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Synopsis 

Quantitative imaging is an active area of research in atomic resolution transmission electron 

microscopy. Both aberration-corrected high-resolution transmission electron microscopy 

(HRTEM) and atomic resolution off-axis electron holography provide a unique opportunity to 

study phase information at the atomic and sub-atomic length scale. These methods can be utilized 

to extract a wide range of information on materials, e.g., atom types, distribution, electronic 

bonding, etc. The thesis starts with an introduction to aberration-corrected atomic resolution 

HRTEM and off-axis electron holography techniques.  

In chapter 2, two different atomic resolution techniques: Off-axis electron holography and 

HRTEM, have been employed to count atoms on individual columns of Zn and O in ZnO epitaxial 

thin film. Results show that the reconstructed phase from both the side and the central bands and 

the corresponding number of Zn (Z = 30) and O (Z = 8) atoms are in close agreement with the 

systematic increase in the number of atoms for a sample area less than the extinction distance. 

However, complete disagreement is observed for the sample area more than the extinction 

distance. On the other hand, the reconstructed phase obtained via in-line holography shows no 

systematic change with thickness for the same sample. Phase detection limits and the atomic model 

used to count the atoms are also presented. 

In chapter 3, an alternative approach to the image simulation in HRTEM is introduced after a 

comparative analysis of the existing image simulation methods. The alternative method is based 

on considering the atom center as an electrostatic interferometer akin to the conventional off-axis 

electron biprism within few nanometers of focus variation. Simulation results are compared with 

the experimental images of 2D materials of MoS2 and BN recorded under the optimum 

combination of third-order spherical aberration  𝐶𝑠 = −35 m and defocus Δ𝑓 = 1, 4, and 8 nm 

and are found to be in good agreement. 

In chapter 4, An alternative reconstruction method is proposed for retrieving the object exit 

wave function (OEW) directly from the recorded image intensity pattern in HRTEM. The method 

is based on applying a modified intensity equation representing the HRTEM image. A comparative  
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discussion is provided between the existing methodologies of the reconstruction of OEW in 

HRTEM, off-axis electron holography, and the present proposal. Phase shift extracted from the 

experimental images of MoS2, BN, and ZnO are found to be in excellent agreement with the 

theoretical reference values. Additionally, it is shown that the Fourier series expansion of 

diffraction pattern is effective in retrieving the isolated and periodic image functions of a specific 

form. However, for aperiodic object information, e.g., defects, dopants, edges, etc., the first 

method works its entirety. A future perspective is provided based on the results presented in 

Chapter 5 of the thesis. 
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Chapter 1 

 

Introduction  

 

 

 

 

 

This chapter reviews the basic principles behind atomic resolution phase-contrast imaging 

by two different techniques: HRTEM and off-axis electron holography. The principle of aberration 

correction and its role in improving resolution and contrast is provided. The general applications 

in materials science and its usefulness at the extreme levels to understand materials by these 

techniques are outlined. The brief background provided in this chapter will serve as a guide for the 

results and contributions made in subsequent chapters in terms of atom counting in ZnO in chapter 

2, alternative methods of image simulation, and reconstructions in high-resolution phase-contrast 

transmission electron microscopy in chapter 3 and 4, respectively.  
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1.1 Phase-contrast microscopy  

Based on transmission electron microscopy (TEM), numerous imaging and analytical 

methods are used in various areas of physical, chemical, and biological sciences. As the name 

suggests, the fast probe electrons transmit through the electron transparent specimen and carry 

information about the structure of the sample in the form of an image or diffraction pattern. There 

are various imaging and spectroscopic techniques available in TEM to investigate materials 

properties at the atomic and nanometer length scale. For example, diffraction/strain contrast 

imaging avails information on image dislocations and other types of defects in crystals, phase 

contrast, and Z-contrast microscopy to resolve material structure at the atomic level. For weak 

scattering objects, phase-contrast techniques come in handy. Phase variation of the incident beam 

itself is not visible but becomes visible when shown as a contrast variation. Zernike discovered 

phase contrast in the year 1933 in the optical microscope. He separated direct and diffracted light 

from biological tissue using a special disk in the condenser [1]. He increased the phase difference 

between the direct and diffracted light using a special plate in the back focal plane of the objective 

lens. This resulted in the enhanced phase-contrast in the intensity pattern without any chemical 

staining. He received the Nobel prize in 1953 for this work.  

 High-resolution transmission electron microscopy (HRTEM) or phase contrast TEM is the 

most widely used technique to reveal the atomic organization in crystalline materials along high 

symmetry orientations at a sub-angstrom resolution  [2–4]. Most laboratories utilize HRTEM to 

resolve atomic planes and atoms in a crystal or distinguish areas with amorphous and crystalline 

phases, image defects, e.g., dislocations, stacking faults, nanosized particles and its lattice 

matching with the host lattice, etc. HRTEM image is an interference pattern of the electron wave 

function with itself after the interaction with the specimen. HRTEM demands the performance of 

the objective below the desired level of aberrations and mechanical, electrical, and environmental 

stability of the entire setup. In principle, the phase-contrast microscopy can provide information 

on the potential and fields at the atomic and subatomic length scale (other than what was mentioned 

just before), which is important to understand a material's response or properties in many 

applications. 
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1.2 Aberration corrected high-resolution transmission electron microscopy 

1.2.1 Concept of resolution  

Human eyes can distinguish objects only up to a fraction of mm, within a certain distance. 

With an optical microscope, ‘invisible’ objects for the unaided eyes are magnified and made 

visible. Optical microscopes use light as illumination, and it has a limit up to which it can resolve. 

Electron microscope offers a thousand times better resolution than the light microscope.  In the 

conventional imaging theory, the probe illumination is considered a wave with a specific 

wavelength. Wave has a special characteristic of manifesting interference or diffraction 

phenomena. The image of a point object is blurred due to diffraction of wave known as Airy disk 

[Figure 1.01 (a)]. Rayleigh’s criteria [Figure 1.01 (b)] determines the resolution limit in terms of 

distinguishing two such blurred disks, which depend on the wavelength of the illumination (λ) and 

diameter of the circular aperture (D), and is given by θ=1.22λ/D, where θ is the angular resolution. 

For an electron microscope, λ can be varied with accelerating voltage, and resolution can be tuned. 

Thus, an electron microscope can overcome the resolution limit of the optical microscope imposed 

due to the wavelength of illumination. At 300 kV accelerating voltage, the λ of the electron is 1.97 

pm. However, the achievable resolution in an aberration-corrected microscope is only 0.8 Å, which 

is much inferior to the limit set by the diffraction criteria. This is because of the aberration and the 

stability of the electromagnetic lens, limiting the electron microscope's resolution. The most 

dominant axial aberration of a TEM is a third-order spherical aberration and is parameterized by 

spherical aberration coefficient (Cs). Therefore, the resolution and optimum contrast in HRTEM 

in the presence of aberration is defined by Scherzer criteria [5]. The Scherzer relation is obtained 

by counterbalancing the Cs to the disk of least confusion from the Gaussian image plane 

corresponding to a phase shift of -3π/4 <W(∆k) < 0. 

Scherzer resolution = √
𝐶𝑠

6
𝜆3

4
        (1.01) 

But Zernike-like λ/4 or π/2 phase plate is not available in TEM. In HRTEM, a combination 

of Cs and defocus is used as a phase plate. Defocus has the effect of reducing the effect of Cs of 

the objective lens. The Scherzer criteria set the optimum balance between Cs and defocus, and the 

resolution is expressed regarding the phase contrast transfer function (PCTF) function [Figure 

1.02]. 
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Scherzer defocus is given by =√
3𝐶𝑠

2
𝜆        (1.02) 

 

Figure. 1.01. (a) Blurring of the point object from Airy disk. Copyright (2009) by Springer [6]. 

(b) Rayleigh’s criteria of resolution. 

 

 

 

 

 

 

 

Figure. 1.02. PCTF showing Scherzer resolution of 0.43nm for a microscope with a fixed Cs = 1 

mm with optimum Scherzer defocus of 82.4nm for a 200 keV electron microscope. 

 

The first crossing of PCTF defines the microscope's resolution, and the last crossing (not 

shown in the above Figure) represents the information limit. Parasitic aberrations, e.g., vibrations, 

instability in the lens, power supply, come as an envelope. Their role is to lower the microscope's 

information limit and reduce the resolution limit if their magnitude is significant. Correcting the 

aberration is discussed in sec. 1.2.3. 
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1.2.2 Principle of image formation   

The principle of image formation, according to various exiting theories and the alternative 

method proposed by us, is described in detail in chapter 3. Briefly, a crystal is made of a periodic 

arrangement of atoms. The positively charged nucleus is highly localized in space (1 to 15 fm) 

surrounded by the delocalized electron clouds (~ Å). When a fast electron plane wave travels 

through the crystalline specimen along the high symmetry zone axis (Z.A.), the wave undergoes a 

strong phase shift by the localized positively charged nucleus. The self-interference of this phase-

shifted part of the wave with itself forms the exit wave function. The exit wave function is further 

modified by the lens aberration function and finally recorded by the detector, which modifies the 

signal through the modulation transfer function. 

Incident electron wave after passing through the sample generates exit wave function, 

which is given by    

  𝜓 = 𝐴(𝑥, 𝑦)𝑒𝑖𝜙(𝑥,𝑦)             (1.03) 

Where 𝐴(𝑥, 𝑦) is the amplitude and 𝛷(𝑥, 𝑦) is the phase representing the 2D modulation 

of the respective parameters. The object wave is modified by the lens aberration function or lens 

transfer function to form an image wave and is given by  

  𝑏(𝑢) = 𝑒𝑥𝑝(𝑖𝜒)           (1.04) 

Where 𝜒 consists of dominant aberration, i.e., Cs and defocus, which plays a role in 

reducing the effect of Cs to some extent. Self-interference of the wave at the image plane will give 

the image intensity pattern.  

An interference pattern considering phase-contrast component valid within weak phase 

object approximation (WPOA) is given by [6], 

𝐼(𝑥, 𝑦) = 1 + 2𝜙(𝑥, 𝑦)⨂ sin(𝜒)          (1.05) 

The object wave function must be determined from the reconstructed image wave first by 

determining the lost phase and then by deconvolution of the aberrations [Figure 1.03]. 
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Figure 1.03. The schematic shows the plane wave electron propagation through the object to the 

exit wave function. The lens aberration function then modifies the exit wave function to the image 

wave function, and this is recorded by the detector. Copyright (2007) by Institute of Physics 

publishing group [7]. 

 

1.2.3 Aberration correction in TEM  

The objective lens in the microscope deviates the rays from the ideal Gaussian plane, 

causing image aberration [Figure 1.03]. There are various types of aberrations in which third-order 

spherical aberration Cs is the limiting resolution for a round magnetic lens. The development of 

non-round electromagnetic lenses, e.g., hexapole correctors, opens up new possibilities of 

improving the resolution and opportunities for quantitative imaging at atomic and sub-atomic 

length scales [8]. The corrector contains a pair of hexapoles and two transfer round-lens doublets. 

The primary aberrations of the first hexapole are compensated by the second. These hexapoles 

additionally induce a secondary residual aberration, known as third-order spherical aberration. The 

sign of the spherical aberration coefficient is the opposite of the objective lens. Hexapoles can then 

be excited to the degree required to eliminate the spherical aberration of the entire system. This 

corrector system, which contains two hexapoles and a pair of round lenses, is proposed by 

Rose [9]. Hence it is known as Rose corrector. An example of such a microscope is given in Figure 
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1.04. It is a double aberration-corrected FEI TITAN 80-300 kV transmission electron microscope 

equipped with a Rose corrector and additionally gun monochromator with a point resolution better 

than 0.8 Å.  

With aberration-corrected HRTEM and a combination of negative Cs and positive defocus, 

a single vacancy of boron (B) can be imaged in monolayer boron nitride (BN) [Figure 1.05 

(a)] [10]. Even the edge structure of 2D materials can be imaged [Figure 1.05 (b)]. With the help 

of negative Cs imaging, atoms placed closely in the periodic table can be distinguished. BN 

imaging is one such example, where the N atom appears slightly brighter than the B atom [Figure 

1.05 (a)] [10].  

 

 

 

 

 

 

Figure 1.04. FEI TITAN 80-300 kV transmission electron microscope with a double aberration 

corrector.  

Negative spherical aberration (Cs) avails imaging of small atoms like oxygen in the vicinity 

of heavy atoms in the crystal  [11]. In this study by Jia et al. [11], successful imaging of all types 

of atomic columns in the dielectric SrTiO3 (Strontium titanate) and the superconductor YBa2Cu3O7 

(Yttrium barium copper oxide) is carried out. Oxygen atoms were imaged using the negative Cs. 

Otherwise, they are not visible due to the low scattering power. With this, they were successful in 

detecting the nonstoichiometric or the degree of the oxygen vacancy ordering. Figure 1.06 shows 

the oxygen atoms clearly in the presence of yttrium, barium, and copper. Negative Cs also help 

improve the image contrast [12], which is essential to the quantitative study.  
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Figure 1.05. Phase image of (a) boron monovacancy with the corresponding line profile (b) edge 

structure terminated with the N atom. (c) A model for the edge structure. Copyright (2009) by 

American Physical Society [10].  

 

 

 

 

 

 

 

 

 

Figure 1.06. Experimental images of YBa2Cu3O7 in different crystal orientations. (a) A 90° tilt 

boundary (black arrow) separating two crystal domains in the upper part, the crystal orientation is 

parallel to [100], whereas it is parallel to [001] in the lower part of the image. (b) The crystal is 

imaged along the [010] direction, i.e., tilted with respect to (a) by 90° around the vertical axis. The 

[010] Cu-O chains are now seen end-on. (c) The structure model indicates all atomic positions of 

the cations Ba, Y, Cu, and oxygen. Copyright (2003) by American Association for the 

Advancement of Science [11].  
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1.3 Electron holography: A brief introduction 

1.3.1 In-line electron holography 

Holography is a Greek word that means it contains the complete information (both 

amplitude and phase). Dennis Gabor initially proposed electron holography while improving the 

resolution limit of a conventional TEM  [13]. Gabor recorded both amplitude and phase by a two-

step process, first writing and then reading. In the writing step, the amplitude and phase 

information is written on a film. The recorded hologram is illuminated with a reference wave 

similar to the writing step in the reading step. Hence the single hologram contains the full 

information of the object. But the image quality was poor due to the overlap of the virtual and the 

real image, known as the twin image problem.  

 

1.3.2 Off-axis electron holography at medium resolution  

Off-axis electron holography was introduced only after the invention of electron biprism 

by Mollenstedt and Duker in 1955 [14]. Leith and Upatnieks later developed off-axis geometry in 

light optics to eliminate the twin image  [15]. The principle of the technique is shown schematically 

in Figure 1.07. Electron wave is split into two halves; one goes through the sample, and another 

through vacuum, which serves as the reference wave. The interference between these waves 

produces an image called an electron hologram.  

Medium resolution holography concentrates majorly on the large area phase structure. It is 

increasingly used in the analysis of 2D dopant profiling and dopant distribution. The study of 

doping profiles at a p-n junction in transistors, magnetic nanomaterials, and imaging of 

nanoparticles, ferroelectric polarization, etc. [16–21] are a few examples.  

Ref. [19] is one such example of a dopant profile study in the semiconductor at the 

nanoscale. Here nMOS (n-type metal oxide semiconductor), pMOS (n-type metal oxide 

semiconductor), and CMOS (complementary metal oxide semiconductor) devices, grown on bulk 

silicon and silicon-on-insulator type device, electrostatic potential profiles in the presence of active 

dopants are investigated using the technique. Measurement of phase is carried out across the p-n 

junction. 
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Figure 1.07. Schematic shows the geometry for off-axis electron holography. Copyright (2007) 

by Institute of Physics publishing group [7]. 

 

In another investigation by Tripp et al.  [20], single-walled cobalt (Co) nanoparticle rings 

are examined at nanometer spatial resolution. Off-axis electron holography is used to visualize the 

magnetic flux. The phase recorded by holography reveals the handedness of the magnetic domains 

within the Co nanoparticle rings. The method is also useful in imaging the vortex-like spin 

structure of the skyrmion lattice [22,23]. A study by Li et al. [22] used off-axis electron holography 

to investigate the formation and characteristics of the skyrmion lattice defects and their relationship 

to a B20 (type of chiral magnet ) crystallographic structure of FeGe (Iron germanide) thin film.  

 

Medium resolution holography is applied to a vast area of research. This is only a glimpse 

of the powerful technique, which has more to offer.  
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1.3.3 Off-axis electron holography at atomic resolution 

The off-axis electron holography has now reached an atomic resolution limit with 

aberration correction and biprism design modification [24–26]. At medium resolution, aberrations 

are almost negligible, and they come into the picture at atomic dimension. Similar to HRTEM, Cs 

and defocus are the major aberrations that are considered. With the available correctors, the 

resolution has improved up to the information limit beyond 0.1 nm. An empty hologram is 

recorded without having the sample in the beam direction [Figure 1.08 (a)]. Figure 1.08 (b) is an 

atomic resolution hologram of zinc oxide (ZnO) along [011̅0] zone axis (Z.A.). Fringes are visible 

on the atomic columns of zinc (Zn) and between the columns.  

 

 

 

 

 

 

 

 

Figure 1.08. Examples of (a) an empty hologram and (b) atomic resolution hologram fringes on 

the Zn atom. 

The intensity of the hologram is given by [7],  

𝐼(𝑟) = 1 + 𝐼𝑒𝑙(𝑟) + 𝐼𝑖𝑛𝑒𝑙(𝑟) + 2𝐶. 𝐴(𝑟)cos (2𝜋𝑞𝑐𝑥 + 𝛷(𝑟))          (1.06) 

Where 𝑞𝑐 = 𝑘𝛽 is the carrier spatial frequency, 𝐶 is the contrast. 𝐼𝑒𝑙(𝑟) and 𝐼𝑖𝑛𝑒𝑙(𝑟) 

represent all elastic and inelastic interactions. 𝐴(𝑟) and 𝛷(𝑟) are the amplitude and phase, 

respectively. 𝑘 is the reciprocal wave vector, and 𝛽 is the angle between the reference and the 

modified wave in the x-direction. 

The Fourier transformation (FT) of this hologram is given by Eq. 1.07  [7] and produces 

one central band and two sidebands [Figure 1.09]. The sideband contains complete information on 

the phase of the object. 

  𝑠𝑝𝑒𝑐(𝑞) = 𝐹𝑇[1 + 𝐼𝑒𝑙(𝑟) + 𝐼𝑖𝑛𝑒𝑙(𝑟)]    central band 
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   +𝐶. 𝐹𝑇[𝐴(𝑟) exp(𝑖𝜑(𝑟))] ⊗ 𝛿(�⃗� − �⃑�𝑐 ) +1 sideband 

   +𝐶. 𝐹𝑇[𝐴(𝑟) exp(−𝑖𝜑(𝑟))] ⊗ 𝛿(�⃗� + �⃑�𝑐 ) -1 sideband    (1.07) 

The Central band contains both elastic and inelastically scattered electrons and both linear 

and nonlinear terms. It does not include phase 𝜑(𝑟).  The ±1 sidebands contain Fourier spectrum 

of the complete image wave damped by the factor C and convoluted around �⃗� = ±�⃗�𝑐. The 

advantage of sidebands is that they contain only elastically scattered electrons and contain both 

amplitude and phase, which are linearly related to the object properties. Two sidebands are 

equivalent and provide all the information about the image wave. This is the advantage of off-axis 

electron holography over HRTEM, where the twin images or the complex conjugate can be easily 

separated by masking one of the sidebands.  

 

 

 

 

 

 

 

 

 

Figure 1.09. Fourier transform of the hologram results in two sidebands: complex conjugate of 

each other and one central band.  

 

Various studies have been reported on the atomic resolution off-axis electron holography, 

for example, a quantitative study of 2D materials, potential mapping of graphene sheets, 

etc.  [26,28,29]. Atomic resolution off-axis electron holography offers an exciting opportunity to 

obtain information at the atomic columns and between the atomic columns. Hence it is one of the 

most used techniques for quantitative analysis. A few reports try to examine the material properties 

by in-line and off-axis electron holography. But the results obtained by two different methods do 

not match even though they are the most widely used techniques [17,27,30–32]. Approaches and 

formalisms considered in both the methods are different, and thus the deviation is unavoidable. A 

detailed study about the differences is furnished in chapter 2. 
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1.4 Quantitative imaging  

With the availability of aberration-corrected microscopes and better detectors, active 

research has begun to extract more information about the material rather than focusing only on the 

atomic arrangement. For example, counting the number of atoms in the atomic column, detecting 

point defects and dopants, three-dimensional arrangement of the crystal and its extreme, the 

electron distributions, and the potential around it. This is the origin of quantitative imaging, which 

renders more than crystal structure. The goal of the thesis is to contribute to these efforts by 

developing methods to understand phase-contrast information. Attempts to count,  identify the 

types and defects of atoms in a crystalline solid are reflected in Ref. [33–35] involving developing 

methods to quantify such information. This section spreads light on such techniques, approaches, 

and the nature of the information available in the literature.  

There are various approaches to quantitative imaging. Here are a few examples determining 

the three-dimensional arrangements of atoms in bi-layer graphene and MgO crystal  [34,36]. A 

new method based on phase velocity derived from the Big-Bang and expanding universe theory in 

cosmology is applied for the bi-layer graphene sample. The process is based on first decomposing 

the spherical wave emanating from the atoms in terms of Fourier components, and the phase of 

each Fourier component varies linearly with increasing distance from the source and is given by 

𝜋𝜆𝑔2𝑓 where λ is the wavelength, g is the spatial frequency, and f is the focal distance between 

the atom and the plane at which the exit wave is reconstructed. The position of each carbon atom 

has been calculated in this method [34]. In the case of MgO crystal, complete information of the 

3D shape of the crystal, surface adsorbed impurity atom is determined from a single image [36]. 

The method is based on careful interpretation of the 3D nature of electron diffraction. Three 

different steps are involved in the procedure; choice of sensitive imaging mode for experimental 

data acquisition, structure refinement procedure, and the statistical confidence check that yields 

the final 3D structure model's uniqueness. The refinement process makes use of the absolute image 

intensity levels instead of commonly used relative values. Figure 1.10 shows the reconstructed 3D 

structure from the 2D projected intensity information. 

Electron charge density or the potential of the atom gives information about electronic 

properties like chemical bonds or the degree of ionization. However, electrons involved in bonding 

are only valence electrons. As they are small in number compared to total electrons, it is not very 
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easy to measure. Meyer Jannik C. et al. demonstrated an experimental analysis of charge 

redistribution due to chemical bonding by HRTEM [33] and matched it with first-principles 

electronic structure calculation. Charge transfer on the single-atom level for nitrogen-substitution 

point defects in graphene was studied, and iconicity of the single-layer hexagonal boron nitride 

was confirmed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Atomically resolved view of the best fitting 3D atomic arrangement for MgO. Red 

spheres indicate fully occupied Mg sites, and blue spheres fully occupied O sites. Increased color 

saturation is used to highlight surface atoms. In the surface layers, brown spheres indicate formally 

half-occupied Mg sites, while cyan spheres indicate formally half-occupied O sites. Copyright 

(2014) by Nature publishing group [34].  

 

TEM records spatially resolved scattered electron density, which helps to study the 

material's structure and properties. A new way of exploring the features of the material is based on 

the probability current of the scattered electrons [37]. 2D lateral quantum mechanical probability 

current of the scattered electrons are reconstructed in the image plane. The currents are 

reconstructed from three atomic-resolution TEM images recorded under a slight difference of 

perpendicular line foci. The probability current is the local measure of the scattering direction of 

the electrons, therefore providing information on the target properties.  Depending on the specimen 

interaction and energy loss regime considered, one can identify several simple approximate links 

between the current density and physical properties of the target.  
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The theoretical approach by computer simulation is made to develop a sensitive method to 

extract the information of valence electrons [38]. Scattered electron wave is decomposed in a set 

of primary functions, which are the Eigenfunctions of the Hamiltonian of the projected 

electrostatic object potential. Each primary function behaves as a communication channel that 

transfers the information of the object with its transmission characteristic. Information on valence 

electron distribution is then obtained from a series of exit waves by adequately combining the 

components of different channels.  

These are a few examples of quantitative imaging, and there are alternative methods and 

techniques available. The area is still open to new and simple approaches. The thesis aims to 

contribute to this.  

Image simulation and reconstructions are at the heart of quantitative imaging. Image 

simulation is necessary to understand and quantify the number and type of atoms in the acquired 

images. There are reports which study the match between simulated and experimentally obtained 

HRTEM images. There is a discrepancy of 3 to 5 times due to what is known as ‘Stobb’s 

factor’ [39–41]. Researchers are trying to figure out a particular reason rather than the combination 

of possibilities and obtain the exact match between them. One such example is reflected in 

Ref. [42]. Simulated and experimental contrasts are compared for different objective apertures. 

Yet, a difference of 1.2 is obtained in the image contrast for a larger objective aperture size. 

Various simulation methods and approaches are provided in detail in chapter 3, and also a new 

method of simulation which matches exactly with the experimental data is proposed. 

Similarly, object exit wave (OEW) reconstruction is as important as the simulation to 

extract the information of the object. There are numerous ways to reconstruct the exit wave from 

the images, and the particulars are provided in chapter 4. Two distinct methods are put forward 

based on real and reciprocal space. A single image is enough to reconstruct the OEW in these 

methods, avoiding the tedious focal series reconstruction process. 

 

1.5 Overview of the thesis 

In chapter 2, quantitative counting of Zn and O atoms in zinc oxide (ZnO) epitaxial thin 

film is carried out by different routes; reconstruction of phase from the side and a central band of 

atomic resolution off-axis and in-line electron holography. Interesting results are obtained for 

different methods.  
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Chapter 3 introduces an alternative approach to the image simulation in HRTEM after a 

comparative analysis of the existing image simulation methods. The alternative method is based 

on considering the atom as an electrostatic interferometer. Simulation results are compared with 

the experimental images of 2D materials of MoS2 and BN recorded under the optimum 

combination of third-order spherical aberration and defocus.  

In chapter 4, an alternative reconstruction method is proposed for retrieving the OEW from 

the recorded image intensity pattern in HRTEM. The method is based on applying a modified 

intensity equation representing the HRTEM image. Additionally, it is shown that the Fourier series 

expansion of diffraction pattern is effective in retrieving the isolated and periodic image functions 

of a specific form.  
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Chapter 2 

 

Quantitative counting of Zn and O atoms 

by atomic resolution off-axis and in-line 

electron holography  

 

 

In this chapter, quantitative counting of Zn and O atoms in zinc oxide (ZnO) epitaxial thin 

film is carried out by different routes; reconstruction of phase from the side and a central band of 

atomic resolution off-axis and in-line electron holography. Results show that the reconstructed 

phase from both the side and central band and the corresponding number of Zn (Z = 30) and O (Z 

= 8) atoms are in close agreement with the systematic increase in the number of atoms for the 

sample area less than the extinction distance. However, complete disagreement is observed for the 

sample area more than the extinction distance. On the other hand, the reconstructed phase obtained 

via in-line holography shows no systematic change with thickness for the same sample. Phase 

detection limits and the atomic model used to count the atoms are discussed.  

 

 

 

This work has been published and copyright protected by the American Institute of Physics. 

U. Bhat and R. Datta, J. Appl. Phys. 125, 154902 (2019). 
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2.1  Introduction  

Phase shift is the fundamental information obtained by high-resolution transmission 

electron interferometry [1]. Phase shift encodes the information on the potential distributions of 

atomic ensembles, which may be used to deduce the atomic arrangement and properties of the 

materials [2–4]. Two established approaches, i.e., off-axis and in-line electron holography, can be 

used to retrieve the phase information experimentally at atomic and sub-atomic length scales. Out 

of focus HRTEM (high-resolution transmission electron microscopy) images can be considered as 

an in-line hologram. Holography was first proposed by Gabor and subsequent development of off-

axis geometry by Leith and Upatnieks [5,6]. Off-axis geometry eliminates the twin image problem 

associated with Gabor’s original idea of in-line holography [6]. Gabor’s proposal was based on 

using a reference wave to interfere with the object wave, e.g., an electron micrograph to overcome 

the resolution limit imposed by the geometrical aberrations of the electron lens. Such a hologram 

contains all the information about the object and the imaging system. The practical off-axis 

electron holography technique developed by Möllenstedt and Düker implemented an electrostatic 

biprism for electron interference [7].  

Fourier transformation of off-axis electron hologram results in three bands; one central 

(CB) and two sidebands (SBs), where the sidebands are complex conjugate of each other. Phase 

information can be directly extracted from one of the two SBs. The CB is equivalent to in-line 

holography, which contains mixed amplitude and phase signals. Off-axis electron holography is a 

routine technique for medium resolution imaging of electric and magnetic fields [8–10]. Recently, 

atomic resolution off-axis electron holography is pursued with the development of a special 

holography microscope equipped with double electron biprism [11–14]. Double biprism setup 

eliminates Fresnel fringes and Vignetting effect essential for recording good quality hologram 

throughout the field of view, usually small, at an atomic resolution [15,16]. In the atomic resolution 

off-axis electron holography technique, electron interference fringes encode phase information at 

a sub-atomic length scale.  

On the other hand, retrieval of phase shift from in-line holography requires series of images 

to be recorded at different focus values. Various reconstruction schemes have been developed to 

retrieve the object exit wave (OEW) function from the experimental through focal image series 

method [1,17–21].  The development of both the experimental approaches to extract phase 
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information dates back to the BRITE EURAM program [22]. Few groups have reported 

comparisons of phase information by two different methods at medium and atomic resolutions. 

However, quantitative phase information obtained so far through off-axis and in-line holography 

do not correspond to each other for the same sample area and depend on the frequency range 

considered for the analysis [14,23–25]. Quantitative imaging is a recent area of active research in 

the atomic resolution electron microscopy community. Understanding the accuracy of the 

experimental phase determination and its correlation with the property of materials is crucial for 

its success and contribution to the materials and microscopy sciences as a whole [12,26–33]. Both 

aberrations corrected HRTEM and atomic resolution off-axis electron holography provides a 

unique opportunity to study phase information at the atomic and sub-atomic length scale.  

This chapter compares the quantitative atomic-scale phase information by different phase 

retrieval methods, from SB and CB of off-axis electron holography and in-line electron 

holography. It is found that the peak phase values and the corresponding number of atoms for both 

heavy Zn (Z =30) and light O (Z = 8) are in close agreement between the SB and CB of off-axis 

electron holography for thinner specimen areas with a systematic change with sample thickness. 

However, for thicker sample areas, the agreement no longer holds. On the other hand, the number 

of atoms obtained via HRTEM method does not systematically change with the sample thickness 

variation.  

 

2.2   Experimental details and data analysis 

2.2.1 Thin-film crystal growth method 

The ZnO epitaxial thin films were grown on ‘c’ plane ZnO substrates under two different 

oxygen partial pressure (𝑝𝑂2
) using pulsed laser deposition (PLD) following a procedure described 

earlier [34,35]. Electron carrier concentrations can be controlled between 1019 to 1016 cm-3 with 

𝑝𝑂2
10-5 and 10-2 Torr, respectively.  Though the original aim was to compare the difference in 

point defect distribution responsible for the change in carrier concentrations in these two samples, 

we restrict ourselves to the counting of atoms by different phase-contrast imaging routes in this 

chapter.  
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2.2.2 TEM sample preparation  

Cross-sectional TEM specimens were prepared by mechanical polishing using a 

combination of coarse grit SiC (< 100 µm) and diamond polishing paper (15 to 1 µm) to a thickness 

below 20 µm. A tripod polisher was used for the final mechanical thinning procedure. Then the 

sample was milled to perforation in a Gatan PIPS Ar ion polishing system. An Ar ion energy of 4 

and 2 kV was used during the initial and final milling stages, respectively, with a top and bottom 

gun angle setting of ± 7°. Lower kV at the end helps to remove thin amorphous skin layers. This 

is essential for the quantitative evaluation of atomic columns.  

 

2.2.3 Off-axis electron holography  

A. Principle of off-axis electron holography  

The schematic of principles behind in-line and off-axis electron holography image 

acquisition and phase retrieval are shown in Figure 2.01 and 2.02, respectively. In atomic 

resolution off-axis electron holography, the electron interference fringes encode phase information 

at the sub-Å length scale where object wave is an atomic resolution electron micrograph. Double 

biprism set up at a particular location in the microscope column is essential to avoid Fresnel artifact 

and Vignetting effect, particularly at the atomic resolution where the field of view is severely 

restricted [Figure 2.01 (c)] [36]. The first step of off-axis electron holography involves recording 

electron interference fringes or electron holograms. This hologram is the result of interference 

between two partial waves; image (𝜓𝑖𝑚𝑔) and vacuum reference waves 𝜓𝑟𝑒𝑓(𝑥, 𝑦). The intensity 

distribution in a hologram is given by [1]: 

 𝐼ℎ𝑜𝑙(𝑥, 𝑦) = [𝜓𝑖𝑚𝑔(𝑥, 𝑦) + 𝜓𝑟𝑒𝑓(𝑥, 𝑦)] [𝜓𝑖𝑚𝑔(𝑥, 𝑦) + 𝜓𝑟𝑒𝑓(𝑥, 𝑦)]∗    (2.01) 

In the case of off-axis electron holography, a Möllenstedt biprism facilitates interference 

between image [𝜓𝑖𝑚𝑔(𝑥, 𝑦)exp (𝑖𝜋𝑘𝛽𝑥)] and reference waves [𝜓𝑟𝑒𝑓(𝑥, 𝑦) exp(−𝑖𝜋𝑘𝛽𝑥)] at an 

angle β [Figure 2.01(b)].  This results in the intensity of the off-axis electron hologram given by  [2] 

𝐼ℎ𝑜𝑙(𝑥, 𝑦) = 1 + 𝐴2(𝑥, 𝑦) + 2𝐶 𝐴(𝑥, 𝑦) cos(2𝜋𝑞𝑐𝑥 + 𝜙(𝑥, 𝑦))     (2.02) 
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Where 𝑞𝑐 = 𝑘𝛽 is the carrier spatial frequency of the interference fringes and 𝐶 =  
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
  is 

the fringe contrast or fringe visibility (also can be written as V). The instabilities associated with 

recording the hologram (𝑉𝑖𝑛𝑠𝑡), the modulation transfer function of the CCD camera (𝑉𝑚𝑡𝑓), and 

inelastic damping factor (𝑉𝑖𝑛𝑒𝑙) can be added with the contrast C as 𝑉 = 𝐶 . 𝑉𝑖𝑛𝑠𝑡 . 𝑉𝑚𝑡𝑓 . 𝑉𝑖𝑛𝑒𝑙  In 

the hologram, both amplitude (A) and phase (𝜙) information are recorded in the intensity 

distribution [2].  

Figure 2.01. The schematics showing the principle of image formation for (a) In-line holography, 

(b) off-axis electron holography with single biprism, and (c) off-axis electron holography with 

double biprism set up. Copyright (2019) by American Institute of Physics [37]. 

 

B. Principle of OEW reconstruction 

The first step involves Fourier transformation of Eq. 2.02, which gives [2]:  

𝐹𝑇{𝐼ℎ𝑜𝑙} = 𝛿(𝑞) + 𝐹𝑇{𝐴2}      central band (CB) 

         +𝐶. 𝐹𝑇[𝜓𝑖𝑚𝑔]  ⊗ 𝛿(�⃗� − �⃑�𝑐 )   +1 sideband (SB1) 

         +𝐶. 𝐹𝑇[𝜓𝑖𝑚𝑔
∗ ] ⊗ 𝛿(�⃗� + �⃑�𝑐 ) -1 sideband (SB2)    (2.03) 
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The central band (CB) contains only the image amplitude and no phase information. The 

two sidebands (SBs) include amplitude and phase information and are complex conjugates of each 

other.  

In the second step, one of the SBs, preferably next to the vacuum, is masked out, and 

inverse Fourier transformed to real space as a complex array of data from which amplitude and 

phase information are extracted. In the holography reconstruction process, the bending of 

interference fringes encodes the phase modulation of the electron wave. However, there may be a 

contribution to the bending of fringes other than object potential: charging of biprism, distortion 

in the TEM projector lens, etc. These distortions induced phase modulation can be removed at the 

time of reconstruction using an empty hologram recorded under the same experimental conditions. 

The residual coherent aberrations are then corrected digitally for any quantitative work.  

In present holography reconstruction, series of holograms have been recorded at different 

defocus settings, i.e., -10 to +10 nm in focus step of 1 nm with Cs =0. There are two reasons for 

this: it improves the signal to noise ratio in the reconstructed OEW compared to a single hologram 

image [14]. And the second is that it allows reconstruction of OEW from the CB applying the 

similar numerical reconstruction method as in the case of in-line holography/HRTEM. Therefore, 

it gives a unique opportunity to compare the outcome of two different experimental phase retrieval 

techniques from the same measurement.  The numerical reconstruction method implemented for 

CB reconstruction is a combination of the paraboloid method (PAM) and maximum-likelihood 

method (MAL).  

C. Instrumentation and data analysis 

The present data were acquired using an aberration-corrected FEI TITAN 80-300 Berlin 

holography microscope operated at 300 kV equipped with a double biprism setup. Through focal 

image series was acquired at focus step (∆𝑓) of =1 nm in the range of -10 to +10 nm. Third order 

spherical aberration coefficient (𝐶𝑆) was set to zero. It is already mentioned that the aberration 

correction improves the phase detection limit by a factor of 4 [11]. Through focal holography 

method from the series of images provides extraction of phase through CB using standard 

algorithm used for HRTEM.  
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In the present case, a combination of PAM and MAL was used for the CB reconstruction. 

MAL corrects exit wave function iteratively, based on a least-square formalism. Series of images 

improves the signal to noise ratio significantly for the SB reconstruction [14]. Earlier comparison 

of phase values for a single image SB reconstruction at the medium resolution reported a low 

signal to noise ratio [25]. The details of the principle behind the method can be found in Ref. [38] 

and is shown schematically in Figure 2.02 (a). Figure 2.02 (c) is an example of an atomic resolution 

hologram, and Figure 2.02 (b) is the corresponding Fast Fourier transform (FFT) image. 

Reconstruction is carried out for the set of twenty images for both SB and CB. Zn and O atoms are 

visible in the magnified image of the hologram along [112̅0] Z.A. [Figure 2.03]. The cut-off 

frequency for CB and SB reconstruction is 14 and 12 nm-1, respectively. The cut-off frequencies 

are chosen in a way to avoid overlapping of neighboring bands.    

Figure 2.02. (a) and (e) Steps involved in reconstruction methods to extract phase and amplitude 

from the hologram and HRTEM image series, respectively. (b) Fourier transform of the hologram 

showing one CB and two SBs. (c) and (d) are the example atomic resolution hologram and 

HRTEM image of ZnO epitaxial thin film along [112̅0]  Z.A. Copyright (2019) by American 

Institute of Physics [37]. 
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Figure 2.03. Off-axis electron holography image shows the arrangement of Zn and O atoms along 

[112̅0]  Z.A., where the red circles correspond to Zn atom and yellow circles correspond to O 

atoms.  

 

2.2.4 In-line electron holography  

A.  Principle of HRTEM phase retrieval 

Unlike holography, phase information cannot be obtained from a single HRTEM image. 

For phase retrieval, the widely used method is the ‘focus variation method’. A series of images are 

recorded at different focus values with specific focus steps for a given Cs setting. The modification 

of the unknown phase, with the focus variation, can be linear or nonlinear depending on the sample 

thickness. There is an analytical solution to the linear reconstruction problem for a very thin sample 

or within weak phase object approximation (WPOA). However, most of the practical samples 

modify the phase of the probe wave function nonlinearly. There exists no direct analytical solution 

to the nonlinear reconstruction problem, and the available schemes are mostly iterative numerical 

methods. Gerchberg-Saxton algorithm, MAL are examples of such nonlinear reconstruction 

methods. The intensity recorded in the HRTEM image can be expressed as [1]: 

𝐼𝐿(𝑔 ≠ 0) = (
𝑋0(𝑔)

𝑌0(𝑔)
) [(

cos(𝜒(𝑔)) − sin(𝜒(𝑔))

sin(𝜒(𝑔)) cos(𝜒(𝑔))
) (

1
0

)] =(
𝑋0(𝑔)

𝑌0(𝑔)
) (

cos(𝜒(𝑔))

sin(𝜒(𝑔))
)   (2.04) 

The expression in square brackets describes a rotation of the projection (1,0) in the image 

plane to give a new projection axis (cos(𝜒), sin(𝜒)), where the object wave function is given by 

(𝑋0, 𝑌0) is left unchanged. 
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B. Instrumentation and data analysis 

HRTEM data was acquired in a double aberration-corrected FEI TITAN 80-300 kV 

transmission electron microscope at ICMS, JNCASR, Bangalore. An optimized phase contrast 

transfer function (PCTF) with Cs = -35 µm, f = 8 nm, and a point to point resolution better than 0.8 

Å at 300 kV was set as a reference for the experimentation. Image series were recorded with 𝐶𝑠 =

−35 𝜇𝑚, focus range -10 to 10 nm with focus step ∆𝑓 = 1 nm and exposure time of 1s. However, 

only ten images around zero focus (±5) are used for the reconstruction. We did not observe any 

difference in signal to noise ratio in the reconstructed phase between ten and twenty images. The 

image series was reconstructed using the Gerchberg-Saxton scheme as implemented in the 

MacTempas package. The reconstruction parameters are; 𝐶𝑠 = −35 𝜇𝑚, acceleration voltage 300 

kV, area of reconstruction 1024×1024 (pixel), and objective aperture size gmax =2 Å-1. A strong 

central beam condition is considered. The phase image obtained was further corrected for the 

residual aberration using the digital aberration correction scheme available within the package. 

Example HRTEM image and the reconstruction steps are shown in Figure 2.02 (d) and (e), 

respectively. Example images before and after aberration correction are shown in Figure 2.04.  

 

 

 

 

 

 

 

 

 

Figure 2.04. Example of HRTEM reconstructed amplitude, phase, and image (a)-(c) before and 

(d)-(f) after digital aberration correction. Cs = -35µm, f = 2nm are used for the aberration 

correction in this example.  
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2.3   Results and discussion  

2.3.1 Phase detection limit 

Resolution is the most crucial parameter in high-resolution transmission electron 

microscopy. In the presence of aberration, the point resolution 𝑔𝑆 is defined by the first zero 

crossings of the phase contrast transfer function (PCTF) on the frequency axis under optimum Cs 

and defocus ∆𝑓 [Figure 2.05]. The information limit 𝑔𝑖 of a microscope is the maximum 

information which can be transferred and is defined by the last point of the PCTF function just 

above the noise level and usually damped by various incoherent aberrations. The information 

encoded between the point resolution and information limit is not directly interpretable. For 

example, in an aberration-corrected microscope, one can obtain a resolution, 𝑔𝑆 better than 0.8Å, 

which is enough to resolve any atomic columns in the crystalline material along high symmetry 

orientation. This reveals the structure of the material directly in terms of the periodic arrangement 

of atoms. 

 

 

 

 

 

 

 

Figure 2.05. (a) PCTF function at 300 kV under optimum lens parameters, Cs = -35µm f = 8nm 

with the envelope function (blue dotted line) corresponding to spread in defocus 1nm. The point 

resolution and information limits are marked as gs and gi, respectively. The positive PCTF gives 

negative phase contrast or white atom contrast.  (b) PCTF function corresponding to positive phase 

contrast or dark atom contrast with Cs = 35µm, f = -8nm.  

 

Like resolution, a minimum detectable change in amplitude and the phase signal of an 

electron wave after interacting with the specimen potential is equally important to evaluate the 

smallest gradient of electric and magnetic fields, distinguishing between the columns and counting 
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atoms along the columns. Below is a brief discussion on the phase detection limit in both off-axis 

and in-line electron holography in the context of the present analysis.  

In electron holography, following the procedure as described by Lichte [38], the phase 

detection limit in a medium resolution hologram is given by  

𝜎𝜑 =  
√2𝑒

𝑝√𝑉2𝑗0𝜏𝑆𝑇𝐸(𝑢𝑐)
      (2.05) 

Where 𝑁 =
1

𝑒
𝑗0𝑝2𝜏, e is the charge of the electron, V is the fringe visibility, 𝑆𝑇𝐸(𝑢𝑐) is the signal 

transfer efficiency of the CCD camera, and 𝑗0 is the current density during the exposure time 𝜏 

over the area 𝑝2. The three essential parameters in Eq. 2.05 are N, p, and V. The fundamental limit 

in phase detection is governed by the shot noise or stochastic impacts of single electrons due to 

the probabilistic nature of the electron wave. This is given by  

𝜎𝜑 = √
2𝑐

𝑉2𝑁
         (2.06) 

The fundamental phase detection limit improves with the increasing electron dose N. 

Lichte has shown that for V=40%=0.4, STE=0.8, and N=9000/nm2 𝜎𝜑 is 0.0314rad for 𝑝2=1nm2. 

𝑐 is 1 for the images which contain a vacuum.  However, almost no changes in the phase detection 

limit by improving contrast up to 0.8, but decreases with a further increase in contrast.  

In our experimental holograms, acquired in Berlin, the average electron dose is 16 ×106 

/nm2, V=15%, and fringe spacing (s) is 0.0469 nm. Therefore, for a reconstructed area 𝑝2=100nm2 

(512 X 512),  𝜎𝜑 = 0.00023 rad. The minimum reconstruction area for the present data is 

approximately (4 × 0.8)2 =(0.32 nm)2, where 0.8 Å is the point resolution of the microscope. Thus, 

the phase detection limit for the smallest reconstruction area, corresponding to the present data, is 

0.007365 rad. The theoretical model suggests, the change in peak (mean) phase due to incremental 

change in Zn and O atoms in the atomic column are 0.284 (0.138) and 0.1098 (0.094) rad, 

respectively. The reference values given in the parenthesis are the peak phase values obtained from 

the calculation considering the isolated atom model. The mean phase has been calculated for an 

inner and outer cut-off potential of 1-50 pm for the Zn atom. Therefore, it is possible to count the 

incremental Zn and O atoms in the atomic columns of the ZnO from the present atomic resolution 

holography data irrespective of the area of reconstruction.    
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Lichte  [38] has shown that the phase detection limit improves with increasing electron 

dose N nm-2 and lateral resolution 𝑝 of the reconstructed wave. At atomic resolution, the width of 

the hologram (𝑤ℎ𝑜𝑙) is related to the resolution 𝑞𝑚𝑎𝑥 (𝑤ℎ𝑜𝑙 ≥ 4 𝑝𝑠𝑓), where psf is the point spread 

function. Therefore, the above equation is modified for a Cs corrected microscope to  

𝛿𝜑𝑙𝑖𝑚 =
4√𝜋 𝑠𝑛𝑟 𝐶𝑠

|𝜇|.𝑉𝑖𝑛𝑒𝑙.𝑉𝑖𝑛𝑠𝑡.𝑉𝑀𝑇𝐹√−ln(|𝜇|)
𝐵𝑎𝑥
𝑒𝑘2 𝜀𝑡𝐷𝑄𝐸(𝑞𝑐)

 ×  
𝑞𝑚𝑎𝑥

4

𝑘3    (2.07) 

Where snr is the signal to noise ratio, qmax is the resolution in reciprocal space, 𝜇 is the degree of 

spatial coherence, 𝑉𝑖𝑛𝑒𝑙,  𝑉𝑖𝑛𝑠𝑡, 𝑉𝑀𝑇𝐹 are the hologram contrast arising due to inelastic scattering, 

instabilities, and Modulation Transfer Function (MTF) of the CCD, respectively. 𝐷𝑄𝐸(𝑞𝑐) is the 

Detection Quantum Efficiency of the CCD camera, Bax is the brightness of the electron source, ε 

is the illumination ellipticity, k and e are the wavenumber and charge of the electron, 

respectively [11].  

The phase detection limit changes within the same order of magnitude with small variations 

in V, N, and p, thus not affecting the counting of both Zn and O atoms. The dependency of the 

theoretical phase detection limit on V, N, and p is shown in Figure 2.06. The dashed vertical lines 

are marked corresponding to the current experimental parameters. Geiger et al. [11] reported a 

phase detection limit of 2π/80 (0.0785) rad for an aberration-corrected holography microscope. 

Cooper and Voelkl improved the phase detection limit to 0.001 and 2π/1000 (0.00628) rad by long 

exposure and multiplicity of holograms together with bi-prism and sample drift correction, 

respectively [39,40]. However, a double biprism setup was not used, eliminating Fresnel fringe 

and significantly improving the phase detection limit. However, there is another limit posed by 

reconstruction methods where standard deviation in vacuum phase value poses experimental phase 

detection limit.    

On the other hand, in HRTEM, the phase detection limit has not been discussed. 

Experimentally, distinguishing B and N atoms in monolayer BN has been reported with 

corresponding peak phase values of 0.022 and 0.026 rad, respectively, with a difference of 0.004 

rad between the two atoms [Figure 2.07] [41]. Both the shape and contrasts are responsible for the 

detection of atoms in this case. The peak phase value on the atom position depends on the atomic 

scattering factor, structure factors, microscope transfer function, resolution, damping envelopes, 
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and modulation transfer function (MTF) of the camera. This will be reflected in the recorded image 

intensity as well. The changes in peak values for both phase and intensity images can be calculated 

theoretically. However, there is another factor, the standard deviation in the vacuum phase value 

from the reconstruction method eventually determines the experimental phase detection limit. 

Experimentally, the standard deviation of the reconstructed phase image in the vacuum will limit 

the interpretable phase change, which is 0.023 rad from the present result. In the case of off-axis 

holography reconstruction, the number is better, i.e., 0.00488 rad. 

Figure 2.06. Dependence of theoretical phase detection limit on area of reconstruction (p2), 

visibility and electron dose are given. (a) Phase shift v/s pixel size (N/p2=16×106 /nm2 V=15%), 

(b) phase shift v/s visibility (N/p2=16×106 /nm2 p=10nm), (c) phase shift v/s electron dose 

(p=10nm, V=15%). 

 

 

 

 

 

 

Figure 2.07. (a) Experimental image of monolayer BN with (b) line profile. (c) Simulated image 

with (d) line profile. For a BN monolayer, the peak phase shift value of B and N are 0.022/0.09 

and 0.026/0.13, with a difference of 0.004/0.04 rad by experiment and simulation.  The difference 

between the simulation and experimental values is because of Stobb’s factor. Copyright (2009) by 

American Physical Society [41].  
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2.3.2 Atomic potential model 

It is necessary to compare the reconstructed phase shift results with the theoretical 

reference values to quantify the number of atoms. This involves modeling the atomic potential as 

an imaging electron directly interacts with it, resulting in the object exit wave (OEW) function. 

Moreover, the lens contrast transfer function (CTF) and aperture size (k) modify the phase of the 

OEW further on the way to the recording device. The nucleus size (1.6 to 15 fm) is tiny compared 

to the atom's size. An atom consists of a nucleus and surrounding clouds of electrons which may 

extend to 0.1 to 0.5 nm. For a stationary atom, the Coulomb potential is ∝
1

𝑟
 and there is a 

singularity at the center of the atom. The imaging electrons mostly see the nuclear potential, and 

the surrounding electrons shield the effect [42]. Inelastic events are negligible compared to elastic 

events (imaging electrons) for a thin sample. Various theoretical atomic potential models are 

available in the literature [42–44]. In the present investigation, Hartree-Fock isolated atomic 

potential projected along the z-direction is considered [17].  The atomic potential in 3D is given 

by,  

𝑉𝑎(𝑥, 𝑦, 𝑧) = 2𝜋2𝑎0𝑒 ∑
𝑎𝑖

𝑟
exp(−2𝜋𝑟√𝑏𝑖) + 2𝜋5/2𝑎0𝑒 ∑ 𝑐𝑖𝑑𝑖

−3/2exp (−𝜋2𝑟2/𝑑𝑖)
3
𝑖=1  3

𝑖=1     (2.08) 

with  𝑟2 = 𝑥2 + 𝑦2 + 𝑧2. Where, 𝑎0 is the Bohr radius, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 are the parameterized 

coefficients. Then the mean phase shift in the absence of dynamical scattering is calculated by the 

equation,  

Φ(𝑥, 𝑦) = 𝜎 ∫ 𝑉(𝑥, 𝑦, 𝑧)𝑑𝑧           (2.09) 

Where 𝜎 =
𝜋

𝜆𝐸
  is the interaction parameter with wavelength λ and accelerating voltage E [1]. 

Projected potential along the z-direction, based on the Hartree-Fock isolated atom model, is given 

by   𝑣𝑧(𝑥, 𝑦) = ∫ 𝑉𝑎(𝑥, 𝑦, 𝑧)𝑑𝑧 
+∞

−∞
 

= 4𝜋2𝑎0𝑒 ∑ 𝑎𝑖
3
𝑖=1 𝐾0(2𝜋𝑟√𝑏𝑖) + 2𝜋2𝑎0𝑒 ∑

𝑐𝑖

𝑑𝑖

3
𝑖=1 exp (−𝜋2𝑟2/𝑑𝑖)   (2.10) 

with 𝑟2 = 𝑥2 + 𝑦2. 𝐾0(𝑥) is the modified Bessel function of order zero [17]. 

Various resolution limiting factors such as diffraction limit, thermal vibration, and 

aberration of the microscope result in measurable peak phase value in the phase image of the atom. 
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The phase image of the atom can be approximated to a Gaussian function. A Gaussian function is 

parameterized by the peak height and the full-width half maxima (FWHM). Therefore, the 

reference phase shift can be considered either based on the peak value of the phase or the mean 

value of the phase.  The mean value will depend on both the peak value and FWHM of the phase 

distribution function. To calculate the mean value of the phase, the mean inner potential is required. 

The mean value of potential is calculated by integrating either two-dimensional projected potential 

or three-dimensional atomic potential between the two limits and dividing with the surface 

area/volume, respectively. The mean phase is then calculated by multiplying this with the 

interaction parameter 𝜎.  The mean phase values calculated for different inner and outer cut-off 

values are given in Table 2.01, and the profile for Zn and O atomic potential is shown in Figure 

2.08 (a). The theoretical mean phase values corresponding to Zn and O atoms are considered for 

an outer bound of 50 and 25 pm, respectively, for Zn and O atoms keeping the same values with 

the experimental outer cut-off.  

 

 

 

 

 

 

 

 

 

Table 2.01.  The mean phase shift for the same outer cut-off and varying inner cut-off, same inner 

cut-off with a varying outer cut-off for Zn and O atoms. 

The above calculation is based on the weak phase object approximation of isolated atoms. 

Any phase change due to more than one atom is calculated via the linear projection of potential. 

We have plotted the theoretical peak reference value obtained through the MacTempas package 
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for comparison purposes [Figure 2.08 (b) and (c)]. The multislice method employed in the 

MacTempas code considers the electron propagation between the successive slices, which account 

for the dynamical scattering by the crystal. The slicing method for fewer atoms may be responsible 

for nonlinear phase increment than the linear projection of the potential method.  

Figure 2.08. (a) The projected potential of Zn and O atoms calculated using Eq. 2.10. The peak 

phase shift of (b) Zn and (c) O atoms with the increase in the number of atoms in the column 

calculated using the isolated atom model and multislice method considering dynamical scattering. 

The resolution was set to 0.5 Å. The mean phase shift is plotted with the inner and outer bound of 

potential 1 to 50/25 pm (Zn/O), respectively. Copyright (2019) by American Institute of 

Physics [37]. 

The potential function has a singularity at 𝑟 = 0 due to 
1

𝑟
 dependence. Therefore, it is 

necessary to consider an inner and outer bound of the potential while calculating the phase shift 

and image of the atom. The atomic scattering factor 𝑓𝑒(𝑘) (according to Moliere) and image of the 

atoms depends on the inner and outer bound of the potential [Figure 2.09. However, it is observed 

that there is a limit in both inner and outer bounds, beyond which the 𝑓𝑒(𝑘) and peak values of the 

atom image do not change significantly. In the present report, the limits corresponding to inner 

and outer bound are 0.01 and 1 Å, respectively, considered for calculating images of Zn and O 

atoms.  

According to Moliere, the atomic scattering factor is given by Eq. 5.18 in reference [17], 

𝑓𝑒(𝑘) =  
2𝜋𝑖

𝜆
∫ 𝐽0

∞

0
(2𝜋𝑘𝑟) {1 − exp [𝑖𝜎 ∫ 𝑉(𝑥, 𝑦, 𝑧)𝑑𝑧]}𝑟𝑑𝑟      (2.11) 

Where 𝑟2 = 𝑥2 + 𝑦2, 𝐽0(𝑥) is the Bessel function of order zero. 
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Figure 2.09. The scattering factor variation with the inner and outer bound of the potential for 

both Zn and O atoms. (a) and (b) show no change in scattering factor by changing the inner cut-

off from 0.001 to 0.01 Å (for the same outer cut-off 1 Å), but changes to the inner cut-off of 0.1 Å 

for both Zn and O, respectively. On the other hand, keeping the inner cut-off fixed (0.01 Å), there 

is only a change in amplitude at a small scattering angle (<0.25 Å -1) by changing the outer cut-off 

for Zn (c) and O (d) atoms.   

The image of an isolated atom based on the above mentioned model potential can be 

calculated directly using electron scattering amplitude from the following equation [17]; 

𝑔(𝑥) = |1 + 2𝜋𝑖 ∫ 𝑓𝑒(𝑘) exp[−𝑖𝜒(𝑘)] 𝐽0(2𝜋𝑘𝑟)𝑘𝑑𝑘
𝑘𝑚𝑎𝑥

0
|

2

       (2.12) 

Where, 𝑓𝑒(𝑘) is the electron scattering factor in the Moliere approximation using the projected 

atomic potential.  𝜒(𝑘) is the aberration function, 𝑘𝑚𝑎𝑥 = αmax/λ is the maximum spatial frequency 

transferred by the objective aperture, and 𝐽0(𝑥) is the Bessel function of order zero [17].  

The effect of the inner and outer bound of the potential and the objective aperture diameter 

on the shape and peak values of phase shift and image intensity for a single atom are given in 

Figure 2.10. The real part of the wave transfer function cos(𝜒) is neglected (i.e., set to zero) and 

the imaginary part 𝑠𝑖𝑛(𝜒) is set to 1 to mimic the Scherzer-like transfer function for the atoms in 

a periodic lattice within a weak phase object approximation.  
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Figure 2.10. (a) and (b) The peak phase of the Zn and O atom as a function of inner cut-off (fixed 

outer cut-off 1 Å) and (c) and (d) as a function of outer cut-off (fixed inner cut-off, 0.01Å). The 

peak phase value does not change with the outer cut-off potential from 0.9 to 1.4 Å. Peak phase 

values also do not change for the inner cut-off of 0.001 and 0.01 Å but change significantly for 

0.1Å. 

Like the scattering factor, the peak value of phase and intensity does not change 

significantly below an inner cut-off value of 0.01Å. No significant change is observed with the 

outer bound. This is true for both Zn and O atoms. The peak phase and intensity values also depend 

on the aperture size [Figure 2.11]. In the present case, an aperture size of 2 Å-1 is used.  

Two different theoretical phase values, peak and mean for a given atom, can be considered 

to interpret the reconstructed phase for counting the number of atoms. However, atoms are never 

stationary in the crystal, and due to finite temperature, they oscillate (0.0073 and 0.0072 Å, for Zn 

and O atoms in ZnO at 293K  [45] about their mean position in the lattice. Aberrations in the 

microscope cause further blurring on the atom positions. However, the amplitude of thermal 

vibration at room temperature and resulting blurring is smaller than the blurring due to aberration 

and is not considered in the present investigation (frozen phonon). By numerical evaluation, one 
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can find that the peak phase shift values have a coarse dependence of Z0.6-0.7, and deviation can be 

observed due to valence electron filling with the atomic number [46].  

On the other hand, the mean phase shift value is sensitive to the inner and outer bound of 

the potential (Table. 2.01). The mean phase shift value does not change enormously with the inner 

and outer cut off below 0.01 Å and above 1 Å of the potential, respectively, but varies significantly 

in between. An inner cut at 1 pm and an outer cut-off of 50/25 pm corresponding to the size of the 

Zn and O atoms are considered for extraction of mean phase shift from the experimental data. The 

theoretical mean phase shift value is calculated by three-dimensional integration of the potential 

and dividing with the volume bounded by the limits. The peak phase shift values for a microscope 

resolution of 0.8Å obtained from literature and multislice calculation as implemented in 

MacTempas for the atoms in a crystal along with mean phase shift values are given in Figure 2.08 

(b) and (c). The two curves corresponding to peak phase values match well for fewer atoms in a 

column but deviate from linearity due to dynamical scattering for a higher number of atoms. The 

mean phase is smaller (~ factor of 0.5) than the peak phase value, which has implications on the 

number of atoms by two different reference parameters and is discussed next.  

 

 

 

 

 

 

 

 

 

Figure 2.11. (a) and (b) Intensity plots of Zn and O atom as a function of inner cut-off (fixed outer 

cut-off 1 Å) and (c) and (d) as a function of outer cut-off (fixed inner cut-off, 0.01Å). The intensity 

value does not change with the outer cut-off potential from 0.9 to 1.4 Å.  
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2.3.3  Atomic resolution off-axis electron holography 

This section analyzes the experimental phase information retrieved from both SB and CB 

off-axis electron holograms of ZnO film with varying thicknesses. ZnO films with two different 

thicknesses along [112̅0]  and [011̅0]  Z.A. are considered. The extinction distances (𝜉𝑔) are 89.89 

and 90.59 nm for [112̅0]   and [011̅0]  Z.A. respectively for the 0002 reflections. Figure 2.12 and 

Figure 2.15 are the amplitude and phase images corresponding to CB and SB obtained for the two 

different regions marked as P and Q. The peak phase values on top of the Zn and O columns have 

been evaluated. Selected columns at three different distances corresponding to different thickness 

levels from the edge of the specimen for area P are indicated in the figures. The same columns are 

considered for the comparisons of two different OEW reconstructed using the CB and SB. The 

number of atoms corresponding to Zn, evaluated from the peak and mean phase values, are plotted 

in Figure 2.13 for area P. Difference in the number of Zn atoms between CB and SB is within ±1 

and ±4, corresponding to reference peak and mean phase, respectively. Another noticeable point 

is that a similar amount of Zn and O atoms are obtained for different areas of region P. This 

suggests that peak phase values used from the theoretical model fit well for both light and heavy 

atoms adjacent to each other. The reconstructed phase values and the corresponding number of Zn 

and O atoms in the neighboring columns for area P are given in Figure 2.14.  The number of atoms 

is in close agreement (with the difference of ±1 atom) for Zn and O.  

Figure 2.16 compares phase shift and the number of Zn atoms reconstructed by CB and SB 

for region Q. There is a gradual increase in the number of atoms for SB, but an almost constant 

(but different than the SB) number of atoms are obtained from the CB. Thus, for region Q, the 

match is poor between CB and SB because of the relatively thicker sample inducing a stronger 

dynamical effect. Reconstructed OEW for regions P and Q from both SB and CB are given in 

Figure 2.17 for comparison. 
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Figure 2.12. (a) and (c) Amplitude and (b) and (d) phase image of ZnO along [112̅0] Z. A. for 

area P obtained through reconstruction CB and SB of off-axis electron hologram, respectively.  

Three different arrows are indicated in the phase image, along which the peak and mean phase 

values are extracted.  Copyright (2019) by American Institute of Physics [37]. 

 

 

 

 

 

 

Figure 2.13. (a) Peak (Φp) and mean (Φm) phase shift and (b) the corresponding number of Zn 

atoms along three different arrows from area P reconstructed from SB and CB. The number of Zn 

atoms coincides between SB and CB with ±1 atom error. However, the number of atoms derived 

from the mean phase value is three times higher than the peak phase value. Copyright (2019) by 

American Institute of Physics [37]. 
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Figure 2.14. Comparison of (a) peak phase shift and (b) the corresponding number of atoms with 

the variation of thickness in Zn and O columns for area P. Almost a similar number of atoms are 

obtained for Zn and O atoms at the neighboring sites. Copyright (2019) by American Institute of 

Physics [37]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. (a) and (c) Amplitude and (b) and (d) phase image of ZnO along [112̅0] Z. A. for 

area Q obtained through reconstruction CB and SB of off-axis electron hologram. Three different 

arrows are indicated in the phase image, along which the peak and mean phase values are extracted. 

Copyright (2019) by American Institute of Physics [37]. 
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Figure 2.16. (a) Peak (Φp) phase shift and (b) the corresponding number of Zn atoms along three 

different arrows from area Q reconstructed from SB and CB. No agreement is found in the number 

of Zn atoms between SB and CB. Copyright (2019) by American Institute of Physics [37]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17. Reconstructed wave function of area P (a) and (b), and area Q (c) and (d) from central 

band (a), (c) and (b), (d) sideband.  
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2.3.4 In-line electron holography/HRTEM 

Figure 2.18 shows the reconstructed phase image of ZnO film along [112̅0] orientation 

from different thickness areas of the sample. The peak phase values from Zn columns are given in 

the line scan for the columns indicated in the image. The peak phase values remain almost the 

same between thinner and thicker regions of the sample at around 0.138 rad, which corresponds to 

approximately one Zn atom. In the case of O, the peak phase value remains the same at about 0.09 

rad, which corresponds to approximately one atom. 

Niermann et al. [14] first described the difference between in-line and off-axis electron 

holography at atomic resolution in GaAs crystal along [11̅0] Z.A. The phase and amplitude 

reconstructed from the SB and CB agree well up to a thickness of 3/2 times the extinction length. 

Still, significant deviations were observed at the lower frequency range and thicker specimen area. 

The agreement between the two methods for the thinner area was due to the similar wave function 

reconstructed in the limit of linear imaging with negligible inelastic scattering. However, due to 

significant inelastic scattering, reconstruction methods corresponding to CB and SB yielded two 

different wave functions for the thicker area. SB's mathematical formulation contains an average 

OEW function, while CB contains the sum of the squared OEW function. It was mentioned that 

the deviation observed in the thicker area between CB and SB reconstructed wave function may 

be either due to fundamental quantum mechanical differences or numerically challenging inversion 

of the imaging process. Our results agree with Niermann et al. [14] observation for the CB and SB 

reconstruction of the off-axis experiment in the present investigation. However, an observation 

made in the HRTEM experiment is not comparable with the CB reconstruction. This could be 

because of the reconstruction scheme employed in the reconstruction package.  

The counting of atoms depends on the theoretical reference phase values, i.e., mean or peak 

values of phase. We obtain ~ 3 times higher number of atoms for Zn and O using reference mean 

phase than peak phase value. The experimentally observed higher mean phase values than theory 

could be because of incoherent aberrations, vibrations present, any shortfall in modeling electron 

materials interaction and electron-optical systems, or any other reasons.  
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Figure 2.18. Reconstructed phase image of HRTEM image series for different thickness regions. 

Throughout the sample area, almost constant phase shift and atom number corresponding to one 

are obtained. Copyright (2019) by American Institute of Physics [37]. 

 

2.4   Conclusion  

In conclusion, the atomic resolution reconstructed phase of Zn and O atoms in ZnO 

epitaxial thin film is compared between off-axis and in-line holography techniques. While the off-

axis holography method shows an excellent agreement in the number of atoms for both Zn and O 

atoms extracted from SB and CB for thin sample area, however, for thicker samples, the number 

of atoms does not reconcile. In HRTEM reconstruction, the number of atoms does not change 

systematically with increasing sample thickness. A constant number of one atom is obtained 

throughout the reconstructed area. 
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Chapter 3 

 

Image simulation in HRTEM considering 

atom as an electrostatic charge center  

 

 

 

This chapter introduces an alternative approach to image simulation in high-resolution 

transmission electron microscopy after a comparative analysis of the existing image simulation 

methods. The alternative method is based on considering the atom center as an electrostatic 

interferometer akin to the conventional off-axis electron biprism within few nanometers of focus 

variation. Simulation results are compared with the experimental images of 2D materials of MoS2 

and BN recorded under the optimum combination of third-order spherical aberration  Cs = −35 

m and defocus Δf = 1, 4, and 8 nm and are in good agreement.  
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3.1 Introduction  

Understanding the high-resolution transmission electron microscope (HRTEM) images is 

not straightforward. What we see is only the two-dimensional projection of the three-dimensional 

specimen. It is necessary to know the structure of the object thoroughly to interpret the information 

contained in the micrograph. In all ways, visualization is proved to be the most effective way to 

realize things. Hence it requisite to visualize the specimen. Simulation makes it easy to know the 

object from different perspectives.  

Imaging any object in transmission and reflection geometry is generally carried out by 

detecting the scattered (incoherent) and diffracted (coherent) radiation on a recording device, e.g., 

a camera placed at different reference planes away from the object on the optic axis. Image is the 

replica of the object and not the object itself, and the information about the object is carried to the 

detector through the complex wave function [1–5]. Maximum spatial details that can be obtained 

are limited by the diffraction and the microscope performance. The entire topic of quantitative 

HRTEM falls into two broad categories; (i) object exit wave (OEW) reconstruction to retrieve the 

phase information from the recorded image, and (ii) image simulation to interpret the OEW with 

the object structure. Various schemes are available to reconstruct the OEW function to recover the 

phase related to the object potential and the crystallography  [6–8]. There are several aspects in 

HRTEM image simulation that need to be considered, e.g., probe electron, the interaction between 

the fast electron and the specimen potential, lens action, and characteristics of the recording 

device [5,9]. The probe illumination is typically a plane wave of an electron with relativistic energy 

in the range of 100-300 kV (𝜆 = 1.97 𝑝𝑚 at 300 kV). The amplitude 𝐴(𝑥, 𝑦) and the phase 𝜙(𝑥, 𝑦) 

of the OEW function of the form 𝜓 = 𝐴𝑒𝑖𝜙 extracted from the recorded intensity pattern are used 

to interpret the potential information of atoms in specimen. The information on object potential 

can be used to extract wide range of information such as number of atoms or thickness along the 

beam propagation direction, identification of atoms, valence electron sharing between the atoms 

etc. [7,10–14]. However, the change in phase (𝜙) of the probe electron wave after interaction with 

the specimen potential and resulting modulation in intensity pattern has been treated in 

fundamentally distinctive ways, e.g., (i) transmission function based on weak phase object 

approximation (WPOA) along with Zernike type π/2 or λ/4 phase plate equivalent to phase contrast 

transfer function (PCTF) to account for the lens aberration, where the phase change is incorporated 
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in terms of change in the magnitude of momentum vector 𝑘 of the probe electron due to specimen 

potential [4,5], (ii) phase change according to scattering amplitude in terms of atom scattering 

𝑓(𝑘) and structure factor 𝐹(𝑔) along with PCTF [9,15,16], and (iii) self-interference in HRTEM 

and holographic fringe shift in off-axis electron holography where a phase term (±φ) is added 

inside the trigonometric functions with respect to the reference phase [17,18]. Kindly note that the 

phase change due to aberration through PCTF is not added with the object wave rather it is applied 

as frequency filter and point spread function (psf) in the diffraction and image planes, respectively.  

In this chapter, a comparative analysis is provided on the various existing methods for 

simulating the image of the atom. It is shown that the different ways of considering phase change 

in the probe electron wave function due to atomic potential result in different magnitude and 

intensity patterns for the same atom. Subsequently, an alternative method is introduced where the 

geometry of interference based on the momentum vector direction is emphasized.  The process is 

based on an atomic potential center as an interferometer akin to the electron biprism within a short 

range of focus variation (<10 nm) from the reference Gaussian image plane and resembles Abbe’s 

diffraction picture. In this alternative method, phase change has been treated like off-axis electron 

holography considering the wave interference at an angle. Its analogy with other approaches can 

be understood with interference geometry and associated momentum vector direction. Simulation 

results are compared with the experimental image of 2D materials of MoS2 and BN recorded under 

specific settings of third-order spherical aberration 𝐶𝑠 = −35 m and defocus Δ𝑓 = 1, 4, and 8 

nm and are found to be in good agreement.  

 

3.2 Coherent image formation at near and far field 

A brief discussion is provided on the analogy of slit diffraction patterns in light optics, both 

near and far-field regimes. A typical Fresnel and Fraunhofer diffraction regimes and corresponding 

patterns are shown in Figure 3.01. An analytical formula is derived from the Fraunhofer integral 

and Fourier transformation-based method to evaluate the far-field diffraction pattern in light optics. 

The analytical formula embodies various parameters, e.g., wavelength (λ) of the illumination, 

scattering angle (θ), dimension, and periodicity of the slits. The approach is based on the physical 

picture of path difference and associated constructive and destructive interference between waves 

with the same momentum vector.  
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Fourier transformation is an essential mathematical concept to go back and forth between 

the intensity patterns formed in two reference planes. The results should be consistent independent 

of the coordinate space and methods chosen for the image calculation. We describe the basic 

procedures involved with various approaches to calculate the image of atoms and the different 

results they yield.  

 

Figure 3.01. (a) Near field (Fresnel) and far field (Fraunhofer) regions of image formation. Also 

shown the exact Gaussian image plane and Fresnel regimes away from this plane. (b) Schematic 

showing the role of the lens on the information transfer. (c)-(e) Examples of typical intensity 

distribution based on electron diffraction as observed at three different regions of interest, (c) at 

exact focus, (d) slightly away from the focus, and (e) at far-field, respectively. In the illustration, 

no specimen is used on the electron beam path around the optic axis.  

 

3.2.1 Fresnel diffraction pattern  

 The diffraction geometry involved in Fresnel zone construction for image formation at the 

near field is shown in Figure 3.01 (c). Angular correlation between the wave vectors pointing at 

different directions lying on the surface of a sphere and the phase difference between various wave 

vectors is acquired due to path difference of waves while converging to a point with respect to 

outward curvature of the spherical wavefront (more precisely parabolic wavefront) [Figure 3.02 

and 3.03]. This is the basis of Fresnel zone construction. Kindly note that there is no path difference 
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between various wave vectors regarding the emitting point. The radius is the same for a sphere but 

not so for a parabola and plane wavefront geometry. 

The Fresnel diffraction is a near field pattern perpendicular to an interface due to 

discontinuity in the scattering potential near an edge or interface [1,19]. Fresnel-Huygens principle 

is based on the following two postulates : 

(i) Every point of a wavefront is a source of secondary disturbance giving rise to spherical 

wavelets, and the propagation of the wavefront is regarded as the envelope of these wavelets.   

(ii) The secondary wavelets mutually interfere.  

Now applying the above principle, which is based on the geometry as shown in Figure 

3.02, each surface element dS of the incident wavefront 𝜓𝑖𝑛 at a radial distance R, generates a 

spherical wavelet contribute an amplitude d𝜓𝑠𝑐(𝑃) at a point P on the optic axis beyond the 

wavefront. 

d𝜓𝑠𝑐(𝑃) = −𝑖𝐴(2𝜃)𝜓𝑖𝑛
𝑒𝑖𝑘𝑅

𝑅
d𝑆        (3.01) 

after integration over the surface Eq. 3.01 becomes 

𝜓𝑠𝑐(𝑃) = −𝑖 ∫ 𝐴(2𝜃)𝜓𝑖𝑛
𝑒𝑖𝑘𝑅

𝑅
d𝑆

 

𝑤𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡
      (3.02) 

After choosing the appropriate limit over the radial extent, Eq. 3.02 becomes 

𝜓𝑠𝑐(𝑃) = 𝑖
𝜆𝜓𝑖𝑛

0

𝑟0+𝑅0
𝑒𝑖𝑘(𝑅0+𝑟)        (3.03) 

Eq. 3.03 above describes the propagation of the spherical wave. In HRTEM image 

simulation similar spherical wave is used in superposition with the incident plane wavefront in the 

formulation of transmission function based on a solution of Schrödinger equation in integral form 

(sec. 3.2.2) [9,19]. 
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Figure 3.02. (a) The geometry of Huygens principle for diverging (left) and converging (right) 

wavefronts. The action of the lens is along the dashed line. (b) Construction of Fresnel zones 

considers the self-interference of the spherical wave possessing a range of momentum vectors 

while converging to a point P. Copyright (2012) by Springer Science and Business Media  [19].  

 

 

The Fresnel diffraction pattern for an edge can be calculated using the following equation. 

𝜓𝑆𝐶(𝑃) =
𝑖𝜓𝑖𝑛

0 𝑒𝑖𝑘(𝑟0+𝑅0)

2(𝑟0+𝑅0)
[𝐶(𝑋) + 𝑖𝑆(𝑋)]𝑋0

∞ [𝐶(𝑌) + 𝑖𝑆(𝑌)]−∞
∞     (3.04) 

Where C(X) and S(X) are the Fresnel cosine and sine integrals and the plot of 𝐶(𝑋) + 𝑖𝑆(𝑋) is 

called a ‘Cornu spiral’.  

The phase change in the propagating spherical wave is due to a range of angular momentum 

vectors associated with a spherical wave (for plane wave, only one momentum direction) and the 

self-interference while converging. Various angular momentum vectors will acquire path 

differences between themselves due to the outside curvature of the spherical surface with respect 

to the converging point at P, and the problem of interference is solved by well-known Fresnel zone 

construction. More precisely, the wavefronts geometries are spherical, parabolic, and plane surface 

for Rayleigh-Sommerfeld, Fresnel, and Fraunhofer regimes. The rate of change of phase between 

wavevectors is governed by the outward curvature of the wavefront, which is different for three 

different regimes. A similar picture is also captured in self-interference between the probe and 

scattered waved, describing the HRTEM image intensity pattern [6,20]. The momentum vector 

direction of 𝜓0 is along the 𝑘0 direction, and 𝜓𝑖 along various 𝑘 directions. Kindly note that the 

interference geometry is different for Fraunhofer pattern and off-axis electron holography (see sec. 

3.2.2 and 3.4).  

 



Chapter 3              Image simulation in HRTEM 53 
 

3.2.2 Fraunhofer diffraction pattern 

The plane wavefront from a pair of spatial points at the slit opening ensures the intensity 

distribution along different scattering angles. The Fraunhofer integral can be employed for various 

geometry of slits to calculate intensity patterns in the diffraction plane as a function of scattering 

angle based on analytical expressions. As an example, the Fraunhofer integral for a rectangular 

aperture of sides 2a and 2b with the origin at the center O of the rectangle and with 𝑄𝑥 and 𝑄𝑦 

axis parallel to the sides is given by, 

𝑈(𝑃) = 𝐶 ∫ ∫ 𝑒−𝑖𝑘(𝑝𝜉+𝑞𝜂)𝑑𝜉𝑑𝜂 = 𝐶 ∫ 𝑒−𝑖𝑘𝑝𝜉𝑑𝜉
𝑎

−𝑎
∫ 𝑒−𝑖𝑘𝑞𝜂𝑏

−𝑏
𝑑𝜂

𝑏

−𝑏

𝑎

−𝑎
      (3.05) 

The intensity is represented as   

𝐼(𝑃) = |𝑈(𝑃)|2 = (
sin 𝑘𝑝𝑎

𝑘𝑝𝑎
)

2

(
sin 𝑘𝑝𝑏

𝑘𝑝𝑏
)

2

𝐼0         (3.06) 

 

 

 

 

 

Figure 3.03. (a) The geometry of rectangular aperture and (b) corresponding far-field or 

Fraunhofer intensity pattern. (c) The geometry of Fraunhofer interference showing the origin of 

path difference.  

Experimental observation of example Fresnel pattern and far-field Fraunhofer pattern from 

TEM is given in Figure 3.04. As already mentioned, the interference geometry for the far-field 

pattern is different than the Fresnel zone construction. The correlation of path difference between 

emerging waves from various spatial points at the aperture plane is considered in this case. The 

path difference is not between different momentum vectors but rather a spatial separation between 

two points with the same momentum or scattering. In off-axis electron holography, the interfering 

waves have momentum direction mirror symmetry to each other (sec. 3.4.3).  
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Figure 3.04. Fresnel diffraction pattern as observed under slight defocus (~ 10s of nm) condition 

from the (a) edge of an aperture and (b) thin specimen edge. (c) Far-field Fraunhofer pattern from 

the single slit and (d) electron diffraction pattern of ZnO Crystal along [011̅0] Z.A. 

 

3.2.3 Fourier transformation-based method  

In the preceding two sections, the propagation of phase information from the aperture plane 

to the near field regime (Fresnel) diffraction plane (Fraunhofer) is briefly described, emphasizing 

specific diffraction geometry of waves depending on the momentum vectors. The change in 

momentum vector directions of the scattered/emergent waves and concomitant interference 

phenomena are at the heart of calculating the intensity pattern.  

On the other hand, the Fourier transformation (FT)-method is based on the principle that 

the intensity pattern corresponding to image and diffraction planes is related by FT without 

considering diffraction geometry. For example, a periodic crystal-oriented diffraction pattern 

along high symmetry direction is the Fourier transform of the periodic crystal potential. However, 

the independent variables are different. In the case of FT, the independent variable is the frequency 

of wave vector k, and for Fraunhofer's analytical formula, it is scattering angle 𝜃. The abs-FT 

pattern needs to be calibrated with respect to 𝜃 or reciprocal lattice vector g. The Fourier method's 

mathematic operation is similar to Abbe’s imaging theory. More details on Abbe's imaging theory 

and its connection with off-axis electron holography formalism are given in sec. 3.2.4. 
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Now, according to the Fourier method, the far-field Fraunhofer pattern is obtained by 

Fourier transformation of the object function 𝑓(𝑥) (or 𝑓(𝑥, 𝑦) in 2D) as 

ℱ(𝑘) = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑥.𝑘𝑑𝑥
∞

−∞
         (3.07) 

Strictly speaking, it is the magnitude of ℱ(𝑘) or absolute FT, which results in the 

Fraunhofer pattern at far-field and not the individual real  (𝑹𝒆(𝒙, 𝒌)) and imaginary (𝑰𝒎(𝒙, 𝒌)) 

components.  

𝑨𝒃𝒔 (𝒐𝒓 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 𝒐𝒓 𝒎𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆) 𝓕(𝒌) = 𝑭𝒓𝒂𝒖𝒏𝒉𝒐𝒇𝒆𝒓 𝒑𝒂𝒕𝒕𝒆𝒓𝒏                    (3.08) 

However, it is indispensable to know the 𝑹𝒆(𝒙, 𝒌) and 𝑰𝒎(𝒙, 𝒌) components to go back 

to the original function 𝑓(𝑥) through inverse Fourier transformation. The established phase 

retrieval procedures involve retrieving the object wave function (OEW) through the appropriate 

filter function applied directly on 𝐼(𝑘, 𝑧) derived from the image intensity 𝐼(𝑥, 𝑦, 𝑧) recorded at 

sufficient resolution [6,21,22]. Experimentally, only if the magnitude of ℱ(𝑘) is recorded in the 

diffraction plane, then 𝑹𝒆(𝒙, 𝒌) and 𝑰𝒎(𝒙, 𝒌) components are lost, and this is the well-known 

phase problem. Though it is not a problem if one derives ℱ(𝑘) or 𝐼(𝑘, 𝑧) from the recorded 

intensity pattern in the image plane with sufficient spatial resolution an. The phase related to object 

potential and crystallography is preserved and can be retrieved by following specific procedures. 

To elaborate more, what happens in the FT process is that the object function at first is 

expanded into its continuous cosine and sine series with frequency ranging from 𝑘 = −𝑛  𝑡𝑜 + 𝑛 

as written below 

𝑅𝑒(𝑘) = ∫ 𝑓(𝑥)𝑐𝑜𝑠(2𝜋𝑥. 𝑘)𝑑𝑥
∞

−∞
          (3.09) 

and 

𝐼𝑚(𝑘) = ∫ 𝑓(𝑥)𝑠𝑖𝑛(2𝜋𝑥. 𝑘)𝑑𝑥
∞

−∞
         (3.10) 

𝐴𝑏𝑠 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 ℱ(𝑘) = |√𝑅𝑒2 + 𝐼𝑚2|
2
        (3.11) 

And the phase,  𝜃(𝑘) = tan−1 𝐼𝑚

𝑅𝑒
         (3.12) 

The expansion of the object function (discrete or periodic) into various cosine and sine 

harmonics of different frequencies resulting in Fourier waves with various frequencies and are 

similar to Abbe waves (sec. 3.2.4). The absolute FT is then plotted for each frequency, and the 

result is the well-known Fraunhofer pattern. Moreover, each frequency of the Fourier wave is 
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associated with the corresponding phase. This phase as a function of k can be calculated [Figure 

3.05(d)]. 

Figure 3.05. (a) Example of a Gaussian function y = exp(−
x

1.5
)2 (b) and (c) corresponding Re 

and Im parts along with respective absolutes after Fourier transformation, respectively. (d) The 

phase of Fourier waves as a function of frequency, (e) Absolute of FT, and (f) total abs-FT, abs-

Re, and abs-Im plotted together, showing that abs-Im is negligible abs-Re is almost equal to abs-

FT.  

The implication is that for a discrete function, e.g., if the function is a narrow slit, it will 

require a higher magnitude of frequency to get a first zero in the frequency pattern compared to a 

broader slit. The subsidiary effect is due to the non-perfect cancellation of integrand depending on 

frequency. For a periodic function or slit, a similar explanation holds. In the Fourier-based method, 

one adjustment is required to calibrate or relate various frequencies with the scattering angle, 

which does not arise naturally. This can be achieved by associating the frequencies at which Abs 

FT magnitudes are zeroes with the angle at which destructive interference occurs. The latter aspect 

is the physical picture required to derive the analytical formula based on the Fraunhofer integral 

(sec 3.2.2). The results calculated independently by FT and the analytical approach are shown in 

Figure 3.06. for seven periodic slits and have a few differences.  

The analytical formula for various slit geometry is derived based on the path difference of 

waves between two spatial points at the slit opening emanating along different directions based on 

constructive and destructive interference. The method has the advantage over the Fourier-based 



Chapter 3              Image simulation in HRTEM 57 
 

method because the formula contains useful quantities, e.g., wavelength (λ) of the illumination, 

scattering angle (θ), dimension, and periodicity of the slit. 

For diffraction from N number of periodic slits, the intensity expression is given by 

𝐼(𝜃) = 𝐼0 [
sin (

𝜋𝑎

𝜆
𝑠𝑖𝑛𝜃)

𝜋𝑎

𝜆
𝑠𝑖𝑛𝜃

]
2

[
sin (

𝑁𝜋𝑑

𝜆
𝑠𝑖𝑛𝜃)

sin (
𝜋𝑑

𝜆
𝑠𝑖𝑛𝜃)

]

2

        (3.13) 

Where a is the slit width, d is the inter-slit distance or periodicity.  is the wavelength of the 

monochromatic wave. 

 

 

 

 

 

 

 

Figure 3.06. (a) Comparison of Fraunhofer pattern calculated by Fraunhofer analytical method for 

periodic seven slits with slit size a = 2λ and periodicity d =10 λ and (b) Fourier transformation of 

seven periodic slits followed by abs-FT. (b) the appearance of zero magnitude in abs FT is due to 

zero values of integration of Re(x, k) and Im(x, k) parts with respect to x corresponding to 

respective frequency values.   

Fourier transform physically represents that each object will give off 𝑹𝒆 and 𝑰𝒎 parts of 

the Fourier wave with frequencies 𝑘 = −𝑛  𝑡𝑜 + 𝑛. For each frequency, one needs to evaluate the 

integrand corresponding to 𝑹𝒆 and 𝑰𝒎 part and sum up to obtain the abs-FT for that frequency. 

Therefore, in assessing the 𝑹𝒆 and 𝑰𝒎 part, the amplitude and phase of each Fourier wave, i.e., 

the numbers outside and inside the cosine and sine part, mixed up. Or, in other words, they collapse 

to a single number. Moreover, the amplitude of each cosine and sine part will depend on the values 

of corresponding cosine and sine multiplied with 𝑓(𝑥). This is how mathematical procedures mix 

up the information on the function and frequency of waves. In HRTEM and off-axis holography 

image reconstruction, the starting data is an image. Therefore, every step while performing FT is 

preserved, and then only it is possible to go back to the image again.  
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In the Fourier transformation (FT)-based approach, the far-field image of the object is the 

modulus of the FT (abs-FT) of the object function. However, the phase angle calculated for Fourier 

waves or equivalently Abbe waves corresponding to each frequency does not contain the scattering 

angle. Thus, the frequency of Fourier waves needs to be calibrated either with respect to the 

scattering angle obtained through an analytical method or an experiment using a standard sample 

with known lattice parameters [Figure 3.06].  

 

3.2.4 Abbe’s theory of imaging  

According to Abbe’s theory, it is postulated that the point of interaction between 

illuminating monochromatic wave and object generate waves with a continuous spectrum of 

frequencies. The higher the frequency of the wave higher is the scattering angle. The waves of 

equal frequency and converging angle meet (by ideal microscope lens) to produce standing waves 

corresponding to different discrete frequencies. These standing waves superpose to form an image 

wave function. The largest frequency component allowed by the aperture defines the resolution 

according to Abbe’s famous resolution formula. These standing waves are precisely similar to the 

Fourier transformed waves discussed above, except object function being considered and form the 

basis of Fourier optics. The diffraction geometry is given in Figure 3.07 and shows interference 

between pair of wave vectors having the same inclination angle. There is a continuous presence of 

such pairs of partial waves with a continuous range of inclination angles. This is similar to off-axis 

electron holography only for a pair of momentum vectors across a mirror plane.  

Now, the resolution criterion is derived as follows. The objective lens acts as a low-pass 

filter. The cut-off frequency in 1D is given by 

𝑘𝑚𝑎𝑥 =
2𝜋

𝜆𝑓𝑜𝑏𝑗
𝑥𝑚𝑎𝑥 =

2𝜋

𝜆𝑓𝑜𝑏𝑗
𝜃𝑚𝑎𝑥                                                (3.14) 

The effect of limiting frequencies higher than the maximum allowed by the aperture is to 

determine the resolution of the system. 

The Fourier transformation of objective aperture gives the impulse response or psf due to 

limiting objective aperture to the image plane in 2D. 

𝑔(𝑟) =
𝐽1(𝑘𝑚𝑎𝑥𝑟)

𝑘𝑚𝑎𝑥𝑟
                                                          (3.15) 
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Where, 𝑟 = 𝑥2 + 𝑦2. Rayleigh’s criteria for resolution are postulated in terms of a 

minimum distance between two such blurred points due to aperture. This is defined by the first 

root of two such functions, i.e., the maximum of one function overlaps with the root of the second 

function. This occurs at 𝑥𝑜 = 1.22𝜋. The resolution is given by 

𝜌0 = 0.61
𝜆

𝑁𝐴
                                                          (3.16) 

Where, 𝑁𝐴 =
𝑟𝑚𝑎𝑥

𝑓𝑜𝑏𝑗
 is the numerical aperture, which represents the maximum half-angle 

subtended by the entrance pupil.  

Figure 3.07. (a) Abbe’s picture of image formation shows a range of frequencies generated at the 

point of interaction between illumination wave and object point, (b) Maximum frequency allowed 

by aperture will define the resolution of the image.  

Now in the context of diffraction from atomic potential, the Fraunhofer pattern is the atom 

scattering amplitude 𝑓(𝑘) and the structure factor 𝐹𝑔(𝑘) for isolated and periodic atoms, 

respectively. Diffraction depends on the strength and crystallography of the scattering potential. 

More details about the atom scattering factor are provided in sec. 3.3.2. 

 

3.3 Existing methods of image simulation 

There are different methods of image simulation, mainly based on two approaches,  

1. Zernike phase object and WPOA 

2. Atom scattering factor 

These methods of image simulations are discussed in detail and compared for the results 

they yield. A comparative study is carried out for theoretical simulation methods and the 

experimental data.  
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3.3.1 Image simulation based on Zernike phase object and WPOA 

The weak phase object approximation (WPOA) originates in the Zernike phase contrast 

theory, which considers the specimen as a pure phase or weak scattering object. The object 

transmission function is represented by a complex function for small phase change 𝜙, where 𝜙 is 

a real function corresponding to the discrete or periodic transparent object. This is known as weak 

phase object approximation (WPOA) [1].  

The definition of a transmission function can be found in Ref. [23] (pp 446-447). 

Transmission function can be characterized as any diffraction grating that introduces variation in 

amplitude and phase of the incident wave. It is given by 

𝐹(𝜉, 𝜂) =
𝑉(𝜉,𝜂)

𝑉0(𝜉,𝜂)
           (3.17) 

Where, 𝑉0(𝜉, 𝜂) is the disturbance on (𝜉, 𝜂) plane in the absence of object and 𝑉(𝜉, 𝜂) is 

the disturbance on the same plane when the object is present. This is consistent with the formalism 

of transmission function for electron imaging discussed before. 

Zernike’s phase contrast method section of Ref. [1] (page 472), the ‘phase object’ is 

defined by a complex amplitude function (for light) as follows 

𝐹(𝑥) = 𝑒𝑖𝜙(𝑥)            (3.18) 

Where 𝜙(𝑥) is a real periodic function and whose periodicity is equal to the grating period 

(in the case of periodic grating). 𝜙(𝑥) is small compared to unity, and the above equation can be 

approximated to 

𝐹(𝑥) ∼ 1 + 𝑖𝜙(𝑥)            (3.19) 

Now one can notice the origin of observing 𝜙(𝑥) in the intensity information. If this 

approximation is not made, 𝜙(𝑥) would be lost.  

WPOA is a straightforward and widely applied approach to simulate the HRTEM images 

of thin samples. In HRTEM, WPOA describes the phase shift of probe electron wave due to the 

electrostatic potential 𝑉𝑡(𝑥, 𝑦)  of the specimen projected along the beam propagation direction, 

and the transmission function has the following expression.  

𝑡(𝑥) = exp [𝑖𝜎𝑉𝑡(𝑥, 𝑦)]           (3.20) 
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After invoking WPOA and ignoring the terms with 𝜎2 and higher-order, 

𝑡(𝑥) = 1 − 𝑖𝜎𝑉𝑡(𝑥, 𝑦)           (3.21) 

Where, 𝑉𝑡(𝑥, 𝑦) is the projected specimen potential and 𝜎 =
2𝜋𝑚𝑒𝜆

ℎ2
 is the interaction 

constant. 𝑚 and 𝑒 are the mass and charge of the electron, and ℎ is the Plank’s constant. The 

approximation in Eq. 3.21 is essential to retain the object information in the image plane. The 

accompanied transmitted wave function is derived considering the change in the magnitude of 

electron wavelength from 𝜆 to 𝜆′ due to attractive positive potential (𝑉𝑠) of the specimen. 

Refraction of the electron through atomic potential is associated with the change in momentum 

vector direction and is addressed in the description of the alternative method (sec. 3.4). 𝜆′ an 

average change corresponds to a mean inner potential (MIP) for a given spatial extent or a function 

of spatial position from the atom's center at medium and atomic resolution. At medium resolution, 

for average projected potential Vt, the transmitted wave function of the electron within kinematical 

scattering in 1D is given by 

𝜓𝑡(𝑥)~ 𝑡(𝑥) exp(2𝜋𝑖𝑘𝑧𝑧)          (3.22) 

Incorporating the transmission function in the above equation, the transmitted wave function is 

given by, 

𝜓𝑡(𝑥)~ exp(2𝜋𝑖𝑘𝑧𝑧) exp (𝑖𝜎𝑉𝑡)         (3.23) 

The above equation can be modified to  

𝜓𝑡(𝑥)~ exp(𝑖(2𝜋𝑘𝑧𝑧 + 𝜎𝑣𝑧(𝑥))          (3.24) 

The plane wave component in Eq. 3.22 contributes to the background as the direct (DC) 

component and poses difficulty in in-line holography along with twin image components. This 

similarity is the basis for terming HRTEM images as in-line holograms. However, the above 

description of WPOA does not draw an analogy between Gabor’s in-line holography, Fresnel 

diffraction geometry, and defocus HRTEM image in terms of interference geometry. Considering 

the change in momentum vector direction due to interaction with the object potential draws 

analogies and differences between all the three pictures regarding interference geometry. 

Now considering lens response, the image wave function becomes 
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𝜓𝑖(𝑥, 𝑦) = 1 − 𝑖𝜎𝜙𝑝(−𝑥, 𝑦) ∗ ℱ{𝑃(𝑢, 𝑣) exp(𝑖𝜒(𝑢, 𝑣))}       (3.25) 

And the image intensity is given by  [4,5] 

𝐼(𝑥, 𝑦) = 𝜓𝑖(𝑥, 𝑦)𝜓𝑖
∗(𝑥, 𝑦) ≈ 1 + 2𝜎𝜙𝑝(−𝑥, 𝑦) ∗ ℱ{𝑠𝑖𝑛𝜒(𝑢, 𝑣)𝑃(𝑢, 𝑣)}    (3.26) 

Where  𝜎 ℱ{𝑠𝑖𝑛𝜒(𝑢, 𝑣)𝑃(𝑢, 𝑣)} =
2𝜋

𝜆2 ∫ 𝑠𝑖𝑛𝜒(𝜃)𝐽0(
2𝜋𝜃𝑟

𝜆

𝜃𝑎𝑝

0
)𝜃𝑑𝜃     (3.27) 

is the lens response function. Suppose we don’t make any such series approximation. In that case, 

phase information will be inside the cosine and sine trigonometric functions. The intensity of 

transmitted radiation derived by multiplying the transmitted wave function with its complex 

conjugate will result in a constant value, and thus phase information is lost. Therefore, by 

expanding the transmission function in a series (weak phase object approximation), the phase is 

retained, even after multiplying with the complex conjugate. Thus, we can say that by mere 

mathematical manipulation, information on the object phase is preserved.  

If we don’t consider the series expansion and approximation, then the image wave function 

can be written as 

𝜓𝑖(𝑥, 𝑦) = {𝑡(𝑥) exp(2𝜋𝑖𝑘𝑧𝑧)} ∗ ℱ{𝑃(𝑢, 𝑣) exp(𝑖𝜒(𝑢, 𝑣))}     (3.28) 

Image intensity  

𝐼(𝑥, 𝑦) = 1           (3.29) 

Now, let   𝑝 = 2𝜋𝑘𝑧𝑧 + 𝜎𝑣𝑧(𝑥)          (3.30) 

𝜓𝑖(𝑥, 𝑦) = {cos(𝑝) + 𝑖𝑠𝑖𝑛(𝑝)} ∗ {cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)}      (3.31) 

𝐼(𝑥, 𝑦) = 𝜓𝑖(𝑥, 𝑦)𝜓𝑖
∗(𝑥, 𝑦) ≈ 1         (3.32) 

However, there is a way out of the series approximation or WPOA. To read this additional 

phase shift, we need to have a reference wave so that the fringe shift will be visible and phase 

change can be measured, as done in Ref. [6]. This is based on the physical picture of self-

interference. The intensity expression looks similar to the expression corresponding to off-axis 

electron holography except for the additional carrier frequency and writing component of Gabor’s 

holography [20]. A hologram is typically an interference pattern formed between incident plane 

wave illumination and scattered or diffracted waves due to object and is a two-step process, writing 
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and reading [Figure 3.08 (a)].  The intensity distribution at the near field of the object at some 

propagation distance, typically in the Fresnel regime, can be captured near the Gaussian image 

plane through a CCD camera. In other ways, the experiment hologram contains the information on 

how the object has diffracted the electron beam and the information at a propagation distance. As 

the hologram records the complete wavefield information, including the effect of coherent 

aberration, it can remove aberration from the image to represent the object through subsequent 

digital ex-situ procedures. 

The amplitude of interference pattern which constitutes the writing component of the 

hologram is given by 

𝐴 = √𝑈𝑈∗ = √𝐴(𝑖)2 + 𝐴(𝑠)2 + 2𝐴(𝑖)𝐴(𝑠)cos (𝜓𝑠 − 𝜓𝑖)    (3.33) 

Where,  𝑈 = 𝐴𝑒𝑖𝜓 is the complex disturbance at a point in the screen H at some distance 

behind the object, A is the amplitude,  is the phase, superscript, and subscript corresponding to 

(i) and (s) denote incident and scattered waves, respectively. 

 The reading component or reconstruction of the hologram is written in the multiplication 

of object transmission function with the plane wave illumination. Together, they form the 

transmitted wave function. Thus, the reconstructed wave or substituted wave is written as follows 

[Figure 3.08 (b)] 

𝑈′ = 𝛼𝑝𝑈(𝑖) = 𝐾𝐴(𝑖)2𝑒𝑖𝜓𝑖[𝐴(𝑖) +
𝐴(𝑠)2

𝐴(𝑖) + 𝐴(𝑠)𝑒𝑖(𝜓𝑠−𝜓𝑖) + 𝐴(𝑠)𝑒−𝑖(𝜓𝑠−𝜓𝑖)]  (3.34) 

Where 𝛼𝑝 is the amplitude transmission factor of the positive hologram. 𝑈(𝑖) = 𝐴(𝑖)𝑒𝑖𝜓𝑖 denotes 

the incident wave or the coherent background, and 𝐾is the proportionality constant  [1].  

The transmitted wave function in HRTEM within weak phase object approximation 

(WPOA) has the form [9] similar to the reading component of the optical hologram. However, 

the description of transmission function in terms of various parameters is different. 

HRTEM intensity can also be written as [6],  

𝐼𝑖𝑛 𝑙𝑖𝑛𝑒 = |𝜓0 + 𝜓𝑖|2 = 𝐴0
2 + 𝐴𝑖

2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 − 𝜙0)       (3.35) 
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This is similar to the writing component of the hologram. Compare between Eq. 3.33 and 3.35, 

here 𝜓0 and 𝜓𝑖 are equivalent to 𝜓𝑖 and 𝜓𝑠 of Eq. 3.35  

The information about the object is carried by the transmission function component of the 

transmitted wavefunction. The formation of an image from the object using an appropriate lens is 

equivalent to the recorded hologram with a supplementary illumination with the lens [Figure 3.08 

(c)]. However, the mathematical expressions corresponding to reading and writing are not the 

same, and retaining the phase information in terms of intensity modulation is different in the 

context of HRTEM. 

Figure 3.08. (a) and (b) show the writing of the hologram and object image reconstruction from 

the recorded hologram, respectively. (c) Equivalent image formation without a hologram. A 

hologram is utilized to remove the coherent lens aberrations by ex-situ digital processes to render 

the object's image faithfully. Copyright (1999) by Cambridge University Press [1]. 

 

Now, Figure 3.09 shows the image intensity calculated using Eq. 32.26 (based on WPOA) 

with and without considering the lens response for isolated Mo, S, N, and B atoms [7]. Not 

considering lens response is similar to Zernike like phase transfer, and as the potential function is 

asymptotic, peak value will remain undefined with a background value of 1 [Figure 3.09 (b)]. 

Considering aberration through optimum PCTF (𝐶𝑆 = −35 𝜇𝑚 and ∆𝑓 = 8 𝑛𝑚),  peak values 
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(and FWHM) of ~ 22000 (0.25 Å) and 3500 (0.25 Å) are obtained for Mo and B atoms, respectively 

[Figure 3.09 (a)]. This gives a peak intensity ratio of ~ 6.2. Peak intensity increases linearly with 

the atomic number. The trend contrasts with experimental observation, where changes in peak 

intensity in the first decimal place are observed with the atomic number [Table 3.01]. According 

to Eq. 3.26, the high peak value is due to the convolution procedure and cannot be normalized 

individually as the image without PCTF is not known [Figure 3.10].  

Figure 3.09. Intensity profile of Mo, S, N, and B atoms (a) using Eq. 3.26 with Cs =-35µm, Δf =8 

nm, (b) with Zernike like phase transfer, i.e., I(x, y) ≈ 1 + 2σϕp(−x, y). 

 

Defocus 

(nm) 

Peak Intensity 

Mo (exp±0.04) 

Peak Intensity 

B (exp±0.02) 

Peak 

Intensity Mo 

(sim) 

Peak 

Intensity B 

(sim) 

+1 1.08 1.04 1.03 1.02 

+4 1.23 1.05 1.19 1.09 

+8 1.24 1.05 1.25 1.11 

 

Table 3.01. Peak intensity after considering aberration blurring for Cs =  −35 μm and ∆f =

+1, +4, and + 8 nm compared to the experimental image recorded under similar conditions. 
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The convolution operation of the transmitted wave function with the point spread function 

results in very unusual behavior of atom image with slight variation in lens parameter and aperture 

angle. This convolution operation changes the peak height of the resultant curve significantly. 

Therefore, one needs to normalize the resultant based on flux balance, i.e., area under the object 

function. After considering flux balance, the resultant curve drops in peak value and delocalizes 

(blurring) compared to the object function. Experimentally acquired images need to be 

deconvoluted with the known psf and compare the image with the simulated image. However, any 

balanced flux approach will be relative between atoms, and for absolute contrast, the present 

alternative method may be used. 

 

 

 

 

Figure 3.10. (a) Examples showing the area under the graph (resultant black) is not preserved after 

convolution between a model object function (Gaussian blue, with peak value 1.5 and FWHM 0.5) 

and convoluting function (Gaussian red, with peak value 1 and FWHM 1). (b) Resultant black is 

normalized based on the total area under the curve of the model object function (flux balance), 

which then shows the broadening at the expense of reduced peak intensity.   

As already mentioned, the electron phase shift due to aberration cannot be added to the 

trigonometric function in the diffraction plane as that shifts the wave amplitude. Rather, it is used 

as a coherent envelope function or frequency filter in the diffraction plane and a point spread 

function (psf) in real space. According to Eq. 33.27, the PCTF gives weight to the magnitude of 

psf and aperture function in the Bessel function equivalent to Abbe’s theory that sets the resolution 

in full width at half maximum (FWHM) in the final image [5]. Scherzer phase transfer will have 

maximum weight for the optimum value of spherical aberration and defocus that depends on the 

integration value of PCTF over the bandpass limits of spatial frequency. The weight of specimen 

potential in Eq. 3.27 has a similar effect as the atom scattering factor discussed in sec. 3.4. As the 
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convolution procedure changes the magnitude of the resultant function significantly [Figure 3.09 

(a)], a flux balance approach is helpful to observe the qualitative decrease in intensity and increase 

in FWHM due to aberration compared to the ideal image free from any aberration [Figure 3.10]. 

The method described in sec. 3.4 can be used as a reference atom image without any lens response 

to employ quantitative flux balance after application of PCTF to compare the effects with a change 

in 𝐶𝑆, ∆𝑓 and resolution. 

The mean inner potential (MIP) extracted from the mean phase shift has been utilized at 

medium resolution. However, in a single atom at the sub-atomic resolution, the potential variation 

around the atom is essential and can be used for various other studies [7]. Moreover, the square 

amplitude of the transmitted wave function will be unity unless series approximation/WPOA is 

conjured. Also, no information on the phase can be obtained (Eq. 3.29 and 3.32) unless a reference 

wave is used in the mathematical expression according to in-line or off-axis holographic 

geometry [6,17]. However, the above description based on WPOA does not have any information 

on the geometry of interference in momentum vector directions. Instead, considering the change 

in momentum vector direction due to interaction with the object potential and ensuing interference 

effect, draw an exact comparison between the various pictures (sec. 3.2.2 and 3.4.3).  

 

3.3.2 Image simulation based on scattering factor 

Another approach of image simulation incorporates atom scattering factor directly instead 

of specimen potential. The transmitted wave function, in this case, can be derived from the 

Schrödinger integral equation and has the following form [9,19] 

𝜓𝑡(𝑥) = exp(2𝜋𝑖𝑘𝑧𝑧) + 𝑓𝑒(𝑞)
exp (2𝜋𝑖𝑞.𝑟)

𝑟
        (3.36) 

Where, 𝑞 = 𝑘 − 𝑘0, and 𝑓𝑒(𝑞) is the atom scattering factor and is defined by, 

𝑓(𝑞) = −
𝑚

2𝜋ℏ2 ∫ 𝑉(𝑟′)𝑒−2𝜋𝑖𝑞.𝑟 𝑑3𝑟         (3.37) 

which is the FT of the scattering potential. The above equation can be modified after 

implementing the projected potential and written as 

𝑓𝑒(𝑘) =  
2𝜋𝑖

𝜆
∫ 𝐽0

∞

0
(2𝜋𝑘𝑟) {1 − ex p[ 𝑖𝜎 ∫ 𝑉(𝑥, 𝑦, 𝑧)𝑑𝑧]}𝑟𝑑𝑟     (3.38) 
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 𝑓𝑒(𝑘) is the electron scattering factor in the Moliere approximation, which has the 

advantage over the Born scattering factor due to an imaginary component.  𝜒(𝑘) is the aberration 

function, 𝑘𝑚𝑎𝑥 = 𝛼𝑚𝑎𝑥/𝜆 (rad Å-1) is the maximum spatial frequency allowed by the objective 

aperture and 𝐽0(𝑥) is the Bessel function of order zero.  

The wave function solution based on the differential form of the Schrödinger equation is a 

plane wave. On the other hand, the integral form gives spherical waves and amplitude factor as the 

atom scattering factor. The equivalence between the two solutions can be perceived by enveloping 

all the spherical waves from many adjacent scattering centers, resulting in a plane wavefront. The 

picture is akin to Huygens’s construction that a plane wavefront is the envelope of many forward 

scattered spherical wavelets and equivalent to First Born approximation. This result is used along 

with Moliere's scattering factor to calculate the image of isolated atoms by using the following 

equation. [9,16]  

𝑔(𝑥) = |1 + 2𝜋𝑖 ∫ 𝑓𝑒(𝑘) exp[−𝑖𝜒(𝑘)] 𝐽0(2𝜋𝑘𝑟)𝑘𝑑𝑘
𝑘𝑚𝑎𝑥

0
|

2

      (3.39) 

The scattering factor based on Moliere approximation for isolated B and Mo atoms is 

plotted in Figure 3.11. (a) and (c). For a crystal with periodic lattice, the scattering factor is 

replaced by the structure factor. Example for BN and MoS2 lattice along [0001] Z.A. is shown in 

Figure 3.11 (b) and (d), respectively. 

Eq.3.39 has some precursor work [15,16]. For example, in Scherzer’s theory of phase 

contrast, the phase shift is introduced by the CTF function in the back focal plane and the object's 

wave function in the image plane at the Fraunhofer approximation. It is given by 

𝜓𝑖(𝑟𝑖, 𝜈𝑖) =
1

𝜆𝑖𝑓𝑖𝑀
∫ 𝑟𝑑𝑟

𝑟𝑚

0
∫ 𝑑𝜈

2𝜋

0
× exp (2𝜋𝑖

𝑟𝑖𝜆 cos(𝜈−𝜈𝑖)

𝜆𝑖𝑓𝑖𝑀
)𝜓𝑎(𝑟, 𝜈)     (3.40) 

𝜓𝑖(𝑟𝑖) =
2𝜋

𝑀𝜆
∫ exp [𝑖(𝑠2Θ4 − 𝜏𝑠Θ2] × 𝑆(Θ)𝐽0(

2𝜋𝑟𝑖

𝑀𝜆
Θ)Θ𝑑Θ

𝛼

0
      (3.41) 

In the publication by Eisenhandler and Siegel [15], similar to the above formalism, the 

image wave function and corresponding intensity are given by 

𝜓(𝑥𝑖 , 𝑦𝑖) =
2

𝑀𝜆
∫ ∫ 𝜓(𝛼, 𝜃)𝑒𝑖𝜒(𝛼,𝜃) × cos (

2𝜋𝑥𝑖𝑐𝑜𝑠𝜃

𝜆
)cos (

2𝜋𝑦𝑖𝑠𝑖𝑛𝜃

𝜆
)𝛼𝑑𝛼𝑑𝜃

𝛼𝑚𝑎𝑥

0

𝜋

0
          (3.42) 

|𝜓𝑡𝑜𝑡𝑎𝑙(𝑥𝑖 , 𝑦𝑖)|
2

≈ 𝑀−2 + 2𝑀−1𝑅𝑒[𝜓(𝑥𝑖 , 𝑦𝑖)]         (3.43) 
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Figure 3.11.  (a) Atom scattering factor of an isolated B atom in 1D (inset 2D distribution) and 

(b) structure factor of monolayer BN along [0001] direction. (c) and (d) scattering factor and 

structure factor for Mo and MoS2 lattice along [0001] direction, respectively.   

In the above formulations of Eq. 3.41 and 3.42 following considerations are made; Some 

of the illuminating monochromatic electron waves after passing through the sample scatter 

elastically. The scattered wave undergoes a phase change, and the amplitude of the scattered wave 

is a function of the scattering angle. The diffraction plane's intensity distribution is the Fraunhofer 

pattern obtained by the Fourier transform of object plane distribution. The amplitude distribution 

and phase relationship are essential to go back to the image plane by inverse Fourier 

transformation. It is considered that each point of diffraction pattern emits Huygens wavelets, and 

the wavelets which can escape the aperture at the back focal plane will interfere/recombine at the 

image plane to form the image. This can be obtained by inverse Fourier transformation, and any 

information lost is due to wavelets propagated outside the aperture. Eq. 3.41 and 3.42 are the final 

image wave function and intensity calculated for an aberrated lens. Figure 3.12. shows the example 

intensity pattern for four different isolated Mo, S, B, and N atoms considering PCTF and complete 

CTF with 𝐶𝑠 = 35 μm, 𝛥𝑓 = 8 nm using Eq. 3.39. 
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Figure 3.12. The intensity profile of isolated Mo, S, N, and B (a) calculated using Eq. 3.39 with 

Cs = −35 μm and Δf = 8 nm. Only a sine part of the PCTF is considered, which is valid for weak 

phase object approximation. (b) The effect of complete CTF on the intensity of Mo, S, N, and B.  

 

The phase-contrast image intensity calculated using Eq. 3.39 varies weakly with atomic 

number and the peak phase shift 𝜑𝑚𝑎𝑥(𝑟𝑎𝑑) follows ~ 𝑍0.6 − 𝑍0.7 where Z is the atomic 

number [9,23]. Though the trend can be complicated depending on the valence electron filling, 

specific atoms with higher Z can have smaller contrast than atoms with lower Z next to each other 

in the periodic table [9,17,23]. The peak intensity is almost the same irrespective of the atomic 

number and changes only in the second decimal place. Figure 3.13 and Table 3.02 summarized the 

peak intensity and FWHM values calculated using Eq. 3.26 (WPOA) and Eq. 3.39 (atom scattering 

factor) for Mo, S, B, N, Zn, and O atoms. One can notice that the difference in peak intensity and 

FWHM maximum calculated by two different methods are markedly different. The intensity 

values calculated based on Eq. 3.39 show frivolous dependence considering only PCTF 

irrespective of atom number. However, the peak values are much smaller, and FWHM are higher 

by a factor of two, respectively calculated by Eq. 3.39 and Eq. 3.26, and the difference will remain 

even after the flux balance.  

Now, Eq. 34.27 describes the psf in the image plane. A similar expression derived by 

Scherzer, [16] Kirkland, [9] incorporates the atom scattering factor, and the transmitted wave 

function was derived based on Fraunhofer approximation and Schrödinger integral equation, 

respectively. To see how the psf acts on the image contrast, one needs to look at Eq. 3.26, 3.39, 

3.14, and 3.18. The Bessel function term has the origin in an aperture function that sets the 

resolution criteria according to Abbe’s theory. This term will control the image pattern width in 
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terms of FWHM. The sine function, atom scattering factor, and interaction constant 𝜎 will 

contribute to the weight to the image intensity, as the magnitude of phase contrast, atomic number, 

and characteristics of probe electron, respectively. The effect of atomic number enters into Eq. 

3.20 (based on WPOA) as atomic potential. However, all these expressions are equivalent but give 

different image patterns depending on how the transfer function is considered. Kindly note that 

the aberration phase shift is never added as an additional phase inside the trigonometric operator 

of wave functions either in the image or diffraction plane. Instead, it acts as a frequency filter in 

the diffraction plane and psf through convolution in the image plane. If this phase is added, then it 

will cause a change in the pattern periodicity and is never observed.  

 

 

Figure 3.13. (a) The intensity and (b) FWHM values calculated using Eq. 3.26 (WPOA) and 

Eq.3.39 (Atom scattering factor) for Mo, S, B, N, Zn, and O atoms. Values are plotted for only 

sine part or PCTF function (Cs = -35 μm, Δf = 8 nm) considered for the intensity calculation. For 

complete ACTF and PCTF consideration based on Eq.3.39, see Table 3.02. The difference in peak 

intensity and FWHM maximum calculated by two different methods are markedly different. 
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Atom Method Imax FWHM 
Atom 

Method Imax FWHM 

Mo 

(42) 

WPOA 

LR* 22000 0.25 

S 

(16) 

WPOA 
LR 9800 0.25 

WLR* 3.5 0.06 WLR 2.3 0.1 

Scattering 

factor 

both 

sine 

&cosine 

52 0.5 
Scattering 

factor 

both 

sine 

&cosine 
11 0.5 

Only 

sine 
1.05 0.75 Only 

sine 
1.02 0.75 

Zn 

(30) 

WPOA 

LR 15150 0.25 

O (8) 

WPOA 
LR 5100 0.25 

WLR 3.23 0.1 WLR 1.7 0.1 

Scattering 

factor 

both 

sine 

&cosine 

70 0.45 
Scattering 

factor 

both 

sine 

&cosine 
4 0.45 

Only 

sine 
1.06 0.63 Only 

sine 
1.01 0.63 

B (5) 

WPOA 

LR 3500 0.25 

N (7) 

WPOA 

LR 4600 0.25 

WLR 1.06 0.06 
WLR 1.65 0.1 

Scattering 

factor 

both 

sine 

&cosine 

2.2 0.5 
Scattering 

factor 

both 

sine 

&cosine 
4.4 0.5 

Only 

sine 
1.008 0.75 Only 

sine 
1.013 0.75 

 

Table 3.02. Intensity and FWHM values calculated using Eq.3.26 (WPOA) and Eq.3.39 (Atom 

scattering factor) for Mo, S, B, N, Zn, and O atoms.  

*LR: considering lens response and  

*WLR: without lens response. 
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3.4 New method: Atom as an electrostatic charge center  

An alternative method based on the atom as an electrostatic charge center and its action as 

an interferometer is described in this section. The atomic nucleus size is extremely small (~1.6-15 

fm) compared to the overall size of the atom with electron clouds (~ 0.1-0.5 nm). Therefore, the 

nucleus can safely be considered as a source of a positive point charge (+Ze) with associated 

Coulomb potential that decays inversely away from the charge center [Figure 3.14 (a)]. The 

electron clouds surrounding the nucleus only screens the radially symmetric positive Coulomb 

potential.  

Moreover, the surrounding electrons clouds scatter the probe electron inelastically [24]. 

The probability of inelastic events for the fast probe electron is negligible compared to the 

dominant elastic events for samples having a thickness less than the extinction length and at a short 

exposure time, typically 1-2 sec. This screened positive potential is attractive to the negatively 

charged probe electron wave while passing by the nucleus. The force experienced by the traversing 

electron will depend on the distance from the nucleus. The calculated screened projected potential 

of Mo atom following the Hartree-Fock model [9] and associated attractive force in terms of 

bending angle is shown in Figure 3.14 (a) and (b). Within this picture, the projected potential of 

an atom can be considered as an electrostatic circular prism similar to the experimental off-axis 

electron holography biprism except attractive force acting from all directions with varying strength 

as a function of the radial distance around it. This implies that the atom bends electron trajectory 

along 𝜃 = 0 − 2π  azimuthal direction around it where momentum vectors lying on a conical 

surface representing scattering angles within the same order of magnitude. In contrast, a cylindrical 

biprism does the same but along single pair of momentum directions across a mirror plane [Figure 

3.15]. 

 Therefore, it is necessary to describe the interference pattern from a different geometrical 

perspective than typical unidirectional electrostatic biprism for the atomic case. The picture is on 

the classical concept of wave optics but differs from channeling quantum mechanical Bloch waves 

of electrons through the crystal lattice. In the following sub-sections, the method based on off-axis 

electron holography is presented briefly to introduce image contrast and then extend the principle 

to ‘the atom as electrostatic charge center’ to simulate the image of the atom. 
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Figure 3.14. (a) The projected and bare Coulomb potential of Mo atom and corresponding (b) 

bending angle as a function of distance from the nucleus for both screened and bare Coulomb 

potential. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Image formation in off-axis electron holography with a single frequency wave with 

momentum vector direction equal and mirror symmetry with respect to the biprism axis.  
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3.4.1 Image intensity pattern in off-axis electron holography 

Now there is another way to calculate patterns or images based on converging waves. This 

is based on the geometry of interference associated with off-axis optical/electron holography. The 

equation for each frequency in 2D is given by [17,18] 

𝐼ℎ𝑜𝑙(𝑟) = 𝐼0 + 𝐼𝑖𝑚𝑎(𝑟) + 2|𝜇|𝐴0𝐴(𝑟)cos (2𝜋𝑞𝑐⃗⃗ ⃗⃗ . 𝑟 + 𝜙(𝑟))                    (3.44) 

Where, 𝐼0 = 𝐴0
2 is the intensity of the reference wave. 𝐼𝑖𝑚𝑎(𝑟) is the image intensity and 𝑞𝑐 = 𝑘𝛽 

is the spatial carrier frequency of the hologram. 𝜇 is the degree of coherence.  

There is a connection between Abbe’s model and the carrier frequency associated with the 

off-axis electron holography. According to Abbe, waves intercepted by the aperture at a higher 

scattering angle are associated with higher frequency. In contrast, a higher angle of interference in 

off-axis geometry is associated with a higher carrier frequency. Both give finer details and are 

associated with better spatial resolution.  

The new simulation approach proposed in the present chapter is similar to the off-axis 

electron holography concept by considering a single atom as an electrostatic interferometer. The 

principle is the extension of conventional off-axis electron holography. It considers an atom as an 

electrostatic charge center that induces interference of waves along complete azimuthal 

orientations. The interference geometry is different in this case than Fresnel and Fraunhofer's cases 

(see Figure 3.02 and 3.03 for comparison). In the off-axis electron holography, the pair of 

momentum vectors across the mirror plane produces an interference pattern. 

 

3.4.2 Image contrast in off-axis electron holography with electron biprism  

The formation of the electron interference pattern and resulting contrast in off-axis electron 

holography is emphasized here. The basic principle is based on single-electron wave interference, 

and the expression corresponding to HRTEM is given in Eq. 3.35 (sec. 3.3.1). The intensity pattern 

of the hologram is given by Eq. 3.45. Details on the off-axis electron holography methods and 

practices can be found in Ref. [17,18]. 

𝐼(𝑥, 𝑦) = 𝐼(𝑥) = 𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2cos (2𝜋𝑞𝑐𝑥 + Δ𝜙)        (3.45) 

Where, 𝑞𝑐 = 2𝑘𝑥 is the carrier spatial frequency of the hologram. 𝑎1 and 𝑎2 are the amplitudes of 
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waves undergoing interference at an inclination angle due to the action of biprism. 𝑥 is the spatial 

variable of the interference pattern, and Δ𝜙 is the difference in phase between the two interfering 

partial waves, typically acquired by one of the two waves due to object potential. Δ𝜙 = 0 for the 

vacuum wave. Information on Δ𝜙 appears as a small deviation in hologram fringe. The maxima 

and minima of the intensity pattern can be determined from Eq. 3.45 and remain the same 

throughout the interference field. The carrier frequency 𝑞𝑐 can be considered as carrying the 

information about the field strength and associated potential of the biprism. Field strength, 

potential, and carrier frequency can be empirically put together in a functional form. It is important 

to note that the total flux or energy of the interfering waves must be preserved on the resulting 

interference field. This is essential while calculating the image intensity and distinguishing the 

contrast between the various atoms based on the atom as a charge center.  

The 𝑞𝑐 of the hologram that represents the fringe distance depends on the angle of 

superposition for a given wavelength. The higher the angle of superposition, the larger will be the 

carrier frequency.  Resulting in finer fringe spacing due to the horizontal component of the wave 

vector is larger at a higher inclination angle. This is equivalent to Abbe’s picture, where the wave 

vector is larger or higher frequency at a higher scattering angle (sec. 3.2.4). Thus, the two concepts 

may be unified and said the higher the inclination angle, the smaller the fringe spacing or inter 

feature distance resulting in better spatial resolution. This was Abbe’s hypothesis describing the 

diffraction-limited imaging, where restricting the higher frequency by numerical aperture coming 

at a higher scattering angle limits the spatial resolution.  

 

3.4.3 Image contrast due to atom as a charge center equivalent to biprism 

The image formation by the interference of waves due to atom charge center similar to 1D 

electrostatic biprism is described here. The intensity pattern can be calculated following Eq. 3.45, 

considering the radially symmetric atomic potential after incorporating wave interference effect 

from a given radial zone of extent ∆𝑟. The zones described here are similar to binary type Fresnel 

zone plates with multiple foci, depending on the scattering angle with a different order of 

magnitude. Calculating interference patterns along all azimuthal inclination angles for the 

peripheral zone area requires two additional considerations than the unidirectional interference 

pattern. The first consideration is that the wave flux will depend linearly on the perimeter 2𝜋𝑟 
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which is a function of radial distance 𝑟 from the center of the atom (Eq. 3.46). Larger the perimeter 

of the zone area [ 𝜋(𝑟2
2 − 𝑟1

2)], higher will be the flux of the wave approaching for the interference. 

The relative intensity contribution at the center of the pattern from different rims belongs to the 

same spatial coherent zone is scaled with 2𝜋𝑟, where r is the radial distance from the center of the 

atom [Figure 3.16, Eq. 3.46].  

𝐼𝑟𝑎𝑑 𝑖𝑛𝑡(𝑟) = 𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2 cos(2𝜋𝑞𝑐𝑟) ∗ 2𝜋(𝑟𝑚𝑎𝑥 − 𝑟)      (3.46) 

The second consideration is that of flux balancing between the flux of wave at the plane of 

the atom as given by the coherent rim area 𝜋(𝑟2
2 − 𝑟1

2) ∗ 𝐼, where 𝐼 is the intensity at a given pixel 

point within this zone, and resulting interference field over a circular area around the optic axis is 

given by  𝜋𝑟2 × 𝐼𝑟𝑎𝑑 𝑖𝑛𝑡 (1st law of thermodynamics).  

∫ 𝐼(𝑟) 𝑑𝑟 = 𝜋(𝑟2
2 − 𝑟1

2) × 1
𝑑𝑟𝑟

−𝑑𝑟𝑟
          (3.47) 

Where, 𝑑𝑟𝑟 = (𝑟2 − 𝑟1)/2 and 𝑟 = √𝑥2 + 𝑦2. 𝐼 = 1 is the minimum intensity count on a 

pixel of the size 1 pm considered for the present calculation. 

The resulting interference pattern is different compared to the unidirectional interference 

geometry. The pattern is radially symmetric with peak intensity at the origin. Intensity decreases 

gradually, unlike the unidirectional pattern, but the average intensity remains the same throughout 

the field of superposition [Figure 3.16]. This is due to superior spatial coherency associated with 

the elliptical shape compared to the round shape [17]. However, the wave's spatial coherency can 

be correlated with electric field magnitude for a given spatial extent and equivalent order of 

bending angle due to Coulomb attraction.  

For the elliptical spread of the beam, most of the spatial extent of the wave will approach 

from electric field regions away from the biprism center. It will have a bending angle almost within 

the same order of magnitude [Figure 3.17]. This is the region of high spatial coherency resulting 

in high contrast to regions close to the biprism where field strength and associated inclination angle 

varies strongly with the spatial distance. The analog with high energy electron diffraction at a small 

angle vs. large-angle scattering and their relationship with the spatial coherency is described. At a 

small angle, coherency in elastic scattering is well preserved. It gives rise to crystal Bragg 

diffraction peaks, whereas at larger angles, scattering becomes more and more incoherent, i.e., 

Rutherford type scattering. However, for the atom case, there is no advantage for shaping the probe 
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elliptical as potential falls much more rapidly due to neighboring atoms in a crystal and the short 

range of potential compared to biprism. 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. The interference pattern due to the atom as a charge center. Momentum vectors 

propagate along the radial direction in the case of an atom. 

 In the case of an atom, potential varies strongly close to the nucleus and slowly beyond a 

certain distance. Therefore, there will be a different contribution from various radial zones with 

specific rim widths. These zones are defined by the angle of superposition within the same order 

of magnitude. The overall pattern can be controlled by the lens focus [Figure 3.17]. The lens focus 

will effectively increase the width of the interference field for the coherent zone. Therefore, we 

have divided the entire spatial range surrounding the atom starting from 1 pm to a suitable outer 

range in various zones. For example, 1, 4, and 8 nm focus step (experimental through focus 

condition) and calculated intensity pattern for different zones separately and summing up the 

contributions [Figure 3.18 and 3.19]. The contributions to the overall intensity pattern from 

different zones are incoherent. They can be thought of as either binary Fresnel zone plate or annular 

Airy apertures giving rise to Airy pattern at the specific focal length. Each zone acts as a filter to 

specific momentum vector components similar to the PCTF as a spatial frequency filter.  
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Figure 3.17. (a) Schematic showing relative spread of probe for conventional round and elliptical 

illumination and their connection with spatial coherency. (b) Fringe contrast corresponding to 

round and (c) highly astigmatic (elliptical) probe in off-axis electron holography. 

The zone's spatial extent increases away from the atom due to decreasing potential and 

associated scattering angle. For example, the outer spatial extent is 10.31 and 4.19 pm 

corresponding to 1 nm focal length on the optic axis for Mo and B atoms, respectively. The extent 

of the outer zone contributing to the coherent interference field increases with increasing focus  

(Table 3.03). Various zone schemes and intensity values for different atoms are given in Tables 

3.03 to 3.08. Depending on the focus settings, various zones will contribute to intensity pattern 

(focus) and background (away from focus) differently. For a given intermediate focus setting, the 

focus length smaller and larger than that will contribute to the background differently. The zones 

closer to the atom center would have formed interference patterns and propagated the information 

along the original direction and diffracted direction. Diffracted interference patterns will appear as 

a displaced image with intensity contribution minimal compared to the direct pattern.  An intensity 

difference of almost an order of magnitude is observed.  This is similar to the relative intensity 

between CB and SBs in the off-axis and direct and diffracted beams in HRTEM. Figure 3.19 shows 

various contributions from different zones of Mo atom for 1 nm. 

Moreover, the flux contributions will be different from different zones and proportional to 

the annular zone area. As already mentioned, the area and corresponding flux will be higher for 

the zones away from the nucleus. The image of lighter atom B for similar focus settings is given 
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in Figure 3.20. Kindly note that the zones with large radial distances will contribute to and modify 

the image's peak value with increasing focus.  

 

Figure 3.18. (a)-(c) Three different zones and their extent corresponding to 1, 4, and 8 nm focus 

step with respect to the optic axis for Mo atom, respectively. The extent of the third zone increases 

with defocus from 10.70 pm to 21.18 pm, having the same mean bending angle. 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. (a)-(c) Image pattern formation due to various zones at 1 nm focus and (d) overall 

image of the Mo atom at 1 nm focus.  
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Radial distance 

(pm) & zones 

Rim width 

(pm) 

Mean scattering 

angle (rad) 

Length on optic 

axis (nm) 

Intensity (with 

flux balance) 

1-1.77 0.77 0.1558 1 5.82 

1.77-10.31 8.54 0.0488 1 8.45 

10.31-10.70 0.39 0.0099 1 16.89 

10.31-16.91 6.60 0.0070 4 11.33 

10.31-21.18 10.87 0.0062 8  9.56 

Table 3.03. Various radial zones and corresponding focal length on the optic axis for Mo (Z=42) 

atom for 1, 4, and 8 nm length on the optic axis. Zones are divided based on scattering angles 

falling in the same order of magnitude. The corresponding schematic is given in Figure 3.18. 

 

Figure 3.20. (a)-(c) Two different zones and their extent corresponding to 1, 4, and 8 nm focus 

step with respect to the optic axis for B atom, respectively. The extent of the second zone increases 

with defocus from 4.49 pm to 10.31 pm, having the same mean bending angle. (d) and (e) Image 

pattern formation due to various zones at 1 nm focus and (f) overall image of the B atom at 1 nm 

focus. 
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Radial distance 

(pm) & zones 

Rim width 

(pm) 

Mean scattering 

angle (rad) 

Length on optic 

axis (nm) 

Intensity (with 

flux balance) 

1-1.77 0.77 0.1092 1 6.82 

1.77-8.76 6.99 0.0275 1 7.61 

8.76-9.54 0.78 0.0092 1 13.73 

8.76-15.36 6.60 0.0067 4 9.93 

8.76-18.85 10.09 0.0061 8  11.03 

Table 3.04. Various radial zones and corresponding focal length on the optic axis for Zn (Z=30) 

atom for 1, 4, and 8 nm length on the optic axis. Zones are divided based on scattering angles 

falling in the same order of magnitude.  

 

Radial distance 

(pm) & zones 

Rim width 

(pm) 

Mean scattering 

angle (rad) 

Length on optic 

axis (nm) 

Intensity (with 

flux balance) 

1-6.04 5.04 0.043 1 9.60 

6.04-7.21 1.17 0.0081 1 10.58 

6.04-12.25 6.21 0.0060 4 11.63 

6.04-15.36 9.71 0.0055 8 11.64 

Table 3.05. Various radial zones and corresponding focal length on the optic axis for S (Z=16) 

atom for 1, 4, and 8 nm length on the optic axis. Zones are divided based on scattering angles 

falling in the same order of magnitude.  

The relationship between the phase of the OEW and the resulting magnitude of intensity 

can be understood as follows. The meaning of phase change is the change in momentum vector 

direction, which is similar to Fresnel, Fraunhofer, off-axis electron holography type of interference 

geometry where wave interference is involved at an angle.  This is different from the WPOA type 

phase shift, where no information on interference geometry is available. Radial interference 

geometry modifies the unidirectional straight electron interference fringe to a radially symmetric 

pattern with a peak intensity at the center of the pattern. In the off-axis electron holography, the 
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intensity pattern oscillates periodically with the same magnitude in unidirectional interference 

geometry across a mirror plane. Now this phase term appears as carrier frequency 𝑄 in off-axis 

electron holography and, in the present case, alters the peak intensity of the radial pattern 

depending on field strength and extent of a given radial zone. The field strength and corresponding 

potential information are the object information that can be interpreted and used to identify atoms. 

 

Radial distance 

(pm) & zones 

Rim width 

(pm) 

Mean scattering 

angle (rad) 

Length on optic 

axis (nm) 

Intensity (with 

flux balance) 

1-3.32 2.32 0.0252 1 8.87 

3.32-5.65 2.33 0.0075 1 7.09 

3.32-9.15 6.22 0.0061 4 8.40 

3.32-12.25 8.93 0.0057 8 8.87 

 Table 3.06. Various radial zones and corresponding focal length on the optic axis for O (Z=8) 

atom for 1, 4, and 8 nm length on the optic axis. Zones are divided based on scattering angles 

falling in the same order of magnitude.  

 

Radial distance 

(pm) & zones 

Rim width 

(pm) 

Mean scattering 

angle (rad) 

Length on optic 

axis (nm) 

Intensity (with 

flux balance) 

1-3.33 2.33 0.022 1 8.42 

3.33-5.27 1.94 0.0067 1 7.42 

3.33-9.15 5.82 0.0054 4 8.41 

3.33-11.87 8.54 0.0050 8 8.87 

Table 3.07. Various radial zones and corresponding focal length on the optic axis for N (Z=7) 

atom for 1, 4, and 8 nm length on the optic axis. Zones are divided based on scattering angles 

falling in the same order of magnitude.  



84 Chapter 3       Image simulation in HRTEM 
 

Radial distance 

(pm) & zones 

Rim width 

(pm) 

Mean scattering 

angle (rad) 

Length on optic 

axis (nm) 

Intensity (with 

flux balance) 

1-2.16 1.55 0.014 1 5.09 

2.16-4.49 1.64 0.0069 1 7.77 

2.16-7.99 6.21 0.0052 4 7.31 

2.16-10.31 8.93 0.0049 8 6.76 

Table 3.08. Various radial zones and corresponding focal length on the optic axis for B (Z=5) 

atom for 1, 4, and 8 nm length on the optic axis. Zones are divided based on scattering angles 

falling in the same order of magnitude. The corresponding schematic is given in Figure 3.20. 

In WPOA, series approximation and PCTF contrast are required to observe intensity 

patterns due to object potential, but only defocus is sufficient in the present case. In practical 

HRTEM, the atom contrast never goes to zero even if PCTF is zero. Traditionally, this is explained 

based on amplitude contrast due to ACTF, which is the higher-order contribution from interaction 

constant 𝜎 according to Eq. 3.26 and is attributed as a non-linear imaging condition. However, the 

presence of contrast, even if defocus and the corresponding PCTF is zero, can only be explained 

by the present method in terms of radial interference originating from sectors of potential very 

close to the nucleus. Therefore, in the current process, as the meaning of phase is different, 

incoherent zones will have non-identical phase change in terms of 𝑄. Thus, more than one wave 

function is superimposed on top of each other incoherently, and it will be appropriate to interpret 

intensity directly to the object information. An alternative proposal on image reconstruction based 

on intensity directly instead of wavefunctions is discussed in the next chapter.  

 

3.4.4 Effect of spherical aberration and defocus on the image  

The effect of third-order spherical aberration (𝐶𝑠) and defocus (∆𝑓) are now considered to 

modify the image contrast further. The image contrast calculated based on the alternative method 

without considering lens transfer does not match the experimental images as a function of the 

atomic number recorded under the particular settings of imaging conditions. Generally, a suitable 

combination of 𝐶𝑠 and ∆𝑓 are used to transfer maximum phase contrast for a given bandwidth of 
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spatial frequency with the best possible point resolution provided by the first zero crossings of 

PCTF [Figure 3.21]. A point resolution better than 1 Å can be achieved in an aberration-corrected 

microscope for a combination of 𝐶𝑠 = −35 𝜇𝑚 and ∆𝑓 = 8 𝑛𝑚 [25]. As already mentioned, the 

effect of aberration phase shift can be considered either in the diffraction plane or image plane, 

depending on the requirement. In the image plane, the aberration figure due to spherical aberration 

is given by a disk of radius 𝑟𝑠 at the Gaussian image plane [Figure 3.22]. The effect of 𝐶𝑠 and  ∆𝑓 

act in opposite directions, which depends on the third power and linearly with the scattering angle, 

respectively. The effect is either increasing or decreasing the full width at half maxima (FWHM) 

of the psf and impairs or improving the resolution of the imaging process. A typical angular 

deviation from the ideal ray path and corresponding aberration figure can be correlated for a given 

combination of 𝐶𝑠 and ∆𝑓 [Figure 3.23 and Table 3.09].   

Figure 3.21. (a) PCTF and (b) ACTF function for C3 = −35 μm and positive focus setting of  

Δf = +1, +4, and +8 nm.  

The effect of defocus (𝐶1) and third-order spherical aberration coefficient (𝐶3) on the 

image aberration is given by  

𝑟𝑠 = 𝑀𝐶3𝜃3 + 𝑀𝐶1𝜃                                                        (3.48) 

Where 𝑟𝑠 is the radius of the disk at the Gaussian image point.  

Opposite values of 𝐶3 and 𝐶1 reduce the aberration, which is a function of scattering angle [Figure 

3.23 (a)]. The effect is to decrease the 𝑟𝑠 and improves the resolution of the imaging process. Under 
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best conditions (e.g., Scherzer criteria), the optimum balance gives the best minimum value of 𝑟𝑠, 

also called the disk of least confusion.  

Figure 3.22. (a) Definition of aberration figure in the image plane, (b) effect of Cs on object point 

on the image plane, and (c) schematic representation of the effect of positive ∆f for a given Cs on 

the image blurring in terms of aberration figure. Copyright (2015) by World Scientific Publishing 

Company [3].  

Figure 3.23. (a) Effect of positive ∆f and negative Cs on rs for different focus setting of Δf = +1, 

+4 and +8 nm for C3 = −35 μm. (b) Effect of positive ∆f and Cs = 0 are shown. Note the opposite 

effect of negative Cs and positive ∆f on the rs. 

Experimental images obtained in HRTEM for monolayer MoS2 and BN for different 

defocus values are shown in Figure 3.24. Depending on the electrostatic zones and associated 
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scattering angle, the diffraction-limited information will be blurred further for a given set of 𝐶𝑠 

and  ∆𝑓. The peak intensity will be reduced due to aberration blurring for zones with scattering 

angles more than what can be adjusted through PCTF. The effect of Peak image intensity and 

contrast difference between Mo and B atoms after considering Cs = −35 μm and ∆𝑓 =

1, 4, and 8 nm is shown in Figure 3.25 (b) and listed in Table 3.01. The modified peak intensity 

has been calculated based on the flux balance approach considering the ratio between the original 

interference field width to the final blurred area. Kindly note that the simulated peak intensity 

values at focus close to zero remain a little over reference background, one, irrespective of atomic 

numbers. This corresponds well with the experimental observation [Table 3.01].  

Table 3.09. Example scattering angle vs. aberration figure for various combinations of Cs and ∆f 

as extracted from Figure 3.23. 

The calculated intensity image of the Mo atom at three different focus values is shown in 

Figure 3.25 (a). The peak values are smaller for B than the Mo case as the outer zone's extent is 

reduced due to the smaller magnitude to the potential field. Figure 3.25 (a) is the graph of peak 

image intensity vs. atomic number for three different focus values. The peak intensity decreases 

slightly with a larger focus value. The peak intensity has a dependence of ~ 𝑎𝑍𝑏 where a is a fitting 

constant and Z is the atomic number. Exponent b changes from 0.4 to 0.26 for change in focal 

length from 1 to 8 nm. However, the peak intensity values decrease significantly after considering 

image aberration (sec. 2.3.3 and Figure 3.25 (b)). 

Third-order spherical 

aberration 𝐂𝐬 (𝛍𝐦) 

Defocus ∆𝐟 

(nm) 

Scattering angle 

(rad) 

Aberration figure 

(pm) 

−𝟑𝟓 +1 0.011 31.15 

−𝟑𝟓 +4 0.011 0.67 

−𝟑𝟓 +8 0.011 43.10 

0 +1 0.011 10.60 

0 +4 0.011 42.42 

0 +8 0.011 84.85 
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Figure 3.24. Experimental images at three different focus settings of Δf = +1, +4 and +8 nm for 

(a)-(c) MoS2 and (d)-(f) BN. 

Now, one can notice that after considering aberration blurring due to psf corresponding to 

each zone and scattering angle, the peak intensity falls significantly compared to the ideal lens 

case [Table 3.01 and Figure 3.25 (b)]. From the experimental image series recorded under similar 

conditions as simulation parameters, the peak intensity to reference vacuum ratio is ~ 1.23 (± 0.04) 

and 1.05 (± 0.02) for Mo and B atoms, respectively, after normalizing with respect to the vacuum 

intensity. For example, we have obtained a peak value of 1.19 and 1.09 for Mo and B atoms from 

the calculation for a focus setting of 4 nm (Table 3.01). The peak intensity does not vary 

significantly in the experimental image for a small variation of focus. Good matching is obtained 

with the simulated image after considering aberration blurring of intensity from different 

incoherent zones. Any discrepancy can be explained in terms of slight deviation in scattering angle 

and associated extent of zones, focus value, consideration of aberration figure while simulating the 

absolute intensity of atoms. The close agreement between experimental image and simulation 

results contradicts earlier prediction based on Stobb’s factor, where a difference in contrast by a 

factor of 4 was reported [26]. 
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Figure 3.25. (a) Comparison of peak image intensity as a function of atom number for a focus 

setting of 1, 4, and 8 nm without considering any aberration. (b) Peak image intensity difference 

between Mo and B atoms after considering Cs = −35 μm and  ∆f = 1, 4, and 8 nm. 

 

3.5 Conclusion  

In conclusion, an alternative approach for simulating atom images in HRTEM is presented. 

The method is based on the atom as an electrostatic charge center inducing wave interference along 

the radial direction and extending the conventional off-axis interference geometry with 

unidirectional electron biprism.  The simulated results corresponding to the image intensity of 

various atoms are in close agreement with the experimental images of Mo and B atoms.  
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Chapter 4 

 

Insights and alternative methods on the 

phase retrieval in HRTEM  

 

 

 

This chapter proposes an alternative reconstruction method for retrieving the object exit 

wave function from the recorded image intensity pattern in high-resolution transmission electron 

microscopy (HRTEM). The method is based on applying a modified intensity equation 

representing the HRTEM image. Phase shift extracted from the experimental images of MoS2, BN, 

and ZnO are in excellent agreement with the theoretical reference values. Additionally, it is shown 

that the Fourier series expansion of diffraction pattern is effective in retrieving the isolated and 

periodic image functions of a specific form directly. However, for aperiodic object information, 

e.g., defects, dopants, edges, etc., the first method works entirely.   

 

 

 

 

 

Manuscript under preparation. 
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4.1 Introduction  

 Phase (𝜙) is the fundamental information derived from the atomic resolution phase-

contrast microscopy  [1–6]. The phase-contrast technique enables a detailed examination of the 

object based on the atomic arrangement and electron density. As the electron beam passes through 

the ultra-thin specimen in TEM, the phase is altered because of the specimen potential. The change 

in phase (Δ𝜙) of the probe electron wave leads to the formation of specific intensity patterns in 

the respective image and diffraction planes. The phase information is not recorded directly, as the 

detectors are only capable of recording the intensity. The intensity patterns can be recorded through 

any suitable imaging device, e.g., a charge-coupled device (CCD) camera. In case of electron 

diffraction, Δ𝜙 carry information not only on the crystallographic phase of the material along high 

symmetry orientation but also on the electrostatic potential that is essential for the identification 

and counting of atoms, extracting information on the chemical bonding from the experimental 

images  [7–13]. To get the phase shift, we have to obtain the wave function of the electron, which 

is not so straightforward.  The method to extract the wave function of the electron wave from the 

intensity is known as the object exit wave reconstruction (OEW). There are a few existing 

experimental and associated numerical phase retrieval methods in high-resolution transmission 

electron microscopy (HRTEM), e.g., through focal image series reconstruction based on 

HRTEM  [2,14,15], atomic resolution off-axis electron holography  [16,17], fitting object function 

directly by intensive computer simulation or so-called direct method  [9], transport of intensity 

equation (TIE)  [18], and phase velocity  [7], etc. Some of the techniques mentioned above work 

both at medium and atomic resolution. The TIE method was developed for medium resolution 

applications. 

OEW reconstruction is the inverse process of image simulation. Among various methods, 

complexities in OEW reconstruction based on conventional through focal HRTEM image series 

are addressed in the present discussion. Its analogy and differences to off-axis electron holography 

are highlighted. Defocus HRTEM image is equivalent to in-line holography [19]. Even though 

HRTEM is the most used technique to visualize atoms, it fails to obtain the direct phase 

information of the electron waves scattered from the object. In off-axis electron holography, the 

wave interference occurs at an angle between the reference and the object waves. The retrieval of 

OEW is performed at first by Fourier transformation (FT) of the image containing electron 
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interference pattern, then selecting one of the two sidebands (SBs) which are complex conjugate 

(or twin image) to each other followed by inverse-FT  [4]. This procedure isolates the central band 

(CB) and the twin image wavefunctions from the recorded image. The phase and amplitude can 

be evaluated either by the arctan function corresponding to inverse-FT or fitting the inverse-FT 

pattern with image simulation. As the starting data is the image, the FT procedure does not lead to 

the loss of any information in the crystallographic phase. Inverse FT can return the image intensity 

pattern. Deconvolution of coherent aberration envelope can be performed posterior that modifies 

the aberration figure in the image plane.  

In HRTEM, the CB and twin image wave functions overlap in the diffraction plane, and 

the FT procedure cannot separate them in the frequency space, unlike off-axis electron 

holography  [19,20]. Most of the reconstruction methods in HRTEM involve multiplying the 

image intensity recorded at different focus settings with a complex filter function. The filter 

function consists of a coherent aberration envelope corresponding to each focus. Summing up all 

the images will eliminate the unwanted twin image and non-linear components and result in the 

desired OEW function. The complexities of reducing the unwanted components from the preferred 

OEW function led to several reconstruction algorithms [15].  

However, in the present chapter, it is demonstrated that by marginally modifying the 

intensity equation describing the HRTEM image, it is possible to retrieve the phase information 

directly from the atomic resolution images. The same equation in the wavefunction formalism is 

used for existing OEW reconstruction procedures in the in-line and off-axis electron holography. 

Two types of phases are of importance here. One is the crystallographic phase describing the 

scattering distribution of potential corresponding to the isolated or periodic arrangement of atoms 

forming a specific image or diffraction pattern in the respective planes. The second one is the 

change in phase of probe electron wave due to strength of atomic potential, which is equivalent to 

electron density in X-ray crystallography, determining the intensity of the dots in the image 

pattern. A comparative discussion is provided between the existing reconstruction methodologies 

of OEW in HRTEM, off-axis electron holography, and the present proposal [21–23]. The retrieval 

of OEW function due to object, lens imperfections, and geometry of interference depends on how 

the phase change is incorporated and the equations used in the mathematical formulations. 

However, it is shown that the phase information in terms of crystallography and object potential 
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is not lost in the image for both in-line and off-axis electron holography.  The presence of a 

reference wave ensures the modulation of the intensity pattern and retaining the phase information 

in the image plane. The results obtained for MoS2, BN, and ZnO are in excellent agreement with 

the theoretical reference values within the specified resolution limits. The method follows the Born 

rule of probability density and addresses the twin image issue in in-line electron holography. 

However, phase information is completely lost for the intensity pattern recorded in the diffraction 

plane. But it is shown that it is possible to retrieve the complete phase information directly from 

the diffracted intensity. This latter method is based on the cosine-based Fourier series expansion 

of the diffraction pattern similar to the zero-phase retrieval based on Patterson’s function in X-ray 

crystallography for small molecular systems [24,25]. This method works accurately for a particular 

type of function, both in isolated and periodic form. However, for aperiodic object information, 

e.g., defects and dopants, the first method works in its entirety.   

 

4.2 Experimental techniques  

TEM samples of MoS2 and BN layered materials are prepared by ultrasonication of 

respective powders (Sigma Aldrich) for 40 mins to exfoliate monolayers and few layers, followed 

by drop-casting on a holey carbon grid [26]. A cross-sectional TEM specimen of ZnO epitaxial 

thin film is prepared by first mechanical thinning and then Ar ion polishing to perforation. HRTEM 

images are recorded in an aberration-corrected FEI TITAN3TM 80-300 kV transmission electron 

microscope operating at 300 kV with optimum CS and defocus settings [27,28]. ZnO epitaxial thin 

film is grown homoepitaxially on a (0001) ZnO substrate by pulsed laser deposition (PLD) 

following a specific growth procedure described in Ref. [6,29].  

 

4.3 Existing methods of exit wave reconstruction  

In this section, existing methods of OEW reconstruction are discussed for both HRTEM 

and off-axis electron holography methods.  
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4.3.1 Various schemes on HRTEM focal series reconstruction 

4.3.1.1 Focal variation method  

Reconstruction methods associated with the HRTEM through focal image series aim to 

retrieve the unknown phase 𝜙 of the OEW function of the form 𝜓𝑖 = 𝐴(𝑥, 𝑦)𝑒𝑖𝜙(𝑥,𝑦)Where 

𝐴(𝑥, 𝑦) represents the amplitude of the object exit wave function. The OEW function can interpret 

the object structure 𝑓(𝑥, 𝑦, 𝑧) based on the model methods. Generally, the illumination is 

considered monochromatic, and partial coherence theory appears into the stage for semi-

monochromatic waves. The theoretical model behind the off-axis electron holography technique 

to retrieve the OEW function is straightforward (sec. 4.3.2). The methods corresponding to in-line 

holography using through focal HRTEM image series are much more elaborate, involving 

intensive data refinement and fitting procedures [17]. This is due to the nature of the fitting 

equation considered to retrieve the 𝜓𝑖 that attempts to reduce the effect of complex conjugate 𝜓𝑖
∗ 

and non-linear image components 𝜓𝑖𝜓𝑖
∗ from the recorded image set.  

There exist few different focus variation methods e.g., Wiener formulation by Schiske, 3D 

paraboloid method (PM), maximum likelihood method (ML), and various numerical schemes 

associated with them [2,3,30]. Saxton showed the equivalence between the different reconstruction 

techniques in terms of equivalence in restoring filter applied to the intensity expression in Fourier 

space to retrieve the wave function. The simplified form of the restoring filter function fon N 

number of images is given as 

𝑟𝑛(𝑘) =
1

𝑁
exp{𝑖𝛾(𝑘)}         (4.01) 

and the associated aberration function  

𝛾𝑛(𝑘) = 𝜋𝐶𝑠𝜆
3𝑘4 − 𝜋𝜆𝑧𝑛𝑘

2         (4.02) 

finally, the restored wave function is written as 

𝜓(𝑘) = ∑ 𝐼𝑛(𝑘)𝑟𝑛(𝑘)𝑛          (4.03) 

Where, 𝐶𝑠 is the third-order spherical aberration, 𝜆is the wavelength, 𝑧𝑛 is the defocus 

corresponding to the nth image, and 𝑘 is the spatial frequency. The application of restoring the filter 

function is similar to deconvolving the effect of aberration. The inverse-FT of Eq. 4.03 will return 
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the wave function in the image plane. This is only possible if one starts with the intensity pattern 

recorded in the image plane with sufficient spatial resolution, and during inverse-FT, spatial 

information on the crystallographic phase is preserved through 𝑅𝑒(𝑥, 𝑘) (real part) and 𝐼𝑚(𝑥, 𝑘) 

(imaginary part) of Fourier waves. The pattern of the wave function in terms of phase 𝜙 and 

amplitude 𝐴 thus obtained is required to be fitted with the model calculation for further 

interpretation. 

However, Saxton derived the final form of the wave function without considering any 

restoration filter from a different start in the intensity expression given in Eq. 4.04. The approach 

provides insight into the effect of restoration on dispersing conjugate wave function and non-linear 

image components. Under perfect coherence, the image intensity at some focus z near the Gaussian 

image plane is written as 

𝑖(𝑥, 𝑧) = |1 + 𝜓𝑖|
2 = 1 + 𝜓𝑖(𝑥, 𝑧) + 𝜓𝑖

∗(𝑥, 𝑧) + ℎ(𝑥, 𝑧)      (4.04) 

Where, 𝜓𝑖(𝑥, 𝑧) is the desired part or the OEW, ℎ(𝑥, 𝑧) = 𝜓𝑖(𝑥, 𝑧)𝜓𝑖
∗(𝑥, 𝑧) and 𝜓𝑖

∗(𝑥, 𝑧) are the 

unwanted non-linear term and complex conjugate, respectively. 𝜓𝑖
∗(𝑥, 𝑧) is the twin image of 

𝜓𝑖(𝑥, 𝑧). Kindly note that the reference wave 𝜓0 is set to one by considering axial illumination 

(𝑘0 = 1) in the above expression.  

The 2D Fourier transformation of Eq. 4.04 and then explicitly adding the dependence on defocus 

results in the following expression. 

𝐼(𝑘, 𝑧) = 𝛿(𝑘) + 𝜓(𝑘) exp(𝜋𝑖𝜆𝑧𝑘2) + 𝜓∗(−𝑘) exp(−𝜋𝑖𝜆𝑧𝑘2) + 𝐻(𝑘, 𝑧)    (4.05) 

Where, 𝐻(𝑘, 𝑧) is the non-linear component that describes the autocorrelation between the two 

linear terms in the reciprocal space. As proposed by van Dyck, the paraboloid method can be 

derived from the above expression by taking 3D-FT with respect to defocus where the wave 

function and its complex conjugate follow the reflected parabola from the reference diffraction 

plane [2].  

Now, within the coherent detection, i.e., multiplying by corresponding phase conjugate and 

summing over N images after assuming 𝑘 is non-zero, which allows omitting the delta function 

and for a constant 𝑘, the image intensity becomes 

∑ 𝐼𝑛 exp(−𝜋𝑖𝜆𝑧𝑛𝑘
2) = 𝜓∑ 1𝑛 + 𝜓∗∑ exp(−2𝜋𝑖𝜆𝑧𝑛𝑘

2
𝑛𝑛 ) + ∑ 𝐻𝑛exp(−𝜋𝑖𝜆𝑧𝑛𝑘

2)𝑛    (4.06) 
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From the above expression, it was concluded that the wave functions 𝜓 and 𝜓∗ accumulate 

to N and √𝑁 times to its original value, respectively. The non-linear term 𝐻𝑛 behaves randomly 

with the defocus. Thus, by dividing the above equation by N, the wanted OEW function may be 

recovered. Eq. 4.06 is widely considered in almost all the through-focus image series OEW 

reconstruction. All the efforts to develop image reconstruction codes primarily deal with 

eliminating the non-linear and complex conjugate terms and finding the best fit with the model 

calculation. However, complex conjugate and non-linear terms will always be present depending 

on how their weights are subdued. 

HRTEM intensity is given by, 

𝐼𝑖𝑛𝑙𝑖𝑛𝑒 = |𝜓0 + 𝜓𝑖|
2 = 𝐴0

2 + 𝐴𝑖
2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 − 𝜙0)        (4.07) 

Where 𝜓0 = 𝐴0(𝑥, 𝑦)𝑒
𝑖𝜙0(𝑥,𝑦) is the initial wave function of the electron with amplitude 𝐴0(𝑥, 𝑦) 

and phase 𝜙0(𝑥, 𝑦). The image intensity pattern is based on self-interference between reference 

incident and scattered waves within the picture of single-electron wave interference phenomena 

(Eq. 4.08 and 4.09). The expression is similar to the wave interference between the reference and 

object waves in off-axis electron holography (sec. 4.3.2). However, in off-axis geometry, there is 

an additional phase term 𝑄𝑥 due to wave interference at an angle that gives spatial modulation in 

the interference field [5]. Moreover, Eq. 4.04 is in an intermediate state to eliminate the effect of 

twin image and non-linear terms by working in the diffraction plane. However, the final form of 

the expression implies that fitting the intensity equation alone and evaluating the phase term 

should, in principle, allow extracting the relative phase change from the image plane. For more 

details on associated twin image wave functions and applicability of Eq. 4.07, see sec. 4.4.1. The 

results based on the above schemes can be found in Ref. [6,17].  

Finally, the approach based on partial coherence theory considers the effect of finite source 

size, chromatic defocus spread, current-voltage fluctuation of the instrument, objective aperture 

size, and wave aberration function [1,31,32]. The reconstruction method based on partial 

coherence theory is an iterative linear restoration that addresses the residual non-linear term. 

Repeated application of linear restoring filter from the subtraction of the calculated non-linear term 

improves the initially guessed wave function. Various derivations available based on partial 

coherence theory are given in sec. 4.3.1.3. One can notice that the coherence and interference phase 
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shift in formalism originates in the convolution procedure in real space and cross-correlation in 

Fourier space.  

Eq 4.04 can also be written following the subsequent description of holography given in 

Born and Wolf (p 504, section 8.10.1) [21]. The illuminating wave function 𝜓0 considered to be 

1, similar to Schiske’s axial illumination condition for which k0 = 0. 

𝑖(𝑥, 𝑧) = |𝜓0 +𝜓𝑖|
2 = 𝜓0𝜓0

∗ + 𝜓0
∗𝜓𝑖(𝑥, 𝑧) + 𝜓0𝜓𝑖

∗(𝑥, 𝑧) + 𝜓𝑖(𝑥, 𝑧)𝜓𝑖
∗(𝑥, 𝑧) 

  = 𝐴0
2 + 𝐴𝑖

2 + 𝐴0𝐴𝑖 exp 𝑖 (𝜙𝑖 − 𝜙0) + 𝐴0𝐴𝑖 exp 𝑖 (𝜙0 − 𝜙𝑖) 

  = 𝐴0
2 + 𝐴𝑖

2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 − 𝜙0)       (4.08) 

After following Born and Wolf, 

𝑖(𝑥, 𝑧) = |𝜓0 + 𝜓𝑖|
2 = |𝐴0 exp(𝑖𝜙0) + 𝐴𝑖 exp(𝑖𝜙𝑖)|

2 

= exp(𝑖𝜙0) exp(−𝑖𝜙0) |𝐴0 + 𝐴𝑖 exp 𝑖(𝜙𝑖 − 𝜙0)|
2 

= 𝐴0
2 + 𝐴𝑖

2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 − 𝜙0)       (4.09) 

Two slightly different starting arrangements give the same result. The quantities are all real 

and different from the expression in Eq. 4.04. It depends on the vector nature of the momentum 

direction whether we will have in-line or off-axis-like geometry. In the off-axis geometry, another 

phase term appears, a component of wave vectors 𝑄𝑥 inside the cosine term, which describes 

carrier frequency and a reference point for a fringe shift.  

The second line of Eq. 4.08 is an intermediate state where imaginary parts will 

automatically cancel each other and yield only real parts. It means that by fitting the intensity 

equation and evaluating the cosine term, the relative phase change in the image can be extracted. 

In the above discussion, the effect of Cs is ignored but can be incorporated through the 

exponential phase function or transfer function. Experimentally this is akin to applying a frequency 

filter formed by a known complex transfer function corresponding to every focus value to the 

Fourier space intensity. It is then summing to retrieve the most dominant wave function compared 

to other contributions, namely the conjugate and non-linear parts. Thus, the complex quantity can 

be used to calculate the amplitude and phase part of the OEW function by the arctan function.  
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4.3.1.2 Paraboloid method 

Van Dyck discusses two different approaches. The second one has a similarity with the 

Kirkland method. 

In the first approach by Van Dyck  [2], what is widely known as the 3D paraboloid method, 

the 2D Fourier transform 𝜓(𝑘)of the wave function 𝜓(𝑥) is recovered via a summation over N 

number of images. 

𝜓(𝑘) =
1

𝑁
∑ 𝐼𝑛(𝑘)exp{−𝜋𝑖𝜆𝑧𝑛𝑘

2}𝑛        (4.10) 

Based on a large set of images recorded at equally and closely spaced focus levels on either 

side of the Gaussian focus. After summation over N images, the simplified restoring filter function 

takes the form of Eq. 4.01. 

And the restored wave function becomes 

𝜓(𝑘) = ∑ 𝐼𝑛(𝑘)𝑛 exp{𝑖𝛾𝑛(𝑘)} = exp(𝜋𝑖𝐶𝑠𝜆
3𝑘4) ×

1

𝑁
∑ 𝐼𝑛(𝑘)exp(−𝜋𝑖𝜆𝑧𝑛𝑘

2)𝑛     (4.11) 

In the above expression, a spherical aberration phase shift is included explicitly. For perfect 

coherence, after appropriate approximation, the restoring filter function has the same form as Eq. 

4.01 (based on Wiener formulation). 

Saxton pointed out that in the 3D paraboloid method, the picture can be obtained by 3D 

Fourier transformation of Eq. 4.06, i.e., to the third image space dimension z.   

𝛿(𝑘, 𝑘𝑧) + 𝜓(𝑘)𝛿 (𝑘𝑧 −
1

2
𝜆𝑘2) + 𝜓∗(−𝑘)𝛿 (𝑘𝑧 +

1

2
𝜆𝑘2) + ∫𝐻(𝑘, 𝑧) exp(−2𝜋𝑖𝑘𝑧𝑧) 𝑑𝑧   (4.12) 

It was shown by Van Dyck that the wanted wave function 𝜓(𝑘) is localized on the 

paraboloid at 𝑘𝑧 =
1

2
𝜆𝑘2 in reciprocal space, the complex conjugate will lie on a reflected 

paraboloid and completely separated except at small k. 

At 𝑘𝑧 =
1

2
𝜆𝑘2, the transformation with respect to z gives the OEW.  

𝜓(𝑥) = ∫ 𝐼(𝑘, 𝑧) exp{−𝜋𝑖𝜆𝑘2𝑧} 𝑑𝑧        (4.13) 
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4.3.1.3 Partial coherence theory 

In the second approach by Van Dyck et al. [1], the method is based on partial coherence 

theory considering the effect of the finite size of the source, chromatic defocus spread, current-

voltage fluctuation of the instrument, objective aperture size, and wave aberration 

function [31,32]. The reconstruction method based on partial coherence theory is known as an 

iterative linear restoration.  

According to Van Dyck, in frequency space, the specimen to image interference is given by 

𝐼(𝐺) = 𝜙(0)𝜙∗(−𝐺)𝑇(0, −𝐺) + 𝜙∗(0)𝜙(𝐺)𝑇(𝐺, 0) + ∫ 𝜙(𝐺 + 𝐺′)𝜙∗(𝐺′)𝑇(𝐺 +


𝐺′≠0,𝐺′≠𝐺

𝐺′, 𝐺′)𝑑𝐺′             (4.14) 

G (G≠0) is the two-dimensional frequency vector, T is the transmission cross coefficient 

(TCC). The first and second terms in Eq. 4.14 represent the linear interference between the 

transmitted electron beam and one of the diffracted electron beams. The third term is the non-

linear term involving interference between diffracted beams. The overlap between the two wave 

functions describes the correlation and contributes to the Fourier amplitude in the image. Thus, 

one can notice that coherency and interference have an origin in convolution operation. 

The above equation can be true if there is an integration outside the two wave functions 

term. The TCC can then be written equal to the convolution of two such wave functions within the 

integration. See the derivation for the same by Kirkland [23]. 

The same equation above has been reproduced by Saxton in his review under various other 

methods as follows, 

𝐼𝑛(𝑘) = 𝛿(𝑘) + 𝜓(𝑘)𝑤𝑛(𝑘) + 𝜓∗(−𝑘)𝑤𝑛
∗(−𝑘) + ∑ 𝜓𝑘′ (𝑘′)𝜓∗(𝑘′ − 𝑘)𝑚𝑛(𝑘

′, 𝑘′ − 𝑘)   (4.15) 

Where 𝑤(𝑘) are the transfer functions and 𝑚(𝑘1, 𝑘2) is a mutual transfer function. The coherence 

effect is considered in the above equation.  

The method described above, also known as iterative linear restoration, addresses the 

residual non-linear term. The repeated application of the linear restoring filter from the subtraction 

of the calculated non-linear term improves the initially guessed wave function.  
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4.3.1.4 Partial coherence theory-based formulations  

The Fourier transformation of the above equation is written as according to Ref. [15] 

𝐼(𝑔) = ∑ 𝜓(𝑔 + 𝑘)𝜓∗(𝑘)𝑘           (4.16) 

The above expression has been interpreted as a pairwise summation of interference 

between two beams with wave vectors (g+k) and k. In the reciprocal plane, the wave function 

description is the autocorrelation between waves propagating along different directions governed 

by reciprocal lattice vectors. The above result is due to the direct Fourier transformation of the 

image intensity in real space as following 

𝐼(𝑟) = 𝜓(𝑟)𝜓∗(𝑟)           (4.17) 

According to Kirkland (p 99) [23], if one adds lens response  

𝑔(𝑥) = |𝜓𝑡(𝑥)⨂ℎ0(𝑥)|
2 = [𝜓𝑡(𝑥)⨂ℎ0(𝑥)][𝜓𝑡

∗(𝑥)⨂ℎ0
∗(𝑥)]     (4.18) 

The Fourier transform of the above equation leads to 

𝐺(𝑘) = [𝜓𝑡(𝑘)𝐻0(𝑘)]⨂[𝜓𝑡
∗(𝑘)𝐻0

∗(𝑘)] 

          = ∫𝜓𝑡(𝑘
′)𝐻0(𝑘

′)𝜓𝑡
∗(𝑘′ + 𝑘)𝐻0

∗(𝑘′ + 𝑘)𝑑2𝑘′  

= ∫𝑇𝑐𝑐(𝑘
′, 𝑘′ + 𝑘)𝜓𝑡(𝑘

′)𝜓𝑡
∗(𝑘′ + 𝑘)𝑑2𝑘′    (4.19)  

Where,      𝑇𝑐𝑐
𝑐𝑜ℎ(𝑘′, 𝑘′ + 𝑘) = exp[−𝑖𝜒(𝑘′) + 𝑖𝜒(𝑘′ + 𝑘)]𝐴(𝑘′)𝐴(𝑘′ + 𝑘)    (4.20) 

Overlap between the two wave functions describes the correlation and contributes to 

Fourier coefficient k in the image. Thus, one can notice that the coherence is because of 

convolution. 

 

4.3.1.5 Schiske filter function 

Schiske’s filter function aimed to carry out the posterior correction of photograph 

records [30]. According to Schiske, the weakly scattered wave function 𝜓𝑠(𝑥) produced while 

reading the photographic records with incident wave 𝜓0, which produces complex amplitude 𝑎(𝑥).  

Scattered wave is written as  
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𝜓𝑠(𝑥) = 𝑎(𝑥)𝜓0(𝑥) = 𝐴0𝑒
𝑖(𝑘0.𝑥0)        (4.21) 

In Fourier space, 𝑎(𝑥) has the following form 

𝑎(𝑥) = ∫ 𝑐(𝑘)𝑒𝑖(𝑘.𝑥)𝑑𝑘          (4.22) 

Where 𝑐(𝑘) is the amplitude of Fourier waves in frequency space and is written in terms 

of a complex function and its conjugate with the consideration of aberration function as 

𝑗(𝑘) = 𝑐(𝑘) exp[−𝑖𝛾(𝑘0 + 𝑘) + 𝑖𝛾(𝑘0)] + 𝑐∗(−𝑘)exp[𝑖𝛾(𝑘0
∗ − 𝑘∗) − 𝑖𝛾(𝑘0

∗)]      (4.23) 

Finally, the Intensity in the image plane immediately beneath the object is written as 

𝐼(𝑀𝑥) = 𝐼0 + 𝐼0 ∫ 𝑗(𝑘) 𝑒
𝑖(𝑘.𝑥)𝑑𝑘         (4.24) 

Where the first term on the right-hand side will give the central band or direct component, 

and the second term will form the scattered wave 𝜓𝑠(𝑥) and it's conjugate. 𝜓𝑠(𝑥) is now known 

as the OEW function in modern HRTEM literature. 𝑐(𝑘) is recovered by recording n images at 

various focus settings and simplified by considering 𝑘0 = 0,  

𝑐(𝑘) =
𝑖

2

∑ 𝑗𝑚(𝑘)𝑠𝑖𝑛𝛾𝑛𝑚

∑ 𝑠𝑖𝑛2𝛾𝑛𝑛
          (4.25) 

Where, 𝛾𝑛 is the aberration function with nth defocus. 

Once, 𝑐(𝑘) is determined, 𝑎(𝑥) can be known.  𝑎(𝑥) is imaginary for pure phase object 

like weak phase object. And then the 𝜓𝑠(𝑥) can be determined without any residual aberration. 

This 𝜓𝑠(𝑥) has the information on the object structure.  

What Schiske showed was to get rid of aberration from the information wanted, i.e. 𝜓𝑠(𝑥). 

But did not address twin images, non-linear components, and the amplitude of the scattered wave, 

contributing from the conjugate and direct component (DC) part.  

 

4.3.2 Reconstruction scheme in off-axis electron holography 

In the standard formalism of off-axis electron holography, one of the two sidebands (SBs) 

performs inverse Fourier transformation to recover the wave function. The SBs are the convolution 

between the FT of the wave function and the delta function. The delta function ensures shifting of 
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the FT of wave functions in frequency space, thus separates it from the central band (CB) and 

conjugate wave function part.  

According to James Loudon [33] (for more details, see Ref. [4,5]), the geometry of 

interference in off-axis electron holography is given in Figure 4.01. 

 

 

 

 

 

 

 

 

 

 

Figure 4.01. Schematic of transmission Off-axis electron holography interference geometry. The 

probe plane wave split into two halves is brought together for interference. One of the two partial 

waves goes through the sample and another through vacuum serving as a reference wave. The 

sample induces an additional phase shift which can be used to interpret the object structure [33]. 

  

𝜓𝑡𝑜𝑡𝑎𝑙 = 𝑒2𝜋𝑖(𝑓𝑡−𝑘𝑧)(𝑎𝑒𝑖𝜙𝑒2𝜋𝑖𝑄𝑥 + 𝑒−2𝜋𝑖𝑄𝑥) = 𝑒2𝜋𝑖(𝑓𝑡−𝑘𝑧)𝑒𝑖
𝜙

2(𝑎𝑒𝑖
𝜙

2𝑒2𝜋𝑖𝑄𝑥 + 𝑒−𝑖
𝜙

2𝑒−2𝜋𝑖𝑄𝑥) 

              (4.26) 

𝐼𝑡𝑜𝑡𝑎𝑙 = |𝜓𝑡𝑜𝑡𝑎𝑙|
2 = 𝜓𝑡𝑜𝑡𝑎𝑙

∗ 𝜓𝑡𝑜𝑡𝑎𝑙 = (𝑎𝑒−𝑖
𝜙

2𝑒−2𝜋𝑖𝑄𝑥 + 𝑒𝑖
𝜙

2𝑒2𝜋𝑖𝑄𝑥)(𝑎𝑒𝑖
𝜙

2𝑒2𝜋𝑖𝑄𝑥 + 𝑒−𝑖
𝜙

2𝑒−2𝜋𝑖𝑄𝑥)  

              (4.27)  

𝐼𝑡𝑜𝑡𝑎𝑙 = 1 + 𝑎2(𝑥, 𝑦) + 2𝑎(𝑥, 𝑦) cos(4𝜋𝑄𝑥 + 𝜙(𝑥, 𝑦))       (4.28)    
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   𝐼(𝑥) = 1 + 𝑎2(𝑥) + 2𝑎(𝑥) cos(4𝜋𝑄𝑥 + 𝜙(𝑥)) 

= 1 + 𝑎2(𝑥) + 𝑎(𝑥)𝑒𝑖𝜙(𝑥)𝑒4𝜋𝑖𝑄𝑥 + 𝑎(𝑥)𝑒−𝑖𝜙(𝑥)𝑒−4𝜋𝑖𝑄𝑥    (4.29) 

Eq. 4.29, according to Ref. [15], is  

𝐼ℎ𝑜𝑙(𝑟) = 𝐼0 + 𝐼𝑖𝑚𝑎,𝑖𝑛𝑒𝑙(𝑟) + 𝐼𝑖𝑚𝑎,𝑒𝑙(𝑟) + 2|𝜇|𝐴0𝐴𝑒𝑙(𝑟)cos(2𝜋�⃗�𝑐𝑟 + 𝜙(𝑟))   (4.30) 

The intensity expression in Eq. 4.27 is Fourier transformed and using 𝛿(𝑞 − 𝑄) =

∫ 𝑒2𝜋𝑖(𝑞−𝑄)𝑥𝑑𝑥
∞

−∞
 that separates the DC part and two twin image components (SBs) in the 

frequency plane. 

𝐹. 𝑇. [𝐼(𝑥)] = 𝛿(𝑞) + 𝐹. 𝑇. [𝑎2(𝑥)] ∗ 𝛿(𝑞) + 𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] ∗ 𝐹. 𝑇. [𝑒4𝜋𝑖𝑄𝑥]

+ 𝐹. 𝑇. [𝑎(𝑥)𝑒−𝑖𝜙(𝑥)] ∗ 𝐹. 𝑇. [𝑒−4𝜋𝑖𝑄𝑥] 

𝐹. 𝑇. [𝐼(𝑥)] = 𝛿(𝑞) + 𝐹. 𝑇. [𝑎2(𝑥)] ∗ 𝛿(𝑞) + 𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] ∗ 𝛿(𝑞 − 2𝑄)𝜙

+ 𝐹. 𝑇. [𝑎(𝑥)𝑒−𝑖𝜙(𝑥)] ∗ 𝛿(𝑞 + 2𝑄) 

𝐹. 𝑇. [𝐼(𝑥)] = 𝛿(0) + 𝐹. 𝑇. [𝑎2(𝑥)] ∗ 𝛿(0) + 𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] ∗ 𝛿(𝑞 − 2𝑄)

+ 𝐹. 𝑇. [𝑎(𝑥)𝑒−𝑖𝜙(𝑥)] ∗ 𝛿(𝑞 + 2𝑄) 

              (4.31) 

Also, Eq. 4.29, according to Ref. [15], can be written as  

𝐹𝑇[𝐼ℎ𝑜𝑙(𝑟)] = 𝐼0𝛿(�⃗�) + 𝐹𝐹𝑇[𝐼𝑖𝑚𝑎,𝑒𝑙(𝑟) + 𝐼𝑖𝑚𝑎,𝑖𝑛𝑒𝑙(𝑟)] ⊗ 𝛿(�⃗�) + �̂�𝐹𝐹𝑇[𝐴0𝐴𝑒𝑙(𝑟)𝑒
𝑖𝜙(𝑟)]

⊗ 𝛿(�⃗� − �⃗�𝑐) + �̂�𝐹𝐹𝑇[𝐴0𝐴𝑒𝑙(𝑟)𝑒
−𝑖𝜙(𝑟)] ⊗ 𝛿(�⃗� + �⃗�𝑐) 

    (4.32) 

Now select one of the two SBs → 𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] 

Inverse FT of the sideband → [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] gives the wave function. 

The spatial resolution of the technique is determined by the size of the mask placed around the 

sideband.  
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4.3.3. Comparison between the HRTEM and off-axis electron holography 

reconstruction 

There is a fundamental difference in the intensity expression given by Born and Wolf on 

in-line holography and the off-axis electron holography. In off-axis geometry, an additional phase 

term in the form of wave vector component 𝑄 = �⃗�𝑐 = 2𝑘𝑥 appears due to wave interference at an 

angle. This defines the carrier frequency in the off-axis electron hologram and changes with the 

angle of interference controlled by the biprism voltage. The larger the angle of interference, the 

larger the horizontal wave vector and finer the fringe spacing. Information about the object phase 

is carried through 𝜙(𝑥) and appears as a shift on the hologram fringes.  In the case of in-line 

holography, it is the (𝜙𝑖 − 𝜙0) which appears inside the cosine function, and only the relative 

phase change in terms of intensity between two object points can be observed in the intensity 

pattern.  

We describe the importance of some components and minor issues with the description in 

terms of amplitude term 𝑎2(𝑥) and 𝑄 in Eq. 4.29 and 4.31. Eq. 4.29 can be understood in 

comparison to Eq. 4.08 and Eq. 4.07 as follows. There is a difference between Eq. 4.29 and 4.31 

describing holographic phase shift or fringe bending in terms of 𝜙(𝑥), separation of twin image 

wave functions and the way actual FT works on the experimental HRTEM image intensity 

embedded with the atomic resolution hologram, i.e., 𝐼(𝑥)𝑜𝑟𝐼(𝑥, 𝑦) as given in Eq. 4.07 and 4.08. 

What Eq. 4.29 is stating is that the object phase information 𝜙(𝑥) appears as fringe bending in the 

recorded hologram with carrier frequency 𝑄 in the image plane. At atomic resolution, the terms 

𝑎2(𝑥) and 𝐹. 𝑇. [𝑎2(𝑥)] in Eq. 4.28 or 4.31 do not describe the HRTEM intensity pattern like Eq. 

4.08 or 4.09, which has an exclusive cosine term 𝐴0
2 + 𝐴𝑖

2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 −𝜙0) in HRTEM 

intensity expression with object phase term 𝜙𝑖. The interference pattern carries the information in 

a lattice structure and interprets the associated intensity in terms of object potential. 

 Though it was mentioned appropriately in Ref. [15] through 𝐼𝑖𝑚𝑎,𝑒𝑙(𝑟) (Eq. 4.30), 

however, 𝐼𝑖𝑚𝑎,𝑒𝑙(𝑟) is written based on OEW of the form 𝐴(𝑟)𝑒𝑖𝜙(𝑟) which is similar to the one 

used to derive Eq. 4.29. The factor 2𝐴0𝐴𝑖  outside, the cosine term is non-linear, and this cannot 

be accessed directly and can be used as a uniform background (described in sec. 4.4.1), where the 

overall intensity value is used due to such term. Moreover, the amplitude of individual complex 
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waves like 𝑎(𝑥) or 𝐴(𝑟) can only be read through 𝑅𝑒[𝑎(𝑥) cos𝜙𝑖] or 𝐼𝑚[𝑎(𝑥) sin𝜙𝑖] forming 

interference patterns and the intensity or modulus square corresponding to it in the form of 𝑎2(𝑥) 

should not have any spatial variation in intensity and only contributes to the uniform background. 

Similarly, the modulus of the individual wave function 𝜓0 or 𝜓𝑖 also will not show any structure 

and give only constant modulus term contributing to the background.  

Therefore, it is only through the trigonometric functions upon interference between waves 

show up intensity pattern. However, Eq. 4.31 and 4.32 predicts a structure in spatial intensity 

through 𝛿(𝑞) + 𝐹. 𝑇. [𝑎2(𝑥)] ∗ 𝛿(𝑞) to explain FFT patterns in CB, which is not the true situation. 

Now the 𝐹. 𝑇. [𝑒4𝜋𝑖𝑄𝑥] or 𝛿(𝑞 − 2𝑄) and 𝐹. 𝑇. [𝑒−4𝜋𝑖𝑄𝑥] or 𝛿(𝑞 + 2𝑄) terms ensure displacement 

of 𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] a term on the frequency axis having information on spatial modulation of 

intensity and without constant background term. The inverse FT of  𝛿(𝑞 + 2𝑄) (it should be 𝑄 

and not 2𝑄, see Eq. 4.32 and further details) term gives a uniform background in the image plane 

and inverse FT of 𝐹. 𝑇. [𝑒−4𝜋𝑖𝑄𝑥] returns the information on carrier frequency and fringe bending 

with respect to object phase in the image plane if part of this phase term is added with 

𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] before performing inverse FT. Therefore, one can see that the use of particular 

terms can yield different information upon inverse FT. Thus, the transfer of information on fringe 

bending is not captured in the FT pattern. It is only captured in the image plane! It is the 

𝐹. 𝑇. [𝑎(𝑥)𝑒𝑖𝜙(𝑥)] that contains the object phase information. The correct form of the object exit 

wave function (OEW) of the form  𝑎(𝑥)𝑒𝑖𝜙(𝑥) used should have a relative phase term due to self-

interference (see Eq. 4.08). Absolute of this would show a copy of abs-FT pattern of HRTEM 

image intensity around the two SBs similar to CB and any abs-FT of HRTEM image intensity 

alone. We elaborate more and describe the difference below.  

In Figure 4.01, the OEW due to one-half of the wave should have a form described in Eq. 

4.08 or 4.09. Therefore, we modify Eq. 4.29, 4.30, 4.31, 4.32, slightly different forms, and finally, 

compare it with the actual FT of HRTEM image with hologram. 𝑎(𝑥)𝑒𝑖𝜙(𝑥) becomes 

𝐴0 exp(𝑖𝜙0) + 𝐴𝑖 exp(𝑖𝜙𝑖), we can call it 𝜓𝑖𝑛𝑙𝑖𝑛𝑒 or 𝜓𝐻𝑅𝑇𝐸𝑀 and the intensity 𝐼𝐻𝑅𝑇𝐸𝑀 = 𝐴0
2 +

𝐴𝑖
2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 − 𝜙0), is the modulus square of 𝜓𝐻𝑅𝑇𝐸𝑀 as already given in Eq. 4.08  or 4.09. 

The 𝐼𝑖𝑚𝑎,𝑒𝑙(𝑟) term used in Eq. 4.30 and 4.32 should be considered as 𝐼𝐻𝑅𝑇𝐸𝑀. 

𝜓𝐻𝑅𝑇𝐸𝑀 = 𝜓𝑖𝑛𝑙𝑖𝑛𝑒 = 𝐴0 exp(𝑖𝜙0) + 𝐴𝑖 exp(𝑖𝜙𝑖)               (4.33) 



Chapter 4     Insights and alternative methods on the phase retrieval 109 
 

Thus, Eq. 4.26 modifies to 

𝜓𝑡𝑜𝑡𝑎𝑙 = {(𝐴0𝑒
𝑖𝜙0 + 𝐴𝑖𝑒

𝑖𝜙𝑖)𝑒2𝜋𝑖𝑄𝑥 + 𝐴0𝑒
𝑖𝜙0𝑒−2𝜋𝑖𝑄𝑥)} 

        = {(𝜓𝐻𝑅𝑇𝐸𝑀𝑒
2𝜋𝑖𝑄𝑥 + 𝐴0𝑒

𝑖𝜙0𝑒−2𝜋𝑖𝑄𝑥)}                 (4.34) 

And Eq. 4.27modifies to 

𝐼𝑡𝑜𝑡𝑎𝑙 = |𝜓𝑡𝑜𝑡𝑎𝑙|
2 = 𝜓𝑡𝑜𝑡𝑎𝑙

∗ 𝜓𝑡𝑜𝑡𝑎𝑙 

= (𝜓𝐻𝑅𝑇𝐸𝑀𝑒
2𝜋𝑖𝑄𝑥 + 𝐴0𝑒

𝑖𝜙0𝑒−2𝜋𝑖𝑄𝑥)(𝜓𝐻𝑅𝑇𝐸𝑀
∗ 𝑒−2𝜋𝑖𝑄𝑥 + 𝐴0𝑒

−𝑖𝜙0𝑒2𝜋𝑖𝑄𝑥)     (4.35) 

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐴0
2 +𝜓𝐻𝑅𝑇𝐸𝑀𝜓𝐻𝑅𝑇𝐸𝑀

∗ + 𝐴0𝑒
−𝑖𝜙0𝜓𝐻𝑅𝑇𝐸𝑀𝑒

4𝜋𝑖𝑄𝑥 + 𝐴0𝑒
𝑖𝜙0𝜓𝐻𝑅𝑇𝐸𝑀

∗ 𝑒−4𝜋𝑖𝑄𝑥 

= 1 + {𝐴0
2 + 𝐴𝑖

2 + 2𝐴0𝐴𝑖𝑐𝑜𝑠(𝜙𝑖 −𝜙0)} + (𝐴0
2 + 𝐴0𝐴𝑖𝑒

𝑖(𝜙𝑖−𝜙0)𝑒4𝜋𝑖𝑄𝑥 + (𝐴0
2 +

𝐴0𝐴𝑖𝑒
−𝑖(𝜙𝑖−𝜙0)𝑒−4𝜋𝑖𝑄𝑥           (4.36) 

And  

𝐹. 𝑇. (𝐼𝑡𝑜𝑡𝑎𝑙) = 𝐹. 𝑇. (1) + 𝐹. 𝑇. (𝐼𝐻𝑅𝑇𝐸𝑀) + 𝐹. 𝑇. (𝐴0𝑒
−𝑖𝜙0𝜓𝐻𝑅𝑇𝐸𝑀) ∗ 𝛿(𝑞 − 2𝑄) +

𝐹. 𝑇. (𝐴0𝑒
𝑖𝜙0𝜓𝐻𝑅𝑇𝐸𝑀

∗ ) ∗ 𝛿(𝑞 + 2𝑄)           (4.37) 

Eq. 4.37 is the correct form in terms of 𝛿(𝑞 + 𝑄) as used in Eq. 4.32 [15]. 

𝐹. 𝑇. (𝐼𝑡𝑜𝑡𝑎𝑙) = 𝐹. 𝑇. (1) + 𝐹. 𝑇. (𝐼𝐻𝑅𝑇𝐸𝑀) + 𝐹. 𝑇. (𝐴0𝑒
−𝑖𝜙0𝜓𝐻𝑅𝑇𝐸𝑀𝑒

2𝜋𝑖𝑄𝑥) ∗ 𝛿(𝑞 − 𝑄) +

𝐹. 𝑇. (𝐴0𝑒
𝑖𝜙0𝜓𝐻𝑅𝑇𝐸𝑀

∗ 𝑒−2𝜋𝑖𝑄𝑥) ∗ 𝛿(𝑞 + 𝑄)          (4.38) 

Eq. 4.37 now correctly describes the HRTEM image recorded with atomic resolution 

hologram in the CB and the wavefunction 𝜓𝐻𝑅𝑇𝐸𝑀 has plane wave term 𝐴0𝑒
−𝑖𝜙0 outside of it. 

However, the absolute square should now have a structure observed around SB [Figure 4.02]. 

Earlier consideration of the wavefunction in the form 𝑎(𝑥)𝑒𝑖𝜙(𝑥) will not return any structure 

unless a cosine term is involved upon the absolute square. This is only ensured by writing the 

𝐼𝐻𝑅𝑇𝐸𝑀 in the form of Eq. 4.08 or 4.09. 

 Saxton's equation, as the primary wave function is considered 1, can avoid integration and 

convolution between wave function and transfer function multiplication in reciprocal space. 

Kindly see below for a unified description of the above two equations 

𝑔(𝑥) = {(𝜓0 +𝜓𝑖) ⊗ ℎ}{(𝜓0
∗ +𝜓𝑖

∗) ⊗ ℎ∗} 
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𝐺(𝑘) = {𝜓0(𝑘)𝐻(𝑘) + 𝜓𝑖(𝑘)𝐻(𝑘)}⊗ {𝜓0
∗(𝑘)𝐻∗(𝑘) + 𝜓𝑖

∗(𝑘)𝐻∗(𝑘)} 

= ∫{𝜓0(𝑘
′)𝐻(𝑘′) + 𝜓𝑖(𝑘

′)𝐻(𝑘′)} {𝜓0
∗(𝑘′ + 𝑘)𝐻∗(𝑘′ + 𝑘) + 𝜓𝑖

∗(𝑘′ + 𝑘)𝐻∗(𝑘′ + 𝑘)}𝑑2𝑘′ 

  (4.39) 

Without transfer function, the above expression becomes 

𝑔(𝑥) = {(𝜓0 + 𝜓𝑖)}{(𝜓0
∗ + 𝜓𝑖

∗)} 

𝐺(𝑘) = {𝜓0(𝑘) + 𝜓𝑖(𝑘)} ⊗ {𝜓0
∗(𝑘) + 𝜓𝑖

∗(𝑘)} 

= ∫{𝜓0(𝑘
′) + 𝜓𝑖(𝑘

′)} {𝜓0
∗(𝑘′ + 𝑘) + 𝜓𝑖

∗(𝑘′ + 𝑘)}𝑑2𝑘′       (4.40) 

In Kirkland method, also called ML, MAP and MIMAP, attempts to solve the non-linear 

imaging problem exactly for the following equation set 

𝐼𝑛(𝑘) = ∑ 𝜓𝑘′ (𝑘′)𝜓∗(𝑘′ − 𝑘)𝑚𝑛(𝑘
′, 𝑘′ − 𝑘)      (4.41) 

The above equation is re-written from Eq. 4.36, with the primary beam treated separately. 

As there is no obvious relationship with the Paraboloid method, a long focal series may not be 

required. Eq 4.38 suggests that while performing inverse FT, cosine fringes will be available in 

the real space image, and the location of SBs will be at Q and not 2Q. The Q position is more 

appropriate as in the calibrated fast Fourier transform (FFT) pattern, SBs appear at Q, i.e., ~ at 2.5 

Å-1 for holography fringe spacing of 0.4 Å [Figure 4.02].  Though the correct form of this is used 

in Ref. [15], additional phase term 𝑒2𝜋𝑖𝑄𝑥 is not considered. However, after absolute FT, the terms 

𝑒−𝑖𝜙0 and 𝑒2𝜋𝑖𝑄𝑥 will be canceled out and only  𝐴0
2𝐼𝐻𝑅𝑇𝐸𝑀 will exist. This is a more realistic 

situation if one considers how the FT of the experimental HRTEM image, including the hologram, 

works. The experimental hologram combines (HRTEM pattern + cosine hologram) the sample 

area and cosine hologram in the vacuum area with constant background for both types of areas.   

By examining how the FT process works on the experimental image, we can understand 

CB and two SBs in off-axis electron holography and compare the origin of the twin images 

between off-axis and in-line holography. The generation of the abs-FFT (fast Fourier transform) 

pattern works as follows. For any function 𝑓(𝑥), in the present example, an HRTEM image with 

atomic resolution hologram will be expanded into various cosine and sine harmonics. It is the 



Chapter 4     Insights and alternative methods on the phase retrieval 111 
 

integration value of 𝑓(𝑥)cos(2𝜋𝑘𝑥) or 𝑓(𝑥)sin(2𝜋𝑘𝑥) for a given spatial range that will 

determine the pattern. The intensity in a FT spot means the integration is non-zero, and zero means 

integration is zero for a given frequency. Thus, the origin of two SBs is due to the non-zero value 

of ∫ 𝐼𝑚𝑎𝑔𝑒
𝑥2

𝑥1
× cos(2𝜋𝑘𝑥) 𝑑𝑥 for 𝑘 = 𝑄. As the hologram has a cosine fringe with some 

background and a different higher amplitude than the FT cosine function, multiplication with 

another cosine function with the same frequency match will yield a high integration value (see 

illustration in Figure 4.03). That is why SB central spot intensity is symmetric to CB [Figure 4.02]. 

Now the frequency 𝑄 + 𝑛𝑔, where 𝑔 is the reciprocal lattice vector and n = 1, 2, 3…., will also 

yield spots similar to spots around CB but with fewer numbers with higher frequencies as the 

oscillation of trigonometric functions are high compared to frequencies near CB, giving a smaller 

value of integration. 

 

 

 

 

 

 

 

Figure 4.02. ZnO lattice image with atomic resolution hologram with the fringe periodicity of 40 

pm. The sideband location is at 1/40 pm in the absolute FFT image on the right-hand side.  

From the illustration in Figure 4.02, one can see that the information on the wave functions 

given by FFT spots around the SBs, has contributed not only from the intensity of crystal 

periodicity but also from cosine periodicity in the recorded image. The same is true for FFT spots 

around CB. This is because the 𝑓(𝑥)  or image function is the same for CB and SB while 

performing FT.  

Now FT of the experimental image can be written as 
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𝐹. 𝑇. (𝐼𝑡𝑜𝑡𝑎𝑙𝐻𝑅ℎ𝑜𝑙𝑜)𝑓𝑜𝑟𝑎𝑙𝑙𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 = 𝐹. 𝑇. (𝐼𝑡𝑜𝑡𝑎𝑙𝐻𝑅ℎ𝑜𝑙𝑜)𝑓𝑜𝑟𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑔

= 0𝑎𝑛𝑑 ± 𝑛𝑔 

+𝐹. 𝑇. (𝐼𝑡𝑜𝑡𝑎𝑙𝐻𝑅ℎ𝑜𝑙𝑜) ∗ 𝛿(𝑞 − 𝑄)𝑓𝑜𝑟𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑔 = 𝑄𝑎𝑛𝑑𝑄 ± 𝑛𝑔 

+𝐹. 𝑇. (𝐼𝑡𝑜𝑡𝑎𝑙𝐻𝑅ℎ𝑜𝑙𝑜) ∗ 𝛿(𝑞 + 𝑄)𝑓𝑜𝑟𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑔 = −𝑄𝑎𝑛𝑑 − 𝑄 ± 𝑛𝑔           (4.42) 

 

 

 

 

 

 

Figure 4.03. Schematic showing multiplication of two cosine functions having the same frequency 

will result in non-zero integration value for a given period. This is similar to the formation of SB 

intensity while performing FT of HRTEM image embedded with hologram. 

 

4.4 Alternative methods of phase retrieval  

In this section, the alternative proposals are introduced to retrieve the phase (𝜙) and 

amplitude (𝐴) of the OEW function from the image and diffraction planes. The methods are 

straightforward and do not require through focal image series acquisition.  Like off-axis electron 

holography, only a single image embedded with the hologram is sufficient.  

4.4.1 Recovering phase from the HRTEM image intensity pattern 

The method described here works on atomic resolution HRTEM image recorded under 

suitable imaging conditions, i.e., with a particular combination of spherical aberration coefficient 

𝐶𝑠 and defocus ∆𝑓 that sets the optimum contrast and resolution. A complete evaluation of Eq. 

4.04, based on wavefunction formalism widely used for standard HRTEM image reconstruction, 

yields Eq. 4.07. A further modification leads to Eq. 4.43. The object phase can be recovered by 
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applying Eq. 4.43, describing the image intensity pattern in HRTEM within few nanometers from 

the Gaussian image plane.  

𝐼𝑖𝑛𝑙𝑖𝑛𝑒(𝑥, 𝑦) = |𝜓0 +𝜓𝑖|
2 = 𝐴0

2 + 𝐴𝑖
2 + 2𝐴0𝐴𝑖 𝑠𝑖𝑛{𝜙𝑖(𝑥, 𝑦)} 

 = 𝛼𝐼0 + 𝛽𝐼0 + 2√𝛼𝐼0 × 𝛽𝐼0𝑠𝑖𝑛{𝜙𝑖(𝑥, 𝑦)}     (4.43) 

Where, 𝐼0 is the mean vacuum intensity. The factors 𝛼 and 𝛽 represent the fraction of direct 

and scattered part of the intensity and can be determined by analyzing the image pattern, where 

𝛼 + 𝛽 = 1.  

From the example micrograph in Figure 4.04, one can determine the mean values of 

vacuum and mean intensity of image area where periodic dots are present with high and low 

intensity. The standard deviation will be much smaller for the vacuum area compared to the image 

area. A typical example of the vacuum mean intensity of MoS2 image is Mean=13133.8, standard 

deviation = 423.878, and image area mean 13023.9 with standard deviation 1695.06. standard 

deviation in the image area is approximately equal to 𝐼max𝑑𝑜𝑡 or 𝐼min𝑑𝑜𝑡. Now the values of  𝛽 and 

𝛼 are determined by 
𝐼max𝑑𝑜𝑡

𝐼𝑣𝑎𝑐𝑢𝑢𝑚𝑚𝑒𝑎𝑛
 and 1 − 𝛽, respectively. Typical values of 𝛽and 𝛼 are found to 

be ~ 0.88/0.95 and 0.12/0.05, respectively, from the experimental images of MoS2/BN. 

 

 

 

 

 

 

Figure 4.04. High-resolution transmission electron micrograph of MoS2 along [0001] Z.A. 

 

Intensity expression corresponding to the off-axis electron hologram is given by   

𝐼𝑜𝑓𝑓𝑎𝑥𝑖𝑠 = 1 + 𝑎2(𝑥, 𝑦) + 2𝑎(𝑥, 𝑦)cos{2𝜋𝑄𝑥 + 𝜙(𝑥, 𝑦)}     (4.44) 
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The appearance of sinusoidal function in Eq. 4.43 in contrast to Eq. 4.07 is due to the OEW 

phase term 𝜙0 has a relative phase term𝜋/2, i.e., Δ𝜙 =
𝜋

2
− 𝜙𝑖, with respect to the vacuum phase, 

in addition to 𝜙𝑖 due to object potential in the case of HRTEM, which sets the vacuum phase value 

to zero. This phase difference is absent in off-axis electron holography (compare Eq. 4.43 and 

4.44). Two halves of the wave on either side of the biprism carry the same vacuum reference phase 

term and are eliminated in the final intensity expression.  An intuitive physical picture of the origin 

of such a 𝜋/2 phase shift between diffracted and primary incident waves based on interference 

geometry is provided in Figure 4.05.  

 

 

 

 

 

 

 

 

Figure 4.05. Schematic representation of wave vector components taking part in the interference. 

Horizontal components are responsible for intensity patterns, while vertical components will give 

background. A pattern corresponding to vertical components can only be observed with focus 

variation if focus steps of the order of the electron's wavelength are available in an instrument.  

 

90˚ between diffracted wave and the primary incident wave has origin in Fresnel-Huygens 

construction. We can understand the physical picture of the origin of the 90˚ phase shift 

considering diffraction or interference geometry given in Figure 4.05. The first figure showing the 

example diffracted wave vector 𝑘𝑑 propagating at some angle θ with respect to the primary wave 

vector 𝑘0. The second illustration shows interference pattern formation when the diffracted and 

primary waves meet due to focusing on the image plane. The horizontal component of diffracted 
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wave vectors will interfere according to the off-axis holographic principle and produce an 

interference pattern in the image plane. The z components will produce an interference pattern that 

can be observed only by changing focus and monitoring intensity for a fixed location on the image 

plane.  As the carrier frequency of the interference fringe depends on 𝑘𝑑 cos(90 − 𝜃) and 

𝑘𝑑 sin(90 − 𝜃) on in-plane and along z directions, a small angle will produce a typically fringe 

wavelength of the order of 10 Å, for a wavelength of electron 2 pm and scattering angle 0.1 degrees. 

The fringe wavelength along the z-direction will be ~ 2 pm. Therefore, it will be difficult to see 

the pattern with focus change along z-direction unless instrument focus settings have the required 

step resolution and only contribute to uniform background. Thus, the waves contributing to two 

different interference patterns have 90˚ angular separation and can be considered a 90˚ phase shift 

between diffracted and primary waves and the resulting flux distribution.  

The physical picture of self-interference of single-electron wave function involves 

interaction with the object potential [20]. The interaction is mostly elastic due to fast probe 

electron, and a small probability of inelastic interaction is useful for the analytical techniques. The 

primary difference between Eq. 4.07 and 4.44 is 2𝜋𝑄𝑥, which appears in the trigonometric 

function  of off-axis electron holography due to wave interference at an angle (sec. 4.3.2). This 

particular phase term oscillates with the spatial coordinate x over the field of the electron hologram. 

The phase term 𝜙(𝑥, 𝑦) corresponding to OEW phase is acquired by another half of the wave while 

passing through the sample. This OEW phase manifests as holographic fringe bending in the image 

plane, e.g., relative fringe bending between vacuum and MgO crystal and differently striped 

thickness of object structure, that allows to determine the mean inner potential (MIP) at medium 

resolution [Figure 4.06] [4,34].  

Another difference between the two holography techniques is the twin image. It is well 

known that for in-line holography, separation of twin images is an issue, whereas, for off-axis 

geometry, they get separated at ±𝑄 in the frequency space. However, in the image plane, they 

superimpose on top of each other for both techniques. In the standard practice of OEW 

reconstruction, the Eq. 4.07 and 4.44 are generally written in an intermediate state (see Eq.4.04 for 

in-line and Eq. 4.29 for off-axis), having both OEW function 𝜓 and its conjugate 𝜓∗ inconsistent 

with the holographic principle of image formation [21]. The motivation behind this is based on the 

concept that the twin image components can be separated from the direct component (DC) if 

allowed to propagate along the scattering direction, i.e., from the image plane to the diffraction 
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plane and emphasizing the direct retrieval of the wave function. However, it is argued here that 

this does not pose an issue if one wishes to work in the image plane of the intensity pattern to 

retrieve both the phase and amplitude of OEW directly.  

Figure 4.06. Off-axis electron holography fringe bending after encountering object potential in 

the image plane, (a) between vacuum and MgO crystal. Copyright (2002) by Elsevier [35]. (b) 

Object structured with different thickness stripes. Copyright (2007) by Institute of Physics 

publishing group [4]. 

 

From Eq. 4.43 and 4.44, it is evident that the phase information is preserved in the final 

form of the intensity equation responsible for the intensity modulation as described by the 

trigonometric function. Retaining the phase term is inherent to self-interference and resulting 

modulation in intensity pattern. It is similar to the off-axis electron holography fringe bending due 

to object potential in the image plane.  Simultaneously, no information on the wave functions or 

twin images and DC components are available. The final form of intensity expression instead of 

the wave function-based intermediate state of the equation can be guided by the Born rule in 

Quantum Mechanics. The Born rule states that it is the probability density 𝜓𝜓∗ the square of the 

probability amplitude of particle’s wave function 𝜓 that is real and observable quantity during the 

measurement and not the associated complex wave function which acts as a state vector [36,37]. 

There are controversies in the literature on measuring such state vectors, which is a complex 

quantity but can be constructed based on probability density [38–40]. The Born rule is an important 

link between the abstract mathematical formalism of quantum theory based on the complex wave 

function and the experimental measurement. It constitutes an essential part of the Copenhagen 

interpretation of quantum mechanics [41]. Therefore, the final form of the intensity equation is 
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equivalent to measuring the total probability density due to contribution from all the three 

components of wave functions, i.e., DC part, wanted wave function 𝜓 and its complex conjugate 

𝜓∗. And in the process of recording, the information on the wave functions is lost, recovering of 

which is emphasized in all the reconstruction approaches through the intermediate state of the 

equations.  

Retaining the phase term is inherent to self-interference and resulting modulation in 

intensity pattern. It is similar to the off-axis electron holography fringe bending due to object 

potential in the image plane. Evaluating the local phase information from real space images in 

fringe bending primarily comes from spatial resolution. It will be addressed in the forthcoming 

discussion, along with additional aspects already mentioned earlier. In standard practice, the image 

is Fourier transformed, and then a digital aperture function is used in that plane that takes care of 

the resolution. The use of intermediate state of the equation to disperse the twin images and DC 

part in the diffraction plane made the earlier methods elaborate and complex for HRTEM 

reconstruction where twin images overlap on the same reciprocal space and required to enhance 

the weight of  𝜓 over the 𝜓∗ and 𝜓𝜓∗ terms through summation over many images. Though the 

information on the wave functions is lost, however, the phase term is preserved in the final state 

of the equation, which is the same for both 𝜓 and 𝜓∗ but having an opposite sign.  

The twin images are exact copies of each other and superimpose at the Gaussian image 

plane and do not cause any loss in information in terms of phase and amplitude. This can be 

understood with off-axis electron holography, where the inverse FT of each sideband preserves 

the same intensity pattern. In in-line holography, the twin images propagate along the opposite 

direction with defocus similar to the parabola picture of OEW reconstruction. Complex conjugate 

pairs lie on a reflected parabola with respect to the diffraction plane and focus variation. This 

picture is reminiscent of the transactional interpretation of quantum mechanics.  The wave function 

and its complex conjugate experience phase change in the opposite directions equivalent to the 

forward and backward propagation in time [42,43]. 

Now proceeding for the experimental reconstruction of the OEW function, the phase can 

be determined directly by applying Eq. 4.43. Suppose the quantity inside the arcsine function is 

more than 1, then this should be divided by 1. The computer program should read the quotient as 

phase jump by the amount (quotient × 𝜋/2) plus the phase corresponding to the remainder. Then, 
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calculate the total phase change and corresponding counts of the atoms accordingly. This problem 

does not appear for one-layer thick MoS2 and BN but is encountered in 3D crystals like ZnO, 

where thickness includes several atoms in the column. Next, the amplitude corresponding to 𝜓 

needs to be evaluated from the image intensity. The total amplitude of the recorded image is simply 

the square root of it but not equal to the amplitude of the single OEW function. As already 

mentioned, the total amplitude in the image intensity pattern has three components, direct 

component (DC), and two twin image components for off-axis and DC and only diffracted 

components in in-line holography. In the case of in-line holography, the twin image components 

overlap with the DC part. The DC component has approximately one order of magnitude higher 

total intensity than individual twin images from SBs and diffracted FT spots as measured directly 

from the FT of the images by placing a region of interest around various spots and SBs and 

evaluating the sum. Thus, the intensity of the OEW function is approximately given by the factor 

𝛽 for HRTEM, and this will be further divided into halves between two twin image components 

in case of off-axis electron holography. The amplitude of 𝜓𝐻𝑅𝑇𝐸𝑀 = 𝜓0 + 𝜓𝑖 is given by the 

square root of  𝐼𝑖𝑛𝑙𝑖𝑛𝑒(𝑥, 𝑦) and only amplitude component 𝐴𝑖 associated with trigonometric 

function is shown in reconstructed wavefunctions, where 𝐴𝑖 and 𝐴0 are the magnitudes of 

individual diffracted and reference complex wave functions, respectively.  

The total intensity of CB is at least one order of magnitude higher than two SBs together 

[Figure 4.02].  In HRTEM, it is the same by considering all the FFT spots with respect to the direct 

spot at the center. Therefore, approximately 1% of the mean vacuum intensity is assigned to the 

image wave function (Eq. 4.43). Now from Eq. 4.43, after removing all the constant background 

terms and then a division by 2√𝛼𝐼0 term retain only √𝛽𝐼0 a term associated with the trigonometric 

function will give the amplitude of the object exit wave function (OEW). In the case of off-axis 

electron holography, it is given by 2𝑎(𝑥, 𝑦) divide over two for one of the SBs (Eq. 4.44). 

Individual 𝐴0 exp(𝑖𝜙0) or 𝐴𝑖 exp(𝑖𝜙𝑖) wave function components will not give any intensity 

pattern, only the phase change and associated overall amplitude 2𝐴0𝐴𝑖 associated with the cosine 

term of 𝜓𝐻𝑅𝑇𝐸𝑀𝜓𝐻𝑅𝑇𝐸𝑀
∗  can be known from the interference experiment. Kindly note that the 

subtraction procedure to adjust the intensity value is automatically taken care of by Eq. 4.43 while 

calculating the phase. Therefore, it is possible to reconstruct the OEW function from the 

information obtained in terms of phase and amplitude from the measurement described above. 
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We have analyzed selected experimental images of MoS2, BN, and ZnO using Eq. 4.43, 

and the reconstructed phase and amplitude images are presented in Figure 4.07 and 4.08 for MoS2 

and BN respectively. One can see from the phase images that the vacuum phase is zero, and phase 

values are high and low depending on the brightness of the dots, which represents the periodic 

arrangement of atoms in the lattice. Theoretical peak phase shift values extracted from Ref. [44] 

for the resolution range 1-0.5 Å are given in Table 4.01 for the atoms of interest in the present 

investigation. According to this table, the peak phase shift 𝜑𝑚𝑎𝑥(𝑟𝑎𝑑) follows ~ 𝑍0.6 − 𝑍0.7, 

where Z is the atomic number [44]. The exponent of Z increases with increasing spatial resolution 

results in a higher peak phase shift value for a given atomic number.  

From the present reconstruction method, a peak phase shift value of ~ 0.51 and 0.45 rad 

are obtained from the Mo and S atom positions, respectively, throughout the image, which are 

slightly higher than the theoretical values. Kindly note that for MoS2, there are two S atoms along 

with the [0001] projection. Therefore, the phase shift values are almost double compared to the 

single S theoretical phase shift value. The values are 0.07 and 0.10 rad for B and N atoms, 

respectively, matching the theoretical estimation. Results on ZnO and bi-layer MoS2 are given in 

Figures 4.09 and 4.10. As the sample thickness increases from the specimen's vacuum edge for 

ZnO thin film, a systematic increase in phase and atoms numbers can be observed.  

 

Atoms (Z) Phase shift (rad) 

B (5) 0.076-0.078 

N (7) 0.100-0.102 

O (8) 0.106-0.108 

S (16) 0.164-0.23 

Zn (30) 0.242-0.41 

Mo (42) 0.300-0.51 

 

Table 4.01. Theoretical peak phase shift extracted for resolution in the range 1-0.5 Å [44]. 
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Figure 4.07.  (a) HRTEM image of MoS2 recorded under negative CS = −35μm and positive 

defocus of ∆f = 8 nm. (b) phase and (c) amplitude of the OEW. A peak phase value of ~ 0.51 and 

0.45 rad are obtained for Mo and two S atoms, respectively. 

Figure 4.08.  (a) HRTEM image of BN monolayer recorded under negative CS = −35μm and 

positive defocus of ∆f = 8 nm. (b) phase and (c) amplitude of the OEW. A peak phase value of ~ 

0.07 and 0.10 rad are obtained for B and N atoms, respectively.  

 

 

 

 

 

Figure 4.09. (a) HRTEM image of ZnO epitaxial thin film monolayer recorded under CS =

−35μm and positive defocus of ∆f = 8 nm. (b) phase and (c) amplitude images of the OEW. 

Notice the systematic increase in phase and associated atom number for Zn and O atoms away 

from the sample edge with the vacuum. 
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Figure 4.10. (a) Intensity image of bilayer MoS2 under CS = −35μm and positive defocus of 

∆f = 8 nm. Reconstructed (b) phase and (c) amplitude images of OEW. 

 

The method described above, using Eq. 4.43, translates the intensity information into a 

phase value. And an excellent trend is obtained for images with low and high Z compounds giving 

lower and higher phase shift values, respectively, without additional data refinement procedures. 

Reference vacuum wave is not required as one can approximate the mean of atomic resolution 

image intensity as mean vacuum intensity. Fresnel fringe, electron interference fringe in off-axis 

electron holography should be removed from the image data before applying Eq. 4.43 and are 

generally removed before any analysis in case of off-axis electron holography.  

 

4.4.2 Recovering image function from the diffracted intensity  

In this section, the recovery of image function containing information on both 

crystallographic and object phases is described if the information is available only in the diffraction 

plane. The real image function 𝑓(𝑥) of both symmetric non-periodic and periodic in particular 

forms, e.g., Gaussian, reciprocal, etc., can be retrieved by cosine Fourier series expansion of the 

absolute FFT of such functions followed by summation over all frequencies. The absolute FFT 

and Fraunhofer patterns are equivalent to each other. The procedure is similar to the zero-phase 

reconstruction using the Patterson function in X-ray crystallography applicable to smaller-sized 

molecules [24,25]. Example Gaussian function in 1D both in the isolated and periodic form is 

given in Figure 4.11.  
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 Figure 4.11.  (a) single Gaussian function in 1D, (b) absolute FFT of the function, and (c) Fourier 

series expansion followed by summation over all the frequencies (d) Periodic Gaussian function 

in 1D, (e) absolute FFT of the function, and (f) Fourier series expansion followed by summation 

over all the frequencies.  

The unique feature underlying this reconstruction method's workings is that for most 

functions, the integration of imaginary part over spatial parameter or abs-Im component is 

negligible compared to real part or abs-Re [Figure 4.12]. Therefore, the original function 𝑓(𝑥) can 

be retrieved entirely by the following real cosine Fourier series alone. If 𝐹(𝑘) is the absolute FFT 

of 𝑓(𝑥), then 𝑓(𝑥) can be retrieved from the 𝐹(𝑘) via following real Fourier series expansion 

𝑓(𝑥) = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (∑ 
1

𝑛
𝐶𝑘

𝑛=𝑘
𝑛=−𝑘 cos(2𝜋𝑘𝑥))    (4.45) 

Where n = number of data points in the frequency axis, k is the frequency, 𝐶𝑘= absolute of 

Fourier transformations or diffracted intensity at some frequency k and x is the 1D spatial 

coordinate over which real image function will be defined.  

For periodic function in 1D, 𝑓(𝑥) = 𝑓(𝑥 ± 𝑝𝑥), where p =0, 1, 2, …, one need to ensure 

that the range of n should be = ±
2𝑝

𝑀
 where M = number of data points both in real and diffraction 

space. In the case of a 2D isolated function, Eq. 4.45 will have another summation over 𝑛𝑦 for the 
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second orthogonal axis. Figure 4.13 shows example reconstruction for 1D reciprocal ((a)-(c)) and 

Gaussian function ((d)-(f), respectively.   

Figure 4.12. (a) Example gaussian function, (b) Absolute FFT, absolute of (c) Re, and (d) 

Imaginary parts. (e) contribution to absolute FFT is mostly from the absolute Re part, and 

contribution from the absolute imaginary part is negligible. (f) The phase of the Fourier wave. 

Figure 4.13. Example reconstruction for (a)-(c) reciprocal and (d)-(f) Gaussian function in 1D 

form. (a) A reciprocal function and (b) it’s abs_FT and (c) the reconstructed function. (d) An 

example Gaussian function with it’s abs_FT in (e), and (f) the reconstructed function.   
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For isolated 2D function following Eq. 4.45 is modified to  

𝑓(𝑥, 𝑦) = 𝑎𝑏𝑠 (∑ 
1

𝑛
𝐶𝑘𝑥𝑘𝑦

𝑛=𝑘
𝑛=−𝑘 cos (2𝜋𝑘𝑘𝑥𝑘𝑦𝑟))      (4.46) 

Where, 𝑟 = √𝑥2 + 𝑦2. The 2D reconstruction for Gaussian and reciprocal functions is 

given in Figures 4.14 and 4.15, respectively, with corresponding 1D line profiles.  

Modified Fourier series equation for a periodic 2D function is given in Eq. 4.47. The 

functional form of cosine changes depending on the isolated 2D and periodic 2D functions to get 

an exact fit.   

𝑓(𝑥, 𝑦) = ∑
1

𝑛𝑖,𝑗×𝑛𝑖,𝑗
𝐶(𝑘)𝑖,𝑗


𝑛𝑖,𝑗=𝑘𝑖,𝑗

1

2
[cos(2𝜋𝑘𝑖,𝑗𝑥) + cos(2𝜋𝑘𝑖,𝑗𝑦)] +

1

(𝑛𝑖,𝑗×𝑛𝑖,𝑗)

1

4
𝐶(𝑘)𝑖,𝑗 [cos(2𝜋𝑘𝑖,𝑗(𝑥 + 𝑦))+cos(2𝜋𝑘𝑖,𝑗(𝑥 − 𝑦))]                           (4.47) 

One needs to ensure to have more sampling points to have an exact fit. The example for 

the periodic Gaussian function in Figure 4.16 used 400×400 sampling points. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Example reconstruction for Gaussian function in the 2-dimensional form with 

corresponding line profiles. (a) Gaussian function in 2D, (b) absolute Fourier transform and (c) 

Fourier series fit from the absolute FT, using Eq. 4.46 and the corresponding line profile (d), (e), 

and (f), respectively. 
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Figure 4.15. Example reconstruction for reciprocal function in the 2-dimensional form with 

corresponding line profiles. (a) Reciprocal function in 2D, (b) absolute Fourier transform and (c) 

Fourier series fit from the absolute FT, using Eq. 4.46 and the corresponding line profile (d), (e), 

and (f), respectively. 

Figure 4.16. Example reconstruction for periodic Gaussian function in the 2-dimensional form. 

(a) A 2D periodic gaussian function, (b) absolute Fourier transform, and (c) Fourier series fit from 

the absolute FT, using Eq. 4.47. 

 

The method described above works well for both isolated and periodic functions. From the 

image intensity function, one can then apply the first method to retrieve the OEW and associated 

object phase related to potential. However, suppose there is any inhomogeneity in the distribution 

of periodic function, e.g., dopants, edges, interfaces, etc. In that case, the accompanying 
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information will be required from the image intensity pattern the method described in the previous 

section works suitably.  

 

4.5 Conclusion 

In conclusion, alternative reconstruction methods to retrieve the phase and amplitude of 

OEW in HRTEM imaging are introduced. The first method is based on directly applying a 

modified HRTEM intensity equation to retrieve the phase of OEW from the image. The 

reconstruction results in terms of peak phase shift values are in excellent agreement with the 

theoretical estimation. The second method described is applicable for retrieving the image intensity 

function from the information available in the diffraction plane for both isolated and periodic 

functions.   
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Chapter 5 

 

Summary and Future perspective 

 

 

 

This chapter outlines the important conclusions drawn from the present thesis. Our 

contributions towards quantitative imaging are summarized. Quantitative counting of Zn and O atoms 

in ZnO thin film is carried out by different routes, and the results are compared. Atomic potential 

models and phase-detection limits for off-axis electron holography and HRTEM are discussed. 

Comparative analysis of existing image simulation as well as reconstruction methods has been carried 

out. A new image simulation method in HRTEM based on the atom as an electrostatic interferometer 

similar to the off-axis electron holography biprism is introduced. Alternative methods of phase 

retrieval in HRTEM have been introduced based on real space and reciprocal space. The subsequent 

section discusses the promising future of quantitative imaging in the context of recent development. 
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5.1 Summary of the thesis 

The thesis contains three aspects: i) Quantitative atom counting of Zn and O atoms by different 

routes and comparing the results. ii) Alternative image simulation method in high-resolution 

transmission electron microscopy (HRTEM) and iii) new phase retrieval methods in HRTEM images.  

1. Quantitative counting of Zn and O atoms is carried out by off-axis electron holography and 

HRTEM. In the off-axis electron holography, reconstruction of the images is carried out based 

on both central band (CB) and sideband (SB)  [1].  

2. Potential models and phase-detection limits in off-axis electron holography and high-resolution 

transmission electron microscopy (HRTEM) are discussed  [1].  

3. In off-axis electron holography phase retrieval, phase number increases with an increase in the 

sample thickness up to a certain distance. SB and CB yield similar results for less than 

extinction distance but above which they do not match. A similar number of Zn and O atoms 

are obtained based on their stoichiometry. A three times higher number of atoms is obtained 

from the mean phase shift than the peak phase shift. A poor match between CB and SB in a 

thicker region is due to dynamical scattering and different formalism in the reconstruction 

method  [1]. 

4. In HRTEM reconstruction, no linear trend of phase shift with varying thickness is found. 

Throughout the sample area, a phase shift corresponding to a single number of Zn (0.138 rad) 

and O (0.09 rad) is obtained  [1]. 

5. A new method of simulating atom image in HRTEM is introduced, considering the atom as an 

electrostatic charge center. Interference along the radial direction with different zones results 

in the image of an isolated atom [2].  

6. Based on the new method, image intensity varies as a function of  𝑍𝑏 where b decreases with 

an increase in defocus. A range of 0.4 to 0.26 is obtained for b for defocus1 to 8 nm. Simulated 

intensities with consideration of aberration match the experimental data for Mo and B 

atoms [2].  

7. Alternate methods of phase retrieval in HRTEM are proposed based both on real space and 

reciprocal space information. The first method is based on applying a modified HRTEM 

intensity equation to retrieve the phase of object exit wave (OEW) from the image, which 

contains only the background and pattern information due to the phase component but no direct 
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wave function information. The peak phase shift obtained by this method agrees well with the 

theoretical estimation. The beauty of this work is that with a single HRTEM, image 

reconstruction can be carried out without a tedious process of through focal series 

reconstruction [3]. 

8. The second method involves retrieving the image intensity function from the diffraction plane 

information for isolated and periodic arrangements [3].  

 

5.2 Future perspectives 

Quantitative imaging is a versatile area of research emerging with new and powerful 

techniques day by day. There is a spectrum of opportunities in quantitative imaging with aberration-

corrected microscopes and better detection capabilities.  

Valance electron information is essential to understand the bonding and deduce many more 

interesting properties of the material. Because of the strong scattering from the core electrons, valence 

electrons cannot be measured or imaged easily. Meyer Jannik C. et al.  [4] demonstrated an 

experimental analysis of charge redistribution due to chemical bonding by HRTEM and matched it 

with first-principles electronic structure calculation. Charge transfer on the single-atom level for 

nitrogen-substitution point defects in graphene was studied, and iconicity of the single-layer 

hexagonal boron nitride was confirmed. Figure 5.01 shows charge distribution, projected potentials, 

and TEM simulations used to study nitrogen-doped graphene  [4].  

There are several approaches to understand the potential distribution around the atom by 

examining the phase change. Off-axis electron holography is one of the most used techniques at 

atomic resolution.  The phase change is incorporated in the hologram as fringe bending. The fringes 

between the atomic columns in the holograms give a unique opportunity to extract valence 

information with the atomic columns. In a study by Linck et al.  [5], the use of a new high-brightness 

Schottky field electron emitter in the holography experiment enhances the phase signal resolution 

significantly. From the study of grain boundary in the gold, enhancement of information by a factor 

of 2.88 is reported compared to previous results. Other quantitative studies of charge density in 

monolayer MoS2 and potential mapping of graphene sheets are based on atomic resolution off-axis 

electron holography [6,7].  
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Quantitative imaging helps to analyze the material at atomic precision. There is an example 

of a three-dimension reconstruction of the material from a single HRTEM image [8]. Occupancy of 

the atoms present, defects present, and the position of a particular type of atom in the atomic column 

of MgO crystal are reconstructed in this study. Quantitative imaging helps to map the electron phase 

to the potential. One such attempt towards this is given in Ref. [9]. Experimental off-axis electron 

holography and simulated images of a few-layer WSe2 are compared. Electron-optical phase images 

are in good agreement with the electrostatic potential-based calculations, which include the bonding 

effects.  

 

 

 

 

 

 

 

 

Figure 5.01. (a) Relaxed atomic configuration for a nitrogen substitution in graphene. Bond lengths 

are given in angstroms. (b) Projected potential based on the independent atomic model (IAM). Dark 

contrast corresponds to higher projected potential values, in accordance with TEM imaging 

conditions. (c) TEM simulation based on the IAM potential for two experimental conditions f1 and f2 

(for more details, see Ref. [4]). Filters are: (i) unfiltered, (ii) periodic components removed by a 

Fourier filter, and (iii) low-pass filtered. (d) Atomic structure (same bond lengths), with the projected 

electron density changes due to bonding shown in color. Blue corresponds to a lower red to a higher 

electron density in the DFT result compared with the neutral-atom (IAM) case. (e) Projected potential, 

filtered as in (b), based on the all-electron DFT calculation. (f) TEM simulations using the DFT-based 

potentials. The greyscale calibration bar applies to columns (ii) and (iii), all shown on the same 

greyscale range for direct comparison. The scale bars are 5 Å. Copyright (2011) by Nature publishing 

group [4]. 
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There are only a few examples that show that quantitative imaging offers more than material 

characterization. It aims to detect the position of defects and dopants in the atomic columns [Figure 

5.02 (a)] [10]. Gathering valence electron information and imaging them is a highly challenging task 

in transmission electron microscopy [Figure 5.02 (b)] [11]. But with better detectors, it does not seem 

so farfetched as it did a few decades ago. 

Improvement in instrument and detection capacities of the microscope opens direct detection 

(K3 camera) of individual electrons [12]. This next-generation camera is optimized for low-dose 

applications in life science and material science. It offers a maximum signal-to-noise ratio without 

damaging the specimen [Figure 5.02 (c)] [12]. It facilitates high-quality signals with minimum 

Poisson noise and provides the best resolution and contrast. K3 is the highest performance detector 

available for cryo-electron microscopy. Unlike other detectors, it has a detection quantum efficiency 

beyond 80%. It counts individual electrons rather than the traditional integration of the analog signal. 

It has a field view of 24 megapixels (5760×4092). It offers a high recording speed of 1500 full frames 

per second. With better signal quality, the study of material properties will be better with atomic-level 

precision. 

 

Figure 5.02. (a) Schematic of a crystal lattice with different types of defects [10]. (b) Atomic model 

[11] and (c) K3, direct detection camera [12].  

 

Quantitative imaging at atomic resolution offers opportunities not only in materials study but 

also fundamental science from a sub-atomic length scale. With advanced techniques and 

instrumentation, the area is evolving and opening a new horizon. Eventually, it is to understand and 

extract the valence electron information, potential, and field around it. With advanced and emerging 
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methods and instrumentation, the future is to unravel the details which material holds. Ultimately 

quantitative imaging aims to experimentally obtain the information, which so far is available only by 

the density functional theory or the simulation.  
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