
Phonons, Non-linear Elasticity and First-principles

Theory of Martensitic Structural Transformations in

Metals

A Thesis

Submitted For the Degree of

Doctor of Philosophy

in the Faculty of Science

by

Pawan Kumar

Theoretical Sciences Unit

Jawaharlal Nehru Centre for Advanced Scientific
Research

Bangalore – 560 064

MARCH 2020





To tax payers





  

वविदद्या ववितररर्को वविजद्याननं स्ममवततिः तत्परतद्या वरक रयद्या ।

यस्ययैतते षड्ग गणद्यास्तस्य नद्यासद्याध्यमवतवितर्कोतते ॥

Translation

Nothing remains 'unachievable' for those who have 

these six virtues Knowledge, Logic, Science, 

Memory, Readiness and functionality.





DECLARATION

I hereby declare that the matter embodied in the thesis entitled “Phonons,

Non-linear Elasticity and First-principles Theory of Martensitic Struc-

tural Transformations in Metals” is the result of investigations carried out by

me at the Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scien-

tific Research, Bangalore, India under the supervision of Prof. Umesh V. Waghmare

and that it has not been submitted elsewhere for the award of any degree or diploma.

In keeping with the general practice in reporting scientific observations, due ac-

knowledgement has been made whenever the work described is based on the findings

of other investigators.

Pawan Kumar





CERTIFICATE

I hereby certify that the matter embodied in this thesis entitled “Phonons,

Non-linear Elasticity and First-principles Theory of Martensitic Struc-

tural Transformations in Metals” has been carried out by Mr. Pawan Kumar

at the Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific

Research, Bangalore, India under my supervision and that it has not been submitted

elsewhere for the award of any degree or diploma.

Prof. Umesh V. Waghmare

(Research Supervisor)





Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Professor Umesh

V. Waghmare. His excellent guidance and endless support have always helped me

to overcome all kinds of obstacles throughout my Ph.D. Working with him was an

amazing experience, and his passion and enthusiasm for science always kept me

motivated. I am also very thankful for his valuable comments and instructions in

preparing for seminars and writing papers.

I am thankful to my research collaborators: Prof. Sahab Dass, Dr. Anupam

Srivastav, Harish K. Singh, Prof. Dipankar Banerjee and Dr. Manu S. Mohan.

I thank all the TSU faculties and course instructors: Prof. Shobhana Narasimhan,

Prof. Kavita Jain, Prof. Subir K Das, Prof. Swapan K. Pati, Prof. Srikant Sastri,

Prof. Vidyadhiraja, Prof. Meher K. Prakash, Prof. C. Narayana (CPMU) and Prof.

Balasubramanian (CPMU) for providing excellent knowledge of their subjects and

stimulating scientific interactions.

I am very thankful to my past and present lab members Sharmila, Summayya,

Anjali, Kaushik, Arpita, Krishnmonan, Shashwat, Harish, Henu, Sweta, Himanshu,

Sandhya, Shivani, Sampath, Suchitra, Meha, Anuja, Lakshay, Narendra, Raagya,

Shashank, Koyendrila, Arijit, Prasad, Shazia, Meghana and Prashant for many

academic, non-academic and fun interactions and lessons.

I am very thankful to Aruna madam and Kruti for their wonderful hospitality,

and for making me feel like a family.

I am grateful to my friends in JNCASR, Anand, Aditya, Rajaji, Manjeet, Nikita,

Krishnendu, Rafi, Praveen, Anshul, Pradeep, Samarth, Badri, Akash, Navneet,

Shubhajit, Debdipto and Rajdeep for their help and wonderful company in all these

years.

I sincerely thank my intermediate (11th and 12th class) teacher Mr. Mahesh

v



Chandra Kushwaha. He has not only taught free tuition of physics in my economi-

cally tough days but also motivated me to follow my dream in research. My special

thanks to Mr. Vijendra Singh Nayak for his financial support during my college

days. He was kind enough to me and always said that your education should not

stop because of financial issues.

I am very fortunate to have friends like Harendra Pratap, Kuldeep Pandey,

Chetan Chauhan, Ram Singh, Yogesh Sharma, Deepshika Malkar and Manoj Ku-

mar. I met with these guys at various stages of my career and now they become

an important part of my life. Life becomes very easy and enjoyable when one has

friends like them.

I would like to acknowledge the Centre for Computational Material Science

(CCMS) for providing computational facilities, using which some of the calcula-

tions in the work presented here were performed. I would also like to thank the

Complab staff for tending to our problems at any time of the day. I also extend my

gratitude to Librarian, Academic and Administrative staff for their efficiency and

helpfulness. I thank Dhanvantari staffs, Hostel mess, Chandraya canteen and utility

for food facilities.

Last but not least, I thank my parents for always believing in me, providing

endless freedom and unconditional support at all stages of my life.



Synopsis

Martensitic transformations (MTs) form an important class of first-order structural

phase transformations exhibited by crystalline solids that involve breaking of symme-

try upon cooling (quenching) or applying external stresses on the high-temperature

phases. The structures stable above and below the transformation temperature are

called austenite and martensite respectively. Symmetry breaking of the austenite

phase is a result of diffusionless (cooperative) atomic displacements within the pe-

riodic unit cell and its deformation typically without breaking any bonds. These

features define an MT as distinct from other transformations. Examples of MTs

are seen in steel, shape memory alloys, many elemental metals and their alloys, and

ferroelectric materials. These materials are of great importance to advanced tech-

nologies ranging from medical applications, robotic structures to automotive and

aerospace industries. Immense technological relevance of materials undergoing MT

and its singular impact on their behavior make MT one of the most widely studied

phenomena in metallurgy and materials science. Our focus in this thesis is on the

MTs exhibited by shape memory alloys and group IV B transition metals (Ti, Zr

and Hf).

It is now quite well-established that first-principles density functional theory

(DFT) and simulations are capable of accurate prediction of ground state prop-

erties of materials arising from mechanisms operating at various scales. Though

computing resources have advanced greatly, the cost of these simulations limit their

efficacy in determination of properties of materials primarily at low temperatures. It

is generally impractical to do first-principles Monte Carlo simulations and Molecular

Dynamics requiring large system sizes to study of finite temperature properties like

structural phase transformations. Indeed, DFT does provide important information

that can be used in estimation of finite temperature properties. The main theme

vii



of this thesis is devoted to determination of the finite-temperature phase transfor-

mations in metallic materials within the framework of statistical mechanics using

models derived from the results of first-principles DFT calculations.

In this thesis, we make extensive use of first-principles DFT calculations, and

have developed three significantly important techniques to study martensitic struc-

tural transformations governed by the physics of coupled unstable phonons and

strain exhibiting nonlinear elasticity in the materials: (i) Quantum mechanical anal-

ysis of unstable phonons (ω2 < 0) to determine their free energy, where the harmonic

approximation is not valid, (ii) Construction a materials-specific effective Hamilto-

nian as a function of coupled phonons and strain modes using the method of lattice

Wannier functions (LWFs) to capture the low energy physics of martensitic transfor-

mations in metallic materials, and (iii) A periodic generalization of Landau theory

that can describe energetics of microstructure and martensitic transformations in

materials. These methods provide a significant advance in studies of thermody-

namic properties, microstructures relevant to shape memory effect and physics of

martensitic transformations in metallic materials. We note that methods (i) and

(iii) are new and based on innovative ideas and have general applicability. Method

(i) and (ii) were used in resolving the relative stability issues of various martensite

phases and investigation of MTs in NiTi (chapter 3) and PtTi (chapter 4) shape

memory alloys respectively. Method (ii) was also employed in our analysis of an MT

in Ti elemental metal (chapter 5). Method (iii) was used to model the energy along

path of martensitic transformations in group IV B transition metals (chapter 6).
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Chapter 1

Introduction

Martensitic transformation (MT) is a first-order displacive structural transforma-

tion in crystalline solids which involves breaking of symmetry, induced by cool-

ing (quenching) or applying external stresses on the high-temperature phases [1–3].

The structures stable above and below the transformation temperature are called

austenite (named after W. C. Roberts-Austen) and martensite (named after Adolf

Martens), respectively. Symmetry breaking of the austenite phase is a result of dif-

fusionless (cooperative) atomic movement and deformation in which atoms displace

relative to each other without breaking the bonds and not exceeding the inter-

atomic distance. These features distinguish an MT from other transformations. It

commonly occurs in steel, shape memory alloys, many elemental metals and their

alloys, and ferroelectric [4] materials. The set of materials known to undergo MT is

continuously increasing. These materials are of great importance to advanced tech-

nologies ranging from medical applications to robotic structures, automotive and

aerospace industries. The immense technological relevance of materials undergoing

MT and interesting features associated with it make MT one of the most widely

studied phenomena by metallurgists and materials scientists.

1
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1.1 Crystallography of martensitic transformation

Crystal structures of austenite and martensite phases depend strongly on the type

of materials and of martensitic transformation. Generally in metals and their alloys,

austenite phases have the cubic crystal lattices (B2, BCC or FCC), the martensite

phase is characterized by reduced symmetry of distorted cubic lattice. Consequently,

martensite phases may have tetragonal, orthorhombic, rhombohedral, monoclinic,

hexagonal or BCC crystal lattices, which depend on the chemistry of material and

structure of the austenite phase. For example, (i) ferrous alloys (iron-carbon alloys,

commonly known as steel) transform from face-centered cubic (FCC) structure to

body-centered cubic (BCC) or base-centered tetragonal (BCT) structure through an

MT, (ii) most of the shape memory alloys have B2 (CsCl lattice type) structure in

the austenite phase and B19 (orthorhombic) or/and B19′ (monoclinic) structures in

the martensite phases, (iii) Group IV B transition metals (Ti, Zr and Hf) undergo

a martensitic transformation from BCC (or β) structure to hexagonal close-packed

(HCP or α) and hexagonal open-packed (HOP or ω) structures. Our focus in this

thesis is on categories (ii) and (iii).

1.2 Experimental observations

The phenomenon of martensitic transformations in metallic alloys has a long his-

tory, and was a mystery for metallurgists until middle of 19th century due to the lack

of experimental techniques. The first notable experimental observation was made

on steel (iron-carbon alloys) by Henry Clifton Sorby in 1863 [5] using the reflected

light microscopy, revealing a bulk metallic microstructure. After that, a series of

experimental observations using optical microscopy and a high degree of hardness

of the martensite steel was interpreted in terms of its microstructure. The major

breakthrough in this field came after the discovery of X-ray diffraction (XRD) in
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1912. XRD, used to determining crystal structures, was very soon adopted by sci-

entists to study martensitic transformations. Westgren (1921) [6] and Westgren and

Phragmen (1922, 1924) [7,8] successfully explained the crystallography of allotropes

of iron. In 1950’s transmission electron microscopy (TEM) augmented XRD and

inspired new theories and approaches in this field. Apart from steel, MTs then

were demonstrated in other alloys such as InTl, CuAl, CuZn and many elemental

metals and their alloys. Another breakthrough impacting engineering applications

occurred with the discovery of NiTi by Buehler in 1963 [9], which was shown to be a

remarkable shape memory alloy exhibiting a reversible martensitic transformation.

The commercial success and vast applications of NiTi in technologies spearheaded

intense research activity in shape memory alloys, making them widely investigated

alloys.

1.3 Theoretical developments

Experimental evidence in the crystallography of austenite and martensite structures

motivated scientists to find the theoretical explanation of MTs. The very first theory

was proposed by Bain in 1924 [10] using the concept of lattice correspondence (LC)

that builds a relationship between austenite and martensite lattices and provides an

important link between them through a lattice distortion. He successfully explained

the diffusionless character of MT in steel and illustrated the homogeneous defor-

mation of the FCC austenite phase to the BCC martensite phase, now called the

Bain strain. A simple deformation mechanism proposed by Bain failed to explain

shear deformation, invariant planes between austenite and martensite phases and

twinning, and it was considered as an oversimplified theory but yet important work

to understand MTs. Kurdjumov and Sachs in 1930 [11] and Nishiyama in 1934 [12]
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proposed mechanisms based on orientation relationship (OR) between the marten-

site and austenite phases that include rotation of the transforming portion of the

material leading to shear deformation. Though the OR theories of Kurdjumov and

Sachs, and Nishiyama explained shear deformation in MTs it failed to explain the

invariant planes and twinning.

Thereafter in the 1950’s when mathematical concepts were adapted by metallur-

gists and material scientists, two famous works proposed phenomenological theories

of martensite crystallography (PTMC) of MTs: (i) by Wechsler, Lieberman and

Read (WLR) [13,14] and (ii) by Bowles and Mackenzie (BM) [15–17], independently.

The WLR theory of crystallography of MTs was formulated in real space while the

BM theory was formulated in the reciprocal space. Though the two formulations

are different they are proven to be equivalent [18]. In these theories, deformation

and rotation of austenite lattice are represented by matrices as operators acting on

an arbitrary vector, and the invariant plane is the interface between austenite and

martensite phases which is undistorted and unrotated. PTMC is one of the most

successful theories based on geometrical crystallography with well established math-

ematical framework. Though PTMC theory is very sucssefull in explaining the MTs

where only lattice distortion take place, in shape memory and many other alloys

atomic displacements also take place along with lattice distortions, and the PTMC

theory does not quite explain their MTs. With advances in first-principles simu-

lations methods to study properties of materials, atomic displacements described

in terms of phonons became readily accessible. First-principles calculations have

become a very useful tool to study MTs in materials.

It is now quite well-established that first-principles based density functional the-

ory (DFT) is capable of predicting ground state properties of materials at various

scales with remarkable accuracy. It is (a) predictive, (b) complementary to experi-

ments, and (c) helpful in understanding mechanisms. Some properties are the direct
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outcome of DFT simulations including total energy, electronic structure, phonon fre-

quencies, stress and forces etc. Though computing resources have advanced greatly,

DFT is still tool to determine properties of materials primarily at T=0 K and it

is impractical to do first-principles Monte Carlo (MC) simulations and Molecular

Dynamics (MD) that require large system sizes to study of finite temperature prop-

erties, e.g. structural phase transformations. Of course, DFT provides important

information that can be used in estimation of finite temperature properties. The

main work of this thesis is devoted to determining the finite temperature behavior of

materials within the framework of statistical mechanics using models derived from

the results of DFT calculations.

Rabe and Joahnopouos [19,20] developed an ab initio effective Hamiltonian ap-

proach which takes a subset of the degrees of freedom which are relevant to the phase

transformation. They constructed an effective Hamiltonian as a function of these

degrees of freedom, determined its parameters from first-principles and successfully

explained the ferroelectric structural transformation in GeTe. Following this ap-

proach Zhong, Vanderbilt and Rabe [21] constructed an effective Hamiltonian to

explain the ferroelectric phase transition in BaTiO3. Rabe and Waghmare [22]

took forward this idea and developed an effective Hamiltonian scheme based on

lattice Wannier functions (LWFs), and used it to study phase transformations in

ferroelectric PbT iO3 [23] and antiferroelectric PbZrO3 [24]. Though this approach

became quite popular in the field of ferroelectric phase transformations, it has been

challenging to generalize this to other structural phase transformation. We have

taken it further here and constructed an effective Hamiltonian using LWFs to study

martensitic transformation in shape memory alloys (NiTi and PiTi) and titanium

an elemental metal.
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1.4 Overview of the thesis

In this thesis, we make extensive use of first-principles DFT calculations, and have

developed three significantly important techniques to study martensitic structural

transformations governed by the physics of coupled unstable phonons and strain

exhibiting nonlinear elasticity in the materials: (i) Quantum mechanical analysis

of unstable phonons (ω2 < 0) to determine their free energy, where the harmonic

approximation is not valid, (ii) Construction a materials-specific effective Hamil-

tonian as a function of coupled phonons and strain modes using the method of

lattice Wannier functions (LWFs) to capture the low energy physics of martensitic

transformations in metallic materials, and (iii) A periodic generalization of Lan-

dau theory (Fourier-Landau theory) that can describe energetics of microstructure

and martensitic transformations in materials. These methods provide a significant

advance in studies of thermodynamic properties, microstructures relevant to shape

memory effect and physics of martensitic transformations in metallic materials. We

note that methods (i) and (iii) are new and based on innovative ideas and have gen-

eral applicability. Method (i) and (ii) were used in resolving the relative stability

issues of various martensite phases and investigation of MTs in NiTi and PtTi shape

memory alloys respectively. Method (ii) was also employed in our analysis of an MT

in Ti elemental metal. Method (iii) was used to model the energy along path of

martensitic transformations in group IV B transition metals.

In Chapter 2, we present a brief description of first-principles methods used in

this work, starting with Hohenberg-Kohn theorems and foundations of Kohn-Sham

density functional theory (DFT) that replace the interacting many-body problem

with an effective non-interacting electron problem. In the second part, the formalism

used in the estimation of free-energies of unstable phonons. In the third part, we

will review the method of construction of an effective Hamiltonian that is used in



1.4 Overview of the thesis 7

investigation of martensitic transformations in shape memory alloys and in pure

titanium. Finally, we will present the basis of periodic generalization of Landau

theory that is used to study MTs in IV B group transition metals.

In Chapter 3, we present a phonon-based model and its statistical mechanical

analysis to obtain atomistic insights into martensite phases and transformation in

NiTi, uncovering seven order parameters that are relevant to its MT. With Monte

Carlo simulations of an effective Hamiltonian derived to capture its low energy land-

scape, we determine its soft phonons and establish the cell-doubling M5′ mode as

the primary order parameter. Using Landau theoretical analysis, we show that rel-

ative strengths of its third-order coupling with secondary order parameters (e.g.,

strain) determine the specific symmetry of low-T martensite structures emerging at

the MT. Our pressure-dependent Monte Carlo simulations show that negative pres-

sure enhances the martensitic transformation temperature, while positive pressure

can stabilize B19 as an intermediate phase during the MT. We present analysis of

microstructures of NiTi using the effective Hamiltonian approach and show that

the domain walls separating domains with distinct orientations of order parame-

ters identified here are essentially the twinning or stacking faults relevant to the

microstructures governing martensitic transformation.

In Chapter 4, we present a theoretical analysis of martensitic transformation in

PtTi, a high-temperature shape memory alloy. Similar to NiTi, PtTi also occurs in

the B2 structure at high temperature. However, its ground state is the monoclinic

(B19′) structure. We show that vibrational entropy of soft modes stabilizes the

orthorhombic (B19) structure at T > 112 K, the experimentally known ground state.

We use the same form of effective Hamiltonian as one used for NiTi, with parameters

specific to PtTi determined from first-principles, and present its analysis with Monte

Carlo simulations to determine the T-dependent MT. Landau theoretical analysis

of effective Hamiltonian reveals important phonon instabilities and their couplings
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with strain, and confirm that the relative strengths of primary order parameter’s

(M5′) third-order coupling with secondary order parameters indeed determine the

stability of B19 structure. We have identified four order parameters relevant to the

MT exhibited by PtTi.

In Chapter 5, we present a detailed statistical mechanical analysis of an effec-

tive Hamiltonian derived to capture the low energy physics of Ti and investigate its

martensitic transformation from the body-centered cubic (BCC or β) to hexagonal

close-packed (HCP or α) structure. Analysis of phonon modes and strains of the β

structure reveals that α-phase corresponds to a specific amplitude of unstable M5′

phonon mode and values of strains. We present Monte Carlo simulations of the

effective Hamiltonian of Ti demonstrating β to α martensitic transformation iden-

tifying the relevant soft modes and their behavior near martensitic transformation

temperature.

In Chapter 6, we present a Fourier generalization of Landau theoretical energy

function that is essential for a single description that captures the translational

symmetry and physics of microstructure and of the martensitic transformations in

materials. We apply this theory to two martensitic transformations in Group IV B

transition metals: (i) β → α, and (ii) β → ω. Finally, we summarize highlighting

the achievements in this thesis and limitations of the methods used, and present our

perspective on the opportunities of further work in chapter 7.



Chapter 2

Methods and Formalism

In this chapter, we describe theoretical and computational methods that we used in

our calculations or developed to determine the various properties of materials: (i)

at T = 0 K within the framework of first-principles density functional theory, and

(ii) T-dependent phenomena (e.g. martensitic transformations).

2.1 First-principles methods

Materials are described as a collection of nuclei and electrons that interact via the

electromagnetic fields, and the various properties of it can be determined by their

motions and interactions among them. The collection of electrons and nuclei makes

it a many-body problem, and the fundamental Hamiltonian of this problem that

describes their motion and interactions is given by [25],

Ĥ = − ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
−

∑
i,I

ZIe
2

|ri −RI |

−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
, (2.1)
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where me and e are the mass and charge of an electron respectively, and ~ is the

reduced Planck constant. ri is the position vector of ith electron. RI , MI and ZI

are the position vector, mass and atomic number of the I th nucleus, respectively.

The first and fourth terms in Eq. (2.1) are the kinetic energy of electrons and nuclei

respectively. Second, third and fifth terms represent electron-electron, electron-

nuclei and nuclei-nuclei Coulomb interactions, respectively.

Though the many-body Hamiltonian (Eq. 2.1) looks simple, its solution is al-

most impossible for a material that consists of the large number of electrons and

nuclei. Therefore, we sovle Eq. (2.1) within the Born-Oppenheimer approximation

(adiabatic approximation) [26]. This approximation has been made considering the

fact that MI >> me, the kinetic energy of nuclei is much lower than that of elec-

trons, and can be ignored. Thus, electrons and nuclei can be treated as quantum

and classical particles, respectively. Consequently, the total energy of a given set of

atoms in a material is the sum of the nuclei-nuclei Coulomb interaction and elec-

tronic ground state energy. To estimate the electronic ground state energy, the form

of many-body electronic Hamiltonian can be written as:

Ĥe = T̂e + V̂int + V̂ext, (2.2)

where T̂e, V̂int and V̂ext denote kinetic energy, electron-electron interations and

potential acting on the electrons due to nuclei, respectively. The many-body wave-

functions of electrons are obtained by time-independent Schrödinger equation:

ĤΨ(R, r) = εΨ(R, r), (2.3)

where ε and ψ(R, r) are the ground state energy eigenvalue and wavefunction
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of the electrons, respectively. R and r are the position vectors of nuclei and elec-

trons in the materials respectively. Since, the electrons are fermions, ψ(R, r) must

be antisymmetric under exchange of two electronic coordinates ri. Though Born-

Oppenheimer approximation reduces the difficulty to determine the ground state for

a given set of atoms and their positions, quantum mechanical solution of Eq. (2.3)

for the large number of atoms is still a challenge. Therefore, determination of the

ground state is quite hard and requires additional approximations.

2.2 Density functional theory

Density functional theory (DFT) is one of the most popular and versatile quantum

mechanical modeling methods to investigate the electronic structure and properties

of materials. DFT was developed by Hohenberg and Kohn in 1964 [27], Kohn and

Sham in 1965 [28] replacing an interacting many-body problem into a set of single-

particle problems treating charge density of electron gas as fundamental, including

many-body effects in the exchange-correlation energy functional of density.

2.2.1 Hohenberg-Kohn theorems

The framework of DFT is based on two powerful theorems:

Theorem I: The external potential Vext(r) of any system of interacting particles

can be determined uniquely by the ground state particle density n0(r) within an

additive constant.

Theorem II: For any given external potential Vext(r), the universal functional for

energy E[n] of the system can be defined in terms of particle density n(r). The exact

ground state energy of the system is the global minimum value of this functional,

and the density n(r) that minimizes this functional is the exact ground state particle

density n0(r).
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Based on these two theorems, the 3Ne (Ne is number of electrons) variables in

the problem are reduced to a problem involving function of only three variables of

n(r), and the total energy functional can be written:

EHK [n] = FHK [n] +

∫
d3rVext(r)n(r) + EII , (2.4)

FHK [n] = T [n] + Eint[n], (2.5)

where EII is the nuclei-nuclei Coulomb interactions. Functional FHK [n] includes

kinetic T [n] and potential Eint[n] energies of interacting particles system. Though

these two theorems prove existence of an universal functional FHK [n] (only a func-

tional of density n(r)), they do not provide a practical scheme for determining the

ground state density n0(r), In 1965, Kohn and Sham proposed an anstaz for the

ground state density n0(r) to simplify this.

2.2.2 Kohn-Sham ansatz

Kohn-Sham ansatz [28] is a mathematical assumption that replaces the ground state

density of an original interacting many-body system by a system of auxiliary non-

interacting particles. Thus, calculations of an original system can be performed on

an auxiliary non-interacting particles system with the total energy functional given

by,

EKS = Ts[n] +

∫
drVext(r)n(r) + EXC [n] + EH [n] + EII . (2.6)

Terms in Eq. (2.6) are described below:

n(r) is charge density of auxiliary system determined by the sum of square of Ne

non-interacting electrons′ wavefuctions (ψi(r)):



2.2 Density functional theory 13

n(r) =
Ne∑
i=1

|ψi(r)|2, and Ne =

∫
dr n(r). (2.7)

Ts[n] is the kinetic energy of Ne non-interacting electrons, and given by,

Ts[n] = − ~2

2me

Ne∑
i=1

〈ψi(r)|∇2|ψi(r)〉. (2.8)

EH [n] is the Hartree energy, classical interaction energy of the electron density

interacting with itself, and define as,

EH [n] =
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′. (2.9)

EXC [n] is the exchange-correlation energy of electrons that takes into account of

(i) difference in kinetic energy of the many-body interacting system and set of non-

interacting system, and (ii) residual energy contributions due to the exchange asym-

metry and correlations. EXC is given by,

EXC [n] = (T [n]− Ts[n]) + (Eint[n]− EH [n]), (2.10)

where [n] denotes a functional of the electron density n(r). The exact form of

EXC [n] is unknown, and will be discussed shortly. In this approch, the Hamiltonian

of an auxiliary non-interacting particles is called Kohn-Sham Hamiltonian (HKS),

and written as,

HKS = − ~2

2me

∇2 + VKS(r), (2.11)

where VKS(r) is Kohn-Sham potential expressed as,
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VKS(r) = Vext(r) + VH(r) + VXC(r), (2.12)

where Vext(r), VH(r) and VXC(r) = ∂EXC [n]
∂n(r)

are external, Hartree and exchange-

correlation potentials, respectively. Now, one can write single-particle Kohn-Sham

equations as,

HKSψi(r) = εiψi(r), (2.13)

the solution of Eq. (2.13) is a self-consistent iterative method, and illustrated in

Figure 2.1.

2.2.3 Exchange-correlation energy functionals

As mentioned earlier, the exact form of EXC [n] is unknown, and it requires fur-

ther approximations. Towards this, many approximations have been proposed, and

among all available approximations, local density approximation (LDA) [29–31] and

generalized gradient approximation (GGA) [32] are the most commonly and widely

used schemes to estimate the exchange-correlation energy. In LDA, the exchange-

correlation energy density is approximated as that of the uniform electron gas given

by its density, while in GGA, it considered as a function of both density and its

gradient at each point in the space. GGA leads to a notable improvement over LDA

in estimation of energies, and improve the accuracy of many of the ground state

properties of materials.

2.2.4 Pseudopotential approximation

Based on the nature of chemical activity of electrons in a material, they can be

divided into two types, (i) core electrons, and (ii) valence electrons. It is an es-

tablished fact that most of the properties of a material can be determined by the
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Figure 2.1: Flow chart of the iterative solution of Kohn-Sham equations to achieve
self-consistency.
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Figure 2.2: Schematic representation of an all electron potential (dotted line) and
pseudopotential (solid line) along with corresponding wavefunction. Source of figure:
https://en.wikipedia.org/wiki/Pseudopotential.

valence electrons of its atoms, while core electrons are sort of inert. Pseudopotential

approximation [33] takes this into account, and removes core electrons by replacing

their effects and strong ionic potential by a weak and smooth pseudopotential that

act on a group of pseudo wavefunctions of valence electrons (See Fig. 2.2).

The behavior of pseudopotential in different regions of radius r (see Fig. 2.2) is

defined by a cut-off radius (rc). For r ≥ rc, all-electron and pseudo wavefunctions

of valence electrons are identical. For r < rc, energy eigenvalues and scattering

properties are conserved by the pseudo-wavefunctions. If the charge density of each

pseudo wavefunction is equal to the charge density of the actual wavefunction inside

the region r < rc, the pseudopotential is known as a norm-conserving pseudopo-

tential [34]. This is generalized in ultrasoft pseudopotentials [35], where the total

charge in r < rc region is conserved along with augmented charge density. Ultrasoft

pseudopotentials reduce the computational cost significantly while maintaining the

accuracy.
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2.2.5 Basis set

The basis set is a set of functions that can be used to represent the Kohn-Sham

wavefunctions, and transforms the Kohn-Sham equation into the algebraic equation

appropriate for computational simulations. Among many possible basis sets, plane-

waves [36], atomic orbitals [37, 38] and their combination (mixed basis) [39] are

commonly used in first-principles based computational simulations within DFT.

Plane-wave basis set is widely used in the simulations of materials that have

periodicity at least in one dimension. In this basis set, Kohn-sham wavefunction of

a particle can be represent as,

ψi,k(r) =
∑
|G|

Ci,(k+G)e
i(k+G).r, (2.14)

where G and k are reciprocal lattice vector and Bloch wave-vector in the Brillouin

zone, respectively, and Ci,(k+G) is an expansion coefficient. In practice the sum is

truncated by introducing a kinetic energy cutoff (Ecut) which determines the number

of plane-waves satisfying the following condition:

~2

2me

|k + G|2 ≤ Ecut. (2.15)

The cutoff energy (Ecut) is increased until the calculated energy differences converge

to a desired accuracy. Atomic orbitals are used to expand Kohn-Sham wavefunc-

tions of molecules and atomic clusters to calculate their electronic properties. In

mixed basis sets, atomic orbitals are incorporated near the nucleus while plane-

waves are away from the nucleus as implemented in Linearized Augmented Plane-

wave (LAPW) method [40,41].
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2.3 Phonons

Phonon is a quasiparticle and quantum of vibrational energy associated with col-

lective motion of atoms in materials. The concept of phonons provides a powerful

tool to study the properties of materials which are governed by atomic displace-

ments. Phonon-dispersion, behavior of vibrational frequency (ω) versus wave-vector

(q), reveals interesting physics of materials that governs stability of structures, ther-

modynamic properties and structural phase transformation of crystalline materials.

There are two types of phonons: (i) stable phonons (ω2 > 0) and (ii) unstable

phonons (ω2 < 0). Frozen-phonon and linear-response methods are the two meth-

ods which are commonly used to calculate phonons from first-principles.

2.3.1 Frozen-phonon method

This method involves explicit displacements of each of the atoms in a given crystal

structure to calculate induced forces on every atom using Hellmann-Feynman theo-

rem [42]. The force constant matrix (Kiα,jβ(R)), R denotes real space, is the second

derivative of total energy E with respect to atomic displacements,

Kiα,jβ(R) = −∂Fiα
∂ujβ

= − ∂2E

∂uiα∂ujβ
, (2.16)

where i and j are the atomic indexes, and α and β are their cartesian coordinates.

Kiα,jβ(R) is the force acting on the α coordinate of ith atom due to the displacement

ujβ in the β direction of jth atom. Phonon frequencies (ω) at any wave-vector (q)

can be determined by taking square root of eigenvalues of the dynamical matrix

(Diα,jβ(q)) that is the Forurier transformation of
Kiα,jβ(R)√

MiMj
.

This method requires a set of total energy calculations using DFT that depends

on the number of atoms in the system, and is suitable for the phonon calculations

at q = 0, called Γ-point in the Brillouin zone. To calculate phonons where q 6= 0,
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we need to use a supercell and its size will be defined by the wave-vector q. In

this case, the number of atoms increases rapidly and require a large number of total

energy calculations which are computationally expensive and time-consuming. The

linear-response method overcomes this drawback and provides a computationally

feasible tool to calculate full phonon-dispersion.

2.3.2 Linear-response

DFT linear-response (DFT-LR) [43] is an approach to computing the second deriva-

tive of the total energy with respect to a given perturbation. Since the force constant

matrix is a second derivative of ground state energy with respect to atomic displace-

ments (u), the linear-response provides a powerful mechanism to calculate phonons

at an arbitrary wave-vector (q). This method is efficient and hence widely used

in first-principles calculations, and also known as density functional perturbation

theory (DFPT). In this approach, the force constant matrix (Kiα,jβ) is:

Kiα,jβ =
∂2E

∂uiαujβ
=
∂2Eion−ion
∂uiαujβ

+

∫
∂2Vext(r)

∂uiαujβ
drn(r) +

∫
∂n(r)

∂uiα

∂Vext(r)

∂ujβ
dr. (2.17)

It is clear from Eq. (2.17) that Kiα,jβ dependes on the ground state charge density

(n(r)) and its first-derivative (linear-response) with respect to atomic displacement

∂n(r)
∂uiα

. To calculate Kiα,jβ, Eq. (2.17) is evaluated within the frame work of first-

principles calculations by solving first-order Kohn-Sham equations [28].

2.4 Free-energy

The direct outputs from DFT and DFPT calculations determine the properties of

materials at T=0 K. To calculate properties at T > 0 K, free-energy becomes an
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important quantity. Using phonons, one can estimate free-energy of stable phonons

readily using the harmonic approximation. On the other hand, free-energy of un-

stable phonons is not quite possible because harmonic approximation is not valid

for these phonons.

To estimate contributions of stable phonons to vibrational free energy, we use

harmonic approximation treating them as quantum oscillators [44]:

F ph
stable =

kBT

Nq

∑
q,ν

ln[2sinh(
~ωqν
2kBT

)], (2.18)

where F ph
stable vibrational free energy of stable phonons of the optimized structure.

ωq,ν is the frequency of ν phonon mode at q wave-vector, and Nq is the number of

q wave-vectors. Since Eq. (2.18) does not hold for unstable phonons (ω2 < 0), we

determine∗ [45] their contributions to vibrational free energies by treating them as

quantum anharmonic oscillators (QAOs). We include fourth-order anharmonic term

in Hamiltonian of unstable modes:

H = −1

2

~2

Mqν

∂2

∂u2
qν

+ V (uqν), (2.19)

V (uqν) = −1

2
Mqνω

2
qνu

2
qν +

1

4
k4u

4
qν , (2.20)

where V (uqν), Mqν , ωqν and uqν are anharmonic potential, effective mass, imag-

inary part of frequency and amplitude of the normalized eigenvector (|ûqν >) of

unstable phonon mode ν at q wave-vector in BZ, respectively. k4 is the coefficient of

fourth-order anharmonic force constant of ν, and it must be positive. The effective

mass (Mqν) of a phonon mode is Mqν =< ûqν |M |ûqν >, where M is the diagonal

∗Published in Materialia 9,100602 (2020)
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mass matrix. We used values of ωqν , M and |ûqν > from the DFT-LR calculations,

and the value of k4 was estimated by fitting to the double-well potential calculated

by freezing unstable phonon modes.

To solve Schrödinger equation of Hamiltonian of unstable modes, we used higher-

order finite difference formula of the kinetic energy operator on a uniform grid in

real-space [46] of uqν :

∂2

∂u2
qν

ψqνl(uqνi) =
1

h2

N∑
n=−N

Cnψqνl(uqν(i+nh)) +O(h2N+2) (2.21)

where h is the grid spacing, ψqνl(uqνi) is quantum mechanical wavefunction of

the lth excited state of phonon ν at q-point in BZ. Cn being the coefficients of finite

difference formula [46], N is the order of finite difference approximation, which is

accurate to O(h2N+2). We use N=6 and employ Eq. (2.19) and (2.21) in setting up

the Schrödinger equation as follows.

− 1

2h2

~2

Mqν

N∑
n=−N

Cnψqνl(uqν(i+nh)) + V (uqν)ψqνl(uqνi) = Eqνlψqνl(uqνi), (2.22)

where Eqνl is the lth energy eigenvalue of ν phonon mode at q-point. We diago-

nalized H matrix and find its energy spectrum. Using this spectrum, we calculate

the partition function Zqν as,

Zqν =
H∑
l=0

e−Eqνl/kBT , (2.23)

Zqν = e−Eqν0/kBT{1 +
H∑
l=1

e−(Eqνl−Eqν0)/kBT}, (2.24)
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lnZqν = −Eqν0/kbT + ln{1 +
H∑
l=1

e−(Eqνl−Eqν0)/kBT}, (2.25)

where H labels the highest energy excited state in our analysis of phonon ν. Eqν0

is ground state energy of ν phonon at q wave vector in BZ. Factoring it out of the

logarithmic function in Eq. (2.25), we ensure that (1 +
H∑
l=1

e−(Eqνl−Eqν0)/kBT ) > 0 for

all excited states, enabling estimations of logarthimic function. We choose the cut-

off exciting state (H) such that exp(−Eqνl/kBT ) is negligible at room temperature,

and calculate contribution to free energy of each unstable phonon mode ν as,

F ph
unstable = −kBT

Nq

∑
q,ν

lnZqν , (2.26)

F ph
unstable =

1

Nq

[
∑
q,ν

Eqν0 − kBT
∑
qν

ln[1 +
H∑
l=1

e−(Eqνl−Eqν0)/kBT ], (2.27)

where Nq is the number of q wave vectors in the BZ, using Eq. (2.27), we calculate

the free energy of unstable phonons. Using Eq. (2.18) and (2.27), we estimate the

total free energy as follows:

FH = E + F ph
stable + F ph

unstable, (2.28)

where E and FH are the total and Helmholtz-free energies of the optimized

structure, respectively.

2.5 Method of lattice Wannier functions

Lattice Wannier functions (LWFs) are the localized modes in the real space, obtained

through Fourier transformation of phonon normal modes [47–49], and a phonon
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analogue of electronic Wannier functions [50,51]. The lattice Wannier basis vectors

span in an invarient subspace of atomic displacements, and is determined by phonon

normal modes. For a phonon mode the Wannier basis vector can be written as,

wi,ν =
1

N

∑
~q

exp(iφν(~q))exp(−i~q · ~Ri)e~q,ν , (2.29)

where wi,ν is the Wannier basis vector in the ith unit cell of crystal structure in

real space corresponding to frequency band of phonon modes ν. φν(~q) is a phase

factor in reciprocal space, and its value always chosen typically to maximize the

localization of wi,ν . This localized basis in real space facilitates construction of an

effective Hamiltonian to study the structural transformations in which the product

phase is linked by lattice distortion and atomic displacements in the parent phase.

2.5.1 Effective Hamiltonian approach

The form and invariant subspace of effective Hamiltonian (Heff ) constructed using

LWFs to study the structural transformations are material-specific. These depend

strongly on the crystal symmetry of the parent structure of materials and its unstable

phonon modes involved in this transformation. In this approach, the Wannier basis

coordinates span an invariant subspace containing the unstable phonon modes that

link parent and product structures through lattice distortions that occur during

the transformation. Localized Wannier basis coordinates that define the invariant

subspace can be determined using Eq. 2.29 for a set of phonon modes (ν) at high-

symmetry ~q wave-vectors.

We implemented this effective Hamiltonian approach to investigate the important

physics of martensitic transformation in MTi (M = Ni and Pt) shape memory alloys

and pure titanium. We follow the scheme of lattice Wannier functions (LWFs) in
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Ref. [22], and identify the symmetry invariant subspaces of the relevant degrees of

freedom using full phonon dispersion of the cubic lattice (B2 for shape memory alloys

and two atoms basis β for titanium) obtained along the high-symmetry directions in

the BZ. The symmetry analysis of the invariant subspaces of the B2 structure of MTi

that have two non-identical atoms in the unit cell allows us to divide LWFs into two

subspaces labelled by atomic positions (M and Ti) with irreducible representations

of a vector. Using symmetries and eigenvectors of the zone boundary phonons, we

determine M-centric {~η} and Ti-centric {~τ} localized LWFs to span these subspaces

of B2 structure’s phonons. Using the cubic symmetry, we express Heff as an explicit

symmetry invariant Taylor expansion in ~ηi, ~τi and homogeneous strains (εαβ), i

indicates the lattice unit cell ~ηi and ~τi belong to. Heff consists of four parts:

Heff = HM
eff (~ηi) +HT i

eff (~τi) +Hspc(~ηi, ~τi, εαβ) +Helastic(εαβ), (2.30)

where HM
eff (~ηi) and HT i

eff (~τi) operate in subspaces of phonons dominated by M

(Ni and Pt) and Ti atomic displacements, respectively. Helastic(εαβ) contains linear

and nonlinear elastic energy of homogeneous strain εαβ, and the coupling of εαβ with

both sets of LWFs is included in Hspc(~ηi, ~τi, εαβ). The detailed derivation of Heff and

a procedure for determining its material specific parameters are presented in Section

3.5 of chapter 3, and the same form of this Hamiltonian is also used in analysis of

MT in PtTi (chapter 4). In contrast to NiTi and PtTi, BCC structure of Ti has

identical atoms at M and Ti sites of conventional unit cell of its parent phase. In

the effective Hamiltonian of Ti, we thus do not distinguish the two LWFs subspace,

and use the modified form of Eq. 2.30 to investigate martensitic transformation in

titanium and its full details are presented in chapter 5.
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2.6 Monte-Carlo simulations

Temperature-dependent properties of a material can be calculated using its parti-

tion function, once the material-specific Hamiltonian in terms of relevant degrees of

freedom is available. This Hamiltonian can be readily simulated using Monte Carlo

simulations to study temperature-dependent phenomena. Monte Carlo simulations

are based on stochastic integration sampling with random numbers and provide es-

timates of the statistical averages of physical quantities of a model material. In our

work, we studied martensitic transformations exhibited by the effective Hamilto-

nian with Monte Carlo simulations on the L× L× L periodic system of the parent

phase using the Metropolis algorithm for updating the configurational variables in

the model system.

2.7 Periodic generalization of Landau theory: Fourier-

Landau theory

Landau theory models free energy function of the order parameters of phase trans-

formations typically expressed as symmetry allowed polynomial using the parent

phase as the reference. It captures the physics of all symmetry equivalent ordered

states. In some phase transformations (chapter 6), it has been found that free energy

is a periodic function of order-parameter. In this case, conventional Landau theory

needs to be generalized to a Fourier series to capture the translational symmetry of

the crystalline lattice, we called it Fourier-Landau theory, and the free energy per

unit volume becomes,

F (u)

V
=

F0

V
+
∑
n=1

{ancos(
2nπ

u0

u) + bnsin(
2nπ

u0

u)}+ g

∫
dx|du

dx
|2, (2.31)
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where F0, an’s and bn are the Fourier coefficients. V is volume of unit cell, u0

denotes the translational symmetry of the crystal lattice. Last term denotes the

kinetic energy, for g > 0, its clear that energy will be minimized if |u| does not vary

along x. Coefficients in Eq. 2.31 can be determined easily by first-principles calcu-

lations. The Fourier-Landau theory provides a unified description of microstructure

and structural transformations.
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Martensitic Structural

Transformation in NiTi: A Shape

Memory Alloy

3.1 Introduction

Shape Memory Alloys (SMAs) are of great importance to technologies ranging from

medical stents to smart structures in the aerospace industry. They exhibit a shape

memory effect (SME), in which a highly deformed material recovers its predeter-

mined shape upon heating [52]. Fundamental to the SME is the martensitic trans-

formation (MT), in which the high-temperature cubic austenite structure changes

to a low-temperature martensite structure [53] through a non-diffusive first-order

phase transition involving atomic displacements (phonons) and large deformations

in the crystal shape (strain) [54]. MT in SMAs has been investigated through ex-

perimental [55–59] and theoretical studies over the past few decades [60–64]. While

Nitinol (NiTi) is the prototypical member of an important class of SMAs, a clear

*This work has been published in Materialia, 9, 100602 (2020). Reproduced by permission of
Elsevier, URL: https://doi.org/10.1016/j.mtla.2020.100602
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understanding of the precise mechanisms of MT and relative stability of its various

low-symmetry structures relevant to its SME are still lacking.

Depending on the composition of NiTi-based alloys, their MT involves five crys-

tal structures: B2 (cubic, space group (SG) Pm3̄m), R (trigonal, SG P3) [65], B19

(orthorhombic, SG Pmma), B19′ (monoclinic, SG P21/m) and BCO (base-centered

orthorhombic, SG Cmcm) [66], a special case of B19′ structure with lattice parame-

ters satisfying certain geometric conditions. At high-temperatures, these alloys have

the cubic B2 structure, which deforms spontaneously through one of the three tran-

sition pathways (Fig. 36 of Ref. [67]) to low-symmetry structures upon cooling. The

transformation from B2→ B19′ occurs in quenched NiTi, B2→ R→ B19′ occurs in

Ni4Ti3 and B2 → B19 → B19′ occurs in ternary Ti49.5Ni45.5Cu5.0 and quaternary

Ti50Ni44Cu5Al alloys [68]. Fundamental understanding of the microscopic coupling

governing these transition pathways is essential to design of improved NiTi-based

shape memory alloys.

Several first-principles studies of NiTi [65,66,69–71] focused on accurate predic-

tion of structural parameters of its low-temperature phases and their electronic and

vibrational properties, complementing the experimental results. In earlier theoreti-

cal works on NiTi [72, 73], B19 phase was found to be a relevant metastable phase,

and it was suggested that the MT occurs in two steps B2→ B19→ B19′. However,

this was suggested to be unlikely in a recent work of Strachan et al. [69], who showed

that B19 phase is unstable. Seminal first-principles theoretical analysis of Huang

et al. [66] showed that the BCO structure is the ground state of NiTi, while it is

yet to be observed experimentally. More importantly, single crystal BCO structure

can not store shape memory at atomic-scale because it is connected to B2 structure

along non-unique atomistic paths of transformation.

Thus, theoretical prediction of BCO as the ground state structure of NiTi had

been a puzzling result. Haskins et al. [63] resolved this puzzle by determining the
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free energies of B19′ and BCO structure using thermodynamic integration within

ab initio molecular dynamics (AIMD). They confirmed that BCO is the ground

state structure of NiTi, while B19′ structure gains stability at T > 75 K. Some

of the recent theoretical works used molecular dynamics (MD) [74–76] to simulate

temperature-dependent structural phase transformation in NiTi, with a semiempiri-

cal model derived from the second-moment approximation of tight-binding method.

With focus primarily on the transition temperature (TM), their estimates of TM are

in good agreement with experiment of NiTi. Haskins et al. [63] performed AIMD

simulations to estimate free energies along the path of transformation between B2

and B19′ structures. Their estimate of the transformation temperature is approxi-

mately 500 K, which is about 180 K above experimental results [77]. However, the

microscopic picture and interactions governing the MT are not quite clear.

The monoclinic B19′ structure of NiTi stores its shape memory, as it undergoes

a reversible transformation upon heating to the B2 phase involving {01̄1}<011>

shuffle and {100}<011> non-basal shear. In the absence of non-basal shear, B2

transforms into the B19 structure [78, 79]. Elastic moduli of the cubic structure

corresponding to {01̄1}<011> basal shear and {100}<011> non-basal shear are

C ′=(C11 − C12)/2 and C44 respectively, and their ratio is called the anisotropy fac-

tor A= C44/C
′. Ren and Otsuka [80] presented a Landau-like model to study MT

in NiTi taking into account {01̄1}<011> shuffle, {100}<011> non-basal shear and

{01̄1}<011> basal shear as three order parameters, and determined their contribu-

tions in different phases of NiTi. Otsuka et al. [67] proposed that a material with

10 < A < 20 exhibits a B2 to B19 transformation, while a material with the smaller

value of A (∼ 2) exhibits B2 to B19′ transformation. Anisotropy factor (A) is a

physically sensible macroscopic descriptor, as its large value essentially means sta-

bilizing B19 structure as the non-basal shear is suppressed in the low-temperature

phase due to high energy (∝ C44) cost. They also highlighted that {01̄1}<011>
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shuffle is related to softening of M-point phonons [67]. Though strain and phonon

softening provide important information relevant to the MT, it is not clear (i) what

the primary and secondary order parameters are, and (ii) which strain-phonon cou-

pling drives the MT to B19 versus B19′ structures. Indeed, the pathway of MT

depends on a delicate competition between different microscoping couplings be-

tween phonons and strain, and a quantitatively accurate microscopic model and its

theoretical analysis are needed to understand the material-specific physics of MT.

In this chapter, we present detailed ab initio and Landau theoretical analysis

of the MT in NiTi with focus to uncover microscopic mechanisms and couplings.

While the martensitic transformation involves twin and planar fault structures de-

viating from the single crystalline phases, our goal here is to analyze the single

crystal structural transformation the B19′ phase to B2 phase with temperature. In

Sec. 3.2, we present details of the methodology used in our first-principles calcula-

tions, structural parameters and energies of NiTi phases. In Sec. 3.3, we present

T-dependent vibrational free energies of B19, B19′ and BCO structures, adding to

the resolution of puzzling issue of their relative stability of B19′ and BCO structures

of NiTi. In Sec. 3.4, we uncover the relevant order parameters of MT and their rela-

tionship with phonons and strain. In Sec. 3.5, we present an effective Hamiltonian

(Heff ) with parameters determined to capture the low energy landscape of various

NiTi structures. In Sec. 3.6, we present results of Monte Carlo simulations of Heff

to determine temperature and pressure dependent MT, uncovering the soft mode

behavior. We present Landau theoretical analysis in Sec. 3.7 to identify specific

couplings in Heff that stabilize B19 and B19′ phases. In Sec. 3.8, we present re-

sults of structural disorder and microstructures relevant to MT in NiTi using Heff

analysis, and finally conclude our work in Sec. 3.9.
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3.2 First-principles computational details and struc-

tural parameters

Our first-principles calculations within the density functional theory (DFT) were

performed with a plane-wave pseudopotential scheme implemented in the Quan-

tum Espresso (QE) package [81], with a generalized gradient approximation (GGA)

and Perdew-Burke-Ernzerhof (PBE) [32] form of exchange-correlation energy func-

tional. In self-consistent Kohn-Sham (KS) calculations with primitive unit cells, the

Brillouin Zone (BZ) integrations were sampled on uniform meshes of 18 × 18 × 18

k-meshes for B2 structure, and 18 × 12 × 12 k-meshes for B19, B19′ and BCO

structures, and note that these uniform k-meshes include Γ-point.

To check the accuracy of our quantum-mechanical calculations, specially the

energy of B19′′ (at γ =∼ 101o, a monoclinic structure intermediate to B19′ and

BCO [69]) relative to B19′ (at γ =∼ 97.8o) and BCO structures (which is within

∼1 meV), we tested the convergence of total energies with respect to energy cutoffs

used to truncate the plane-wave basis representing the Kohn-Sham wave functions

(Fig. 3.1). While total energies of these structures shifted with increasing the energy

cutoff and converged at 100 Ry (Fig. 3.1), their relative energies do not change

above the cutoff energy of 40 Ry. We thus performed the structural optimization

calculations at energy cutoffs of 40 Ry.

We relaxed B19′ structure to minimize energy with respect to atomic positions

keeping lattice parameters fixed at these in Ref. [66] until the force on each atom is

less than 2 meV/Å. At these lattice parameters of B19′, shear stresses (σxy = −10.5

kbar) are a bit high, and the structure is thus not completely optimized. When B19′

structure is relaxed with respect to both lattice parameters and atomic positions

until the magnitude of stresses are less than 0.1 kbar (and force on each atom is

less than 2 meV/Å), it transforms into B19′′ structure. Thus, it is clear that B19′
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at experimental lattice parameters is unstable with respect to B19′′ (Table 3.1).

Optimization of the BCO structure with respect to its atomic positions and lattice

parameters relaxed until the magnitude of stresses are less than 0.1 kbar (and force

on each atom is less than 1 meV/Å), and it is lower in energy with respect to B19′′

structure (Table 3.1).
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Figure 3.1: Total energies of B19′ (black), B19′′ (red) and BCO (blue) structures of
NiTi with respect to B19′′ at 40 Ry energy cutoff.

We reconfirm structural parameters and relative energies of the structures of

NiTi using (i) local density approximation (LDA) as parametrized by Perdew-Zunger

[82] pseudopotential implemented in QE at energy cutoffs of 50 Ry and 400 Ry to

truncate the plane-wave basis set for representing Kohn-Sham wavefunctions and

charge density respectively at the uniform mesh of 20 × 16 × 16 k-points, and (ii)

SCAN meta-GGA exchange-correlation functional [83, 84] as implemented in the

VASP code [85, 86] along with projector augmented wave (PAW) potentials [87].

Our estimates of structural parameters and energies of B2, B19, B19′, B19′′ and

BCO phases of NiTi agree well with earlier theoretical works [69,88–90], structural

parameters of B2 and B19′ structures agree well with experiments [55, 57] as well,
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and reconfirm that BCO is the most stable of the structures of NiTi (Table 3.1),

though their relative energies depend on the flavor choice of (exchange-correlation

energy functional) of DFT. We refer to B19′′ as B19′ in our rest of analysis, as both

the structures are monoclinic and exhibit SME [69].

Table 3.1: Structural parameters (4 atoms per unit cell) and energies of B2, B19,
B19′, B19′′ and BCO phases of NiTi relative to B19′′ structure as a reference, ob-
tained with different computational schemes.

Phase Space group Method a(Å) b(Å) c(Å) γo E − EB19′′

(meV/f.u)

B2 Pm3̄m PBE-GGA 3.004 4.248 4.248 90 75.3

PZ-LDA 2.937 4.153 4.153 90 112.1

SCAN metaGGA 2.966 4.195 4.195 90 156.7

USPP-GGA [66] 3.009 4.255 4.255 90 84.0

Exp [55] 3.015 4.264 4.264 90

B19 Pmma PBE-GGA 2.832 4.589 4.168 90 28.3

PZ-LDA 2.644 4.553 4.165 90 19.8

SCAN metaGGA 2.805 4.565 4.097 90 45.9

USPP-GGA [66] 2.776 4.631 4.221 90 24.0

B19′ P21/m PBE-GGA 2.929 4.686 4.048 97.8 4.9

USPP-GGA [66] 2.929 4.686 4.048 97.8 0.0

PAW-GGA [69] 2.929 4.686 4.048 97.8 1.6

PBE-GGA [88] 2.933 4.678 4.067 98.3 6.0

PBE-GGA [89] 2.732 4.672 4.234 95.3 16.0

Exp [57] 2.898 4.646 4.108 97.8

B19′′ P21/m PBE-GGA 2.935 4.733 4.027 100.9 0.0

PZ-LDA 2.846 4.722 3.932 103.8 0.0

SCAN metaGGA 2.907 4.726 3.953 101.9 0.0

PAW-GGA [69] 2.945 4.769 4.034 101.8 0.0

PBE-GGA [88] 2.923 4.801 4.042 102.4 0.0

PBE-GGA [89] 2.917 4.780 4.047 100.0 0.0

PAW-GGA [90] 2.916 4.767 4.032 102.2 0.0

BCO Cmcm PBE-GGA 2.928 4.910 4.006 107.1 -1.6

PZ-LDA 2.851 4.813 3.923 107.1 -2.2

SCAN metaGGA 2.891 4.888 3.937 107.3 -0.4

USPP-GGA [66] 2.940 4.936 3.997 107.0 -16.0

PAW-GGA [69] 2.932 4.926 4.012 107.3 -2.2

PBE-GGA [88] 2.928 4.923 4.017 106.6 -5.0

PBE-GGA [89] 2.914 4.927 4.021 107.3 -1.0

PAW-GGA [90] 2.916 4.901 4.015 107.3 -1.0

We determined dynamical matrices and phonon spectra within the framework

of DFT linear response (DFT-LR) at q-points on a 6 × 6 × 6 mesh for B2, and
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2 × 2 × 2 mesh in the BZ for B19, B19′ and BCO structures implemented in QE.

We estimated the free-energies of B19, B19′ and BCO structures of NiTi using,

G(S) = E(S) + F ph
stable(S) + F ph

unstable(S), (3.1)

where E(S) and G(S) are the total and free energies of the optimized structures

S, respectively. F ph
stable(S) and F ph

unstable(S) are the vibrational free energies of stable

and unstable phonons, respectively (details of methods to compute these terms are

presented in Chapter 2, Sec 2.4).

3.3 Resolution of the puzzle of relative stability

of B19′ and BCO structures

Each Ti atom in B19′ phase has seven first nearest neighbor (NN) Ni atoms (three

in (001)B19′ plane and four in (010)B19′ plane) at a distance 2.55 Å and one second

NN Ni atom in (001)B19′ plane at a distance 4.27 Å (Fig. 3.2a), which are related to

eight of its first NN Ni atoms at a distance 2.60 Å (
√

3a/2) in the B2 structure (a

is the lattice parameter of B2 structure). In B2 to B19′ transformation, one of the

eight NN Ni atoms in B2 structure becomes the second NN in B19′ structure and

vice versa. Since only one Ni atom (per Ti atom) is involved in the change in the

NN environment of the B19′ structure, it allows to remember the structural path

of transformation and the shape of the B2 structure. In contrast, each Ti atom in

the BCO structure has seven first NN Ni atoms (three in (001)BCO plane and four

in (010)BCO plane) at a distance 2.56 Å, and two identical second NN Ni atoms

in (001)BCO plane at a distance 3.89 Å (Fig. 3.2b). During the transformation of

BCO to B2 structure, either of the second NN Ni atoms can become the first NN Ni

atom of Ti in B2 structure. Thus, the BCO to B2 transformation can occur along



3.3 Resolution of the puzzle of relative stability of B19′ and BCO structures 35

more than one symmetry equivalent atomistic pathways, involving evolution of any

one of the two Ni atoms in the second shell of Ti in BCO to the first neighbour

Ni of B2 structure, and hence the BCO structure does not memorize at the atomic

scale the shape of B2 phase uniquely, as shown in Ref. [66]. However, the shape

memory could be stored at micro-structural level and through its transformation to

B19′ phase stabilized under residual internal stresses.

Figure 3.2: Subtle difference between B19′ (at γ = 100.90) (a) and BCO (at γ =
107.30) (b) structures of NiTi. Blue and red bonds connect a Ti (blue) atom with its
first and second nearest neighbors Ni (red) atoms respectively. The second nearest
neighbor sites of Ti are occupied by two and one Ni atoms in BCO and B19′ structure
respectively.

We note that the puzzling issue of BCO as the ground state structure of NiTi has

been resolved by Haskins et al. [63], who obtained free energies of these structures

from AIMD and showing that the B19′ structure stabilizes above T > 75 K. We

note that their analysis is based on classical statistical mechanics, and we comple-

ment it here with quantum statistical mechanics, in which Bose-Einstein statistics

of phonons is used. We determined their phonon spectra using DFT linear response

(DFT-LR), and confirm the results of Ref. [61, 63–65] that M5′ phonon mode is

the strongest lattice instability of B2 structure (ω ∼57i cm−1, Fig. 3.3a). In B19

structure, one of the transverse acoustic (TA) phonon branches is weakly unstable

(ω ∼33i cm−1) along Γ → Y direction (Fig. 3.3b), little different from the results
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of Ref. [65] which do not show any imaginary frequency along Γ → Y direction.

A TA phonon branch in Γ → E direction of B19′ structure exhibits a weak insta-

bility (ω ∼8i cm−1, Fig. 3.3c) in our analysis, slight different from the results of

Ref. [63–65] (where no imaginary frequency phonons found along Γ→ E direction).

We note that unstable modes are expected in the phonon spectra of B19 and B19′

as they are consistent with this instability (against shear strain) of these structures

with respect to BCO structure [66]. Our calculated phonon dispersion of the BCO

structure, the ground state, exhibits no instability anywhere in the BZ (Fig. 3.3c),

and is in good agreement with Ref. [63, 64].
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Figure 3.3: Phonon spectra along high-symmetry lines of B2 (a), B19 (b), B19′

(black) and BCO (red) (c) structures of NiTi obtained using DFT-LR calculations.
Unstable modes with imaginary frequencies (ω2 < 0) are shown with negative values.
Difference between free-energies of B19 and B19′ structures (black line) and BCO
and B19′ structures (red line) (d).

We now estimate the free energies of B19, B19′ and BCO structures using
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Eq. (3.1), and we find ∆G = GB19 − GB19′> 18 meV/f.u. at T up to tempera-

tures 400 K, and thus conclude that B19 structure is unlikely to occur at low-T. At

T = 0 K, ∆G = GBCO − GB19′ = -0.10 meV/f.u. (while this is within the error of

our computations, we have tested its convergence with respect to q-mesh), revealing

nearly equal stability of BCO and B19′ structures within our error bars. However,

at T > 43 K B19′ structure gain the stability over BCO structure (Fig. 3.3d). We

confirm the transformation from BCO to B19′ structure as it was studied earlier

using AIMD [63], and quasi-harmonic approximation (QHA) [64]. Our estimate of

transformation temperature from BCO to B19′ is lower than that in Ref. [63] because

of the quantum statistical approach used here versus classical approach used in their

work (zero-point motion typically suppress the ordering at low-T), and Ref. [64] (at

T = 100 K). However, the BCO phase deforms readily and transforms to B19′ phase

in the response to stresses, and shape memory effect is thus strongly influenced by

stresses and planar twining faults.

3.4 Identification of order parameters

We now identify the order parameters of the MT in NiTi by deriving atomic posi-

tions and lattice vectors of its low-symmetry B19 and B19′ structures as changes

or distortions of the reference B2 structure expressed in terms of its phonon modes

and strains respectively. While M5′ , M2′ and M4′ phonons are involved in the trans-

formation of B2 to B19′ (Fig. 3.4a-3.4c, 3.4e), M5′ phonon alone drives the B2 to

B19 structural transformation (Fig. 3.4a, 3.4d). Dominant structural instability of

M5′ mode makes it the order parameter common to both B2→ B19 and B2→ B19′

phase transformations. The quantitative estimation of phonons and strains involved

in transformations to B19 and B19′ structures of NiTi are listed in Table 3.2. While

we find that {01̄1}<011> basal shear does not constitute an order parameter of any
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of these structures, it can arise when the transformation occurs under applied stress

as seen in earlier reports [78, 79]. It is evident from our analysis that Bain strain,

pure shear and hydrostatic strains are involved in B2 to B19 (and B19′) transfor-

mations. In B2 to B19 transformation, we find only four order parameters (M5′ , s2,

s3 and s4), while in B2 to B19′ seven order parameters (M5′ , M2′ , M4′ , s2, s3, s4

and s5) are involved. Thus the couplings of {100}<011> non-basal shear deforma-

tion with M2′ and M4′ phonons are expected to be relevant to the transformation

to B19′ structure. The dependence of secondary order parameters on the primary

order parameter is nonlinear (See Fig. 3.5); hence we can not combine them into a

single one as a linear combination.

Figure 3.4: Order parameters of B2 → B19 and B2 → B19′ structural transforma-
tions. Atomic displacements of M5′ (a), M2′ (b) and M4′ (c) modes at ~q = π

a
(011),

shown in 1×
√

2×
√

2 supercell of B2 structure. While M5′ phonon and orthorhombic
strain of supercell of B2 give B19 structure (d), M5′ , M2′ , M4′ modes and monoclinic
strain together give B19′ structure (e). The planar unit shaded with light red colour
at c/2 distance along [0 1̄ 1] direction contains one Ti (blue) and one Ni (red) atom
on its edges-centers.
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order parameter (b) on the primary order parameter M5′ . In B2 structure all order
parameters are zero.

3.5 Construction of effective Hamiltonian

Having identified the relevant phonons and strains, we now construct an effective

Hamiltonian (Heff ) that models the low-energy landscape of NiTi with special at-

tention to these phonons, strains and their interactions. Since the BCO structure

occurs in a vanishingly small subspace of configurations given by certain geometric

conditions on B19′ structural parameters, and their relative stability depends on

quantum vibrational energy not captured by Monte Carlo or Molecular dynamics,

we will focus our attention on the energy landscape and paths relevant to B2, B19′

and B19 phases in our statistical mechanical analysis of the MT.

We follow here the scheme of the lattice Wannier functions (LWFs) in Ref.

[22], and identify the symmetry invariant subspaces of the relevant degrees of free-

dom starting with full phonon dispersion of B2 structure obtained along the high-

symmetry lines (Γ→ X →M → Γ→ R→M , see Fig. 3.3a) in the BZ. Subspaces

of acoustic and optical phonons are separated by a gap in frequencies and involve

modes dominated by Ni and Ti displacements respectively. Using symmetries and
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Table 3.2: Order parameters (M-point phonon modes at ~q = π
a
(011) of the

cubic B2 structure and strain tensor components) associated with various low-
symmetry structures of NiTi, obtained from first-principles calculations. The am-
plitudes of phonon eigenmodes are in unit of lattice constant of B2 structure,
and phonon eigenmodes are expressed in terms of atomic displacements êph =
|Tix, T iy, T iz, Nix, Niy, Niz >. The strain eigenmodes s = |ε1, ε2, ε3, ε4, ε5, ε6 >,
are in the Voigt notation. (ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = 2εyz, ε5 = 2εzx and
ε6 = 2εxy).

Modes Eigenmode Character B2 B19 B19′

M5′ |0, 0.33, 0.33, 0, 0.94, 0.94 > {01̄1}<011> Basal shuffle 0 0.075 -0.095

M2′ |0, 0, 0, 1, 0, 0 > {01̄1}<100>, Ni displacements 0 0 0.066

M4′ |1, 0, 0, 0, 0, 0 > {01̄1}<100>, Ti displacements 0 0 -0.096

s1
1√
2
|0, 1,−1, 0, 0, 0 > {01̄1}<011> Basal shear 0 0 0

s2
1√
6
| − 2, 1, 1, 0, 0, 0 > Bain strain 0 0.072 0.047

s3
1√
3
|1, 1, 1, 0, 0, 0 > Hydrostatic strain 0 0.003 0.017

s4 |0, 0, 0, 1, 0, 0 > {010}<001> Pure shear 0 0.099 0.162

s5
1√
2
|0, 0, 0, 0, 1, 1 > {100}<011> Non-basal shear 0 0 -0.199

eigenvectors of the zone boundary phonons, we determine Ni-centric {~η} and Ti-

centric {~τ} localized LWFs to span these subspaces of phonons.

Using the cubic symmetry (of B2 phase), we expressHeff as an explicit symmetry

invariant Taylor expansion in ~ηi, ~τi and homogeneous strains (εαβ), i indicating the

lattice unit cell to which ~ηi and ~τi belong. Heff consists of four parts:

Heff = HNi
eff (~ηi) +HT i

eff (~τi) +Hspc(~ηi, ~τi, εαβ) +Helastic(εαβ), (3.2)

where HNi
eff (~ηi) and HT i

eff (~τi) operate in the subspaces of acoustic and optic

phonons respectively. Helastic(εαβ) is the linear and nonlinear elastic energy of ho-

mogeneous strain εαβ, and the coupling of εαβ with both sets of LWFs is included

in Hspc(~ηi, ~τi, εαβ). We note that inhomogeneous (spatially varying) strain field is

captured here by the acoustic phonons: εαβ(r) = 1
2
(∂ηα
∂rβ

+
∂ηβ
∂rα

). Energetics of εαβ(r)

captured in HNi
eff has to be consistent with the energies of homogeneous strain εαβ
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captured in Helastic. This is achieved by ensuring the equivalence between Helastic

and HNi
eff , Hspc in the long-wavelength limit.

3.5.1 Effective Hamiltonian of acoustic modes: HNi
eff

HNi
eff (~ηi) represents energetics of acoustic phonons (and inhomogeneous strain),

which include all the lattice instabilities in NiTi, i.e. unstable modes (Fig. 3.3a),

This part of effective Hamiltonian is invariant under translational and rotational

symmetries. It includes harmonic and anharmonic terms, which relate to linear and

nonlinear elastic energy terms in Helastic in the long-wavelength (continuum) limit.

To impose the translational symmetry, we express its terms using differences in ~ηi’s

at neighboring sites and their dot products. In the harmonic part, we consider dif-

ferences between ~ηi’s up to third NN sites, with a general form permitted by the

symmetry of space group Pm3̄m as follows:

Hhar(~η) =
1

2

N∑
i=1

[
6∑
j=1

{A11|~η1ij|2 + A12(~η1ij · d̂1j)
2}

+
12∑
j=1

{A21(~η2ij · d̂2j)
2 + A22(~η2ij · d̂21j)

2 + A23(~η2ij · d̂22j)
2}

+
8∑
j=1

{A31|~η3ij|2 + A32(~η3ij · d̂3j)
2}], (3.3)

where ~η1ij, ~η2ij, ~η3ij denote the LWFs differences between ~ηi at site i and its ~ηj

first, second and third NNs at site j respectively. d̂1j, d̂2j,d̂3j denote unit vectors

along the directions of first, second and third NN sites j respectively. d̂21j and

d̂22j are unit vectors perpendicular to d̂2j. Aij’s are the harmonic coefficients in

HNi
eff , and determined from force constants of acoustic phonons at high symmetry

q-points (M and R) and ~qΣ = π
3a

(0, 1, 1). Linear combinations of these coefficients

give the corresponding eigenvalues of acoustic phonons. Since we have six equations
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Table 3.3: Linear combinations of coefficients in the harmonic terms in HNi
eff at a

q-point give the eigenvalue of corresponding phonon. M2′ and M5′ represent TA2

and doubly degenerate unstable (LA and TA1) modes at M-point, respectively. Σ1,
Σ3 and Σ4 represent LA , TA1 and TA2 modes at Σ-point respectively, and R25′

represents triply degenerate acoustic mode at R-point.

Acoustic phonon Linear combination of the coefficients Eigenvalue of acoustic phonon

(eV/f.u)

M2′ 4A11 + 4A21 + 4A22 9.22

M5′ 4A11 + 2A12 + 2A21 + 2A22 + 4A23 -4.19

Σ1
1
2
A11 + 1

4
A12 + A21 + 1

4
A22 + 1

2
A23 + 3

2
A31 + A32 7.24

Σ3
1
2
A11 + 1

4
A12 + 1

4
A21 + A22 + 1

2
A23 + 3

2
A31 0.80

Σ4
1
2
A11 + 1

2
A21 + 1

2
A22 + 3

4
A23 + 3

2
A31 + 1

2
A32 1.95

R25′ 6A11 + 2A12 + 8A31 + 8
3
A32 5.65

(Table 3.3) and seven coefficients, we use singular value decomposition (SVD) to

determine these coefficients, and have listed them in Table 3.7.

In the anharmonic part of HNi
eff , we considered differences in ~ηi’s up to third

NN sites in the third-, and fourth-order terms, which are needed to include inho-

mogeneous strain correctly in the long-wavelength limit (interaction of the first and

second NN sites is zero for shear strain in third-order terms (See Table 3.4), and

hence we need the third NN sites interaction). Due to cubic symmetry, odd-order

terms do not contribute to the energy of phonons at high-symmetry q-point, but

do contribute in the long-wavelength limit. We approximated interaction in the

third-order terms by considering the dominant term in interaction with NN sites al-

lowed by the cubic symmetry. Fourth-order interaction terms include the full cubic

anisotropy for the first NNs and isotropic terms for the second and third NNs. We

simplified sixth- and eighth-order terms restricting to the isotropic ones in differ-

ences between ~ηi’s up to first NNs. Since our nonlinear elastic energy includes terms

up to fourth-order, we did not include fifth- and seventh-order terms in the anhar-

monic part of HNi
eff . Moreover, the MT in NiTi is primarily governed by unstable

M-point phonons, which are not affected by the fifth- and seventh-order terms. We

have tested that the errors associated with such truncation are less than 1% of the
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energy differences.

Hanh(~η) =
N∑
i=1

[B31

6∑
j=1

(~η1ij · d̂1j)
3 +B32

12∑
j=1

(~η2ij · d̂2j)
3 +B33

8∑
j=1

(~η3ij · d̂3j)
3

+
6∑
j=1

{B41(η4
1ijx + η4

1ijy + η4
1ijz) +B42(η2

1ijxη
2
1ijy + η2

1ijyη
2
1ijz + η2

1ijzη
2
1ijx)

+ B43(~η1ij · d̂1j)
4 +B44|~η1ij|2(~η1ij · d̂1j)

2}+B45

12∑
j=1

|~η2ij|4 +B46

8∑
j=1

|~η3ij|4

+
6∑
j=1

{B61|~η1ij|6 +B81|~η1ij|8}], (3.4)

where Bij’s are coefficients of anharmonic terms. Third-order terms of HNi
eff

coefficients are related to the nonlinear elastic moduli. Thus, these third-order coef-

ficients (B31, B32 and B33) are obtained from the corresponding third-order elastic

moduli. Since there are only three coefficients, we use three inequivalent strain

modes (hydrostatic strain, Bain strain and shear strain) to calculate these coeffi-

cients (See Table 3.4). Fourth-order terms in HNi
eff contribute to energy of phonons

at both high-symmetry q-points and long-wavelength limit. We have six fourth-

order coefficients in the HNi
eff , which are calculated by freezing doubly degenerate

unstable M5′ (ηy and ηz), stable M2′ (ηx) acoustic phonons and their linear combina-

tions (Fig. 3.6). We fitted the total energy of configurations obtained as structural

distortions with these phonon modes to a polynomial of 8th order. We used two

strain modes (hydrostatic and shear strain modes) to connect with behavior in the

long wavelength limit (Table 3.5). To determine the coefficients of sixth- and eight-

order terms in HNi
eff , (128B61 = −3.7×104 eV/f.u) and (512B81 = 8.3×105 eV/f.u),

we fit the polynomial to double-well energy of M5′ mode. We used gnuplot soft-

ware for fitting these data to polynomials (values of all these coefficients are listed

in Table 3.7), and find that the maximum fitting errors in second-, fourth-, sixth-

and eight-order coefficients are ±0.13%, ±0.31%, ±1.58% and ±3.85% respectively.
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These are negligible and do not affect the energy landscape and its impact on the

MT.
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Figure 3.6: Total energies of cell-doubling structural distortions (~η at ~q = π
a
(0, 1, 1)).

Lines represent the fits obtained with the 4th, 6th and 8th anharmonic parameters in
Heff .

,

Table 3.4: Strain mode is represented with s = |ε1, ε2, ε3, ε4, ε5, ε6 >, in the
Voigt notation. Hydrostatic, Bain and shear strain modes are represented by
shydro = ε|1, 1, 1, 0, 0, 0 >, sBain = ε| − 2, 1, 1, 0, 0, 0 > and sshear = ε|0, 0, 0, 1, 1, 1 >
respectively. Coefficients of the 3rd order terms in HNi

eff are linear combinations of

the 3rd order elastic moduli.

Strain mode Linear combination of Linear combination of

3rd order coefficients 3rd order elastic moduli

shydro 6B31 + 33.94B32 + 41.57B33
1
2
C111 + 3C112 + C123

sBain −12B31 + 8.49B32 −C111 + 3C112 − 2C123

sshear 9.24B33 C456

3.5.2 Effective Hamiltonian of optical phonons: HTi
eff

HT i
eff (~τi) models the energetics of optical phonons which are all stable (ω2 > 0).

Hence, we include only harmonic interactions between ~τi’s up to third nearest neigh-

bor sites with a general form permitted by the symmetry of Pm3̄m space group [23]:
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Table 3.5: The amplitudes of phonon eigenmodes are in unit of lattice constant
of B2 structure, and phonon eigenmodes are expressed in terms of atomic dis-
placements êph = |Tix, T iy, T iz, Nix, Niy, Niz >. The eigenmodes at M-point
(π
a
(011)) are ηx = |0, 0, 0, 1, 0, 0 > of M2′ phonon, ηy = |0, 0, 0.33, 0, 0.94, 0 > and

ηz = |0, 0.33, 0, 0, 0, 0.94 > of doubly degenerate M5′ mode. shydro and sshear are two
strain modes.

Mode Linear combination of 4th order coefficients 4th order fitting coefficients in

in polynomial (eV/f.u)

ηx 32B41 + 64B45 468.68

ηy 32B41 + 16B43 + 16B44 + 64B45 1057.35
1√
2
(ηy + ηz) 16B41 + 8B42 + 8B43 + 16B44 + 64B45 999.11

1√
2
(ηx + ηy) 16B41 + 8B42 + 4B43 + 8B44 + 64B45 637.52

shydro 6B41 + 6B43 + 6B44 + 192B45 + 648B46
1
8
C1111 + C1112 + 3

4
C1122 + 3

2
C1123=815.68

sshear 0.75B41 + 0.375B42 + 30.75B45 + 168B46
1
8
C4444 + 3

4
C4455=112.34

HT i
eff (~τ) =

1

2

N∑
i=1

[Ã01|~τi|2 +
6∑
j=1

{Ã11|~τ1ij|2 + Ã12(~τ1ij · d̂1j)
2}

+
12∑
j=1

{Ã21|~τ2ij|2 + Ã22(~τ2ij · d̂2j)
2}+

8∑
j=1

Ã31|~τ3ij|2], (3.5)

where ~τi denotes Ti-centric LWFs at site i, ~τ1ij, ~τ2ij, ~τ3ij denote the LWFs differ-

ences between ~τi and ~τj at its first, second and third NN sites j respectively. Ãij’s are

the coefficients of harmonic interactions in HT i
eff (~τ). To determine the coefficients of

terms in HT i
eff (~τi), we use force constants of optical phonons at high symmetric q-

points (Γ, X, M and R). The linear combinations of the harmonic coefficients in HT i
eff

subspace give the eigenvalues of optical phonons (See Table 3.6) at the respective

q-points. The values of these coefficients are listed in Table 3.7.
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Table 3.6: Linear combinations of coefficients in the harmonic terms in HT i
eff at a

q-point give to the corresponding eigenvalues of optical phonons.

q-point Linear combination of the coefficients Eigenvalue of optical phonon

(eV/f.u)

Γ15
1
2
Ã01 37.77

X4′
1
2
Ã01 + 2Ã11 + 2Ã12 + 8Ã21 + 4Ã22 + 8Ã23 65.32

X5′
1
2
Ã01 + 2Ã11 + 8Ã21 + 2Ã22 + 8Ã23 20.30

M4′
1
2
Ã01 + 4Ã11 + 8Ã21 + 4Ã22 17.18

M5′
1
2
Ã01 + 4Ã11 + 2Ã12 + 8Ã21 + 2Ã22 55.52

R15
1
2
Ã01 + 6Ã11 + 2Ã12 + 8Ã23 49.95

Table 3.7: Coefficients of harmonic and anharmonic terms in effective Hamiltonian
in unit of eV/f.u..

Coeff. Values Coeff. Values Coeff. Values

A11 -2.6 Ã11 -4.5 B41 11.3

A12 3.3 Ã12 20.8 B42 -1.6

A21 4.6 Ã21 -1.2 B43 -16.9

A22 0.3 Ã22 1.7 B44 53.7

A23 -2.6 Ã31 -0.3 B45 1.7

A31 0.8 B31 0.8 B46 0.3

A32 3.2 B32 -6.9 B61 -286.1

Ã01 75.6 B33 -3.7 B81 1614.3

3.5.3 Hamiltonian of homogeneous strain: linear and non-

linear elastic energy

Large deformations (homogeneous strain) are involved during MT in NiTi as a

result of its soft second-order elastic moduli. We considered non-linear elasticity

(Helastic(εαβ)) with terms upto fourth order allowed by the cubic symmetry [91–96].

Using the Voigt notation (ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = 2εyz, ε5 = 2εzx and

ε6 = 2εxy), elastic energy is expressed as:
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Helastic(ε) = NC1(ε1 + ε2 + ε3)

+
N

2
{C11(ε2

1 + ε2
2 + ε2

3) + 2C12(ε1ε2 + ε2ε3 + ε3ε1) + C44(ε2
4 + ε2

5 + ε2
6)}

+
N

6
{C111(ε3

1 + ε3
2 + ε3

3) + 3C112(ε2
1(ε2 + ε3) + ε2

2(ε3 + ε1) + ε2
3(ε1 + ε2))

+ 6C123ε1ε2ε3 + 3C144(ε1ε
2
4 + ε2ε

2
5 + ε3ε

2
6)

+ 3C155(ε1(ε2
5 + ε2

6) + ε2(ε2
6 + ε2

4) + ε3(ε2
4 + ε2

5)) + 6C456ε4ε5ε6}

+
N

24
{C1111(ε4

1 + ε4
2 + ε4

3) + 4C1112(ε3
1(ε2 + ε3) + ε3

2(ε3 + ε1) + ε3
3(ε1 + ε2))

+ 6C1122(ε2
1ε

2
2 + ε2

2ε
2
3 + ε2

3ε
2
1) + 12C1123ε1ε2ε3(ε1 + ε2 + ε3)

+ 6C1144(ε2
1ε

2
4 + ε2

2ε
2
5 + ε2

3ε
2
6) + 6C1155(ε2

1(ε2
5 + ε2

6) + ε2
2(ε2

6 + ε2
4) + ε2

3(ε2
4 + ε2

5))

+ 12C1255(ε1ε2(ε2
4 + ε2

5) + ε2ε3(ε2
5 + ε2

6) + ε3ε1(ε2
6 + ε2

4))

+ 12C1266(ε1ε2ε
2
6 + ε2ε3ε

2
4 + ε3ε1ε

2
5) + 24C1456ε4ε5ε6(ε1 + ε2 + ε3)

+ C4444(ε4
4 + ε4

5 + ε4
6) + 6C4455(ε2

4ε
2
5 + ε2

5ε
2
6 + ε2

6ε
2
4)}, (3.6)

where N is the number of unit cells, Cij, Cijk and Cijkl are second-, third- and

fourth-order elastic moduli, C1 represents a pressure term. To calculate elastic

moduli, we fit the total energy of structures distorted along different strain modes

to fourth-order polynomial in ε. The linear combinations of second-, third- and

fourth-order elastic moduli give second-, third- and fourth-order coefficient of the

polynomial respectively (See Table 3.8), fit to energy of each strain mode using

gnuplot software. We find the maximum fitting errors in first-, second-, third- and

fourth-order coefficients to be ±0.14%, ±0.10%, ±5.05% and ±5.10% respectively,

which are negligible. Our estimates of these compliances are listed in Table 3.9.

While third- and fourth-order elastic moduli of NiTi have not been determined

theoretically and experimentally to the best of our knowledge, our estimates of

the linear elastic moduli are in good agreement with earlier theoretical [60, 97] and

experimental works [98] (Table 3.10).
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Table 3.8: In each type of strain modes sα(ε) = |ε1, ε2, ε3, ε4, ε5, ε6 >, the total
energy is expressed as a polynomial function of ε. The linear combinations of second,
third and forth order elastic moduli are equal to the values of second-, third- and
forth- order coefficients of polynomial fit to the data.

Strain mode Linear combination of Cij Linear combination of Cijk Linear combination of Cijkl
sa = ε|1, 0, 0, 0, 0, 0 > 1

2
C11

1
6
C111

1
24
C1111

sb = ε|1, 1, 0, 0, 0, 0 > C11 + C12
1
3
C111 + C112

1
16
C1111 + 1

3
C1112 + 1

4
C1122

sc = ε|1,−1, 0, 0, 0, 0 > C11 − C12 0 1
16
C1111 − 1

3
C1112 + 1

4
C1122

sd = ε|1, 1, 1, 0, 0, 0 > 3
2
C11 + 3C12

1
2
C111 + 3C112 + C123

1
8
C1111 + C1112 + 1

4
C1122 + 3

2
C1123

se = ε|0, 0, 0, 1, 0, 0 > 1
2
C44 0 1

24
C4444

sf = ε|0, 0, 0, 1, 1, 1 > 3
2
C44 C456

1
8
C4444 + 3

4
C4444

sg = ε|1, 0, 0, 1, 0, 0 > 1
2
C11 + 1

2
C44

1
6
C111 + 1

2
C144

1
24
C1111 + 1

4
C1144 + 1

24
C4444

sh = ε|1, 0, 0, 0, 0, 1 > 1
2
C11 + 1

2
C44

1
6
C111 + 1

2
C155

1
24
C1111 + 1

4
C1155 + 1

24
C4444

si = ε|1, 1, 0, 1, 0, 0 > C11 + C12 + 1
2
C44

1
3
C111 + C112 + 1

2
C144

1
16
C1111 + 1

3
C1112 + 1

4
C1122 + 1

4
C1144

+1
2
C155 + 1

4
C1155 + 1

2
C1255 + 1

24
C4444

sj = ε|1, 1, 0, 0, 0, 1 > C11 + C12 + 1
2
C44

1
3
C111 + C112 + 1

2
C155

1
16
C1111 + 1

3
C1112 + 1

4
C1122

+1
2
C1155 + 1

2
C1266 + 1

24
C4444

sk = ε|1, 0, 0, 1, 1, 1 > 1
2
C11 + 3

2
C44

1
3
C111 + C112 + 1

2
C144

1
24
C1111 + 1

4
C1144 + 1

2
C1155

+C155 + C456 + C1456 + 1
8
C4444 + 3

4
C4455

Table 3.9: Elastic moludi of Helastic(ε) in GPa, determined from first-principles.

Coeff. Values Coeff. Values Coeff. Values

C1 -1 C144 -205 C1144 2081

C11 174 C155 -201 C1155 1700

C12 155 C456 -201 C1255 2174

C44 48 C1111 15515 C1266 458

C111 -464 C1112 -1806 C1456 617

C112 -544 C1122 4732 C4444 2145

C123 -386 C1123 760 C4455 528

3.5.4 Coupling of homogeneous strain with phonons

Homogeneous strain and its coupling with LWFs (~η′s and ~τ ′s) play a crucial role in

MT. In Hspc(~ηi, ~τi, εαβ), we include couplings between homogeneous strains and (i)

quadratic terms in ~ηi’s (differences between ~ηi at site i and ~ηj at its first NN sites
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Table 3.10: Second-order elastic moduli of B2 structure of NiTi in unit of GPa.

Method C11 C12 C ′ = 1
2
(C11 − C12) C44

Present 174 154 10 48

Ref. [60] 183 146 19 46

Ref. [97] 168 144 12 50

Exp [98] 162 129 16.5 34

j, see Eq. (3.7)), and (ii) with products of Ti and Ni-centric LWFs (See Eq. 3.8).

The former captures the coupling between primary order parameter, M5′ mode and

strain, while the latter gives mixing between acoustic and optical phonons due to

strain distortions. We find that the third-order strain-phonon coupling terms are not

sufficient to capture the details of low energy phases, and hence include fourth-order

coupling between axial strain and Ni-centric LWFs (See Eq. 3.9).

H3
spc(~η, ε) =

N∑
i=1

6∑
j=1

{g31(ε1 + ε2 + ε3)|~η1ij|2

+ g32(ε1η
2
1ijx + ε2η

2
1ijy + ε3η

2
1ijz)

+ g33(ε1 + ε2 + ε3)(~η1ij · d̂1j)
2

+ g34(ε1η
2
1ijxd

2
1jx + ε2η

2
1ijyd

2
1jy + ε3η

2
1ijzd

2
1jz)

+ g35(ε1(η2
1ijy + η2

1ijz)d
2
1jx + ε2(η2

1ijz + η2
1ijx)d

2
1jy + ε3(η2

1ijx + η2
1ijy)d

2
1jz)

+ g36(ε4η1ijyη1ijz + ε5η1ijzη1ijx + ε6η1ijxη1ijy)

+ g37(ε4η1ijyη1ijzd
2
1jx + ε5η1ijzη1ijxd

2
1jy + ε6η1ijxη1ijyd

2
1jz)}, (3.7)
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H3
spc(~η, ~τ , ε) =

N∑
i=1

[h31(ε1 + ε2 + ε3){ηix
8∑
j=1

(τjydjy + τjzdjz)djx + c.p}

+ h32{ε1ηix

8∑
j=1

(τjydjy + τjzdjz)djx + c.p}

+ h33{ηix
8∑
j=1

(ε2τjydjy + ε3τjzdjz)djx + c.p}

+ h34{ε4ηix

8∑
j=1

τjxdjydjz + c.p}

+ h35{ε4

8∑
j=1

(ηiyτjy + ηizτjz)djydjz + c.p}

+ h36{ε4ηix

8∑
j=1

(τjydjz + τjzdjy)djx + c.p}

+ h37{ηix
8∑
j=1

(ε5τjy + ε6τjz)djydjz + c.p}], (3.8)

H4
spc(~η, ε) =

N∑
i=1

6∑
j=1

{g41(ε2
1 + ε2

2 + ε2
3)|~η1ij|2

+ g42(ε2
1η

2
1ijx + ε2

2η
2
1ijy + ε2

3η
2
1ijz)

+ g43(ε1(ε2 + ε3)η2
1ijx + ε2(ε3 + ε1)η2

1ijy + ε3(ε1 + ε2)η2
1ijz)

+ g44(ε1ε2η
2
1ijz + ε2ε3η

2
1ijx + ε3ε1η

2
1ijy), (3.9)

where gij’s denote couplings of strain with Ni-centric LWFs, and hij’s are the

third-order coupling that cause strain-induced mixing between acoustic and optic

phonons. These coefficients were determined from calculations of structures obtained

by freezing M-point phonon eigenvectors at the different values of strain. Values of

the third- and fourth-order coupling coefficients (See Table 3.12) are obtained as first

and second derivatives of harmonic coefficients with respect to strain respectively

(See Table 3.11).
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Table 3.11: At each type of strain modes sα(ε) = |ε1, ε2, ε3, ε4, ε5, ε6 >, value of
third- and fourth-order strain-phonon coupling coefficients are obtained as first
and second derivatives of harmonic force constants at different M-point phonon
modes. ηx = |0, 0, 0, 1, 0, 0 > and τx = |1, 0, 0, 0, 0, 0 > span the subspace of
M2′ and M4′ phonons respectively, ηy and ηz span the subspace of doubly de-
generate unstable acoustic phonon, while τy = |0,−0.94, 0, 0, 0, 0.33 > and τz =
|0, 0,−0.94, 0, 0.33, 0, 0 > span the subspace of doubly degenerate most stable opti-
cal phonon at M-point (π

a
(011).

Strain mode Phonon mode Linear combination of the coefficients 1st derivative of

eigenvalue (eV/f.u)

sa = ε|1, 0, 0, 0, 0, 0 > ηx 8g31 + 8g32 -85.78

sa = ε|1, 0, 0, 0, 0, 0 > ηy 8g31 + 4g33 58.21

sb = ε|0, 1, 0, 0, 0, 0 > ηy 8g31 + 8g32 + 4g33 + 4g44 -107.87

sc = ε|0, 1, 1, 0, 0, 0 > ηx 16g31 + 8g35 -134.16

sc = ε|0, 1, 1, 0, 0, 0 > ηy 16g31 + 8g32 + 8g33 + 4g34 + 4g35 -94.31

sd = ε|0, 0, 0, 1, 0, 0 > 1√
2
(ηy + ηz) 4g36 -71.83

se = ε|0, 0, 0, 0, 0, 1 > 1√
2
(ηx + ηy) 4g36 + 2g37 -31.57

sa = ε|1, 0, 0, 0, 0, 0 > 1
2
(ηy + ηz + τy + τz) 4g31 + 2g33 + 4

3
h31 -1.05

sb = ε|0, 1, 0, 0, 0, 0 > 1√
2
(ηy + τz) 4g31 + 4g32 + 2g33 + 2g34 -39.03

+4
3
h31 + 4

3
h32

sf = ε|0, 1, 1, 0, 0, 0 > 1
2
(ηy + ηz + τy + τz) 8g31 + 4g32 + 4g33 + 2g34 1.98

+2g35 + 8
3
h31 + 4

3
h32 + 4

3
h33

sd = ε|0, 0, 0, 1, 0, 0 > 1√
2
(ηx + τx)

4
3
h34 14.00

sd = ε|0, 0, 0, 1, 0, 0 > 1√
2
(ηy + τy)

4
3
h35 -11.22

sg = ε|0, 0, 0, 0, 1, 0 > 1√
2
(ηy + τx)

4
3
h36 34.34

sg = ε|0, 0, 0, 0, 1, 0 > 1√
2
(ηx + τy)

4
3
h37 -21.86

Strain mode Phonon mode Linear combination of the coefficients 2nd derivative of

eigenvalue (eV/f.u)

sa = ε|1, 0, 0, 0, 0, 0 > ηy 8g41 117.52

sb = ε|0, 1, 0, 0, 0, 0 > ηy 8g41 + 8g42 1.16×103

sh = ε|1, 0, 1, 0, 0, 0 > ηy 16g41 + 8g43 -9.11

si = ε|1, 1, 1, 0, 0, 0 > ηy 24g41 + 8g42 + 8g43 + 16g44 985.18
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Table 3.12: Coefficients of strain-phonon couplings part of effective Hamiltonian in
unit of eV/f.u..

Coeff. Values Coeff. Values Coeff. Values

g31 -2.8 g37 20.1 h32 33.8

g32 -7.9 g41 14.7 h33 48.3

g33 20.2 g42 130.5 h34 10.5

g34 -25.7 g43 -30.5 h35 -8.4

g35 -11.2 g44 -10.4 h36 25.8

g36 -18.0 h31 -22.6 h37 -16.4

While our Heff does not capture the details of BCO structure well, it reproduces

the lattice parameters and energies of B2, B19 and B19′ structures with negligible

errors relative to the DFT results (Table 3.13).

Table 3.13: Structural parameters (4 atoms per unit cell) and energies of B2, B19
and B19′ phases relative to B19′, obtained using DFT and Heff .

Phase Method a(Å) b(Å) c(Å) γo E − EB19′(meV/f.u)

B2 DFT 3.004 4.248 4.248 90 75.34

Heff 3.004 4.248 4.248 90 82.48

B19 DFT 2.832 4.589 4.168 90 28.34

Heff 2.812 4.713 4.101 90 35.00

B19′ FT 2.935 4.733 4.027 100.9 0.0

Heff 2.947 4.873 3.935 103.6 0.0

3.6 Monte Carlo simulations

We now analyze Heff with Monte Carlo (MC) simulations on a periodic system

containing L × L × L (L = 16) unit cells of B2 structure. We used a single-flip

update within Metropolis scheme and adjusted the step-size of configurational {~ηi,

~τi} updates to maintain the acceptance ratio of ∼ 0.5 near the transformation tem-

perature. In each Monte Carlo sweep (MCS), we picked ηi, τi randomly (totally

2L3 updates) and homogeneous strain variables L times. Thus, each MCS involves

(2L3 + L) attempts of updating configurations.
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Figure 3.7: Averages of components of strain tensor (a), absolute values of M5′ , M2′

and M4′ modes (b) as a function of temperature at ambient pressure. Histograms
of M5′ mode obtained from configurations sampled during cooling (c) at TM and its
two temperatures in its close vicinity. Square of frequency of M5′ phonon and its
Binder cumulant (d).

To identify different phases from the configurations sampled in MC simulations

at a given temperature, we accumulated absolute values of Fourier components of ηi

and τi, and obtained averages of (M5′ , M2′ and M4′ modes), and averages of strain

(<ε>) components at each temperature. To assess the possibility of hysteresis, we

approach the transformation from high (low)-temperatures by cooling (heating) the

system. In cooling simulations, we start from 200 K temperature, equilibrate the

system to the cubic phase, and reduce the temperature in steps of 5 K (and 1 K near

the transformation temperature), down to a low-temperature of 100 K. In heating
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simulations, we start from T=100 K taking B19′ structure as the initial configu-

ration and increase temperature in steps of 5 K (and 1 K near the transformation

temperature) to a high-temperature of 200 K (we checked that our results do not

depend on the choice of initial configuration). At each temperature, we used 10000

MCS for thermal equilibration and 50000 MCS for thermodynamic averaging.

Average values of homogeneous strain components ε (Fig. 3.7a), M5′ , M2′ and

M4′ modes (Fig. 3.7b) vanish at high-temperatures, and change discontinuously

to non-zero values at low-temperatures. In cooling simulations, this discontinuity

marks the martensitic transformation at TM = 163 K. In heating simulations, our

model transforms to austenite phase at TA = 169 K. It is clear (Fig. 3.7a and 3.7b)

that NiTi transforms from B2 to B19′ structure directly ruling out the intermediate

B19 structure. Results of our MC simulations reveal a sharp discontinuity in order

parameters at TM . Even more remarkable is that they change only weakly below

TM . Histograms of the primary order parameter obtained from cooling (Fig. 3.7c)

simulations reveal (i) relatively narrow distributions and (ii) a sharp jump across TM .

Bimodal nature of the histogram at TM confirms coexistence of B2 and B19′, and

the first-order character of the MT. In order to further corroborate these results, we

present frequency (ω) and Binder fourth order cumulant (C4) of the primary order

parameter (M ′
5 mode) obtained in both cooling and heating simulations:

ω2 ∝ kBT

N
(〈O2〉 − 〈O〉2)−1, (3.10)

C4 =
〈O4〉
〈O2〉2

, (3.11)

where N = L3 is the number of unit cells used in simulations and O is ~q = π
a
(011)

Fourier component of ηy. Softening in M5′ phonon frequency and its T-coefficients
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(Fig. 3.7d) below and above TM , and a discontinuity in C4 (inset, Fig. 3.7d) of

M ′
5 mode at T = 163 (169) K in cooling (heating) confirm that M5′ mode is the

primary order parameter of MT in NiTi. Our estimate of the equilibrium transition

temperature (T0 = 1
2
(TM + TA)) [99] is underestimated with respect to experiment

(TM = 318 K, TA = 320 K and T0 = 319) [77]. This is similar to the efficacy of model

Hamiltonian schemes in prediction of ferroelectrics structural transitions [23]. This

is probably because of the GGA-DFT errors in energies and structural parameters,

and needs further investigation.
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Figure 3.8: Average of absolute values of M5′ , M2′ and M4′ modes as a function of
temperature at P = -5 GPa (a) and at P = 5 GPa (b).

To assess the sensitivity of our estimates of T0 to DFT-errors in lattice constants,

we simulated Heff of NiTi at -5 GPa and 5 GPa pressures. At P =-5 GPa, transfor-

mation from B2 to B19′ structure (Fig. 3.8a) occurs at a notably higher temperature

with hysteresis over a much wider range of temperature: TM ∼ 155 K, TA ∼ 225

K and T0 = 190 K. At P = 5 GPa, in heating (we start from T=10 K taking B19′

structure as the initial configuration) simulations, the MT occurs in two steps (i)

B19′ → B19 at 60 K, and (ii) B19 → B2 at 155 K (Fig. 3.8b), with a weaker hys-

teresis over ∆T = 5 K range. While in cooling simulations, B2 structure transforms

into B19 structure at 155 K, and remains in this phase up on further cooling down
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to 10 K (B19 structure does not transform into B19′ structure). This is probably

because at P = 5 GPa, the energy difference between B19 and B19′ structure is

small (Table 3.14) and the energy barrier is higher, needing longer simulation for

a transition to occur. Thus, B19 phase can arise as a intermediate phase due to

inhomogeneous pressure and stress fields in NiTi near the transformation tempera-

ture. Secondly, T0 as well as the range of temperature of hysteresis in MT increase

with negative pressure (i.e. increase in volume of the unit cell of B2 structure). We

compared our pressure-induced martensitic transformation with the earlier experi-

mental work [100], which has been done on Ni-rich (50.375 at.% Ni) composition of

NiTi. Figure 6 of Ref. [100] shows that TM increases with increasing uniaxial stress,

which is unlikely in our work probably because we have applied hydrostatic pressure

on equiatomic NiTi.

Table 3.14: Energy difference between B19′ and B19 structures determined by Heff

at different pressures.

Pressure (GPa) EB19′−B19 (meV/f.u.)

-5 -50

0 -35

5 -8.9

We now discuss comparison between our results with the work in Ref. [63] in

which martensitic transition temperature was estimated using free energies obtained

using thermodynamic integration within AIMD. While TM predicted by our Heff

based analysis is underestimated with respect to experiment, free-energy based anal-

ysis [63] gives an overestimated TM . As both the works are fundamentally based on

density functional theory treated within the same approximation, it would appear

that this discrepancy is likely due to further approximations or truncations in con-

struction of the effective Hamiltonian. Indeed, this comparison uncovers important
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Figure 3.9: Absolute value of M5′ modes (a), and absolute values of M5′ , M2′ and
M4′ for strains clamped at zero, corresponding to the lattice parameters of B19′

structure (b) as a function of temperature at ambient pressure.

aspects of first-order structural phase transitions, which are typically fluctuation-

driven first-order phase transition in which strain-phonon coupling plays a crucial

role, as was shown in similar phase transitions in perovskite ferroelectrics [23, 101].

If fluctuations in strain (εαβ) are not allowed in a simulation, called as clamped

lattice analysis, the same effective Hamiltonian gives a second order phase transi-

tion at much higher Tc. To verify this, we simulated our Heff of NiTi with strain

clamped at the lattice parameters of B2 and B19′’s structures and found that (a) the

thermal hysteresis vanishes, confirming a second order transition, and (b) Tc’s are

much higher (200 K for zero strains of the cubic lattice, and higher than 500 K for

strains clamped at the B19′’s lattice at P=0 GPa) (See Fig. 3.9). We note that free

energy estimation in Ref. [63] is based on thermodynamic integration along a path in

the structural (strain) space, and lattice constants are kept fixed in MD simulation

at each point along this path. As fluctuations in strain are thus not included, the

estimated TM ’s from the resulting free energies are higher. More work is necessary

to obtain deeper understanding of the martensitic transitions in this context.

The hysteresis found in the vicinity of martensitic transition in our heating and
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cooling simulations is essentially due to first-order character of the martensitic tran-

sition, in a way similar to that found in simulations of ferroelectric phase transi-

tions [23]. The origin of this has been identified in fluctuations generated by the

strain-phonon coupling. While there is no time-scale in Monte Carlo simulations,

the hysteresis does arise in our quasi-static simulations, in which temperature is

varied in very small steps, and the system is equilibrated at each temperature.

Such simulated hysteresis should apply to experimental measurements carried out

at very slow rates of heating and cooling. As the systems simulated in our work

(8192 atoms) are much too small, their phase transition occurs homogeneously, i.e.

without nucleation and growth of domains (twins). Hence, it is not possible for

such simulations to be directly related to Ms and Mf temperatures observed in ex-

periments. The simulated phase transition occurs marking a sharp, global change

in structure throughout the system. Indeed, our work forms a starting point of

multi-scale modeling and simulations [102] that will allow us to treat much larger

systems.

3.7 Landau theoretical analysis of Heff

To determine the couplings that are responsible for the observed MT in NiTi, we

now present a Landau theory obtained by projecting the Heff into the subspace of

phonons at M-point π
a
(011) and strain degrees of freedom, (i) HNi

eff (~ηi) and HT i
eff (~τi)

projected on HLandau
ph (ηx, ηy, τx) (Eq. 3.12), and (ii) Hspc(~ηi, ~τi, εαβ) projected on

HLandau
spc (ηx, ηy, τx, ε1, ε2, ε4, ε5) (Eq. 3.13). To make Landau theoretical analysis sim-

ple, we exclude the high frequency M5′ optical phonon mode, which has a negligible

contribution to the relevant structures of NiTi (Table 3.15). While this simplifi-

cation is made to facilitate analytical treatment, we include all the terms in our

exact numerical analysis results of which are shown in Fig. 3.10. In the projected
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subspace, ηy and ηz span the subspace of doubly degenerate unstable M5′ phonon

modes, ηx and τx span the subspace of M2′ and M4′ phonon modes respectively. We

restrict to structures with the symmetry of orthorhombic and monoclinic phases of

NiTi with ηz = ηy, ε3 = ε2 and ε6 = ε5, and write Hamiltonian in these subspace:

HLandau
ph (ηx, ηy, τx) = a1η

2
x + a2η

2
y + a3τ

2
x + a4η

4
x + a5η

4
y + a6η

2
xη

2
y

+ a7(η2
x + 2η2

y)
3 + a8(η2

x + 2η2
y)

4, (3.12)

HLandau
spc (ηx, ηy, τx, ε1, ε2, ε4, ε5) = (g1ε1 + g2ε2)η2

x + (g3ε1 + g4ε2 + g5ε4)η2
y

+ g6ε5ηxηy + g7ε5τxηy + g8ε4ηxτx

+ (g9ε
2
1 + g10ε

2
2 + g11ε1ε2)η2

x

+ (g12ε
2
1 + g13ε

2
2 + g14ε1ε2)η2

y, (3.13)

where ai and gi are the coefficients of phonon and strain-phonon coupling terms

in the Landau energy function respectively (their values are listed in Table 3.16).

The instability of M5′ mode (a2 =-8.4 eV/f.u. < 0) corresponds to {01̄1} <0 1 1>

shuffle, whose coupling with ε1 (g3=116.4 eV/f.u.) is positive, and with ε2 (g4=-188.6

eV/f.u.) is negative. Therefore, ε1 must be negative and ε3 = ε2 positive to reduce

the energy of system, consistent with Bain strain distortion that lowers the symmetry

of cubic structure of NiTi to tetragonal one. Coupling of ηy with ε4 ({010}<0 0 1>

pure shear, g5=-143.7 eV/f.u.), transforms B2 structure to B19 structure. Though

ηx and τx represent stable phonons at M-point and linear elastic moduli are positive

definite [103], the non-basal shear strain ε6 = ε5 couples strongly with ηx, τx and ηy

(g6= -126.3 eV/f.u. and g7=137.4 eV/f.u.) stabilizing B19′ structure relative to B19

structure through structural distortions involving M ′
2 and M ′

4 modes. Rest of the

terms in Landau energy function play a supporting role in giving correct details of



60 Chapter 3.

energetics and lattice parameters of B19 and B19′ structures. From exact analysis

including all the terms, we determined the phase diagram of stability of B19 and

B19′ structures (See Fig. 3.10) in the plane of these g-couplings, which can thus be

used as descriptors of stability of these phases. If the values of these couplings (g6

and g7) were weak, B2 structure of NiTi would transform through its MT to B19

structure, not B19′. The primary order parameter (phonon mode M5′) drives the

MT, M ′
2 and M ′

4 modes and strains constitute the secondary order parameters of

the MT in NiTi that determine stabilization of B19 vs B19′ phases. Our analysis

suggests that the three order parameters [80] are not sufficient to study MT in NiTi.

Table 3.15: Values of amplitudes of LWFs and strains for different phases of NiTi,
obtained using DFT, Heff and HLandau. LWFs are in unit of aB2.

Phase Method M5′ M2′ M4′ M5′ ε1 ε2 = ε3 ε4 ε5 = ε6

ηy = ηz ηx τx τy = τz
B19 DFT 0.075 0.000 0.000 -0.003 -0.057 0.031 0.099 0.000

Heff 0.093 0.000 0.000 -0.003 -0.064 0.038 0.145 0.000

HLandau 0.093 0.000 0.000 0.000 -0.062 0.037 0.146 0.000

B19′ DFT 0.095 0.066 -0.096 -0.002 -0.028 0.029 0.162 -0.141

Heff 0.102 0.075 -0.083 -0.004 -0.028 0.034 0.214 -0.177

HLandau 0.104 0.072 -0.083 0.000 -0.032 0.036 0.212 -0.172

3.8 Structural disorder and microstructures rele-

vant to MT in NiTi

In addition to bulk crystalline phases, a martensitic transformation invariably in-

volves planar faults and microstructures (e.g. twinning and stacking faults). We now

demonstrate the efficacy of Heff in capturing the physics of phases with structural

disorder and microstructures in NiTi. We present stability analysis of (i) average

austenitic structures reported in Refs. [104,105], and (ii) (100)[011]B2 twinning and

stacking faults that occur in the martensitic B19′ structure.
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Table 3.16: Coefficients of terms in Landau energy function are linear combinations
of the parameters in Heff .

Landau coeff. Heff coeff. Values (eV/f.u)

a1 4A11 + 4A21 + 4A22 9.2

a2 8A11 + 4A12 + 4A21 + 4A22 + 8A23 -8.4

a3
1
2
Ã01 + 4Ã11 + 8Ã21 + 4Ã22 17.2

a4 32B41 + 64B45 468.9

a5 64B41 + 32B42 + 32B43 + 64B44 + 256B45 4.0×103

a6 64B42 + 64B44 + 256B45 2.1×103

a7 128B61 -3.7×104

a8 512B81 8.3×105

g1 8g31 + 8g32 -85.8

g2 16g31 + 8g35 -134.2

g3 16g31 + 8g33 116.4

g4 32g31 + 16g32 + 16g33 + 8g34 + 8g35 -188.6

g5 8g36 -143.7

g6 16g36 + 8g37 -126.3

g7
16
3
h36 137.4

g8
8
3
h34 28.0

g9 8g41 + 8g42 1.2×103

g10 16g41 + 8g43 -9.1

g11 16g44 -167.0

g12 16g41 235.0

g13 32g41 + 16g42 + 16g44 2.4×103

g14 16g43 + 16g44 -655.3

3.8.1 Stablity of average austenitic structures

To simulate the reported average austenitic structures, we start with B2 structure

and relax its structural distortions in the subspace of unstable M5′ phonons using
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Heff in MC simulation at T=10 K, constraning ~τ ′is and ε to be zero. We find a

structure resulting from a combination of two unstable M5′ phonons at distinct M-

points, π
a
(011) and π

a
(101), which break the translational symmetry of B2 structure,

transforming it to a stable hexagonal austenite structure reported in Refs. [104,105].

This hexagonal structure (See Fig. 3.11a) has a periodic unit cell with 24 atoms

(12 Ni and 12 Ti atoms) and ahex = bhex = 2
√

2a and chex =
√

3a (a is the lattice

parameter of B2 structure) along [01̄1]B2, [1̄01]B2 and [111]B2 directions respectively.

It is lower in the energy by 9.8 meV/f.u. than the B2 structure, and higher in the

energy by 71meV/f.u. than the B19′ structure. To stabilize this austenitic structure,

Ni and Ti atoms displace from their high symmetry positions in the B2 structure

along the eigenvectors of unstable M5′ phonons such that the average structure

remains B2. This is one of the many possible stable austenitic structures, and

similar to the hexagonal structure of Refs. [104, 105]. The main difference between

this hexagonal structure and that of Refs. [104, 105] is the size of the respective

periodic unit cell. The hexagonal structure reported in Refs. [104,105] has 54-atoms

unit cell, where ahex = bhex = 3
√

2a and chex =
√

3a. Thus, Heff does capture

the physics and stability of average austenite structure like the one reported in

Refs. [104,105].

3.8.2 Microstructure of NiTi

To examine microstructures relevant to the MT in NiTi, we simulated (100)[011]B2

twinning and stacking faults in its martensitic B19′ structure using Heff . Separated

by a (100) plane of the B2 structure, we introduced two domains (See Fig. 3.11b-

3.11d) in a L×L×L system. Domains (I, x ≤ L/2) and (II, x > L/2) contain states

of B19′ structure with distinct orientation, charecterized by order parameters. In

the twinned structure, M5′ and non-basal shear (ε5 and ε6) order parameters have

opposite values in the two domains. On the other hand, in stacking faulted structure,
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Figure 3.11: Analysis based on Heff gives stable atomic structure of the hexagonal
austenitic phase (a). Optimized atomic structures of single-crystal (b), twinned B19′

(c), and stacking faulted (d) B19′ phase of NiTi obtained from MC simulations of
Heff at 10 K temperature. Blue boxes in (b), (c) and (d) represent B19′ structural
unit cell. M5′(+) is the primary order parameter, and M5′(−) represents its opposite
value. ε5 and ε6 are the components of non-basal shear strain, which are the same
in both domains of the stacking faulted structures, while have opposite values in the
two domains of twinned structure of NiTi.

M5′ , M2′ and M4′ have opposite values in the two domains though non-basal shear

strains are the same. Hydrostatic, Bain and pure shear strains (secondary order

parameters) are same in both domains of twinned and stacking faulted structures.

We constructed the twinning and stacking faults in B19′ structure of NiTi using

the optimized values of order parameters obtained by Heff . We estimated faults

formation energy in B19′ structure of NiTi as follows.

EFE =
EFP − nEB19′

2A
, (3.14)

where EFE, EFP and EB19′ are the faults (twinning and stacking fault) formation,
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faulted plane and single crystal B19′ structure’s energy, respectively. n is the number

of unit cells lie on the plane which has the cross-sectional area A. Our estimates

of the twinning and stacking fault energies using Eq. (3.14) are 96.3 mJ/m2 and

217.4 mJ/m2, respectively, confirming that twinning faults are more likely to occur

than stacking faults in NiTi. Our MC simulations at T= 10 K initialized with the

structures containing twinning and stacking faults reveal that both the structures

remain stable in their respective forms, and that the twinned structure is lower in

energy than the stacking faulted structure (See Table 3.17). While our Heff -based

estimates of twinning and stacking faults of NiTi are bit different in comparison

with their DFT values [106], their relative stability is captured qualitatively well by

our effective Hamiltonian. In the phonon-based theoretical framework of our Heff ,

a ferroelastic domain wall separating domains of B19′ phases with distinct order

parameters orientation give the planar twinning faults are known to be relevant to

the MT in NiTi.

Table 3.17: The statistical averages of absolute values of M5′ , M2′ and M4′ , averages
of components of strain tensor in the different structures of NiTi calculated by MC
simulations at T=10 K. < |M5′| >, < ε5 > and < ε5 > are zero in twinned structure,
< |M5′| >, < |M2′| > and < |M4′ | > are zero in stacking faulted strucures, because
these parameters have opposite values in both domains of their respective faulted
structures.

Statistical averages Stable Austenitic structure Single crystal B19′ Twinned B19′ Stacking fault B19′

< E > (meV/f.u) -8.5 -77.0 -46.5 -14.9

< |M5′ | > 0.051 0.102 0 0

< |M2′ | > 0 0.075 0.075 0

< |M4′ | > 0 0.085 0.086 0

< ε1 > 0 -0.027 -0.027 -0.023

< ε2 > 0 0.033 0.033 0.032

< ε3 > 0 0.033 0.033 0.032

< ε4 > 0 0.215 0.214 0.212

< ε5 > 0 0.177 0 0.177

< ε6 > 0 0.177 0 0.177
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3.9 Summary

In summary, we have presented a microscopic picture of martensitic phase trans-

formation in NiTi in terms of its phonons and their interactions derived from first-

principles and captured in an effective Hamiltonian. We have shown that vibrational

entropy of soft modes stabilizes the monoclinic martensite B19′ structure over its

BCO structure at T>43 K. Through Monte Carlo simulations of an effective Hamil-

tonian derived to capture its low-energy landscape of NiTi, we (a) determine its

soft modes and establish the cell-doubling M5′ phonon of the cubic phase as the

primary order parameter of MT, and (b) there are SIX other secondary order pa-

rameters that are relevant to the MT in NiTi. We show that pressure can introduce

an intermediate phase during the MT, thanks to the interesting physics of seven

coupled order parameters. Using Landau theoretical analysis, we show that relative

strengths of the third-order coupling between primary and secondary order parame-

ters including strain determine the specific symmetry of low-T structures emerging

from its MT. These can be used as first-principles descriptors in designing materi-

als with improved shape memory properties through substitutional alloying in NiTi.

We finally show that our Heff qualitatively captures stability of other stable average

austenitic structures, twinning and stacking faults in NiTi, which are relevant to its

MT.





Chapter 4

Martensitic Structural

Transformation in PtTi: A

High-temperature Shape Memory

Alloy

4.1 Introduction

High-temperature shape memory alloys (HTSMAs) have been used extensively to

improve the efficiency of the automotive, aerospace and energy exploration indus-

tries. HTSMAs undergo a martensitic transformation (MT) at TM > 400 K [107],

and exhibit a shape memory effect [52]. Though the binary NiTi alloy is a promis-

ing shape memory alloy (SMA), its martensitic transformation temperature (TM)

is close to room temperature [77], which limits its use in high-temperature shape

memory applications. However, MT in binary PtTi occurs at a much higher temper-

ature TM =1343 K [108], making it ideal for use in technological high-temperature

shape memory applications. Experimentally [108–111], it was found that the crystal

66
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of PtTi changes from cubic B2 structure to orthorhombic B19 structure during the

MT, B19 being its ground state. However, first-principles calculations concluded

that B19′ is the ground state structure of PtTi [60, 112] and not B19. Thermal

properties of the B2 structure of PtTi have been studied using first-principles cal-

culation, and martensitic transformation using P 4 method [113]. They estimated

TM = 1171 K, in good agreement with experiment. Fundamental understanding of

(i) the ground state structure, relative stability of B19 and B19′ structures, and (ii)

the precise atomistic mechanism of the MT in PtTi still needs to be understood.

Metallurgists typically explain MT using strain as the order parameter, the best

example being the BCC-FCC transformation in steel [10]. Within soft-mode the-

ory [114] it was argued that soft-phonon mode, strain and their couplings are impor-

tant to structural phase transitions, and successfully explained this kind of phase

transformations in ferroelectric materials [22, 115]. This approach has been ex-

tended successfully to study MT in NiTi SMA [45]. The biggest advantage of this

theory is that we start from high-symmetry structure as the reference and identify

soft-phonon modes and their symmetry allowed coupling with strain governing the

structural transformations. First-principles calculations have been used [112] to cal-

culate energetics of different structures of PtTi, reporting which phonon modes are

responsible for its martensitic transformation in PtTi. However, the issue of the

ground state and thorough statistical mechanical analysis of the MT in PtTi are

needed for its deeper understanding.

In this chapter, we present detailed first-principles and Landau theoretical anal-

ysis of the MT in PtTi with focus on soft-phonon modes and strain and goal to

uncover the microscopic governing mechanisms and couplings. Using this, (i) we

determine, the primary and secondary order parameters, and (ii) identify the micro-

scopic coupling between strain and phonons, which are responsible for the MT. Our
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goal here is to give a thorough analysis of MT in PtTi within the framework of effec-

tive Hamiltonian (Heff ) that we used in chapter 3 to study MT in NiTi. In Sec. 4.2,

we present details of first-principles calculations and crystal structures of different

phases of PtTi. In Sec. 4.3, we present phonon spectra and dispersion of B2, B19

and B19′ structures, T-dependent free energies of B19 and B19′ structures to resolve

the issue of their relative stability at low-T. In Sec. 4.4, we find the relevant sym-

metry invariant subspace of phonons and order parameters involved in MT in PtTi.

In Sec. 4.5, we determine PtTi-specific parameters of the effective Hamiltonian to

capture low-energy landscape of its B19 structure. In Sec. 4.6, we present results of

Monte Carlo simulations of Heff to determine temperature dependent MT in PtTi,

followed by Landau theoretical analysis in Sec. 4.7 to identify specific couplings in

Heff that stabilize its low-T structure, and finally, we summarize our work in Sec.

4.8.

4.2 First-principles computational details and struc-

tural parameters

Our first-principles calculations within the density functional theory (DFT) are

based on the plane-wave pseudopotential scheme as implemented in the Quantum

Espresso (QE) package [81], with a generalized gradient approximation (GGA) and

Perdew-Burke-Ernzerhof (PBE) [32] form of exchange-correlation energy functional.

We use an energy cutoff of 40 Ry and 320 Ry to truncate the plane-wave basis set

for representing Kohn-Sham wave functions and charge density respectively. In self-

consistent Kohn-Sham (KS) calculations with primitive unit cells, Brillouin zone

(BZ) integrations were sampled on uniform meshes of 20× 20× 20 k-points for B2

structure, and 20× 12× 12 k-points for B19 and B19′ structures. We relaxed struc-

tures to minimize energy with respect to lattice parameters and atomic positions
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until the magnitude of stresses are less than 3 kbar and Hellmann-Feynman force

on each atom is less than 5 meV/Å. We determined lattice-dynamical properties of

PtTi phases within the framework of density functional perturbation theory (DFPT)

as implemented in QE code [81]. Phonons and dynamical matrices were obtained

on a uniform 6 × 6 × 6 q-point mesh in BZ for B2, and 2 × 2 × 2 q-point mesh in

the BZ for B19 and B19′ structures.

We obtained the structural parameters and energies of B2, B19 and B19′ struc-

tures of PtTi using first-principles simulations, and benchmarked our methods through

good agreement with earlier theoretical results [112], reconfirming that B19′ is the

ground state of PtTi (See Table 4.1). Though B19′ structure is not yet observed

experimentally, our calculated lattice parameters of B2 and B19 structures are in

good agreement with experimental results [109].

Table 4.1: Crystal structural parameters (4 atoms per unit cell) and energies of B2,
B19 and B19′ structures of PtTi relative to B19 structure as a reference, obtained
by DFT calculations.

Phase Space group Method a(Å) b(Å) c(Å) γo E − EB19′(meV/f.u)

B2 Pm3̄m GGA 3.18 4.50 4.50 90 267.8

LDA [112] 3.13 4.43 4.43 90 151.2

Exp. [109] 3.19 4.51 4.51 90

B19 Pmma GGA 2.78 4.87 4.63 90 0

LDA [112] 2.73 4.80 4.55 90 0

Exp. [109] 3.73 4.79 4.55 90

B19′ P21/m GGA 2.78 4.89 4.61 93.5 -4.9

LDA [112] 2.74 4.82 4.53 93.6 -4.9

4.3 Phonon spectra and relative stability of PtTi

phases

To determine the thermodynamic stability of B2, B19 and B19′ structures at low-

temperature, we calculated their phonon dispersion using DFPT. We find that M5′
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phonon mode is the strongest lattice instability of B2 structure (ω ∼97i cm−1,

Fig. 4.1a) and is in good agreement with results of Ref. [112, 116]. In the phonon

dispersion of B19 structure, one of the transverse acoustic (TA) phonon branches is

unstable (ω ∼50i cm−1) along Γ → Y direction (Fig. 4.1b) making it an unstable

structure at T=0 K. Phonon dispersion of B19′ structure, the ground state, exhibits

no instability anywhere in the Brillouin zone (Fig. 4.1c). We now estimate the free

energies of B19 and B19′ within the harmonic (stable phonons) and anharmonic

(unstable phonons) approximation of quantum oscillators using Eq. (3.1). At T

= 0 K, ∆G = GB19′ − GB19 = -1.60 meV/f.u., confirms that theoretically B19′ is

stable against B19 structures at low-temperature. However, at T > 112 (133) K

B19 structure gains stability relative to B19′ structure based on the free energy

estimated with (without) including contributions of unstable modes to free energy

of B19 structure (Fig. 4.1d), thus providing a possible solution to the issue of B19′

structure as unexpected ground state of PtTi. Inclusion of contributions of the

unstable modes to free energy leads to stabilization of B19 structure at a slightly

lower temperature (Fig. 4.1d), because weak instabilities in the TA phonon branch of

B19 structure contribute strongly to vibrational entropy. We note that the difference

between structural parameters and energetics of B19 and B19′ structure is rather

small (Table 4.1) and their relative stability depends on quantum vibrational energy

which is not captured by Monte Carlo or Molecular dynamics simulations. Therefore,

we will focus on the energy landscape B2 and B19 structures in our statistical

mechanical analysis of the MT.

4.4 Identification of order parameters

We identified the order parameters of the martensitic tranformation in PtTi, that

link its low-symmetry B19 and high-symmetry B2 structures in terms of phonon and
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Figure 4.1: Phonon dispersion of B2 (a), B19 (b), B19′ (c) structures of PtTi
obtained using DFPT calculations. Unstable modes with imaginary frequencies
(ω2 < 0) are shown with negative values. Difference between free-energies of B19′

and B19 structures black (red) lines show with (without) contribution of unstable
modes of B19 structure to free energy (d). It is clear, B19 structure is stabilized
above 112 (133) K by vibrational entropy with (without) including unstable phonons
of B19 in free energy.

strain modes of the B2 structure. Phonon modes and strains of B2 structure take into

account of atomic displacements and lattice distortion of this structure, respectively.

M5′ phonon at M-point (π
a
(011)) drives the B2 to B19 structural transformation with

orthorhombic lattice distortion of 1×
√

2×
√

2 super-cell of B2 structure (Fig. 3.4a,

3.4d in chapter 3). It being the strongest lattice instability of B2 structure, M5′

mode is the primary order parameter. The quantitative estimation of amplitudes of

phonons and strains involved as order parameters in B2 to B19 transformation are

listed in Table 4.2. It is evident from our results that four order parameters M5′

phonon mode, Bain strain (s2), hydrostatic strain (s3) and pure shear (s4) are the
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order parameters of B2 to B19 transformation.

Table 4.2: Order parameters (M-point phonon modes at ~q = π
a
(011) of the cubic

B2 structure and strain tensor components) associated with B19 structure, obtained
from first-principles calculations. The amplitudes of phonon eigenmodes are in unit
of lattice constant of B2 structure, and phonon eigenmodes are expressed in terms of
atomic displacements êph = |Tix, T iy, T iz, P tx, P ty, P tz >. The strain eigenmodes
s = |ε1, ε2, ε3, ε4, ε5, ε6 >, are in the Voigt notation.

Modes Eigenmode Character B2 B19

M5′ |0, 0.51, 0.51, 0, 0.86, 0.86 > {01̄1}<011> Basal shuffle 0 0.085

M2′ |0, 0, 0, 1, 0, 0 > {01̄1}<100>, Pt displacements 0 0

M4′ |1, 0, 0, 0, 0, 0 > {01̄1}<100>, Ti displacements 0 0

s1
1√
2
|0, 1,−1, 0, 0, 0 > {01̄1}<011> Basal shear 0 0

s2
1√
6
| − 2, 1, 1, 0, 0, 0 > Bain strain 0 0.149

s3
1√
3
|1, 1, 1, 0, 0, 0 > Hydrostatic strain 0 -0.006

s4 |0, 0, 0, 1, 0, 0 > {010}<001> Pure shear 0 0.054

s5
1√
2
|0, 0, 0, 0, 1, 1 > {100}<011> Non-basal shear 0 0

4.5 Effective Hamiltonian

Both PtTi and NiTi have the same structure (B2) of the austenite phase, and their

martensitic transformations are governed by M-point phonon and strain modes.

Subspaces of acoustic and optical phonons of PtTi are separated by a gap in frequen-

cies (Fig. 4.1a) like in NiTi (Fig. 3.3a in chapter 3), and these phonons dominated by

Pt and Ti displacements respectively. Though in NiTi seven order parameters (M5′ ,

M2′ , M4′ , s2, s3, s4 and s5, see Table 3.2 in chapter 3) are involved where transfor-

mation occurs from B2 to B19′ structure, only four order parameters (M5′ , s2, s3

and s4) are involved in the transformation from B2 to B19 structure of PtTi. These

four order parameters are common to the MTs of the two alloys. The similarity

between MTs in PtTi and NiTi allows us to use the same form of effective Hamil-

tonian (Heff ) to explain MT in PtTi, though the coefficients in this Hamiltonian

are PtTi-specific. Subspace of acoustic phonons in NiTi and PtTi are dominated

by Ni and Pt displacements respectively. Therefore, here we replace the Ni-centric

LWFs to Pt-centric LWFs to represent the subspace of acoustic phonons. Now, Heff
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can be expressed as an explicit symmetry invariant Taylor expansion in Pt-centric

LWFs (~ηi), Ti-centric LWFs (~τi) and strains (εαβ), i indicating the lattice unit cell

to which ~ηi and ~τi belong. Heff consists of four parts:

Heff = HPt
eff (~ηi) +HT i

eff (~τi) +Hspc(~ηi, ~τi, εαβ) +Helastic(εαβ), (4.1)

where HPt
eff (~ηi) and HT i

eff (~τi) operate in the subspaces of acoustic and optic

phonons respectively. Helastic(εαβ) is the linear and nonlinear elastic energy of ho-

mogeneous strain εαβ, and the coupling of εαβ with both sets of LWFs is included

in Hspc(~ηi, ~τi, εαβ). The detailed derivation of this Hamiltonian and procedure for

computing its parameters are presented in Sec.3.5 of chapter 3. We follow here

the same procedure to determine Heff of PtTi. Calculated coefficients of phonon

and strain-phonon couplings part of Heff are listed in Table 4.3, while non-linear

elastic moduli of the B2 structure (coefficients of Helastic(εαβ)) of PtTi are listed in

Table 4.4.

Though the B19′ structure is the ground state of PtTi, it destabilzes to B19

structure due to quantum fluctuations. Our Heff thus does not capture the details

B19′ structure. Our Heff reproduces the lattice parameters and energies of B19

structure with negligible errors relative to the first-principles results (Table 4.5).

4.6 Monte Carlo simulations

Having derived the Heff of PtTi from first-principles, we now present analysis with

Monte Carlo (MC) simulations of Heff on a periodic system containing L× L× L

(L = 16) unit cells of B2 structure of PtTi. We used Metropolis algorithm with

a single-flip update of configurational variables {~ηi, ~τi} maintaining the acceptance

ratio of ∼ 0.5 near transformation temperature. In every Monte Carlo sweep (MCS),
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Table 4.3: Coefficients of harmonic (Aij and Ãij), anharmonic (Bij) phonons and
strain-phonon couplings (gij and hij) terms in the effective Hamiltonian in the unit
of eV/f.u., obtained with first-principles calculations.

Coeff. Values Coeff. Values Coeff. Values

A11 -5.0 Ã11 -3.0 B41 104.8

A12 0.2 Ã12 16.3 B42 260.4

A21 2.0 Ã21 1.5 B43 83.7

A22 -1.7 Ã22 -2.3 B44 -78.5

A23 -1.4 Ã31 -0.5 B45 6.9

A31 2.2 B31 -13.7 B46 -0.9

A32 3.2 B32 -6.5 B61 -1373.4

Ã01 58.2 B33 -7.8 B81 7893.5

g31 1.3 g37 17.0 h32 70.3

g32 -18.7 g41 2.0 h33 51.9

g33 23.4 g42 304.3 h34 28.6

g34 -55.3 g43 -62.0 h35 12.2

g35 -19.2 g44 -86.2 h36 19.3

g36 -21.0 h31 -39.3 h37 10.4

Table 4.4: Elastic moludi of Helastic(ε) in GPa, determined from first-principles.

Coeff. Values Coeff. Values Coeff. Values

C1 -1 C144 -474 C1144 5093

C11 174 C155 -464 C1155 2352

C12 257 C456 -426 C1255 1251

C44 63 C1111 11381 C1266 664

C111 -862 C1112 -3355 C1456 1273

C112 -751 C1122 4510 C4444 3146

C123 -1020 C1123 4526 C4455 1335

Table 4.5: Structural parameters (4 atoms per unit cell) and energies of B2 and B19
structures relative to B19, obtained using first-principles and Heff .

Phase Method a(Å) b(Å) c(Å) γo E − EB19(meV/f.u)

B2 GGA 3.18 4.50 4.50 90.0 267.8

Heff 3.18 4.50 4.50 90.0 268.6

B19 GGA 2.78 4.87 4.63 90.0 0.0

Heff 2.81 4.93 4.55 90.0 0.0
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we picked ηi, τi randomly (totally 2L3 updates) and homogeneous strain variables L

times. Therefore, every MCS has a total (2L3 + L) attempts for updating the con-

figuration of model system. In order to recognize austenite and martensite phases

from configurations used in Monte Carlo simulations, we collected absolute values of

the Fourier components of ηi and τi, obtained averages of M5′ , M2′ and M4′ phonon

modes, and averages of strain (< ε >) at each temperature. We performed our MC

simulations by cooling and heating the system in the range of 400 to 700 K temper-

ature to assess the possibility of hysteresis. In cooling simulations, we start with B2

structure from 700 K temperature, equilibrate the system into this structure, and de-

crease the temperature in steps of 10 K (2 K near the transformation temperature),

down to a low-temperature of 400 K. In heating simulations, we start from T=400

K taking B19 structure as the initial configuration (though results do not depend

on the choice of the initial configuration of system), and increase the temperature

in steps of 10 K (2 K near the transformation temperature) to a high-temperature

of 700 K. At each temperature, we used 10000 MCS for thermal equilibration and

50000 MCS for statistical averaging of various observables.

Averages absolute value of the primary order parameter M5′ (Fig. 4.2a) vanishes

at high-temperatures, and changes discontinuously to a non-zero value at T < TM .

In cooling simulations, this discontinuity marks the martensitic transformation at

TM = 536 K. In heating simulations, our model transforms the martensite phase

into the austenite phase at TA = 542 K. Average values of M2′ and M4′ modes

remain zero throughout the temperature range (Fig. 4.2a), and confirm that PtTi

transforms from B2 to B19 structure in the martensitic transformation. Disconti-

nuity in primary order parameter at the transformation temperature and hysteresis

of 6 K temperature in cooling and heating simulations reveal first-order character

of this transformation. Histograms of the primary order parameter obtained from

cooling (Fig. 4.2d) simulations reveal (i) relatively narrow distributions and (ii) a
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Figure 4.2: Averages of absolute values of M5′ , M2′ and M4′ modes (a) as a function
of temperature at ambient pressure. Square of frequency of M5′ phonon (b), its
Binder cumulant (c), and histograms of M5′ mode obtained from configurations
sampled during cooling (d) at TM and its nearest temperatures.

sharp jump across T = TM . The bimodal nature of the histogram at TM confirms

the coexistence of B2 and B19, and hence first-order character of the MT. For fur-

ther confirmation of these results, we obtained square of frequency (ω) and Binder

fourth-order cumulant (C4) of the primary order parameter (M ′
5 mode) using Eq.

(3.10) and Eq. (3.11) respectively, in both cooling and heating runs of simulations.

Softening of M5′ phonon frequency and its T-coefficients (Fig. 4.2b) below and above

TM , and a discontinuity in C4 (Fig. 4.2c) of M ′
5 mode at T = 536 (542) K in cooling

(heating) confirm that M5′ mode is the primary order parameter of MT in PtTi.

The equilibrium transformation temperature (Tc = 1
2
(TM + TA) = 539 K) is much

underestimated here with respect to experiment (Tc = 1318 K), similar to the er-

rors in martensitic transformation in NiTi [45] and ferroelectric phase transition in



4.7 Landau theoretical analysis of Heff 77

PbT iO3 [23]. This is probably because of the GGA-DFT errors in energies and

structural parameters and needs further investigation.
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Figure 4.3: Average of absolute value (a) and square of frequency (b) of primary
order parameter M5′ mode as a function of temperature in the clamped lattice
parameters of B2 structure of PtTi.

We now discuss the clamped lattice analysis of our effective Hamiltonian uncov-

ering important aspects of first-order phase transformation where the strain-phonon

coupling plays a crucial role. To verify this, we performed Monte Carlo simulations

using the same Heff of PtTi with strain clamped at the lattice parameters of B2

structure (εαβ = 0) and find that (i) the thermal hysteresis vanishes that confirming

a second order phase transition, and (ii) Tc = 565 K (Fig. 4.3a and b). If fluctua-

tions in strain are not allowed in simulation, the same Heff may give a second order

transformation at much higher temperature Tc.

4.7 Landau theoretical analysis of Heff

To determine the specific couplings in Heff that are relevant to the martensitic

transformation in PtTi, we present a Landau theoretical analysis by projecting the

full effective Hamiltonian into the subspace of phonons at M-point (π
a
(011)) and

strain degrees of freedom (Eq. 4.2 and 4.3). In the projected subspace, ηy and ηz
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span the subspace of doubly degenerate unstable M5′ phonon modes, ηx and τx

span the subspace of M2′ and M4′ phonon modes respectively. Unlike in NiTi, the

contribution of doubly degenerate high frequency M5′ optical phonon mode (τy and

τz) also have significant contribution (Table 4.6) in the MT in PtTi that directly

relate to the atomic displacements. Therefore, we have included these variables

in our analysis of Landau theory of PtTi. We restrict the resulting structures of

projected Hamiltonian to the symmetry of relevant martensitic phases of PtTi with

ηz = ηy, τz = τy, ε3 = ε2 and ε6 = ε5, and Hamiltonian of their coupled dynamics:

HLandau
ph (η, τ) = a1η

2
x + a2η

2
y + a3τ

2
x + a4τ

2
y + a5η

4
x + a6η

4
y + a7η

2
xη

2
y

+ a8(η2
x + 2η2

y)
3 + a9(η2

x + 2η2
y)

4 (4.2)

HLandau
spc (η, τ, ε) = (g1ε1 + g2ε2)η2

x + (g3ε1 + g4ε2 + g5ε4)η2
y

+ g6ε5ηxηy + g7ε5τxηy + g8ε4ηxτx

+ (g9ε1 + g10ε2 + g11ε4)ηyτz + g12ε5ηxτy

+ (g13ε
2
1 + g14ε

2
2 + g15ε1ε2)η2

x

+ (g16ε
2
1 + g17ε

2
2 + g18ε1ε2)η2

y (4.3)

where ai’s and gi’s are the coefficients of phonons and strain-phonon coupling

terms in the Landau energy function respectively and their values are listed in

Table 4.7. The instability of M5′ mode (a2 =-49.1 eV/f.u. < 0) corresponds to

{01̄1} <0 1 1> shuffle, whose coupling with ε1 (g3=208.7 eV/f.u.) is positive, and

with ε2 (g4=-478.1 eV/f.u.) is negative. Therefore, ε1 must be negative and ε3 = ε2

positive to minimize the energy of system, consistent with Bain strain distortion

that lowers the symmetry of cubic structure of PtTi to tetragonal one. Coupling of

ηy with ε4 ({010}<0 0 1> pure shear, g5=-167.7 eV/f.u.) transforms B2 structure

to B19 structure.
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Table 4.6: Values of LWF at M-point π/a(011) and strains for different phases of
PtTi obtained using first-principles and effevtive Hamiltonian.

Phase Method ε1 ε2 = ε3 ε4 ε5 = ε6 ηx ηy = ηz τx τy = τz

B2 GGA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Heff 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B19 GGA -0.125 0.057 0.054 0.000 0.000 0.085 0.000 -0.014

Heff -0.116 0.056 0.086 0.000 0.000 0.088 0.000 -0.016

Table 4.7: Coefficients of terms in Landau energy function are linear combinations
of the parameters in Heff .

Landau coeff. Heff coeff. Values (eV/f.u)

a1 4A11 + 4A21 + 4A22 -18.8

a2 8A11 + 4A12 + 4A21 + 4A22 + 8A23 -49.1

a3
1
2
Ã01 + 4Ã11 + 8Ã21 + 4Ã22 20.1

a4 Ã01 + 8Ã11 + 4Ã12 + 16Ã21 + 4Ã22 114.9

a5 32B41 + 64B45 3.8×103

a6 64B41 + 32B42 + 32B43 + 64B44 + 256B45 1.4×104

a7 64B42 + 64B44 + 256B45 1.3×104

a8 128B61 -1.8×105

a9 512B81 4.0×106

g1 8g31 + 8g32 -139.2

g2 16g31 + 8g35 -132.2

g3 16g31 + 8g33 208.7

g4 32g31 + 16g32 + 16g33 + 8g34 + 8g35 -478.1

g5 8g36 -167.7

g6 16g36 + 8g37 -200.1

g7
16
3
h36 103.2

g8
8
3
h34 76.3

g9
16
3
h31 -209.8

g10
16
3

(2h31 + h32 + h33 231.9

g11
16
3
h35 64.9

g12
16
3
h37 55.3

g13 8g41 + 8g42 2.4×103

g14 16g41 + 8g43 -464.8

g15 16g44 -1.3×103

g16 16g41 31.4

g17 32g41 + 16g42 + 16g44 3.6×103

g18 16g43 + 16g44 -2.4×103

Though the M2′ mode also unstable (a1 =-18.8 eV/f.u < 0), its fourth-order

phonon-phonon coupling (a7 = 1.3 × 104) with M5′ mode and strain suppress its
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contribution in MT. In further analysis of third order strain-phonon couplings, we

found that couplings of non-basal shear ε6 = ε5 with ηx, τx and ηy (g6= -200.1 eV/f.u.

and g7=103.2 eV/f.u.) are relatively weak (Fig. 4.4) and do not favor of B2 to B19′

transformation. Rest of the terms in Landau energy function play a supporting role

to capture correct energetics and lattice parameters of B19 structure. We derived

the phase diagram of stability of B19 and B19′ structures (Fig. 4.4) in the plane of

these g-couplings, the descriptors of stability of these phases. It is clear from the

phase diagram that B2 structure of PtTi would transform through its MT to B19′

structure instead of B19 if the values of these couplings (g6 and g7) were strong. The

couplings between primary order parameter (phonon mode M5′) driving the MT and

strains as the secondary order parameters determine the relative stabilization of B19

versus B19′ phases.
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Figure 4.4: Phase diagram of the relative stability of B19 and B19′ structures of
PtTi as a function of third-order strain-phonon coupling coefficients g and g′. Black
filled circle shows the actual values of g6 and g7 which falls in the B19 structure
region in phase-diagram.
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4.8 Summary

We presented a possible resolution of the issue of ground state structure (B19 versus

B19′) of PtTi by calculating their free energies: we show that vibrational entropy

of soft modes stabilizes the B19 martensite structure at T>112 K. Through an

effective Hamiltonian of PtTi derived from first-principles, we (a) determine its soft

modes and establish the cell-doubling M5′ phonon of the cubic phase as the primary

order parameter of MT, and (b) there are three other secondary order parameters

that are relevant to the MT in PtTi. Through Landau theory, we show that relative

strengths of the third-order coupling of the primary order parameter with secondary

order parameters determine the specific symmetry of low-T structures emerging at

its MT. Most importantly, successful description of the martensitic transformation

in PtTi validates our effective Hamiltonian approach, and opens up the avenue to

study MTs in other materials.



Chapter 5

Theory of β to α Phase

Transformation in Titanium

5.1 Introduction

Titanium (Ti) is an important metallic material widely used in industrial, aerospace,

marine and medical applications. The pressure-temperature (P-T) phase diagram of

Ti [117,118] demonstrates that (i) it undergoes through a martensitic transformation

(MT) from high-temperature body-centered cubic (BCC or β) phase to hexagonal

close-packed (HCP or α) phase at 1155 K temperature and ambient pressure, (ii) its

α phase transforms under pressure into hexagonal open-packed (HOP or ω) phase,

and (iii) its β phase also directly transforms into ω structure above a triple point.

The MT in titanium is similar to that occuring in NiTi, a shape memory alloy.

Despite this, any of the low-temperature structures of titanium do not exhibit the

shape memory behavior like NiTi. This is because the nearest neighbor (NN) atoms

have identical atomic arrangements, and have more than one way to transform from

α to β structure at atomic level. Experimentally, α structure is the equilibrium

82
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state of Ti [117,118] at room temperature and ambient pressure. Theoretical calcu-

lations indicate, instead, that ω is the ground state structure [119–123]. It is well

known that a martensitic transformation is a non-diffusive first-order phase trans-

formation involving atomic displacements and lattice distortion of the parent phase

of a material. The MT in titanium has been investigated through experiments and

theoretical [124–126] analysis over the years.

Studies of the transformation pathways connecting the three structures of Ti

have shown that β to α transformation occurs via {01̄1}<011> shuffle correspond-

ing to softening of an acoustic phonon [127] at qM = π
a
(011) wave-vector, known

as the Burgers mechanism [128] of β to α transformation in Zirconium, and is sim-

ilar to the B2 to B19 transformation in the shape memory alloys [79]. The β to

ω transformation occurs via plane collapse along the [111] direction of the BCC

structure corresponding to softening of a longitudinal acoustic phonon [129–131] at

qω = 2
3
(111) wave-vector. Trinkle and co-workers [132] determined the path of α to

ω transformation. Though soft phonons provide a piece of important information

relevant to the transformation, contribution of strain is not quite clear yet, which is

essential to the MT.

It is also not clear (i) how the strain-phonon coupling influences the MT as we

have seen in MT in NiTi [45], and (ii) which order parameters govern this trans-

formation in Ti. β and α structures and their transformation is relevant to many

industrial applications of titanium alloys. For this, (i) alpha stabilizers are alu-

minum, oxygen, nitrogen or carbon whose addition to titanium raises the α to β

transition temperature, and (ii) beta stabilizers are molybdenum, vanadium, tanta-

lum, niobium or manganese whose addition lowers the α to β transition temperature.

Therefore, our focus here is on the β to α transformation, particularly to develop

a quantitatively accurate microscopic model and theory to determine how coupled

phonons and strain constitute the mechanism of β to α phase transformation.
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In this chapter, we present a thorough investigation of temperature-induced β

to α phase transformation in titanium, based on effective Hamiltonian Heff which

is constructed from first-principles, and Landau theoretical analysis with focus on

order parameters involved in this transformation. In Sec. 5.2, we present the com-

putational details of first-principles methods, optimized structural parameters of

different structures of Ti and their energies. In Sec. 5.3, we present phonon spectra

of the conventional unit cell of β and α structures and discuss their lattice stability.

In Sec. 5.4, we identify the order parameters that are relevant to β to α phase

transformation. In Sec. 5.5, we present a detailed description of construction of

effective Hamiltonian (Heff ) taking β as the reference structure to capture the low

energy landscape of α structure of titanium. In Sec. 5.6, we present results of Monte

Carlo simulations of Heff using a Fortran code developed. In Sec. 5.7, we present

Landau theoretical analysis to identify the specific strain-phonon couplings in Heff

that govern the β to α martensitic transformation in titanium, and then we will

summarize our work in Sec. 5.8. Our work facilitates general understanding of β to

α stabilizers in Ti alloys.

5.2 Computational methods and structural pa-

rameters

Our first-principles calculations are performed within the density functional the-

ory (DFT) based on the plane-wave pseudopotential scheme implemented in the

Quantum Espresso (QE) package [81], with a generalized gradient approximation

(GGA) and PW91 [133] form of exchange-correlation energy functional. Results for

properties of Ti are sensitive to energy cutoff on basis set and k-points, and hence

we use a relatively high accuracy parameters in our calculations. We use energy
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cutoffs of 50 Ry and 400 Ry to truncate plane-wave basis sets used for represent-

ing Kohn-Sham wave functions and charge density respectively. In self-consistent

Kohn-Sham (KS) calculations, Brillouin zone integrations were sampled on uniform

meshes of 24× 24× 24 k-points for β, 24× 24× 18 k-points for α and 24× 24× 36

k-points for ω structures. We relaxed structures to minimize energy with respect

to lattice parameters and atomic positions until the magnitude of stresses are less

than 1 kbar and Hellmann-Feynman force on each atom is less than 1 meV/Å. We

reconfirm structural parameters and relative energies of the structures of Ti using

calculations based on SCAN meta-GGA exchange-correlation functional [83, 84] as

implemented in the VASP code [85,86] along with projector augmented wave (PAW)

potentials [87]. Within the framework of DFPT, we determined dynamical matrices

and phonons at q-points on a 6×6×6 mesh for β, and 6×6×2 mesh in the BZ for α

structures. We performed first-principles calculations using different computations

schemes and flavors of exchange-correlational functional and have optimized the

structural parameters of all three Ti phases. Our estimates of structural parameters

and energies of the β, α and ω structures of Ti agree well with earlier theoretical

results [125], and reconfirm that ω is the ground stable structure of Ti at 0 K tem-

perature and ambient pressure (Table 5.1). Our calculated lattice parameters of β,

α and ω structures are also in good agreement with experiment [127,134,135].

5.3 Lattice stabilities of β and α structures: Phonon

spectra

To assess the stability of β and α structures at low-T, we obtained phonon spectra

of β (using conventional unit cell) and α structures within the framework of first-

principles DFPT. We show that phonon-dispersion of β structure (Fig. 5.1a) in the

conventional cubic unit cell has many unstable phonon branches throughout the BZ



86 Chapter 5.

Table 5.1: Structural parameters and energies of β, α and ω phases of Ti relative to α
phase, obtained with different computational schemes of first-principles calculations.

Phase Space group Wyckoff positions Method a (Å) c/a Volume(Å3) E − Eα
(meV/atom)

β Im3̄m 2a(0, 0, 0) GGA (PW91) 3.25 17.16 106.5

(BCC) SCAN metaGGA 3.22 16.69 119.5

GGA (PW91) [125] 3.26 17.32 108.0

Exp [127] 3.31 18.13

α P63/mmc 2c(1/3, 2/3, 1/4) GGA (PW91) 2.94 1.58 17.39 0

(HCP) SCAN metaGGA 2.91 1.58 16.86 0

GGA (PW91) [125] 2.95 1.58 17.56 0

Exp [134] 2.95 1.59 17.68

ω P6/mmm 1a(0, 0, 0) GGA (PW91) 4.57 0.62 17.08 -5.8

(Hexagonal) SCAN metaGGA 4.45 0.62 16.64 -24.5

GGA (PW91) [125] 4.59 0.62 17.31 -5.0

Exp [135] 4.62 0.61 17.42

making it unstable at low-T. Among them, the doubly degenerate M5′ phonon at

wave-vector M is the strongest instability (ω ∼170i cm−1). Phonon dispersion of

α structure (Fig. 5.1b) exhibits no instability anywhere in BZ, confirming that α

structure is stable at low-T.

Γ X M R Γ M
-200

-100

0

100

200

F
re

q
u
e
n
c
y
 (

c
m

-1
)

5’

β

Γ A K Γ L M Γ
0

100

200

300

F
re

q
u
e
n
c
y
 (

c
m

-1
)

α(a) (b)

Figure 5.1: Phonon dispersion along high-symmetry lines of conventional unit cell of
β (a) and α (b) structures of titanium obtained using DFPT simulations. Unstable
modes with imaginary frequencies (ω2 < 0) are shown with negative values.

5.4 Identification of order parameters

Taking unit cell with two atoms basis of the β structure as a reference, we established

a structural link between this and α structure of Ti by expressing their relative

atomic positions and lattice distortions in terms of its phonon modes and strains of
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β structure respectively. We find that the doubly degenerate unstable M5′ phonon

mode of β structure that dispalce alternating {01̄1} planes opposite to each other in

< 011 > direction with Bain strain (s2), hydrostatic strain (s3) and pure shear (s4)

govern the β to α structural transformation (Fig. 5.2). The quantitative estimation

of amplitudes of phonons and strains involved in β to α transformation are listed in

Table 5.2. Clearly, four order parameters (M5′ , s2, s3 and s4) are involved in the β

to α transformation similar to those in B2 to B19 transformation in PtTi and NiTi.

Table 5.2: Order parameters (phonon modes at ~qM = π
a
(011) wave-vector of the

conventional unit cell of β structure and strain) associated with β and α structures of
Ti, obtained from first-principles calculations. The amplitude of phonon eigenmodes
are in units of lattice constant of β structure. Phonon eigenmodes are in terms of
atomic displacements êph = |τx, τy, τz, τ ′x, τ ′y, τ ′z > (τα and τ ′α are the displacemets
of atoms at corner and center of unit cell respectively). The strain eigenmodes
s = |ε1, ε2, ε3, ε4, ε5, ε6 >, here we have used the Voigt notations (ε1 = εxx, ε2 = εyy,
ε3 = εzz, ε4 = 2εyz, ε5 = 2εzx and ε6 = 2εxy).

Modes Eigenmode Character β α

M5′
1
2
|0, 1, 1, 0, 1, 1 > {01̄1} < 011 > Basal shuffling 0 0.174

M2′ |0, 0, 0, 1, 0, 0 > {01̄1}<100>, τz displacements 0 0

M4′ |1, 0, 0, 0, 0, 0 > {01̄1}<100>, τ ′z displacements 0 0

s1
1√
2
|0, 1,−1, 0, 0, 0 > {01̄1}<011> Basal shear 0 0

s2
1√
6
| − 2, 1, 1, 0, 0, 0 > Bain strain 0 0.127

s3
1√
3
|1, 1, 1, 0, 0, 0 > Hydrostatic strain 0 0.009

s4 |0, 0, 0, 1, 0, 0 > {010}<001> Pure shear 0 0.097

s5
1√
2
|0, 0, 0, 0, 1, 1 > {100}<011> Non-basal shear 0 0

5.5 Construction of effective Hamiltonian

Having identified the phonons and strains responsible for β to α phase transforma-

tion in Ti, we constructed an effective Hamiltonian (Heff ) following the scheme of

lattice Wannier functions (LWFs) in Ref. [22] to model the low-energy landscape of
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Figure 5.2: Cell-doubling phonon modes of the high symmetry β structure that
constitute order parameters of β → α structural transformations. Atomic displace-
ments of M5′ (01̄1) view (a), (100) view (b) at ~q = π/a(011), shown in 1×

√
2×
√

2
supercell of conventional unit cell of β structure. While M5′ phonon and hexago-
nal strain give α structure (01̄1) view (c), (100) view (d). The planar unit at c/2
distance along [0 1̄ 1] direction contains Ti (blue).

Ti as function of these phonons and strains. In this process, we identify the symme-

try invariant subspaces of phonons starting with the full phonon dispersion of the β

structure obtained along the high symmetry lines (Γ → X → M → Γ → R → M ,

see Fig. 5.1a) in the BZ of the cubic unit cell. Unlike in NiTi, where atoms at the

corner and the center of the cubic unit cell are different and acoustic and optical

phonons are separated by frequency gap, β structure has identical atoms at the cor-

ner and center of the conventional cubic unit cell, and hence no gap between acoustic

and optical phonons, which are inseparable in its phonon dispersion (Fig 5.1a). In

the conventional unit cell of β structure both corner and central atoms are identical

and interchangeable, and hence their LWFs must have identical subspace. Therefore,

we write Heff of titanium in the subspace of atomic displacements instead of phonon

modes, unlike effective Hamiltonian of NiTi. Using symmetries and eigenvectors of
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the zone boundary phonons, we determine ~τ and ~τ ′ localized LWFs centered at cor-

ner and center of the conventional unit cell of β structure, respectively. Using the

cubic symmetry of β structure, we express Heff as a symmetry invariant Taylor

expansion in ~τi, ~τ
′
i and homogeneous strains (εαβ), i indicating the unit cell. Heff

consists of three parts:

Heff (~τi, ~τ
′
i , ε) = Hph(~τi, ~τ

′
i) +Helastic(εαβ) +Hspc(~τi, ~τ

′
i , εαβ) (5.1)

whereHph(~τi, ~τ
′
i) operates in the subcpaces of Ti atomic displacements, Helastic(εαβ)

is linear and nonlinear elastic energy of homogeneous strains εαβ and the coupling of

εαβ with set of LWFs is included in Hspc(~τi, ~τ
′
i , εαβ). α and β in εαβ denote cartesian

coordinates x, y and z.

5.5.1 Effective Hamiltonian of phonons: Hph(~τi, ~τ
′
i)

Hph(~τi, ~τ
′
i) represents energetics of phonons and inhomogeneous strain, which include

all the lattice instabilities of unstable modes (Fig. 5.1a) of the β structure of Ti,

It includes harmonic and anharmonic terms, which relate to linear and nonlinear

elastic energy terms in Helastic in the long-wavelength limit. This part of effective

Hamiltonian is invariant under translational and rotational symmetries. To impose

translational symmetry, we express energy terms using differences in LWFs (~τi and

~τ ′i) at neighboring sites and their dot products.

In the harmonic part of Hph(~τi, ~τ
′
i), we consider differences between ~τi’s in H1

har(~τ)

and ~τ ′i ’s in H2
har(~τ

′) up to third NN sites, and their interactions in H3
har(~τ , ~τ

′) with

a general form permitted by the symmetry of space group Pm3̄m as,
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H1
har(~τ) =

1

2

N∑
i=1

[
6∑
j=1

{A11|~τ1ij|2 + A12(~τ1ij · d̂1j)
2}

+
12∑
j=1

{A21(~τ2ij · d̂2j)
2 + A22(~τ2ij · d̂21j)

2 + A23(~τ2ij · d̂22j)
2}

+
8∑
j=1

{A31|~τ3ij|2 + A32(~τ3ij · d̂3j)
2}], (5.2)

H2
har(~τ

′) =
1

2

N∑
i=1

[
6∑
j=1

{A11|~τ ′1ij|2 + A12(~τ ′1ij · d̂1j)
2}

+
12∑
j=1

{A21(~τ ′2ij · d̂2j)
2 + A22(~τ ′2ij · d̂21j)

2 + A23(~τ ′2ij · d̂22j)
2}

+
8∑
j=1

{A31|~τ ′3ij|2 + A32(~τ ′3ij · d̂3j)
2}], (5.3)

H3
har(~τ , ~τ

′) =
N∑
i=1

8∑
j=1

{A01|~τ0ij|2 + A02(τ0ijxτ0ijyd0jxd0jy + c.p)}], (5.4)

where ~τ1ij, ~τ2ij, ~τ3ij (~τ ′1ij, ~τ
′
2ij, ~τ

′
3ij) denote the LWFs differences between ~τi (~τ ′i) at

site i and its ~τj (~τ ′j) at first, second and third NNs at site j respectively. Whereas, ~τ0ij

shows the difference between ~τi and its first NNs ~τ ′j. d̂1j, d̂2j,d̂3j denote unit vectors

along the directions to first, second and third NN sites j respectively. d̂21j and d̂22j

are unit vectors perpendicular to d̂2j. d̂0j shows unit vector along the direction of first

NN ~τ ′j of ~τi. Aij’s are the harmonic coefficients and determined from force constants

of phonons at high symmetry q-points (Γ, X, M and R) and ~qλ = π
3a

(1, 1, 1). Linear

combinations of these coefficients give the corresponding eigenvalues of phonons.
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Since we have eight equations (Table 5.3) and nine coefficients, we use singular

value decomposition (SVD) to determine these coefficients, and have listed them in

Table 5.6.

Table 5.3: Linear combinations of coefficients in the harmonic part of Heff at a q
wave-vector give the eigenvalue of corresponding phonon. Ma

5′ and M o
5′ are doubly

degenerate unstable acoustic and stable optical phonon modes respectively.

Phonon modes Linear combination of the coefficients Eigenvalue of phonon

modes (eV/f.u)

Γ15 8A01 44.1

X1 4A01 + 2A11 + 2A12 + 4A21 + 4A22 + 8A31 + 8
3
A32 11.5

X5 4A01 + 2A11 + 2A21 + 2A22 + 4A23 + 8A31 + 8
3
A32 18.2

M2′ 4A01 + 4A11 + 4A21 + 4A22 22.4

Ma
5′ 4A01 − 2

3
A02 + 4A11 + 2A12 + 2A21 + 2A22 + 4A23 -21.0

M o
5′ 4A01 + 2

3
A02 + 4A11 + 2A12 + 2A21 + 2A22 + 4A23 19.1

R25′ 4A01 + 6A11 + 2A12 + 8A31 + 8
3
A32 -11.0

λ1 2.25A01 − 0.252A02 + 2.25A11 + 0.75A12 + 1.5A21 + 0.75A23 + 2.25A31 + 0.25A32 -3.8

In the anharmonic part of Hph(~τi, ~τ
′
i), we consider interaction between ~τi’s in

H1
anh(~τ) and ~τ ′i ’s in H2

anh(~τ
′), both being identical and interchangeable. In the third-

order terms, we include interaction up to the second NNs that are needed to include

inhomogeneous strain in the long-wavelength limit. Due to cubic symmetry, odd-

order terms do not contribute to the energy of phonons at high-symmetry q-point

but do contribute in the long-wavelength limit. We approximated interaction in the

third-order terms by considering the dominant term in interaction with NN sites

allowed by the cubic symmetry. Fourth-order terms include the cubic anisotropy,

while sixth- and eighth-order terms are simplified by restricting to isotropic terms

in differences between ~τi’s (~τ ′i) up to first NNs.

H1
anh(~τ) =

N∑
i=1

[
6∑
j=1

B31(~τ1ij · d̂1j)
3 +

12∑
j=1

B32(~τ2ij · d̂2j)
3

+
6∑
j=1

{B41|~τ1ij|4 +B42(τ 2
1ijxτ

2
1ijy + τ 2

1ijyτ
2
1ijz + τ 2

1ijzτ
2
1ijx)

+ B61|~τ1ij|6 +B81|~τ1ij|8}], (5.5)
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H2
anh(~τ

′) =
N∑
i=1

[
6∑
j=1

B31(~τ ′1ij · d̂1j)
3 +

12∑
j=1

B32(~τ ′2ij · d̂2j)
3

+
6∑
j=1

{B41|~τ ′1ij|4 +B42(τ ′21ijxτ
′2
1ijy + τ ′21ijyτ

′2
1ijz + τ ′21ijzτ

′2
1ijx)

+ B61|~τ ′1ij|6 +B81|~τ ′1ij|8}], (5.6)

where Bij’s are coefficients of anharmonic terms. Third-order coefficients (B31

and B32) are related to the nonlinear elastic moduli, and are obtained from the cor-

responding third-order elastic moduli. Since there are only two coefficients, we use

two inequivalent strain modes (uniaxial strain and Bain strain) to calculate these

coefficients (Table 3.4). The two fourth-order coefficients are determined from ener-

gies of structure obtained by freezing doubly degenerate unstable M5′ (Table 3.5).

We fitted the energy of these configurations of structural distortions to these phonon

modes using a polynomial of 8th order. To determine the coefficients of sixth- and

eight-order terms, (32B61 = −3.98 × 104 eV/f.u) and (64B81 = 4.51 × 105 eV/f.u),

we fit the polynomial to double-well energy of M5′ mode (Fig. 5.3).

Table 5.4: Strain mode is represented with s = |ε1, ε2, ε3, ε4, ε5, ε6 >, in the Voigt no-
tation. Uniaxial and Bain strain modes are represented by suniax = ε|1, 0, 0, 0, 0, 0 >
and sBain = ε| − 2, 1, 1, 0, 0, 0 > respectively. Coefficients of the 3rd order terms are
linear combinations of the 3rd order elastic moduli.

Strain mode Linear combination of Linear combination of

3rd order coefficients 3rd order elastic moduli

suniax 2B31 + 2.82B32
1
6
C111 = −23.0

sBain −12B31 + 8.49B32 −C111 + 3C112 − 2C123 = 40.9
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Figure 5.3: Energies of cell-doubling structural distortions (τ at ~q = π
a
(0, 1, 1)),

e1 = 1√
2
|0, 1, 0, 0, 0, 1 > and e2 = 1

2
|0, 1, 1, 0, 1, 1 > are the phonon eigenvectors

of doubly degenerate unstable M5′ phonon modes and their linear combination,
respectively. Lines represent the fits obtained with the 4th, 6th and 8th anharmonic
parameters in Heff .

Table 5.5: The amplitudes of phonon modes at M-point (π
a
(011)) are in unit of

lattice constant of β structure, and their eigenvectors are expressed in terms of
atomic displacements ê = |τx, τy, τz, τ ′x, τ ′y, τ ′z >. êM1 and êM2 are the eigenvectors of
unstable M5′ mode and linear combination of its degenerate mode, respectively.

Mode Linear combination of 4th order coefficients 4th order fitting coefficients in

in polynomial (eV/f.u)

êM1 = 1√
2
|0, 1, 0, 0, 0, 1 > 16B41 468.68

êM2 = 1
2
|0, 1, 1, 0, 1, 1 > 16B41 + 4B42 999.11

Table 5.6: Coefficients of harmonic and anharmonic terms in effective Hamiltonian
in unit of eV/f.u.

Coeff. Values Coeff. Values Coeff. Values

A01 5.5 A22 0.4 B41 127.1

A02 30.1 A23 -0.6 B42 -135.2

A11 -2.8 A31 0.1 B61 -1244.0

A12 -7.5 A32 -0.7 B81 7041.9

A21 2.5 B31 -5.5

5.5.2 Hamiltonian of homogeneous strain

In a martensitic β to α transformation a large lattice deformation occurs hinting

the importance of elastic energy of homogeneous strain, and we find that the 2nd
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order elastic constant C ′ (See Table 5.8) of axial strains is unstable. Therefore, in

the homogeneous strain Hamiltonian we consider non-linear elasticity up to fourth-

order in axial strains allowed by the cubic symmetry. For shear strain, second-order

terms are found to be sufficient to capture elastic energy landscape.

Hs{ε} =
N

2
{C11(ε2

1 + ε2
2 + ε2

3) + 2C12(ε1ε2 + ε2ε3 + ε3ε1) + C44(ε2
4 + ε2

5 + ε2
6)}

+
N

6
{C111(ε3

1 + ε3
2 + ε3

3) + 3C112(ε2
1(ε2 + ε3) + ε2

2(ε3 + ε1) + ε2
3(ε1 + ε2))

+ 6C123ε1ε2ε3}

+
N

24
{C1111(ε4

1 + ε4
2 + ε4

3) + 4C1112(ε3
1(ε2 + ε3) + ε3

2(ε3 + ε1) + ε3
3(ε1 + ε2))

+ 6C1122(ε2
1ε

2
2 + ε2

2ε
2
3 + ε2

3ε
2
1) + 12C1123ε1ε2ε3(ε1 + ε2 + ε3)} (5.7)

where N is the number of unit cells, Cij, Cijk and Cijkl are second-, third- and

fourth-order elastic moduli. To calculate elastic moduli, we fit the energy of struc-

tures distorted along with different strain modes to fourth-order polynomial in ε, and

linear combinations of second-, third- and fourth-order elastic moduli give second-,

third- and fourth-order coefficient of the polynomial respectively (Table 5.7). Our

estimates of these compliances are listed in Table 5.8.

Table 5.7: In each type of strain modes s(ε) = |ε1, ε2, ε3, ε4, ε5, ε6 >, the total energy
is expressed as a polynomial function of ε. The linear combinations of second, third
and forth order elastic moduli are equal to the values of second-, third- and forth-
order coefficients of polynomial fit to the data.

Strain mode Linear combination of Cij Linear combination of Cijk Linear combination of Cijkl
sa = ε|1, 0, 0, 0, 0, 0 > 1

2
C11

1
6
C111

1
24
C1111

sb = ε|1, 1, 0, 0, 0, 0 > C11 + C12
1
3
C111 + C112

1
16
C1111 + 1

3
C1112 + 1

4
C1122

sc = ε|1,−1, 0, 0, 0, 0 > C11 − C12 0 1
16
C1111 − 1

3
C1112 + 1

4
C1122

sd = ε|1, 1, 1, 0, 0, 0 > 3
2
C11 + 3C12

1
2
C111 + 3C112 + C123

1
8
C1111 + C1112 + 1

4
C1122 + 3

2
C1123

se = ε|0, 0, 0, 1, 1, 1 > 3
2
C44
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Table 5.8: Elastic moludi of Helastic(ε) in GPa, determined from first-principles.

Coeff. Values Coeff. Values Coeff. Values

C11 117 C111 -817 C1112 400

C12 157 C112 -517 C1122 6161

C ′ -20 C123 -487 C1123 -1164

C44 57 C1111 5831

5.5.3 Coupling between homogeneous strain and phonons

Coupling of homogeneous strain with phonons is important in MTs where atomic

displacements occur along with lattice deformations, and plays a crucial role. We

include third-order couplings between homogeneous strains (i) quadratic terms of

~τi’s (~τ ′i ’s) in H1
spc (H2

spc) taking differences between ~τi (~τ ′i) at site i and ~τj (~τ ′j) at its

first and second NN sites j (Eq. 5.8 and 5.9), and (ii) with products of τi and τ ′i

in H3
spc (Eq. 5.10). To make sure that Heff gives the lowest energy phase α, it is

necessury to take interactions upto the second NNs sites at third-order. However,

we find that only third-order strain-phonon coupling is not sufficient to capture the

details of α phase, and hence include fourth-order couplings between strain and τi

(τ ′i) and given in H4
spc (H5

spc) (Eq. 5.11 and 5.12).
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H1
spc(~τ , ε) =

N∑
i=1

[
6∑
j=1

{g30(ε1 + ε2 + ε3)|~τ1ij|2

+ g31(ε1τ
2
1ijx + ε2τ

2
1ijy + ε3τ

2
1ijz)

+ g32(ε1 + ε2 + ε3)(~τ1ij · d̂1j)
2

+ g33(ε1τ
2
1ijxd

2
1jx + ε2τ

2
1ijyd

2
1jy + ε3τ

2
1ijzd

2
1jz)

+ g34(ε1(τ 2
1ijy + τ 2

1ijz)d
2
1jx + ε2(τ 2

1ijz + τ 2
1ijx)d

2
1jy + ε3(τ 2

1ijx + τ 2
1ijy)d

2
1jz)

+ g35(ε4τ1ijyτ1ijz + ε5τ1ijzτ1ijx + ε6τ1ijxτ1ijy)

+ g36(ε4τ1ijyτ1ijzd
2
1jx + ε5τ1ijzτ1ijxd

2
1jy + ε6τ1ijxτ1ijyd

2
1jz)

+
12∑
j=1

{g37(ε1 + ε2 + ε3)|~τ2ij|2

+ g38(ε1τ
2
2ijx + ε2τ

2
2ijy + ε3τ

2
2ijz)

+ g39(ε4τ2ijyτ2ijz + ε5τ2ijzτ2ijx + ε6τ2ijxτ2ijy)}], (5.8)
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H2
spc(~τ

′, ε) =
N∑
i=1

[
6∑
j=1

{g30(ε1 + ε2 + ε3)|~τ ′1ij|2

+ g31(ε1τ
′2
1ijx + ε2τ

′2
1ijy + ε3τ

′2
1ijz)

+ g32(ε1 + ε2 + ε3)(~τ ′1ij · d̂1j)
2

+ g33(ε1τ
′2
1ijxd

2
1jx + ε2τ

′2
1ijyd

2
1jy + ε3τ

′2
1ijzd

2
1jz)

+ g34(ε1(τ ′21ijy + τ ′21ijz)d
2
1jx + ε2(τ ′21ijz + τ ′21ijx)d

2
1jy + ε3(τ ′21ijx + τ ′21ijy)d

2
1jz)

+ g35(ε4τ
′
1ijyτ

′
1ijz + ε5τ

′
1ijzτ

′
1ijx + ε6τ

′
1ijxτ

′
1ijy)

+ g36(ε4τ
′
1ijyτ

′
1ijzd

2
1jx + ε5τ

′
1ijzτ

′
1ijxd

2
1jy + ε6τ

′
1ijxτ

′
1ijyd

2
1jz)

+
12∑
j=1

{g37(ε1 + ε2 + ε3)|~τ ′2ij|2

+ g38(ε1τ
′2
2ijx + ε2τ

′2
2ijy + ε3τ

′2
2ijz)

+ g39(ε4τ
′
2ijyτ

′
2ijz + ε5τ

′
2ijzτ

′
2ijx + ε6τ

′
2ijxτ

′
2ijy)}], (5.9)

H3
spc(~τ , ~τ

′, ε) =
N∑
i=1

8∑
j=1

[h30(ε1 + ε2 + ε3){τ0ijxτ0ijyd0jxd0jy + c.p}

+ h31{ε1τ0ijyτ0ijzd0jyd0jz + c.p}

+ h32{ε4τ
2
0ijxd0jyd0jz + c.p}

+ h33{ε4(τ 2
0ijy + τ 2

0ijz)d0jyd0jz + c.p}

+ h34{τ0ijx(ε5τ0ijz + ε6τ0ijy)d0jyd0jz + c.p}] (5.10)
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H4
spc(~τ , ε) =

N∑
i=1

8∑
j=1

{g40(ε2
1 + ε2

2 + ε2
3)|~τ1ij|2

+ g41(ε2
1τ

2
1ijx + ε2

2τ
2
1ijy + ε2

3τ
2
1ijz)

+ g42(ε1ε2τ
2
1ijz + ε2ε3τ

2
1ijx + ε3ε1τ

2
1ijy)

+ g43(ε1(ε2 + ε3)τ 2
1ijx + ε2(ε3 + ε1)τ 2

1ijy + ε3(ε1 + ε2)τ 2
1ijz)

+ g44(ε2
4(τ 2

0ijy + τ 2
0ijz) + ε2

5(τ 2
0ijz + τ 2

0ijx) + ε2
6(τ 2

0ijx + τ 2
0ijy))},(5.11)

H5
spc(~τ

′, ε) =
N∑
i=1

8∑
j=1

{g40(ε2
1 + ε2

2 + ε2
3)|~τ ′1ij|2

+ g41(ε2
1τ
′2
1ijx + ε2

2τ
′2
1ijy + ε2

3τ
′2
1ijz)

+ g42(ε1ε2τ
′2
1ijz + ε2ε3τ

′2
1ijx + ε3ε1τ

′2
1ijy)

+ g43(ε1(ε2 + ε3)τ ′21ijx + ε2(ε3 + ε1)τ ′21ijy + ε3(ε1 + ε2)τ ′21ijz)

+ g44(ε2
4(τ ′20ijy + τ ′20ijz) + ε2

5(τ ′20ijz + τ ′20ijx) + ε2
6(τ ′20ijx + τ ′20ijy))},(5.12)

where gij’s denote couplings of strain with τi and τ ′i , individually, and hij’s

are the third-order couplings that cause strain-induced mixing between τi and τ ′i

LWFs. These coefficients were determined from calculations of structures obtained

by freezing M-point and R-point phonon modes at the different values of strain.

Values of the third- and fourth-order coupling coefficients are determined as first

and second derivatives of harmonic coefficients with respect to strain respectively

(Table 5.9), and listed in Table 5.10.

Our Heff reproduces the lattice parameters and energies of β and α structures

with negligible errors relative to the DFT results (Table 5.11).
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Table 5.9: At each type of strain modes s(ε) = |ε1, ε2, ε3, ε4, ε5, ε6 >, value of third
order strain phonon coupling coefficients are obtained as first derivatives of harmonic
force constants at different phonon modes (ê(τ) = |τx, τy, τz, τ ′x, τ ′y, τ ′z >) of M-point
and R-point wave-vector. Fourth order strain phonon coupling are obtained as
second derivative of harmonic force constants of unstable M5′ phonon mode (êM2 =
τ
2
|0, 1, 1, 0, 1, 1 >).

Strain mode Phonon mode Linear combination of the coefficients 1st derivative of

at M-point(π
a
(011) eigenvalue (eV/f.u)

sa = ε|1, 0, 0, 0, 0, 0 > êM1 = τ |1, 0, 0, 0, 0, 0 > 8g30 + 8g31 + 16g37 + 16g38 82.0

sb = ε|0, 1, 1, 0, 0, 0 > êM1 = τ |1, 0, 0, 0, 0, 0 > 16g30 + 8g34 + 32g37 -53.7

sa = ε|1, 0, 0, 0, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > −4

3
h30 − 4

3
h31 + 8g30 + 4g32 + 16g37 28.7

sa = ε|1, 0, 0, 0, 0, 0 > êM3 = τ
2
|0, 1, 1, 0, 1̄, 1̄ > 4

3
h30 + 4

3
h31 + 8g30 + 4g32 + 16g37 -128.9

sa = ε|1, 0, 0, 0, 0, 0 > êM4 = τ√
2
|0, 1, 0, 0, 0, 1 > 8g30 + 4g32 + 4g34 + 16g37 -75.0

sc = ε|1, 1, 0, 0, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > −8

3
h30 + 16g30 + 8g31 + 8g32 + 4g33 -99.0

+4g34 + 32g37 + 16g38

sc = ε|1, 1, 0, 0, 0, 1 > êM3 = τ
2
|0, 1, 1, 0, 1̄, 1̄ > 8

3
h30 + 16g30 + 8g31 + 8g32 + 4g33 -119.5

+4g34 + 32g37 + 16g38

sd = ε|0, 0, 0, 1, 0, 0 > êM5 = τ√
2
|1, 0, 0, 1, 0, 0 > −16

3
h32 10.2

sd = ε|0, 0, 0, 1, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > −8

3
h33 + 4g35 + 8g39 -50.9

sd = ε|0, 0, 0, 1, 0, 0 > êM3 = τ
2
|0, 1, 1, 0, 1̄, 1̄ > 8

3
h33 + 4g35 + 8g39 -105.3

se = ε|0, 0, 0, 0, 1, 0 > êM6 = τ
2
|
√

2, 1̄, 0, 0, 0, 1 > −0.94h34 − 2.83g35 − 1.41g36 − 5.66g39 35.0

se = ε|0, 0, 0, 0, 1, 0 > êM7 = τ
2
|0, 1, 0,

√
2, 0, 1 > −0.94h34 + 2.83g35 + 1.41g36 + 5.66g39 -21.5

sa = ε|1, 0, 0, 0, 0, 0 > êR1 = τ |1, 0, 0, 0, 0, 0 > 12g30 + 12g31 + 4g32 + 4g33 -129.1

sf = ε|1, 1, 1, 0, 0, 0 > êR1 = τ |1, 0, 0, 0, 0, 0 > 36g30 + 12g31 + 12g32 + 4g33 + 8g34 -177.4

sg = ε|0, 0, 0, 1, 1, 1 > êR2 = τ√
3
|1, 1, 1, 0, 0, 0 > 12g35 + 4g36 -100.2

Strain mode Phonon mode Linear combination of the coefficients 2nd derivative of

at M-point(π
a
(011) eigenvalue (eV/f.u)

sa = ε|1, 0, 0, 0, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > 8g40 61.4

sh = ε|0, 1, 0, 0, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > 8g40 + 4g41 481.9

sb = ε|0, 1, 1, 0, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > 16g40 + 8g41 + 8g43 451.1

sf = ε|1, 1, 1, 0, 0, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > 24g40 + 8g41 + 8g42 + 16g43 345.4

se = ε|0, 0, 0, 0, 1, 0 > êM2 = τ
2
|0, 1, 1, 0, 1, 1 > 8g44 86.1
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Table 5.10: Coefficients of coupling between strain and atomic displacements part
of effective Hamiltonian in unit of eV/f.u..

Coeff. Values Coeff. Values Coeff. Values

g30 4.1 g37 -2.2 g44 10.8

g31 -5.1 g38 7.8 h30 -3.9

g32 -12.0 g39 -2.4 h31 -55.3

g33 -17.0 g40 20.2 h32 -1.9

g34 -6.2 g41 80.1 h33 -10.2

g35 -14.7 g42 30.7 h34 -7.2

g36 19.1 g43 -64.1

Table 5.11: Structural parameters and energies of β and α phases relative to α,
obtained using DFT and effevtive Hamiltonian.

Phase Method a(Å) c/a Volume (Å3) E − Eα(meV/atom)

β PW91 3.25 17.16 106

Heff 3.25 17.16 116

α PW91 2.94 1.58 17.39 0.0

Heff 2.93 1.58 17.22 0.0

5.6 Monte Carlo Simulations

After having full effective Hamiltonian that reproduces β and α structures accurately

in comparision with DFT results, we analyze this Hamiltonian with Monte Carlo

(MC) simulations on a periodic system containing L×L×L (L = 16) unit cells of β

structure. We used a single-flip configuration update within Metropolis scheme and

adjusted the step-size of configurational {~τi, ~τ ′i} updates to maintain the acceptance

ratio of ∼ 0.5 near the transformation temperature. In each Monte Carlo sweep

(MCS), we picked τi and τ ′i randomly (totally 2L3 updates) and homogeneous strain

variables L times. Thus, each MCS involves (2L3 + L) attempts of updating the

configuration of the system. To identify different phases from the configurations

sampled in MC simulations at a given temperature, we accumulated absolute values

of Fourier components of τi and τ ′i , project them on eigenvectors of M-point phonon

modes (M5′ , M2′ and M4′) and obtained their ensemble averages, and of strain
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(<ε>) components at each temperature. To assess the possibility of hysteresis, we

approach the transformation from high (low)-temperatures by cooling (heating) the

system. In cooling simulations, we start from 600 K temperature, equilibrate the

system to the cubic phase, and reduce the temperature in steps of 10 K (and 2 K

near the transformation temperature), down to the 400 K temperature. In heating

simulations, we start from T=400 K taking α structure as the initial configuration

and increase the temperature in steps of 10 K (and 2 K near the transformation

temperature) to a high-temperature of 600 K (we checked that our results do not

depend on the choice of initial configuration). At each temperature, we used 10000

MCS for thermal equilibration and 50000 MCS for thermodynamic averaging of

various observables.
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Figure 5.4: Averages of absolute values of M5′ , M2′ and M4′ modes (a) and compo-
nents of strain tensor (b) as a function of temperature at ambient pressure.

Average values of the |M5′ |, |M2′| and |M4′ | (Fig. 5.4a) and homogeneous strain

components ε (Fig. 5.4b) vanish at high-temperatures, and change discontinuously

to non-zero values at T < TM . In cooling simulations, this discontinuity marks the

MT at TM = 478 K. In heating simulations α structure transforms into β structure

at TA = 484 K. From these Monte Carlo simulations we find that averages of |M2′ |,
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Figure 5.5: Histograms of M5′ mode obtained from configurations sampled during
cooling at TM and its two temperatures in its close vicinity.

|M4′ | and components of non-basal shear (ε5 and ε6) remains zero at all tempera-

tures (Fig. 5.4a and 5.4b), confirming that titanium transforms from β to α structure

at ambient pressure. MC simulations reveal a discontinuity in order parameters at

TM and hysteresis of ∆T ∼6 K in cooling and heating simulations indicate the

first-order character of MT in titanium. We also analyze the histograms of primary

order parameter (M5′) obtained from cooling (Fig. 5.5) simulations, which reveal

(i) relatively narrow and sharp distributions of ordering parameters and (ii) a sharp

jump across TM . Bimodal nature of the histogram at TM confirms the coexistence

of β and α, and the first-order character of the MT. In order to further corroborate

these results, we ploted square of frequency (ω) and Binder fourth order cumulant

(C4) of M ′
5 mode using Eq. 3.10 and Eq. 3.11 in cooling and heating simulations

respectively. Softening in M5′ phonon frequency and its T-coefficients (Fig. 5.6a)

below and above TM , and a discontinuity in C4 (Fig. 5.6b) of M ′
5 mode at T = 478

(484) K in cooling (heating) confirm that M5′ mode is the primary order param-

eter in β to α transformation in pure titanium. Our estimate of the equilibrium

transition temperature (Tc = 1
2
(TM + TA) = 481 K) is much underestimated with

respect to experiment (Tc = 1155 K) [117], similar to the errors in our estimates
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of transformation temperature in NiTi [45], PtTi (chapter 4) and in ferroelectrics

structural transformations [23]. This is probably because of the GGA-DFT errors

in energies and structural parameters, and needs further analysis.

400 450 500 550 600
T (K)

0

0.5

1

1.5

2

ω
2
 x

 1
0

6
 (

M
5

’ )

Cooling

Heating

400 450 500 550 600
T (K)

1

2

3

4

C
4
 (

M
5

’ )

Cooling

Heating

(a) (b)

Figure 5.6: Square of frequency (a) and Binder fourth order cumulant (b) of primary
order parameter M5′ phonon mode.

5.7 Landau theoretical analysis of effective Hamil-

tonian

To analyze Heff and determine couplings that are relevant to the observed MT in

titanium, we present a Landau theory obtained by projecting the full Heff into the

subspace of only in the non-zero order parameters M5′ phonon at M-point π
a
(011)

wave-vector and strain components involved in strain order parameters. In the

projected subspace, τ span the subspace of primary order parameter given by M5′

phonon mode, restricting to the symmetries of the hexagonal phase of titanium with

ε3 = ε2 and ε6 = ε5 = 0,
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HLandau(τ, ε) = a1τ
2 + a2τ

4 + a3τ
6 + a4τ

8

+ (g1ε1 + g2ε2 + g3ε4)τ 2

+ (g4ε
2
1 + g5ε

2
2 + g6ε1ε2 + g7ε

2
4)τ 2, (5.13)

where ai’s and gi’s are the coefficients of terms in M5′ phonon and its coupling

with strains respectively. Values of these coefficients are the linear combinations

of respective coefficients of the full Heff and listed in Table 5.12. Instability of

M ′
5 mode (a1 =-21.4 eV/f.u. < 0) corresponds to {01̄1} <0 1 1> shuffle, whose

coupling with ε1 (g1=28.7 eV/f.u.) is positive, and with ε2 (g2=-98.0 eV/f.u.) is

negative. Therefore, ε1 must be negative and ε3 = ε2 positive to minimize the

energy of system, consistent with Bain strain distortion that lowers the symmetry

of cubic structure to tetragonal one. Coupling of τ with ε4 ({010}<0 0 1> pure

shear, g3=50.9 eV/f.u.) transforms β structure to α structure. Rest of the terms in

HLandau(τ, ε) are to capture the correct structural parameters and energetics of α

structure.

Table 5.12: Coefficients of Landau energy expression are the linear combination of
the coefficients of Heff .

Landau coeff. Heff coeff. Values (eV/unit cell)

a1 4A01 − 2
3
A02 + 4A11 + 2A12 + 2A21 + 2A22 + 4A23 -21.4

a2 16B41 + 4B42 1.49×103

a3 32B61 -3.98×104

a4 64B81 4.51×105

g1 −4
3
(h30 + h31) + 8g30 + 4g32 + 16g37 28.7

g2 −8
3
h30 + 16g30 + 8g31 + 8g32 + 4g33 + 4g34 + 32g37 + 16g38 -98.0

g3 −8
3
h33 + 4g35 + 8g39 50.9

g4 8g40 161.4

g5 16g40 + 8g41 + 8g43 451.1

g6 8g42 + 8g43 -267.1

g7 8g44 86.1
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5.8 Summary

In summary, we presented a thorough statistical mechanical analysis of an effective

Hamiltonian derived to capture its low-energy landscape of Ti using Monte Carlo

simulations. We (a) determined its soft modes and establish the cell-doubling M5′

phonon mode of the β structure as the primary order parameter of MT, and (b)

there are three other secondary order parameters marking the MT in Ti. Our

predictions of β to α transformation temperature are underestimated with respect

to experiments, and further analysis is needed to understand this.



Chapter 6

Fourier-Landau Theory of

Martensitic Transformations in

Group IV B Transition Metals

6.1 Introduction

Group IV B transition metals undergo following martensitic transformations (MT):

from (i) high-temperature body-centered cubic (BCC or β) phase to hexagonal close-

packed (HCP or α) phase, (ii) α phase under pressure to hexagonal open-packed

(HOP or ω) phase, and (iii) β phase to ω phase above a triple point [117]. Experi-

mentally, α structure is the ground state at room temperature and ambient pressure,

ω phase stabilizes under pressure and β is the stable phase at high temperatures

(below the melting point) of these transition metals [117]. However, first-principles

theoretical calculations support that ω structure is the ground state phase of Ti

and Zr, while α phase is the ground state structure of Hf [136, 137]. The MTs in

group IV B metals have been extensively studied in experimental [117,135,138,139]

106
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and theoretical [125, 136, 137, 140] analysis over the last few decades. It is well es-

tablished from these studies that (i) β to α transformation occurs via {01̄1}<011>

shuffle corresponding to instability of a transverse acoustic (TA1) phonon [127,128]

at wave-vector N = 1
2
(011) of β-phase and (ii) β to ω transformation occurs via plane

collapse along the [111] direction of the β structure corresponding to instability of

a longitudinal acoustic (LA) phonon [129–131] at qω = 2
3
(111) wave-vector.

Earlier first-principles based calculations [121, 125, 136, 140, 141] were focused

on calculating the structural parameters, electronic and vibrational properties of

these metals and comparing them with experiments. A few of them estimated

transformation temperatures determining free-energy of different structures of Ti,

Zr and Hf elemental metals [125,136]. Though theoretical understanding of different

structures and unstable phonons that link the parent β phase to product α and ω

phases is achieved quite well, certain aspects of Landau-like theory to model energy

landscapes associated with paths connecting β structure to α and ω structures are

not quite clear.

In this chapter, we present a Landau theoretical analysis of martensitic transfor-

mations in group IV B transition metals with focus on the primary order parameters

of these transformations. In Sec. 6.2, we present details of first-principles calcula-

tions and optimized structural parameters of different structures of group IV B

elemental metals and their energies. In Sec. 6.3, we present phonon spectra of their

β structure and discuss various lattice instabilities in the BCC structure of these

metals. In Sec. 6.4, we present energy along the path of (i) β to α and (ii) β to

ω martensitic transformations in these metallic materials and show that a periodic

generalization of Landau free energy function is necessary to capture the physics of

these transformations. We finally summarize our work in Sec. 6.5.
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6.2 Computational methods and structural sta-

bility

We performed first-principles calculations within density functional theory (DFT)

using a plane-wave pseudopotential scheme implemented in the Quantum Espresso

(QE) package [81], with a local density approximation (LDA) in a Perdew-Zunger

[82] parametrized form of exchange-correlation energy functional. Results for prop-

erties of group IV B metals are sensitive to energy cutoff used to truncate basis sets

and k-points, and hence we use fairly high accuracy parameters in our calculations.

We use energy cutoffs of 50 Ry and 400 Ry to truncate plane-wave basis sets used

for representing Kohn-Sham wave functions and charge density, respectively. Bril-

louin zone integrations in Kohn-Sham calculations were sampled on uniform meshes

of 24 × 24 × 24 k-points for β, 24 × 24 × 18 k-points for α and 24 × 24 × 36 k-

points for ω structures. We relaxed structures to minimize energy with respect to

lattice parameters and atomic positions until the magnitude of stresses is less than 5

kbar and Hellmann-Feynman force on each atom is less than 1 meV/Å. Within the

framework of DFPT, we determined dynamical matrices and phonons at q-points

on a 4× 4× 4 mesh.

Our estimates of structural parameters (Table 6.1) are underestimated with re-

spect to experiments [138] as is typical of LDA based DFT calculations. Relative

energies of different structures of Ti, Zr and Hf reconfirm that ω is the ground sta-

ble structure of Ti and Zr while α is the groud state of Hf at 0 K temperature and

ambient pressure (Table 6.1). These results are consistent with results of earlier

theoretical works [136,137].
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Table 6.1: Structural parameters and energies of β, α and ω phases of Ti, Zr and
Hf relative to their α phases respectively, obtained with first-principles LDA DFT
calculations.

Ti Zr Hf

Phase Method a (Å) c/a E − Eα a (Å) c/a E − Eα a (Å) c/a E − Eα
(meV/atom) (meV/atom) (meV/atom)

β LDA 3.16 108 3.48 45 3.42 151

Exp [138] 3.28 3.59 3.55

α LDA 2.94 1.58 0 3.15 1.62 0 3.11 1.58 0

Exp [138] 2.95 1.59 3.23 1.59 3.19 1.58

ω LDA 4.58 0.62 -5 4.92 0.63 -14 4.82 0.62 23

Exp [138] 4.62 0.61 5.04 0.62 4.98 0.62

6.3 Phonon dispersion of BCC (β) structure

We determined phonon spectra of group IV B elemental crystal stats in their β struc-

tures using DFPT calculations, and find unstable phonons at many wave-vectors

through the BZ, showing the structural instability of β-phase of these materials at

low-T. Our results agree well with earlier theoretical results [142, 143]. In these

materials, the transverse acoustic (TA1) phonon mode at N (= 1
2
(011)) wave-vector

constitute the strongest lattice instability of β structure (Fig. 6.1a). This N point

instability is responsible for the β → α martensitic transformation in these transi-

tion metals, as we showed in our work on martensitic transformation in Ti in chapter

5 (where M wave-vector in the BZ of the conventional cubic unit cell of β structure

is equivalent to N wave-vector in the BZ of its primitive unit cell).

6.4 Landau theory

Landau theory models free energy function of order parameters of structural trans-

formations typically expressed as symmetry allowed polynomial using the parent

phase as the reference. It captures physics of all symmetry equivalent odered states.

We use these ideas to model the energy along path of martensitic transformations
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Figure 6.1: Phonon dispersion (a) along high-symmetry lines in Brillouin zone (b)
of primitive unit cell of β structures of Ti (black), Zr (red) and Hf (green) obtained
using DFPT simulations. Unstable modes with imaginary frequencies (ω2 < 0) are
shown with negative values.

expressed in terms of the order parameters of (i) β to α, and (ii) β to ω transfor-

mations in the group IV B transition metals. We demonstrate that the polynomial

free-energy function in conventional Landau theory needs to be generalized here to

a Fourier series to capture the translational symmetry of the crystalline lattice.

6.4.1 β → α transformation

Unstable TA1 phonon at N wave-vector is the primary order parameter of β to α

martensitic transformation that describes the required lattice distortion of β struc-

ture leading to α structure. At a particular value of the amplitude of eigenvector of

this TA1 phonon and strain β transforms to α structure (see Fig. 5.2 and Table 5.2

in chapter 5, N and M wave-vectors in the BZs of primitive and conventional unit

cells of β structure respectively are the same.). At different values of the magnitude

of primary order parameter, we relaxed the distorted structure with 2-atoms super

cell generated by N wave-vector phonon. We find that at u = 0.092, β structure

transforms to α structure. We also observe that the energy landscape is a periodic

function of u, with periodicity of u0 = 0.5. Such behavior of energy landscape forces
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us to use a periodic function as a model. As E(u) in Fig 6.2 is an even function, we

fitted this energy curve to a Fourier series:

E(u) = E0 +
N=4∑
n=1

ancos(
4nπ

u0

u), (6.1)

where E0 and an’s are the parameters (Fourier coefficients) defining the periodic

function. u0 denotes the periodicity in crystal lattice. We find that a series with at

N = 4 in Eq. 6.1 fits energy landscape quite well, and its coefficients are presented

in Table 6.2. Now the free-energy F (u) as a function of order parameter can be

estimate using,

F (u) = E(u) + g

∫
dx|du

dx
|2, (6.2)

where g (> 0) is a coefficients, and last term in Eq. 6.2 denotes the kinetic

energy that minimize the free-energy if |u| does not vary along x. F (u) can we use

to invastigate β to α martensitic transformations in group IV B metals.

Table 6.2: Coefficients of Fourier-Landau energy function (in unit of meV/atom).

Coefficients Ti Zr Hf

(meV/atom)

E0 32.5 69.4 29.8

a1 -138.3 -153.6 -185.2

a2 85.4 83.5 105.9

a3 11.5 6.1 40.3

a4 -3.2 -13.6 -3.0
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6.4.2 β → ω transformation

Longitudinal acoustic (LA) phonon at qω = 2
3
(111) wave-vector is the primary order

parameter of β to ω transformation. At a particular value of the amplitude of

eigenvector of this LA phonon, pair of (111) planes of BCC structure collapse into

one resulting in tripling of periodic cell of β structure, and transforming it to ω

structure (see Fig. 6.3). At different values of the magnitude of primary order

parameter, we relaxed the three atoms super cell of the distorted structure generated

by qω wave-vector phonon. We find that at u = 0.1667, β structure transforms to

ω structure, and the associated energy landscape of the path is periodic function of

u with a period of u = 1, forcing us to use a Fourier series (a periodic function) to

fit this. As we see in Fig. 6.3, the energy is neither even nor odd, and we fit this

energy landscape to a Fourier series:

E(u) = E0 +
N=4∑
n=1

{ancos(
2nπ

u0

u) + bnsin(
2nπ

u0

u)}, (6.3)

where E0, an’s and bn are the Fourier coefficients. We find that at N = 4, Eq. 6.3
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fits the energy landscape quite well, and its coefficients are given in Table 6.3. Now

we can use Eq. 6.2 and Eq. 6.3 to study martensitic transformation from β to ω in

Ti, Zr and Hf.
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Figure 6.3: Unit cell of β structure showing (1 1 1) planes at a distance of
√

3
6
aβ (a),

(0001) plane view of ω structure obtaining by the freezing of LA phonon at wave-
vector qω = 2

3
(111) (b), atomic displacements of LA mode in the cell-tripling of the

β structure that constitute order parameters of β → ω structural transformations
(c) and (0 1 1 0) plane view of ω structure (d).

Table 6.3: Coefficients of Fourier-Landau energy function in unit of meV/atom.

Coefficients Ti Zr Hf

(meV/atom)

E0 73.6 103.3 82.4

a1 -83.3 -89.8 -97.0

a2 -8.3 -17.3 -10.9

a3 3.7 7.7 10.3

a4 15.6 13.3 16.7

b1 144.0 155.2 167.7

b2 14.1 29.7 18.7

b3 0.01 0.01 0.02

b4 27.2 23.3 29.1
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6.5 Summary

In summary, we presented Landau theoretical analysis of the energy along paths of

(i) β to α and (ii) β to ω martensitic transformations in group IV B transition metals.

These paths are parametrized by the respective phonon-related order parameters:

phonon modes TA1 at N and LA at qω wave-vectors respectively for β → α and

β → ω transformations. We show that Landau-like energy function for these paths

of martensitic transformations in the Ti, Zr and Hf elemental metals are periodic

and require generalization of the polynomial free energy function in conventional

Landau theory to a Fourier series.





Chapter 7

Summary

The central theme of this thesis has been to determine interatomic interactions

using first-principles simulations providing access to detailed information on atom-

istic scale and connect it to macroscopic properties of a material. We have exten-

sively investigated how unstable phonons, nonlinear elasticity and their coupling

govern martensitic transformations in metallic materials. Materials studied here are

very important in technologies ranging from medical applications to the robotic,

aerospace and automotive industries: NiTi and PtTi shape memory alloys, and

group IV B elemental transition metals (Ti, Zr and Hf). In our analysis, we have

employed a combination of first-principles calculations based on density functional

theory, method of lattice Wannier functions for construction of materials-specific

effective Hamiltonian, and analysis based on Landau theories.

One of the new methods developed here was for estimating the contribution of

unstable phonons to free-energies. It has been successfully achieved by treating them

as quantum anharmonic oscillators including the fourth-order anharmonic term in

their model Hamiltonian. Solving this Hamiltonian of anharmonic oscillators using

a higher-order finite difference method of the kinetic energy operator on a uniform

grid in real-space, we presented a scheme to estimate free-energies of these phonons.

115
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We resolved some of the puzzling issues pertaining to relative stability of various

martensitic phases in NiTi and PtTi by calculating their free-energies using this

scheme.

In the second project, we constructed a materials-specific effective Hamiltonian

using the method of lattice Wannier functions in the symmetry invariant subspaces

of phonons and strain modes. Materials-specific parameters in this Hamiltonian

have been determined from well-designed sets of first-principles calculations. We

have performed Monte Carlo simulations of the resulting effective Hamiltonians and

investigated the martensitic transformations in NiTi, PtTi and pure titanium met-

als. Though results of our Monte Carlo simulations underestimate the martensitic

transformation temperature (TM) of these three systems needing further investiga-

tion, they uncovered amazingly rich physics of several coupled order parameters,

which is key to achieving large deformation without plasticity in shape memory

alloys (NiTi and PtTi). We have shown that the unstable M5′ phonon mode of

austenite phase of these three materials drives the martensitic transformation as

the primary order parameter. There are SIX other secondary order parameters in

NiTi, and other THREE secondary order parameters in PtTi and Ti, governing their

respective martensitic transformations. Within Landau theoretical analysis of the

effective Hamiltonian, we show that relative strengths of the third-order couplings

of primary order parameter with secondary order parameters fundamentally deter-

mine the symmetry of low-T structures emerging at the structural transformation

in a given material.

In the final stage of this thesis, we have developed a Fourier generalization of

Landau theory, called Fourier-Landau theory, that is essential for a unified descrip-

tion of microstructure and the martensitic transformations in these materials. Using

this theory, we have successfully modeled the path of martensitic transformations

in the group IV B transition metals.
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We summarize our work in a schematic diagram (see Fig. 7.1) which expresses

flow of ideas in the topics covered in this thesis. In summary, we have shown that

first-principles methods are quite powerful as a tool in investigation of structural

stability and low-T properties of materials. These methods provide atomistic infor-

mation to identify relevant degrees of freedom and determine parameters that model

their interactions with an effective Hamiltonian which can be simulated to study fi-

nite temperature properties of materials like structural phase transformations.

First-principles Methods: DFT

Phonons Nonlinear elasticityFree-energy

Symmetry invariant subspace
and order parameters

Effective HamiltonianFourier-Landau theory

Monte Carlo

Martensitic transformations
(NiTi, PtTi and Ti)

Martensitic transformations
(Ti, Zr and Hf)

Order parameters

Structural stability

Landau theory

Figure 7.1: A schematic summarizing our work presented in this thesis.

The methods developed in this thesis have general applicability, and open up

avenues for further research in physics of materials. Our method to estimate the

contributions of unstable phonons to free-energy can be useful in determination

of thermodynamic properties of many weakly unstable materials. Secondly, the

third-order couplings between the order parameters identified here to be relevant
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to symmetry of martensite phases will be useful as descriptors in design of im-

proved shape memory alloys as calculations of these couplings are relatively easy

within the framework of first-principles simulations. It should be possible to use

the Fourier-Landau theory developed here for martensitic transformations in group

IV B transition metals in understanding and design of α and β-stabilizers. Thus,

most of the work presented in this thesis will be helpful in the design of metallic

alloys with improved properties for smart structures and structural applications in

aerospace and automotive industries.
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[93] M.  Lopuszyński and J. A. Majewski, Phys. Rev. B 76, 045202 (2007).

[94] D. Holec, M. Friák, J. Neugebauer, and P. H. Mayrhofer, Phys. Rev. B 85,

064101 (2012).

[95] M. D. Jong, I. Winter, D. C. Chrzan, and M. Asta, Phys. Rev. B 96, 014105

(2017).



124 Bibliography

[96] J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B 75, 094105 (2007).

[97] N. Hatcher, O. Y. Kontsevoi, and A. J. Freeman, Phys. Rev. B 80, 144203

(2009).

[98] O. Mercier, K. N. Melton, G. Gremaud, and J. Hagi, Journal of Applied

Physics 51, 1833 (1980).

[99] R. Salzbrenner and M. Cohen, Acta Metallurgica 27, 739 (1979).

[100] G. J. Pataky, E. Ertekin, and H. Sehitoglu, Acta Materialia 96, 420 (2015).

[101] K. M. Rabe and U. V. Waghmare, Ferroelectrics 194, 119 (1997).

[102] U. V. Waghmare, Accounts of Chemical Research 47, 3242 (2014).

[103] F. Mouhat and F. X. Coudert, Phys Rev. B 90, 224104 (2014).

[104] N. A. Zarkevich and D. D. Johnson, Phys. Rev. B 90, 060102 (2014).

[105] N. A. Zarkevich and D. D. Johnson, Phys. Rev. Lett. 113, 265701 (2014).

[106] T. Ezaz, H. Sehitoglu, and H. Maier, Acta Materialia 59, 5893 (2011).

[107] J. V. Humbeeck, J. Eng. Mater. Technol. 121, 98 (1999).

[108] H. Donkersloot and J. V. Vucht, Journal of the Less Common Metals 20, 83

(1970).

[109] A. E. Dwight, R. A. Conner, Jnr, and J. W. Downey, Acta Crystallographica

18, 835 (1965).

[110] G.-M. Rotaru et al., Acta Materialia 55, 4447 (2007).

[111] Y. Yamabe-Mitarai, T. Hara, S. Miura, and H. Hosoda, Intermetallics 18,

2275 (2010).

[112] X. Huang, K. M. Rabe, and G. J. Ackland, Phys. Rev. B 67, 024101 (2003).

[113] S. Kadkhodaei and A. van de Walle, Acta Materialia 147, 296 (2018).

[114] N. Nakanishi, A. Nagasawa, and Y. Murakami, Journal de Physique Colloques

43, C4 (1982).

[115] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 (1994).



Bibliography 125

[116] R. Mahlangu, M. Phasha, H. Chauke, and P. Ngoepe, Intermetallics 33, 27

(2013).

[117] S. Sikka, Y. Vohra, and R. Chidambaram, Progress in Materials Science 27,

245 (1982).

[118] D. A. Young, Phase Diagrams of the Elements (Uniersity of California Press,

Berkeley, 1991).

[119] J. Gyanchandani and S. Sikka, Solid State Communications 156, 80 (2013).

[120] J. S. Gyanchandani, S. C. Gupta, S. K. Sikka, and R. Chidambaram, Journal

of Physics: Condensed Matter 2, 301 (1990).

[121] R. Ahuja, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 48, 16269

(1993).

[122] C. W. Greeff, D. R. Trinkle, and R. C. Albers, Journal of Applied Physics 90,

2221 (2001).

[123] Mehl, M. J. and Papaconstantopoulos, D. A., Europhys. Lett. 60, 248 (2002).

[124] S. P. Rudin, M. D. Jones, and R. C. Albers, Phys. Rev. B 69, 094117 (2004).

[125] R. G. Hennig et al., Phys. Rev. B 78, 054121 (2008).

[126] Z.-G. Mei, S.-L. Shang, Y. Wang, and Z.-K. Liu, Phys. Rev. B 80, 104116

(2009).

[127] W. Petry et al., Phys. Rev. B 43, 10933 (1991).

[128] W. Burgers, Physica 1, 561 (1934).

[129] B. A. Hatt and J. A. Roberts, Acta Metallurgica 8, 575 (1960).

[130] D. D. Fontaine, Acta Metallurgica 18, 275 (1970).

[131] K. Persson, M. Ekman, and V. Ozoliņš, Phys. Rev. B 61, 11221 (2000).
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