

THE INFLUENCE OF FAMILIARITY,

RESOURCES, AND SAMPLING ON SOCIAL

STRUCTURE: A SIMULATION-BASED STUDY

A thesis submitted in partial fulfilment of the degree of

Masters in Science

by

Anvitha S.

Jawaharlal Nehru Centre for Advanced Scientific Research,

Bengaluru 560064, India.

March 2022

ii

iii

CERTIFICATE

This is to certify that the work presented in this thesis titled The Influence of Familiarity,

Resources, and Sampling on Social Structure: A Simulation-based Study has been carried

out by Ms. Anvitha S. under my supervision at the Evolutionary and Integrative Biology Unit

(formerly Evolutionary and Organismal Biology Unit), Jawaharlal Nehru Centre for

Advanced Scientific Research, Bengaluru, India, and that the results in this thesis have not

previously formed the basis for the award of any other degree, diploma, or fellowship.

Date: Prof. T.N.C. Vidya

9 March 2022

iv

v

DECLARATION

I declare that the matter presented in my thesis titled The Influence of Familiarity,

Resources, and Sampling on Social Structure: A Simulation-based Study is the result of

studies carried out by me at the Evolutionary and Integrative Biology Unit (formerly

Evolutionary and Organismal Biology Unit of the Jawaharlal Nehru Centre for Advanced

Scientific Research, Bangalore, India, under the supervision of Prof. T.N.C. Vidya, and that

this work has not been submitted elsewhere for any other degree.

In keeping with the general practice of reporting scientific observations, due

acknowledgement has been made wherever the work described has been based on the findings

of other investigators. Any omission, which might have occurred by oversight, is regretted.

Place: Bengaluru Anvitha S.

Date:

9 February, 20229 March 2022

vi

vii

ACKNOWLEDGEMENTS

I thank JNCASR for the fellowship and logistics to conduct this project.

I am grateful to my advisor Prof. TNC Vidya for providing me with the opportunity to work

on this project. She has been highly supportive, insightful, and encouraging throughout my

course work and while working on this project.

I am also thankful to Prof. Amitabh Joshi for being a fantastic teacher. Discussions with him

have always been very interesting.

I am thankful to Satya and Keerthi for their unwavering support and feedback, especially

when I was confused and unsure of things. I also thank Manan and Anuj.

I thank Manu for helping me figure out how to run certain C++ codes on Matlab.

I thank past and present members of ABL and EBL for the discussions and happy distractions.

I am grateful to my sister, Anushree, for always being there. I am thankful to my family and

friends for their counsel, patience, and love.

viii

ix

Contents

Certificate ... iii

Declaration v

Acknowledgements .. vii

Thesis Abstract1

Chapter 1: Introduction3

Chapter 2: Methods7

Chapter 3: Results .. 17

Chapter 4: Discussion .. 37

References… .. 41

Supplementary information …………………………………………………………….. 45

x

1

THESIS ABSTRACT

The wide diversity in social structures is thought to be the result of selection for individual

behavioural strategies and inter-individual interaction patterns that maximise fitness under

different environments (van Schaik and van Hoff 1983, Kappeler and van Schaik 2002).

Recently, several simulation studies have attempted to generate social structure through

simple and general models (Ilany and Akçay 2015, Rios and Kraenkel 2017, Cantor and

Farine 2018) but have not simultaneously examined the effect of resource conditions on social

structure. Here, I describe a simulation study that I conducted to examine whether a social

structure emerged when individuals associated with others to different extents based on

familiarity, in a habitat with limited and patchy ephemeral resources that either varied in

quantity or stayed constant over time. Additionally, I also examined the sampling conditions

under which a social structure would be wrongly inferred even when associations were

random. Thus, the first question dealt with possible social structure emerging due to simple

rules, whereas the second dealt with possible apparent social structure when there was none.

Results from my simulations showed that when resources were limited and ephemeral, social

structure, characterised by low network density and high modularity, emerged only when all

the associations were with familiar individuals and there was no temporal variation in

resources. When there was temporal variation in resources, this structure broke down even

when many associations were with familiar individuals, becoming similar to that obtained for

random association. When associations were only with familiar individuals, social structure

could also emerge if resources were not limited. Simulations to address the second question

showed that low sampling intensity and a small sampling period could lead to apparent social

structure (with high modularity and low density) even in a population with random

associations. Moderately intense sampling conducted over long periods of time was essential

to detect social structure close to the true structure.

References

1. Cantor M and Farine DR. (2018). Simple foraging rules in competitive environments can

generate socially structured populations. Ecology and Evolution, 8(10), 4978–4991.

2. Ilany A and Akçay E. (2016). Social inheritance can explain the structure of animal social

2

networks. Nature Communications, 7(1), 1–10.

3. Kappeler PM and van Schaik CP. (2002). Evolution of primate social

systems. International Journal of Primatology, 23(4), 707–740.

4. Rios VP and Kraenkel RA. (2017). Do I know you? How individual recognition affects

group formation and structure. PLoS One, 12(1), e0170737.

5. van Schaik CP and JARAM Van Hooff. (1983). On the ultimate causes of primate social

systems. Behaviour, 85, 91–117.

3

CHAPTER 1: INTRODUCTION

Group-living is a common trait among animals, and is thought to be selected for when the

benefits of being in groups outweigh the costs (Alexander 1974, Krause and Ruxton 2002).

The benefits of group living include protection from predation and infanticide, better access

to abiotic resources, increased opportunities to mate, and cooperative offspring care, while

the major costs include competition for resources and mates, and increased transmission of

pathogens/parasites (Janson and van Schaik 1988, Dehn 1990, Wrangham et al. 1993,

Gompper 1996, Sterck et al. 1997, Hass and Valenzuela 2002, Altizer et al. 2003, Silk 2007,

Clutton-Brock and Huchard 2013). Group living animals exhibit a wide diversity of social

structures, which refer to the content, quality, and patterning of social interactions and the

relationships that result from repeated interactions amongst the members of the population

(see Hinde 1976, Kappeler and van Schaik 2002). Specific social structures are thought to be

adaptive evolutionary outcomes of the ecological factors selecting for individual behavioural

strategies and inter-individual interaction patterns that maximise survival and reproductive

success (van Schaik and van Hoff 1983, Kappeler and van Schaik 2002). The social structure

in a population can also, in turn, affect individual reproductive success, gene flow and

information flow within a population, and population dynamics (Whitehead 2008a, Wilson

1975).

In primates, the socio-ecological model was proposed to explain how resource-risk

distributions select for specific female behavioural strategies, which lead to diverse social

structures across different species (Wrangham 1980, van Schaik 1989, Sterck et al. 1997).

According to this model, when resources are abundant and predation risk exists, females live

in egalitarian groups whose composition may change with time due to dispersal. However,

when resources are limited, females are resident in natal groups, within which the nature of

relationships amongst females may range from egalitarian to despotic and nepotistic

depending on the extent of food competition. There has been variable support for this model

in several primate species (Whitten 1983, van Schaik et al. 1983, Fashing 2001, Grueter et al.

2016; see Thierry 2008, Koening and Borries 2008, and Clutton-Brock and Janson 2012 for

reviews), and, recently, there have been calls to consider models of social structure that are

more simple, general, and generative (Ilany and Akçay 2015, Cantor and Farine 2018, Firth

et al. 2017, He et al. 2019). To that end, Ilany and Akçay (2015) constructed a social

inheritance model in which individuals tended to associate with associates of their parents.

4

This model generated aspects of social structure that resembled those of spotted hyena, rock

hyrax, bottlenose dolphin, and sleepy lizard. Another model by Cantor and Farine (2018)

tracked individuals who competed for a single resource patch, and continued to forage with

those with whom they foraged last only if that endeavour had resulted in the acquisition of

sufficient food. This model produced kin-structured groups with stable group compositions.

The authors further claimed that this model provided a simple mechanism for the emergence

of foraging specialisation. An agent-based model by Rios and Kraenkel (2017) found highly

modular and spatially segregated groups when individuals moved closer or away from one

another depending on the memory of previous interactions. In contrast to the previous studies,

which only investigated the effects of simple individual rules of association on social

structure, in this present study, I aimed to find out if such simple rules of association are by

themselves sufficient to explain social structure, irrespective of resource distributions. To

elaborate, I examined how resource constraints, resource variation, and the simple

behavioural strategy to associate with familiar individuals affected social relationships and

the social structure that resulted from them. I used individual-based simulations, which can

be thought of as in silico experiments that aim to generate organisation or structure occurring

at a higher level through the actions and interactions of entities at a lower level in lieu of

actual experimentation (Bodine et al. 2020). Thus, these simulations would be helpful in

understanding whether simple local rules could result in the emergence of higher-order

phenomena or patterns such as social structure, quantified here in terms of association patterns

and network measures (see below).

I also wanted to examine whether sampling itself could result in the detection of social

structure when there was none. Various measurable attributes such as rates of

interactions/associations, asymmetry in interactions, linearity of dominance, social

differentiation, and stability of associations have been used to describe social structure

(Whitehead 2008a). Network analysis and network measures such as degree, density,

modularity, clustering coefficient, and path length have also been used to describe social

structure/social network structure (for example, Lusseau and Newmann 2004, Wolf et al.

2007, Sundaresan et al. 2007, Cantor et al. 2012, Nandini et al. 2018). To measure these

different attributes of social structure, data are often collected on the interactions or

associations occurring amongst identified individuals in a population. However, since every

interaction and every individual cannot be sampled, it is possible that the estimates of social

structure may not reflect the actual social structure (as also previously noted, for example, by

5

Whitehead 2008b, Franks et al. 2010, Voelkl et al. 2011). I, therefore, also used individual-

based simulations to examine to what extent social structure might be wrongly inferred as an

artefact of low sampling even when individuals associated with one another randomly.

The specific questions I addressed were the following:

1. Does social structure emerge under different resource conditions when individuals

associate based on familiarity?

If simple association rules or individual behavioural strategies are solely responsible for

patterns in group composition, the social structure that resulted from it would not be very

different under different resource conditions. To examine the influence of simple association

rules and resource conditions on social structure, I considered models wherein individuals

associated with others to different extents based on familiarity in a habitat with limited and

patchy ephemeral resources that either varied or not in quantity over time. If individuals

showed no preference in their associates, i.e., if associations were random, groups were

expected to be random subsets of individuals in the population, the compositions of which

would change with time. This would result in a social structure characterised by low

modularity, high density, absence of preferential associations, and the absence of temporal

stability in associations. However, if individuals showed some inertia in whom they

associated with, based on their past memory of associations (solely familiarity, and not

positive or negative effects of interactions), I expected to find stable group compositions with

time. This would result in a social structure characterised by high modularity, low density,

presence of preferential associations, and temporal stability in associations. The above

expectations of social structure would not be different across differently-sized resource

patches or different types of temporal variation in resource quantity (presence or absence of

variation) if resource conditions did not influence social structure. However, if resources were

limiting, individuals would be forced to occupy any free patch they could find, resulting in

them not being able to always maintaining their preferred associations. This could lead to the

lack of social structure if resources were varying spatiotemporally. In my models, I used such

a scenario in which resources were limited, as might often be the case in the wild.

2. Under what conditions of inadequate sampling would social structure be wrongly inferred

when individuals actually associate with one another randomly?

If individuals associated with one another randomly and if the observer did not have sufficient

data on all the individuals and their associations, it might happen just by chance that some

6

associations were recorded to occur more, or less, frequently than others. The population

would then appear to have preferential associations, and social structure attributes measured

would not indicate random association. Therefore, if large amounts of data on individuals and

their associations were not obtained, i.e., if a large number of groups were not sampled for

long periods of time, social structure attributes measured, and the inferences made using them

might be very different from the true attributes. In order to examine how sampling affects

inferences of social structure even when associations are random, I modelled scenarios of

sampling from a population with random associations by considering different sampling

intensities and different lengths of sampling period. Additionally, I also examined if the

average group size affected such inferences. I expected to find populations with high

modularity and low density when sampling intensity was low and sampling period length was

short, but not when sampling intensity was high and sampling period length was long. I also

expected to find populations with modularity and density closer to the true value when group

sizes were larger than when group sizes were smaller simply because more associations would

be sampled when groups were larger than when groups were smaller, for the same sampling

effort.

7

CHAPTER 2: METHODS

As mentioned above, I used individual-based simulations to address both questions. The

details of the simulations are given below.

2.1 Does social structure emerge under different resource conditions when individuals

associate based on familiarity?

2.1.1 Simulation overview

I considered a static population of fixed size (200 individuals), within which individuals

associated with one another based on specified rules of association and resource conditions

(see below). No assumption was made about the age or sex of the individuals or the nature of

the associations amongst individuals. I generated a patch size distribution at every time step,

and assigned individuals to the patches based on familiarity with one another. I assumed

individuals within a patch to be associating with one another, and used the association data to

measure different attributes of social structure.

Resource conditions

A patch was defined as an area with finite resources such that a patch of size 1 had one

available (feeding) site, which could, therefore, support only one individual, and so on. I

considered two kinds of resource distributions. In the first kind, there was no variation in the

amount of resource available either within a time step or across time steps, i.e., all the patches

in a given time step had equal patch size, and the size did not change with time. This

represented ephemeral resources that were regenerated every time step with the same quantity

(although unlikely to be seen in the wild). In the second kind, there was variation in the

amount of resource available within a time step and across time steps, i.e., patch sizes varied

across the patches present at a given time step and across time steps. This represented

ephemeral resources that were regenerated every time step in different quantities. I coded the

presence or absence of temporal variation in resources using a patch size variation parameter

(value=1 when variation present, 0 when absent). Additionally, I examined the effect of

resource constraints by considering average patch size as a parameter. Average patch size was

either 2 or 4; if it was 2, patches could accommodate two individuals on average, whereas, if

it was 4, patches could accommodate four individuals on average. At each time step, I

generated the patch size distribution either by setting all the patch sizes to the average patch

8

size (in the case of no patch size variation), or by obtaining patch sizes from a zero-truncated

negative binomial distribution with the appropriate mean value (group sizes: Cohen 1972,

Caraco 1978) (when there was patch size variation). In all the simulations, the sum of patch

sizes of all the patches was equal to the population size. This represented a habitat with just

enough resources for all the individuals in the population.

Familiarity-based association

In all the simulations, I used two parameters, memory and memory length, to implement

familiarity-based associations. The memory parameter determined how often associations in

the population were preferential associations based on familiarity; in other words, how

frequently did individuals associate with their previous associates. I used memory parameter

values of 1, 0.5, or 0. If the memory parameter was 1, 100% of the associations were based

on familiarity. If the memory parameter was 0.5, 50% of the associations were based on

familiarity. If the memory parameter was 0, there were no preferential associations based on

familiarity, and all the associations were random. The memory length parameter determined

how long the memory of familiarity lasted; it was the farthest time step in the past, from which

a given individual remembered its previous associates. I used memory length parameter

values of 1 (short; individuals remembered previous associates from only 1 time step back),

20 (medium), or 400 (long). The values of the above two parameters determined the extent to

which associations were based on familiarity.

2.1.2 Generating associations

I generated a patch size distribution (determined by the average patch size and the patch size

variation parameters) in each time step such that the sum of patch sizes of all the patches was

equal to the population size. In the first time step, individuals were assigned to the feeding

sites within patches randomly (Figure 1). From the second time step onwards, associations

were based on familiarity to different extents (due to memory and memory length parameters).

Since the total amount of resource available was equal to the population size, all the sites in

each patch would be occupied. Due to resource constraints, group size in a patch could not be

larger than the patch size (number of sites available in a patch). From the second time step

onwards, I selected the first individual for a given patch randomly from the population. Then,

I drew a uniform random number between 0 and 1. If this number was less than the memory

parameter, I created an association based on familiarity by adding an individual from the pool

of previous associates of the first individual to the patch. The available pool of previous

9

associates of the first individual was based on the memory length parameter, which

determined the farthest time step in the past from which the first individual remembered its

previous associates. If the first individual had multiple previous associates, I selected a

previous associate based on weighted probabilities (weighted by the number of times each

associate had previously associated with the first individual). If the first individual did not

have any available previous associate or did not remember any previous associate, the second

individual assigned to the patch was an individual unknown to the first individual, selected

randomly from the pool of remaining individuals in the population, in order to fill the patch.

If the random number drawn was larger than the memory parameter, I created a non-

preferential association by adding a random individual from the population as the second

individual of the patch.

I added individuals one at a time to the patch in the manner above until all the feeding sites

within a patch were occupied, i.e., the number of individuals in the patch was equal to the

patch size allocated. When more than two individuals had already been assigned to a patch

and the next association was to be based on familiarity, the next individual was selected with

a probability weighted by the average of the number of times it had previously associated with

the individuals already assigned to the patch. Thus, it could so happen that the next individual

chosen might have been a previous associate of only one/some and not all the individuals in

the patch. I added individuals to each patch sequentially until all the individuals in the

population were assigned to patches. As mentioned above, in all the simulations, all the

individuals present within a patch constituted a group and were considered to be associating

with one another. Since individuals were assigned to patches until the patches were filled,

group size distribution was the same as the patch size distribution.

While adding individuals to patches, I ensured that the same individual was not allotted to

more than one patch in the same time step. I repeated the process of obtaining a patch size

distribution and the sequential addition of individuals to patches every time step for 400 time

steps. The group composition of each group at a time step was considered one sighting, and

the group compositions of all the groups in that time step constituted the sighting data for that

time step.

10

Figure 1. Flow chart of the simulations conducted to examine the effect of memory, memory

length, average patch size, and patch size variation on social structure.

2.1.3 Detecting social structure

Once the sighting data were generated, I used the following four aspects to look for social

structure: density, modularity, stability of associations, and social differentiation.

Calculating density and modularity

I excluded group composition data from the first twenty time steps, i.e., all the groups found

in the first twenty time steps were removed from the sighting data. I then calculated an

association index (AI) matrix using the remaining sighting data. The AI matrix contained

pairwise association indices, measuring the extent of association between pairs of individuals.

I used the simple ratio index (Cairns and Schwager 1987) to calculate AI as

�� = ���
�����	���

 , where NAB was the number of times A and B were seen together, NA was

the total number of sightings of A (alone and with others), and NB was the total number of

sightings of B. Using the AI matrix, I constructed a weighted network, in which each node

represented an individual, each edge represented the association between two individuals, and

AI was the weight of the edge between the two individuals. I calculated density and

modularity of this weighted network. Density is a measure of the extent of connectivity in the

network, and is calculated as the ratio of the observed number of edges to the number of

11

possible edges in the network (see Wasserman and Faust 1994). Thus, a density close to zero

indicates a poorly connected network with very few ties, whereas a value of 1 indicates a fully

connected network with all possible ties.

Modularity measures the strength of the division of a network into communities. A network

would have distinct communities when modularity is high, which is when the number and

strength of connections between the nodes within communities are higher than that expected

by random chance (Newman 2004). In all the simulations, the modularity of the network was

obtained using the Louvain algorithm (Blondel et al. 2008). The Louvain algorithm is a

heuristic method of determining community structure hierarchically by optimising Girvan-

Newman modularity given by the formula (Newman 2004):

 = 1
2
 �[��� − ��, ��

2
��
]�(��, ��)

Where, ��� is the weight of the edge between i and j

 �� = ∑ ���� is the sum of weights of the edges attached to node i

 �� is the identity of the community to which node i is assigned

 �(��, ��) is 1 if nodes i and j are assigned to the same community and 0 otherwise

 = �
� ∑ �����

Girvan-Newman modularity ranges from -1 to 1. A value of 0 indicates that the strength of

connections within communities is not different from random chance, while a value greater

than 0 indicates that the strength of connections within communities is greater than that

expected by random chance. Usually, a network is considered to be partitioned into

meaningful communities when the modularity value is greater than 0.3 (Newman 2004).

The Louvain algorithm has two main phases (together called a pass), which were repeated

iteratively. In phase one, each node was assigned to a different community. Then for a given

node i, the change in modularity was calculated if i was moved from its original community

to the community of its neighbour j. The community assignment of node i was changed only

if there was a gain in modularity. The process was repeated sequentially for all nodes of the

network until there was no change in modularity, i.e., when a local maximum was reached.

In phase two, a new network was created in which the nodes of the network were the

communities found in phase one. The weights of the edges between two new nodes (each

being a community containing more than one node in phase 1) were determined by adding

12

the weights of edges from every node in one community to another, with the edges between

nodes of the same community forming self-loops in the new network. Phases one and two

were repeated iteratively until there was no change in modularity. Thus, with each pass, a

higher level of hierarchy in the community structure, if present, could be detected. The

Louvain algorithm was implemented in MATLAB R2019b (The MathWorks, Inc., 1994-

2022, www.mathworks.com; code appended at the end of the thesis) by running the C++

executables (generated through Cygwin, a software that compiles and executes source codes

written to run on Unix-like operating systems, available at https://cygwin.com/.) for the codes

provided by the authors at https://sourceforge.net/projects/louvain/. The Louvain algorithm

took the list of pairwise association indices as input, detected communities, and provided the

number of passes, the number of communities produced in each pass and the identity of

communities that a given individual was assigned to in each pass as outputs. I calculated

maximum modularity reached in the final pass using the information on the number of

communities detected and the composition of each community.

Stability of associations and social differentiation

To understand how associations changed with time, the stability of associations and social

differentiation were measured at every time step. The stability of associations was examined

by plotting the average cumulative number of new associates per individual against time. For

each individual in the population, the cumulative number of new associates it had at time step

t was obtained by comparing its associates (group members) at time step t with associates

from time step 1 to t-1. This was then averaged across all the individuals in the population.

Social differentiation is the variation in the dyadic probabilities of association calculated

through the coefficient of variation (CV) of pairwise AIs (Whitehead 2008a). If there were

preferred/avoided associates, this CV of AIs would be higher than that expected by random

chance. The presence of preferential associations would also lead to a network with distinct

communities and high modularity. To determine the CV of AI at time step t, first, an AI matrix

was constructed using all the sighting data from time step 1 to t. Then, the CV was calculated

for all the elements of the AI matrix. The average cumulative number of new associates per

individual and the CV of AI was calculated at every time step for 400 time steps.

If individuals in the population continued to associate with the same set of individuals, i.e., if

there was stability in associations, the average cumulative number of new associates per

individual would not change with time, the density of the network would be low, and the

13

modularity of the network would be high. Similarly, if individuals had consistent and strong

preferences in their associations, the CV of pairwise AIs would be constant and higher than

that expected if associations were random across all time steps. Further, the density of the

network would be low, and modularity would be high.

I ran simulations to examine the effects of memory, memory length, the average patch size,

and patch size variation parameters (see Table 1 for parameter values) on network density,

network modularity, stability of associations, and social differentiation. I used 36 simulations

(Supplementary material, Table 1) to explore all combinations of the above factors, resulting

in a fully factorial design. Each simulation was run ten times. All the simulations were run on

MATLAB R2019b (The MathWorks, Inc, 1994-2022, www.mathworks.com; code appended

at the end of the thesis).

Table 1. Initialisation of different parameters for simulations conducted to examine the effect

of memory, memory length, average patch size, and patch size variation on social structure.

Parameter Value

Population size 200

Total time 400 time steps

Memory parameter 1, 0.5, 0

Memory length 1, 20, 400

Average patch size 2, 4

Patch size variation Present, Absent

2.1.5 Data analysis

To determine the effect of memory, memory length, average patch size, and patch size

variation on density and modularity, I ran two four-factor ANOVAs using Statistica 7

(StatSoft, Inc. 2004). In these ANOVAs, memory, memory length, average patch size, and

patch size variation were treated as fixed factors. There were 10 replicates for each level of

the factors. I did not perform ANOVAs on the cumulative number of new associates or the

CV of AI because they were expected to give the same patterns as density and modularity,

respectively. I calculated effect sizes using eta-square.

14

2.2 Under what conditions of inadequate sampling would social structure be wrongly

inferred when individuals actually associate with one another randomly?

2.2.1 Simulation overview

I used a static population of 200 individuals again. At every time step (for 400 time steps in

all), I obtained a group size distribution, and assigned individuals to the groups randomly. To

simulate field sampling, I noted the group compositions of a set of groups at different time

steps (see below), and each group was considered a sighting. To examine the effects of

sampling on inference of social structure, two parameters were considered, namely, sampling

intensity and sampling period length. Sampling intensity determined how often groups were

sampled (sampling interval) and the proportion of groups that were sampled. Sampling period

length determined the total time for which sampling was done to infer social structure. The

simulations also examined if sampling effects were different for different average group sizes.

2.2.2 Generating associations and sighting data

I obtained a group size distribution every time step by drawing numbers from a zero-truncated

negative binomial distribution with a specific average group size (the average group size

parameter was either 2 or 4 depending on the simulation). I ensured that the group sizes added

up to the population size. I then randomly assigned all the individuals within the population

to different groups, and all the individuals within a group were considered to be associating

with one another. Sampling intensity was determined by the proportion of groups sampled

and the sampling interval parameters. Depending on the proportion of groups sampled

parameter (0.2, 0.4, 0.6, 0.8, or 1; a value of 0.2 corresponded to 20% of all the groups present

at a given time step being sampled and so on), a certain percentage of groups created at a

given time step was sampled randomly, i.e., group compositions of only those randomly

chosen groups constituted the sighting data for that time step. Groups were sampled every

other time step, except for the sampling intensity of 1, when they were sampled every time

step, in order to obtain the true values. Depending on the sampling period length parameter

(20, 100 or 400), groups were sampled for the given number of time steps, and the sighting

data for that period were collated together to examine different attributes of network structure

(see Figure 2). If the sampling period length parameter value was smaller than the total

number of time steps in the simulation, sighting data were obtained for more than one

sampling period, and the attributes of network structure were calculated for each. For

example, since the total number of time steps was 400, when the sampling period length was

15

20 or 100, sighting data for 20 different short sampling periods or four different moderately

long sampling periods were obtained.

Figure 2. Flow chart of simulations conducted to examine the effect of sampling on social

network structure.

2.2.3 Detecting social structure

Once the sighting data for a given sampling period were generated, the data were further

filtered to retain only those individuals that were sighted at least two times. It is a common

practice amongst researchers to filter out poorly sampled individuals to reduce the bias in

network estimates. I used the modified sighting data to obtain an association index (AI) matrix

and construct a weighted network. I then calculated the density and modularity of the

weighted network in the same manner as in the previous simulations.

16

Table 2. Initialisation of different parameters for simulations conducted to examine the effect

of sampling on social network structure.

Parameter Value

Population size 200

Total time 400 time steps

Average group size 2, 4

Proportion of groups sampled 0.2, 0.4, 0.6, 0.8, 1

Sampling period length 20, 100, 400

2.2.5 Data analysis

I set up 30 simulations (see Supplementary material, Table 2) to explore all the combinations

of sampling intensity, sampling period length, and average group size parameters, resulting

in a fully factorial design (Table 2). Each simulation was run ten times on MATLAB R2019b

(The MathWorks, Inc, 1994-2022, www.mathworks.com; code appended at the end of the

thesis). I ran two three-factor ANOVAs using Statistica 7 (StatSoft, Inc. 2004), with

modularity and density as the dependent variables, and sampling intensity, sampling period

length, and average group size as fixed factors.

17

CHAPTER 3: RESULTS

3.1 Does social structure emerge under different resource conditions when individuals

associate based on familiarity?

3.1.1 Network density

I found significant main effects of memory, memory length, average patch size, and patch

size variation, as well as significant interaction effects of the two-way, three-way, and four-

way interactions on the density of the network (Table 3). However, while the effect sizes for

the main effects of memory (η2=0.379) and patch size variation (η2=0.279), and the

interaction between memory and patch size variation (η2=0.293) were large, the effect sizes

for the main effect of average patch size and the three-way interaction of memory, average

patch size, and patch size variation were weak (Table 3). The effect sizes for the main effect

of memory length, all the other interactions, and the error were close to zero (Table 3).

Density was significantly higher (0.957) when there was no role of memory (memory=0) than

when associations were completely based on memory (memory=1; density=0.468; Tukey’s

HSD test: P<0.001) (Figure 3a). Although, density at a memory of 0.5 (0.902) was similar to

that at a memory of 0 (0.957; Figure 3a), the post hoc tests showed a significant difference

(P<0.001). As mentioned above, memory length had a negligible effect size, but post-hoc

tests showed a significant difference in density between memory length of 1 (0.786) and 20

(0.770; Tukey’s HSD test: P<0.001), and memory length of 1 (0.786) and 400 (0.770;

P<0.001), whereas there was no significant difference between memory length of 20 and 400

(P=0.756; Figure 3b). The main effect of average patch size was also low, accounting for only

2.6% of the variation in density, with density being higher (0.832) when the average patch

size was 4 than when the average patch size was 2 (0.719) (Figure 3c). Patch size variation

accounted for 27.9% of the variation in density, with density being higher when patch size

variation was present (0.963) than when it was absent (0.588) (Figure 3d).

18

Table 3. Results of four-factor ANOVA with network density as the dependent variable and

memory, memory length, patch size variation, and average patch size as the fixed independent

variables. The three large effect sizes are marked in bold.

Effect SS df MS F P η2

{1}Memory 17.200 2 8.600 2656689.309 <0.001 0.379

{2}Memory length 0.021 2 0.010 3170.922 <0.001 0.000

{3}Average patch size 1.158 1 1.158 357766.426 <0.001 0.026

{4}Patch size variation 12.652 1 12.652 3908402.764 <0.001 0.279

Memory*Memory length 0.010 4 0.003 801.942 <0.001 0.000

Memory*Average patch size 0.214 2 0.107 33121.798 <0.001 0.005

Memory length*Average

patch size
0.024 2 0.012 3778.170 <0.001 0.001

Memory*Patch size variation 13.280 2 6.640 2051185.461 <0.001 0.293

Memory length*Patch size

variation
0.000 2 0.000 18.593 <0.001 0.000

Average patch size*Patch

size variation
0.167 1 0.167 51435.344 <0.001 0.004

Memory*Memory

length*Average patch size
0.012 4 0.003 946.630 <0.001 0.000

Memory*Memory

length*Patch size variation
0.024 4 0.006 1819.557 <0.001 0.001

Memory*Average patch

size*Patch size variation
0.597 2 0.298 92195.890 <0.001 0.013

Memory length*Average

patch size*Patch size

variation

0.000 2 0.000 42.687 <0.001 0.000

1*2*3*4 0.029 4 0.007 2207.686 <0.001 0.001

Error 0.001 324 0.000 0.000

19

Figure 3. The main effects of memory, memory length, average patch size, and patch size

variation on network density. Shared alphabets do not indicate significant difference, while

different alphabets do, with c>b>a. The error bars are 95% CI about the mean.

20

The presence of patch size variation increased density (compared to the absence of patch size

variation) to different extents depending on the value of memory. All the pairwise

comparisons for the interaction between memory and patch size variation were statistically

significant. Density at memory of 0 was statistically significantly higher (Tukey’s HSD test:

P<0.001) but not very different in value when patch size variation was present (0.989) or

absent (0.925; Figures 4, 5). Density at memory of 0.5 was somewhat higher (P<0.001) when

patch size variation was present (0.975) than when it was absent (0.830), while the greatest

difference in density was seen at a memory of 1, with the density being starkly higher when

patch size variation was present (0.926) than when it was absent (0.010, P<0.001; Figures 4,

5). This was because when patch sizes varied, some associations had to be made with

unknown individuals whenever previous associates were unavailable, leading to increased

network connectivity (see below). On the other hand, when there was no patch size variation,

associations with unknown individuals were not made when there was a memory of 1 (leading

to very low density), whereas associations were made randomly half the time when memory

was 0.5, and associations were made randomly all the time when memory was 0 (leading to

high connectivity and hence density). This is seen in the number of new associates below.

Figure 4. The interaction effect between memory and patch size variation on network density.

When memory was 1 and patch size variation was absent, density was 0.010. Different

alphabets indicate significant difference, with f>e>d>c>b>a. The error bars are 95% CI about

the mean.

21

Patch size variation: Absent Present

Memory

0

0.5

1

Figure 5. Association networks across different memory and patch size variation values

constructed for simulations in which average patch size was 2 and memory length was 400.

These networks were constructed using sighting data from the 21st to the 400th time steps of

one of the 10 runs of each simulation. Association networks for average patch size of 4 and

memory lengths of 1 and 20 were similar to the above networks (not shown).

3.1.1.1 Stability in associations: Average cumulative number of new associates per individual

When memory was 0 or 0.5, since all or some associations were random, individuals met new

associates over time (black and pink lines corresponding to memory of 0 and 0.5, respectively,

in Figure 6, Supplementary Figures 1, 2), resulting in the average cumulative number of new

22

associates per individual increasing over time. This would result in a highly connected

network with high density as I found above. When memory was 1, individuals gained new

associates with time when patch size variation was present (green lines corresponding to

memory of 1 in Figure 6b,d, Supplementary Figures 1b,d, 2b,d) but not when patch size

variation was absent (green lines corresponding to memory of 1 in Figure 6a,c, Supplementary

Figures 1a,c, 2a,c).

When patch size variation was present, individuals gained new associates for two reasons.

First, because patch sizes varied, individuals were sometimes assigned to a small patch in an

earlier time step but to a large patch in a later time step. If this occurred, there would not be

sufficient previous associates to fill the larger patch in the later time step, and individuals

would have to associate with an unknown individual from the population even if the

associations were otherwise based on familiarity, resulting in a gain of new associates.

Second, when associations were not always constant due to patch size variation, over time, it

could so happen that even if an association was based on familiarity, a previous associate

joining the group could be a previous associate of only some and not all individuals in the

group. These two causes would lead to a gain in new associates and, over time, increased

network connectivity and density (Figures 3, 5). However, if patch size variation was absent

and memory was 1, there were always sufficient previous associates to fill patches, and

individuals continued to be with their associates from the first time step. Therefore, at the end

of 400 time steps, the network did not have any more connections than those at the first time

step. Since each individual’s associations were fully limited to previous associates, the

resulting network was poorly connected and had low density (Figures 3, 5).

In all the simulations, if there was a gain of new associates, the rate of gain was faster when

the average patch size was 4 (Figure 6a,b, Supplementary Figures 1a,b, 2a,b) than when it

was 2 (Figure 3c,d, Supplementary Figures 1c,d, 2c,d) because there was a greater chance for

an association to be formed with an unknown individual due to the reasons mentioned above.

With an increase in average patch size, the time to meet all the individuals in the population

would decrease, whereas an increase in memory would increase the time to meet all the

individuals in the population (Figure 6).

Overall, associations were stable through time only when every association was with previous

associates, which occurred when memory was 1 and patch size variation was absent. Thus,

23

the presence of memory alone (and therefore a familiarity-based rule) did not result in stable

associations as long as unfamiliar individuals were allowed to use the patch. The above trends

in the stability of associations were similar for memory lengths of 1, 20, and 400 (comparison

of Figure 3, Supplementary Figures 1, 2), and only the last has been shown in the main text

here.

Figure 6. The plot of the average cumulative number of new associates per individual against

time in simulations with a memory length of 400. The error bars are 95% CI about the mean

but are too small to be clearly visible.

24

3.1.2 Network modularity

I found significant main effects of memory, memory length, average patch size, and patch

size variation, as well as significant interaction effects of the two-way, three-way, and four-

way interactions on the modularity of the network (Table 4). Similar to density, effect sizes

were large only for memory (η2=0.439), patch size variation (η2=0.198), and the interaction

effect between the two (η2=0.358). The effect sizes for the main effects of average patch size

and memory length, all the other interactions effects, and the error were close to zero (Table

4).

Table 4. Results of four factor ANOVA with network modularity as the dependent variable

and memory length, patch size variation, and average patch size as the fixed independent

variables. The large effect sizes are marked in bold.

Effect SS df MS F P η2

{1}Memory 19.690 2 9.845 1375984.666 <0.001 0.439

{2}Memory length 0.023 2 0.011 1598.663 <0.001 0.001

{3}Average patch size 0.059 1 0.059 8269.221 <0.001 0.001

{4}Patch size variation 8.894 1 8.894 1243090.438 <0.001 0.198

Memory*Memory length 0.028 4 0.007 988.536 <0.001 0.001

Memory*Average patch size 0.006 2 0.003 439.236 <0.001 0.000

Memory length*Average patch size 0.009 2 0.004 622.469 <0.001 0.000

Memory*Patch size variation 16.094 2 8.047 1124711.087 <0.001 0.358

Memory length*Patch size

variation
0.012 2 0.006 838.494 <0.001 0.000

Average patch size*Patch size

variation
0.000 1 0.000 42.661 <0.001 0.000

Memory*Memory length*Average

patch size
0.007 4 0.002 245.134 <0.001 0.000

Memory*Memory length*Patch

size variation
0.038 4 0.010 1338.407 <0.001 0.001

25

Effect SS df MS F P η2

Memory*Average patch size*Patch

size variation
0.021 2 0.011 1480.587 <0.001 0.000

Memory length*Average patch

size*Patch size variation
0.003 2 0.001 181.576 <0.001 0.000

1*2*3*4 0.012 4 0.003 420.260 <0.001 0.000

Error 0.002 324 0.000 0.000

Modularity was significantly higher (0.529) when associations were based on memory

(memory=1) than when there was no role of memory (memory=0, modularity=0.026; Tukey’s

HSD test: P<0.001) (Figure 7a). Modularity at a memory of 0.5 (0.040) was similar to that at

a memory of 0 (Figure 7a) but the difference was statistically significant (P<0.001). As

mentioned above, although the main effect of memory length was significant, the effect size

was negligible (η2 <0.01). Modularity at memory length of 400 was negligibly higher (0.209)

than modularity at memory lengths of 20 and 1 (0.195, 0.191) but was statistically significant

(Tukey’s HSD tests: P<0.001; Figure 7b). Similarly, modularity was negligibly higher (0.211)

when the average patch size was 2 than when the average patch size was 4 (0.185) (Figure

7c). Modularity was much higher when patch size variation was absent (0.355) than when it

was present (0.041; Figure 7d).

26

Figure 7. The main effect of memory, memory length, average patch size, and patch size

variation on network modularity. Shared alphabets do not indicate significant difference,

while different alphabets do, with c>b>a. The error bars are 95% CI about the mean.

Across different memory and patch size variation combinations, modularity was greater than

0.3, only when patch size variation was absent (0.985; Figure 8). This was because every

association was with previous associates only in this case. When memory was 1 and patch

size variation was present, individuals sometimes associated with unknown individuals either

27

to fill the patch whenever they could not find previous associates or the individuals added to

the patch were previous associates of only one/some individuals in the patch. This resulted in

lowered modularity (0.073; Tukey’s HSD test: P<0.001). When memory was 0 or 0.5, a lot

of associations were random irrespective of patch size variation. For a given memory value,

modularity was significantly different across simulations in which patch size variation was

present (modularity=0.022 when memory=0, and 0.028 when memory=0.5) and those in

which it was absent (modularity=0.030 when memory=0, and 0.052 when memory=0.5;

Tukey’s HSD tests: P<0.001; Figure 8), even though the difference was marginal. The

patterns seen in network modularity can also be visualised in terms of the CV of AI below.

Figure 8. The interaction effect between memory and patch size variation on network

modularity. When patch size variation was present, modularity was 0.022 at a memory of 0

and 0.028 at a memory of 0.5. Different alphabets indicate significant difference, with

e>d>c>b>a. The error bars are 95% CI about the mean but are too small to be clearly visible.

3.1.2.1 Social differentiation: CV of association indices

Across all the simulations, the CV of AIs in the initial time steps was highest when memory

was 1, moderately low when memory was 0.5, and lowest when memory was 0, indicating

the difference in the extent of preferential associations occurring based on familiarity (Figure

9, Supplementary Figures 3, 4). Over time, irrespective of patch size variation, the CV of AIs

28

decreased when memory was 0 or 0.5 due to the formation of associations with random

individuals in the population (black and pink lines corresponding to memory of 0 and 0.5,

respectively, in Figure 9, Supplementary Figures 3, 4).

When memory was 1, CV of association indices remained high and the same throughout the

400-time steps only if patch size variation was absent (green line corresponding to memory

of 0 and 0.5, respectively, in Figure 9a,c, Supplementary Figures 3a,c, 4a,c). This was because

throughout the 400 time steps, individuals associated with their associates from the first time

step (green lines corresponding to memory of 1 in Figure 6a,c, Supplementary Figures 1a,c,

2a,c). However, when memory was 1 and patch size variation was present, although CV of

association indices was high, to begin with, it decreased over time due to the formation of

connections with unknown individuals in the population either because there were no previous

associates to associate with or because some individuals present in the group were previous

associates of only one/some individuals in the group (green lines corresponding to memory

of 1 in Figure 9b,d, Supplementary Figures 3b,d, 4b,d).

Thus, associations were strongly preferential and consistent through time only when every

association was with previous associates, which was the case when memory was 1 and patch

size variation was absent. These strong and consistent preferential associations resulted in

distinct communities and a population with high modularity (Figure 8).

The above trends in the stability of associations were similar for memory lengths of 1, 20, and

400 (Figure 9, Supplementary Figures 3, 4), and only the last is shown in the main text.

29

Figure 9. The plot of the CV of cumulative AI against time in simulations with a memory

length of 400. The error bars are 95% CI about the mean but are too small to be clearly visible.

30

3.2 Under what conditions of inadequate sampling would social structure be wrongly

inferred when individuals actually associate with one another randomly?

3.2.1 Network density

I found, from the three-factor ANOVA, significant main effects of sampling period length,

sampling intensity, and average group size, and significant interaction effects of two-way and

three-way interactions amongst the above three factors on the density of network (Table 5).

The main effects of sampling period length (η2 =0.661) and sampling intensity (η2 =0.212)

were large in terms of effect sizes, whereas average group size had a moderate effect size, and

the interaction between sampling period length and sampling intensity, and the three-way

interaction were small. The other effects were negligible (Table 5).

Table 5. Results of three-factor ANOVA with network density as the dependent variable and

average group size, length of the sampling period, and sampling intensity as the fixed

independent variables.

Effect SS df MS F P η2

Average group size 2.337 1 2.337 45458.979 <0.001 0.071

Length of sampling period 21.654 2 10.827 210609.443 <0.001 0.661

Sampling intensity 6.938 4 1.735 33740.547 <0.001 0.212

Average group size*Length of

sampling period
0.264 2 0.132 2565.032 <0.001 0.008

Average group size*Sampling

intensity
0.022 4 0.005 105.702 <0.001 0.001

Length of sampling

period*Sampling intensity
1.123 8 0.140 2731.306 <0.001 0.034

Average group size*Length of

sampling period*Sampling

intensity

0.432 8 0.054 1049.277 <0.001 0.013

Error 0.014 270 0.000 0.000

31

Density was highest when the length of the sampling period was 400 (0.778), moderate when

sampling period length was 100 (0.415), and least when sampling period length was 20

(0.121; Tukey’s HSD tests: P<0.001; Figure 10a). Density of the network significantly

increased with increase in sampling intensity from 0.2 (density=0.225) to 1 (density=0.682;

Tukey’s HSD tests: P<0.001; Figure 10b). The main effect of average group size accounted

for 7.1% of the variation in density, with density being higher when the average group size

was 4 (0.527) than when the average group size was 2 (0.350) (Figure 10c). Amongst the

interaction effects, sampling period length x sampling intensity had the largest effect size,

with 3.4% of the variation in density being accounted for by this effect. For a given intensity

of sampling, density was higher when the sampling period was longer, and for a given length

of the sampling period, density was higher when sampling intensity was higher (Figure 11a,b).

The increase in density with an increase in sampling intensity was steeper from a sampling

intensity of 0.8 to 1 in the lower sampling periods than the sampling period of 400 (Figure

11a,b).

If we consider the density obtained at end of 400 time steps when 100% of the groups were

sampled every time step as the true density (black squares in Figure 11a,b), for a given average

group size, the density obtained through sampling was much closer to the true value when the

sampling period was 400, and sampling intensity was 0.4 or higher (Figure 11a,b) because

more associations were sampled (Figure 14f,i). Sample density was also close to the true value

if the sampling intensity was very high (i.e., 100% of the groups were sampled every time

step) and sampling period length was moderate (length=100) since greater number of

associations were sampled (Figure 14h). Density obtained through sampling was closer to the

true value when group sizes were larger (Figure 11b) than when group sizes were smaller

(Figure 11a).

32

Figure 10. The main effect of sampling period length, sampling intensity, and average group

size on network density. Different alphabets indicate significant difference, with e>d>c>b>a.

The error bars are 95% CI about the mean.

Figure 11. The effects of sampling period length, sampling intensity, and average group size

on network density across different simulations. The black square corresponds to density in

the simulation in which 100% of the groups were sampled every time step for 400 time steps.

Different alphabets within panels indicate significant difference. The error bars are 95% CI

about the mean but are too small to be visible.

33

3.2.2 Network modularity

I found significant main effects of sampling period length, sampling intensity, and average

group size, as well as significant interaction effects of two-way and three-way interactions

amongst the above three factors on network modularity based on the three-factor ANOVA

(Table 6). The effect size was large (η2 =0.607) for the main effects of sampling period length,

and sampling intensity (η2 =0.212), and moderate for the interaction effect between the two

(η2 =0.102). The effect sizes for the main effect of average group size, other interaction

effects, and the error were small (Table 6).

Table 6. Results of the three-factor ANOVA with network modularity as the dependent

variable, and average group size, length of the sampling period, and sampling intensity as the

fixed independent variables. The large effect sizes are marked in bold.

Effect SS df MS F P η2

Average group size 0.354 1 0.354 2290.032 <0.001 0.046

Length of sampling period 4.692 2 2.346 15196.112 <0.001 0.607

Sampling intensity 1.640 4 0.410 2654.911 <0.001 0.212

Average group size*Length of

sampling period
0.152 2 0.076 493.391

<0.001
0.020

Average group size*Sampling

intensity
0.054 4 0.014 87.568

<0.001
0.007

Length of sampling

period*Sampling intensity
0.785 8 0.098 635.958

<0.001
0.102

Average group size*Length of

sampling period*Sampling intensity
0.017 8 0.002 14.124

<0.001
0.002

Error 0.042 270 0.000 0.005

34

Modularity was highest when the length of the sampling period length was 20 (0.342), lower

when the sampling period was 100 (0.119), and least when the sampling period was 400

(0.048; Tukey’s HSD: P<0.001; Figure 12a). Modularity decreased with an increase in

sampling intensity from 0.2 (modularity=0.289) to 1 (modularity=0.069; Tukey’s HSD:

P<0.001; Figure 12b). The main effect of average group size accounted for 4.6% of the

variation in modularity, with modularity being higher when the average group size was 2

(0.204) than when the average group size was 4 (0.135; Figure 12c). For a given sampling

intensity, modularity was higher when the sampling period was shorter than when it was

longer (Figure 13a,b). Further, for a given sampling period, modularity decreased when

sampling intensity increased (Figure 13a,b). This decrease in modularity with sampling

intensity was steeper for smaller sampling periods (Figure 13a,b).

Figure 12. The main effect of sampling period length, sampling intensity, and average group

size on network modularity. Different alphabets indicate significant difference, with

e>d>c>b>a. The error bars are 95% CI about the mean.

Again, if we consider the modularity obtained at end of 400 time steps when 100% of the

groups were sampled every time step as the true modularity (black squares in Figure 13), for

a given average group size, the modularity obtained through sampling was much closer to the

true value when the sampling period was long (length=400) irrespective of sampling intensity

(Figures 13a,b) since a lot of the associations were sampled (Figure 14c,f,i). However, sample

35

modularity was also close to the true modularity if the sampling intensity was high (i.e., 80%

to 100% of the groups were sampled every other time step and every time step, respectively)

and sampling period length was moderate (length = 100). This was also because intense

sampling resulted in sampling of many associations (Figure 14e,h). Similar to density,

modularity obtained through sampling was slightly closer to the true value when the average

group size was larger (4 versus 2; Figure 13b,a).

Figure 13. The effect of sampling period length, sampling intensity, and average group size

on network modularity across different simulations. The black square corresponds to

modularity in the simulation in which 100% of the groups were sampled every time step for

400 time steps. Different alphabets within panels indicate significant difference. The error

bars are 95% CI about the mean but are too small to be visible clearly.

36

Sampling

period

length:

 20 100 400

Sampling

intensity

0.2

0.6

1

Figure 14. Association networks across three different sampling intensities and sampling

periods when average group size was 2. Each network was created using sighting data from a

randomly chosen sampling period of one of the 10 runs of each simulation.

37

CHAPTER 4: DISCUSSION

4.1 Does social structure emerge under different resource conditions when individuals

associate based on familiarity?

Results from my simulations suggest that in a habitat with limited and patchy ephemeral

resources, social structure characterised by low density, temporally stable associations, high

modularity, and high social differentiation can occur only when every association is based on

familiarity, which was the case when 100% of the associations were based on familiarity

(memory parameter 1), and the habitat had the same amounts of resources regenerated every

time step (patch size variation absent). However, a habitat without any variation in resource

distribution is unlikely to occur in nature. I also found that over time, associations became

similar to random associations when patchy ephemeral resources varied in quantity across

patches and time steps (patch size variation present) even if 100% of the associations were to

be based on familiarity (but could not be realised due to patch size variation and resource

limitation). Overall, networks had lower density when the average group size was 2 than when

the average group size was 4. The effect size of average group size on modularity was small,

but this could be a result of taking average group size values that were not very different. In

general, the above results indicate that a simple rule to associate based on familiarity is by

itself not sufficient to explain social structure, and that resource conditions can strongly

influence associations and social structure that emerges.

In my simulations, the rule to associate based on familiarity is similar to two other models

(Rios and Kraenkel 2017, Cantor and Farine 2019). Rios and Kraenkel (2017) considered an

agent-based model in which the agents moved in space depending on their memory of

previous interactions. While moving randomly, if an agent encountered a neighbour, it carried

out affiliative (move closer), agonistic (move away), or neutral (move randomly) interactions,

depending on previous interactions. If the previous interaction was affiliative, the agent had

a greater tendency to perform an affiliative interaction (move closer to the neighbour), and

vice versa. At the end of 1000 time steps, multiple spatially separated groups with high

modularity were obtained. Since the movement of animals is strongly affected by food

resources, results from this model might not hold when resource conditions are also

considered. Cantor and Farine (2018) built an agent-based model that considered a simple

rule to forage with those that one last foraged with if the foraging resulted in the acquisition

of sufficient resources. This model considered a habitat with a single resource patch that had

38

the same amount of resource at every time step. In the first time step, foraging ties were

random, but after the first time step, ties were dependent on the outcome of competition

between groups for the single resource patch. At a given time step, if a group obtained less

resource (due to competition) than the number of individuals in the group, in the next time

step, individuals within the group randomly removed one of the ties while if a group obtained

more resources than the number of individuals in the group, a new tie with a random

individual was created. However, when the resource share of a group was the same as the

number of individuals, individuals were considered to obtain sufficient resources, and they

did not change their ties, i.e., in the next time step, they continued to forage with previous

associates. Over a short time, this rule resulted in the emergence of a single foraging group

with stable group composition, provided the resource patch and the population size considered

were small. Based on these results, the authors claimed that a simple rule of foraging could

give rise to stable social groups and result in the emergence of foraging specialisation,

especially in small populations with limited resources. Although not discussed by the authors,

similar to my simulations, those results were very specific to the resource conditions

considered: the presence of a single patch, small patch size, and absence of variation in

resource quantity.

While the simulations discussed in the main text assumed resource limitation, I also separately

examined scenarios in which this was not the case. As mentioned above, when patch size

variation was present across time, since the resource was limited, some associations were

sometimes forced with unknown individuals when previous associates were unavailable. If

this assumption was relaxed such that there were many patches (many more feeding sites than

individuals in the population), when memory parameter was 1, every association could occur

with a familiar individual. I then found social structure characterised by low density and high

modularity, irrespective of patch size variation (Supplementary Figure 5). However, such an

abundance of resources may also be unrealistic. If resources were limited in certain time steps

but abundant in others, as might be the case in nature, individuals might have some permanent

companions and several casual acquaintances, resulting in a network with high density and

high modularity. This is something that could be explored in the future.

The simulations I carried out also assumed that resources were ephemeral and had to be

regenerated at every time step. If resources were not so ephemeral, individuals could visit the

same patch during many time steps (or remain in the same patch) before moving on to another

39

patch; the social structure thus obtained could likely have low density and high modularity.

Thus, the duration of unchanging resource patches relative to the interval at which individuals

sort themselves or form new groupings could have an effect on social structure. Mynas leaving

a roost every morning and arriving at different patches with insects that may be

spatiotemporally unpredictable might correspond to the scenario I have modelled with patch

size variation across space and time. (We do not know if there is social structure in mynas.)

While the simulations discussed here included a scenario with unchanging patches of equal

sizes (which led to social structure being seen when 100% of the associations were based on

familiarity), I also separately looked at unequal patch sizes that did not change over time.

Food trees or sleeping sites for primates, or nesting sites for birds might be resources of this

type. When patch sizes were unequal, and there was no variation in patch size across time, I

did not find social structure (not shown) even if associations were to be based completely on

familiarity because individuals in my model did not have a memory of the patch; they only

had a memory or not of other individuals. Therefore, individuals from a larger patch in one

time step could be split across smaller patches in the subsequent time step depending on the

patch to which the first individual of a group was assigned. It would be worthwhile examining

whether social structure can emerge with temporally and/or spatially varying patch sizes when

individuals have a memory of the patch rather than of other individuals.

4.2 Question 2: Under what conditions of inadequate sampling would social structure be

wrongly inferred when individuals actually associate with one another randomly?

Results from my simulations showed that a population can wrongly be inferred to be socially

structured with modular communities and low density if sampling intensity is low and the

sampling period is short. Using modularity as the metric, any intensity of sampling performed

over long periods (400 time steps) reflected the true social structure better than high intensity

sampling (sampling 100% of groups every day) over short periods (20 time steps long).

Sample modularity also reflected the true value when a high intensity of sampling (80% or

100% of groups sampled) was conducted for moderately long periods of time. In the case of

density, sample density was close to the true density when sampling intensity was moderate

to intense (40% of more groups sampled) and sampling period was long (400 time steps), or

if sampling intensity was high (100% of groups sampled) and sampling period was

moderately long (100 time steps). In practice, sampling almost every group found at a given

time in the field is close to impossible but sampling 40% or more groups every time step or

40

every other time step for long periods of time may be more feasible. Thus, to avoid wrong

inferences of social structure, conducting long-term field studies with moderate intensity of

sampling seems necessary.

Most studies that examine the social structure of a population collect data on associations and

calculate different metrics. To detect the presence of preferential associations, standard

deviation or CV of AI calculated for observed data is usually compared with that obtained for

a null model (Whitehead et al. 2005). The null model, however, is created by permuting the

observed data. Similarly, if modularity is used to detect community structure, the observed

number of edges within communities is compared to that expected if observed associations

were random. If associations observed do not reflect reality, as is the case when sampling is

biased, social structure attributes calculated based on the associations would also not reflect

reality. Statistical techniques to assess the precision and power of AI and metrics calculated

using AI have been developed recently (Whitehead 2008b, Farine and Strandburg-Peshkin

2015, Shizuka and Farine 2016) but are not often used. Thus, it becomes pertinent to collect

large amounts of data for long periods to infer social structure as close to reality as possible,

as shown by our simulations and some others (Whitehead 2008b, Franks et al. 2010, Voelkl

et al. 2011, Shizuka and Farine 2016, Murphy et al. 2021), especially when populations are

poorly socially differentiated.

41

REFERENCES

1. Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson

AP, Ezenwa V, Jones KE, Pedersen AB and Poss M. (2003). Social organisation and

parasite risk in mammals: integrating theory and empirical studies. Annual Review of

Ecology, Evolution, and Systematics, 34(1), 517–547.

2. Blondel VD, Guillaume JL, Lambiotte R and Lefebvre E. (2008). Fast unfolding of

communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment, 2008(10), P10008.

3. Bodine EN, Panoff RM, Voit EO and Weisstein AE. (2020). Agent-based modeling and

simulation in mathematics and biology education. Bulletin of Mathematical

Biology, 82(8), 1–19.

4. Cairns SJ and Schwager SJ. (1987). A comparison of association indices. Animal

Behaviour, 35(5), 1454–1469.

5. Cantor M and Farine DR. (2018). Simple foraging rules in competitive environments can

generate socially structured populations. Ecology and Evolution, 8(10), 4978–4991.

6. Caraco T. (1980). Stochastic dynamics of avian foraging flocks. The American

Naturalist, 115(2), 262–275.

7. Clutton-Brock TH. (1989). Review lecture: mammalian mating systems. Proceedings of

the Royal Society of London. B. Biological Sciences, 236(1285), 339–372.

8. Clutton‐Brock T and Janson C. (2012). Primate socioecology at the crossroads: past,

present, and future. Evolutionary Anthropology, 21(4), 136–150.

9. Clutton-Brock TH and Huchard E. (2013). Social competition and selection in males and

females. Philosophical Transactions of the Royal Society B: Biological

Sciences, 368(1631), 20130074.

10. Cohen JE. (1972). Markov population processes as models of primate social and

population dynamics. Theoretical Population Biology, 3(2), 119–134.

11. Dehn MM. (1990). Vigilance for predators: detection and dilution effects. Behavioural

Ecology and Sociobiology, 26(5), 337–342.

12. Farine DR and Strandburg-Peshkin A. (2015). Estimating uncertainty and reliability of

social network data using Bayesian inference. Royal Society Open Science, 2(9), 150367.

13. Firth JA, Sheldon BC and Brent LJ. (2017). Indirectly connected: simple social

differences can explain the causes and apparent consequences of complex social network

positions. Proceedings of the Royal Society B: Biological Sciences, 284(1867), 20171939.

42

14. Franks DW, Ruxton GD and James R. (2010). Sampling animal association networks with

the gambit of the group. Behavioral Ecology and Sociobiology, 64(3), 493–503.

15. Gompper ME. (1996). Sociality and asociality in white-nosed coatis (Nasua narica):

foraging costs and benefits. Behavioral Ecology, 7(3), 254–263.

16. Hass CC and Valenzuela D. (2002). Anti-predator benefits of group living in white-nosed

coatis (Nasua narica). Behavioral Ecology and Sociobiology, 51(6): 570–578.

17. He P, Maldonado-Chaparro AA and Farine DR. (2019). The role of habitat configuration

in shaping social structure: a gap in studies of animal social complexity. Behavioral

Ecology and Sociobiology, 73(1), 1–14.

18. Hinde RA. (1976). Interactions, relationships and social structure. Man, 11(1), 1–17.

19. Ilany A and Akçay E. (2016). Social inheritance can explain the structure of animal social

networks. Nature Communications, 7(1), 1–10.

20. Janson CH and van Schaik CP. (1988). Recognising the many faces of primate food

competition: methods. Behaviour, 105(1-2), 165–186.

21. Kappeler PM and van Schaik CP. (2002). Evolution of primate social

systems. International Journal of Primatology, 23(4), 707–740.

22. Koenig A and Borries C. (2009). The lost dream of ecological determinism: time to say

goodbye?… or a white queen’s proposal? Evolutionary Anthropology 18(5), 166–174.

23. Lusseau D and Newman ME. (2004). Identifying the role that animals play in their social

networks. Proceedings of the Royal Society of London. Series B: Biological

Sciences, 271, S477–S481.

24. MATLAB. (2019). Version 9.7.0.1471314 (R2019b). MathWorks Inc., Natick,

Massachusetts.

25. Murphy D, Wittemyer G, Henley MD and Mumby HS. (2021). Detecting community

structure in wild populations: a simulation study based on male elephant, Loxodonta

africana, data. Animal Behaviour, 174, 127–148.

26. Nandini S, Keerthipriya P and Vidya TNC. (2018). Group size differences may mask

underlying similarities in social structure: a comparison of female elephant societies.

Behavioral Ecology, 29(1), 145–159.

27. Newman ME. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131.

28. Rios VP and Kraenkel RA. (2017). Do I know you? How individual recognition affects

group formation and structure. PLoS One, 12(1), e0170737.

29. Silk JB. (2007). The adaptive value of sociality in mammalian groups. Philosophical

Transactions of the Royal Society B: Biological Sciences, 362(1480), 539–559.

43

30. Sterck EH, Watts DP and Van Schaik CP. (1997). The evolution of female social

relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41(5), 291–

309.

31. StatSoft, Inc. (2004). STATISTICA (data analysis software system), version 7.

www.statsoft.com.

32. Thierry B. (2008). Primate socioecology, the lost dream of ecological

determinism. Evolutionary Anthropology, 17(2), 93–96.

33. van Schaik CP. (1989). The ecology of social relationships amongst female primates. In

Standen V and Foley RA (eds) Comparative Socioecology. Blackwell, Oxford, UK,

pp.195–218.

34. van Schaik CP and JARAM Van Hooff. (1983). On the ultimate causes of primate social

systems. Behaviour, 85, 91–117.

35. Voelkl B, Kasper C and Schwab C. (2011). Network measures for dyadic interactions:

stability and reliability. American Journal of Primatology, 73(8), 731–740.

36. Wasserman S and Faust K. (1994). Social Network Analysis: Methods and Applications.

Cambridge University Press, Cambridge and New York, USA.

37. Whitehead H. (2008a). Analysing Animal Societies: Quantitative Methods for Vertebrate

Social Analysis. University of Chicago Press, Chicago, USA.

38. Whitehead H. (2008b). Precision and power in the analysis of social structure using

associations. Animal Behaviour, 75(3), 1093–1099.

39. Wilson EO. (1975). Sociobiology: The New Synthesis. Belknap, Cambridge, USA.

40. Wolf JB, Mawdsley D, Trillmich F and James R. (2007). Social structure in a colonial

mammal: unravelling hidden structural layers and their foundations by network analysis.

Animal Behaviour, 74(5), 1293–1302.

41. Wrangham RW, Gittleman JL and Chapman CA. (1993). Constraints on group size in

primates and carnivores: population density and day-range as assays of exploitation

competition. Behavioral Ecology and Sociobiology, 32(3), 199–209.

42. Wrangham RW. (1980). An ecological model of female-bonded primate groups.

Behaviour, 75, 262–300

44

45

Supplementary Material 1

Table 1. List of simulations performed to examine the effect of memory, memory length,

average patch size, and patch size variation on social structure

Simulation

no.
Memory

Memory

length

Average

patch

size

Patch

size

variation

Population

size
Time

No. of

replicates

1 1 1 2 Absent 200 400 10

2 1 1 2 Present 200 400 10

3 0.5 1 2 Absent 200 400 10

4 0.5 1 2 Present 200 400 10

5 0 1 2 Absent 200 400 10

6 0 1 2 Present 200 400 10

7 1 20 2 Absent 200 400 10

8 1 20 2 Present 200 400 10

9 0.5 20 2 Absent 200 400 10

10 0.5 20 2 Present 200 400 10

11 0 20 2 Absent 200 400 10

12 0 20 2 Present 200 400 10

13 1 400 2 Absent 200 400 10

14 1 400 2 Present 200 400 10

15 0.5 400 2 Absent 200 400 10

16 0.5 400 2 Present 200 400 10

17 0 400 2 Absent 200 400 10

18 0 400 2 Present 200 400 10

19 1 1 4 Absent 200 400 10

20 1 1 4 Present 200 400 10

21 0.5 1 4 Absent 200 400 10

22 0.5 1 4 Present 200 400 10

23 0 1 4 Absent 200 400 10

24 0 1 4 Present 200 400 10

25 1 20 4 Absent 200 400 10

26 1 20 4 Present 200 400 10

46

Simulation

no.
Memory

Memory

length

Average

patch

size

Patch

size

variation

Population

size
Time

No. of

replicates

27 0.5 20 4 Absent 200 400 10

28 0.5 20 4 Present 200 400 10

29 0 20 4 Absent 200 400 10

30 0 20 4 Present 200 400 10

31 1 400 4 Absent 200 400 10

32 1 400 4 Present 200 400 10

33 0.5 400 4 Absent 200 400 10

34 0.5 400 4 Present 200 400 10

35 0 400 4 Absent 200 400 10

36 0 400 4 Present 200 400 10

47

Table 2. List of simulations performed to examine the effect of sampling intensity, sampling

period length and average group size on social structure.

Simulation

no.

Number

of

periods

Sampling

period

length

Proportion

of groups

sampled

Sampling

interval

Average

group size

Population

size

Total

time

Number

of

replicates

1 20 20 0.2 2 2 200 400 10

2 20 20 0.4 2 2 200 400 10

3 20 20 0.6 2 2 200 400 10

4 20 20 0.8 2 2 200 400 10

5 20 20 1 1 2 200 400 10

6 4 100 0.2 2 2 200 400 10

7 4 100 0.4 2 2 200 400 10

8 4 100 0.6 2 2 200 400 10

9 4 100 0.8 2 2 200 400 10

10 4 100 1 1 2 200 400 10

11 1 400 0.2 2 2 200 400 10

12 1 400 0.4 2 2 200 400 10

13 1 400 0.6 2 2 200 400 10

14 1 400 0.8 2 2 200 400 10

15 1 400 1 1 2 200 400 10

16 20 20 0.2 2 4 200 400 10

17 20 20 0.4 2 4 200 400 10

18 20 20 0.6 2 4 200 400 10

19 20 20 0.8 2 4 200 400 10

20 20 20 1 1 4 200 400 10

21 4 100 0.2 2 4 200 400 10

22 4 100 0.4 2 4 200 400 10

23 4 100 0.6 2 4 200 400 10

24 4 100 0.8 2 4 200 400 10

25 4 100 1 1 4 200 400 10

26 1 400 0.2 2 2 200 400 10

27 1 400 0.4 2 2 200 400 10

28 1 400 0.6 2 2 200 400 10

29 1 400 0.8 2 2 200 400 10

30 1 400 1 1 2 200 400 10

48

Figure 1. The plot of the average cumulative number of new associates per individual against

time in simulations with a memory length of 20.

49

Figure 2. The plot of the average cumulative number of new associates per individual against

time in simulations with a memory length of 1.

50

Figure 3. The plot of the CV of cumulative AI against time in simulations with a memory

length of 20.

51

Figure 4. The plot of the CV of cumulative AI against time in simulations with a memory

length of 1.

52

Figure 5. Plot of density and modularity in simulations in which resources were limited, and

those in which resources were abundant when all the associations were based on familiarity

(memory: 1), and memory length was 400. In simulations in which resources were abundant,

the number of patches present was equal to the population size at every time step, i.e., there

were enough patches to accommodate one individual in one patch, if necessary. In these

simulations, individuals did not have to associate with unknown individuals if previous

associates were unavailable.

53

Supplementary Material 2.

Memory_model_FL.m is the primary function that contains the codes to create patches, assign

individuals to patches, generate sighting data, determine network statistics using sighting data,

run the Louvain algorithm on the sighting data, and write the values of different variables into

excel in simulations where risk is present and absent, respectively.

Memory_model_FL.m

For each data set replicate and every step, first, patch sizes are obtained by calling the

Group_sizes.m function. This function generates patch sizes depending on two parameter

values: gp_var_type and gp_size_type; gp_var_type can be 0 or 1, and gp_size_type can be

2 or 4. When gp_size type is 2, variables in the Group_sizes.m function are set such that the

patch sizes, averaged across all time steps, is around 2. Similarly, when gp_size_type is 4, the

patch sizes, averaged across all time steps, is around 4. When gp_var_type is 0, all the groups

have equal group sizes, and the size remains the same across time. When gp_var_type is 1,

every time step, patch sizes are drawn from a zero truncated negative binomial distribution.

Once patch sizes are obtained, average, variance and median patch size for each time step is

calculated.

Next, individuals are assigned to patches. In the first time step, individuals are randomly

assigned to patches. For the remaining time steps, an individual is selected randomly from the

population as the first individual of the first group. Then a uniformly random number between

0 and 1 is drawn. If this number is less than or equal to the memory parameter, the next

individual of the patch is selected from the pool of previous associates of the first individual.

The individuals to be included in the pool of previous associates is determined by the memory

length parameter. If the random number drawn exceeds the memory parameter, the next

individual is randomly selected from the population. When previous associates are selected,

the probability of a previous associate being selected is weighted by the number of times it

associated with the first individual. Based on the random number drawn, if the next individual

to be assigned should be a previous associate, but if the first individual has not associated

with anyone or does not remember associating with anyone, the next individual is randomly

chosen from the population. Once an individual is assigned to a patch, it can not be assigned

to another patch in the same time step. This ensures that individuals remain in the same patch

54

in a given time step. After the second individual is assigned, the process of drawing a random

number and choosing the next individual is repeated until a given patch has as many

individuals as the patch size. It is to be noted that when associations are with previous

associates, and if more than one individual is already added to the patch, the probability of a

new individual being selected is weighted by the number of times it associated, on average,

with those individuals already present in the patch. The process of adding individuals to

patches is repeated until all the patches have individuals assigned to them. Individuals within

a patch are considered to be in one group and are associating with one another.

For a given time step, once individuals are assigned to patches, average, variance and median

group size is calculated. Next, the group composition of all the groups is used to obtain ‘true’

sighting data for that time step (each group is one sighting). Further, group composition of

20% of the groups from a given time step, groups being chosen randomly, is used to obtain

‘sample’ sighting data for that time step. Sample sighting data, however, is obtained every

two time steps. Finally, experienced group size of two kinds is calculated. In the first kind,

average experienced group size =
∑ !"#$ %�&'�(�)� ∗ !"#$ %�&'� ∑ !"#$ %�&'�(�)�

+

In the second kind, the experienced group size of each individual is calculated for each time

step; this is the group size of the individual minus 1.

Each time step, Adjacency_matrix.m function is used to obtain the adjacency matrix of

associations in that time step. Adjacency matrix from first to the current time step is then used

to obtain AI matrix. Further, mean, standard deviation and variance of AI matrix and mean,

standard deviation and variance of adjacency matrix is calculated every time step.

The above process of obtaining patch sizes, calculating different patch/group size metrics,

and assigning individuals to patches, and obtaining sighting data is repeated every time step.

After the last time step, the total true sighting data set is separated into periods that are 20

time steps long using Separate_sighting.m function. The same is repeated for the sample

sighting data set. Further, variance in the average group size across time, variance in the

experienced group size of type 2 across time, and average experienced group size of type 2

(averaged over different time steps for each individual) are calculated. The total sighting data

(true and sample) is then modified to remove sighting data from the first twenty time steps.

55

This modified sighting data is given as input to Network_metrics.m function to obtain

different network statistics. AI matrix obtained from Network_metrics.m is given as input to

Louvain_memory.m function to run Louvain algorithm and obtain the number of

levels/passes, the number of communities, maximum modularity reached in each pass

(obtained through Modularity.m function), and community numbers assigned to each

individual in different passes as output. The above process of obtaining network statistics and

Louvain algorithm related statistics are repeated on the sighting data (true and sample) for

each period that is 20-time steps long (excluding the first).

Creating patches, assigning individuals to patches, obtaining sighting data, generating

network and Louvain statistics are repeated 10 times to get 10 different data replicates. Once

there is data for all the different replicates, network statistics and Louvain statistics are written

into excel using Write_network_stats.m and Write_louvain_results.m functions.

Further, for each replicate, using the AI matrix generated for every time step, the cumulative

mean number of new associates is obtained using New_associates.m function. Finally, the

following group/patch size summary statistics are calculated:

1) Patch size averaged across patches at each time step is averaged across time for different

replicates;

2) Median patch size at each time step is averaged across time for different replicates;

3) Variance in patch size at each time step is averaged across time for different replicates;

4) Group size averaged across groups at each time step is averaged across time for different

replicates;

5) Median group size at each time step is averaged across time for different replicates;

6) Variance in group size at each time step is averaged across time for different replicates;

7) Variance in average group size (averaged across groups) across time for different

replicates; 8) The average experience group size of type 1 at each time step is averaged across

time for different replicates;

9) The average experience group size of type 2 which is the group size experienced by each

individual averaged across time, is averaged across all individuals for different replicates;

10) The variance in experience group size of type 2 which is the variance across time of the

group size experienced by each individual, is averaged across all individuals for different

replicates

56

Memory_model_FL.m

function [ticktock1, ticktock2] =

Memory_model_FL(simulation_no,pop_size,no_replicates,no_louvain_replicates,rng_val,ti

me,memory, memory_length, gp_size_type,gp_var_type, per_sample,sample_int, period_1,

period_2)

clc

initialVars = who('global');

clearvars('-except',initialVars{:})

mm = 0;

nn= 0;

pp = 0;

tic

true_sig = zeros(pop_size*time,pop_size);

sample_sig = zeros(pop_size*time,pop_size);

index = 1;

index2 = 1;

gp_sizes = zeros(1,pop_size);

assoc = zeros(pop_size, pop_size);

association = zeros(pop_size, pop_size);

true_no_gp_all_t = zeros(1,time);

sample_no_gp_all_t = zeros(1,time);

gp_sizes_all_t = zeros(time, pop_size);

gp_id_all_t = zeros(time, pop_size);

ave_gp_size = zeros(no_replicates,time);

med_gp_size = zeros(no_replicates,time);

ave_exp_gp_size = zeros(no_replicates,time);

var_gp_size = zeros(no_replicates,time);

exp_gp_size = zeros(time, pop_size);

var_ave_gp_size = zeros(no_replicates,1);

var_exp_gp_size = zeros(no_replicates,pop_size);

ave_exp_gp_size_2 = zeros(no_replicates,pop_size);

cuml_adj = zeros(pop_size, pop_size);

cuml_ai_mean = zeros(no_replicates,time);

cuml_ai_var = zeros(no_replicates,time);

cuml_ai_std = zeros(no_replicates,time);

cuml_adj = zeros(pop_size, pop_size);

cuml_adj_mean = zeros(no_replicates,time);

cuml_adj_var = zeros(no_replicates,time);

cuml_adj_std = zeros(no_replicates,time);

true_freq_filter= 0;

true_ai = struct;

true_ave_sig_filt= struct;

57

true_no_inds_in_sig_data= struct;

true_no_AIs= struct;

true_ave_AI_filt= struct;

true_sd_AI_filt= struct;

true_skew_AI_filt= struct;

true_kurtosis_AI_filt= struct;

true_ave_deg= struct;

true_sd_deg= struct;

true_ave_weighted_deg= struct;

true_sd_weighted_deg= struct;

true_density= struct;

true_ave_CC= struct;

true_sd_CC= struct;

true_se_CC= struct;

true_CI_CC= struct;

true_ave_path_length= struct;

true_sd_path_length= struct;

true_se_path_length= struct;

true_CI_path_length= struct;

true_diameter= struct;

true_ave_eccentricity= struct;

true_sd_eccentricity= struct;

true_se_eccentricity= struct;

true_CI_eccentricity= struct;

true_top_ten_associates = struct;

true_top_five_associates = struct;

filt_true = struct;

true_ave_sig_filt_temp=zeros(no_replicates,1);

true_no_inds_in_sig_data_temp=zeros(no_replicates,1);

true_no_AIs_temp=zeros(no_replicates,1);

true_ave_AI_filt_temp=inf*ones(no_replicates,1);

true_sd_AI_filt_temp=inf*ones(no_replicates,1);

true_skew_AI_filt_temp=zeros(no_replicates,1);

true_kurtosis_AI_filt_temp=zeros(no_replicates,1);

true_ave_deg_temp=inf*ones(no_replicates,1);

true_sd_deg_temp=inf*ones(no_replicates,1);

true_ave_weighted_deg_temp=inf*ones(no_replicates,1);

true_sd_weighted_deg_temp=inf*ones(no_replicates,1);

true_density_temp=inf*ones(no_replicates,1);

true_ave_CC_temp=inf*ones(no_replicates,1);

true_sd_CC_temp=inf*ones(no_replicates,1);

true_se_CC_temp=inf*ones(no_replicates,1);

true_CI_CC_temp=inf*ones(no_replicates,1);

true_ave_path_length_temp=inf*ones(no_replicates,1);

true_sd_path_length_temp=inf*ones(no_replicates,1);

true_se_path_length_temp=inf*ones(no_replicates,1);

true_CI_path_length_temp=inf*ones(no_replicates,1);

true_diameter_temp=inf*ones(no_replicates,1);

true_ave_eccentricity_temp=inf*ones(no_replicates,1);

58

true_sd_eccentricity_temp=inf*ones(no_replicates,1);

true_se_eccentricity_temp=inf*ones(no_replicates,1);

true_CI_eccentricity_temp=inf*ones(no_replicates,1);

sample_freq_filter = 1;

sample_ai = struct;

sample_ave_sig_filt= struct;

sample_no_inds_in_sig_data= struct;

sample_no_AIs= struct;

sample_ave_AI_filt= struct;

sample_sd_AI_filt= struct;

sample_skew_AI_filt= struct;

sample_kurtosis_AI_filt= struct;

sample_ave_deg= struct;

sample_sd_deg= struct;

sample_ave_weighted_deg= struct;

sample_sd_weighted_deg= struct;

sample_density= struct;

sample_ave_CC= struct;

sample_sd_CC= struct;

sample_se_CC= struct;

sample_CI_CC= struct;

sample_ave_path_length= struct;

sample_sd_path_length= struct;

sample_se_path_length= struct;

sample_CI_path_length= struct;

sample_diameter= struct;

sample_ave_eccentricity= struct;

sample_sd_eccentricity= struct;

sample_se_eccentricity= struct;

sample_CI_eccentricity= struct;

filt_sample = struct;

sample_top_ten_associates = struct;

sample_top_five_associates = struct;

sample_ave_sig_filt_temp=zeros(no_replicates,1);

sample_no_inds_in_sig_data_temp=zeros(no_replicates,1);

sample_no_AIs_temp=zeros(no_replicates,1);

sample_ave_AI_filt_temp=inf*ones(no_replicates,1);

sample_sd_AI_filt_temp=inf*ones(no_replicates,1);

sample_skew_AI_filt_temp=zeros(no_replicates,1);

sample_kurtosis_AI_filt_temp=zeros(no_replicates,1);

sample_ave_deg_temp=inf*ones(no_replicates,1);

sample_sd_deg_temp=inf*ones(no_replicates,1);

sample_ave_weighted_deg_temp=inf*ones(no_replicates,1);

sample_sd_weighted_deg_temp=inf*ones(no_replicates,1);

sample_density_temp=inf*ones(no_replicates,1);

sample_ave_CC_temp=inf*ones(no_replicates,1);

59

sample_sd_CC_temp=inf*ones(no_replicates,1);

sample_se_CC_temp=inf*ones(no_replicates,1);

sample_CI_CC_temp=inf*ones(no_replicates,1);

sample_ave_path_length_temp=inf*ones(no_replicates,1);

sample_sd_path_length_temp=inf*ones(no_replicates,1);

sample_se_path_length_temp=inf*ones(no_replicates,1);

sample_CI_path_length_temp=inf*ones(no_replicates,1);

sample_diameter_temp=inf*ones(no_replicates,1);

sample_ave_eccentricity_temp=inf*ones(no_replicates,1);

sample_sd_eccentricity_temp=inf*ones(no_replicates,1);

sample_se_eccentricity_temp=inf*ones(no_replicates,1);

sample_CI_eccentricity_temp=inf*ones(no_replicates,1);

% filt_sample_temp = inf*ones(no_replicates,1);

true_sighting = struct;

sample_sighting = struct;

true_sig_all_rep = struct;

sample_sig_all_rep = struct;

true_no_gp_all_t_all_rep = struct;

sample_no_gp_all_t_all_rep = struct;

gp_id_all_t_all_rep = struct;

gp_sizes_all_t_all_rep = struct;

true_comm = struct;

true_modularity = struct;

true_num_levels = struct;

true_num_comm = struct;

sample_comm = struct;

sample_modularity = struct;

sample_num_levels = struct;

sample_num_comm = struct;

filename = strcat('Simulation_',num2str(simulation_no));

heading = {'Simulation no.' 'Population size' 'No. of replicates' 'No. of louvain replicates'

'No. of time steps', 'No. of large sampling periods','Memory' 'Memory length' 'Group size'

'Group size variation' 'Seed (for diff data set replicates)' };

xlswrite(filename,heading,'intial_conditions','a1');

xlswrite(filename,[simulation_no, pop_size, no_replicates,no_louvain_replicates,

time,period_1, memory, memory_length,

gp_size_type,gp_var_type],'intial_conditions','a2');

xlswrite(filename,rng_val','intial_conditions','k2');

%

for rep = 1:no_replicates

rng(rng_val(rep))

for t = 1:time

disp(t)

60

%get patches/groups

gp_sizes = Group_sizes(gp_var_type,gp_size_type,pop_size,t,gp_sizes_all_t);

%patch/group size statistics

no_gp = sum(gp_sizes>0);

gp_sizes_all_t(t,:) = gp_sizes;

ave_gp_size(rep,t) = mean(gp_sizes(gp_sizes>0));

var_gp_size(rep,t) = var(gp_sizes(gp_sizes>0));

med_gp_size(rep,t) = median(gp_sizes(gp_sizes>0));

%assign individuals to groups/patches in the first time step

if t==1

 %create group id variable. It has group id for all inds. This will have identity of groups

repeated based on group size

 gp_id = repelem(1:no_gp,gp_sizes(gp_sizes>0));

 gp_id = gp_id(randperm(length(gp_id))); %this randomises the group id of all inds.

Now inds have random group ids i.e. are assigned to groups randomly.

elseif t>1

 inds = 1:pop_size; %individuals to choose from

 gp_id = zeros(1,pop_size);

 rowname = 1:pop_size; %row names of the assoc weights matrix

 colname = 1:pop_size; %col names of the assoc weights matrix

 for i = 1:no_gp %assign individuals to groups one at a time

 counter = 1; %counter for each individual in a given group

 sel_ind = zeros(1,pop_size); %vector of individuals selected

 sel_ind(counter) = randsample(repelem(inds(inds>0),2),1); %select the first ind of

the group randomly

 col_sel_ind = find(colname==sel_ind(counter)); %find the column of the selected

individual in the assoc weights matrix %

 assoc(:, col_sel_ind) = 0; %remove the column of the selected

individual in the assoc weights matrix

 colname(col_sel_ind) = 0; %column names after removing the column

of the selected individual in the assoc weights matrix

 while counter<gp_sizes(i) %to assign remaining individuals of a

group

 counter = counter+1;

 inds(ismember(inds,sel_ind)) = 0; %remove already chosen individuals

to prevent them from getting selected again

 gg = rand;

 if memory>=gg %check if associations are based on

familiarity or are random

 %if associations are based on familiarity

 row_sel_ind = ismember(rowname,sel_ind); %find the row number of the

selected ind(s)

 assoc_sel_ind = assoc(row_sel_ind,:); %get assoc weights from assoc

weights matrix for the sel ind(s)

 combined_assoc_sel_ind = mean(assoc_sel_ind,1); %get average assoc

weights of all selected individuals

 if mean(combined_assoc_sel_ind)~=0 %to check if selected inds have 0

61

assoc weights with all the remaining inds, i.e.,they haven't previously associated with any of

the remaining individuals

 mm = mm+1;

 sel_ind(counter) =

randsample(repelem(inds,2),1,true,repelem(combined_assoc_sel_ind,2));

 else

 nn = nn+1;

 sel_ind(counter) = randsample(repelem(inds(inds>0),2),1); %if selected

inds have 0 assoc weights with all remaining inds, next individual is chosen uniformly

randomly

 end

 else

 pp = pp+1; %if associations are random

 sel_ind(counter) = randsample(repelem(inds(inds>0),2),1); %all individuals

whether known or unknown have equal chance of being selected

 end

 col_sel_ind = find(colname==sel_ind(counter)); %find the column of the

newly selected individual

 assoc(:, col_sel_ind) = 0; %remove the column of the newly selected

individual from the assoc matrix

 colname(col_sel_ind) = 0; %remove the column name of the newly selected

individual from the assoc matrix

 end

 gp_id(sel_ind(sel_ind>0)) = i ; %provide group id for the sel ind which are

numbers greater than 0

 inds(ismember(inds,sel_ind)) = 0; %remove inds already selected

 end

end

%calculate average experienced group size every t

dummy = 0;

for i = 1:no_gp

 dummy = dummy + gp_sizes(i)*gp_sizes(i);

end

ave_exp_gp_size(rep,t) = dummy/sum(gp_sizes);

%second kind of experienced group size

for i = 1:pop_size

 focal_ind_id = gp_id(i);

 exp_gp_size(t,i) = sum(gp_id==focal_ind_id)-1;

end

%get 100% of the sighting data by sampling. Based on group ids assigned to individuals

sighting data is obtained

for i = 1:no_gp

 temp = find(gp_id==i); %find all inds assigned to the same group

 true_sig(index,1:length(temp)) = temp; %each group is one sighting

 index = index+1;

62

end

true_no_gp_all_t(t) = no_gp; %to keep track of the true number of groups in

each time step

%get a percentage of the sighting data by sampling every few time steps

if rem(t,sample_int)==0

 sample_no = ceil(per_sample*no_gp/100); %number of groups that will be sampled in

this time step

 sample_gp = randsample(1:no_gp, sample_no); %to obtain ids of groups that will be

sampled in this time step through random draw

 for i = 1:sample_no

 temp = find(gp_id==sample_gp(i)); %to find individuals belonging to the group id

chosen randomly

 sample_sig(index2,1:length(temp)) = temp; %assign group to sighting data

 index2 = index2+1;

 end

 sample_no_gp_all_t(t) = sample_no; %to keep track of the number of groups

sampled in every time step

end

%adjacency matrix is created every time step

field = strcat('t',num2str(t));

adj_every_t.(field) = Adjacency_matrix(gp_id,pop_size);

association = association+adj_every_t.(field);

assoc = zeros(pop_size, pop_size);

fieldname = strcat('period_2_',num2str(t));

true_ai(rep).(fieldname) = adj_every_t.(field);

cuml_adj = cuml_adj + adj_every_t.(field);

cuml_ai_mean(rep,t) = mean(cuml_adj/t,'all');

cuml_ai_var(rep,t) = var(cuml_adj/t,0,'all');

cuml_ai_std(rep,t) = std(cuml_adj/t,0,'all');

cuml_adj_mean(rep,t) = mean(cuml_adj,'all');

cuml_adj_var(rep,t) = var(cuml_adj,0,'all');

cuml_adj_std(rep,t) = std(cuml_adj,0,'all');

%association weights for the next time step

if t<=memory_length

 for i = 1:t

 field = strcat('t',num2str(i));

 assoc = assoc + adj_every_t.(field); %depending on the memory length adjacency

matrices are summed to get association weights

 end

else

 for i = t-memory_length+1:t

 field = strcat('t',num2str(i));

 assoc = assoc + adj_every_t.(field);

 end

end

63

gp_id_all_t(t,:) = gp_id; %to keep track of group ids of all individuals every

time step

gp_id = 0;

gp_sizes = zeros(1,pop_size);

end %end of time loop

%variance in group size across t, variance in a kind of exp

var_ave_gp_size(rep) = var(ave_gp_size(rep,:));

var_exp_gp_size(rep,:) = var(exp_gp_size);

ave_exp_gp_size_2(rep,:) = mean(exp_gp_size);

%to separate sighting data based on periods and assigning data from each period into a

struct

true_sighting(rep).r = Separate_sighting(true_no_gp_all_t,true_sig, time, period_1,

period_2);

sample_sighting(rep).r = Separate_sighting(sample_no_gp_all_t,sample_sig, time, period_1,

period_2);

%get overall AI for all time steps leaving out first 20 time steps

fieldname = strcat('period_1_',num2str(0));

dummy = sum(true_no_gp_all_t(1:20));

temp_true_sig = true_sig(dummy+1:end, :);

dummy = sum(sample_no_gp_all_t(1:20));

temp_sample_sig = sample_sig(dummy+1:end, :);

[true_ai(rep).(fieldname),~,

true_no_inds_in_sig_data(rep).(fieldname),true_ave_sig_filt(rep).(fieldname),true_no_AIs(r

ep).(fieldname),true_ave_AI_filt(rep).(fieldname),true_sd_AI_filt(rep).(fieldname),true_ske

w_AI_filt(rep).(fieldname),true_kurtosis_AI_filt(rep).(fieldname),true_ave_deg(rep).(fieldn

ame),true_sd_deg(rep).(fieldname),true_ave_weighted_deg(rep).(fieldname),true_sd_weight

ed_deg(rep).(fieldname),true_density(rep).(fieldname),true_ave_CC(rep).(fieldname),true_s

d_CC(rep).(fieldname),true_se_CC(rep).(fieldname),true_CI_CC(rep).(fieldname),true_ave

_path_length(rep).(fieldname),true_sd_path_length(rep).(fieldname),true_se_path_length(re

p).(fieldname),true_CI_path_length(rep).(fieldname),true_diameter(rep).(fieldname),true_av

e_eccentricity(rep).(fieldname),true_sd_eccentricity(rep).(fieldname),true_se_eccentricity(r

ep).(fieldname),true_CI_eccentricity(rep).(fieldname)] =

Network_metrics(temp_true_sig,true_freq_filter,pop_size,0,2.262);

[true_louvain_ind, true_comm(rep).(fieldname), true_modularity(rep).(fieldname),

true_num_comm(rep).(fieldname), true_num_levels(rep).(fieldname)] =

Louvain_memory(true_ai(rep).(fieldname),rep,0,'period_1',0,simulation_no,no_louvain_rep

licates); %0 for true data

filt_true(rep).(fieldname) = length(true_louvain_ind);

[sample_ai(rep).(fieldname), ~,

sample_no_inds_in_sig_data(rep).(fieldname),sample_ave_sig_filt(rep).(fieldname),sample

_no_AIs(rep).(fieldname),sample_ave_AI_filt(rep).(fieldname),sample_sd_AI_filt(rep).(fiel

dname),sample_skew_AI_filt(rep).(fieldname),sample_kurtosis_AI_filt(rep).(fieldname),sa

mple_ave_deg(rep).(fieldname),sample_sd_deg(rep).(fieldname),sample_ave_weighted_deg

(rep).(fieldname),sample_sd_weighted_deg(rep).(fieldname),sample_density(rep).(fieldnam

e),sample_ave_CC(rep).(fieldname),sample_sd_CC(rep).(fieldname),sample_se_CC(rep).(fi

64

eldname),sample_CI_CC(rep).(fieldname),sample_ave_path_length(rep).(fieldname),sampl

e_sd_path_length(rep).(fieldname),sample_se_path_length(rep).(fieldname),sample_CI_pat

h_length(rep).(fieldname),sample_diameter(rep).(fieldname),sample_ave_eccentricity(rep).(

fieldname),sample_sd_eccentricity(rep).(fieldname),sample_se_eccentricity(rep).(fieldname

),sample_CI_eccentricity(rep).(fieldname)] =

Network_metrics(temp_sample_sig,sample_freq_filter,pop_size,1,2.262);

[sample_louvain_ind, sample_comm(rep).(fieldname), sample_modularity(rep).(fieldname),

sample_num_comm(rep).(fieldname), sample_num_levels(rep).(fieldname)] =

Louvain_memory(sample_ai(rep).(fieldname),rep,1,'period_1',0,simulation_no,no_louvain_

replicates); %0 for sample data

filt_sample(rep).(fieldname) = length(sample_louvain_ind);

temp_true_sig = [];

temp_sample_sig = [];

%%get AI seperately for each sampling period except the first

for i = 2:period_1

 fieldname = strcat('period_1_',num2str(i));

 temp_true_sig = true_sighting(rep).r.(fieldname);

 temp_sample_sig = sample_sighting(rep).r.(fieldname);

 [true_ai(rep).(fieldname), ~,

true_no_inds_in_sig_data(rep).(fieldname),true_ave_sig_filt(rep).(fieldname),true_no_AIs(r

ep).(fieldname),true_ave_AI_filt(rep).(fieldname),true_sd_AI_filt(rep).(fieldname),true_ske

w_AI_filt(rep).(fieldname),true_kurtosis_AI_filt(rep).(fieldname),true_ave_deg(rep).(fieldn

ame),true_sd_deg(rep).(fieldname),true_ave_weighted_deg(rep).(fieldname),true_sd_weight

ed_deg(rep).(fieldname),true_density(rep).(fieldname),true_ave_CC(rep).(fieldname),true_s

d_CC(rep).(fieldname),true_se_CC(rep).(fieldname),true_CI_CC(rep).(fieldname),true_ave

_path_length(rep).(fieldname),true_sd_path_length(rep).(fieldname),true_se_path_length(re

p).(fieldname),true_CI_path_length(rep).(fieldname),true_diameter(rep).(fieldname),true_av

e_eccentricity(rep).(fieldname),true_sd_eccentricity(rep).(fieldname),true_se_eccentricity(r

ep).(fieldname),true_CI_eccentricity(rep).(fieldname)] =

Network_metrics(temp_true_sig,true_freq_filter,pop_size,0,2.262);

 [true_louvain_ind, true_comm(rep).(fieldname), true_modularity(rep).(fieldname),

true_num_comm(rep).(fieldname), true_num_levels(rep).(fieldname)] =

Louvain_memory(true_ai(rep).(fieldname),rep,0,'period_1',i,simulation_no,no_louvain_repl

icates); %0 for true data

 filt_true(rep).(fieldname) = length(true_louvain_ind);

 [sample_ai(rep).(fieldname), ~,

sample_no_inds_in_sig_data(rep).(fieldname),sample_ave_sig_filt(rep).(fieldname),sample

_no_AIs(rep).(fieldname),sample_ave_AI_filt(rep).(fieldname),sample_sd_AI_filt(rep).(fiel

dname),sample_skew_AI_filt(rep).(fieldname),sample_kurtosis_AI_filt(rep).(fieldname),sa

mple_ave_deg(rep).(fieldname),sample_sd_deg(rep).(fieldname),sample_ave_weighted_deg

(rep).(fieldname),sample_sd_weighted_deg(rep).(fieldname),sample_density(rep).(fieldnam

e),sample_ave_CC(rep).(fieldname),sample_sd_CC(rep).(fieldname),sample_se_CC(rep).(fi

eldname),sample_CI_CC(rep).(fieldname),sample_ave_path_length(rep).(fieldname),sampl

e_sd_path_length(rep).(fieldname),sample_se_path_length(rep).(fieldname),sample_CI_pat

h_length(rep).(fieldname),sample_diameter(rep).(fieldname),sample_ave_eccentricity(rep).(

fieldname),sample_sd_eccentricity(rep).(fieldname),sample_se_eccentricity(rep).(fieldname

),sample_CI_eccentricity(rep).(fieldname)] =

Network_metrics(temp_sample_sig,sample_freq_filter,pop_size,1,2.262);

65

 [sample_louvain_ind, sample_comm(rep).(fieldname),

sample_modularity(rep).(fieldname), sample_num_comm(rep).(fieldname),

sample_num_levels(rep).(fieldname)] =

Louvain_memory(sample_ai(rep).(fieldname),rep,1,'period_1',i,simulation_no,no_louvain_r

eplicates); %0 for sample data

 filt_sample(rep).(fieldname) = length(sample_louvain_ind); %number of individuals

that pass through the frequency filter for each replicate and each period

 temp_true_sig = [];

 temp_sample_sig = [];

end

true_sig_all_rep(rep).r = true_sig;

true_sig = zeros(pop_size*time,pop_size);

sample_sig_all_rep(rep).r = sample_sig;

sample_sig = zeros(pop_size*time,pop_size);

true_no_gp_all_t_all_rep(rep).r = true_no_gp_all_t;

true_no_gp_all_t = zeros(1,time);

sample_no_gp_all_t_all_rep(rep).r = sample_no_gp_all_t;

sample_no_gp_all_t = zeros(1,time);

index = 1; %counter to assign values to true sighiting data

index2 = 1; %counter to assign values to sample sighiting data

gp_id_all_t_all_rep(rep).r = gp_id_all_t;

gp_sizes_all_t_all_rep(rep).r = gp_sizes_all_t;

gp_sizes_all_t = zeros(time, pop_size);

gp_id_all_t = zeros(time, pop_size);

exp_gp_size = zeros(time, pop_size);

cuml_adj = zeros(pop_size, pop_size);

end % end of replicates loop

ave_incr_new_assoc = New_associates(true_ai, no_replicates,period_2,

pop_size,simulation_no);

xlswrite(filename, {'time','mean for all reps'},'Cumulative_ai','a1');

xlswrite(filename, {'var for all reps'},'Cumulative_ai','m1');

xlswrite(filename, {'std for all reps'},'Cumulative_ai','x1');

xlswrite(filename, [1:time]','Cumulative_ai','a2');

xlswrite(filename, cuml_ai_mean','Cumulative_ai','b2');

xlswrite(filename, cuml_ai_var','Cumulative_ai','m2');

xlswrite(filename, cuml_ai_std','Cumulative_ai','x2');

xlswrite(filename, {'time','mean for all reps'},'Cumulative_adj','a1');

xlswrite(filename, {'var for all reps'},'Cumulative_adj','m1');

xlswrite(filename, {'std for all reps'},'Cumulative_adj','x1');

xlswrite(filename, [1:time]','Cumulative_adj','a2');

xlswrite(filename, cuml_adj_mean','Cumulative_adj','b2');

xlswrite(filename, cuml_adj_var','Cumulative_adj','m2');

xlswrite(filename, cuml_adj_std','Cumulative_adj','x2');

ticktock1 = toc;

tic

66

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),

[1:time]','Ave_group_sizes','a2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Ave_group

_sizes','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Ave_group_s

izes','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_gp_size','Ave_group_size

s','b2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),

[1:time]','Median_group_sizes','A2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Median_gr

oup_sizes','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Median_grou

p_sizes','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),med_gp_size','Median_group

_sizes','b2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),

[1:time]','Ave_exp_group_sizes','A2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Ave_exp_

group_sizes','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Ave_exp_gro

up_sizes','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_exp_gp_size','Ave_exp_g

roup_sizes','b2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),

[1:time]','Var_group_sizes','A2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Var_group

_sizes','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Var_group_si

zes','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),var_gp_size','Var_group_size

s','b2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),[1:no_replicates]','Var_ave_gr

oup_sizes','a2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'across all

t'},'Var_ave_group_sizes','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),var_ave_gp_size,'Var_ave_gr

oup_sizes','b2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'individuals/replicates'},'Ave

_exp_group_sizes_2','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Ave_exp_gro

up_sizes_2','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),[1:pop_size]','Ave_exp_group

_sizes_2','a2');

67

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_exp_gp_size_2','Ave_exp

_group_sizes_2','b2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'individuals/replicates'},'Var

_exp_group_sizes','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Var_exp_gro

up_sizes','b1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),[1:pop_size]','Var_exp_group

_sizes','a2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),var_exp_gp_size','Var_exp_g

roup_sizes','b2');

for i = 0:period_1

 if i~=1

 fieldname = strcat('period_1_',num2str(i));

 for j = 1:no_replicates %this loop is there to get values of different

replicates but same period as one list

 true_ave_sig_filt_temp(j) = true_ave_sig_filt(j).(fieldname);

 true_no_inds_in_sig_data_temp(j)=true_no_inds_in_sig_data(j).(fieldname);

 true_no_AIs_temp(j)=true_no_AIs(j).(fieldname);

 true_ave_AI_filt_temp(j)=true_ave_AI_filt(j).(fieldname);

 true_sd_AI_filt_temp(j)=true_sd_AI_filt(j).(fieldname);

 true_skew_AI_filt_temp(j)=true_skew_AI_filt(j).(fieldname);

 true_kurtosis_AI_filt_temp(j)=true_kurtosis_AI_filt(j).(fieldname);

 true_ave_deg_temp(j)=true_ave_deg(j).(fieldname);

 true_sd_deg_temp(j)=true_sd_deg(j).(fieldname);

 true_ave_weighted_deg_temp(j)=true_ave_weighted_deg(j).(fieldname);

 true_sd_weighted_deg_temp(j)=true_sd_weighted_deg(j).(fieldname);

 true_density_temp(j)=true_density(j).(fieldname);

 true_ave_CC_temp(j)=true_ave_CC(j).(fieldname);

 true_sd_CC_temp(j)=true_sd_CC(j).(fieldname);

 true_se_CC_temp(j)=true_se_CC(j).(fieldname);

 true_CI_CC_temp(j)=true_CI_CC(j).(fieldname);

 true_ave_path_length_temp(j)=true_ave_path_length(j).(fieldname);

 true_sd_path_length_temp(j)=true_sd_path_length(j).(fieldname);

 true_se_path_length_temp(j)=true_se_path_length(j).(fieldname);

 true_CI_path_length_temp(j)=true_CI_path_length(j).(fieldname);

 true_diameter_temp(j)=true_diameter(j).(fieldname);

 true_ave_eccentricity_temp(j)=true_ave_eccentricity(j).(fieldname);

 true_sd_eccentricity_temp(j)=true_sd_eccentricity(j).(fieldname);

 true_se_eccentricity_temp(j)=true_se_eccentricity(j).(fieldname);

 true_CI_eccentricity_temp(j)=true_CI_eccentricity(j).(fieldname);

 sample_ave_sig_filt_temp(j) = sample_ave_sig_filt(j).(fieldname);

 sample_no_inds_in_sig_data_temp(j)=sample_no_inds_in_sig_data(j).(fieldname);

 sample_no_AIs_temp(j)=sample_no_AIs(j).(fieldname);

 sample_ave_AI_filt_temp(j)=sample_ave_AI_filt(j).(fieldname);

 sample_sd_AI_filt_temp(j)=sample_sd_AI_filt(j).(fieldname);

 sample_skew_AI_filt_temp(j)=sample_skew_AI_filt(j).(fieldname);

 sample_kurtosis_AI_filt_temp(j)=sample_kurtosis_AI_filt(j).(fieldname);

68

 sample_ave_deg_temp(j)=sample_ave_deg(j).(fieldname);

 sample_sd_deg_temp(j)=sample_sd_deg(j).(fieldname);

 sample_ave_weighted_deg_temp(j)=sample_ave_weighted_deg(j).(fieldname);

 sample_sd_weighted_deg_temp(j)=sample_sd_weighted_deg(j).(fieldname);

 sample_density_temp(j)=sample_density(j).(fieldname);

 sample_ave_CC_temp(j)=sample_ave_CC(j).(fieldname);

 sample_sd_CC_temp(j)=sample_sd_CC(j).(fieldname);

 sample_se_CC_temp(j)=sample_se_CC(j).(fieldname);

 sample_CI_CC_temp(j)=sample_CI_CC(j).(fieldname);

 sample_ave_path_length_temp(j)=sample_ave_path_length(j).(fieldname);

 sample_sd_path_length_temp(j)=sample_sd_path_length(j).(fieldname);

 sample_se_path_length_temp(j)=sample_se_path_length(j).(fieldname);

 sample_CI_path_length_temp(j)=sample_CI_path_length(j).(fieldname);

 sample_diameter_temp(j)=sample_diameter(j).(fieldname);

 sample_ave_eccentricity_temp(j)=sample_ave_eccentricity(j).(fieldname);

 sample_sd_eccentricity_temp(j)=sample_sd_eccentricity(j).(fieldname);

 sample_se_eccentricity_temp(j)=sample_se_eccentricity(j).(fieldname);

 sample_CI_eccentricity_temp(j)=sample_CI_eccentricity(j).(fieldname);

 end

 %

Write_network_stats(filename,0,'period_1',i,no_replicates,pop_size,time,ave_gp_size,memo

ry_length,true_ave_sig_filt_temp,true_no_inds_in_sig_data_temp,true_no_AIs_temp,true_a

ve_AI_filt_temp,true_sd_AI_filt_temp,true_skew_AI_filt_temp

,true_kurtosis_AI_filt_temp, true_ave_deg_temp, true_sd_deg_temp,

true_ave_weighted_deg_temp, true_sd_weighted_deg_temp, true_density_temp,

true_ave_CC_temp, true_sd_CC_temp, true_se_CC_temp, true_CI_CC_temp,

true_ave_path_length_temp, true_sd_path_length_temp, true_se_path_length_temp,

true_CI_path_length_temp, true_diameter_temp, true_ave_eccentricity_temp,

true_sd_eccentricity_temp, true_se_eccentricity_temp, true_CI_eccentricity_temp);

Write_network_stats(filename,1,'period_1',i,no_replicates,pop_size,time,ave_gp_size,memo

ry_length,sample_ave_sig_filt_temp,sample_no_inds_in_sig_data_temp,sample_no_AIs_te

mp,sample_ave_AI_filt_temp,sample_sd_AI_filt_temp,sample_skew_AI_filt_temp

,sample_kurtosis_AI_filt_temp, sample_ave_deg_temp, sample_sd_deg_temp,

sample_ave_weighted_deg_temp, sample_sd_weighted_deg_temp, sample_density_temp,

sample_ave_CC_temp, sample_sd_CC_temp, sample_se_CC_temp, sample_CI_CC_temp,

sample_ave_path_length_temp, sample_sd_path_length_temp,

sample_se_path_length_temp, sample_CI_path_length_temp, sample_diameter_temp,

sample_ave_eccentricity_temp, sample_sd_eccentricity_temp,

sample_se_eccentricity_temp, sample_CI_eccentricity_temp);

 end

end

for i = 0:period_1

 if i~=1

Write_louvain_results(filename,0,'period_1',i,no_replicates,pop_size,no_louvain_replicates,

true_num_levels,true_modularity,true_num_comm, strcat('period_1_',num2str(i)));

69

Write_louvain_results(filename,1,'period_1',i,no_replicates,pop_size,no_louvain_replicates,

sample_num_levels,sample_modularity,sample_num_comm,

strcat('period_1_',num2str(i)));

 end

end

group_size_summary(1,1:no_replicates) = mean(ave_gp_size,2)';

group_size_summary(2,1:no_replicates) = mean(med_gp_size,2)';

group_size_summary(3,1:no_replicates) = mean(var_gp_size,2)';

group_size_summary(4,1:no_replicates) = var_ave_gp_size';

group_size_summary(5,1:no_replicates) = mean(ave_exp_gp_size,2)';

group_size_summary(6,1:no_replicates) = mean(ave_exp_gp_size_2,2)';

group_size_summary(7,1:no_replicates) = mean(var_exp_gp_size,2)';

xlswrite(filename, {'replicates'}, 'Group_sizes', 'a1');

xlswrite(filename, 1:no_replicates, 'Group_sizes', 'b1');

xlswrite(filename, {'Ave. of Ave. group size (over time)'; 'Ave. of Median group size(over

time)';'Ave. variance in group size every time step';'Variance in ave group size with time';

'Ave. of ave. (over inds) experienced group size (over time)';'Ave. of ave. (over time)

experienced group size 2 (ave over individuals)';'Ave. variance (over time) in experienced

group size with time (ave over individuals)'}, 'Group_sizes', 'a2')

xlswrite(filename, group_size_summary, 'Group_sizes', 'b2')

ticktock2 = toc;

Group_sizes.m

function gp_sizes =

Group_sizes(gp_var_type,gp_size_type,pop_size,t,original_gp_sizes_all_t)

if gp_size_type ==2

 no_success = 1;

 prob_success = 0.5;

elseif gp_size_type == 4

 no_success = 4;

 prob_success = 0.5;

end

if t==1

 flag = 1;

else

 flag = 0;

end

if gp_var_type==0

 gp_sizes = zeros(1,pop_size);

 if gp_size_type ==2

 %create groups for every time step, group sizes add up to population size.

 %This is a simplest case with group sizes that are equal and fixed across all time steps

and all groups

70

 no_gp = 100;

 elseif gp_size_type ==4

 no_gp = 50;

 end

 temp = pop_size/no_gp;

 gp_sizes(1:no_gp) = repelem(temp,no_gp);

elseif gp_var_type==1

 gp_sizes = zeros(1,pop_size);

%assign group sizes based on negative binomial distribution. Ensure group sizes add up to

population size.

 c =1;

 while(sum(gp_sizes)~=pop_size)

 temp = nbinrnd(no_success,prob_success);

 if temp>=1 %to get non zero group sizes

 gp_sizes(c) = temp;

 c = c+1;

 end

 if sum(gp_sizes)>pop_size

 gp_sizes = zeros(1,pop_size);

 c = 1;

 elseif sum(gp_sizes)<pop_size

 continue;

 else

 if gp_size_type==2

 if mean(gp_sizes(gp_sizes>0))>=1.5 & mean(gp_sizes(gp_sizes>0))<=2.5

 break;

 else

 gp_sizes = zeros(1,pop_size);

 c = 1;

 end

 elseif gp_size_type==4

 if mean(gp_sizes(gp_sizes>0))>=3.5 & mean(gp_sizes(gp_sizes>0))<=4.5

 break;

 else

 gp_sizes = zeros(1,pop_size);

 c = 1;

 end

 end

 end

 end

end

71

Adjacency_matrix.m

function adj_every_t = Adjacency_matrix(gp_id, pop_size)

adj_every_t = zeros(pop_size, pop_size);

for i = 1:pop_size

 for j = 1:pop_size

 if i~=j

 if gp_id(i)==gp_id(j)

 adj_every_t(i,j) = 1;

 end

 end

 end

end

end

Separate_sighting.m

function sighting_str = Separate_sighting(no_gp_all_t, s,time, period_1, period_2)

incr = time/period_1; %should always be a whole number

k = 1;

l = 0;

dummy = 1;

while (l<time)

 l = l+incr;

 sum_gps(dummy) = sum(no_gp_all_t(k:l));

 k = l+1 ;

 dummy = dummy+1;

end

k = 0;

l = 0;

dummy = 1;

while(l<time)

 l = l+incr;

 fieldname = strcat('period_1_',num2str(dummy));

 sighting_str.(fieldname) = s(k+1:k+sum_gps(dummy),:);

 k = k+sum_gps(dummy);

 dummy = dummy+1;

end

incr = time/period_2; %should always be a whole number

k = 1;

l = 0;

dummy = 1;

while (l<time)

 l = l+incr;

 sum_gps(dummy) = sum(no_gp_all_t(k:l));

 k = l+1;

 dummy = dummy+1;

72

end

k = 0;

l = 0;

dummy = 1;

while(l<time)

 l = l+incr;

 fieldname = strcat('period_2_',num2str(dummy));

 sighting_str.(fieldname) = s(k+1:k+sum_gps(dummy),:);

 k = k+sum_gps(dummy);

 dummy = dummy+1;

end

end

Network_metrics.m

function [AI_filt_sym, Sig,

no_inds_in_sig_data,ave_sig_filt,no_AIs,ave_AI_filt,sd_AI_filt,skew_AI_filt,kurtosis_AI_f

ilt,ave_deg, sd_deg,ave_weighted_deg,

sd_weighted_deg,density,ave_CC,sd_CC,se_CC,CI_CC,ave_path_length,sd_path_length,se

_path_length,CI_path_length,diameter,ave_eccentricity,sd_eccentricity,se_eccentricity,CI_e

ccentricity] = Network_metrics(sig_data,freq_filter, no_inds,sample,t_val)

 inp = sort(sig_data,2,'ascend');

 uniqID=no_inds;

 Sig=zeros(uniqID,1);

 Assoc=zeros(uniqID);

 for i=1:size(inp,1) %This code block counts the number of times each individual is

seen in the overall sighting data

 for k=1:size(inp,2)

 if inp(i,k)>0

 if inp(i,k)<(uniqID+1)

 Sig(inp(i,k))= Sig(inp(i,k))+1;

 end

 end

 end

 end

 filtered_uniqID=0;

 for i=1:uniqID %This code block counts the number of individuals which pass the

frequency filter

 if (Sig(i)>freq_filter)

 filtered_uniqID=filtered_uniqID+1;

 end

 end

 filter_select=1:uniqID; %in the loop below assigned zero if the sightings of that

individual is not retained, if retained the variable takes the value of the number of sightings

of that individual

73

 mapping_inv=1:uniqID; %in the loop below individuals whose sighting is retained

is sequentially assigned number starting from 1, those whose sighting is not retained will be

assigned zero

 orig_ID=1:filtered_uniqID; %IDs (assigned in the beginning) of individuals whose

sighting was retained

 Sig_filtered=1:filtered_uniqID; %number of sightings of individuals that are retained

 Assoc_filtered=zeros(filtered_uniqID);

 AI_filtered=zeros(filtered_uniqID);

 j=1;

 for i=1:uniqID

 if(Sig(i)>freq_filter)

 Sig_filtered(j)=Sig(i);

 orig_ID(j)=i; % this is the list of original IDs whose sighting numbers are

present in Sig_filtered.

 filter_select(i)=Sig(i);

 mapping_inv(i)=j; % this is a list of modified nos. corresponding to the original

ID no's row if the individual is included and zero otherwise if the individual has been

filtered out.

 j=j+1;

 else

 filter_select(i)=0;

 mapping_inv(i)=0;

 end

 end

 for i=1:size(inp,1) %This code block calculates number of associations between

pairs of filtered individuals, the matrix has values only in the upper triangle

 for k=1:size(inp,2)

 if inp(i,k)>0

 if inp(i,k)<(uniqID+1)

 if(filter_select(inp(i,k))>0)

 if (k<size(inp,2))

 for j=(k+1):size(inp,2)

 if (inp(i,j)>0)

 if (inp(i,j)<(uniqID+1))

 if(filter_select(inp(i,j))>0)

 Assoc_filtered(mapping_inv(inp(i,k)),mapping_inv(inp(i,j)))=

 Assoc_filtered(mapping_inv(inp(i,k)),mapping_inv(inp(i,j))) +1;

 end

 end

 end

 end

 end

 end

 end

 end

 end

 end

 for i=1:uniqID %This code block calculates association index between pairs of

filtered individuals, the matrix has values only in the upper triangle

74

 if (i<uniqID)

 for j=(i+1):uniqID

 if ((Sig(i)+Sig(j))>0 && filter_select(i)>0 && filter_select(j)>0)

AI_filtered(mapping_inv(i),mapping_inv(j))=Assoc_filtered(mapping_inv(i),mapping_inv(j

))/(Sig(i)+Sig(j)-Assoc_filtered(mapping_inv(i),mapping_inv(j)));

 end

 end

 end

 end

 Assoc_filt_size=size(Assoc_filtered,1);

 AI_filt_sym=AI_filtered + AI_filtered';

 if sample==1

 AI_sample = zeros(no_inds,no_inds);

 for i = 1:no_inds

 if i<no_inds

 for j = (i+1):no_inds

 if mapping_inv(i) == 0

 AI_sample(i,j) = 0;

 else

 if mapping_inv(j) == 0

 AI_sample(i,j) = 0;

 else

 AI_sample(i,j) = AI_filtered(mapping_inv(i),mapping_inv(j));

 end

 end

 end

 end

 end

 AI_filt_sym = [];

 AI_filt_sym = AI_sample+ AI_sample' ;

 end

 ones_matrix=ones(size(AI_filt_sym));

 ones_matrix=tril(ones_matrix,-1);

 AI_filt_sym_list=AI_filt_sym(find(ones_matrix==1)); %this is the list of all association

indices, basically the upper triangle data in the form of a list

 no_inds_in_sig_data= size(unique(sig_data),1)-1 ; % -1 is to take out the zeros.

 ave_sig_filt= sum(Sig_filtered)/no_inds_in_sig_data;

 no_AIs= nchoosek(no_inds_in_sig_data,2);

 diff_AI_nos=size(AI_filt_sym_list,1) - no_AIs;

 ave_AI_filt=mean(AI_filt_sym_list);

 sd_AI_filt=std(AI_filt_sym_list);

 skew_AI_filt=skewness(AI_filt_sym_list);

 kurtosis_AI_filt=kurtosis(AI_filt_sym_list);

75

 adjacency_matrix=zeros(size(AI_filt_sym));

 x=find(AI_filt_sym>0);

 adjacency_matrix(x)=1;

 % To find the degree of vertices %%%%%%%%for upper triangle

 degree=zeros(no_inds,1);

 for i=1:no_inds

 for j=1:i

 if(AI_filt_sym(j,i)>0)

 degree(i)=degree(i)+1;

 end

 end

 for k=i:no_inds %%%%%%%%%%%% for lower triangle

 if(AI_filt_sym(i,k)>0)

 degree(i)=degree(i)+1;

 end

 end

 end

% diff_ind_nos=no_inds - no_inds_in_sig_data; %degree not calculated if no of inds in

sig data is less than actual number of inds

% if (diff_ind_nos > 0)

% temp_degree=sort(degree,1);

% clear degree;

% degree=temp_degree(diff_ind_nos+1:end,:);

% end

 ave_deg=mean(degree);

 sd_deg=std(degree);

 % To find the weighted degree of vertices %%%%%%%%for upper triangle

 weighted_degree=zeros(no_inds,1);

 for i=1:no_inds

 for j=1:i

 if(AI_filt_sym(j,i)>0)

 weighted_degree(i)= AI_filt_sym(j,i)+ weighted_degree(i);

 end

 end

 for k=i:no_inds %%%%%%%%%%%% for lower triangle

 if(AI_filt_sym(i,k)>0)

 weighted_degree(i)= AI_filt_sym(i,k)+ weighted_degree(i);

 end

 end

 end

% diff_ind_nos=no_inds - no_inds_in_sig_data;

% if (diff_ind_nos > 0)

% temp_weighted_degree=sort(weighted_degree,1);

% clear weighted_degree;

% weighted_degree=temp_weighted_degree(diff_ind_nos+1:end,:);

76

% end

 ave_weighted_deg=mean(weighted_degree);

 sd_weighted_deg=std(weighted_degree);

 % GETTING NO. OF EDGES AND DENSITY

 count_assoc=0; % This gives the total number of associations (edges) across

all individual pairs (not the total value of associations).

 for i=1:no_inds

 for j=1:i

 if(AI_filt_sym(i,j)>0)

 count_assoc=count_assoc+1;

 end

 end

 end

 %possible_edges=filtered_uniqID * (filtered_uniqID-1) / 2;

 possible_edges=no_inds * (no_inds-1) / 2; % This is because, while randomly picking up

inds, some inds may not turn up in the sighting data at all.

 density = count_assoc/possible_edges;

 % CLUSTERING COEFFICIENT

 graph=adjacency_matrix;

 no_triangles = diag(graph*triu(graph)*graph); % Number of triangles for each node as

opposed to total number of triangles - see above.

 % The local clustering coefficient of each node.

 CC_node = zeros(size(degree));

 CC_node(degree > 1) = 2 * no_triangles(degree > 1) ./ (degree(degree >

1).*(degree(degree > 1) - 1));

 %Average clustering coefficient of the graph

 ave_CC = mean(CC_node(degree > 1));

 sd_CC = std(CC_node(degree > 1));

 se_CC = sd_CC/sqrt(size(CC_node(degree>1),1));

 CI_CC = t_val*se_CC;

 % PATH LENGTHS

 path_lengths=inf*ones(length(adjacency_matrix)); % Because if there is no connection,

the path length will be infinity.

 node_nos = 1:length(adjacency_matrix); % These are node nos for which the path lengths

are not yet found.

 for i=1:length(adjacency_matrix)

 path_lengths(i,i)=0; % Distance of node with itself.

 node_nos = 1:length(adjacency_matrix); % Nodes with path lengths not found.

 while not(isempty(node_nos))

 [min_path_length,index] = min(path_lengths(i,node_nos)); % [Y,I] = MIN(X) gives

Y with the min value and I containing the indices of the minimum values. If there is more

than one minimal element, the index of the first one is returned.

77

 % The above should give the index of the focal node from which path lengths are

being calculated.

 for j=1:length(node_nos)

 if adjacency_matrix(node_nos(index),node_nos(j))>0 &

path_lengths(i,node_nos(j))>path_lengths(i,node_nos(index))+adjacency_matrix(node_nos(

index),node_nos(j));

path_lengths(i,node_nos(j))=path_lengths(i,node_nos(index))+adjacency_matrix(node_nos(

index),node_nos(j));

 end

 end

 node_nos = setdiff(node_nos,node_nos(index)); % SETDIFF(A,B) when A and B

are vectors returns the values in A that are not in B. The result will be sorted.

 end

 end

 % when_no_paths=find(path_lengths_1==Inf);

 no_of_shortest_paths=length(find(path_lengths<Inf))-length(adjacency_matrix);

 ones_matrix=ones(size(path_lengths));

 ones_matrix=tril(ones_matrix,-1);

 path_lengths_list=path_lengths(find(ones_matrix==1));

 ave_path_length=mean(path_lengths_list(path_lengths_list<Inf)); % Taking mean of

those path lengths that are not Infinity in value.

 sd_path_length=std(path_lengths_list(path_lengths_list<Inf));

 se_path_length=sd_path_length/sqrt(size(path_lengths_list(path_lengths_list<Inf),1));

 CI_path_length=t_val*se_path_length;

 diameter=max(path_lengths_list(path_lengths_list<Inf));

 % ECCENTRICITY (this is the longest of the shortest paths from each node)

 temp2=path_lengths; % This is to overcome the problem of having nodes with no

connections and, therefore, infinity path lengths.

 temp2(temp2==Inf)=NaN; % By default, NaN will be omitted, so the infinity values will

be omitted when replaced by NaN.

 temp2(temp2==0)=NaN;

 eccentricity=max(temp2,[],2); % [Y,I] = MAX(X,[],DIM) operates along the dimension

DIM.

 ave_eccentricity=mean(eccentricity(eccentricity<Inf));

 sd_eccentricity=std(eccentricity(eccentricity<Inf));

 se_eccentricity=sd_eccentricity/sqrt(size(eccentricity(eccentricity<Inf),1));

 CI_eccentricity=t_val*se_eccentricity;

end

78

Louvain_memory.m

function [ind,s, mod_max,numComm, levels] = louvain(ai,replicate,sample, period_type,

per,simulation_no,rep)

%% This code block is taken from Kabini_assoc_from_excel_file_mod_2020 and modified

slightly. It creates a text file with edges and weights using the AI matrix

count_assoc=0; % This gives the total number of associations across all

individual pairs (not the total value of associations).

for i=1:size(ai,1)

 for j=1:size(ai,1)

 if(ai(i,j)>0)

 count_assoc=count_assoc+1;

 end

 end

end

edges=ones(count_assoc,3);

temp_index=1;

for i=1:size(ai,1)

 for j=1:size(ai,1)

 if(ai(i,j)>0)

 edges(temp_index,1)=i;

 edges(temp_index,2)=j;

 edges(temp_index,3)= ai(i,j);

 temp_index=temp_index+1;

 end

 end

end

newfilename=strcat('Edge_list','_',num2str(simulation_no),'_', num2str(replicate),'_',

num2str(sample),'_',period_type,'_', num2str(per),'.csv');

dlmwrite(newfilename, edges, 'delimiter', ' ', 'newline', 'pc');

%% This code block is taken from multiCpp.modA and has been modified. It calls the C++

executables of the louvain algorithm. Communities obtained in each pass is sent to

modularity func to calculate max modularity attained in that pass.

cppConvert= 'D:\Anvitha\Louvain_v0.3_core1\gen-louvain\convert'; %path of the C++

executables in the computer. Ensure that the required .dll files from cygwin bin are present

in the folder with these .exe files

cppHierarchy='D:\Anvitha\Louvain_v0.3_core1\gen-louvain\hierarchy';

cppCommunity='D:\Anvitha\Louvain_v0.3_core1\gen-louvain\louvain';

binFile='edges.bin'; %file with output from convert.exe

weightsFile='edges.weights'; %file with output from convert.exe

treeFile='edges.tree'; %file with output from louvain.exe

edgesFile= newfilename; %input file with list of edges and weight

s = struct;

mod_max = struct;

numComm = struct;

levels = zeros(rep,1);

79

for i = 1:rep

 commandLine = sprintf('%s -i %s -o %s -w %s ',cppConvert,

edgesFile,binFile,weightsFile); %to call convert.exe from command line, input is edges file,

output is edges.bin and edges.weights file

 [a, b] = system(commandLine);

 commandLine=sprintf('%s %s -l -1 -q %s -w %s > %s',cppCommunity,

binFile,'0',weightsFile,treeFile); %to call louvain.exe, input is edges.bin and edges.weights

while the output is edges.tree which has list of communities for all the passes, '0' as input

uses Newman-Girvan modularity as quality function

 [dummy1 dummy2]= system(commandLine);

 commandLine=sprintf('%s %s ',cppHierarchy, treeFile); %to call hierarchy.exe to obtain

a list of number of communities in each pass, input is edges.tree file

 [dummy1 dummy2]= system(commandLine);

 dummy3=strread(dummy2,'%s','delimiter',':');

 numLevels=str2num(dummy3{2}) ;

 levels(i,1) = numLevels;

 for j=0:numLevels-1 %this code block separates communities of different passes present

in edges.tree into different text files

 nodesFile='nodes';

 nodesFile=[nodesFile '_' num2str(j),'.txt'];

 commandLine=sprintf('%s %s -l %d > %s',cppHierarchy, treeFile,j,nodesFile);

 fprintf('%s\n', commandLine);

 [dummy1 dummy2]=system(commandLine);

 t = readtable(nodesFile); %converting text file with communities into a table

 fieldname = strcat('pass',num2str(j)); %to name field for structure s, each pass is one

field

 ind = table2array(t(2:end,1));

 s(i).(fieldname) = table2array(t(2:end,2)); %adding communities of a given pass of ith

iteration into a structure

 communities = table2array(t(2:end,2));

 numComm(i).(fieldname) = max(communities);

 mod_max(i).(fieldname) = Modularity(ai,ind,communities);

 delete (nodesFile);

 end

 delete (binFile);

 delete (weightsFile);

 delete (treeFile);

end

 if replicate ~= 2 && replicate ~= 3

 delete (edgesFile)

 else

 newfilename=strcat('Edge_list','_',num2str(simulation_no),'_', num2str(replicate),'_',

num2str(sample),'_',period_type,'_', num2str(per),'.net');

 dlmwrite(newfilename, edges, 'delimiter', ' ', 'newline', 'pc');

 delete (edgesFile);

 end

 end

80

Modularity.m

function Q = modularity(ai,ind,comm)

format long;

m = sum(sum(ai));

Q = 0;

sum_i = 0;

ai = double(ai);

for i = 1:length(ind)

 sum_j = 0;

 for j = 1:length(ind)

 Aij = ai(i,j);

 ki = sum(sum(ai(i,:)));

 kj = sum(sum(ai(j,:)));

 if isequal(comm(i,1),comm(j,1))

 delta = 1;

 else

 delta = 0;

 end

 sum_j = sum_j + (Aij - (ki*kj/m))*delta;

 end

 sum_i = sum_i + sum_j;

end

Q = sum_i/m;

end

81

New_associates.m

function ave_deg_incr = New_associates(true_ai, no_replicates,period,

pop_size,simulation_no)

uni = zeros(pop_size,period);

ave_deg_incr = zeros(no_replicates,period);

deg_incr = struct;

for i = 1:no_replicates

 a1 = true_ai(i).('period_2_1')>0;

 for k = 1:pop_size

 b1 = find(a1(k,:)==1);

 uni(k,1) = length(b1);

 for j = 2:period

 fieldname = strcat('period_2_',num2str(j));

 a2 = true_ai(i).(fieldname)>0;

 b2 = find(a2(k,:)==1);

 dummy = setdiff(b2(1,:),b1(1,:));

 dummy2 = length(dummy);

 uni(k,j) = uni(k,j-1)+ dummy2;

 b1 = unique([b1 b2]);

 end

 end

 deg_incr(i).rep = uni;

% dummy3 = true_ai(i).('period_1_0')>0;

% for k = 1:pop_size

% ind_degree(i,k) = sum(dummy3(k,:)>0);

% end

 ave_deg_incr(i,:) = mean(deg_incr(i).rep);

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_deg_incr(i,:)','New_assoc

iates',strcat(CHAR(i+1),'2'));

end

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),

[1:period]','New_associates','a2');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'period/replicates'},'New_ass

ociates','a1');

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'New_associat

es','b1');

end

82

Write_network_stats.m

function Write_network_stats(filename,sample,period_type,

per,no_replicates,pop_size,time,ave_gp_size,memory,ave_sig_filt,no_inds_in_sig_data,no_

AIs,ave_AI_filt,sd_AI_filt,skew_AI_filt ,kurtosis_AI_filt, ave_deg, sd_deg,

ave_weighted_deg, sd_weighted_deg, density, ave_CC, sd_CC, se_CC, CI_CC,

ave_path_length, sd_path_length, se_path_length, CI_path_length, diameter,

ave_eccentricity, sd_eccentricity, se_eccentricity, CI_eccentricity)

sheetname = strcat('Network_stats_', num2str(sample),'_',period_type,'_',num2str(per));

heading = {'No. of replicates' '' 'No. of inds' 'No. of time steps' 'Ave. gp. size' 'Memory type'

'' '' '' 'Ave. no. of sig. filt' 'No. ind in sig data' 'No. of AIs' 'Ave. AI filt' 'SD AI filt' 'Skew in

AI filt' 'Kurtosis of AI filt' 'Ave. degree' 'SD degree' 'Ave. weighted degree' 'SD weighted

degree' 'Density' 'Ave. Clust Coeff' 'SD Clust Coeff' 'SE Clust Coeff' '95% CI Clust Coeff'

'Ave. path length' 'SD path length' 'SE path length' '95% CI path length' 'Diameter' 'Ave.

eccentricity' 'SD eccentricity' 'SE eccentricity' '95% CI eccentricity'};

xlswrite (filename, heading, sheetname,'A1');

xlswrite (filename, no_replicates, sheetname,'A2');

xlswrite (filename, pop_size, sheetname,'C2');

xlswrite (filename, time, sheetname,'D2');

xlswrite (filename, mean(ave_gp_size,2) , sheetname,'E2');

xlswrite (filename, memory , sheetname,'F2');

xlswrite (filename, ave_sig_filt, sheetname,'J2');

xlswrite (filename, no_inds_in_sig_data, sheetname,'K2');

xlswrite (filename, no_AIs, sheetname,'L2');

xlswrite (filename, ave_AI_filt, sheetname, 'M2');

xlswrite (filename, sd_AI_filt, sheetname, 'N2');

xlswrite (filename, skew_AI_filt, sheetname, 'O2');

xlswrite (filename, kurtosis_AI_filt, sheetname, 'P2');

xlswrite (filename, ave_deg, sheetname, 'Q2');

xlswrite (filename, sd_deg, sheetname, 'R2');

xlswrite (filename, ave_weighted_deg, sheetname, 'S2');

xlswrite (filename, sd_weighted_deg, sheetname, 'T2');

xlswrite (filename, density, sheetname, 'U2');

xlswrite (filename, ave_CC, sheetname, 'V2');

xlswrite (filename, sd_CC, sheetname, 'W2');

xlswrite (filename, se_CC, sheetname, 'X2');

xlswrite (filename, CI_CC, sheetname, 'Y2');

xlswrite (filename, ave_path_length, sheetname, 'Z2');

xlswrite (filename, sd_path_length, sheetname, 'AA2');

xlswrite (filename, se_path_length, sheetname, 'AB2');

xlswrite (filename, CI_path_length, sheetname, 'AC2');

xlswrite (filename, diameter, sheetname, 'AD2');

xlswrite (filename, ave_eccentricity, sheetname, 'AE2');

xlswrite (filename, sd_eccentricity, sheetname, 'AF2');

xlswrite (filename, se_eccentricity, sheetname, 'AG2');

xlswrite (filename, CI_eccentricity, sheetname, 'AH2');

end

83

Write_louvain_results.m

function

Write_louvain_results(filename,sample,period_type,per,no_replicates,pop_size,no_louvain_

replicates,num_levels,modularity,num_comm,fieldname)

sheetname = strcat('L_output_', num2str(sample),'_',period_type,'_',num2str(per));

heading = {'Data set replicate' 'Louvain replicate' 'No. of passes/levels' 'Modularity pass 0'

'Modularity pass 1' 'Modularity pass 2' 'Modularity pass 3' '' '' 'No. of communities pass 0'

'No. of communities pass 1' 'No. of communities pass 2' 'No. of communities pass 3'};

xlswrite(filename,heading,sheetname,'A1');

for i = 1:no_replicates

 k = i-1;

 xlswrite(filename,i,sheetname,strcat('a',num2str(no_louvain_replicates*k+2)));

 l = 1:no_louvain_replicates;

 xlswrite(filename,l',sheetname,strcat('b',num2str(no_louvain_replicates*k+2)));

 xlswrite(filename, num_levels(i).(fieldname), sheetname,

strcat('c',num2str(no_louvain_replicates*k+2)));

 ave_comm_levels(i) = mean(num_levels(i).(fieldname));

 sd_comm_levels(i) = std(num_levels(i).(fieldname));

 n_comm_levels(i) = length(num_levels(i).(fieldname));

 table2 = struct2table(modularity(i).(fieldname));

 table3 = struct2table(num_comm(i).(fieldname));

 col = size(table2,2);

 for j = 1:col

 temp = table2array(table2(:,j)); %output is a cell array if there are a few empty rows ([])

in a given column of the table. Empty rows arise when a pass is not reached.

 if iscell(temp)

 ave_modularity(i,j) = mean(cell2mat(temp));

 sd_modularity(i,j) = std(cell2mat(temp));

 n_modularity(i,j) = length(cell2mat(temp));

 else

 ave_modularity(i,j) = mean(temp);

 sd_modularity(i,j) = std(temp);

 n_modularity(i,j) = length(temp);

 end

 xlswrite(filename, temp, sheetname,

strcat(char('c'+j),num2str(no_louvain_replicates*k+2)))

 end

 col = size(table3,2);

 for j = 1:col

 temp2 = table2array(table3(:,j)); %output is a cell array if there are a few empty rows

([]) in a given column of the table. Empty rows arise when a pass is not reached.

 if iscell(temp2)

 ave_no_comm(i,j) = mean(cell2mat(temp2));

 sd_no_comm(i,j) = std(cell2mat(temp2));

 n_no_comm(i,j) = length(cell2mat(temp2));

 else

 ave_no_comm(i,j) = mean(temp2);

 sd_no_comm(i,j) = std(temp2);

 n_no_comm(i,j) = length(temp2);

84

 end

 xlswrite(filename, temp2, sheetname,

strcat(char('c'+6+j),num2str(no_louvain_replicates*k+2))); %if there are more than 5

passes, +6 must be changed to a higher number

 end

end

%%Remeber to edit excel column numbers in xlswrite statement if the number of passes is

more than 5

sheetname2 = strcat('Ave_L_output_', num2str(sample),'_',period_type,'_',num2str(per));

heading = {'Data set replicate' 'Ave. no. of passes/levels' 'SD of no. of passes/levels' 'n' ' '

'Ave. modularity pass 0' 'Ave. modularity pass 1' 'Ave. modularity pass 2' 'Ave. modularity

pass3' ' ' ' ' 'SD modularity pass 0' 'SD modularity pass 1' 'SD modularity pass 2' 'SD

modularity pass 3' ' ' 'n pass 0' 'n pass 1 ' 'n pass 2 ' 'n pass 3' ' ' ' ' 'Ave. no. of communities

pass 0' 'Ave. no. of communities pass 1' 'Ave. no. of communities pass 2' 'Ave. no. of

communities pass 3' ' ' ' ' ' ' 'SD no. of communities pass 0' 'SD no. of communities pass 1'

'SD no. of communities pass 2' 'SD no. of communities pass 3' ' ' 'n pass 0' 'n pass 1 ' 'n pass

2 ' 'n pass 3'};

xlswrite(filename,heading,sheetname2,'A1');

temp = 1:no_replicates;

xlswrite(filename,temp', sheetname2,'A2');

xlswrite(filename,ave_comm_levels',sheetname2,'B2');

xlswrite(filename,sd_comm_levels',sheetname2,'C2');

xlswrite(filename,n_comm_levels',sheetname2,'D2');

xlswrite(filename,ave_modularity,sheetname2,'F2');

xlswrite(filename,sd_modularity,sheetname2,'L2');

xlswrite(filename,n_modularity,sheetname2,'Q2');

xlswrite(filename,ave_no_comm,sheetname2,'W2');

xlswrite(filename,sd_no_comm,sheetname2,'AD2');

xlswrite(filename,n_no_comm,sheetname2,'AI2');

end

