n2σ(1− n1σ)

}

= − t
2

U
{n1↑(1− n2↑) + n2↑(1− n1↑) + n1↓(1− n2↓) + n2↓(1− n1↓)}

= − t
2

U
{(n1↑ + n2↑) + (n1↓ + n2↓)− (n1↑ + n1↓) (n2↑ + n2↓)− (n1↑ − n1↓) (n2↑ − n2↓)}

= − t
2

U
(n1 + n2 − n1n2 − 4Sz1S

z
2) (1.11)

where Szi = 1
2

(ni↑ − ni↓)

For σ 6= σ′, the terms would be

H(2)
σ 6=σ′ = −2t2

U
(c†1↑c2↑ + c†2↑c1↑)(c

†
1↓c2↓ + c†2↓c1↓)

= −2t2

U
(c†1↑c2↑c

†
1↓c2↓ + c†2↑c1↑c

†
2↓c1↓ + c†1↑c2↑c

†
2↓c1↓ + c†2↑c1↑c

†
1↓c2↓) (1.12)

The first 2 terms would be zero, because, the states on which they would act

on, are singly occupied eigenstates of Hubbard Hamiltonian. So these two terms

annihilate two fermions from one site and create two fermions on the other, which

cannot be the case. Thus, rearranging the operators of the remaining terms, we
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obtain

H(2)
σ 6=σ′ = −2(c†1↑c2↑c

†
2↓c1↓ + c†2↑c1↑c

†
1↓c2↓)

= −2(−c†1↑c1↓c
†
2↓c2↑ − c

†
1↓c1↑c

†
2↑c2↓)

= −2(S+
1 S
−
2 + S−1 S

+
2 ) (1.13)

where S+
i = 1

2
c†i↑ci↓ and S−i = 1

2
c†i↓ci↑ Hence the total Hamiltonian from perturba-

tion would be

H(2) = −
(
H(2)
σ=σ′ +H

(2)
σ 6=σ′

)
= − t

2

U
(n1 + n2 − n1n2) +

4t2

U

{
Sz1S

z
2 +

1

2

(
S+
1 S
−
2 + S−1 S

+
2

)}
(1.14)

For a half-filled system, where there is only one electron at each site, we have

n1 = n2 = 1. Thus the first term would just be a constant t2

U
and we are left with

the familiar Heisenberg Hamiltonian

H(2) = − t
2

U
+ J

(
Ŝ1.Ŝ2

)
(1.15)

where J = 4t2

U
.

1.2 Analytical Methods and their drawbacks

The Hubbard and the Heisenberg models have exactly been solved in one dimen-

sion using the Bethe ansatz. After inclusion of other types of interaction terms,

only a few such Hamiltonians could be solved exactly, mostly in one dimension.

Such exactly solvable models are termed as integrable models. There have been

different approaches to study the ground state properties of models which do not

have exact solutions. Mean field approaches have been used extensively. Though
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the interactions are smeared out in this approach, the mean field theories have

been able to qualitatively predict different phases and phase transitions in cer-

tain limits. Moreover, spin wave theory(explained in a later chapter) , which is

a first order perturbative term over and above the mean field theory, has been

a very popular tool to study the low energy properties of quantum ferromagnets

and antiferromagnets. Renormalization group based approaches [34] have been ap-

plied to predict the nature of the phase transitions in a quantitative manner using

critical exponents. Many body perturbation theory and quantum field theoretical

approaches [35] have been able to predict many exotic phases. However, all of these

methods have their various pros and cons. In fact, most of these approaches fail

in the limit of strong interactions.

There have been analytical approaches to study the dynamics of quantum sys-

tems. For instance, Floquet theory [36–39] is a very good approach to understand

quantum systems, in which the properties show a periodic nature with time. How-

ever, most of the interacting many-body systems are quantum chaotic [40] in nature,

and thus, to understand the ground and excited state properties of these model

lattice systems, various computational methods have been developed.

1.3 Computational Approaches

With the advancement of technology, computational approaches have gained a

lot of popularity. Not only they have been able to predict the existing results

obtained by the analytical techniques, but also they have provided a lot more

information about the physics of the systems. For example, the formal treatment

of the theory of many-body localization, namely using the level statistics and long

time dynamics, could not have been possible without computational approaches.

There are quite a few computational methods for quantum many-body systems,

namely, exact diagonlization, Quantum Monte Carlo [41], Density matrix Renormal-
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ization Group Methods [42], Matrix Product States [43] and Dynamical Mean field

theory [44], each of them having their own pros and cons. Exact diagonlization, for

example, is the most accurate of them all, in which the whole Hilbert space (Fock

space in lattice exact diagonalizaion method) is taken into account. For small

systems, it can exactly predict the low-energy as well as high-energy properties.

But, as the system size grows larger, the Hilbert (or Fock) space grows exponen-

tially. For instance, if we take an interacting spin-1
2

system, the spin at each site

can have 2 possibilities, ”↑” or ”↓”, thus, for an N -site system, there can be 2N

possible configurations, which constitute the Hilbert Space (or the Fock Space, to

be specific). So, for a cluster of 24 spins, we will have (∼)107 × 107 matrices to

deal with, which is impossible to solve. For larger systems, the numbers become

so huge that, even the fastest computers will take many years to process.

However, with extensive research, people have realized that the ground state

comprises of only a very small portion of the Hilbert Space. This led to the

development of methods by which, for a given Hamiltonian, the Hilbert space is

truncated to a very small subspace such that the ground state as well as low energy

properties can be predicted quite accurately.

However, one has to keep in mind that the development of methods should

be aimed at deriving a non-perturbative treatment and the method needs to be

variationally bound. As we will see in the thesis, we have developed methods and

also studied systems using non-perturbative variational methods.
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2
Matrix Product state approach to

static and time-dependent simulations

for quantum many-body systems

2.1 Introduction

Matrix Product states (MPS) are an efficient representation of a quantum many-

body system in one dimension [1]. Although the representation of a state in an

arbitrary basis is exact, in practice, the state is truncated for computational con-

venience and thus are suitable to represent weakly entangled states. Originally

MPS were discovered for analytical studies, until Ostlund and Romer [2] realized

that the infinite system DMRG can be represented as a ’matrix’ in the MPS for-

malism. Subsequently it was understood that finite-size DMRG is a variational

energy optimization scheme in the MPS formalism [3,4]. Since then, MPS have

been a very successful method as they can accurately represent ground state or

low energy states of a quantum system, which are usually weakly entangled states.

They can also predict many-body localized states [5], for which the entanglement

entropy obeys the area law [6–8].
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2.2 Decomposition of an arbitrary state to MPS

2.2.1 Singular Value Decomposition

Singular Value decomposition (SVD) is a technique which has always come in

handy for quantum mechanical simulations. It is the basis of decomposition of

any quantum state to an MPS. It is also used to approximate each such matrix

by a matrix of lower rank, specific to weakly entangled quantum states [9,10], thus

reducing memory and computational cost. We illustrate it below.

Consider any general matrix A with dimension M ×N . It can be decomposed as

A = USV † (2.1)

where U and V are unitary matrices of dimensionsM×min (M,N) and min (M,N)×

N respectively, i.e. UU † = 1 and V V † = 1(Fig.2.1a). S is a diagonal matrix of

the singular values having dimensions {min (M,N)×min (M,N)}. The matrix is

truncated by taking the highest R singular values (R < min (M,N)) (Fig.2.1b).

The reason for taking the highest ones is that, SVD of a bipartite quantum system

is equivalent to Schmidt Decomposition and the singular values for such decom-

position (or the Schmidt coefficients) happen to be the eigenvalues of the reduced

density matrix for the system.

(a) (b)

Figure 2.1: Pictorial representation of Singular value decomposition. (a) Full decomposition
of the given matrix; p being the number of singular values and (b) decomposition followed by
truncation by keeping only t(< p) number of singular values starting from the highest.
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2.2.2 Construction of a Matrix Product State

Let us consider a 1-dimensional lattice of length L, each site having degrees of

freedom {σi}, i = 1, ..., L. Each σi has a local dimension di. A general state can

be written as

|Ψ〉 =
∑

σ1,...,σL

cσ1,...,σL|σ1, ..., σL〉 (2.2)

As the length of the chain increases the Hilbert space of the configurations increases

exponentially. In this case we can use the advantages of SVD truncation as well

as obtain a local picture of the state, convenient for computation. We reshape the

set of coefficients cσ1,...,σL into a matrix by putting σ1 apart and the taking rest σis

together :

cσ1,...,σL = cσ1,(σ2...,σL)

=
∑
a1

M1
σ1,a1

Sa1,a1V
†
a1,(σ2...,σL)

=
∑
a1

M1
σ1,a1

c′a1,σ2...,σL (2.3)

In the last step the index (σ2..., σL) is reshaped back and hence the parentheses

are dropped.

We perform a similar scheme of SVD for the c′a1,σ2...,σL and thus get a c′′. We

keep on doing this :
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cσ1,...,σL =
∑
a1

M1
σ1,a1

c′(a1,σ2),(σ3...,σL)

=
∑
a1

M1
σ1,a1

∑
a2

M2
(a1,σ2),a2

S ′a2,a2V
′†
a2,(σ3...,σL)

=
∑
a1,a2

M1
σ1,a1

M2
(a1,σ2),a2

c′′a2,σ3...,σL

=
∑
a1,a2

M1
σ1,a1

M2
(a1,σ2),a2

∑
a3

M3
(a2,σ3),a3

S ′′a3,a3V
′′†
a3,(σ4...,σL)

...
=

∑
a1,...,aL

M1
σ1,a1

M2
(a1,σ2),a2

M3
(a2,σ3),a3

. . .ML−1
(aL−2,σL−1),aL

ML
σL,aL

=
∑

a1,...,aL

Mσ1
a1
Mσ2

a1,a2
Mσ3

a2,a3
. . .MσL−1

aL−1,aL
MσL

aL
(2.4)

In the last step, brackets in the indices are dropped and the matrices are

reshaped as rank-3 tensors. In a simplified form, we can write as

cσ1,...,σL = Mσ1Mσ1 . . .MσL−1MσL (2.5)

In this way, we have decomposed a many-body wave function into a MPS.

The dimension of the index {ai} are the bond dimensions while {σi} are physical

dimensions of the MPS. As we have decomposed from the left, such an MPS is

termed as a left canonical MPS.
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2.3 Tensor Network Diagrams

2.3.1 Pictorial Representation of Tensors

Since MPS comprise of rank-3 tensors, it can be called a tensor network in one

dimension. These can be graphically represented by nice diagrams, making it easy

for us to visualize. A tensor of rank-1, (which is a just a vector) can be represented

by a square (or any shape) with one leg, denoting its index, as shown in Fig 2.2a.

Similarly tensors of rank 2 and 3 can be denoted by squares with 2 and 3 legs

respectively. Thus a general nth rank tensor is a square with n legs, each leg

corresponding to 1 tensor index.

(a)

(b)

Figure 2.2: Pictorial representations of (a) rank-2, rank-3 and rank-4 tensors, and (b) contraction
of a single index of two tensors

2.3.2 Tensor Contraction and Tensor Networks

The tensor contraction of one index of two tensors, say rank-3, is graphically

represented by joining one leg each. So, for two tensors Mσ1
i1j1

and Mσ2
i2j2

with
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j1 = j2 the contraction A =
∑
j1

Mσ1
i1j1k1

Mσ2
i2j1k2

is represented by Fig 2.2b. If we

have L number of such tensors, and we contract one leg of each tensor with the

next one, we get a tensor network. An MPS is such a tensor network .

Figure 2.3: Pictorial representation of a 1D tensor network or a Matrix Product State.

2.4 Left, right and mixed canonical MPS

Previously, in Sec. 2.2.2 we have started the decomposition from the leftmost site

index. But we can also begin from the rightmost index in the following way:

cσ1,...,σL = c(σ1...,σL−1),σL

=
∑
aL

A(σ1...,σL−1),aLSaL,aLV
†
aL,σL

=
∑
aL

c′σ1...,σL−1,aL
N1
aL,σL

...
=

∑
a1,...,aL

N1
σ1,a1

N2
(a1,σ2),a2

. . . NL−1
(aL−2,σL−1),aL

NL
σL,aL

=
∑

a1,...,aL

Nσ1
a1
Nσ2
a1,a2

. . . NσL−1
aL−1,aL

NσL
aL

(2.6)

with V †aL,σL = N1
aL,σL

in the 3rd step. Thus we create a right canonical MPS.
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(a) (b)

Figure 2.4: Tensor-network diagram for the normalization of (a) a left-canonical MPS and (b) a
mixed-canonical MPS, by sequential tensor contractions.

We can also choose any arbitrary site and decompose all the sites on the left

of that site to be left canonical and all those on the right to be right canonical.

This is diagrammatically represented in Fig. 2.4a

Such a MPS is called a mixed canonical MPS. Thus we can write,

cσ1,...,σL =
∑

a1,...,aL

Mσ1
a1
Mσ2

a1,a2
. . .Mσi−1

ai−1,ai
Sai,aiN

σi+1
ai,ai+1

. . . NσL−1
aL−1,aL

NσL
aL

(2.7)

Here the ith site is the orthogonality center. the corresponding diagram is shown

in Fig.2.4b This representation is used most often, as it helps to reduce computa-

tional cost when calculating expectation values of local operators and short range

correlations.



2.5. Matrix Product Operators 22

2.5 Matrix Product Operators

Analogous to the MPS, we can write any Hamiltonian as a product of tensors

corresponding to each site of the system. Each of them are rank-4 tensors and the

their contraction is called a Matrix Product Operator(MPO).

Any general operator can be written as

Ô =
∑

σ1,...,σL,
σ′1,...,σ

′
L

wσ1,...,σL,σ′1,...,σ′L|σ1, ..., σL〉〈σ
′
1, ..., σ

′
L| (2.8)

The coefficients wσ1,...,σL,σ′1,...,σ′L can be written in MPO form as

wσ1,...,σL,σ′1,...,σ′L =
∑

a1,...,aL

W σ1,σ′1
a1

W σ2,σ′2
a1,a2

. . .W
σL−1σ

′
L−1

aL−1,aL W
σLσ

′
L

aL (2.9)

In this case, the W σi,σ
′
is are rank-4 tensors. The corresponding tensor network

diagram is shown in Fig.2.5.

Figure 2.5: Tensor Network Diagram of a Matrix Product Operator (MPO).

2.5.1 Creating a Matrix Product Operator

There are different ways to create an MPO [1,11,12]. For the ith site, the Hamiltonian

H is split into a left block HL
i−1, a right block HR

i+1, a tensor product of terms hLj,aj
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and hRj,aj connecting these blocks

H = HL
i−1 ⊗ 1Ri + 1Li ⊗HR

i+1 +
∑
ai

hLi,ai + hRi,ai (2.10)

The decomposition for the bonds i and i−1 follow a recursion relation, represented

in terms of a auxiliary operator-valued matrix at the site i


HR
i+1

hRi−1,ai−1

1Ri−1

 =

1 Ni 1

1

Ni−1

1


1i Ĉi D̂i

0 Âi B̂i

0 0 1i


︸ ︷︷ ︸

W i

⊗

HR
i

hRi,ai

1Ri

 (2.11)

where Âi, B̂i, Ĉi, D̂i are matrices of operators acting on the site i. Ĉi and B̂i

correspond to the nearest-neighbor interactions. D̂i is comprised by onsite inter-

actions and Âi contains the next or further neighbor interactions. For instance,

let us consider the nearest-neighbor Heisenberg model

HNN =
∑
i

Ŝzi Ŝ
z
i+1 +

1

2

(
Ŝ+
i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1

)
(2.12)

The operator valued matrix for the ith site is

W σiσ
′
i =



1 Ŝ+
i Ŝ−i Ŝzi −hŜzi

0 0 0 0 J
2
Ŝ−i

0 0 0 0 J
2
Ŝ+
i

0 0 0 0 JŜzi

0 0 0 0 1


(2.13)
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Thus here, Ĉi =
(
Ŝ+
i Ŝ−i Ŝzi

)
, B̂i =

(
J
2
Ŝ−i

J
2
Ŝ+
i JŜzi

)T
and D̂i = −hŜzi and

Âi = 03×3. Âi has non-zero elements when next or higher neighbour interactions

are present. For a finite size chain, the tensors for first and last sites would be a

row and a column vector respectively.

W σ1σ′1 =
(

1 Ŝ+
1 Ŝ−1 Ŝz1 −hŜz1

)
, W σLσ

′
L =



−hŜzL
J
2
Ŝ−L

J
2
Ŝ+
L

JŜzL

1


(2.14)

This makes the total Hamiltonian scalar. For the next-neighbor Hamiltonian

HNNN = HNN +
∑
i

Ŝzi Ŝ
z
i+2 +

1

2

(
Ŝ+
i Ŝ
−
i+2 + Ŝ−i Ŝ

+
i+2

)
(2.15)

The MPO can be written as

W σi,σ
′
i =



1 Ŝ+
i Ŝ−i Ŝzi 0 0 0 −hŜzi

0 0 0 0 1 0 0 J
2
Ŝ−i

0 0 0 0 0 1 0 J
2
Ŝ+
i

0 0 0 0 0 0 1 JŜzi

0 0 0 0 0 0 0 J ′

2
Ŝ−i

0 0 0 0 0 0 0 J ′

2
Ŝ+
i

0 0 0 0 0 0 0 J ′Ŝzi

0 0 0 0 0 0 0 1



(2.16)

In this case three elements of Âi are non-zero.
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2.6 Overlaps and Expectation Values

The overlap of two MPS |Ψ1〉 = Mσ1Mσ2 . . .MσL and |Ψ2〉 = M̃σ1M̃σ2 . . .M̃σL

is represented as a tensor network diagram , shown in Fig.2.6. It involves a series

of tensor contractions and can be algebraically expressed as

〈Ψ2|Ψ1〉 =
∑
σL

M̃σL†

(
. . .

(∑
σ3

M̃σ3†

(∑
σ2

M̃σ2†

(∑
σ1

M̃σ1†Mσ1

)
Mσ2

)
Mσ3

)
. . .

)
MσL

(2.17)

For the overlap of |Ψ1〉 with itself, the M̃σ1 will be replaced by Mσ1 . In this case,

for a MPS constructed by sequential SVD procedure (as described in section 2.2

the sum
∑

σ1
M̃σi†Mσi = 1 for each i, as Mσi are unitary matrices. Therefore,

the overlap 〈Ψ1|Ψ1〉 = 1, i.e. it is already normalized. A similar diagram can be

constructed for the energy expectation value 〈Ψ|H|Ψ〉. For an operator Ôi acting

at the ith site, the expectation value can be written as

〈Ψ2|Ôi|Ψ1〉 =
∑
σL

M̃σL†

. . .
∑
σi,σ′i

Ôσi,σ
′
iM̃σi†

(
. . .

(∑
σ1

M̃σ1†Mσ1

)
. . .

)
Mσ′i

 . . .

MσL

(2.18)

where the operator is multiplied to the matrix at the ith site (marked in red).

Figure 2.6: Tensor Network Diagram of the overlap between two MPS.

The diagram is shown in Fig.2.7a and the rest is just the overlap expression.

Assuming that the MPS is right normalized on the right of the ith site and left
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(a) (b)

Figure 2.7: Tensor network diagram for (a) the expectation value of a single site operator 〈Ôi〉
and (b) two point correlation function. 〈ÔiÔj〉

normalized on its left, the expectation value just becomes

〈Ψ2|Ôi|Ψ1〉 =
∑
ai−1,ai

∑
σi,σ′i

Ôσi,σ
′
iM̃σi†

ai−1,ai
M

σ′i
ai−1,ai (2.19)

=
∑
σi,σ′i

Ôσi,σ
′
iTr

(
M̃σi†Mσ′i

)
(2.20)

When there are two or more operators acting simultaneously, for instance, when

calculating correlation functions, this is generally not possible. But the computa-

tional cost can be reduced by using this normalization condition beyond whichever

site there is no operator acting, shown in Fig.2.7b.

2.6.1 Need for shift of Orthonormality center

To make use of the orthonormality condition for efficient calculation of expectation

values at the (i + 1)th site, the use of orthonormality center, which is initially at

the ith site, should be shifted to the (i + 1)th site. As per the representation

described above, a mixed canonical MPS with respect to the ith site then needs to
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be reconstructed so that it is also mixed canonical w.r.t to the (i+1)th site. Doing

this for every iteration is a computationally expensive job. There is a workaround

though, a representation suggested by Guifré Vidal in 2004 [1,13], which makes every

site an orthogonality center in a single step.

2.6.2 Vidal’s Canonical Form: Every site is an orthogonal-

ity center

The representation of |Ψ〉 given by Vidal is the following :

|Ψ〉 =
∑
σ1...σL

Γσ1Λ(1)Γσ2Λ(2)Γσ3Λ(3) . . .ΓσL−1Λ(L−1)ΓσL (2.21)

In the above expression, there is a matrix Γσi for each site i, and a diagonal matrix

of singular values Λ(i) obtained by iterative SVD. Similar to the construction of

a left (or right) canonical MPS, we perform a successive reshaping ‘SVD’ing as

described in section 2.2

cσ1,...,σL = cσ1,(σ2...,σL)

=
∑
a1

M1
σ1,a1

Λ(1)
a1,a1

V †a1,(σ2...,σL)

=
∑
a1

Γσ11,a1c
′
(a1,σ2),σ3,...σL

(2.22)

=
∑
a1,a2

Γσ11,a1M
2
(a1,σ2),a2

Λ(2)
a2,a2

V ′†a2,(σ3...,σL) (2.23)

=
∑
a1,a2

Γσ11,a1Λ
(2)
a2,a2

Γσ1a1,a2V
′†
a2,(σ3...,σL)

(2.24)

... (2.25)

=
∑
σ1...σL

Γσ1Λ(1)Γσ2Λ(2)Γσ3Λ(3) . . .ΓσL−1Λ(L−1)ΓσL (2.26)
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At every step after SVD, we replace the M matrix as ,

M = Λ(i−1)
ai−1,ai−1

Γσiai−1,ai
(2.27)

Therefore, to find the Γσi at each step except the first, we need to calculate the

quantity (Λ(i−1))−1M . Thus we need to discard the zero singular values for this

representation which may sometimes lead to inaccuracy.

2.7 DMRG as a Variational principle

The Density Matrix Renormalization group (DMRG) method was developed by

Steven R. White in 1992 [14]. This is a very accurate method to calculate the

eigenvalues and eigenvectors of strongly correlated lattice model Hamiltonians.

This can treat large low dimensional systems (generally 1-dimensional and quasi

1-dimensional) which exact diagonalization cannot handle.

Since we are primarily interested in ground state properties, we need to find a

Ψ which minimizes the energy expectation value 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉. Now, |Ψ〉 andH

are expressed as MPS and MPO respectively. For an MPS |Ψ〉 = Mσ1Mσ2 . . .MσL

this amounts to solving the equation

∂

∂Mσi
(〈Ψ|H|Ψ〉)− E〈Ψ|Ψ〉 = 0 (2.28)

where E is a Lagrange multiplier as 〈Ψ|Ψ〉 is a constant of normalization. The

solution can be represented as a tensor network diagram shown in Fig 2.8a and

2.8b, considering the MPO form of H as in Eq. 2.9
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(a)

(b)

Figure 2.8: Tensor network diagram for DMRG with (a) an unnormalized MPS and (b) a nor-
malized MPS.

2.8 Iterative Sweeping

〈Ψ|H|Ψ〉 =
∑

σ1,...,σL,
σ′1,...,σ

′
L,

a1,...,aL

LEFT−BLOCK︷ ︸︸ ︷[(
Mσ1†

a1
Ŵ

σ1,σ′1
b1

M
σ′1
a′1

)
. . .
(
Mσi−1†

ai−2,ai−1
Ŵ

σi−1,σ
′
i−1

bi−2,bi−1
M

σ′i−1

a′i−2,a
′
i−1

)]

×
(
Mσi†

ai−1,ai
Ŵ

σi,σ
′
i

bi−1,bi
M

σ′i
a′i−1,a

′
i

)(
Mσi+1†

ai,ai+1
Ŵ

σi+1,σ
′
i+1

bi,bi+1
M

σ′i+1

a′i,a
′
i+1

)
×

[(
Mσi+2†

ai+1,ai+2
Ŵ

σi+2,σ
′
i+2

bi+1,bi+2
M

σ′i+1

a′i+1,a
′
i+2

)
. . .
(
MσL†

aL
Ŵ

σL,σ
′
L

bL
M

σ′L
a′L

)]
︸ ︷︷ ︸

RIGHT−BLOCK

= L1,i−1

(
Mσi†Ŵ σi,σ

′
iMσ′i

)(
Mσi+1†Ŵ σi+1,σ

′
i+1Mσ′i+1

)
Ri+2,L

(2.29)

To perform iterative energy minimization, which will be explained in details

in the next section, one performs an iterative SVD truncation procedure, by con-

structing effective one or two site Hamiltonian. To do that, for instance, sequential
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tensor contractions (or joining of legs) are performed, giving rise to left and right

blocks, with two sites i and i+1 in between these blocks. The first term of Eq.2.28

then amounts to removing Mσi† and thus, the effective expression takes the form

Heff |Ψ〉 where Heff is a (aiσiσi+1ai+1)× (aiσiσi+1ai+1) effective Hamiltonian ma-

trix. This matrix can be diagonalized to obtain the ground state, Ψ0 for two

sites. Following that, SVD is performed to split them into individual matrices of

the MPS for the two sites. The lowest eigenvalue λ0 corresponding to Ψ0 is the

estimate of the ground state energy of the system.

2.9 DMRG Sweeps in a Computer

Therefore, as mentioned in the previous section, the iterative DMRG sweep is

performed in the following way:

2.10 Time Evolving Block Decimation (TEBD)

The Time Evolving Block Decimation (TEBD), developed in 2004 [13,15–18] is a pop-

ular method to study real as well as imaginary time evolution of one dimensional

quantum many-body systems in the MPS formalism. It is based on the Trotter-

Suzuki [19] Decomposition of the propagator e−iHδt. This method is efficient and

fast but is mostly applicable for short-ranged Hamiltonians. Initially it was de-

veloped for finite size systems, but in 2007, its infinite-size variant has been also

developed.

2.10.1 Trotter-Suzuki Decomposition

Since two consecutive terms of a nearest-neighbor Hamiltonian generally do not

commute, unitarity is not preserved. The way to solve this issue is to split the

Hamiltonian into sums of odd and even terms.
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Multiply the tensors of sites i and i+ 1 to get
Ψi,i+1 =

∑
ai
Mσi

ai−1,ai
Mσi

ai,ai+1

Compute the eigenvalue equation Ĥi,i+1Ψi,i+1 = λΨi,i+1

with Ĥi,i+1 = Li−1.Wi.Wi+1.Ri+2

and get the lowest eigenvalue λ0 and eigenvector Ψ0
i,i+1

Perform a SVD on Ψ0
i,i+1 to get Ai, Si, Vi+1

Reshape the matrices to form the new site tensors of the MPS:

Ai →Mσi
ai−1,ai

SiVi+1 →Mσi
ai,ai+1

Update the new left block Li = Li−1.M
σi .Wi.M

σi†
i→ i+ 1

Figure 2.9: Left to Right sweep of the 2-site DMRG algorithm

H = Ĥodd + Ĥeven

Ĥodd = ĥ1,2 + ĥ3,4 + ĥ5,6 + . . . =
∑
i,odd

ĥi,i+1

Ĥeven = ĥ2,3 + ĥ4,5 + ĥ6,7 + . . . =
∑
i,even

ĥi,i+1

(2.30)

The propagator can be calculated using the Baker-Campbell-Hausdorff formula

U exact(δt) = e−iHδt

= e−iĤoddδte−iĤevenδte−i[Ĥodd,Ĥeven]δ2t (2.31)
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Figure 2.10: Schematic of the 2-site DMRG sweep algorithm
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For TEBD of the first order (TEBD1), we consider

UTEBD1(δt) = e−iĤoddδte−iĤevenδt

U exact(δt) = UTEBD1(δt) +O(δt2)
(2.32)

For a very small value of δt (ideally δt → 0) TEBD1 is very accurate. The

advantage of TEBD is that it preserves unitarity upto the order of accuracy, which

is δt for TEBD1, and better for higher orders.

The second order form TEBD2 is obtained by rearranging the terms in a symmetric

way

UTEBD2(δt) = e−iĤevenδt/2e−iĤoddδte−iĤevenδt/2

U exact(δt) = UTEBD2(δt) +O(δt3)
(2.33)

A more accurate but computationally slightly expensive would be to consider the

fourth order form, TEBD4,

UTEBD2(δt) = UTEBD2(δt1)U
TEBD2(δt1)U

TEBD2(δt2)U
TEBD2(δt1)U

TEBD2(δt1)

= e−iĤevenδt1/2e−iĤoddδt1e−iĤevenδt1e−iĤoddδt1e−iĤeven(δt1+δt2)/2

× e−iĤoddδt2e−iĤeven(δt1+δt2)/2e−iĤoddδt1e−iĤevenδt1e−iĤoddδt1e−iĤoddδt2

(2.34)

where δt1 =
1

1− 41/3
δt and δt2 = (1− 4δt1)δt .

The Trotter-Suzuki method is available for nearest-neighbor interactions. To ex-

tend the algorithm to next-nearest-neighbor or longer range interactions, swap

gates are used [20]. By these operators, the indices are temporarily swapped to

make them nearest-neighbor and again they are swapped in the reverse order after

the time evolution.
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2.10.2 Algorithm

After segregating the odd and even parts (or mutually non-commuting parts of

the Hamiltonian) the operators Ĥeven and Ĥodd are calculated. The operators

applied to the sites are individual operators and not an MPO. For example, the

operator for any two sites i, i+ 1 for the z-component of the 1d Heisenberg model

U (σi,σi+1),(σ
′
i,σ
′
i+1)(δt) = eihi,i+1δt where

hi,i+1 = 1i−1 ⊗ Szi ⊗ Szi+1 ⊗ 1i+2 (2.35)

or simply

hi,i+1 = Szi ⊗ Szi+1 (2.36)

since identity operators are absorbed while creating the left and right blocks in

the Hamiltonian. These operators are then acted on the ith and i+ 1th sites of the

MPS, namely

Ψσiσi+1(t) = Λ(i−1)ΓσiΛ(i)Γσi+1Λ(i+1) and (2.37)

Ψσiσi+1(t+ δt) = Ui,i+1(δt)Ψ
σiσi+1(t)

= MσiΛ′
(i)
V σi+1†

= Λ(i−1) (Λ(i−1))−1MσiΛ′
(i)
V σi+1†

(
Λ(i+1)

)−1
Λ(i+1) (2.38)

= Λ(i−1)Γ′σiΛ′(i)Γ′σi+1Λ(i+1) (2.39)

where the new tensors as constructed as

Γ′σiai−1ai
=
(

Λ
(i−1)
ai,ai

)−1
Mσi

ai−1,ai
and Γ

′σi+1
aiai+1 = V

σi+1†
ai,ai+1

(
Λ

(i+1)
ai+1,ai+1

)−1
For clarity, a full flowchart of all the steps required to compute within DMRG

programs are described below.
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Figure 2.11: Schematic for the TEBD algorithm

Construct the effective 2-site wave function

Ψσiσi+1(t) = Λ(i−1)ΓσiΛ(i)Γσi+1Λ(i+1)

and reshape it to matrix form

Construct the evolution operator

U (σi,σi+1),(σ
′
i,σ
′
i+1)(δt/2) = eihi,i+1δt/2

from the analytic expression of the 2-site Hamiltonian hi,i+1

Obtain the 2-site wave function Ψσiσi+1(t+ δt/2) by multiplying
U(δt) and Ψσiσi+1(t) matrices.

Perform SVD and use previouly obtained singular values(
Λ

(i+1)
ai+1,ai+1

)−1
to get new site tensors in canonical representa-

tion (Eq. 2.38)

i→ i+ 2

Figure 2.12: Algorithm for the left-right sweep of the TEBD1 algorithm
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Now, the above algorithm is followed separately for starting from odd and even

sites. For the right-left sweep, exactly the same algorithm is followed starting from

the right, only with sites i and i− 1 at every iteration.

Also, for TEBD2 and TEBD4 algorithms, the same flowchart is followed both for

odd and even sites, but these operations are sequentially done a number of times,

following Eqs. 2.33 and 2.34.
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In this chapter, we have given details of the MPS methods in terms of pictorial

representations, the description of what it contains and how to implement these

in coding. We have developed these methods to calculate the static and dynamic

properties for both bosonic and fermionic systems. The codes have been developed

in-house in Python and Julia languages. The DMRG and TEBD algorithms have

been developed and verified with our home-built Exact Diagonalization codes as

well as the TenPy package developed by Hauschild et al. [21]. We have also imple-

mented these codes in our works, which have been described in chapters 3 and

5.

Currently, we are developing the Time Dependent Variational Principle (TDVP) [19],

which is the most accurate time evolution method among all the existing methods

in the MPS formalism. In the future, we also plan to implement these methods

for dissipative bosonic as well as fermionic chains to study the dynamics of their

decoherence in the presence of macroscopic baths.
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3
Loss of classicality in an alternating

Spin Chain in presence of

next-neighbor coupling and

Dzyaloshinskii-Moriya interaction

3.1 Introduction

Low dimensional quantum spin systems are of considerable interest as they exhibit

a wide range of exotic physical phenomena [2,3]. Due to strong quantum fluctua-

tions, in most of the quantum low dimensional systems, the long range order gets

destroyed even at absolute zero temperature. Many such properties have theoreti-

cally and computationally been predicted [4–7] and most of those have already been

realized experimentally [8–13]. The most popular model to explain these phenomena

is the Heisenberg model along with various other terms such as anisotropy [14–17]

and Dzyaloshinskii-Moriya [18,19] interactions. Most of these terms break the SU(2)

symmetry of spin-1/2 systems and lead to exotic broken symmetry ground state.

The low-lying excitations in these systems vary dramatically depending on

39
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the site spins (whether they are integer or half-odd-integer) and nature of the

superexchange interactions. The nearest neighbor integral spin or nearest and

next-neighbor coupled half-odd-integer spins show a finite gap in the excitation

spectrum and in effect a short range two-spin correlation functions in the ground

state. Interestingly, the next-neighbor coupling induces frustration in the system

and such an infinite degeneracy of the classical ground state of the spin system

gets lifted when quantum fluctuations are introduced. The gapless spin system,

the spin gap due to Resonating Valence Bond or spontaneous dimerization due

to frustration, single magnon state, multi-magnon states, spin-glass and spin-ice

ground states in a large classes of magnetic systems have already been realized

computationally and experimentally. There have been studies on the low-energy

and low temperature properties of alternating spin chains with nearest and next

nearest neighbor Heisenberg interactions. Such ferrimagnetic systems have been

shown to display a rich low energy spectrum with both antiferromagnetic (AFM)

ground state and ferromagnetic excitations. Due to underlying non compensat-

ing site spins with finite magnetization, these low dimensional systems show long

range magnetic order with finite magnetization at temperature. Since quantum

fluctuations of the Heisenberg model cannot destroy the classical ferromagnetic

order, these alternating spin-chains can be well explained within the limit of Lin-

ear Spin Wave Theory (LSWT).

Figure 3.1: Schematic of a spin- 12/spin-1 alternating chain
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In this chapter, we are interested in studying the effect of Dzyaloshinskii-Moriya

(DM) interactions on the low energy spectrum of Heisenberg chain systems con-

sisting of alternating site spins and with competing exchange interactions [1]. We

have carried out detailed studies on the low-energy properties of these systems

using perturbative linear spin-wave theory and non-perturbative density matrix

renormalization group methods. We have compared the spin-density, two-spin

correlation functions and various order parameters between the perturbative and

non-perturbative methods and with change in the magnitude of alternating site

spins in the low-dimensional system. In next section, we have carried out the

detailed analysis of the low-energy spectrum of an alternating spin chains (S1, S2)

with nearest and next-nearest neighbor AFM interactions and the z-component

of the DM interactions using linear spin-wave theory method. In the subsequent

section, DMRG calculations have been performed on the alternating spin systems

(S1 = 1, S2 = 1/2 and S1 = 3/2, S2 = 1/2) with nearest neighbor Heisenberg

AFM interactions and z-component of the DM interactions (and at times with

next-nearest neighbor frustrated term). The ground state energy, spin density

and two-point equal time correlation functions and various other order parame-

ters have been calculated to characterize the ground state. We have analyzed the

effects of DM and next-neighbor frustrations on the low energy properties of these

alternating spin chains.
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3.2 Results with nearest-neighbour interactions

3.2.1 Linear Spin Wave Theory analysis

The Heisenberg Hamiltonian for an alternating chain of spins S1 and S2 with

Dzyaloshinskii-Moriya (DM) interactions can be written as

H = J
∑
〈ij〉

Si.Sj +D.Si × Sj (3.1)

= J
∑
〈ij〉

Szi S
z
j +

J

2

(
S+
i S
−
j + S−i S

+
j

)
+
iDz

2

(
S+
i S
−
j − S−i S−j

)
(3.2)

for J > 0 and D = {Dz, 0, 0}

Here the A sublattice comprise of spin-1
2

sites and the B sublattice comprise of

spin-1.

Holstein-Primakoff Transformations and Fourier Transformation

We apply the Holstein-Primakoff transformations

Sublattice A

Sz1,i = S1 − a†iai,

S+
1,i =

√
2S1 − a†iaiai,

S−1,i = a†i

√
2S1 − a†iai,

(3.3)

Sublattice B

Sz2,i = −S2 + b†ibi,

S+
2,i = b†i

√
2S2 − b†ibi,

S−2,i =

√
2S2 − b†ibibi

(3.4)
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Substituting the above equations we get

H = J
∑
〈ij〉

[(
S1 − a†iai

)(
b†jbj − S2

)
+

1

2

(
ai

√
2S1 − a†iaibj

√
2S2 − b†jbj

+ a†i

√
2S1 − a†iaib

†
j

√
2S2 − b†jbj

)]
+
iDz

2

∑
〈ij〉

(
ai

√
2S1 − a†iaibj

√
2S2 − b†jbj − a

†
i

√
2S1 − a†iaib

†
j

√
2S2 − b†jbj

)
(3.5)

≈ −2NJS1S2 + J
∑
〈ij〉

[
S1b
†
jbj + S2a

†
iai +

√
S1S2

(
aibj + a†ib

†
j

)]
+ iDz

√
S1S2

∑
〈ij〉

(
aibj − a†ib

†
j

)
= H0 +H1 (3.6)

H0 being the classical energy. After applying the Fourier transform, we get

H1k =
√
S1S2

∑
δ,k

(
J (+)e−ikδakb−k + J (−)eikδa†kb

†
−k

)
+ 2J

∑
k

(
S2a

†
kak + S1b

†
kbk

)
(3.7)

where δ is the sum of all nearest neighbours.

J (+) = J + iDz and J (−) = J − iDz .

For a 1D chain with nearest neighbours placed equidistantly,
∑

δ,k e
ikδ =

∑
δ,k e

−ikδ =

2
∑

k cos(k
2
)
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So, we get,

H1k = 2
√
S1S2

∑
k

cos(
k

2
)
(
J (+)akb−k + J (−)a†kb

†
−k

)
+ 2J

∑
k

(
S2a

†
kak + S1b

†
kbk

)
= 2
√
S1S2

∑
k

cos(
k

2
)
(
J (+)akb−k + J (−)a†kb

†
−k

)
+ J

∑
k

{S2

(
a†kak + a†−ka−k

)
+ S1

(
b†kbk + +b†−kb−k

)
} (3.8)

Here, we have used the fact that
∑

k a
†
kak = 1

2

∑
k

(
a†kak + a†−ka−k

)
and similar

for b† and b.

Now, this can be written in matrix form,

H1k =
∑
k

A†kHkAk (3.9)

where

Hk =


JS2 0 0 J−

√
S1S2cos(k

2
)

0 JS1 J−
√
S1S2cos(k

2
) 0

0 J+
√
S1S2cos(k

2
) JS2 0

J+
√
S1S2cos(k

2
) 0 0 JS1


(3.10)

The above matrix is written in the basis Ak = {a†k, b
†
k, a−k, b−k}

Bogoliubov Transformation and Diagonalization

The Bogoliubov transformation can be written in a generalized form as:

Ak = Vk.Ãk (3.11)
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where Ãk is the array of 4 Bogoliubov operators and Vk is the coefficient matrix.

The diagonal form can be obtained by the similarity transformation

V †kHkVk = Ωk (3.12)

Also, the commutation relations are preserved after transformation into the Bo-

goliubov basis. So,

g = Vk g V
†
k (3.13)

where g is the commutator matrix, written as

g = AkA
†
k −

[(
A†k

)T
AT
k

]T
=

12

−12

 (3.14)

From Eq. (3.12) and (3.13), we get

(gHk) .Vk = Vk. (gΩk) (3.15)

This is actually the eigenvalue equation. The columns of similarity matrix Vk are

the eigenvectors of (gHk).

Diagonalizing (gHk), and then multiplying by g−1(= g) we get the 4 modes,

ω1k = ω4k =
1

2
{J (S1 − S2)− Ωk} (3.16)

and

ω2k = ω3k =
1

2
{J (S1 − S2) + Ωk} (3.17)

where

Ωk =
1

2

√
−4 (J2 +D2)S1S2cos2(k/2) + J2(S1 + S2)2 (3.18)
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Two low-energy spin wave dispersion curves are shown in Fig. 3.2, corresponding

to the two sublattices with two different bosonic modes. In the case of Dz =

0, the lower dispersion mode (colored red) is the gapless mode, due mainly to

the antiferromagnetic interactions, while the higher energy dispersion mode is

gapped and has features of ferromagnetic interactions. This same relation was

obtained by Pati et al. [20]. As Dz is increased, within the linear spin-wave theory,

the dispersion ω1k becomes negative near k = 0. This implies that there is an

instability with respect to static spin-wave formalism [21]. This instability can be

removed by applying an external magnetic field as there will be an extra tunable

coefficient B of a†kak due to the field, which will shift the value of ω1k back to zero.

We will see below how the non-perturbative method accounts for such instability

when the quantum fluctuations is properly accounted for.

For Dz > 0.3535, the discriminant, Ω2
k (3.18) becomes negative. Thus, both

the ω’s, namely, ω1k and ω2k become complex. Hence, the spin wave dispersion

curves become unrealistic and are thus no longer remain valid.

Sublattice Magnetization

The magnetization for the A sublattice can be written as( [22])

Ma = S1 − 〈a†i=1ai=1〉 = S1 −
1

Nuc

∑
k,k′

〈a†kak′〉 (3.19)

where Nuc is the number of atoms in the unit cell. Using the Bogoliubov transfor-

mation defined before Ak = Vk.Ãk, we get

Ma = S1 −
1

Nuc

∑
k,k′,m,n

Vk(1, n)∗Vk(1,m)Ã†k(n)Ãk(m) (3.20)
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(a) (b)

(c) (d)

Figure 3.2: Energy dispersion plots for Dz/J = (a) 0.0, (b)0.2, (c) 0.35 and (d) 0.4 for a spin-
1
2/spin-1 alternating chain
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When acting on the ground state, only the terms of the form αkα
†
k in the

Bogoliubov basis will have non-zero contribution. So it is sufficient to sum over

only terms m = n = 3, 4 and k = k′. Hence,

Ma = S1 −
1

Nuc

∑
k

∑
m=3,4

Vk(1, n)∗Vk(1, n)Ã†k(n)Ãk(n) (3.21)

=

(
S1 +

1

2

)
(3.22)

+
1

2

∫
π

−π

dk

(
J(S1 + S2) +

√
−4 (J2 +D2)S1S2cos2(k/2) + J2(S1 + S2)2

)2
4(J2 +D2)S1S2cos2(k/2)

(3.23)

In a similar way, the magnetization for the B- sublattice can be calculated as

Mb = 〈b†i=1bi=1〉 − S2 =
1

Nuc

∑
k,k′

〈b†kbk′〉 − S2

=
1

Nuc

∑
k,k′

∑
m=3,4

Vk(2, n)∗Vk(2, n)Ã†k(n)Ãk(n)− S2 −
1

2
(3.24)

As can be seen from linear spin-wave results, for each spin-1
2
/Spin-1 dimer,

the total magnetization is (S1 − S2) = 1
2

since the fluctuations in each of the site

spins are exactly opposite and thus gets cancelled out to give finite magnetization

value for every dimer. Thus, the system behaves as a classical ferrimagnet with

alignment of finite magnetizations of dimers in a lattice. However, this result

is valid only for Dz = 0, as evident from non perturbative DMRG calculations,

discussed in the next subsection. For Dz 6= 0, the non-perturbative quantum

fluctuations make the spin of each site as well as the dimer to be zero.
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Correlation Function

These correlation functions comprise of 3 types, 〈Sz1iSz1j〉, 〈Sz2iSz2j〉 and 〈Sz1iSz2j〉.

Since the system behaves as a ferrimagnet with finite magnetization for every

dimer, the correlation functions should be calculated after subtracting the product

of the averages of each Sz values, given by

〈Sz1iSz1j〉 − 〈Sz1i〉〈Sz1j〉 =
1

2π

∫ π

−π

{
1 +

Ωkcos(k|i− j|
J(S1 + S2)

}
dk (3.25)

for the first type of correlations.

The plots of the correlation function with distance between the spin sites are

shown in Fig 3.3a. This clearly shows very short range order upto only a few

sites, which is consistent with the earlier work [20] for Dz = 0. But for Dz 6= 0,

in the LSWT regime, the correlation length is also very small and there is not

much significant difference between the correlation function for different values

of Dz until the function becomes complex at Dz ' 0.36. Thus LSWT fails to

explain this case, as it assumes that there is primarily antiferromagnetic order

with fluctuations, even in presence of Dz. This is contrary to all the DMRG

results, especially with nonzero Dz, presented later.

(a) (b)

Figure 3.3: Sz-Sz correlation function plots from linear spin wave theory for (a) nearest-
neighbour and (b) next-nearest-neighbour interactions in a spin-1 alternating chain



3.2. Results with nearest-neighbour interactions 50

3.2.2 DMRG Results

Finite size DMRG calculations have been performed in the Matrix Product State

(MPS) formalism [25] for a chain of 120 and 240 sites with nearest neighbor (NN)

as well as next-nearest neighbor (NNN) magnetic exchange interactions and the z-

component of the Dzyaloshinskii-Moriya interactions. In this chapter, we present

the results for 240 sites and at times, the same for the 120 sites are also given.

The cut off for bond dimension of the MPS has been kept to be 500 and finite

size sweeps up to 200 have been used to obtain the converged ground state. For

NN interactions without Dz, the spin density (shown is Fig.3.4 ) of each site

is less than the classical value, but the difference between spin density for each

dimer is 1/2 as expected, which is also confirmed from our LSWT calculations

and previous work [20]. This means that each site has quantum fluctuations, but

each spin-1/2-spin-1 dimer has classical magnetization value. Hence the Sz-Sz

correlation function, given by

Cz (|i− j|) = 〈Szi Szj 〉 − 〈Szi 〉〈Szj 〉 (3.26)

sharply falls to zero after a length of two sites, as the product of the averages have

finite values(Fig3.5a). This is characteristic of a magnetic chain with long range

order, which in this case is due to the formation of a ferrimagnetic chain with

finite dimer magnetization in the lattice.

However, the moment we turn on the nearest-neighbor DM interactions, it in-

troduces strong quantum fluctuations in each of the spin sites, making the dimer

move away from classical magnetic state, as was found for zero DM interaction.

Although, the quantum fluctuation was present in each site spin (when Dz = 0),

the dimer did not have the quantum fluctuation, because oppositely oriented z-

component of the site spins had exactly opposite fluctuations, thus cancelling each

other’s fluctuation making each dimer classical magnetic state. However, with
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(a) (b)

(c)

Figure 3.4: Plots of (a)Spin density vs site for a 240 site spin- 12/spin-1 alternating chain for
Dz/J = 0.0, 0.25, 0.5 (b) Spin density for Dz/J = 0.05 for 30 and 240 sites, and, (c) Staggered
magnetization for various lengths for Dz/J = 0.5, all with NN interactions

Dz 6= 0.0, the situation is very different; it not only introduces strong quantum

fluctuations in each of the site spins, each of their z-components vanishes and

therefore the z-component of the dimer also vanishes. It is quite clear that these

fluctuations are stronger for larger magnitude spins and LSWT, which considers

fluctuations of classical magnetic ground state to linear order, can never capture

such strong fluctuations. This also suggests that although in a ferrimagnet, the

interactions are antiferromagnetic, any non-local interactions can destroy the site

magnetization of different magnitude magnetic ions as well as the dimeric mag-

netization of classically non-compensating spin dimers completely. However, we
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will see below how spin structure and ordering of the spin sites in a ferrimagnet

change when DM interactions are introduced and varied.

Onset of instability of the classical ferrimagnetic state with Dz

The classical ferrimagnetic state of the alternating spin 1
2
/spin-1 chain is unstable

even for a small value of Dz/J . This is evident from the spin density plots for

different values of Dz/J . Fig. 3.4a shows the zigzag pattern of the spin density

for a 240-site chain for Dz/J = 0 and for Dz/J = 0.25, 0.5. As can be seen, for

the nonzero Dz/J , the spin density at every site vanishes. To verify the quantum

fluctuation at every site spin, we have considered small and large sized lattice

and have calculated spin density for a small Dz/J value. It is clear from Fig.

3.4b that, for Dz/J = 0.05, the magnetization fluctuates antiferromagnetically,

however, the scale of fluctuation is quite small (of the order of 10−2). However,

as we increase the lattice length, the site magnetization vanishes. Thus, in the

thermodynamic limit, when the system size goes to infinity, the magnetization will

go to zero eventually, even for small DM interactions. In Fig. 3.4c the staggered

magnetization 1
L

L∑
i=1

|(−1)i〈Szi 〉| vs chain length has been plotted for a large value

Dz/J = 0.5, which also clearly shows the nonlinear decrease in magnitude of

magnetization with lattice length.

For non-zero Dz, although each site z-component spin density vanishes, the

two-point z-component spin correlation function Cz (|i− j|) decays at a relatively

slower rate, thus introducing quasi-long-range order.

Structure Factor

The classical ferrimagnetic ordering in the chain is also reflected in the structure

factor, S(q), for Dz
z = 0. This is shown in Fig 3.5b. The preferred direction of or-
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(a) (b)

Figure 3.5: Plots of (a) correlation function Cz (|i− j|) and (b) structure factor S(q) vs q, for
Dz/J = 0.0, 0.25 and 0.5 for a spin- 12/spin-1 alternating chain of 240 sites with NN interactions

(a) (b)

(c)

Figure 3.6: Plots of correlation function C(+) (|i− j|) for Dz/J = 0.05 (a), 0.25 (b) and 0.5 (c)
for a spin- 12/spin-1 alternating chain of 240 sites with NN interactions
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dering of any two spin-1
2

or spin-1 at alternate sites is parallel. This is manifested

in the sharp peak of S(q) at q = 0 and at q = π. For Dz 6= 0, the peak at q = 0

or at q = π vanishes, as there is no preferred ordering. Nevertheless, there are

two broad peaks at q < π and q > −π, referring to some canted or spiral ordering

angle. In fact, the spiral ordering angle varies with the magnitude of Dz.

3.2.3 S+-S− Correlation

The S+-S− correlation (or cross-correlation) given by

C(+) (|i− j|) = 〈S+
i S
−
j 〉 − 〈S+

i 〉〈S−j 〉 (3.27)

starts building up with finite values for nonzero Dz, which on the other

hand was decaying for Dz = 0. This correlation function has fluctuations, which

continue for longer distances. Interestingly, within each of the spiral order, the

fluctuation is maximum in the middle and there appears to be a periodicity, which

varies with the variation of the DM strength (Fig.3.6). The DM interaction in-

troduces the spiral order of certain length even in XY-plane, as the term is a vector.
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3.3 Results with Next-nearest-Neighbor Inter-

actions

3.3.1 Spin-Wave Theory Analysis

The Hamiltionian with next-nearest-neighbor interactions can be written in terms

of the Holstein-Primakoff bosons as

H = J1
∑
〈ij〉

Szi S
z
j +

J

2

(
S+
i S
−
j + S−i S

+
j

)
+
iDz

2

(
S+
i S
−
j − S−i S−j

)
+ J2

∑
〈〈ij〉〉

Szi S
z
j

= J1
∑
〈ij〉

[(
S1 − a†iai

)(
b†jbj − S2

)
+

1

2

(
ai

√
2S1 − a†iaibj

√
2S2 − b†jbj

+ a†i

√
2S1 − a†iaib

†
j

√
2S2 − b†jbj

)]
+ J2

∑
〈〈ij〉〉

[(
S1 − a†iai

)(
S1 − a†jaj

)
+

1

2

(√
2S1 − a†iaiaia

†
j

√
2S1 − a†jaj

+ a†i

√
2S1 − a†iai

√
2S1 − a†jajaj

)]
+ J2

∑
〈〈ij〉〉

[(
b†ibi − S2

)(
b†jbj − S2

)
+

1

2

(
b†i

√
2S1 − b†ibi

√
2S1 − b†jbjbj

+

√
2S2 − a†iaibib

†
j

√
2S2 − b†jbj

)]
+
iDz

2

∑
〈ij〉

(
ai

√
2S1 − a†iaibj

√
2S2 − b†jbj − a

†
i

√
2S1 − a†iaib

†
j

√
2S2 − b†jbj

)

≈ −2NJ1S1S2 + J1
∑
〈ij〉

[
S1b
†
jbj + S2a

†
iai +

√
S1S2

(
aibj + a†ib

†
j

)]
+ iDz

√
S1S2

∑
〈ij〉

(
aibj − a†ib

†
j

)
+NJ2S

2
1 + J2

∑
〈〈ij〉〉

S1

[
−a†iai − a

†
jaj + aia

†
j + a†iaj

]

+NJ2S
2
2 + J2

∑
〈〈ij〉〉

S2

[
−b†ibi − b

†
jbj + bib

†
j + b†ibj

]
(3.28)
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After the Fourier transformation, we get

H1k =
√
S1S2

∑
δ,k

(
J (+)e−ikδakb−k + J (−)eikδa†kb

†
−k

)
+ 2

∑
k

[
(J1S2 − J2S1) a

†
kak + (J1S1 − J2S2) b

†
kbk

]
+ J2S1

(
e−2ikδaka

†
k + e2ikδa†kak

)
+ J2S2

(
e−2ikδbkb

†
k + e2ikδb†kbk

)
(3.29)

In matrix form it can be written as,
J1S2 − J2S1(1− cos(k)) 0 0 J−√S1S2cos(k/2)

0 J1S1 − J2S2(1− cos(k)) J−√S1S2cos(k/2) 0

0 J+
√
S1S2cos(k/2) J1S2 − J2S1(1− cos(k)) 0

J+
√
S1S2cos(k/2) 0 0 J1S1 − J2S2(1− cos(k))


Bogoliubov transformation, followed by diagonalization gives 2 modes as before

(the other two are the same):

ω1k =
1

4

[
(S1 − S2) {J1 + J2 (1− 2cos(2k))}

]
+ Ωk

ω2k =
1

4

[
(S1 − S2) {J1 + J2 (1− 2cos(2k))}

]
− Ωk

(3.30)

where

Ωk =

√
−4 (J2

1 +D2)S1S2cos2(k) +

{
J1 − 2J2

(
1

2
− cos(2k)

)}2

(S1 + S2)2

A similar expression without he DM interaction had been derived by Mohakud et

al. [23]. The energy modes dispersion values for different parameters are plotted in

Fig. 3.7.

On introducing the next-neighbor AFM coupling, we introduce spontaneous

frustration in a one-dimensional antiferromagnetic lattice. This leads to the dis-
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persion relation becoming flattened and as the J2 is increased further, the spin

group velocity reduces. Interestingly, on further increase of J2, the AFM disper-

sion mode flattens more, until it becomes negative at J2 = 0.25 and complex. The

magnetization in this case (calculated similarly) as in Eqs. 3.24 reduces from its

classical value, but for the dimer, it remains the same, (S1 − S2), which is classical.

The correlation function vs. length is plotted in Fig 3.3b. Clearly, the LSWT

predicts short range order for both non-zero J2 and nonzero Dz values, contrary

to DMRG results, whcih is given in next subsection.

3.3.2 DMRG Results

First, the DMRG calculations were performed for J2/J1 = 0.4, as for a spin-

1/2 antiferromagnetic chain, this was predicted to have Resonating Valance Bond

doubly degenerate ground state, way back in 1969 [26,28]. With next-neighbor inter-

actions term as half of nearest neighbor, the dimer no longer behaves as classical

magnetic dimer with finite magnetization value. The magnetization average at

each site becomes zero again, thus making the magnetization value in the dimer

to be zero. For Dz = 0, the system spontaneously dimerizes with introduction of

quasi long range order, as evident from the Sz-Sz correlation function plotted in

Fig.3.8a. As Dz is turned on, unlike that of only nearest neighbor interactions, the

quasi long range order is destroyed. Hence, in both the cases, the DM interaction

term changes the spin vectors through quantum fluctuations and thereby the two

point correlation function between them and effectively reverses completely or to

some extent the quasi long range order or short range order set by the Heisenberg

interaction terms. Interestingly, even with small values of DM interactions the

spontaneous changes in quantum fluctuations in spin density and spin spin corre-

lation functions occur.

The cross-correlation C(+) (|i− j|) builds up more with increase in DM interac-
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tions.

(a) (b)

Figure 3.7: Energy dispersion plots for spin- 12/spin-1 alternating chain with next-neighbor frus-
tration for Dz/J1 = (a) 0.0, (b)0.2, (c) 0.35 and (d) 0.4

Interestingly, for Dz/J1 = 0, and with nonzero J2, both Cz (|i− j|) and

C(+) (|i− j|) show spiral ordering. However, J2 introduces frustration and due

to this, the local as well as the global spin order changes. As can be seen from the

correlation functions, the antiferromagnetic short range correlations between two

consecutive spin sites (from a given site) remain positive or negative, suggesting

local frustrated ferromagnetic domains. This is manifested in the structure factor,

S(q), where we find two sharp peaks, each at π/2 > q > 0 and 0 < q < π (shown in

Fig 3.8b). For Dz 6= 0, this local order vanishes, again giving two broad peaks at

−π > q > 0 and 0 < q < π. The structure factor reveals the manifestation of the

competing nature of the frustrated interactions and z-component of the DM inter-

actions. Note that, the DM interactions arise due to the local non-centrosymmetry

in the spin systems [29–32].

On the other hand, when we consider correlation function between spin raising

and lowering operators (S+
i S
−
j ) as a function of distance, |i−j|, we find that within

short distances, the correlation function between two consecutive sites are positive

or negative. This is present at different distances, forDz = 0 as well as forDz 6= 0.0
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(a) (b)

(c)

Figure 3.8: Plots of (a) correlation function Cz (|i− j|), (b) structure factor S(q) vs q and (c)
C(+) (|i− j|) for J2/J1 = 0.4 and Dz/J1 = 0.0, 0.25 and 0.5 for a spin- 12/spin-1 alternating chain
of 240 sites with NNN interactions

values. The S+-S− correlation functions are plotted in Fig.3.8c as a function of

distance between spin sites for various Dz values. From all these figures, it is clear

that, since we have considered the z-component of the DM interactions containing

Ŝx and Ŝy operators, it preserves the local spiral character for spin components

along the XY plane, but kills the z-component local spiral order. Furthermore,

investigation reveals that the local spiral angle is different with the magnitude of

Dz values,. Thus, the main point is that although J2 introduces frustration and

thereby degeneracy and local order along the z-axis, the DM interactions along

the in-plane direction preserves the local order, while along the z-direction kills
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the local order.

3.4 Conclusions

We have investigated the ground state and low energy properties of an alternating

spin-1
2
/spin-1 chain in the presence of DM interactions and next-neighbor frustra-

tions. Without DM and next-neighbor antiferromagnetic interactions, both Linear

Spin Wave Theory and non-perturbative DMRG results predict the ground state

to be a classical ferrimagnetic state with total spin N(S1 − S2). When DM in-

teractions are present, however small it may be, LSWT again predicts a ground

state with total spin N(S1−S2), contrary to DMRG results, which show that the

ground state to have total spin zero. The reason behind this is that the DM inter-

actions introduce strong quantum fluctuations at each site, thus making the spin

at each site zero, and hence the total spin zero. This effect could be captured by

the cubic or quartic orders of Spin Wave Theory [24]. In presence of next-neighbor

frustration, the system again goes away from classical limit, and the average of

z-component of each site spin becomes zero and two point equal time correlations

functions show quasi-long range order. When both next-neighbor frustration and

DM interactions are present, the magnetic structure generates a short range order

in the XY-plane and a local order accompanies it. Both both next-nearest neigh-

bor frustration and DM interactions destroy this spiral order, and also any kind

of short range order along the z-axis.
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4
Signatures of nonlinear

magnetoelectricity in second harmonic

spectra of SU(2) symmetry broken

quantum many-body systems

4.1 Introduction

The study of Magnetoelectric(ME) effect in materials has gained a huge interest

due to their potential applications in sensors [1], ME RAM [2–4] and other spintronic

devices. The ME effect is observed in materials where there is a significant coupling

between the charge and the spin degrees of freedom. This coupling gives rise to

interesting linear as well as nonlinear responses in the presence of an electromag-

netic field and are manifested in the measurement of nonlinear magneto-optical

susceptibilities. Several mechanisms of this ME effect have been proposed. The

most prominent one is due to exchange striction [5] which not only explains ME ef-

fect in some multiferroic oxides [6,7], but also organic molecular solids [8]. Others are

due to inverse Dzyaloshinskii-Moriya interaction or spin current mechanism [9–11] in

65
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spiral magnets and spin-dependent metal-ligand hybridization [12–15] which involve

spin-orbit coupling (SOC). In recent years, electrical control of magnetism have

also been discovered in layered 2D materials such as bilayer MoS2
[16], CrI3

[17], etc.

There has also been many first principles studies of ME materials [18–20] Still it is

essential to know the role of electronic correlations in the manifestation of this

phenomenon. In this chapter, we [21] have theoretically calculated the second or-

der nonlinear ME susceptibilities in small molecular systems using weak incident

light as perturbation using a local many-body Hamiltonian. These susceptibilities

will appear as small peaks in the second harmonic generation spectrum of the

materials.

4.2 Nonlinear Magnetoelectric Susceptibilities from

Perturbation Theory

Following the phenomenological theory of Landau [22], the second order ME con-

tribution to the polarization (P ) and magnetization (M) at the direction α, in the

presence of electromagnetic field (E,B), can be written as

P̃α(E,B) = − ∂F

∂Eα

∣∣
B

= χ̃(2)
eemEB (4.1)

and

M̃α(E,B) = − ∂F

∂Bα

∣∣
E

= χ̃(2)
emmEB (4.2)

where F is the free energy of the system. χ̃
(2)
eem and χ̃

(2)
emm are two types of second

order ME susceptibilities for the instances when the free energy F is proportional

to EEB and EBB. In this chapter, we have focussed on χ̃
(2)
eem, although the

inferences of the results will be valid for χ̃
(2)
emm also. Light has been used as a

’probe’ to find the ME coefficients. The electric and magnetic fields of light couple
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with the electric dipole moment and the spin, thus manifesting the non-linear ME

effects in the polarization or magnetization. To derive the expressions for ME

susceptibilities, we consider a general Hamiltonian

Ĥ = Ĥ0 + Ĥ1 (4.3)

where H0 is any arbitrary Hamiltonian and H1 is the perturbation. H1 can be

written as

H1 = −
∑
i

niE.r̂i −
∑
i

B.Ŝi

= −µ.E − ν.B
(4.4)

where µ =
∑
i

nir̂i and ν =
∑
i

Ŝi.

Here E = E0e
−iωt and B = B0e

−iωt are the electric and magnetic fields of the

incident light of same frequency, ω.

Using perturbation theory, we calculate the nonlinear optical coefficients following

Orr and Ward [23]. The 2nd order correction to the polarization is given by [24]

a(2)n (t) =

1

~2
∑
m

(µ̂nm.E(ω) + ν̂nm.B(ω)) (µ̂mg.E(ω) + ν̂mg.B(ω))

(ωng − 2ω)(ωmg − ω)

× ei(ωmg−2ω)t

(4.5)

where µml = 〈φm|µ̂|φl〉 is the electric transition dipole moment and νml =

〈φm|Ŝ|φl〉 is the magnetic transition dipole moment. Ŝ = Sxx̂ + Syŷ + Szẑ,

Sis are spin matrices.

Clearly, the numerator of Eqn.(5) contains terms of the form (µ.E)(ν.B) which

leads to the coupling of the electric and the magnetic fields. We calculate sec-

ond order correction to the polarization due to electric field and magnetic field by
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obtaining the expectation values,

P̃ =
1

N
〈ψ(2)|µ̂|ψ(2)〉 M̃s =

1

N
〈ψ(2)|ν̂|ψ(2)〉 . (4.6)

Here ψ(2) is the second order corrected wave function. From Eq.4.1 and Eq.4.5 we

get the second order ME coefficients as follows,

χ
(2)
ijk(2ω, ω)

=
N

~2
∑
mn

µignµ
j
nmν

k
mg

(ωng − 2ω + iη)(ωmg − ω + iη)

+
µjgnµ

i
nmν

k
mg

(ω∗ng + ω)(ωmg − ω + iη)

+
µjgnµ

k
nmν

i
mg

(ω∗ng + ω)(ω∗mg + 2ω)
(4.7)

To avoid the value of χ
(2)
ijk shooting to very large values near the poles we have

added the term iη in the denominator. In general, when there are two different

input frequencies ω1 and ω2, there is an intrinsic permutation symmetry P1 and

χ
(2)
ijk should be averaged over all such permutations. This expression is similar to

that obtained in Ref [21] with the numerator consisting of product of both electric

and magnetic transition dipole moments.

µignµ
j
nmν

k
mg ≡ 〈g|µ̂i|n〉〈n|µ̂j|m〉〈m|ν̂k|g〉

where |g〉 is the ground state and |m〉 and |n〉 are complete set of excited states

of the system. In the absence of spin-orbit coupling, the Hamiltonian commutes

with Ŝz. So two states connected by the electric dipole moment operator µ̂e(i.e.

having different parity) cannot be connected by the magnetic dipole operator µ̂b.

Hence the second order ME coefficient, χ(2), would be zero. Only when spin SU(2)

symmetry is broken, all the states |g〉, |m〉 and |n〉 are no longer eigenstates of the
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Ŝz. So coupling of the transition dipole moments could lead to a non-zero χ(2).

Note that in the expression for P̃ (2) there are contributions from nonlinear optical

susceptibilities χ̃
(2)
eee arising only due to the electric field of the light which have

very large values compared to the cross terms, χ̃
(2)
eem or χ̃

(2)
emm.

In the presence of spin-orbit coupling, the Zeeman perturbation term in Eqn. 4.4

would be ∑
i

B.(L̂i + 2Ŝi) =
∑
i

B.(Ĵi + Ŝi) (4.8)

rather than
∑

iB.Ŝi. Here Ĵ is the total angular momentum quantum number.

But, since it is a good quantum number in this process, the contribution to χ(2)

due to this Ĵ would be zero, and thus effectively the perturbation term is only due

to Ŝ. The term could also be written as
∑

iB.(2Ĵi − L̂i) and the contribution

would be due to
∑

iB.L̂i. But the results would not change. Since L̂i and Ŝi are

coupled, taking the one with the smallest number of eigenstates would suffice.

4.3 The Model

We consider a one dimensional (zigzag) chain having alternate sites with spin-

orbit coupling (Fig.4.1). The zigzag nature of the system ensures that it can be

exposed to an extra dimension of electric field. For simplicity, we have considered

only the z-component, Lz of the orbital angular momentum. |L = ±1
2
〉 are the

two eigenstates of the z-component of the orbital angular momentum operator L̂z

with quantum number l = 1
2
. The single orbital Hubbard model for fermions has

4 degrees of freedom per site, which can be represented by |c〉. Hence a fermionic

site with a spin-orbit coupling will have 8 possibilities, |c〉
⊗
|L = ±1

2
〉.
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We have considered the unperturbed Hamiltonian as

Ĥ0 =
∑
〈ij〉,α,σ

tijd
†
iασdjασ + h.c.+ U

∑
i

niα↑niα↓

+ λ
∑
i

~Li.~Si (4.9)

where diασ = (ciσ
⊗

L̂z)αα. α is the pseudospin index for two eigenstates of Lz

(+1/2 and −1/2) and σ is the index for the spin. Here niα = c†iαciα is the number

operator. tij and U are respectively the hopping and Hubbard parameters. λ is the

strength of spin-orbit coupilng. The term
∑

iLi.Si =
∑

i L
z
iS

z
i +L+

i S
−
i +L−i S

+
i is

considered explicitly to break the SU(2) symmetry. The last term of the Hamilto-

nian can also be used for spin-hardcore-Boson coupling after the transformation

L+ = b̂†

L− = b̂

Lz = b̂†b̂− 1

2

(4.10)

where b̂† and b̂ are the bosonic creation and annihilation operators respectively

and [b̂†, b̂] = 1. Here, we have assumed that there is a hardcore Boson on each site

(either 1 Boson or 0 Boson). These Bosons can be coupled with spins which break

the SU(2) symmetry.

Figure 4.1: Schematic structure of the model system having alternating sites A and B.
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4.4 Results and Discussions

Using the above mentioned basis set, we have diagonalized the Hamiltonian matrix

exactly for a chain of 6 sites. We have obtained the 200 lowest eigenstates using

Lanczos method [25]. Using these states, ME susceptibilities are computed as given

in Eq. 7.

The tumbling average of these susceptibilities are computed from the expres-

sion [26,27]

||χ(2)|| = 1

3

√∑
i

∑
j

|χ(2)
ijj + χ

(2)
jji + χ

(2)
jij |2 (4.11)

These are experimentally important quantities and also define a scalar quantity for

better analysis. In the Hamiltonian we have two parameters, on-site correlation

U/t and the SOC strength λ/t. Now, without these two terms, the solution is a

plane wave with delocalized eigenstates. When U = 0, the solution is still a charge

delocalized state. On the other hand, when λ = 0 with finite U, the solution is a

localized state. Given this physical picture behind our Hamiltonian parameters,

we ask here how the coefficients would vary in the regimes (i)U → 0, (i)U > λ,

(iii) U ' λ and (iv)U < λ.

For a fixed value of U/t = 4.0, we have shown in Fig.4.2, the variation of χ
(2)
eem

versus ω (in units of ~ eV) for three different values of spin-orbit coupling strength

λ/t . The plots are obtained by varying ω in steps of 0.01 upto a value 6.0.

Very large value of λ is unphysical for real materials but physically realizable

in systems of ultracold atoms in optical lattices where the parameters can be

tuned experimentally. When λ/t < U/t, the low energy physics is governed by

the strength of λ. The lowest excitations are those which involve transition from

lz = 1
2

to lz = −1
2

or vice versa. The excitations corresponding to the exchange

involving Hubbard U will have higher energy. The opposite is the case in the

λ/t > U/t regime, in which the energy is lower for excitations due to magnetic
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(a)

(b)

(c)

Figure 4.2: Plots of χ
(2)
eem vs ω (in units of ~ eV)for U/t = 4.0 and λ/t = 2.0, 4.0 and 6.0. The

insets show plots of energy in eV vs total angular momentum quantum number J in each case.
For λ/t = 4.0, there are equal number of states for both J = 0.5 and J = 1.5 and thus there are
more degeneracies.



73 Chapter 4. Magnetoelectricity

exchange than those due to change in orbital angular momentum. For λ/t ' U/t,

the energies corresponding to both the excitations are similar, that is, the excited

states are highly degenerate. This is obvious from Fig. 4.3, in which all of Fig.4.2

(a), (b) and (c) are superposed. There are some less or moderately intense peaks

for λ/t < U/t and λ/t > U/t due to less degeneracy of the excited states. And, for

λ/t ' U/t, there are less number of peaks, but a single peak with high amplitude

corresponding to high degeneracy of the excited states. The insets of Fig.4.2(a),

Figure 4.3: Combined plot of χ
(2)
eem vs ω(in units of ~eV ) for U/t = 4.0 and λ/t = 2.0, 4.0 and

6.0. For λ = 2.0and4.0, there are more number of less intense peaks. For λ/t = U/t = 4.0,
there is a single peak with high amplitude due to high degeneracy of the excited states involving
excitation corresponding to both exchange and orbital transitions.

(b) and (c) also verify the above result. Here we have plotted the energies of 20

lowest excited states as a function of total angular momentum J , computed from

the expectation value of Ĵ2 operator(〈Ĵ2〉 = 〈(L̂+ Ŝ)2〉).It is evident from these in-

sets that, for λ/t < U/t, the low-energy excited states will have higher J values as

the electrons prefer filling different angular momentum states rather than pairing

up in one orbital, hence the density of states is high at J = 1.5. For λ/t > U/t the,
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exchange is preferred, hence the states with lower value of J , namely J = 0.5 have

more population of states. At λ/t = U/t, the excited states comprise excitations

due to both exchange and spin-orbit coupling and hence there are almost equal

number of states with total angular momentum values, J = 0.5 and J = 1.5.

The plots of χ
(2)
eem versus ω for five different values of U/t for a fixed λ/t = 0.8 ,

Figure 4.4: Plots of χ
(2)
eem vs. ω for different values of U/t = 0.0, 1.0, 2.0, 4.0, 8.0. For U = 1.0

and 2.0, the peaks have greater amplitude owing to similar excitation energies due to SOC and
exchange.

are shown in Fig.4.4, The spin excitations cost energy ≈ λ and at most 3λ, since

there are 3 sites with SOC in our system. So we find a high amplitude peak in the

regime U/t = 0.8−2.4 as excitations due to U and λ have similar energies, leading
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to more degeneracies. For U < λ and U > 3λ the degeneracies are broken and

so the amplitude of the peaks decrease. Also, for higher U values, very few peaks

are visible only at lower values of ω, namely, those connecting states with similar

〈U〉. This is because, the spin excitations together can not match the excitations

costing energy U and so peaks at higher ω values are least probable.

From Fig. 4.4, it is also evident that there are non-zero ME susceptibilities at

U = 0. In this regime, the model is effectively tight-binding with spin-orbit cou-

pling. Though the electronic spins are completely delocalized in this case, there

is no role of kinetic exchange. But the broken SU(2) symmetry in the presence of

spin-orbit coupling leads to spin-orbital excitations between different eigenstates

and hence it is sufficient to give nonzero χ
(2)
eem(ω).

The effect of SU(2) symmetry breaking upon spin-phonon coupling [28–30] will

be similar when we consider hardcore Bosons, owing to the equivalence of the two,

as shown in Eqn.(4.10). But in reality, there are many bosonic modes, so one

has to use Holstein-Primakoff transformations [31] to obtain L̂ operator from the

bosonic operators and thus the Hamiltonian for spin-orbit coupling can also be

used. In that case, there will be many eigenstates for L̂z. So, for low values of λ

there will be many possibilities for transitions among l values giving rise to many

more peaks.

4.5 Conclusion

In conclusion, we have shown that there can be non-zero second order dynamical

ME susceptibility χ
(2)
eem(ω) at certain resonant frequencies in a system when the

spin SU(2) symmetry is broken by spin-orbit or spin-phonon coupling. These res-

onant frequencies correspond to the different spin and charge excitations in case

of spin-orbit coupling. For spin-phonon coupling, these correspond to charge exci-
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tations as well as excitations between different phonon modes. The amplitude of

the peaks are very high when both the excitations are in similar energy range.
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5
Quench dynamics of Extended

Hubbard Model in presence of

Adiabatic Phonons in a dipolar lattice

5.1 Introduction

Non-equilibrium quantum systems have gained a lot of attention in current re-

search in condensed matter physics because of their unique properties, very dif-

ferent from equilibrium quantum systems, which we usually know and study in

textbooks and literature. Although, there has been much development in non-

equilibrium statistical mechanics, the non-equilibrium quantum theory poses a few

challenges. Most of the quantum theories deal with equilibrium physical problems,

and usual methods like quantum statistical mechanics and perturbation theory are

not able to capture the essence of non-equilibrium quantum nature. However, in

recent years, there has been a huge upsurge in the study of dipolar lattices in

various dimensional Bosonic ultracold systems after the successful realization of

dipolar Bose-Einstein-condensation (BEC) in a number of Rydberg atoms [1,2] and

Lanthanides [3,4]. Due to the flexibility in controlling every parameter and tun-

79



5.1. Introduction 80

ing the interactions between the dilute gases of neutral atoms through Feshbach

resonance, these systems have been excellent models to mimic the quantum many-

body systems out of equilibrium. Fermionic atomic species like 6Li and 40K and

bosonic species like 173Yb and 87Sr have been cooled down to quantum degeneracy,

and are used as perfect ingredients for such studies. Exotic phenomena like BEC-

BCS crossover [5] in fermionic systems to Kosterlitz-Thouless transition in bosonic

Luttinger liquids [6] have been observed in these systems. In fact, soon after, there

has been increased experimental realization of the exotic ground state phases like

superfluid, pair-superfluid, supersolid, pair-supersolid, density wave and phases

involving quantum magnetism [7]. Long-range dipolar interactions have also been

achieved [8], which has helped to probe and understand the ultrafast spin dynamics

in many-body systems.

A variety of such exotic phases have also been predicted theoretically using

perturbative and non-perturbative methods (exact solutions and computational

methods). In this case, the latter gives more microscopic insight into studying the

behaviour of such systems. There have been studies where the existence of many-

body localization, Anderson localization, thermal and prethermal phases have been

found theoretically in disordered dipolar lattices. The emergence of a variety of

such phases and phase transitions are a result of the competition between weak

and strong dipolar couplings, nearest neighbour and distant neighbor hoppings,

three body interactions and various types of disorders.

To understand most of these properties, the Hubbard model has been used [9].

This model is the minimal model to capture the electronic correlation and gives rise

to Mott insulator phase in one dimension at half-filling (number of electrons is same

as the number of lattice sites). However, to understand the excitonic formation or

charge density wave phases, the minimal model is the extended Hubbard model

(EHM) [10,11]. This model predicts a Spin Density Wave (SDW), Charge Density

Wave (CDW), as a competition between on-site and nearest-neighbour Coulomb
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repulsion in half-filled one dimensional lattice systems. This model has been stud-

ied extensively analytically using renormalization group methods (‘g-ology’) as

well as computational methods like Quantum Monte Carlo, Exact Diagonalization

and Density matrix Renormalization group methods, thus predicting the existence

of a novel Bond-Order Wave (BOW) [12,13] phase. In fact, extensive investigations

have been carried out to understand the BOW phase transition.

Since we have used the extended Hubbard model in this chapter for further

study, we are giving details of the phases and phase transitions which have been

observed and predicted in this model.

5.2 The Extended Hubbard Model

The extended Hubbard model has been used to understand the mechanisms of spin

and charge fluctuations in high-Tc superconductors as well as unconventional su-

perconductors. The Hamiltonian for the extended Hubbard model can be written

as

ĤUV =
∑
〈ij〉,σ

(
tijc
†
iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓

+V
∑
〈ij〉

(ni − 1)(nj − 1) (5.1)

where σ is the index for the spin. tij and U are respectively the hopping and Hub-

bard U parameters. V is the nearest-neighbour Coulomb repulsion. The operator

ni = ni↑ + ni↓ is the number operator at each site. At half-filling, the competition

between U and V gives rise to different phases: for U < 2V the ground state is

a Charge Density Wave (CDW) with alternating two electrons and zero electron

occupancies (Fig. 5.1a). For U > 2V the lowest energy state is in Spin Density

Wave (SDW) phase with one electron per site with quasi long-range spin order in
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a one-dimensional system. At U ' 2V , it has been pointed out by Nakamura [14]

using Exact diagonalization studies and also shown in subsequent numerical stud-

ies [12,13] that there exists a Bond Order Wave (BOW) phase for lower values of

U and V , which is characterized by alternate strong and weak hopping energy.

Thus, there are two phase transitions occurring here: one is an Ising like quantum

phase transition from CDW to BOW and another is a Kosterlitz-Thouless transi-

tion from BOW to SDW, characterized by the closing of a spin-gap. The ground

state phase diagram is given in Fig .5.1b.

(a) (b)

Figure 5.1: (a) Different phases of the Extended Hubbard Model, (b) Phase Diagram proposed
by Nakamura.

In fact, it has also been shown that at less than half-filling, a long-range dipolar

V leads to singlet superfluid (SSF), triplet superfluid (TSF) and phase separation

(PS) phases [15].

5.2.1 The SSH Term

The Su-Schrieffer-Heeger (SSH) [16,17] model has been well studied for describing

the properties of molecular chains with conjugation, such as polyacetylene. It has

been studied extensively as a simple model for describing topological excitations.

Interestingly, if we remove the electron-electron interaction term, the Hamiltonian
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produces an insulator state, called as Peierls state. However, in the presence of

electron-electron interactions, it becomes unstable. [18–20]

In this chapter, we focus on the competition between electron-electron inter-

actions and modulated hopping amplitudes due to SSH interactions.

We consider a lattice with N sites at half-filling (N electrons). We prepare an

initial CDW state, which is given a sudden quench. The sudden quench is applied

by evolving the initial CDW state with the use of UV-SSH Hamiltonian. The

UV-SSH Hamiltonian is given by

Ĥ =
∑
〈ij〉,σ

−{t+ α (ui − ui+1)} c†iσcjσ + h.c.+ U
∑
i

ni↑ni↓

+V
∑
〈ij〉

(ni − 1)(nj − 1) +
1

2
K
∑
i

(ui − ui+1)
2 (5.2)

Here, the strength of hopping is proportional to the net displacement (ui − ui+1), ui

being the displacement of the the ith atom. α is the hopping modulation parameter.

K is the force constant. Rewriting and adjusting the terms of the Hamiltonian,

we obtain [21]

Ĥ = −t
∑
〈ij〉,σ

(1 + δi) c
†
iσcjσ + h.c.+ U

∑
i

ni↑ni↓

+V
∑
〈ij〉

(ni − 1)(nj − 1) +
1

πλ

∑
i

δ2i (5.3)

where, δi = α (ui − ui+1) /t and λ = 2α2/πKt2

5.2.2 Optimal Bond Order for every bond

We perform minimization subject to the constraint that total length of the chain

remains constant, that is,
∑

i δi = 0. Thus, minimizing the functional F = H −
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η
∑

i δi, we obtain an expression for the optimal bond order

δi =
πλ

2

(
〈c†i,σci+1,σ + hc〉 − 1

N

∑
i

〈c†i,σci+1,σ + hc〉

)
(5.4)

This optimal bond order for every bond has been calculated via self-consistent

iterations.

5.3 Non-equilibrium Dynamics: Quantum Quench

The phases of the Hubbard model at equilibrium have been thoroughly stud-

ied for years. But the non-equilibrium dynamics give entirely new directions on

such systems. After any external perturbation, the system, prepared at a certain

initial state, undergoes unitary time evolution governed by the time-dependent

Schrödinger equation, and can eventually achieve either of the following states: (i)

it can thermalize, completely losing the memory of the initial state [22–24] (ii) in

presence of disorder, it can achieve many-body localization, preserving the mem-

ory of the initial state at all times [25,26] (iii) if the system is close to integrability, or

is periodically driven by some external agent, it can undergo prethermalization. [27]

Such non-equilibrium dynamics has been experimentally performed in a con-

trolled way in lattices of ultracold atoms [28], as well as in strongly correlated

electronic materials using pump-probe spectroscopy [29]. Such sophisticated ex-

periments have been successful in probing a variety of phenomena like time-

resolved transition from a superfluid to Mott insulator and strong to weak coupling

crossover of paired Fermion superfluids.

The protocol of quantum quenching has gained popularity in recent years as it is

a simple way to probe the non-equilibrium dynamics in many-body systems. We

start with the eigenstate of a Hamiltonian H0 at t = 0 and let it undergo unitary

time evolution by suddenly adding a term or changing an interaction strength.
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The system, which is no longer an eigenstate of the new Hamiltonian, will show

energy conserved dynamics, which gives more insight into these systems.

A few works have been carried out on quench Dynamics of the EHM earlier

by many others. Hofmann et al. [30] had studied the dynamics of a few doublons

in an extended Hubbard chain with very low electron densities at the low-filling

conditions. Kollath et al. [31] theoretically proposed an intriguing way to probe the

Kosterlitz-Thouless transition from BOW to SDW, using time-dependent modula-

tion of hopping, a method known as superlattice modulation spectroscopy. They

showed that at the transition point, the energy absorption rate, characterized by

the dynamic susceptibility, shows a peak, indicating the transition.

Pandey et al. [32] showed that quenching a CDW state by applying EH Hamil-

tonian along with disorder gives a number of phases, namely, thermal, Anderson

localized and Many-body localized (MBL) phases. In fact, in the long time limit

and considering averages over disorders, they have shown the formation of MBL

phase involving both charge and spin degrees of freedom. In fact, taking a cue

from the previous work, in this chapter, we focus on the quench dynamics of the

extended Hubbard model in presence modulated hopping and classical harmonic

potential.

5.3.1 Computational Method: Lanczos Time evolution

We have solved the time-dependent Schrödinger equation using the Lanczos time

evolution method [33]. Starting from the initial CDW state at τ = 0 |Ψ0〉, we

construct the Krylov space basis K = {|Ψ0〉, Ĥ|Ψ0〉, Ĥ2|Ψ0〉, . . . , ĤK |Ψ0〉}. In this

truncated basis, we write the Hamiltonian HKr and diagonalize it to obtain HD.
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Ĥ = LĤKrL
† (5.5)

=


k0


k1


k2

 . . .





a0 b0 0 . . . 0

b0 a1 b1 . . .

0 b1 a2 . . .
...

...
. . .

0





(
k†0

)
(

k†1

)
(

k†2

)
...

 (5.6)

Here, the vector k0 = Ψ(0), k1 = ĤΨ(0), k2 = Ĥ2Ψ(0), etc.

Then the wave function at a later time τ , i.e., |Ψ(τ)〉 is obtained by exponen-

tiating the diagonal matrix HD and performing two similarity transformations as

follows

|Ψ(τ)〉 = e−iHτ |Ψ(0)〉 = KUe−iHDτU †K†|Ψ(0)〉 (5.7)

We start from a doublon state. We quench the system with the UV-SSH Hamil-

tonian [18,19] at U > 2V . If it is quenched from a CDW state (↑↓, 0, ↑↓, 0, ↑↓, 0, ...)

the system begins to acquire SDW characteristic very quickly. Hence the double

occupancy decreases within a very short time after quenching. More details follow

in the results and discussion section below.
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5.4 Results: Persistent Oscillations in the dy-

namics

5.4.1 Exact Diagonalization

We start with one-dimensional chain of a certain length in the CDW state. Initially

the values of the model parameters are taken to be t = −1.0 and U = 2V = 8. We

have performed unitary time evolution using the UV-SSH Hamiltonian (Eq.5.3).

This was carried out for two different system lengths, namely, 10 and 12 sites

lattice. The dynamics for a 12-site chain evolved up to a time of 800~
t

seconds

(2× 104 steps with 0.04 change in each step) is shown in Fig. 5.2. Fig. 5.2a shows

that for lower values of λ, the average double occupancy 1
N

∑
i ni↑ni↓ decreases

very quickly with time (shown in logarithmic time). Interestingly, for λ = 1.0, we

find that this reduction in double occupancy is relatively slower and there is an

oscillation at longer and longer times. The SSH Hamiltonian induces modulation

in the bond order, which in turn induces the periodicity of the lattice. This is

evident from the fact that the bond order parameter, defined as

B̂ =
1

Nbonds

∑
i=1

Nbonds
∑
σ

(−1)i〈c†i,σci+1,σ + h.c.〉 (5.8)

acquires a finite value at later times, as shown in Fig. 5.2b. Mathematically,

it is the average staggered kinetic energy. The 3D plot in Fig. 5.3 shows the

dynamics of the bond-orders of different bonds for a 12-site system. However, as

can be seen, interestingly, there is a persistent oscillation in the dynamics of B̂

for λ = 1.0, whereas for lower values of λ, the expectation values become stable

within a short time. The bipartite charge fluctuation, calculated as the variance

of the electron number operator for half the length of the chain, is a signature of

many-body entanglement, which eventually leads to thermalization in the system.
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(a) (b)

(c)

Figure 5.2: Time evolution of (a) the average double occupancy, (b) the bond-order parameter
or staggered kinetic energy, and (c) the bipartite charge fluctuations for a 12-site chain with
UV-SSH interactions for U/t = 2V/t = 8.0 and λ/t = 0.3, 0.5, 0.7, 1.0.

The expression is given by

Fc(t) =

〈L/2∑
i=1

ni

2〉
−

〈L/2∑
i=1

ni

〉2

(5.9)

Fig. 5.2c shows that the bipartite charge fluctuation increases up to a certain

time and becomes stable after a short duration for λ = 0.3, 0.5 and 0.7. This indi-

cates that, the initially prepared state starts losing some of the CDW characteris-

tics, while singly occupied states are being formed. Once these states are formed

to a certain extent, the system goes to a thermal state (actually quasi-thermal
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Figure 5.3: Time evolution of the bond-orders for all bonds for a 12-site chain at λ = 1.0.

for a finite size system). However, this thermal state still has contributions from

the doubly occupied electronic states. In fact, average double occupancy becomes

stable at a value of 0.2 ( see Fig. 5.2a).

However, for λ = 1.0, the bipartite charge fluctuation shows oscillations, which do

not stabilize even at longer times. This is a clear indication of prethermalization.

Interestingly, this prethermalized state persists only for λ ' 1.0. Even for higher

value of λ > 1.0, such long time fluctuation is absent. This is evident from the

plots of the average double occupancy, bond-order parameter and bipartite charge

fluctuations (see Figs. 5.4a, 5.4b and 5.4c). Interestingly, the dynamics of all these

quantities become stable after a short duration for λ = 1.5 and 2.0.

From the above results, one may think that the competition between the two
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(a) (b)

(c)

Figure 5.4: Time evolution of (a) the average double occupancy, (b) the bond-order parameter
or staggered kinetic energy, and (c) the bipartite charge fluctuations of a 12-site UV-SSH chain
for U/t = 2V/t = 8.0 and stronger electron-phonon strength λ/t = 1.0, 1.5 and 2.0.

key players, t and λ, are responsible for such long time fluctuation dynamics. But

this is not the case. The Hubbard-U and the nearest neighbor Coulomb repulsion,

V also play a role here. To verify this and to obtain analytical information, we

have carried out the computation of these dynamic quantities in two limits; (a)

very small U and V values (close to zero) and (b) very large U and V , to obtain

either in tight binding limit or within frozen charge limit, respectively. However,

we find that there is no long time fluctuation in any of these limits for these dy-

namical quantities. To quantify these claims, we plot below results of our long

time dynamics of 12 sites lattice with parameter values U = 2V = 12 (high U and
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V )(Fig. 5.5a and 5.5b) and U = 2V = 0.0, 1.0 (no interaction as well as low U ,

V ) (Fig. 5.5c,5.5d).

(a) (b)

(c) (d)

Figure 5.5: Lanczos time evolution of (a) bond-order parameter, and (b) bipartite charge fluctu-
ations for a 12-site UV-SSH chain for λ/t = 1.0 and strong repulsion U/t = 2V/t = 12.0. And for
λ/t = 1.0 and weak repulsion U/t = 2V/t = 1.0, time evolution of (c) the bond-order parameter
and (d) bipartite charge fluctuations for a 12-site UV-SSH chain.

Figs. 5.6a and 5.6b show the dynamics of the bond order parameter and bi-

partite charge fluctuations for a fixed λ = 1.0 and U = 2V = 4.0, 5.0, and 8.0.

For U = 4.0, the oscillations are absent for a 10-site chain, unlike that for the 12

sites chain, where the oscillations are prominent. However, here, small signatures

of prethermalization are present for U = 4.0 and 5.0, where there are oscillations
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in the bond-order parameter initially. But for 10 sites, these oscillations clearly

die down and the system thermalizes at longer times. This is because the phase

space (or the Hilbert space) is smaller compared to that of 12 sites and so the

systems come into ’thermal’ equilibrium sooner. Also, due to finite size effects,

the oscillations are not as prominent as that of 12 sites.

(a) (b)

Figure 5.6: Time evolution of (a) the bond-order parameter and (b) the bipartite charge fluctu-
ations for a 10-site chain with UV-SSH interactions for U/t = 2V/t = 8.0 and λ/t = 1.0.

5.4.2 Comparing TEBD result with exact

We have developed the Time Evolving Block Decimation (TEBD) code (described

in Chapter 2) in the Matrix Product State (MPS) formalism for simulation of large

one dimensional chains. Initially, we have compared the exact results for 12 sites

with those obtained using TEBD (Fig. 5.7). Within this procedure, we have used

the 4th order Trotter-Suzuki method, with time steps of 0.01~/t. We have kept

the maximum bond dimension to 1000.

The long time dynamics of the double occupancy compares fairly well with the

exact diagonalization results (Fig. 5.7a ). The bipartite charge fluctuations in

Fig. 5.7b show deviation after some time steps. However, the oscillation is clearly

visible from TEBD method also. The deviation is probably due to the fact that
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the simulation is carried out for almost 40, 000 time steps and the time step is

large compared to the accuracy limit of the 4th order Trotter-Suzuki, which is

O(t5). Also, even though the system is in a prethermalized state, the entanglement

is quite large and thus a larger bond dimension would be required to compare

with the exact results. The bond-order parameter shows a larger deviation from

the exact diagonalization results, as self-consistent steps are different in exact

diagonalization and TEBD methods(Fig. 5.7c).

(a) (b)

(c)

Figure 5.7: TEBD versus exact results of (a) the average double occupancy, (b) the bond-order
parameter, and (c) the bipartite charge fluctuations for a 12-site UV-SSH chain for U/t = 2V/t =
8.0 and stronger electron-phonon strength λ/t = 1.0
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5.5 Conclusion

In conclusion, we have studied the quench dynamics of the extended Hubbard

model with SSH terms for a 1D chain starting from a CDW state. We find that

the dissociation of doublons is slowed down and in addition, the system acquires

BOW character. There are clear signatures of prethermalization for the phonon

coupling strength, λ = 1.0 and for U = 2V = 8.0 for 12 sites lattice. For 10

site lattices, this prethermalized state is found at different values of U , V and λ.

Thus, there is size dependence in the occurrence of the prethermal state, which is

the scope for further investigation. Also, the prethermalization occurs at moder-

ate values of Coulomb repulsion parameters, preventing perturbative or analytical

understandings.
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6
Finite temperature studies of

alternating Spin-1/2-Spin-1 Chain

using Minimally Entangled Typical

Thermal states (METTS)

6.1 Introduction

Generally, the concept of temperature is not defined explicitly in quantum me-

chanics, as the quantum mechanical systems do not have Avogadro number of

electrons or they are not in any ensemble. However, we can always assume that

the system is in thermal equilibrium with some external bath, which gives an im-

plicit notion of temperature. According to quantum statistical mechanics for a

canonical ensemble, the thermal average of an observable is obtained as

〈A〉 = Tr [ρA] =
1

Z
Tr
[
e−βHA

]
(6.1)

Taking an orthonormal basis |i〉, if we expand the trace and then use the cyclic
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property of the trace, we get

〈A〉 =
1

Z
∑
i

〈i|e−βH/2e−βH/2A|i〉

=
1

Z
∑
i

〈i|e−βH/2Ae−βH/2|i〉

=
1

Z
∑
i

Pi〈Φ(i)|A|Φ(i)〉 (6.2)

where |Φ(i)〉 = 1√
Pi
e−βH/2|i〉 are a set of normalized basis states and the unnor-

malized probability distribution Pi = 〈i|e−βH |i〉.

Now from the statistical ensemble problem, we can write the similar equation

for our quantum systems. In the quantum system, we can sample the {|Φ(i)〉}

according to Pi/Z and hence compute the thermal average of the required observ-

ables. However, to do that, we need to prepare these states properly.

Earlier, in 2005, Feiguin and White devised a way to directly obtain a finite tem-

perature state by imaginary time evolution to an inverse temperature β, stating

from a state at β = 0. or the infinite temperature state. That is

|Ψ(β)〉 = e−βH/2|Ψ(β = 0)〉 (6.3)

To obtain this infinite temperature state in a spin-1
2

chain, for instance, we consider

an auxiliary spin chain as the heat bath. at each site, we form a singlet ( 1√
2
(| ↑↓

〉−| ↓↑〉)) or a triplet ( 1√
2
(| ↑↓〉+| ↓↑〉)) so the the information about the orientation

of the spin is completely lost. Thus, if we trace out the auxilliary degrees of

freedom from the density matrix of the state, the resulting reduced density matrix

will represent a state in which, an up-spin and a down-spin will be equally probable

at each site.

But, in a more efficient way, we can start from a pure state |i〉, obtain a state

|Φ(i)〉 by imaginary time evolution and thus perform a random walk over these
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states to obtain the observables as statistical averages.

6.2 Minimally Entangled Typical Thermal States

One can choose an initial state |i〉 from any orthonormal basis. But, to minimize

the computational cost, the best choice would be the individual configurations of

the Fock Space, also referred to as the Classical Product States (CPS). These states

have zero entanglement and the thermal states produced from these CPS would

naturally have the minimal entanglement entropy, compared to being evolved from

some other basis, thus making the algorithm more efficient. Threfore, these ther-

mal states are called Minimally Entangled Typical Thermal States(METTS) [1,2].

The METTS |Φ(i)〉 are referred to as ’typical’ because the ensemble of these

states can reconstruct the canonical distribution function

∑
i

Pi|Φ(i)〉〈Φ(i)| = e−βH (6.4)

Also, considering the way they are constructed, at high temperatures (β → 0), Pi
become 1 and thus we get a complete set of equally probable states, which basically

is the CPS. At lower temperatures, they are superposed states which spontaneously

break symmetries of the Hamiltonians, very similar to systems with frustration or

distant neighbour couplings or long range dipolar interactions.

6.3 Imaginary Time Evolution

To generate the METTS |Φ(i)〉 = 1√
Pi
e−βH/2|i〉 at a finite temperature β, we

perform evolution in imaginary time, β = iτ . For smaller chains, time evolution

methods, such as, 4th order Runge Kutta Method (RK4) or Krylov [3] space method

can be used. The former, which is a straight forward 4th order expansion method
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and does not take into account the unitarity of the exponential time evolving term,

is the most efficient method in this case. The unitarity is not an issue here, since

the operator is real and we get time evolution accuracy to 4th order in imaginary

time.

For larger chains, the imaginary time evolution can be performed using Matrix

Product State time evolution methods, such as TEBD [4–8](discussed in Chaper 2).

It is a fast and efficient method to obtain the METTS. Although, it works for

systems with only nearest-neighbor interactions, swap gates [2] can always be used

for additional couplings, like next or further neighbor couplings.

For better accuracy and efficient inclusion of longer range interactions, methods

like MPO-WII [9] and Time Dependent Variational Principle (TDVP) [10,12] can be

used.

6.4 Collapsing a METTS into CPS

As mentioned in the previous section, the expectation values of the desired observ-

ables are obtained by performing a random walk through the set of METTS. The

METTS generated by imaginary time evolution of the CPS should be followed by

collapsing it into another CPS for the next iteration.

6.4.1 Collapsing a METTS for spin-1
2

The METTS generated by imaginary time evolution of the CPS should be followed

by collapsing it into another CPS for the next iteration. For instance, consider a

spin-1
2

system and suppose we have obtained a METTS starting from a random

single configuration. If one wants to collapse the z-component of spin of a METTS

|Φ〉 at the ith site, the probability of the spin to be | ↑〉i would be p(↑) = 1
2

+ 〈Szi 〉,

and the probability for the other spin configuration, | ↓〉i would be p(↓) = 1
2
−〈Szi 〉.
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Note that, this is done randomly for a single spin configuration. This can be

generalized. For a spin to be | ↑n〉i or | ↓n〉i along the nth axis, the probabilities

would be p(↑n) = 1
2

+ n̂.〈~Si〉 or p(↓n) = 1
2
− n̂.〈~Si〉 respectively.

Similarly for a spin-1 site, there will be 3 possibilities: | − 1〉i, |0〉i, | − 1〉i. In

this case, the probabilities would be

p(-1) = −1

2
n̂.〈~Si〉+

1

2
(n̂.〈~Si〉)2

p(0) = 1− (n̂.〈~Si〉)2

p(1) =
1

2
n̂.〈~Si〉+

1

2
(n̂.〈~Si〉)2

(6.5)

In fact, in similar manner, the generalization can be adopted for any spin-S.

6.4.2 Collapsing a METTS for a general system with d

degrees of freedom at each site

Suppose a Hilbert space for each site of a general systems (spin, fermionic, bosonic

etc.) have dimension d with basis states {|τ〉i}, τ = 1, ..., di. We define the

projection operator P̂i(τ) = |τ〉i〈τ |i. Then the probability of ith site to be in the

state |τ〉i would be p(τ) = 〈Φ|P̂i(τ)|Φ〉. Hence, the collapse at the ith site is done

according to the projection

|Φ〉 −→ [p(τ)]−1/2P̂i(τ)|Φ〉 (6.6)

6.4.3 Choice of the CPS Basis

The basis for collapsing a METTS into a CPS should be wisely chosen, so that the

ergodicity is ensured, i.e. for a spin Hamiltonian which commutes with ŜZ (i.e. Ŝz

conserved), the system should explore all of the Ŝz sectors in the thermal steps.

Collapsing only along the z-axis at every thermal step is simpler to implement in
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programs, but it would not achieve ergodicity.

A solution would be to take a maximally entangled basis with respect to Ŝz at

each site. In that case, it would still be a product state, but the ergodicity would

be achieved in a much fewer number of thermal steps.

For spin-1
2
, such a basis is the Ŝx basis. The basis states of Ŝx are equal

superposition of two z-component of spin-1/2, | ↑〉 and | ↓〉. Hence, the information

about the spin at every site for the CPS in the previous step would be completely

removed, thus minimizing the autocorrelation time. For spin-1 the maximally

entangled basis is:

|τ1〉 = − 1√
3

(
ei2π/3|1〉 − |0〉 − e−i2π/3|-1〉

)
|τ2〉 = − 1√

3
(|1〉 − |0〉 − |-1〉)

|τ3〉 = − 1√
3

(
e−i2π/3|1〉 − |0〉 − ei2π/3|-1〉

) (6.7)

6.4.4 Algorithm

The algorithm for producing a METTS for a spin-1
2
/spin-1 alternating chain and

obtaining quantities at finite temperature is as follows:

1. Choose a CPS |i〉, or a single configuration.

2. Evolve |i〉 in imaginary time to obtain the METTS e−βH/2|i〉 and calculate

the desired quantities.

3. Obtain a new CPS with the probability P (i→ i′) = 〈i′|φ(i)〉. In the case of

an alternating spin-1
2
/spin-1 chain, calculate the probablities of the spins at

each site along the maximally entangled basis (Sec 6.4.3) and return to Step

2.
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6.4.5 Parallelization

It is easy to parallelize the algorithm to obtain different points in the expecta-

tion values versus temperature plot, as the generation of METTS at different

temperatures can be treated as independent random walks. Although, the Marko-

vian random walk is a sequential process, i.e., the CPS for any iteration can only

be obtained by collapsing a METTS obtained by the previous iteration. In recent

years, there have been efforts to achieve parallelization with such random walks [11],

which, if implemented, can improve the computational efficiency for calculating

the finite temperature properties of large systems.

6.5 Results: METTS for an alternating spin1
2-

spin-1 chain

We have developed Python code for generating METTS to perform finite tem-

perature calculations for the Heisenberg model of alternating spin-1
2
/spin-1 one

dimensional lattice. We have performed the calculations for 8 and 10 sites, to

compare with the exact diagonalization results.

To test our METTS results, we have computed magnetic susceptibility as a

function of temperature for two systems: (a) nearest neighbor coupling J1 = 1.0

and next nearest neighbor coupling J2 = 0 and (b) J1 = 1.0 and J2 = 0.4. The

magnetic susceptibility can be written as the fluctuation of magnetization term as

follows.

χ =

〈(∑
i Ŝ

z
i

)2〉
−
(〈∑

i Ŝ
z
i

〉)2

T
(6.8)

The above quantities are calculated within METTS with averaging over 140

thermal steps for each temperature point. For imaginary time evolution, the

TEBD method has been adopted involving 4th-order Trotter-Suzuki method with
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imaginary time steps ∆β = 0.1J1. It has been shown by Pati et al. [13] for a

spin-1-Spin-1/2 ferrimagnetic chain with nearest neighbor antiferromagnetic cou-

pling that there occurs a minimum in the plot of the susceptibility multiplied by

temperature χT versus T at T = 0.5J/kb. This is due to the fact that in such a fer-

rimagnetic chain, the lowest excitation has a spin which is lesser than the ground

state spin and the next higher state has spin which is higher than the ground state

spin. The ground state appears in a spin state, which is the addition of spin in

each dimer with number of dimers. For a N sites system, the ground state is in

Sztot = N/4, as each spin dimer contributes Sz = 1/2. The lowest excited state

has a spin of Sztot = N/4− 1, while next higher state has a spin of Sztot = N/4 + 1.

This occurs as from the spin-wave theory, there are two excitation modes, while

the lowest one is antiferromagnetic mode, the higher one is a ferromagnetic mode.

In fact, due to such anomalous behavior, as the temperature is raised, the low-

est excitation, which has lesser spin (magnetization) contributes to susceptibility,

whose magnitude reduces. However, as the temperature is raised further, the spin

excitation has higher magnetization value and the susceptibility rises as expected.

This anomalous behavior of susceptibility becomes more prominent, if one plots

susceptibility multiplied by the temperature versus temperature. This way, the

absolute magnitude of magnetization fluctuation can be obtained, as can be seen

in the above equation for susceptibility.

We have carried out susceptibility calculations within METTS and compared

the same obtained from exact diagonalization (with all spin states) method. As can

be seen, the plot of susceptibility χ versus temperature T obtained from METTS

compare fairly well with the same from exact diagonalization (Fig. 6.1a, 6.1b)

throughout the temperature range considered. However, when we compare the

plot of χT versus T with the same from exact diagonaliation, we find that the

graphs are qualitatively similar, except that the χT minimum is slightly shifted
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(a)

(b)

Figure 6.1: Plot of Susceptibility χ versus temperature T for an alternating spin- 12/spin-1 chain
of length (a) 8 sites and (b) 10 sites with nearest-neighbor Heisenberg interaction using METTS
and exact diagonalization

in case of METTS. This is due to the fact that statistical error is enhanced by

multiplying χ with T .
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(a)

(b)

Figure 6.2: Plot of χT vs. T for an alternating spin- 12/spin-1 chain of length (a) 8 sites and (b)
10 sites with nearest-neighbor interaction using METTS and exact diagonalization.
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For next nearest neighbor frustration J2/J1 = 0.4, the plot of χ vs T matches

qualitatively with exact results (Fig.6.3).

Figure 6.3: Plot of Susceptibility χ versus temperature T for a 8-site long alternating spin- 12/spin-
1 chain with next-neighbor frustration J2/J1 = 0.4 using METTS and exact diagonalization.

6.6 Conclusion

To conclude, in this chapter, we have developed the Minimally Entangled Typical

Thermal States for quantum spin models with two different spins in the dimer.

We also have parallelized the code and it runs efficiently. As a test case, we

have verified that the METTS code works well for ferrimagnetic systems and the

signature of their characteristic magnetic properties has almost been quantitatively

reproduced. Further works using this code is ongoing.
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7
Summary and Outlook

CHAPTER 2:

In this chapter, I have elaborated the Matrix Product State (MPS) formalism

and how it can be represented using tensor network schematic diagrams. Step by

step, I have described how to construct MPS, their normalization, calculation of

expectation values and correlations. DMRG is a variational energy minimization

procedure in the light of the MPS. I have described the DMRG algorithm and nec-

essary schematics to support that. Finally, I have described the TEBD method,

which is a fast and efficient algorithm to obtain real and imaginary time dependent

properties of the 1-dimensional quantum many-body systems with nearest neigh-

bor interactions. I have developed the DMRG and TEBD algorithms for bosonic

and fermionic systems in both Python and Julia. I have also used the TenPy

package with is an open source MPS package in Python. The scope of future work

is to implement these methods for dissipative bosonic as well as fermionic chains

to study the dynamics of their decoherence in the presence of heat baths.

CHAPTER 3:

In this chapter, I have studied the ground state properties of an alternating spin-

1
2
/spin-1 Heisenberg chain with nearest-neighbor antiferromagnetic interaction and
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next-nearest neighbor frustration along with z-component of the Dzyaloshinskii-

Moriya (DM) interaction (Dz). In the first part, I have given a detailed derivation

of the Linear Spin Wave Theory (LSWT) analysis. It has been shown earlier, that,

with only nearest-neighbor interactions, the ferrimagnetic configuration is a sta-

ble one preserving the magnetization of each dimer, despite quantum fluctuations.

But this state is unstable when the DM interaction Dz is present, as evident from

the negative energies in the dispersion relation and thus LSWT fails. The magne-

tization and correlation functions calculated from LSWT are also also inconclusive

about the ordering of the spins. In contrast, the Density Matrix Renormalization

Group (DMRG), being a non-perturbative computational technique, captures this

instability well. We have shown that even a small strength of the DM interaction

introduces strong quantum fluctuations and make the spin at each site as well as

the whole chain zero. Also a long range order is developed in the XY-plane, as seen

from the correlation functions. Next-nearest neighbor frustration also destroys the

ferrimagnetic order but introduces a spiral order, as seen from the structure factor.

Both next-nearest neighbor interaction and Dz destroy this spiral order, and also

any kind of short range order.

Investigating how stable the classical ferrimagnetic state is, in 2-dimensional lat-

tices (square, triangular, kagome, etc.) in presence of the above interactions can

be a direction towards further work.

CHAPTER 4:

In this chapter, we have investigated the origin of dynamical second order mag-

netoelectric (ME) susceptibilities in quantum many-body systems with broken

SU(2) symmetry in the form of spin-orbit coupling (SOC) or spin-phonon cou-

pling (SPC). We have carried out the calculations with 6 fermionic lattice sites,

with alternate 3 of the sites which have L=1
2
. Such lattices can be formed in dipo-

lar optical systems with variation of a few laser beams with varying widths and
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depths. Computationally, we have performed an exact diagonalization and calcu-

lated the ME susceptibilities with 200 lowest energy eigenstates obtained by the

Lanczos algorithm. The variation of Hubbard term and spin-orbit coupling terms

has been analyzed. While the former localizes the charges, the latter delocalizes

the spin. Few low intensity peaks of ME susceptibility at some values of frequency

have been observed for both large U and large SOC values, due to resonances in

states with majorly spin and charge degrees of freedom. We also found that due

to resonance in both the spin and charge, high intensity ME peaks (corresponding

to both electric and magnetic field induced resonances) appear when the Hubbard

term and the SOC (SPC) term become almost similar in strengths.

CHAPTER 5:

In this chapter we have performed quench dynamics of a Charge Density Wave

(CDW) state with an Extended Hubbard Hamiltonian with Su-Schrieffer-Heeger

term (UV-SSH model). We have considered the Hubbard U and the nearest neigh-

bor Coulomb repulsion V to be of similar strength. Using the Krylov subspace

based time evolution method, we have studied the long-time dynamics. We found

that that the modulation in hopping introduces Bond-Order Wave (BOW) char-

acteristics in the system, as evident from the increase of the bond-order-parameter

(or staggered kinetic energy expectation value). Interestingly, we observed that,

for a 12-site fermionic chain with parameters U/t = 2V/t = 8.0 and SSH coupling

strength λ/t = 1.0, oscillations of the bond order starts after a long time, which

is an indication of prethermalization. The dynamics of the bipartite charge fluc-

tuations also shows such oscillations. Though these oscillations are present for 12

sites, they are absent for a 10-site chain for the same value of U and V . This

means they will occur for a different value of U and V for the same chain. Thus

the onsite as well as nearest neighbor interactions also play a role here.

These observations pose a lot of questions here:
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1. Why do these oscillations occur at longer times? Does the system become

nearly integrable at some limit of U , V and λ ?

2. Do these oscillations occur in the thermodynamic limit ?

To answer these questions, further analysis and computation for larger chains is

needed, which is the scope for further investigation.

CHAPTER 6:

In the Chapter 6, I have developed the Minimally Entangled Typical Ther-

mal States (METTS) algorithm to calculate the finite temperature properties of

quantum mechanical systems. In this method, we have generated the METTS

by imaginary time evolution using the TEBD algorithm and performed a random

walk on these METTS to calculate the thermal averages of physical quantities. we

have tested our code to calculate the magnetic susceptibilities at different temper-

atures for an alternating spin-1
2
-spin-1 with nearest-neighbor as well next-nearest-

neighbor antiferromagnetic interactions. We have found that the susceptibilities

were a good match quantitatively with that obtained from exact diagonalization,

for nearest-neighbor interactions while there was a qualitative match in case of

next-nearest neighbor frustration.

Implementation of this method to understand the finite temperature properties

of larger quantum chains is our plan for future work.



A Brief Outline of Other Works

In the course of my PhD, I have carried out a variety of works using the compu-

tational quantum many-body methods mentioned in the previous chapters. I am

briefly mentioning a few of them below.

Time scale of the superexchange mechanism

The Kramers-Anderson superexchange is a mechanism by which two magnetic

transition metal cations containing unpaired electrons in their d-orbitals can ex-

change their spins by coupling through a filled p-orbital of a non-magnetic an-

ion in between the two magnetic ions. To understand the time scale and also

the mechanism of superexcahnge, we have set up a simple model of 3 sites and

4 electrons governed by the Hubbard Hamiltonian. The middle site represents

the non-magnetic p-orbital and the two sites on each side represent the magnetic

cations. The middle site was given a large negative on-site energy to ensure that

the non-magnetic anion is always doubly occupied. After the development of the

Lanczos time evolution method, we have performed the long-time simulations of

this model. We found that, the expectation value of the double occupancy remains

the same as the initial value with small fluctuations(Fig. 7.1a). This reveals that
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effectively there is no electron transfer, as most of the antiferromagnetic systems

are charge insulators. However, the spin densities of the left and the right sites

(Fig. 7.1b) show large sustained oscillations from 〈Sz〉 = 0.5 to 〈Sz〉 = −0.5 and

vice-versa. In the x-axis, the time scale is given and it appears that the magnetic

exchange is quite fast. Thus, macroscopically, it seems that the electron on one

d-orbital exchanges the spin density of the electron in the other d-orbital through

filled p-orbital, electron density of which does not get affected. This also proves

that since the electrons are indistinguishable, they virtually exchange their spins

through the filled p-orbital and so the magnetic exchange energy appears in 2nd

order degenerate perturbation theory, which is too small compared to the hopping

amplitude or the on-site Coulomb interaction term.

(a) (b)

Figure 7.1: Time evolution of (a) double occupancies of the sites, and (b) Spin densities of sites
1 and 3 for U/t = 5.0
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Dissipative Dynamics of Alternating spin-1
2/spin-1 Chain:

Reversal of Magnetization

It has been observed experimentally that, in certain ferrimagnets, magnetization

reversal occurs when cooled to lower temperatures in the presence of an exter-

nal field. To understand the underlying mechanism, we have considered an al-

ternating spin-1
2
/spin-1 chain with nearest-neighbor Heisenberg interactions, and

studied the dissipative dynamics of this chain. Assuming that there is a weak

interaction between the chain and some external bath, we have considered the

Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equation, given by

dρ

dt
= − i

~

[
Ĥ, ρ

]
+ γ

∑
i

(
LiρL

†
i +

1

2

{
L†iLi, ρ

})
We have studied the dynamics of a chain of length 10 sites, with two Lindblad

dissipators at the ends of the chain L1 = (S−) 1
2

for the spin-1
2

site and L2 = (S−)1

for the spin-1 site.

In Chapter 3 and 5 of this thesis, we have studied the same model (with

additional interaction terms). However, this model has a ground state spin, which

is classical and has ferrimagnetic ordering with each dimer having total spin 1
2
.

We have considered an initial state in which the spin-1 site has z-component

Sz = 1.0 and the spin-1
2

site has Sz = −0.5. So the total spin of the dimer,

initially, is Szdimer = 0.5. In Fig. 7.2a, the spin densities or the expectation values

(〈Sz〉) have been plotted with time for sites 1, 2, 3 and 4 (note that, the 1st site

is a spin-1 site). We find that the spin densities for sites 1 and 3 decrease from

1.0 to about −0.4 and those for sites 2 and 4 increase from −0.5 to about −0.1.

Interestingly, the spin densities of the dimers, 1-2 and 3-4 (Fig. 7.2b) change from

the initial value 0.5 to a stable final value of −0.5. This shows a clear signature of

reversal of sign of the dimer magnetization. So, the system reverses the direction
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of ferrimagnetic ordering with time.

(a) (b)

Figure 7.2: Lindblad evolution of (a) the spin densities of sites 1, 2, 3 and 4 and (b) the spin
densities of the 1st and 2nd dimers for an alternating spin- 12/spin-1 chain

Currently we are trying to understand the reason behind this observation, and

also we are developing codes to incorporate the Lindblad equation in the Matrix

Product State formalism using Matrix Product Density Operators (MPDOs) and

study these systems in a large system size limit with more complex Hamiltonians.
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Thermalization of the one dimensional Nagaoka Ferromag-

net

We have studied the dynamics of the Nagaoka ferromagnet in one dimension.

Although the Nagaoka’s theorem states that a system with N sites and N − 1

electrons in 2 or more dimensions and in infinite Hubbard energy limit, the ground

state is a single ferromagnetic configuration. It was shown by Hal Tasaki that,

in one dimension also, the ground state is a superposition of all ferromagnetic

configurations, suggesting that it is a ferromagnet.

We have started from a single random configuration of a 1 dimensional chain

of 12 sites and 11 electrons and have studied the thermalization of this state with

time governed by the Hubbard Hamiltonian.


