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THESIS ABSTRACT 

 

The wide diversity in social structures is thought to be the result of selection for individual 

behavioural strategies and inter-individual interaction patterns that maximise fitness under 

different environments (van Schaik and van Hoff 1983, Kappeler and van Schaik 2002). 

Recently, several simulation studies have attempted to generate social structure through 

simple and general models (Ilany and Akçay 2015, Rios and Kraenkel 2017, Cantor and 

Farine 2018) but have not simultaneously examined the effect of resource conditions on social 

structure. Here, I describe a simulation study that I conducted to examine whether a social 

structure emerged when individuals associated with others to different extents based on 

familiarity, in a habitat with limited and patchy ephemeral resources that either varied in 

quantity or stayed constant over time. Additionally, I also examined the sampling conditions 

under which a social structure would be wrongly inferred even when associations were 

random. Thus, the first question dealt with possible social structure emerging due to simple 

rules, whereas the second dealt with possible apparent social structure when there was none. 

Results from my simulations showed that when resources were limited and ephemeral, social 

structure, characterised by low network density and high modularity, emerged only when all 

the associations were with familiar individuals and there was no temporal variation in 

resources. When there was temporal variation in resources, this structure broke down even 

when many associations were with familiar individuals, becoming similar to that obtained for 

random association. When associations were only with familiar individuals, social structure 

could also emerge if resources were not limited. Simulations to address the second question 

showed that low sampling intensity and a small sampling period could lead to apparent social 

structure (with high modularity and low density) even in a population with random 

associations. Moderately intense sampling conducted over long periods of time was essential 

to detect social structure close to the true structure. 
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CHAPTER 1: INTRODUCTION 

Group-living is a common trait among animals, and is thought to be selected for when the 

benefits of being in groups outweigh the costs (Alexander 1974, Krause and Ruxton 2002). 

The benefits of group living include protection from predation and infanticide, better access 

to abiotic resources, increased opportunities to mate, and cooperative offspring care, while 

the major costs include competition for resources and mates, and increased transmission of 

pathogens/parasites (Janson and van Schaik 1988, Dehn 1990, Wrangham et al. 1993, 

Gompper 1996, Sterck et al. 1997, Hass and Valenzuela 2002, Altizer et al. 2003, Silk 2007, 

Clutton-Brock and Huchard 2013). Group living animals exhibit a wide diversity of social 

structures, which refer to the content, quality, and patterning of social interactions and the 

relationships that result from repeated interactions amongst the members of the population 

(see Hinde 1976, Kappeler and van Schaik 2002). Specific social structures are thought to be 

adaptive evolutionary outcomes of the ecological factors selecting for individual behavioural 

strategies and inter-individual interaction patterns that maximise survival and reproductive 

success (van Schaik and van Hoff 1983, Kappeler and van Schaik 2002). The social structure 

in a population can also, in turn, affect individual reproductive success, gene flow and 

information flow within a population, and population dynamics (Whitehead 2008a, Wilson 

1975). 

 

In primates, the socio-ecological model was proposed to explain how resource-risk 

distributions select for specific female behavioural strategies, which lead to diverse social 

structures across different species (Wrangham 1980, van Schaik 1989, Sterck et al. 1997). 

According to this model, when resources are abundant and predation risk exists, females live 

in egalitarian groups whose composition may change with time due to dispersal. However, 

when resources are limited, females are resident in natal groups, within which the nature of 

relationships amongst females may range from egalitarian to despotic and nepotistic 

depending on the extent of food competition. There has been variable support for this model 

in several primate species (Whitten 1983, van Schaik et al. 1983, Fashing 2001, Grueter et al. 

2016; see Thierry 2008, Koening and Borries 2008, and Clutton-Brock and Janson 2012 for 

reviews), and, recently, there have been calls to consider models of social structure that are 

more simple, general, and generative (Ilany and Akçay 2015, Cantor and Farine 2018, Firth 

et al. 2017, He et al. 2019). To that end, Ilany and Akçay (2015) constructed a social 

inheritance model in which individuals tended to associate with associates of their parents. 
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This model generated aspects of social structure that resembled those of spotted hyena, rock 

hyrax, bottlenose dolphin, and sleepy lizard. Another model by Cantor and Farine (2018) 

tracked individuals who competed for a single resource patch, and continued to forage with 

those with whom they foraged last only if that endeavour had resulted in the acquisition of 

sufficient food. This model produced kin-structured groups with stable group compositions. 

The authors further claimed that this model provided a simple mechanism for the emergence 

of foraging specialisation. An agent-based model by Rios and Kraenkel (2017) found highly 

modular and spatially segregated groups when individuals moved closer or away from one 

another depending on the memory of previous interactions. In contrast to the previous studies, 

which only investigated the effects of simple individual rules of association on social 

structure, in this present study, I aimed to find out if such simple rules of association are by 

themselves sufficient to explain social structure, irrespective of resource distributions. To 

elaborate, I examined how resource constraints, resource variation, and the simple 

behavioural strategy to associate with familiar individuals affected social relationships and 

the social structure that resulted from them. I used individual-based simulations, which can 

be thought of as in silico experiments that aim to generate organisation or structure occurring 

at a higher level through the actions and interactions of entities at a lower level in lieu of 

actual experimentation (Bodine et al. 2020). Thus, these simulations would be helpful in 

understanding whether simple local rules could result in the emergence of higher-order 

phenomena or patterns such as social structure, quantified here in terms of association patterns 

and network measures (see below). 

 

I also wanted to examine whether sampling itself could result in the detection of social 

structure when there was none. Various measurable attributes such as rates of 

interactions/associations, asymmetry in interactions, linearity of dominance, social 

differentiation, and stability of associations have been used to describe social structure 

(Whitehead 2008a). Network analysis and network measures such as degree, density, 

modularity, clustering coefficient, and path length have also been used to describe social 

structure/social network structure (for example, Lusseau and Newmann 2004, Wolf et al. 

2007, Sundaresan et al. 2007, Cantor et al. 2012, Nandini et al. 2018). To measure these 

different attributes of social structure, data are often collected on the interactions or 

associations occurring amongst identified individuals in a population. However, since every 

interaction and every individual cannot be sampled, it is possible that the estimates of social 

structure may not reflect the actual social structure (as also previously noted, for example, by 



 

 

 

5 

Whitehead 2008b, Franks et al. 2010, Voelkl et al. 2011). I, therefore, also used individual-

based simulations to examine to what extent social structure might be wrongly inferred as an 

artefact of low sampling even when individuals associated with one another randomly. 

 

The specific questions I addressed were the following: 

1. Does social structure emerge under different resource conditions when individuals 

associate based on familiarity? 

If simple association rules or individual behavioural strategies are solely responsible for 

patterns in group composition, the social structure that resulted from it would not be very 

different under different resource conditions. To examine the influence of simple association 

rules and resource conditions on social structure, I considered models wherein individuals 

associated with others to different extents based on familiarity in a habitat with limited and 

patchy ephemeral resources that either varied or not in quantity over time. If individuals 

showed no preference in their associates, i.e., if associations were random, groups were 

expected to be random subsets of individuals in the population, the compositions of which 

would change with time. This would result in a social structure characterised by low 

modularity, high density, absence of preferential associations, and the absence of temporal 

stability in associations. However, if individuals showed some inertia in whom they 

associated with, based on their past memory of associations (solely familiarity, and not 

positive or negative effects of interactions), I expected to find stable group compositions with 

time. This would result in a social structure characterised by high modularity, low density, 

presence of preferential associations, and temporal stability in associations. The above 

expectations of social structure would not be different across differently-sized resource 

patches or different types of temporal variation in resource quantity (presence or absence of 

variation) if resource conditions did not influence social structure. However, if resources were 

limiting, individuals would be forced to occupy any free patch they could find, resulting in 

them not being able to always maintaining their preferred associations. This could lead to the 

lack of social structure if resources were varying spatiotemporally. In my models, I used such 

a scenario in which resources were limited, as might often be the case in the wild. 

 

2. Under what conditions of inadequate sampling would social structure be wrongly inferred 

when individuals actually associate with one another randomly? 

If individuals associated with one another randomly and if the observer did not have sufficient 

data on all the individuals and their associations, it might happen just by chance that some 
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associations were recorded to occur more, or less, frequently than others. The population 

would then appear to have preferential associations, and social structure attributes measured 

would not indicate random association. Therefore, if large amounts of data on individuals and 

their associations were not obtained, i.e., if a large number of groups were not sampled for 

long periods of time, social structure attributes measured, and the inferences made using them 

might be very different from the true attributes. In order to examine how sampling affects 

inferences of social structure even when associations are random, I modelled scenarios of 

sampling from a population with random associations by considering different sampling 

intensities and different lengths of sampling period. Additionally, I also examined if the 

average group size affected such inferences. I expected to find populations with high 

modularity and low density when sampling intensity was low and sampling period length was 

short, but not when sampling intensity was high and sampling period length was long. I also 

expected to find populations with modularity and density closer to the true value when group 

sizes were larger than when group sizes were smaller simply because more associations would 

be sampled when groups were larger than when groups were smaller, for the same sampling 

effort.
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CHAPTER 2: METHODS 

As mentioned above, I used individual-based simulations to address both questions. The 

details of the simulations are given below. 

 

2.1 Does social structure emerge under different resource conditions when individuals 

associate based on familiarity? 

 

2.1.1 Simulation overview 

I considered a static population of fixed size (200 individuals), within which individuals 

associated with one another based on specified rules of association and resource conditions 

(see below). No assumption was made about the age or sex of the individuals or the nature of 

the associations amongst individuals. I generated a patch size distribution at every time step, 

and assigned individuals to the patches based on familiarity with one another. I assumed 

individuals within a patch to be associating with one another, and used the association data to 

measure different attributes of social structure. 

 

Resource conditions 

A patch was defined as an area with finite resources such that a patch of size 1 had one 

available (feeding) site, which could, therefore, support only one individual, and so on. I 

considered two kinds of resource distributions. In the first kind, there was no variation in the 

amount of resource available either within a time step or across time steps, i.e., all the patches 

in a given time step had equal patch size, and the size did not change with time. This 

represented ephemeral resources that were regenerated every time step with the same quantity 

(although unlikely to be seen in the wild). In the second kind, there was variation in the 

amount of resource available within a time step and across time steps, i.e., patch sizes varied 

across the patches present at a given time step and across time steps. This represented 

ephemeral resources that were regenerated every time step in different quantities. I coded the 

presence or absence of temporal variation in resources using a patch size variation parameter 

(value=1 when variation present, 0 when absent). Additionally, I examined the effect of 

resource constraints by considering average patch size as a parameter. Average patch size was 

either 2 or 4; if it was 2, patches could accommodate two individuals on average, whereas, if 

it was 4, patches could accommodate four individuals on average. At each time step, I 

generated the patch size distribution either by setting all the patch sizes to the average patch 
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size (in the case of no patch size variation), or by obtaining patch sizes from a zero-truncated 

negative binomial distribution with the appropriate mean value (group sizes: Cohen 1972, 

Caraco 1978) (when there was patch size variation). In all the simulations, the sum of patch 

sizes of all the patches was equal to the population size. This represented a habitat with just 

enough resources for all the individuals in the population. 

 

Familiarity-based association 

In all the simulations, I used two parameters, memory and memory length, to implement 

familiarity-based associations. The memory parameter determined how often associations in 

the population were preferential associations based on familiarity; in other words, how 

frequently did individuals associate with their previous associates. I used memory parameter 

values of 1, 0.5, or 0. If the memory parameter was 1, 100% of the associations were based 

on familiarity. If the memory parameter was 0.5, 50% of the associations were based on 

familiarity. If the memory parameter was 0, there were no preferential associations based on 

familiarity, and all the associations were random. The memory length parameter determined 

how long the memory of familiarity lasted; it was the farthest time step in the past, from which 

a given individual remembered its previous associates. I used memory length parameter 

values of 1 (short; individuals remembered previous associates from only 1 time step back), 

20 (medium), or 400 (long). The values of the above two parameters determined the extent to 

which associations were based on familiarity. 

 

2.1.2 Generating associations 

I generated a patch size distribution (determined by the average patch size and the patch size 

variation parameters) in each time step such that the sum of patch sizes of all the patches was 

equal to the population size. In the first time step, individuals were assigned to the feeding 

sites within patches randomly (Figure 1). From the second time step onwards, associations 

were based on familiarity to different extents (due to memory and memory length parameters). 

Since the total amount of resource available was equal to the population size, all the sites in 

each patch would be occupied. Due to resource constraints, group size in a patch could not be 

larger than the patch size (number of sites available in a patch). From the second time step 

onwards, I selected the first individual for a given patch randomly from the population. Then, 

I drew a uniform random number between 0 and 1. If this number was less than the memory 

parameter, I created an association based on familiarity by adding an individual from the pool 

of previous associates of the first individual to the patch. The available pool of previous 
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associates of the first individual was based on the memory length parameter, which 

determined the farthest time step in the past from which the first individual remembered its 

previous associates. If the first individual had multiple previous associates, I selected a 

previous associate based on weighted probabilities (weighted by the number of times each 

associate had previously associated with the first individual). If the first individual did not 

have any available previous associate or did not remember any previous associate, the second 

individual assigned to the patch was an individual unknown to the first individual, selected 

randomly from the pool of remaining individuals in the population, in order to fill the patch. 

If the random number drawn was larger than the memory parameter, I created a non-

preferential association by adding a random individual from the population as the second 

individual of the patch. 

 

I added individuals one at a time to the patch in the manner above until all the feeding sites 

within a patch were occupied, i.e., the number of individuals in the patch was equal to the 

patch size allocated. When more than two individuals had already been assigned to a patch 

and the next association was to be based on familiarity, the next individual was selected with 

a probability weighted by the average of the number of times it had previously associated with 

the individuals already assigned to the patch. Thus, it could so happen that the next individual 

chosen might have been a previous associate of only one/some and not all the individuals in 

the patch. I added individuals to each patch sequentially until all the individuals in the 

population were assigned to patches. As mentioned above, in all the simulations, all the 

individuals present within a patch constituted a group and were considered to be associating 

with one another. Since individuals were assigned to patches until the patches were filled, 

group size distribution was the same as the patch size distribution. 

 

While adding individuals to patches, I ensured that the same individual was not allotted to 

more than one patch in the same time step. I repeated the process of obtaining a patch size 

distribution and the sequential addition of individuals to patches every time step for 400 time 

steps. The group composition of each group at a time step was considered one sighting, and 

the group compositions of all the groups in that time step constituted the sighting data for that 

time step. 
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Figure 1. Flow chart of the simulations conducted to examine the effect of memory, memory 

length, average patch size, and patch size variation on social structure. 

 

 

2.1.3 Detecting social structure  

Once the sighting data were generated, I used the following four aspects to look for social 

structure: density, modularity, stability of associations, and social differentiation. 

 

Calculating density and modularity 

I excluded group composition data from the first twenty time steps, i.e., all the groups found 

in the first twenty time steps were removed from the sighting data. I then calculated an 

association index (AI) matrix using the remaining sighting data. The AI matrix contained 

pairwise association indices, measuring the extent of association between pairs of individuals. 

I used the simple ratio index (Cairns and Schwager 1987) to calculate AI as 

�� =  ���
�����	���

 , where NAB was the number of times A and B were seen together, NA was 

the total number of sightings of A (alone and with others), and NB was the total number of 

sightings of B. Using the AI matrix, I constructed a weighted network, in which each node 

represented an individual, each edge represented the association between two individuals, and 

AI was the weight of the edge between the two individuals. I calculated density and 

modularity of this weighted network. Density is a measure of the extent of connectivity in the 

network, and is calculated as the ratio of the observed number of edges to the number of 
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possible edges in the network (see Wasserman and Faust 1994). Thus, a density close to zero 

indicates a poorly connected network with very few ties, whereas a value of 1 indicates a fully 

connected network with all possible ties. 

 

Modularity measures the strength of the division of a network into communities. A network 

would have distinct communities when modularity is high, which is when the number and 

strength of connections between the nodes within communities are higher than that expected 

by random chance (Newman 2004). In all the simulations, the modularity of the network was 

obtained using the Louvain algorithm (Blondel et al. 2008). The Louvain algorithm is a 

heuristic method of determining community structure hierarchically by optimising Girvan-

Newman modularity given by the formula (Newman 2004): 


 = 1
2
 �[��� − ��, ��

2
��
]�(��, ��) 

Where, ��� is the weight of the edge between i and j 

          �� =  ∑ ����  is the sum of weights of the edges attached to node i 

          �� is the identity of the community to which node i is assigned 

          �(��, ��) is 1 if nodes i and j are assigned to the same community and 0 otherwise 

          
 =  �
� ∑ �����  

Girvan-Newman modularity ranges from -1 to 1. A value of 0 indicates that the strength of 

connections within communities is not different from random chance, while a value greater 

than 0 indicates that the strength of connections within communities is greater than that 

expected by random chance. Usually, a network is considered to be partitioned into 

meaningful communities when the modularity value is greater than 0.3 (Newman 2004). 

 

The Louvain algorithm has two main phases (together called a pass), which were repeated 

iteratively. In phase one, each node was assigned to a different community. Then for a given 

node i, the change in modularity was calculated if i was moved from its original community 

to the community of its neighbour j. The community assignment of node i was changed only 

if there was a gain in modularity. The process was repeated sequentially for all nodes of the 

network until there was no change in modularity, i.e., when a local maximum was reached. 

In phase two, a new network was created in which the nodes of the network were the 

communities found in phase one. The weights of the edges between two new nodes (each 

being a community containing more than one node in phase 1) were determined by adding 
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the weights of edges from every node in one community to another, with the edges between 

nodes of the same community forming self-loops in the new network. Phases one and two 

were repeated iteratively until there was no change in modularity. Thus, with each pass, a 

higher level of hierarchy in the community structure, if present, could be detected. The 

Louvain algorithm was implemented in MATLAB R2019b (The MathWorks, Inc., 1994-

2022, www.mathworks.com; code appended at the end of the thesis) by running the C++ 

executables (generated through Cygwin, a software that compiles and executes source codes 

written to run on Unix-like operating systems, available at https://cygwin.com/.) for the codes 

provided by the authors at https://sourceforge.net/projects/louvain/. The Louvain algorithm 

took the list of pairwise association indices as input, detected communities, and provided the 

number of passes, the number of communities produced in each pass and the identity of 

communities that a given individual was assigned to in each pass as outputs. I calculated 

maximum modularity reached in the final pass using the information on the number of 

communities detected and the composition of each community. 

 

Stability of associations and social differentiation 

To understand how associations changed with time, the stability of associations and social 

differentiation were measured at every time step. The stability of associations was examined 

by plotting the average cumulative number of new associates per individual against time. For 

each individual in the population, the cumulative number of new associates it had at time step 

t was obtained by comparing its associates (group members) at time step t with associates 

from time step 1 to t-1. This was then averaged across all the individuals in the population. 

Social differentiation is the variation in the dyadic probabilities of association calculated 

through the coefficient of variation (CV) of pairwise AIs (Whitehead 2008a). If there were 

preferred/avoided associates, this CV of AIs would be higher than that expected by random 

chance. The presence of preferential associations would also lead to a network with distinct 

communities and high modularity. To determine the CV of AI at time step t, first, an AI matrix 

was constructed using all the sighting data from time step 1 to t. Then, the CV was calculated 

for all the elements of the AI matrix. The average cumulative number of new associates per 

individual and the CV of AI was calculated at every time step for 400 time steps. 

 

If individuals in the population continued to associate with the same set of individuals, i.e., if 

there was stability in associations, the average cumulative number of new associates per 

individual would not change with time, the density of the network would be low, and the 
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modularity of the network would be high. Similarly, if individuals had consistent and strong 

preferences in their associations, the CV of pairwise AIs would be constant and higher than 

that expected if associations were random across all time steps. Further, the density of the 

network would be low, and modularity would be high. 

 

I ran simulations to examine the effects of memory, memory length, the average patch size, 

and patch size variation parameters (see Table 1 for parameter values) on network density, 

network modularity, stability of associations, and social differentiation. I used 36 simulations 

(Supplementary material, Table 1) to explore all combinations of the above factors, resulting 

in a fully factorial design. Each simulation was run ten times. All the simulations were run on 

MATLAB R2019b (The MathWorks, Inc, 1994-2022, www.mathworks.com; code appended 

at the end of the thesis). 

 

Table 1. Initialisation of different parameters for simulations conducted to examine the effect 

of memory, memory length, average patch size, and patch size variation on social structure. 

 

Parameter Value 

Population size 200 

Total time 400 time steps 

Memory parameter 1, 0.5, 0 

Memory length 1, 20, 400 

Average patch size 2, 4 

Patch size variation Present, Absent 

 

 

2.1.5 Data analysis 

To determine the effect of memory, memory length, average patch size, and patch size 

variation on density and modularity, I ran two four-factor ANOVAs using Statistica 7 

(StatSoft, Inc. 2004). In these ANOVAs, memory, memory length, average patch size, and 

patch size variation were treated as fixed factors. There were 10 replicates for each level of 

the factors. I did not perform ANOVAs on the cumulative number of new associates or the 

CV of AI because they were expected to give the same patterns as density and modularity, 

respectively. I calculated effect sizes using eta-square. 
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2.2 Under what conditions of inadequate sampling would social structure be wrongly 

inferred when individuals actually associate with one another randomly? 

 

2.2.1 Simulation overview 

I used a static population of 200 individuals again. At every time step (for 400 time steps in 

all), I obtained a group size distribution, and assigned individuals to the groups randomly. To 

simulate field sampling, I noted the group compositions of a set of groups at different time 

steps (see below), and each group was considered a sighting. To examine the effects of 

sampling on inference of social structure, two parameters were considered, namely, sampling 

intensity and sampling period length. Sampling intensity determined how often groups were 

sampled (sampling interval) and the proportion of groups that were sampled. Sampling period 

length determined the total time for which sampling was done to infer social structure. The 

simulations also examined if sampling effects were different for different average group sizes.  

 

2.2.2 Generating associations and sighting data 

I obtained a group size distribution every time step by drawing numbers from a zero-truncated 

negative binomial distribution with a specific average group size (the average group size 

parameter was either 2 or 4 depending on the simulation). I ensured that the group sizes added 

up to the population size. I then randomly assigned all the individuals within the population 

to different groups, and all the individuals within a group were considered to be associating 

with one another. Sampling intensity was determined by the proportion of groups sampled 

and the sampling interval parameters. Depending on the proportion of groups sampled 

parameter (0.2, 0.4, 0.6, 0.8, or 1; a value of 0.2 corresponded to 20% of all the groups present 

at a given time step being sampled and so on), a certain percentage of groups created at a 

given time step was sampled randomly, i.e., group compositions of only those randomly 

chosen groups constituted the sighting data for that time step. Groups were sampled every 

other time step, except for the sampling intensity of 1, when they were sampled every time 

step, in order to obtain the true values. Depending on the sampling period length parameter 

(20, 100 or 400), groups were sampled for the given number of time steps, and the sighting 

data for that period were collated together to examine different attributes of network structure 

(see Figure 2). If the sampling period length parameter value was smaller than the total 

number of time steps in the simulation, sighting data were obtained for more than one 

sampling period, and the attributes of network structure were calculated for each. For 

example, since the total number of time steps was 400, when the sampling period length was 
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20 or 100, sighting data for 20 different short sampling periods or four different moderately 

long sampling periods were obtained. 

 

 

Figure 2. Flow chart of simulations conducted to examine the effect of sampling on social 

network structure. 

 

 

2.2.3 Detecting social structure  

Once the sighting data for a given sampling period were generated, the data were further 

filtered to retain only those individuals that were sighted at least two times. It is a common 

practice amongst researchers to filter out poorly sampled individuals to reduce the bias in 

network estimates. I used the modified sighting data to obtain an association index (AI) matrix 

and construct a weighted network. I then calculated the density and modularity of the 

weighted network in the same manner as in the previous simulations. 
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Table 2. Initialisation of different parameters for simulations conducted to examine the effect 

of sampling on social network structure. 

 

Parameter Value 

Population size 200 

Total time 400 time steps 

Average group size 2, 4 

Proportion of groups sampled 0.2, 0.4, 0.6, 0.8, 1 

Sampling period length 20, 100, 400 

 

 

2.2.5 Data analysis 

I set up 30 simulations (see Supplementary material, Table 2) to explore all the combinations 

of sampling intensity, sampling period length, and average group size parameters, resulting 

in a fully factorial design (Table 2). Each simulation was run ten times on MATLAB R2019b 

(The MathWorks, Inc, 1994-2022, www.mathworks.com; code appended at the end of the 

thesis). I ran two three-factor ANOVAs using Statistica 7 (StatSoft, Inc. 2004), with 

modularity and density as the dependent variables, and sampling intensity, sampling period 

length, and average group size as fixed factors. 
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CHAPTER 3: RESULTS 

3.1 Does social structure emerge under different resource conditions when individuals 

associate based on familiarity? 

  

3.1.1 Network density 

I found significant main effects of memory, memory length, average patch size, and patch 

size variation, as well as significant interaction effects of the two-way, three-way, and four-

way interactions on the density of the network (Table 3). However, while the effect sizes for 

the main effects of memory (η2=0.379) and patch size variation (η2=0.279), and the 

interaction between memory and patch size variation (η2=0.293) were large, the effect sizes 

for the main effect of average patch size and the three-way interaction of memory, average 

patch size, and patch size variation were weak (Table 3). The effect sizes for the main effect 

of memory length, all the other interactions, and the error were close to zero (Table 3).  

 

Density was significantly higher (0.957) when there was no role of memory (memory=0) than 

when associations were completely based on memory (memory=1; density=0.468; Tukey’s 

HSD test: P<0.001) (Figure 3a). Although, density at a memory of 0.5 (0.902) was similar to 

that at a memory of 0 (0.957; Figure 3a), the post hoc tests showed a significant difference 

(P<0.001). As mentioned above, memory length had a negligible effect size, but post-hoc 

tests showed a significant difference in density between memory length of 1 (0.786) and 20 

(0.770; Tukey’s HSD test: P<0.001), and memory length of 1 (0.786) and 400 (0.770; 

P<0.001), whereas there was no significant difference between memory length of 20 and 400 

(P=0.756; Figure 3b). The main effect of average patch size was also low, accounting for only 

2.6% of the variation in density, with density being higher (0.832) when the average patch 

size was 4 than when the average patch size was 2 (0.719) (Figure 3c). Patch size variation 

accounted for 27.9% of the variation in density, with density being higher when patch size 

variation was present (0.963) than when it was absent (0.588) (Figure 3d). 
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Table 3. Results of four-factor ANOVA with network density as the dependent variable and 

memory, memory length, patch size variation, and average patch size as the fixed independent 

variables. The three large effect sizes are marked in bold. 

 

Effect SS df MS F P η2 

{1}Memory 17.200 2 8.600 2656689.309 <0.001 0.379 

{2}Memory length 0.021 2 0.010 3170.922 <0.001 0.000 

{3}Average patch size 1.158 1 1.158 357766.426 <0.001 0.026 

{4}Patch size variation 12.652 1 12.652 3908402.764 <0.001 0.279 

Memory*Memory length 0.010 4 0.003 801.942 <0.001 0.000 

Memory*Average patch size 0.214 2 0.107 33121.798 <0.001 0.005 

Memory length*Average 

patch size 
0.024 2 0.012 3778.170 <0.001 0.001 

Memory*Patch size variation 13.280 2 6.640 2051185.461 <0.001 0.293 

Memory length*Patch size 

variation 
0.000 2 0.000 18.593 <0.001 0.000 

Average patch size*Patch 

size variation 
0.167 1 0.167 51435.344 <0.001 0.004 

Memory*Memory 

length*Average patch size 
0.012 4 0.003 946.630 <0.001 0.000 

Memory*Memory 

length*Patch size variation 
0.024 4 0.006 1819.557 <0.001 0.001 

Memory*Average patch 

size*Patch size variation 
0.597 2 0.298 92195.890 <0.001 0.013 

Memory length*Average 

patch size*Patch size 

variation 

0.000 2 0.000 42.687 <0.001 0.000 

1*2*3*4 0.029 4 0.007 2207.686 <0.001 0.001 

Error 0.001 324 0.000     0.000 
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Figure 3. The main effects of memory, memory length, average patch size, and patch size 

variation on network density. Shared alphabets do not indicate significant difference, while 

different alphabets do, with c>b>a. The error bars are 95% CI about the mean. 
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The presence of patch size variation increased density (compared to the absence of patch size 

variation) to different extents depending on the value of memory. All the pairwise 

comparisons for the interaction between memory and patch size variation were statistically 

significant. Density at memory of 0 was statistically significantly higher (Tukey’s HSD test: 

P<0.001) but not very different in value when patch size variation was present (0.989) or 

absent (0.925; Figures 4, 5). Density at memory of 0.5 was somewhat higher (P<0.001) when 

patch size variation was present (0.975) than when it was absent (0.830), while the greatest 

difference in density was seen at a memory of 1, with the density being starkly higher when 

patch size variation was present (0.926) than when it was absent (0.010, P<0.001; Figures 4, 

5). This was because when patch sizes varied, some associations had to be made with 

unknown individuals whenever previous associates were unavailable, leading to increased 

network connectivity (see below). On the other hand, when there was no patch size variation, 

associations with unknown individuals were not made when there was a memory of 1 (leading 

to very low density), whereas associations were made randomly half the time when memory 

was 0.5, and associations were made randomly all the time when memory was 0 (leading to 

high connectivity and hence density). This is seen in the number of new associates below. 

 

 

Figure 4. The interaction effect between memory and patch size variation on network density. 

When memory was 1 and patch size variation was absent, density was 0.010. Different 

alphabets indicate significant difference, with f>e>d>c>b>a. The error bars are 95% CI about 

the mean. 
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Figure 5. Association networks across different memory and patch size variation values 

constructed for simulations in which average patch size was 2 and memory length was 400. 

These networks were constructed using sighting data from the 21st to the 400th time steps of 

one of the 10 runs of each simulation. Association networks for average patch size of 4 and 

memory lengths of 1 and 20 were similar to the above networks (not shown). 

 

 

3.1.1.1 Stability in associations: Average cumulative number of new associates per individual 

When memory was 0 or 0.5, since all or some associations were random, individuals met new 

associates over time (black and pink lines corresponding to memory of 0 and 0.5, respectively, 

in Figure 6, Supplementary Figures 1, 2), resulting in the average cumulative number of new 
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associates per individual increasing over time. This would result in a highly connected 

network with high density as I found above. When memory was 1, individuals gained new 

associates with time when patch size variation was present (green lines corresponding to 

memory of 1 in Figure 6b,d, Supplementary Figures 1b,d, 2b,d) but not when patch size 

variation was absent (green lines corresponding to memory of 1 in Figure 6a,c, Supplementary 

Figures 1a,c, 2a,c). 

 

When patch size variation was present, individuals gained new associates for two reasons. 

First, because patch sizes varied, individuals were sometimes assigned to a small patch in an 

earlier time step but to a large patch in a later time step. If this occurred, there would not be 

sufficient previous associates to fill the larger patch in the later time step, and individuals 

would have to associate with an unknown individual from the population even if the 

associations were otherwise based on familiarity, resulting in a gain of new associates. 

Second, when associations were not always constant due to patch size variation, over time, it 

could so happen that even if an association was based on familiarity, a previous associate 

joining the group could be a previous associate of only some and not all individuals in the 

group. These two causes would lead to a gain in new associates and, over time, increased 

network connectivity and density (Figures 3, 5). However, if patch size variation was absent 

and memory was 1, there were always sufficient previous associates to fill patches, and 

individuals continued to be with their associates from the first time step. Therefore, at the end 

of 400 time steps, the network did not have any more connections than those at the first time 

step. Since each individual’s associations were fully limited to previous associates, the 

resulting network was poorly connected and had low density (Figures 3, 5). 

 

In all the simulations, if there was a gain of new associates, the rate of gain was faster when 

the average patch size was 4 (Figure 6a,b, Supplementary Figures 1a,b, 2a,b) than when it 

was 2 (Figure 3c,d, Supplementary Figures 1c,d, 2c,d) because there was a greater chance for 

an association to be formed with an unknown individual due to the reasons mentioned above. 

With an increase in average patch size, the time to meet all the individuals in the population 

would decrease, whereas an increase in memory would increase the time to meet all the 

individuals in the population (Figure 6).  

 

Overall, associations were stable through time only when every association was with previous 

associates, which occurred when memory was 1 and patch size variation was absent. Thus, 
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the presence of memory alone (and therefore a familiarity-based rule) did not result in stable 

associations as long as unfamiliar individuals were allowed to use the patch. The above trends 

in the stability of associations were similar for memory lengths of 1, 20, and 400 (comparison 

of Figure 3, Supplementary Figures 1, 2), and only the last has been shown in the main text 

here. 

 

 

Figure 6. The plot of the average cumulative number of new associates per individual against 

time in simulations with a memory length of 400. The error bars are 95% CI about the mean 

but are too small to be clearly visible. 
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3.1.2 Network modularity 

I found significant main effects of memory, memory length, average patch size, and patch 

size variation, as well as significant interaction effects of the two-way, three-way, and four-

way interactions on the modularity of the network (Table 4). Similar to density, effect sizes 

were large only for memory (η2=0.439), patch size variation (η2=0.198), and the interaction 

effect between the two (η2=0.358). The effect sizes for the main effects of average patch size 

and memory length, all the other interactions effects, and the error were close to zero (Table 

4). 

 

 

Table 4. Results of four factor ANOVA with network modularity as the dependent variable 

and memory length, patch size variation, and average patch size as the fixed independent 

variables. The large effect sizes are marked in bold. 

 

Effect SS df MS F P η2 

{1}Memory 19.690 2 9.845 1375984.666 <0.001 0.439 

{2}Memory length 0.023 2 0.011 1598.663 <0.001 0.001 

{3}Average patch size 0.059 1 0.059 8269.221 <0.001 0.001 

{4}Patch size variation 8.894 1 8.894 1243090.438 <0.001 0.198 

Memory*Memory length 0.028 4 0.007 988.536 <0.001 0.001 

Memory*Average patch size 0.006 2 0.003 439.236 <0.001 0.000 

Memory length*Average patch size 0.009 2 0.004 622.469 <0.001 0.000 

Memory*Patch size variation 16.094 2 8.047 1124711.087 <0.001 0.358 

Memory length*Patch size 

variation 
0.012 2 0.006 838.494 <0.001 0.000 

Average patch size*Patch size 

variation 
0.000 1 0.000 42.661 <0.001 0.000 

Memory*Memory length*Average 

patch size 
0.007 4 0.002 245.134 <0.001 0.000 

Memory*Memory length*Patch 

size variation 
0.038 4 0.010 1338.407 <0.001 0.001 
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Effect SS df MS F P η2 

Memory*Average patch size*Patch 

size variation 
0.021 2 0.011 1480.587 <0.001 0.000 

Memory length*Average patch 

size*Patch size variation 
0.003 2 0.001 181.576 <0.001 0.000 

1*2*3*4 0.012 4 0.003 420.260 <0.001 0.000 

Error 0.002 324 0.000     0.000 

 

 

Modularity was significantly higher (0.529) when associations were based on memory 

(memory=1) than when there was no role of memory (memory=0, modularity=0.026; Tukey’s 

HSD test: P<0.001) (Figure 7a). Modularity at a memory of 0.5 (0.040) was similar to that at 

a memory of 0 (Figure 7a) but the difference was statistically significant (P<0.001). As 

mentioned above, although the main effect of memory length was significant, the effect size 

was negligible (η2 <0.01). Modularity at memory length of 400 was negligibly higher (0.209) 

than modularity at memory lengths of 20 and 1 (0.195, 0.191) but was statistically significant 

(Tukey’s HSD tests: P<0.001; Figure 7b). Similarly, modularity was negligibly higher (0.211) 

when the average patch size was 2 than when the average patch size was 4 (0.185) (Figure 

7c). Modularity was much higher when patch size variation was absent (0.355) than when it 

was present (0.041; Figure 7d). 
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Figure 7. The main effect of memory, memory length, average patch size, and patch size 

variation on network modularity. Shared alphabets do not indicate significant difference, 

while different alphabets do, with c>b>a. The error bars are 95% CI about the mean. 

 

 

Across different memory and patch size variation combinations, modularity was greater than 

0.3, only when patch size variation was absent (0.985; Figure 8). This was because every 

association was with previous associates only in this case. When memory was 1 and patch 

size variation was present, individuals sometimes associated with unknown individuals either 
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to fill the patch whenever they could not find previous associates or the individuals added to 

the patch were previous associates of only one/some individuals in the patch. This resulted in 

lowered modularity (0.073; Tukey’s HSD test: P<0.001). When memory was 0 or 0.5, a lot 

of associations were random irrespective of patch size variation. For a given memory value, 

modularity was significantly different across simulations in which patch size variation was 

present (modularity=0.022 when memory=0, and 0.028 when memory=0.5) and those in 

which it was absent (modularity=0.030 when memory=0, and 0.052 when memory=0.5; 

Tukey’s HSD tests: P<0.001; Figure 8), even though the difference was marginal. The 

patterns seen in network modularity can also be visualised in terms of the CV of AI below. 

 

 

Figure 8. The interaction effect between memory and patch size variation on network 

modularity. When patch size variation was present, modularity was 0.022 at a memory of 0 

and 0.028 at a memory of 0.5. Different alphabets indicate significant difference, with 

e>d>c>b>a. The error bars are 95% CI about the mean but are too small to be clearly visible. 

  

 

3.1.2.1 Social differentiation: CV of association indices 

Across all the simulations, the CV of AIs in the initial time steps was highest when memory 

was 1, moderately low when memory was 0.5, and lowest when memory was 0, indicating 

the difference in the extent of preferential associations occurring based on familiarity (Figure 

9, Supplementary Figures 3, 4). Over time, irrespective of patch size variation, the CV of AIs 
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decreased when memory was 0 or 0.5 due to the formation of associations with random 

individuals in the population (black and pink lines corresponding to memory of 0 and 0.5, 

respectively, in Figure 9, Supplementary Figures 3, 4). 

 

When memory was 1, CV of association indices remained high and the same throughout the 

400-time steps only if patch size variation was absent (green line corresponding to memory 

of 0 and 0.5, respectively, in Figure 9a,c, Supplementary Figures 3a,c, 4a,c). This was because 

throughout the 400 time steps, individuals associated with their associates from the first time 

step (green lines corresponding to memory of 1 in Figure 6a,c, Supplementary Figures 1a,c, 

2a,c). However, when memory was 1 and patch size variation was present, although CV of 

association indices was high, to begin with, it decreased over time due to the formation of 

connections with unknown individuals in the population either because there were no previous 

associates to associate with or because some individuals present in the group were previous 

associates of only one/some individuals in the group (green lines corresponding to memory 

of 1 in Figure 9b,d,  Supplementary Figures 3b,d, 4b,d).  

 

Thus, associations were strongly preferential and consistent through time only when every 

association was with previous associates, which was the case when memory was 1 and patch 

size variation was absent. These strong and consistent preferential associations resulted in 

distinct communities and a population with high modularity (Figure 8).  

 

The above trends in the stability of associations were similar for memory lengths of 1, 20, and 

400 (Figure 9, Supplementary Figures 3, 4), and only the last is shown in the main text. 
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Figure 9. The plot of the CV of cumulative AI against time in simulations with a memory 

length of 400. The error bars are 95% CI about the mean but are too small to be clearly visible. 
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3.2 Under what conditions of inadequate sampling would social structure be wrongly 

inferred when individuals actually associate with one another randomly? 

 

3.2.1 Network density 

I found, from the three-factor ANOVA, significant main effects of sampling period length, 

sampling intensity, and average group size, and significant interaction effects of two-way and 

three-way interactions amongst the above three factors on the density of network (Table 5). 

The main effects of sampling period length (η2 =0.661) and sampling intensity (η2 =0.212) 

were large in terms of effect sizes, whereas average group size had a moderate effect size, and 

the interaction between sampling period length and sampling intensity, and the three-way 

interaction were small. The other effects were negligible (Table 5). 

 

 

Table 5. Results of three-factor ANOVA with network density as the dependent variable and 

average group size, length of the sampling period, and sampling intensity as the fixed 

independent variables. 

 

Effect SS df MS F P η2 

Average group size 2.337 1 2.337 45458.979 <0.001 0.071 

Length of sampling period 21.654 2 10.827 210609.443 <0.001 0.661 

Sampling intensity 6.938 4 1.735 33740.547 <0.001 0.212 

Average group size*Length of 

sampling period 
0.264 2 0.132 2565.032 <0.001 0.008 

Average group size*Sampling 

intensity 
0.022 4 0.005 105.702 <0.001 0.001 

Length of sampling 

period*Sampling intensity 
1.123 8 0.140 2731.306 <0.001 0.034 

Average group size*Length of 

sampling period*Sampling 

intensity 

0.432 8 0.054 1049.277 <0.001 0.013 

Error 0.014 270 0.000     0.000 
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Density was highest when the length of the sampling period was 400 (0.778), moderate when 

sampling period length was 100 (0.415), and least when sampling period length was 20 

(0.121; Tukey’s HSD tests: P<0.001; Figure 10a). Density of the network significantly 

increased with increase in sampling intensity from 0.2 (density=0.225) to 1 (density=0.682; 

Tukey’s HSD tests: P<0.001; Figure 10b). The main effect of average group size accounted 

for 7.1% of the variation in density, with density being higher when the average group size 

was 4 (0.527) than when the average group size was 2 (0.350) (Figure 10c). Amongst the 

interaction effects, sampling period length x sampling intensity had the largest effect size, 

with 3.4% of the variation in density being accounted for by this effect. For a given intensity 

of sampling, density was higher when the sampling period was longer, and for a given length 

of the sampling period, density was higher when sampling intensity was higher (Figure 11a,b). 

The increase in density with an increase in sampling intensity was steeper from a sampling 

intensity of 0.8 to 1 in the lower sampling periods than the sampling period of 400 (Figure 

11a,b). 

 

If we consider the density obtained at end of 400 time steps when 100% of the groups were 

sampled every time step as the true density (black squares in Figure 11a,b), for a given average 

group size, the density obtained through sampling was much closer to the true value when the 

sampling period was 400, and sampling intensity was 0.4 or higher (Figure 11a,b) because 

more associations were sampled (Figure 14f,i). Sample density was also close to the true value 

if the sampling intensity was very high (i.e., 100% of the groups were sampled every time 

step) and sampling period length was moderate (length=100) since greater number of 

associations were sampled (Figure 14h). Density obtained through sampling was closer to the 

true value when group sizes were larger (Figure 11b) than when group sizes were smaller 

(Figure 11a). 
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Figure 10. The main effect of sampling period length, sampling intensity, and average group 

size on network density. Different alphabets indicate significant difference, with e>d>c>b>a. 

The error bars are 95% CI about the mean. 

 

 

 

 

Figure 11. The effects of sampling period length, sampling intensity, and average group size 

on network density across different simulations. The black square corresponds to density in 

the simulation in which 100% of the groups were sampled every time step for 400 time steps. 

Different alphabets within panels indicate significant difference. The error bars are 95% CI 

about the mean but are too small to be visible.  
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3.2.2 Network modularity 

I found significant main effects of sampling period length, sampling intensity, and average 

group size, as well as significant interaction effects of two-way and three-way interactions 

amongst the above three factors on network modularity based on the three-factor ANOVA 

(Table 6). The effect size was large (η2 =0.607) for the main effects of sampling period length, 

and sampling intensity (η2 =0.212), and moderate for the interaction effect between the two 

(η2 =0.102). The effect sizes for the main effect of average group size, other interaction 

effects, and the error were small (Table 6). 

 

 

Table 6. Results of the three-factor ANOVA with network modularity as the dependent 

variable, and average group size, length of the sampling period, and sampling intensity as the 

fixed independent variables. The large effect sizes are marked in bold. 

 

Effect SS df MS F P η2 

Average group size 0.354 1 0.354 2290.032 <0.001 0.046 

Length of sampling period 4.692 2 2.346 15196.112 <0.001 0.607 

Sampling intensity 1.640 4 0.410 2654.911 <0.001 0.212 

Average group size*Length of 

sampling period 
0.152 2 0.076 493.391 

<0.001 
0.020 

Average group size*Sampling 

intensity 
0.054 4 0.014 87.568 

<0.001 
0.007 

Length of sampling 

period*Sampling intensity 
0.785 8 0.098 635.958 

<0.001 
0.102 

Average group size*Length of 

sampling period*Sampling intensity 
0.017 8 0.002 14.124 

<0.001 
0.002 

Error 0.042 270 0.000     0.005 
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Modularity was highest when the length of the sampling period length was 20 (0.342), lower 

when the sampling period was 100 (0.119), and least when the sampling period was 400 

(0.048; Tukey’s HSD: P<0.001; Figure 12a). Modularity decreased with an increase in 

sampling intensity from 0.2 (modularity=0.289) to 1 (modularity=0.069; Tukey’s HSD: 

P<0.001; Figure 12b). The main effect of average group size accounted for 4.6% of the 

variation in modularity, with modularity being higher when the average group size was 2 

(0.204) than when the average group size was 4 (0.135; Figure 12c). For a given sampling 

intensity, modularity was higher when the sampling period was shorter than when it was 

longer (Figure 13a,b). Further, for a given sampling period, modularity decreased when 

sampling intensity increased (Figure 13a,b). This decrease in modularity with sampling 

intensity was steeper for smaller sampling periods (Figure 13a,b). 

 

 

 

 

Figure 12. The main effect of sampling period length, sampling intensity, and average group 

size on network modularity. Different alphabets indicate significant difference, with 

e>d>c>b>a. The error bars are 95% CI about the mean. 

 

 

Again, if we consider the modularity obtained at end of 400 time steps when 100% of the 

groups were sampled every time step as the true modularity (black squares in Figure 13), for 

a given average group size, the modularity obtained through sampling was much closer to the 

true value when the sampling period was long (length=400) irrespective of sampling intensity 

(Figures 13a,b) since a lot of the associations were sampled (Figure 14c,f,i). However, sample 
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modularity was also close to the true modularity if the sampling intensity was high (i.e., 80% 

to 100% of the groups were sampled every other time step and every time step, respectively) 

and sampling period length was moderate (length = 100). This was also because intense 

sampling resulted in sampling of many associations (Figure 14e,h). Similar to density, 

modularity obtained through sampling was slightly closer to the true value when the average 

group size was larger (4 versus 2; Figure 13b,a). 

 

 

 

Figure 13. The effect of sampling period length, sampling intensity, and average group size 

on network modularity across different simulations. The black square corresponds to 

modularity in the simulation in which 100% of the groups were sampled every time step for 

400 time steps. Different alphabets within panels indicate significant difference. The error 

bars are 95% CI about the mean but are too small to be visible clearly. 
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Figure 14. Association networks across three different sampling intensities and sampling 

periods when average group size was 2. Each network was created using sighting data from a 

randomly chosen sampling period of one of the 10 runs of each simulation. 
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CHAPTER 4: DISCUSSION 

4.1 Does social structure emerge under different resource conditions when individuals 

associate based on familiarity? 

Results from my simulations suggest that in a habitat with limited and patchy ephemeral 

resources, social structure characterised by low density, temporally stable associations, high 

modularity, and high social differentiation can occur only when every association is based on 

familiarity, which was the case when 100% of the associations were based on familiarity 

(memory parameter 1), and the habitat had the same amounts of resources regenerated every 

time step (patch size variation absent). However, a habitat without any variation in resource 

distribution is unlikely to occur in nature. I also found that over time, associations became 

similar to random associations when patchy ephemeral resources varied in quantity across 

patches and time steps (patch size variation present) even if 100% of the associations were to 

be based on familiarity (but could not be realised due to patch size variation and resource 

limitation). Overall, networks had lower density when the average group size was 2 than when 

the average group size was 4. The effect size of average group size on modularity was small, 

but this could be a result of taking average group size values that were not very different. In 

general, the above results indicate that a simple rule to associate based on familiarity is by 

itself not sufficient to explain social structure, and that resource conditions can strongly 

influence associations and social structure that emerges. 

 

In my simulations, the rule to associate based on familiarity is similar to two other models 

(Rios and Kraenkel 2017, Cantor and Farine 2019). Rios and Kraenkel (2017) considered an 

agent-based model in which the agents moved in space depending on their memory of 

previous interactions. While moving randomly, if an agent encountered a neighbour, it carried 

out affiliative (move closer), agonistic (move away), or neutral (move randomly) interactions, 

depending on previous interactions. If the previous interaction was affiliative, the agent had 

a greater tendency to perform an affiliative interaction (move closer to the neighbour), and 

vice versa. At the end of 1000 time steps, multiple spatially separated groups with high 

modularity were obtained. Since the movement of animals is strongly affected by food 

resources, results from this model might not hold when resource conditions are also 

considered. Cantor and Farine (2018) built an agent-based model that considered a simple 

rule to forage with those that one last foraged with if the foraging resulted in the acquisition 

of sufficient resources. This model considered a habitat with a single resource patch that had 
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the same amount of resource at every time step. In the first time step, foraging ties were 

random, but after the first time step, ties were dependent on the outcome of competition 

between groups for the single resource patch. At a given time step, if a group obtained less 

resource (due to competition) than the number of individuals in the group, in the next time 

step, individuals within the group randomly removed one of the ties while if a group obtained 

more resources than the number of individuals in the group, a new tie with a random 

individual was created. However, when the resource share of a group was the same as the 

number of individuals, individuals were considered to obtain sufficient resources, and they 

did not change their ties, i.e., in the next time step, they continued to forage with previous 

associates. Over a short time, this rule resulted in the emergence of a single foraging group 

with stable group composition, provided the resource patch and the population size considered 

were small. Based on these results, the authors claimed that a simple rule of foraging could 

give rise to stable social groups and result in the emergence of foraging specialisation, 

especially in small populations with limited resources. Although not discussed by the authors, 

similar to my simulations, those results were very specific to the resource conditions 

considered: the presence of a single patch, small patch size, and absence of variation in 

resource quantity. 

 

While the simulations discussed in the main text assumed resource limitation, I also separately 

examined scenarios in which this was not the case. As mentioned above, when patch size 

variation was present across time, since the resource was limited, some associations were 

sometimes forced with unknown individuals when previous associates were unavailable. If 

this assumption was relaxed such that there were many patches (many more feeding sites than 

individuals in the population), when memory parameter was 1, every association could occur 

with a familiar individual. I then found social structure characterised by low density and high 

modularity, irrespective of patch size variation (Supplementary Figure 5). However, such an 

abundance of resources may also be unrealistic. If resources were limited in certain time steps 

but abundant in others, as might be the case in nature, individuals might have some permanent 

companions and several casual acquaintances, resulting in a network with high density and 

high modularity. This is something that could be explored in the future. 

 

The simulations I carried out also assumed that resources were ephemeral and had to be 

regenerated at every time step. If resources were not so ephemeral, individuals could visit the 

same patch during many time steps (or remain in the same patch) before moving on to another 
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patch; the social structure thus obtained could likely have low density and high modularity. 

Thus, the duration of unchanging resource patches relative to the interval at which individuals 

sort themselves or form new groupings could have an effect on social structure. Mynas leaving 

a roost every morning and arriving at different patches with insects that may be 

spatiotemporally unpredictable might correspond to the scenario I have modelled with patch 

size variation across space and time. (We do not know if there is social structure in mynas.) 

 

While the simulations discussed here included a scenario with unchanging patches of equal 

sizes (which led to social structure being seen when 100% of the associations were based on 

familiarity), I also separately looked at unequal patch sizes that did not change over time. 

Food trees or sleeping sites for primates, or nesting sites for birds might be resources of this 

type. When patch sizes were unequal, and there was no variation in patch size across time, I 

did not find social structure (not shown) even if associations were to be based completely on 

familiarity because individuals in my model did not have a memory of the patch; they only 

had a memory or not of other individuals. Therefore, individuals from a larger patch in one 

time step could be split across smaller patches in the subsequent time step depending on the 

patch to which the first individual of a group was assigned. It would be worthwhile examining 

whether social structure can emerge with temporally and/or spatially varying patch sizes when 

individuals have a memory of the patch rather than of other individuals. 

 

4.2 Question 2: Under what conditions of inadequate sampling would social structure be 

wrongly inferred when individuals actually associate with one another randomly? 

Results from my simulations showed that a population can wrongly be inferred to be socially 

structured with modular communities and low density if sampling intensity is low and the 

sampling period is short. Using modularity as the metric, any intensity of sampling performed 

over long periods (400 time steps) reflected the true social structure better than high intensity 

sampling (sampling 100% of groups every day) over short periods (20 time steps long). 

Sample modularity also reflected the true value when a high intensity of sampling (80% or 

100% of groups sampled) was conducted for moderately long periods of time. In the case of 

density, sample density was close to the true density when sampling intensity was moderate 

to intense (40% of more groups sampled) and sampling period was long (400 time steps), or 

if sampling intensity was high (100% of groups sampled) and sampling period was 

moderately long (100 time steps). In practice, sampling almost every group found at a given 

time in the field is close to impossible but sampling 40% or more groups every time step or 
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every other time step for long periods of time may be more feasible. Thus, to avoid wrong 

inferences of social structure, conducting long-term field studies with moderate intensity of 

sampling seems necessary. 

 

Most studies that examine the social structure of a population collect data on associations and 

calculate different metrics. To detect the presence of preferential associations, standard 

deviation or CV of AI calculated for observed data is usually compared with that obtained for 

a null model (Whitehead et al. 2005). The null model, however, is created by permuting the 

observed data. Similarly, if modularity is used to detect community structure, the observed 

number of edges within communities is compared to that expected if observed associations 

were random. If associations observed do not reflect reality, as is the case when sampling is 

biased, social structure attributes calculated based on the associations would also not reflect 

reality. Statistical techniques to assess the precision and power of AI and metrics calculated 

using AI have been developed recently (Whitehead 2008b, Farine and Strandburg-Peshkin 

2015, Shizuka and Farine 2016) but are not often used. Thus, it becomes pertinent to collect 

large amounts of data for long periods to infer social structure as close to reality as possible, 

as shown by our simulations and some others (Whitehead 2008b, Franks et al. 2010, Voelkl 

et al. 2011, Shizuka and Farine 2016, Murphy et al. 2021), especially when populations are 

poorly socially differentiated.
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Supplementary Material 1 

 

Table 1. List of simulations performed to examine the effect of memory, memory length, 

average patch size, and patch size variation on social structure 

Simulation 

no. 
Memory 

Memory 

length 

Average 

patch 

size 

Patch 

size 

variation 

Population 

size 
Time 

No. of 

replicates 

1 1 1 2 Absent 200 400 10 

2 1 1 2 Present 200 400 10 

3 0.5 1 2 Absent 200 400 10 

4 0.5 1 2 Present 200 400 10 

5 0 1 2 Absent 200 400 10 

6 0 1 2 Present 200 400 10 

7 1 20 2 Absent 200 400 10 

8 1 20 2 Present 200 400 10 

9 0.5 20 2 Absent 200 400 10 

10 0.5 20 2 Present 200 400 10 

11 0 20 2 Absent 200 400 10 

12 0 20 2 Present 200 400 10 

13 1 400 2 Absent 200 400 10 

14 1 400 2 Present 200 400 10 

15 0.5 400 2 Absent 200 400 10 

16 0.5 400 2 Present 200 400 10 

17 0 400 2 Absent 200 400 10 

18 0 400 2 Present 200 400 10 

19 1 1 4 Absent 200 400 10 

20 1 1 4 Present 200 400 10 

21 0.5 1 4 Absent 200 400 10 

22 0.5 1 4 Present 200 400 10 

23 0 1 4 Absent 200 400 10 

24 0 1 4 Present 200 400 10 

25 1 20 4 Absent 200 400 10 

26 1 20 4 Present 200 400 10 
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Simulation 

no. 
Memory 

Memory 

length 

Average 

patch 

size 

Patch 

size 

variation 

Population 

size 
Time 

No. of 

replicates 

27 0.5 20 4 Absent 200 400 10 

28 0.5 20 4 Present 200 400 10 

29 0 20 4 Absent 200 400 10 

30 0 20 4 Present 200 400 10 

31 1 400 4 Absent 200 400 10 

32 1 400 4 Present 200 400 10 

33 0.5 400 4 Absent 200 400 10 

34 0.5 400 4 Present 200 400 10 

35 0 400 4 Absent 200 400 10 

36 0 400 4 Present 200 400 10 
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Table 2. List of simulations performed to examine the effect of sampling intensity, sampling 

period length and average group size on social structure. 

 

Simulation 

no. 

Number 

of 

periods 

Sampling 

period 

length 

Proportion 

of groups 

sampled 

Sampling 

interval 

Average 

group size 

Population 

size 

Total 

time 

Number 

of 

replicates 

1 20 20 0.2 2 2 200 400 10 

2 20 20 0.4 2 2 200 400 10 

3 20 20 0.6 2 2 200 400 10 

4 20 20 0.8 2 2 200 400 10 

5 20 20 1 1 2 200 400 10 

6 4 100 0.2 2 2 200 400 10 

7 4 100 0.4 2 2 200 400 10 

8 4 100 0.6 2 2 200 400 10 

9 4 100 0.8 2 2 200 400 10 

10 4 100 1 1 2 200 400 10 

11 1 400 0.2 2 2 200 400 10 

12 1 400 0.4 2 2 200 400 10 

13 1 400 0.6 2 2 200 400 10 

14 1 400 0.8 2 2 200 400 10 

15 1 400 1 1 2 200 400 10 

16 20 20 0.2 2 4 200 400 10 

17 20 20 0.4 2 4 200 400 10 

18 20 20 0.6 2 4 200 400 10 

19 20 20 0.8 2 4 200 400 10 

20 20 20 1 1 4 200 400 10 

21 4 100 0.2 2 4 200 400 10 

22 4 100 0.4 2 4 200 400 10 

23 4 100 0.6 2 4 200 400 10 

24 4 100 0.8 2 4 200 400 10 

25 4 100 1 1 4 200 400 10 

26 1 400 0.2 2 2 200 400 10 

27 1 400 0.4 2 2 200 400 10 

28 1 400 0.6 2 2 200 400 10 

29 1 400 0.8 2 2 200 400 10 

30 1 400 1 1 2 200 400 10 
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Figure 1. The plot of the average cumulative number of new associates per individual against 

time in simulations with a memory length of 20. 
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Figure 2. The plot of the average cumulative number of new associates per individual against 

time in simulations with a memory length of 1. 
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Figure 3. The plot of the CV of cumulative AI against time in simulations with a memory 

length of 20. 
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Figure 4. The plot of the CV of cumulative AI against time in simulations with a memory 

length of 1. 
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Figure 5. Plot of density and modularity in simulations in which resources were limited, and 

those in which resources were abundant when all the associations were based on familiarity 

(memory: 1), and memory length was 400. In simulations in which resources were abundant, 

the number of patches present was equal to the population size at every time step, i.e., there 

were enough patches to accommodate one individual in one patch, if necessary. In these 

simulations, individuals did not have to associate with unknown individuals if previous 

associates were unavailable. 
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Supplementary Material 2. 

 

Memory_model_FL.m is the primary function that contains the codes to create patches, assign 

individuals to patches, generate sighting data, determine network statistics using sighting data, 

run the Louvain algorithm on the sighting data, and write the values of different variables into 

excel in simulations where risk is present and absent, respectively.  

Memory_model_FL.m  

For each data set replicate and every step, first, patch sizes are obtained by calling the 

Group_sizes.m function. This function generates patch sizes depending on two parameter 

values:  gp_var_type and gp_size_type; gp_var_type can be 0 or 1, and gp_size_type can be 

2 or 4. When gp_size type is 2, variables in the Group_sizes.m function are set such that the 

patch sizes, averaged across all time steps, is around 2. Similarly, when gp_size_type is 4, the 

patch sizes, averaged across all time steps, is around 4. When gp_var_type is 0, all the groups 

have equal group sizes, and the size remains the same across time. When gp_var_type is 1, 

every time step, patch sizes are drawn from a zero truncated negative binomial distribution. 

Once patch sizes are obtained, average, variance and median patch size for each time step is 

calculated. 

 

Next, individuals are assigned to patches. In the first time step, individuals are randomly 

assigned to patches. For the remaining time steps, an individual is selected randomly from the 

population as the first individual of the first group. Then a uniformly random number between 

0 and 1 is drawn. If this number is less than or equal to the memory parameter, the next 

individual of the patch is selected from the pool of previous associates of the first individual. 

The individuals to be included in the pool of previous associates is determined by the memory 

length parameter. If the random number drawn exceeds the memory parameter, the next 

individual is randomly selected from the population. When previous associates are selected, 

the probability of a previous associate being selected is weighted by the number of times it 

associated with the first individual. Based on the random number drawn, if the next individual 

to be assigned should be a previous associate, but if the first individual has not associated 

with anyone or does not remember associating with anyone, the next individual is randomly 

chosen from the population. Once an individual is assigned to a patch, it can not be assigned 

to another patch in the same time step. This ensures that individuals remain in the same patch 
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in a given time step. After the second individual is assigned, the process of drawing a random 

number and choosing the next individual is repeated until a given patch has as many 

individuals as the patch size. It is to be noted that when associations are with previous 

associates, and if more than one individual is already added to the patch, the probability of a 

new individual being selected is weighted by the number of times it associated, on average, 

with those individuals already present in the patch. The process of adding individuals to 

patches is repeated until all the patches have individuals assigned to them. Individuals within 

a patch are considered to be in one group and are associating with one another. 

 

For a given time step, once individuals are assigned to patches, average, variance and median 

group size is calculated. Next, the group composition of all the groups is used to obtain ‘true’ 

sighting data for that time step (each group is one sighting). Further, group composition of 

20% of the groups from a given time step, groups being chosen randomly, is used to obtain 

‘sample’ sighting data for that time step. Sample sighting data, however, is obtained every 

two time steps. Finally, experienced group size of two kinds is calculated. In the first kind, 

average experienced group size = 
∑  !"#$ %�&'�(�)� ∗  !"#$ %�&'� ∑  !"#$ %�&'�(�)�

+  

In the second kind, the experienced group size of each individual is calculated for each time 

step; this is the group size of the individual minus 1. 

 

Each time step, Adjacency_matrix.m function is used to obtain the adjacency matrix of 

associations in that time step. Adjacency matrix from first to the current time step is then used 

to obtain AI matrix. Further, mean, standard deviation and variance of AI matrix and mean, 

standard deviation and variance of adjacency matrix is calculated every time step. 

 

The above process of obtaining patch sizes, calculating different patch/group size metrics, 

and assigning individuals to patches, and obtaining sighting data is repeated every time step.  

 

After the last time step, the total true sighting data set is separated into periods that are 20 

time steps long using Separate_sighting.m function. The same is repeated for the sample 

sighting data set. Further, variance in the average group size across time, variance in the 

experienced group size of type 2 across time, and average experienced group size of type 2 

(averaged over different time steps for each individual) are calculated. The total sighting data 

(true and sample) is then modified to remove sighting data from the first twenty time steps. 
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This modified sighting data is given as input to Network_metrics.m function to obtain 

different network statistics. AI matrix obtained from Network_metrics.m is given as input to 

Louvain_memory.m function to run Louvain algorithm and obtain the number of 

levels/passes, the number of communities, maximum modularity reached in each pass 

(obtained through Modularity.m function), and community numbers assigned to each 

individual in different passes as output. The above process of obtaining network statistics and 

Louvain algorithm related statistics are repeated on the sighting data (true and sample) for 

each period that is 20-time steps long (excluding the first). 

 

Creating patches, assigning individuals to patches, obtaining sighting data, generating 

network and Louvain statistics are repeated 10 times to get 10 different data replicates. Once 

there is data for all the different replicates, network statistics and Louvain statistics are written 

into excel using Write_network_stats.m and Write_louvain_results.m functions.  

 

Further, for each replicate, using the AI matrix generated for every time step, the cumulative 

mean number of new associates is obtained using New_associates.m function. Finally, the 

following group/patch size summary statistics are calculated: 

1) Patch size averaged across patches at each time step is averaged across time for different 

replicates; 

2) Median patch size at each time step is averaged across time for different replicates;  

3) Variance in patch size at each time step is averaged across time for different replicates;  

4) Group size averaged across groups at each time step is averaged across time for different 

replicates;  

5) Median group size at each time step is averaged across time for different replicates;  

6) Variance in group size at each time step is averaged across time for different replicates;  

7) Variance in average group size (averaged across groups) across time for different 

replicates; 8) The average experience group size of type 1 at each time step is averaged across 

time for different replicates;  

9) The average experience group size of type 2 which is the group size experienced by each 

individual averaged across time, is averaged across all individuals for different replicates;  

10) The variance in experience group size of type 2 which is the variance across time of the 

group size experienced by each individual, is averaged across all individuals for different 

replicates 
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Memory_model_FL.m 

function [ticktock1, ticktock2] = 

Memory_model_FL(simulation_no,pop_size,no_replicates,no_louvain_replicates,rng_val,ti

me,memory, memory_length, gp_size_type,gp_var_type, per_sample,sample_int, period_1, 

period_2)   

  

clc 

initialVars = who('global'); 

clearvars('-except',initialVars{:}) 

  

  

mm = 0; 

nn= 0; 

pp = 0; 

  

tic 

  

true_sig = zeros(pop_size*time,pop_size);   

sample_sig = zeros(pop_size*time,pop_size);     

index = 1;       

index2 = 1;      

gp_sizes = zeros(1,pop_size); 

assoc = zeros(pop_size, pop_size);  

association = zeros(pop_size, pop_size); 

true_no_gp_all_t = zeros(1,time); 

sample_no_gp_all_t = zeros(1,time); 

gp_sizes_all_t = zeros(time, pop_size); 

gp_id_all_t = zeros(time, pop_size); 

ave_gp_size = zeros(no_replicates,time); 

med_gp_size = zeros(no_replicates,time); 

ave_exp_gp_size = zeros(no_replicates,time); 

var_gp_size = zeros(no_replicates,time); 

exp_gp_size = zeros(time, pop_size); 

var_ave_gp_size = zeros(no_replicates,1); 

var_exp_gp_size = zeros(no_replicates,pop_size); 

ave_exp_gp_size_2 = zeros(no_replicates,pop_size); 

cuml_adj = zeros(pop_size, pop_size);  

cuml_ai_mean = zeros(no_replicates,time); 

cuml_ai_var = zeros(no_replicates,time); 

cuml_ai_std = zeros(no_replicates,time); 

cuml_adj = zeros(pop_size, pop_size);  

cuml_adj_mean = zeros(no_replicates,time); 

cuml_adj_var = zeros(no_replicates,time); 

cuml_adj_std = zeros(no_replicates,time); 

  

  

true_freq_filter= 0; 

true_ai = struct; 

true_ave_sig_filt= struct; 
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true_no_inds_in_sig_data= struct; 

true_no_AIs= struct; 

true_ave_AI_filt= struct; 

true_sd_AI_filt= struct; 

true_skew_AI_filt= struct; 

true_kurtosis_AI_filt= struct; 

true_ave_deg= struct; 

true_sd_deg= struct; 

true_ave_weighted_deg= struct; 

true_sd_weighted_deg= struct; 

true_density= struct; 

true_ave_CC= struct; 

true_sd_CC= struct; 

true_se_CC= struct; 

true_CI_CC= struct; 

true_ave_path_length= struct; 

true_sd_path_length= struct; 

true_se_path_length= struct; 

true_CI_path_length= struct; 

true_diameter= struct; 

true_ave_eccentricity= struct; 

true_sd_eccentricity= struct; 

true_se_eccentricity= struct; 

true_CI_eccentricity= struct; 

true_top_ten_associates = struct; 

true_top_five_associates = struct; 

filt_true = struct; 

  

true_ave_sig_filt_temp=zeros(no_replicates,1); 

true_no_inds_in_sig_data_temp=zeros(no_replicates,1); 

true_no_AIs_temp=zeros(no_replicates,1); 

true_ave_AI_filt_temp=inf*ones(no_replicates,1); 

true_sd_AI_filt_temp=inf*ones(no_replicates,1); 

true_skew_AI_filt_temp=zeros(no_replicates,1); 

true_kurtosis_AI_filt_temp=zeros(no_replicates,1); 

true_ave_deg_temp=inf*ones(no_replicates,1); 

true_sd_deg_temp=inf*ones(no_replicates,1); 

true_ave_weighted_deg_temp=inf*ones(no_replicates,1); 

true_sd_weighted_deg_temp=inf*ones(no_replicates,1); 

true_density_temp=inf*ones(no_replicates,1); 

true_ave_CC_temp=inf*ones(no_replicates,1); 

true_sd_CC_temp=inf*ones(no_replicates,1); 

true_se_CC_temp=inf*ones(no_replicates,1); 

true_CI_CC_temp=inf*ones(no_replicates,1); 

true_ave_path_length_temp=inf*ones(no_replicates,1); 

true_sd_path_length_temp=inf*ones(no_replicates,1); 

true_se_path_length_temp=inf*ones(no_replicates,1); 

true_CI_path_length_temp=inf*ones(no_replicates,1); 

true_diameter_temp=inf*ones(no_replicates,1); 

true_ave_eccentricity_temp=inf*ones(no_replicates,1); 
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true_sd_eccentricity_temp=inf*ones(no_replicates,1); 

true_se_eccentricity_temp=inf*ones(no_replicates,1); 

true_CI_eccentricity_temp=inf*ones(no_replicates,1); 

  

  

sample_freq_filter = 1; 

sample_ai = struct; 

sample_ave_sig_filt= struct; 

sample_no_inds_in_sig_data= struct; 

sample_no_AIs= struct; 

sample_ave_AI_filt= struct; 

sample_sd_AI_filt= struct; 

sample_skew_AI_filt= struct; 

sample_kurtosis_AI_filt= struct; 

sample_ave_deg= struct; 

sample_sd_deg= struct; 

sample_ave_weighted_deg= struct; 

sample_sd_weighted_deg= struct; 

sample_density= struct; 

sample_ave_CC= struct; 

sample_sd_CC= struct; 

sample_se_CC= struct; 

sample_CI_CC= struct; 

sample_ave_path_length= struct; 

sample_sd_path_length= struct; 

sample_se_path_length= struct; 

sample_CI_path_length= struct; 

sample_diameter= struct; 

sample_ave_eccentricity= struct; 

sample_sd_eccentricity= struct; 

sample_se_eccentricity= struct; 

sample_CI_eccentricity= struct; 

filt_sample = struct; 

sample_top_ten_associates = struct; 

sample_top_five_associates = struct; 

  

  

sample_ave_sig_filt_temp=zeros(no_replicates,1); 

sample_no_inds_in_sig_data_temp=zeros(no_replicates,1); 

sample_no_AIs_temp=zeros(no_replicates,1); 

sample_ave_AI_filt_temp=inf*ones(no_replicates,1); 

sample_sd_AI_filt_temp=inf*ones(no_replicates,1); 

sample_skew_AI_filt_temp=zeros(no_replicates,1); 

sample_kurtosis_AI_filt_temp=zeros(no_replicates,1); 

sample_ave_deg_temp=inf*ones(no_replicates,1); 

sample_sd_deg_temp=inf*ones(no_replicates,1); 

sample_ave_weighted_deg_temp=inf*ones(no_replicates,1); 

sample_sd_weighted_deg_temp=inf*ones(no_replicates,1); 

sample_density_temp=inf*ones(no_replicates,1); 

sample_ave_CC_temp=inf*ones(no_replicates,1); 
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sample_sd_CC_temp=inf*ones(no_replicates,1); 

sample_se_CC_temp=inf*ones(no_replicates,1); 

sample_CI_CC_temp=inf*ones(no_replicates,1); 

sample_ave_path_length_temp=inf*ones(no_replicates,1); 

sample_sd_path_length_temp=inf*ones(no_replicates,1); 

sample_se_path_length_temp=inf*ones(no_replicates,1); 

sample_CI_path_length_temp=inf*ones(no_replicates,1); 

sample_diameter_temp=inf*ones(no_replicates,1); 

sample_ave_eccentricity_temp=inf*ones(no_replicates,1); 

sample_sd_eccentricity_temp=inf*ones(no_replicates,1); 

sample_se_eccentricity_temp=inf*ones(no_replicates,1); 

sample_CI_eccentricity_temp=inf*ones(no_replicates,1); 

% filt_sample_temp = inf*ones(no_replicates,1); 

  

true_sighting = struct; 

sample_sighting = struct; 

true_sig_all_rep = struct; 

sample_sig_all_rep = struct; 

true_no_gp_all_t_all_rep = struct; 

sample_no_gp_all_t_all_rep = struct; 

gp_id_all_t_all_rep = struct; 

gp_sizes_all_t_all_rep = struct; 

  

true_comm = struct; 

true_modularity = struct; 

true_num_levels = struct; 

true_num_comm = struct; 

  

sample_comm = struct; 

sample_modularity = struct; 

sample_num_levels = struct; 

sample_num_comm = struct; 

   

filename = strcat('Simulation_',num2str(simulation_no)); 

heading = {'Simulation no.' 'Population size' 'No. of replicates' 'No. of louvain replicates' 

'No. of time steps', 'No. of large sampling periods','Memory' 'Memory length' 'Group size' 

'Group size variation' 'Seed (for diff data set replicates)' }; 

xlswrite(filename,heading,'intial_conditions','a1'); 

xlswrite(filename,[simulation_no, pop_size, no_replicates,no_louvain_replicates, 

time,period_1, memory, memory_length, 

gp_size_type,gp_var_type],'intial_conditions','a2'); 

xlswrite(filename,rng_val','intial_conditions','k2'); 

%       

  

for rep = 1:no_replicates 

rng(rng_val(rep)) 

  

for t = 1:time  

disp(t) 

  



 

 

 

60 

%get patches/groups 

gp_sizes = Group_sizes(gp_var_type,gp_size_type,pop_size,t,gp_sizes_all_t); 

  

%patch/group size statistics 

no_gp = sum(gp_sizes>0); 

gp_sizes_all_t(t,:) = gp_sizes; 

ave_gp_size(rep,t) = mean(gp_sizes(gp_sizes>0)); 

var_gp_size(rep,t) = var(gp_sizes(gp_sizes>0)); 

med_gp_size(rep,t) = median(gp_sizes(gp_sizes>0)); 

  

  

%assign individuals to groups/patches in the first time step 

if t==1 

    %create group id variable. It has group id for all inds. This will have identity of groups 

repeated based on group size 

    gp_id = repelem(1:no_gp,gp_sizes(gp_sizes>0)); 

    gp_id = gp_id(randperm(length(gp_id)));   %this randomises the group id of all inds. 

Now inds have random group ids i.e. are assigned to groups randomly.  

elseif t>1 

    inds = 1:pop_size;     %individuals to choose from 

    gp_id = zeros(1,pop_size); 

    rowname = 1:pop_size;   %row names of the assoc weights matrix 

    colname = 1:pop_size;   %col names of the assoc weights matrix 

    for i = 1:no_gp         %assign individuals to groups one at a time 

            counter = 1;    %counter for each individual in a given group 

            sel_ind = zeros(1,pop_size);  %vector of individuals selected 

            sel_ind(counter) = randsample(repelem(inds(inds>0),2),1);  %select the first ind of 

the group randomly 

            col_sel_ind = find(colname==sel_ind(counter));     %find the column of the selected 

individual in the assoc weights matrix                              % 

            assoc(:, col_sel_ind) = 0;                       %remove the column of the selected 

individual in the assoc weights matrix 

            colname(col_sel_ind) = 0;                       %column names after removing the column 

of the selected individual in the assoc weights matrix 

            while counter<gp_sizes(i)                          %to assign remaining individuals of a 

group 

                  counter = counter+1;       

                  inds(ismember(inds,sel_ind)) = 0;              %remove already chosen individuals 

to prevent them from getting selected again 

                  gg = rand; 

                  if memory>=gg                                      %check if associations are based on 

familiarity or are random 

                    %if associations are based on familiarity 

                    row_sel_ind = ismember(rowname,sel_ind);      %find the row number of the 

selected ind(s) 

                    assoc_sel_ind = assoc(row_sel_ind,:);              %get assoc weights from assoc 

weights matrix for the sel ind(s) 

                    combined_assoc_sel_ind = mean(assoc_sel_ind,1);     %get average assoc 

weights of all selected individuals                           

                     if mean(combined_assoc_sel_ind)~=0      %to check if selected inds have 0 
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assoc weights with all the remaining inds, i.e.,they haven't previously associated with any of 

the remaining individuals  

                       mm = mm+1; 

                      sel_ind(counter) = 

randsample(repelem(inds,2),1,true,repelem(combined_assoc_sel_ind,2)); 

                     else 

                        nn = nn+1; 

                        sel_ind(counter) = randsample(repelem(inds(inds>0),2),1);   %if selected 

inds have 0 assoc weights with all remaining inds, next individual is chosen uniformly 

randomly 

                     end                         

                  else 

                    pp = pp+1; %if associations are random  

                    sel_ind(counter) = randsample(repelem(inds(inds>0),2),1);  %all individuals 

whether known or unknown have equal chance of being selected 

                  end 

                    col_sel_ind = find(colname==sel_ind(counter));      %find the column of the 

newly selected individual 

                    assoc(:, col_sel_ind) = 0;    %remove the column of the newly selected 

individual from the assoc matrix                     

                    colname(col_sel_ind) = 0;     %remove the column name of the newly selected 

individual from the assoc matrix                      

                                       

            end 

            gp_id(sel_ind(sel_ind>0)) = i ;         %provide group id for the sel ind which are 

numbers greater than 0 

            inds(ismember(inds,sel_ind)) = 0;       %remove inds already selected 

  

    end 

end 

  

%calculate average experienced group size every t 

dummy = 0; 

for i = 1:no_gp 

    dummy = dummy + gp_sizes(i)*gp_sizes(i); 

end 

ave_exp_gp_size(rep,t) = dummy/sum(gp_sizes); 

  

%second kind of experienced group size 

for i = 1:pop_size 

    focal_ind_id = gp_id(i); 

    exp_gp_size(t,i) = sum(gp_id==focal_ind_id)-1; 

end 

  

%get 100% of the sighting data by sampling. Based on group ids assigned to individuals 

sighting data is obtained 

for i = 1:no_gp 

    temp = find(gp_id==i);                            %find all inds assigned to the same group 

    true_sig(index,1:length(temp)) = temp;            %each group is one sighting 

    index = index+1; 
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end 

true_no_gp_all_t(t) = no_gp;                          %to keep track of the true number of groups in 

each time step 

  

  

%get a percentage of the sighting data by sampling every few time steps 

if rem(t,sample_int)==0 

    sample_no = ceil(per_sample*no_gp/100);      %number of groups that will be sampled in 

this time step 

    sample_gp = randsample(1:no_gp, sample_no);  %to obtain ids of groups that will be 

sampled in this time step through random draw 

    for i = 1:sample_no 

        temp = find(gp_id==sample_gp(i));         %to find individuals belonging to the group id 

chosen randomly 

        sample_sig(index2,1:length(temp)) = temp; %assign group to sighting data 

        index2 = index2+1; 

    end 

    sample_no_gp_all_t(t) = sample_no;            %to keep track of the number of groups 

sampled in every time step 

end 

  

%adjacency matrix is created every time step 

field = strcat('t',num2str(t)); 

adj_every_t.(field) = Adjacency_matrix(gp_id,pop_size); 

association = association+adj_every_t.(field); 

assoc = zeros(pop_size, pop_size); 

fieldname = strcat('period_2_',num2str(t)); 

true_ai(rep).(fieldname) = adj_every_t.(field);  

cuml_adj = cuml_adj + adj_every_t.(field); 

cuml_ai_mean(rep,t) = mean(cuml_adj/t,'all'); 

cuml_ai_var(rep,t) = var(cuml_adj/t,0,'all'); 

cuml_ai_std(rep,t) = std(cuml_adj/t,0,'all'); 

cuml_adj_mean(rep,t) = mean(cuml_adj,'all'); 

cuml_adj_var(rep,t) = var(cuml_adj,0,'all'); 

cuml_adj_std(rep,t) = std(cuml_adj,0,'all'); 

  

%association weights for the next time step 

if t<=memory_length 

  for i = 1:t 

      field = strcat('t',num2str(i)); 

      assoc = assoc + adj_every_t.(field);        %depending on the memory length adjacency 

matrices are summed to get association weights 

  end 

else 

  for i = t-memory_length+1:t 

      field = strcat('t',num2str(i)); 

      assoc = assoc + adj_every_t.(field); 

  end 

end  
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gp_id_all_t(t,:) = gp_id;                      %to keep track of group ids of all individuals every 

time step 

gp_id = 0; 

gp_sizes = zeros(1,pop_size); 

  

end     %end of time loop 

  

  

%variance in group size across t, variance in a kind of exp 

var_ave_gp_size(rep) = var(ave_gp_size(rep,:)); 

var_exp_gp_size(rep,:) = var(exp_gp_size); 

ave_exp_gp_size_2(rep,:) = mean(exp_gp_size); 

  

%to separate sighting data based on periods and assigning data from each period into a 

struct 

true_sighting(rep).r = Separate_sighting(true_no_gp_all_t,true_sig, time, period_1, 

period_2); 

sample_sighting(rep).r = Separate_sighting(sample_no_gp_all_t,sample_sig, time, period_1, 

period_2); 

  

%get overall AI for all time steps leaving out first 20 time steps 

fieldname = strcat('period_1_',num2str(0)); 

dummy = sum(true_no_gp_all_t(1:20)); 

temp_true_sig = true_sig(dummy+1:end, :); 

dummy = sum(sample_no_gp_all_t(1:20)); 

temp_sample_sig = sample_sig(dummy+1:end, :); 

[true_ai(rep).(fieldname),~, 

true_no_inds_in_sig_data(rep).(fieldname),true_ave_sig_filt(rep).(fieldname),true_no_AIs(r

ep).(fieldname),true_ave_AI_filt(rep).(fieldname),true_sd_AI_filt(rep).(fieldname),true_ske

w_AI_filt(rep).(fieldname),true_kurtosis_AI_filt(rep).(fieldname),true_ave_deg(rep).(fieldn

ame),true_sd_deg(rep).(fieldname),true_ave_weighted_deg(rep).(fieldname),true_sd_weight

ed_deg(rep).(fieldname),true_density(rep).(fieldname),true_ave_CC(rep).(fieldname),true_s

d_CC(rep).(fieldname),true_se_CC(rep).(fieldname),true_CI_CC(rep).(fieldname),true_ave

_path_length(rep).(fieldname),true_sd_path_length(rep).(fieldname),true_se_path_length(re

p).(fieldname),true_CI_path_length(rep).(fieldname),true_diameter(rep).(fieldname),true_av

e_eccentricity(rep).(fieldname),true_sd_eccentricity(rep).(fieldname),true_se_eccentricity(r

ep).(fieldname),true_CI_eccentricity(rep).(fieldname)] = 

Network_metrics(temp_true_sig,true_freq_filter,pop_size,0,2.262); 

[true_louvain_ind, true_comm(rep).(fieldname), true_modularity(rep).(fieldname), 

true_num_comm(rep).(fieldname), true_num_levels(rep).(fieldname)] = 

Louvain_memory(true_ai(rep).(fieldname),rep,0,'period_1',0,simulation_no,no_louvain_rep

licates);  %0 for true data 

filt_true(rep).(fieldname) = length(true_louvain_ind);   

[sample_ai(rep).(fieldname), ~, 

sample_no_inds_in_sig_data(rep).(fieldname),sample_ave_sig_filt(rep).(fieldname),sample

_no_AIs(rep).(fieldname),sample_ave_AI_filt(rep).(fieldname),sample_sd_AI_filt(rep).(fiel

dname),sample_skew_AI_filt(rep).(fieldname),sample_kurtosis_AI_filt(rep).(fieldname),sa

mple_ave_deg(rep).(fieldname),sample_sd_deg(rep).(fieldname),sample_ave_weighted_deg

(rep).(fieldname),sample_sd_weighted_deg(rep).(fieldname),sample_density(rep).(fieldnam

e),sample_ave_CC(rep).(fieldname),sample_sd_CC(rep).(fieldname),sample_se_CC(rep).(fi
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eldname),sample_CI_CC(rep).(fieldname),sample_ave_path_length(rep).(fieldname),sampl

e_sd_path_length(rep).(fieldname),sample_se_path_length(rep).(fieldname),sample_CI_pat

h_length(rep).(fieldname),sample_diameter(rep).(fieldname),sample_ave_eccentricity(rep).(

fieldname),sample_sd_eccentricity(rep).(fieldname),sample_se_eccentricity(rep).(fieldname

),sample_CI_eccentricity(rep).(fieldname)] = 

Network_metrics(temp_sample_sig,sample_freq_filter,pop_size,1,2.262); 

[sample_louvain_ind, sample_comm(rep).(fieldname), sample_modularity(rep).(fieldname), 

sample_num_comm(rep).(fieldname), sample_num_levels(rep).(fieldname)] = 

Louvain_memory(sample_ai(rep).(fieldname),rep,1,'period_1',0,simulation_no,no_louvain_

replicates);  %0 for sample data 

filt_sample(rep).(fieldname) = length(sample_louvain_ind);  

temp_true_sig = []; 

temp_sample_sig = []; 

  

  

%%get AI seperately for each sampling period except the first  

for i = 2:period_1 

    fieldname = strcat('period_1_',num2str(i)); 

    temp_true_sig = true_sighting(rep).r.(fieldname); 

    temp_sample_sig = sample_sighting(rep).r.(fieldname); 

    [true_ai(rep).(fieldname), ~, 

true_no_inds_in_sig_data(rep).(fieldname),true_ave_sig_filt(rep).(fieldname),true_no_AIs(r

ep).(fieldname),true_ave_AI_filt(rep).(fieldname),true_sd_AI_filt(rep).(fieldname),true_ske

w_AI_filt(rep).(fieldname),true_kurtosis_AI_filt(rep).(fieldname),true_ave_deg(rep).(fieldn

ame),true_sd_deg(rep).(fieldname),true_ave_weighted_deg(rep).(fieldname),true_sd_weight

ed_deg(rep).(fieldname),true_density(rep).(fieldname),true_ave_CC(rep).(fieldname),true_s

d_CC(rep).(fieldname),true_se_CC(rep).(fieldname),true_CI_CC(rep).(fieldname),true_ave

_path_length(rep).(fieldname),true_sd_path_length(rep).(fieldname),true_se_path_length(re

p).(fieldname),true_CI_path_length(rep).(fieldname),true_diameter(rep).(fieldname),true_av

e_eccentricity(rep).(fieldname),true_sd_eccentricity(rep).(fieldname),true_se_eccentricity(r

ep).(fieldname),true_CI_eccentricity(rep).(fieldname)] = 

Network_metrics(temp_true_sig,true_freq_filter,pop_size,0,2.262); 

    [true_louvain_ind, true_comm(rep).(fieldname), true_modularity(rep).(fieldname), 

true_num_comm(rep).(fieldname), true_num_levels(rep).(fieldname)] = 

Louvain_memory(true_ai(rep).(fieldname),rep,0,'period_1',i,simulation_no,no_louvain_repl

icates);  %0 for true data 

    filt_true(rep).(fieldname) = length(true_louvain_ind);  

    [sample_ai(rep).(fieldname), ~, 

sample_no_inds_in_sig_data(rep).(fieldname),sample_ave_sig_filt(rep).(fieldname),sample

_no_AIs(rep).(fieldname),sample_ave_AI_filt(rep).(fieldname),sample_sd_AI_filt(rep).(fiel

dname),sample_skew_AI_filt(rep).(fieldname),sample_kurtosis_AI_filt(rep).(fieldname),sa

mple_ave_deg(rep).(fieldname),sample_sd_deg(rep).(fieldname),sample_ave_weighted_deg

(rep).(fieldname),sample_sd_weighted_deg(rep).(fieldname),sample_density(rep).(fieldnam

e),sample_ave_CC(rep).(fieldname),sample_sd_CC(rep).(fieldname),sample_se_CC(rep).(fi

eldname),sample_CI_CC(rep).(fieldname),sample_ave_path_length(rep).(fieldname),sampl

e_sd_path_length(rep).(fieldname),sample_se_path_length(rep).(fieldname),sample_CI_pat

h_length(rep).(fieldname),sample_diameter(rep).(fieldname),sample_ave_eccentricity(rep).(

fieldname),sample_sd_eccentricity(rep).(fieldname),sample_se_eccentricity(rep).(fieldname

),sample_CI_eccentricity(rep).(fieldname)] = 

Network_metrics(temp_sample_sig,sample_freq_filter,pop_size,1,2.262); 
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    [sample_louvain_ind, sample_comm(rep).(fieldname), 

sample_modularity(rep).(fieldname), sample_num_comm(rep).(fieldname), 

sample_num_levels(rep).(fieldname)] = 

Louvain_memory(sample_ai(rep).(fieldname),rep,1,'period_1',i,simulation_no,no_louvain_r

eplicates);  %0 for sample data 

    filt_sample(rep).(fieldname) = length(sample_louvain_ind);    %number of individuals 

that pass through the frequency filter for each replicate and each period 

    temp_true_sig = []; 

    temp_sample_sig = []; 

end 

  

true_sig_all_rep(rep).r = true_sig; 

true_sig = zeros(pop_size*time,pop_size);  

sample_sig_all_rep(rep).r = sample_sig; 

sample_sig = zeros(pop_size*time,pop_size);  

true_no_gp_all_t_all_rep(rep).r = true_no_gp_all_t; 

true_no_gp_all_t = zeros(1,time); 

sample_no_gp_all_t_all_rep(rep).r = sample_no_gp_all_t; 

sample_no_gp_all_t = zeros(1,time); 

index = 1;       %counter to assign values to true sighiting data 

index2 = 1;      %counter to assign values to sample sighiting data 

gp_id_all_t_all_rep(rep).r = gp_id_all_t; 

gp_sizes_all_t_all_rep(rep).r = gp_sizes_all_t; 

gp_sizes_all_t = zeros(time, pop_size); 

gp_id_all_t = zeros(time, pop_size); 

exp_gp_size = zeros(time, pop_size); 

cuml_adj = zeros(pop_size, pop_size); 

  

end  % end of replicates loop 

  

ave_incr_new_assoc = New_associates(true_ai, no_replicates,period_2, 

pop_size,simulation_no); 

xlswrite(filename, {'time','mean for all reps'},'Cumulative_ai','a1'); 

xlswrite(filename, {'var for all reps'},'Cumulative_ai','m1'); 

xlswrite(filename, {'std for all reps'},'Cumulative_ai','x1'); 

xlswrite(filename, [1:time]','Cumulative_ai','a2'); 

xlswrite(filename, cuml_ai_mean','Cumulative_ai','b2'); 

xlswrite(filename, cuml_ai_var','Cumulative_ai','m2'); 

xlswrite(filename, cuml_ai_std','Cumulative_ai','x2'); 

xlswrite(filename, {'time','mean for all reps'},'Cumulative_adj','a1'); 

xlswrite(filename, {'var for all reps'},'Cumulative_adj','m1'); 

xlswrite(filename, {'std for all reps'},'Cumulative_adj','x1'); 

xlswrite(filename, [1:time]','Cumulative_adj','a2'); 

xlswrite(filename, cuml_adj_mean','Cumulative_adj','b2'); 

xlswrite(filename, cuml_adj_var','Cumulative_adj','m2'); 

xlswrite(filename, cuml_adj_std','Cumulative_adj','x2'); 

  

ticktock1 = toc; 

  

tic 
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xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'), 

[1:time]','Ave_group_sizes','a2');   

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Ave_group

_sizes','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Ave_group_s

izes','b1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_gp_size','Ave_group_size

s','b2'); 

  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'), 

[1:time]','Median_group_sizes','A2');   

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Median_gr

oup_sizes','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Median_grou

p_sizes','b1'); 

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),med_gp_size','Median_group

_sizes','b2'); 

  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'), 

[1:time]','Ave_exp_group_sizes','A2');   

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Ave_exp_

group_sizes','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Ave_exp_gro

up_sizes','b1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_exp_gp_size','Ave_exp_g

roup_sizes','b2'); 

  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'), 

[1:time]','Var_group_sizes','A2');   

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'time/replicates'},'Var_group

_sizes','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Var_group_si

zes','b1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),var_gp_size','Var_group_size

s','b2'); 

  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),[1:no_replicates]','Var_ave_gr

oup_sizes','a2');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'across all 

t'},'Var_ave_group_sizes','b1'); 

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),var_ave_gp_size,'Var_ave_gr

oup_sizes','b2'); 

  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'individuals/replicates'},'Ave

_exp_group_sizes_2','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Ave_exp_gro

up_sizes_2','b1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),[1:pop_size]','Ave_exp_group

_sizes_2','a2');   
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xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_exp_gp_size_2','Ave_exp

_group_sizes_2','b2'); 

  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'individuals/replicates'},'Var

_exp_group_sizes','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'Var_exp_gro

up_sizes','b1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),[1:pop_size]','Var_exp_group

_sizes','a2');   

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),var_exp_gp_size','Var_exp_g

roup_sizes','b2'); 

  

for i = 0:period_1 

    if i~=1 

        fieldname = strcat('period_1_',num2str(i)); 

        for j = 1:no_replicates                                  %this loop is there to get values of different 

replicates but same period as one list 

            true_ave_sig_filt_temp(j) = true_ave_sig_filt(j).(fieldname); 

            true_no_inds_in_sig_data_temp(j)=true_no_inds_in_sig_data(j).(fieldname); 

            true_no_AIs_temp(j)=true_no_AIs(j).(fieldname); 

            true_ave_AI_filt_temp(j)=true_ave_AI_filt(j).(fieldname); 

            true_sd_AI_filt_temp(j)=true_sd_AI_filt(j).(fieldname); 

            true_skew_AI_filt_temp(j)=true_skew_AI_filt(j).(fieldname); 

            true_kurtosis_AI_filt_temp(j)=true_kurtosis_AI_filt(j).(fieldname); 

            true_ave_deg_temp(j)=true_ave_deg(j).(fieldname); 

            true_sd_deg_temp(j)=true_sd_deg(j).(fieldname); 

            true_ave_weighted_deg_temp(j)=true_ave_weighted_deg(j).(fieldname); 

            true_sd_weighted_deg_temp(j)=true_sd_weighted_deg(j).(fieldname); 

            true_density_temp(j)=true_density(j).(fieldname); 

            true_ave_CC_temp(j)=true_ave_CC(j).(fieldname); 

            true_sd_CC_temp(j)=true_sd_CC(j).(fieldname); 

            true_se_CC_temp(j)=true_se_CC(j).(fieldname); 

            true_CI_CC_temp(j)=true_CI_CC(j).(fieldname); 

            true_ave_path_length_temp(j)=true_ave_path_length(j).(fieldname); 

            true_sd_path_length_temp(j)=true_sd_path_length(j).(fieldname); 

            true_se_path_length_temp(j)=true_se_path_length(j).(fieldname); 

            true_CI_path_length_temp(j)=true_CI_path_length(j).(fieldname); 

            true_diameter_temp(j)=true_diameter(j).(fieldname); 

            true_ave_eccentricity_temp(j)=true_ave_eccentricity(j).(fieldname); 

            true_sd_eccentricity_temp(j)=true_sd_eccentricity(j).(fieldname); 

            true_se_eccentricity_temp(j)=true_se_eccentricity(j).(fieldname); 

            true_CI_eccentricity_temp(j)=true_CI_eccentricity(j).(fieldname); 

  

            sample_ave_sig_filt_temp(j) = sample_ave_sig_filt(j).(fieldname); 

            sample_no_inds_in_sig_data_temp(j)=sample_no_inds_in_sig_data(j).(fieldname); 

            sample_no_AIs_temp(j)=sample_no_AIs(j).(fieldname); 

            sample_ave_AI_filt_temp(j)=sample_ave_AI_filt(j).(fieldname); 

            sample_sd_AI_filt_temp(j)=sample_sd_AI_filt(j).(fieldname); 

            sample_skew_AI_filt_temp(j)=sample_skew_AI_filt(j).(fieldname); 

            sample_kurtosis_AI_filt_temp(j)=sample_kurtosis_AI_filt(j).(fieldname); 
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            sample_ave_deg_temp(j)=sample_ave_deg(j).(fieldname); 

            sample_sd_deg_temp(j)=sample_sd_deg(j).(fieldname); 

            sample_ave_weighted_deg_temp(j)=sample_ave_weighted_deg(j).(fieldname); 

            sample_sd_weighted_deg_temp(j)=sample_sd_weighted_deg(j).(fieldname); 

            sample_density_temp(j)=sample_density(j).(fieldname); 

            sample_ave_CC_temp(j)=sample_ave_CC(j).(fieldname); 

            sample_sd_CC_temp(j)=sample_sd_CC(j).(fieldname); 

            sample_se_CC_temp(j)=sample_se_CC(j).(fieldname); 

            sample_CI_CC_temp(j)=sample_CI_CC(j).(fieldname); 

            sample_ave_path_length_temp(j)=sample_ave_path_length(j).(fieldname); 

            sample_sd_path_length_temp(j)=sample_sd_path_length(j).(fieldname); 

            sample_se_path_length_temp(j)=sample_se_path_length(j).(fieldname); 

            sample_CI_path_length_temp(j)=sample_CI_path_length(j).(fieldname); 

            sample_diameter_temp(j)=sample_diameter(j).(fieldname); 

            sample_ave_eccentricity_temp(j)=sample_ave_eccentricity(j).(fieldname); 

            sample_sd_eccentricity_temp(j)=sample_sd_eccentricity(j).(fieldname); 

            sample_se_eccentricity_temp(j)=sample_se_eccentricity(j).(fieldname); 

            sample_CI_eccentricity_temp(j)=sample_CI_eccentricity(j).(fieldname); 

        end 

    %      

        

Write_network_stats(filename,0,'period_1',i,no_replicates,pop_size,time,ave_gp_size,memo

ry_length,true_ave_sig_filt_temp,true_no_inds_in_sig_data_temp,true_no_AIs_temp,true_a

ve_AI_filt_temp,true_sd_AI_filt_temp,true_skew_AI_filt_temp 

,true_kurtosis_AI_filt_temp, true_ave_deg_temp, true_sd_deg_temp, 

true_ave_weighted_deg_temp, true_sd_weighted_deg_temp, true_density_temp, 

true_ave_CC_temp, true_sd_CC_temp, true_se_CC_temp, true_CI_CC_temp, 

true_ave_path_length_temp, true_sd_path_length_temp, true_se_path_length_temp, 

true_CI_path_length_temp, true_diameter_temp, true_ave_eccentricity_temp, 

true_sd_eccentricity_temp, true_se_eccentricity_temp, true_CI_eccentricity_temp); 

        

Write_network_stats(filename,1,'period_1',i,no_replicates,pop_size,time,ave_gp_size,memo

ry_length,sample_ave_sig_filt_temp,sample_no_inds_in_sig_data_temp,sample_no_AIs_te

mp,sample_ave_AI_filt_temp,sample_sd_AI_filt_temp,sample_skew_AI_filt_temp 

,sample_kurtosis_AI_filt_temp, sample_ave_deg_temp, sample_sd_deg_temp, 

sample_ave_weighted_deg_temp, sample_sd_weighted_deg_temp, sample_density_temp, 

sample_ave_CC_temp, sample_sd_CC_temp, sample_se_CC_temp, sample_CI_CC_temp, 

sample_ave_path_length_temp, sample_sd_path_length_temp, 

sample_se_path_length_temp, sample_CI_path_length_temp, sample_diameter_temp, 

sample_ave_eccentricity_temp, sample_sd_eccentricity_temp, 

sample_se_eccentricity_temp, sample_CI_eccentricity_temp); 

    end 

end 

  

  

for i = 0:period_1     

    if i~=1 

        

Write_louvain_results(filename,0,'period_1',i,no_replicates,pop_size,no_louvain_replicates,

true_num_levels,true_modularity,true_num_comm, strcat('period_1_',num2str(i))); 



 

 

 

69 

        

Write_louvain_results(filename,1,'period_1',i,no_replicates,pop_size,no_louvain_replicates,

sample_num_levels,sample_modularity,sample_num_comm, 

strcat('period_1_',num2str(i))); 

    end 

end 

   

group_size_summary(1,1:no_replicates) = mean(ave_gp_size,2)'; 

group_size_summary(2,1:no_replicates) = mean(med_gp_size,2)'; 

group_size_summary(3,1:no_replicates) = mean(var_gp_size,2)'; 

group_size_summary(4,1:no_replicates) = var_ave_gp_size'; 

group_size_summary(5,1:no_replicates) = mean(ave_exp_gp_size,2)'; 

group_size_summary(6,1:no_replicates) = mean(ave_exp_gp_size_2,2)'; 

group_size_summary(7,1:no_replicates) = mean(var_exp_gp_size,2)'; 

xlswrite(filename, {'replicates'}, 'Group_sizes', 'a1'); 

xlswrite(filename, 1:no_replicates, 'Group_sizes', 'b1'); 

xlswrite(filename, {'Ave. of Ave. group size (over time)'; 'Ave. of Median group size(over 

time)';'Ave. variance in group size every time step';'Variance in ave group size with time'; 

'Ave. of ave. (over inds) experienced group size (over time)';'Ave. of ave. (over time)  

experienced group size 2 (ave over individuals)';'Ave. variance (over time) in  experienced 

group size with time  (ave over individuals)'}, 'Group_sizes', 'a2') 

xlswrite(filename, group_size_summary, 'Group_sizes', 'b2') 

  

ticktock2 = toc; 
 

 

 

 

Group_sizes.m 

 

function gp_sizes = 

Group_sizes(gp_var_type,gp_size_type,pop_size,t,original_gp_sizes_all_t) 

if gp_size_type ==2 

    no_success = 1; 

    prob_success = 0.5;     

elseif gp_size_type == 4        

    no_success = 4; 

    prob_success = 0.5; 

end 

if t==1 

    flag = 1; 

else 

    flag = 0; 

end 

  

if gp_var_type==0 

    gp_sizes = zeros(1,pop_size); 

    if gp_size_type ==2 

        %create groups for every time step, group sizes add up to population size. 

        %This is a simplest case with group sizes that are equal and fixed across all time steps 

and all groups 
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        no_gp = 100; 

    elseif gp_size_type ==4 

        no_gp = 50; 

    end 

        temp = pop_size/no_gp;  

        gp_sizes(1:no_gp) = repelem(temp,no_gp); 

elseif gp_var_type==1 

    gp_sizes = zeros(1,pop_size); 

%assign group sizes based on negative binomial distribution. Ensure group sizes add up to 

population size.      

    c =1; 

    while(sum(gp_sizes)~=pop_size) 

        temp = nbinrnd(no_success,prob_success); 

        if temp>=1    %to get non zero group sizes 

          gp_sizes(c) = temp; 

          c = c+1; 

        end 

  

        if sum(gp_sizes)>pop_size 

            gp_sizes = zeros(1,pop_size); 

            c = 1; 

        elseif sum(gp_sizes)<pop_size 

            continue; 

        else 

            if gp_size_type==2 

              if mean(gp_sizes(gp_sizes>0))>=1.5 & mean(gp_sizes(gp_sizes>0))<=2.5 

                 break; 

              else 

                gp_sizes = zeros(1,pop_size); 

                c = 1; 

              end 

            elseif gp_size_type==4 

               if mean(gp_sizes(gp_sizes>0))>=3.5 & mean(gp_sizes(gp_sizes>0))<=4.5 

                  break; 

               else 

                 gp_sizes = zeros(1,pop_size); 

                 c = 1; 

               end 

            end 

        end 

    end         

end 
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Adjacency_matrix.m 

function adj_every_t = Adjacency_matrix(gp_id, pop_size) 

adj_every_t = zeros(pop_size, pop_size); 

for i = 1:pop_size 

    for j = 1:pop_size 

        if i~=j 

            if gp_id(i)==gp_id(j) 

                adj_every_t(i,j) = 1; 

            end 

        end 

    end 

end 

end 

 

 

 

                 

Separate_sighting.m              

             

function sighting_str = Separate_sighting(no_gp_all_t, s,time, period_1, period_2) 

incr = time/period_1;        %should always be a whole number 

k = 1; 

l = 0; 

dummy = 1; 

while (l<time)  

    l = l+incr; 

    sum_gps(dummy) = sum(no_gp_all_t(k:l)); 

    k = l+1  ;   

    dummy = dummy+1; 

end 

k = 0; 

l = 0; 

dummy = 1; 

while(l<time) 

    l = l+incr; 

    fieldname = strcat('period_1_',num2str(dummy)); 

    sighting_str.(fieldname) = s(k+1:k+sum_gps(dummy),:); 

    k = k+sum_gps(dummy); 

    dummy = dummy+1;  

end 

  

incr = time/period_2;        %should always be a whole number 

k = 1; 

l = 0; 

dummy = 1; 

while (l<time)  

    l = l+incr; 

    sum_gps(dummy) = sum(no_gp_all_t(k:l)); 

    k = l+1;    

    dummy = dummy+1; 
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end 

k = 0; 

l = 0; 

dummy = 1; 

while(l<time) 

    l = l+incr; 

    fieldname = strcat('period_2_',num2str(dummy)); 

    sighting_str.(fieldname) = s(k+1:k+sum_gps(dummy),:); 

    k = k+sum_gps(dummy); 

    dummy = dummy+1;  

end 

  

end 
 

 

 

Network_metrics.m 

function [AI_filt_sym, Sig, 

no_inds_in_sig_data,ave_sig_filt,no_AIs,ave_AI_filt,sd_AI_filt,skew_AI_filt,kurtosis_AI_f

ilt,ave_deg, sd_deg,ave_weighted_deg, 

sd_weighted_deg,density,ave_CC,sd_CC,se_CC,CI_CC,ave_path_length,sd_path_length,se

_path_length,CI_path_length,diameter,ave_eccentricity,sd_eccentricity,se_eccentricity,CI_e

ccentricity] = Network_metrics(sig_data,freq_filter, no_inds,sample,t_val) 

    inp = sort(sig_data,2,'ascend');     

    uniqID=no_inds; 

    Sig=zeros(uniqID,1); 

    Assoc=zeros(uniqID); 

    for i=1:size(inp,1)      %This code block counts the number of times each individual is 

seen in the overall sighting data  

        for k=1:size(inp,2) 

            if inp(i,k)>0 

                if inp(i,k)<(uniqID+1) 

                    Sig(inp(i,k))= Sig(inp(i,k))+1; 

                end 

            end 

        end 

    end     

    filtered_uniqID=0; 

    for i=1:uniqID        %This code block counts the number of individuals which pass the 

frequency filter 

        if (Sig(i)>freq_filter) 

            filtered_uniqID=filtered_uniqID+1; 

        end 

    end     

    filter_select=1:uniqID;          %in the loop below assigned zero if the sightings of that 

individual is not retained, if retained the variable takes the value of the number of sightings 

of that individual 
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    mapping_inv=1:uniqID;            %in the loop below individuals whose sighting is retained 

is sequentially assigned number starting from 1, those whose sighting is not retained will be 

assigned zero 

    orig_ID=1:filtered_uniqID;       %IDs (assigned in the beginning) of individuals whose 

sighting was retained 

    Sig_filtered=1:filtered_uniqID;  %number of sightings of individuals that are retained 

    Assoc_filtered=zeros(filtered_uniqID); 

    AI_filtered=zeros(filtered_uniqID); 

    j=1; 

    for i=1:uniqID 

        if(Sig(i)>freq_filter) 

            Sig_filtered(j)=Sig(i); 

            orig_ID(j)=i;            % this is the list of original IDs whose sighting numbers are 

present in Sig_filtered. 

            filter_select(i)=Sig(i); 

            mapping_inv(i)=j;        % this is a list of modified nos. corresponding to the original 

ID no's row if the individual is included and zero otherwise if the individual has been 

filtered out. 

            j=j+1; 

        else 

            filter_select(i)=0; 

            mapping_inv(i)=0; 

        end 

    end     

    for i=1:size(inp,1)                %This code block calculates number of associations between 

pairs of filtered individuals, the matrix has values only in the upper triangle 

        for k=1:size(inp,2) 

            if inp(i,k)>0 

                if inp(i,k)<(uniqID+1) 

                    if(filter_select(inp(i,k))>0) 

                        if (k<size(inp,2)) 

                            for j=(k+1):size(inp,2) 

                                if (inp(i,j)>0) 

                                    if (inp(i,j)<(uniqID+1)) 

                                        if(filter_select(inp(i,j))>0) 

                                            Assoc_filtered(mapping_inv(inp(i,k)),mapping_inv(inp(i,j)))=     

                                            Assoc_filtered(mapping_inv(inp(i,k)),mapping_inv(inp(i,j))) +1; 

                                        end 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

  

    for i=1:uniqID             %This code block calculates association index between pairs of 

filtered individuals, the matrix has values only in the upper triangle 
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        if (i<uniqID) 

            for j=(i+1):uniqID 

                if ((Sig(i)+Sig(j))>0 && filter_select(i)>0 && filter_select(j)>0) 

               

AI_filtered(mapping_inv(i),mapping_inv(j))=Assoc_filtered(mapping_inv(i),mapping_inv(j

))/(Sig(i)+Sig(j)-Assoc_filtered(mapping_inv(i),mapping_inv(j))); 

                end 

            end 

        end 

    end 

         

    Assoc_filt_size=size(Assoc_filtered,1); 

    AI_filt_sym=AI_filtered + AI_filtered'; 

     

    if sample==1 

       AI_sample = zeros(no_inds,no_inds); 

        for i = 1:no_inds 

            if i<no_inds 

               for j = (i+1):no_inds 

                 if mapping_inv(i) == 0 

                    AI_sample(i,j) = 0; 

                 else 

                    if mapping_inv(j) == 0 

                        AI_sample(i,j) = 0; 

                    else 

                        AI_sample(i,j) = AI_filtered(mapping_inv(i),mapping_inv(j)); 

                    end 

                 end 

               end 

            end 

        end      

       AI_filt_sym = []; 

       AI_filt_sym =  AI_sample+  AI_sample' ; 

    end 

     

    ones_matrix=ones(size(AI_filt_sym)); 

    ones_matrix=tril(ones_matrix,-1); 

    AI_filt_sym_list=AI_filt_sym(find(ones_matrix==1));   %this is the list of all association 

indices, basically the upper triangle data in the form of a list 

    no_inds_in_sig_data= size(unique(sig_data),1)-1 ; % -1 is to take out the zeros. 

    

    ave_sig_filt= sum(Sig_filtered)/no_inds_in_sig_data; 

    no_AIs= nchoosek(no_inds_in_sig_data,2); 

    diff_AI_nos=size(AI_filt_sym_list,1) - no_AIs; 

     

    ave_AI_filt=mean(AI_filt_sym_list); 

    sd_AI_filt=std(AI_filt_sym_list); 

    skew_AI_filt=skewness(AI_filt_sym_list); 

    kurtosis_AI_filt=kurtosis(AI_filt_sym_list); 
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    adjacency_matrix=zeros(size(AI_filt_sym)); 

    x=find(AI_filt_sym>0); 

    adjacency_matrix(x)=1; 

               

    % To find the degree of vertices %%%%%%%%for upper triangle 

    degree=zeros(no_inds,1); 

    for i=1:no_inds 

        for j=1:i 

            if(AI_filt_sym(j,i)>0) 

                degree(i)=degree(i)+1; 

            end 

        end 

        for k=i:no_inds  %%%%%%%%%%%% for lower triangle 

            if(AI_filt_sym(i,k)>0) 

                degree(i)=degree(i)+1; 

            end 

        end 

    end 

%     diff_ind_nos=no_inds - no_inds_in_sig_data;  %degree not calculated if no of inds in 

sig data is less than actual number of inds 

%     if (diff_ind_nos > 0) 

%         temp_degree=sort(degree,1); 

%         clear degree; 

%         degree=temp_degree(diff_ind_nos+1:end,:); 

%     end 

  

    

    ave_deg=mean(degree); 

    sd_deg=std(degree); 

     

     % To find the weighted  degree of vertices %%%%%%%%for upper triangle 

    weighted_degree=zeros(no_inds,1); 

    for i=1:no_inds 

        for j=1:i 

            if(AI_filt_sym(j,i)>0) 

                weighted_degree(i)= AI_filt_sym(j,i)+ weighted_degree(i); 

            end 

        end 

        for k=i:no_inds  %%%%%%%%%%%% for lower triangle 

            if(AI_filt_sym(i,k)>0) 

                weighted_degree(i)= AI_filt_sym(i,k)+ weighted_degree(i); 

            end 

        end 

    end 

     

%     diff_ind_nos=no_inds - no_inds_in_sig_data; 

%     if (diff_ind_nos > 0) 

%         temp_weighted_degree=sort(weighted_degree,1); 

%         clear weighted_degree; 

%         weighted_degree=temp_weighted_degree(diff_ind_nos+1:end,:); 
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%     end 

    

    ave_weighted_deg=mean(weighted_degree); 

    sd_weighted_deg=std(weighted_degree); 

     

    % GETTING NO. OF EDGES AND DENSITY 

    count_assoc=0;                  % This gives the total number of associations (edges) across 

all individual pairs (not the total value of associations). 

    for i=1:no_inds 

        for j=1:i 

            if(AI_filt_sym(i,j)>0) 

                count_assoc=count_assoc+1; 

            end 

        end 

    end 

    %possible_edges=filtered_uniqID * (filtered_uniqID-1) / 2; 

    possible_edges=no_inds * (no_inds-1) / 2;  % This is because, while randomly picking up 

inds, some inds may not turn up in the sighting data at all. 

    density = count_assoc/possible_edges; 

  

    % CLUSTERING COEFFICIENT  

    graph=adjacency_matrix; 

  

    no_triangles = diag(graph*triu(graph)*graph); % Number of triangles for each node as 

opposed to total number of triangles - see above. 

  

    % The local clustering coefficient of each node. 

    CC_node = zeros(size(degree)); 

    CC_node(degree > 1) = 2 * no_triangles(degree > 1) ./ (degree(degree > 

1).*(degree(degree > 1) - 1)); 

  

   %Average clustering coefficient of the graph 

    ave_CC = mean(CC_node(degree > 1)); 

    sd_CC = std(CC_node(degree > 1)); 

    se_CC = sd_CC/sqrt(size(CC_node(degree>1),1)); 

    CI_CC = t_val*se_CC; 

     

    % PATH LENGTHS  

  

    path_lengths=inf*ones(length(adjacency_matrix)); % Because if there is no connection, 

the path length will be infinity. 

    node_nos = 1:length(adjacency_matrix); % These are node nos for which the path lengths 

are not yet found. 

    for i=1:length(adjacency_matrix) 

        path_lengths(i,i)=0; % Distance of node with itself. 

        node_nos = 1:length(adjacency_matrix); % Nodes with path lengths not found. 

        while not(isempty(node_nos)) 

            [min_path_length,index] = min(path_lengths(i,node_nos)); % [Y,I] = MIN(X) gives 

Y with the min value and I containing the indices of the minimum values. If there is more 

than one minimal element, the index of the first one is returned. 
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            % The above should give the index of the focal node from which path lengths are 

being calculated. 

            for j=1:length(node_nos) 

                if adjacency_matrix(node_nos(index),node_nos(j))>0 & 

path_lengths(i,node_nos(j))>path_lengths(i,node_nos(index))+adjacency_matrix(node_nos(

index),node_nos(j)); 

                    

path_lengths(i,node_nos(j))=path_lengths(i,node_nos(index))+adjacency_matrix(node_nos(

index),node_nos(j)); 

                end 

            end 

            node_nos = setdiff(node_nos,node_nos(index)); % SETDIFF(A,B) when A and B 

are vectors returns the values in A that are not in B. The result will be sorted. 

        end 

    end 

 

    % when_no_paths=find(path_lengths_1==Inf); 

    no_of_shortest_paths=length(find(path_lengths<Inf))-length(adjacency_matrix); 

  

    ones_matrix=ones(size(path_lengths)); 

    ones_matrix=tril(ones_matrix,-1); 

    path_lengths_list=path_lengths(find(ones_matrix==1)); 

    ave_path_length=mean(path_lengths_list(path_lengths_list<Inf)); % Taking mean of 

those path lengths that are not Infinity in value. 

    sd_path_length=std(path_lengths_list(path_lengths_list<Inf)); 

    se_path_length=sd_path_length/sqrt(size(path_lengths_list(path_lengths_list<Inf),1)); 

    CI_path_length=t_val*se_path_length; 

     

    diameter=max(path_lengths_list(path_lengths_list<Inf)); 

  

    % ECCENTRICITY (this is the longest of the shortest paths from each node) 

    temp2=path_lengths; % This is to overcome the problem of having nodes with no 

connections and, therefore, infinity path lengths. 

    temp2(temp2==Inf)=NaN; % By default, NaN will be omitted, so the infinity values will 

be omitted when replaced by NaN. 

    temp2(temp2==0)=NaN; 

    eccentricity=max(temp2,[],2); % [Y,I] = MAX(X,[],DIM) operates along the dimension 

DIM. 

    ave_eccentricity=mean(eccentricity(eccentricity<Inf)); 

    sd_eccentricity=std(eccentricity(eccentricity<Inf)); 

    se_eccentricity=sd_eccentricity/sqrt(size(eccentricity(eccentricity<Inf),1)); 

    CI_eccentricity=t_val*se_eccentricity; 

end 
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Louvain_memory.m 

function [ind,s, mod_max,numComm, levels] = louvain(ai,replicate,sample, period_type, 

per,simulation_no,rep) 

  

%% This code block is taken from Kabini_assoc_from_excel_file_mod_2020 and modified 

slightly. It creates a text file with edges and weights using the AI matrix 

count_assoc=0;                  % This gives the total number of associations across all 

individual pairs (not the total value of associations). 

for i=1:size(ai,1) 

    for j=1:size(ai,1) 

        if(ai(i,j)>0) 

            count_assoc=count_assoc+1; 

        end 

    end 

end 

edges=ones(count_assoc,3); 

temp_index=1; 

for i=1:size(ai,1) 

    for j=1:size(ai,1) 

        if(ai(i,j)>0) 

            edges(temp_index,1)=i; 

            edges(temp_index,2)=j; 

            edges(temp_index,3)= ai(i,j); 

            temp_index=temp_index+1; 

        end 

    end 

end 

newfilename=strcat('Edge_list','_',num2str(simulation_no),'_', num2str(replicate),'_', 

num2str(sample),'_',period_type,'_', num2str(per),'.csv'); 

dlmwrite(newfilename, edges, 'delimiter', ' ', 'newline', 'pc'); 

  

  

%% This code block is taken from multiCpp.modA and has been modified. It calls the C++ 

executables of the louvain algorithm. Communities obtained in each pass is sent to 

modularity func to calculate max modularity attained in that pass.  

cppConvert= 'D:\Anvitha\Louvain_v0.3_core1\gen-louvain\convert';   %path of the C++ 

executables in the computer. Ensure that the required .dll files from cygwin bin are present 

in the folder with these .exe files 

cppHierarchy='D:\Anvitha\Louvain_v0.3_core1\gen-louvain\hierarchy'; 

cppCommunity='D:\Anvitha\Louvain_v0.3_core1\gen-louvain\louvain'; 

binFile='edges.bin'; %file with output from convert.exe 

weightsFile='edges.weights'; %file with output from convert.exe 

treeFile='edges.tree'; %file with output from louvain.exe 

edgesFile= newfilename; %input file with list of edges and weight 

s = struct; 

mod_max = struct; 

numComm = struct; 

levels = zeros(rep,1); 
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for i = 1:rep 

    commandLine = sprintf('%s -i %s -o %s -w %s ',cppConvert, 

edgesFile,binFile,weightsFile); %to call convert.exe from command line, input is edges file, 

output is edges.bin and edges.weights file 

    [a, b] = system(commandLine); 

    commandLine=sprintf('%s %s  -l -1 -q %s -w  %s > %s',cppCommunity, 

binFile,'0',weightsFile,treeFile); %to call louvain.exe, input is edges.bin and edges.weights 

while the output is edges.tree which has list of communities for all the passes, '0' as input 

uses Newman-Girvan modularity as quality function 

    [dummy1 dummy2]= system(commandLine); 

    commandLine=sprintf('%s %s ',cppHierarchy, treeFile); %to call hierarchy.exe to obtain 

a list of number of communities in each pass, input is edges.tree file 

    [dummy1 dummy2]= system(commandLine); 

    dummy3=strread(dummy2,'%s','delimiter',':'); 

    numLevels=str2num(dummy3{2}) ; 

    levels(i,1) = numLevels; 

    for j=0:numLevels-1  %this code block separates communities of different passes present 

in edges.tree into different text files 

        nodesFile='nodes'; 

        nodesFile=[nodesFile '_' num2str(j),'.txt' ]; 

        commandLine=sprintf('%s %s -l %d > %s',cppHierarchy, treeFile,j,nodesFile); 

        fprintf('%s\n', commandLine); 

        [dummy1 dummy2]=system(commandLine); 

        t = readtable(nodesFile);  %converting text file with communities into a table 

        fieldname = strcat('pass',num2str(j));  %to name field for structure s, each pass is one 

field 

        ind = table2array(t(2:end,1)); 

        s(i).(fieldname) = table2array(t(2:end,2)); %adding communities of a given pass of ith 

iteration into a structure 

        communities = table2array(t(2:end,2)); 

        numComm(i).(fieldname) = max(communities); 

        mod_max(i).(fieldname) = Modularity(ai,ind,communities); 

        delete (nodesFile);  

    end 

    delete (binFile);   

    delete (weightsFile); 

    delete (treeFile); 

end 

  

 if replicate ~= 2 && replicate ~= 3 

   delete (edgesFile) 

 else   

 newfilename=strcat('Edge_list','_',num2str(simulation_no),'_', num2str(replicate),'_', 

num2str(sample),'_',period_type,'_', num2str(per),'.net'); 

 dlmwrite(newfilename, edges, 'delimiter', ' ', 'newline', 'pc'); 

 delete (edgesFile); 

 end 

 end  

 

 



 

 

 

80 

Modularity.m 

 

function Q = modularity(ai,ind,comm) 

format long; 

m = sum(sum(ai)); 

Q = 0; 

sum_i = 0; 

ai = double(ai); 

for i = 1:length(ind) 

    sum_j = 0; 

    for j = 1:length(ind) 

      

        Aij = ai(i,j); 

        ki = sum(sum(ai(i,:))); 

        kj = sum(sum(ai(j,:))); 

        if isequal(comm(i,1),comm(j,1)) 

            delta = 1; 

        else 

            delta = 0; 

        end 

        sum_j = sum_j + (Aij - (ki*kj/m))*delta; 

    

    end 

    sum_i = sum_i + sum_j; 

end 

Q = sum_i/m; 

end 
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New_associates.m 

function ave_deg_incr = New_associates(true_ai, no_replicates,period, 

pop_size,simulation_no) 

uni = zeros(pop_size,period); 

ave_deg_incr = zeros(no_replicates,period); 

deg_incr = struct; 

for i = 1:no_replicates 

    a1 = true_ai(i).('period_2_1')>0; 

    for k = 1:pop_size 

        b1 = find(a1(k,:)==1); 

        uni(k,1) = length(b1); 

       for j = 2:period 

         fieldname = strcat('period_2_',num2str(j)); 

         a2 = true_ai(i).(fieldname)>0; 

         b2 = find(a2(k,:)==1); 

         dummy = setdiff(b2(1,:),b1(1,:)); 

         dummy2 = length(dummy); 

         uni(k,j) = uni(k,j-1)+ dummy2; 

         b1 = unique([b1 b2]); 

       end 

    end 

    deg_incr(i).rep = uni; 

%     dummy3 = true_ai(i).('period_1_0')>0; 

%     for k = 1:pop_size 

%         ind_degree(i,k) = sum(dummy3(k,:)>0); 

%     end 

    ave_deg_incr(i,:) = mean(deg_incr(i).rep); 

    

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),ave_deg_incr(i,:)','New_assoc

iates',strcat(CHAR(i+1),'2')); 

end 

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'), 

[1:period]','New_associates','a2');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),{'period/replicates'},'New_ass

ociates','a1');  

xlswrite(strcat('Group_sizes_',num2str(simulation_no),'.xlsx'),1:no_replicates,'New_associat

es','b1');  

end 
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Write_network_stats.m 

         

function Write_network_stats(filename,sample,period_type, 

per,no_replicates,pop_size,time,ave_gp_size,memory,ave_sig_filt,no_inds_in_sig_data,no_

AIs,ave_AI_filt,sd_AI_filt,skew_AI_filt ,kurtosis_AI_filt, ave_deg, sd_deg, 

ave_weighted_deg, sd_weighted_deg, density, ave_CC, sd_CC, se_CC, CI_CC, 

ave_path_length, sd_path_length, se_path_length, CI_path_length, diameter, 

ave_eccentricity, sd_eccentricity, se_eccentricity, CI_eccentricity) 

sheetname = strcat('Network_stats_', num2str(sample),'_',period_type,'_',num2str(per)); 

heading = {'No. of replicates' '' 'No. of inds' 'No. of time steps' 'Ave. gp. size' 'Memory type' 

'' '' '' 'Ave. no. of sig. filt' 'No. ind in sig data' 'No. of AIs' 'Ave. AI filt' 'SD AI filt' 'Skew in 

AI filt' 'Kurtosis of AI filt' 'Ave. degree' 'SD degree' 'Ave. weighted degree' 'SD weighted 

degree' 'Density' 'Ave. Clust Coeff' 'SD Clust Coeff' 'SE Clust Coeff' '95% CI Clust Coeff' 

'Ave. path length' 'SD path length' 'SE path length' '95% CI path length' 'Diameter' 'Ave. 

eccentricity' 'SD eccentricity' 'SE eccentricity' '95% CI eccentricity'}; 

xlswrite (filename, heading, sheetname,'A1'); 

xlswrite (filename, no_replicates, sheetname,'A2');  

xlswrite (filename, pop_size, sheetname,'C2'); 

xlswrite (filename, time, sheetname,'D2'); 

xlswrite (filename, mean(ave_gp_size,2) , sheetname,'E2'); 

xlswrite (filename, memory , sheetname,'F2'); 

xlswrite (filename, ave_sig_filt, sheetname,'J2'); 

xlswrite (filename, no_inds_in_sig_data, sheetname,'K2'); 

xlswrite (filename, no_AIs, sheetname,'L2'); 

xlswrite (filename, ave_AI_filt, sheetname, 'M2'); 

xlswrite (filename, sd_AI_filt, sheetname, 'N2'); 

xlswrite (filename, skew_AI_filt, sheetname, 'O2'); 

xlswrite (filename, kurtosis_AI_filt, sheetname, 'P2'); 

xlswrite (filename, ave_deg, sheetname, 'Q2'); 

xlswrite (filename, sd_deg, sheetname, 'R2'); 

xlswrite (filename, ave_weighted_deg, sheetname, 'S2'); 

xlswrite (filename, sd_weighted_deg, sheetname, 'T2'); 

xlswrite (filename, density, sheetname, 'U2'); 

xlswrite (filename, ave_CC, sheetname, 'V2'); 

xlswrite (filename, sd_CC, sheetname, 'W2'); 

xlswrite (filename, se_CC, sheetname, 'X2'); 

xlswrite (filename, CI_CC, sheetname, 'Y2'); 

xlswrite (filename, ave_path_length, sheetname, 'Z2'); 

xlswrite (filename, sd_path_length, sheetname, 'AA2'); 

xlswrite (filename, se_path_length, sheetname, 'AB2'); 

xlswrite (filename, CI_path_length, sheetname, 'AC2'); 

xlswrite (filename, diameter, sheetname, 'AD2'); 

xlswrite (filename, ave_eccentricity, sheetname, 'AE2'); 

xlswrite (filename, sd_eccentricity, sheetname, 'AF2'); 

xlswrite (filename, se_eccentricity, sheetname, 'AG2'); 

xlswrite (filename, CI_eccentricity, sheetname, 'AH2'); 

end 
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Write_louvain_results.m 

 

function 

Write_louvain_results(filename,sample,period_type,per,no_replicates,pop_size,no_louvain_

replicates,num_levels,modularity,num_comm,fieldname) 

sheetname = strcat('L_output_', num2str(sample),'_',period_type,'_',num2str(per)); 

heading = {'Data set replicate' 'Louvain replicate' 'No. of passes/levels'  'Modularity pass 0' 

'Modularity pass 1' 'Modularity pass 2' 'Modularity pass 3' ''  ''  'No. of communities pass 0'     

'No. of communities pass 1' 'No. of communities pass 2' 'No. of communities pass 3'}; 

xlswrite(filename,heading,sheetname,'A1'); 

for i = 1:no_replicates 

 k = i-1; 

 xlswrite(filename,i,sheetname,strcat('a',num2str(no_louvain_replicates*k+2))); 

 l = 1:no_louvain_replicates; 

 xlswrite(filename,l',sheetname,strcat('b',num2str(no_louvain_replicates*k+2))); 

 xlswrite(filename, num_levels(i).(fieldname), sheetname, 

strcat('c',num2str(no_louvain_replicates*k+2))); 

 ave_comm_levels(i) = mean(num_levels(i).(fieldname)); 

 sd_comm_levels(i) = std(num_levels(i).(fieldname)); 

 n_comm_levels(i) = length(num_levels(i).(fieldname)); 

 table2 = struct2table(modularity(i).(fieldname)); 

 table3 = struct2table(num_comm(i).(fieldname)); 

 col = size(table2,2); 

 for j = 1:col 

     temp = table2array(table2(:,j));   %output is a cell array if there are a few empty rows ([]) 

in a given column of the table. Empty rows arise when a pass is not reached. 

     if iscell(temp) 

        ave_modularity(i,j) = mean(cell2mat(temp)); 

        sd_modularity(i,j) = std(cell2mat(temp)); 

        n_modularity(i,j) = length(cell2mat(temp)); 

     else 

        ave_modularity(i,j) = mean(temp); 

        sd_modularity(i,j) = std(temp); 

        n_modularity(i,j) = length(temp); 

     end  

     xlswrite(filename, temp, sheetname, 

strcat(char('c'+j),num2str(no_louvain_replicates*k+2))) 

 end 

 col = size(table3,2); 

 for j = 1:col 

     temp2 = table2array(table3(:,j));  %output is a cell array if there are a few empty rows 

([]) in a given column of the table. Empty rows arise when a pass is not reached. 

     if iscell(temp2) 

       ave_no_comm(i,j) = mean(cell2mat(temp2)); 

       sd_no_comm(i,j) = std(cell2mat(temp2)); 

       n_no_comm(i,j) = length(cell2mat(temp2)); 

     else 

       ave_no_comm(i,j) = mean(temp2); 

       sd_no_comm(i,j) = std(temp2); 

       n_no_comm(i,j) = length(temp2); 
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     end 

   xlswrite(filename, temp2, sheetname, 

strcat(char('c'+6+j),num2str(no_louvain_replicates*k+2))); %if there are more than 5 

passes, +6 must be changed to a higher number 

 end 

end 

  

%%Remeber to edit excel column numbers in xlswrite statement if the number of passes is 

more than 5    

sheetname2 = strcat('Ave_L_output_', num2str(sample),'_',period_type,'_',num2str(per)); 

heading = {'Data set replicate' 'Ave. no. of passes/levels' 'SD of no. of passes/levels' 'n' ' ' 

'Ave. modularity pass 0'   'Ave. modularity pass 1' 'Ave. modularity pass 2' 'Ave. modularity 

pass3' ' ' ' ' 'SD modularity pass 0' 'SD modularity pass 1' 'SD modularity pass 2'  'SD 

modularity pass 3' ' ' 'n pass 0' 'n pass 1 ' 'n pass 2 ' 'n pass 3' ' ' ' ' 'Ave. no. of communities 

pass 0'   'Ave. no. of communities pass 1'    'Ave. no. of communities pass 2'    'Ave. no. of 

communities pass 3'    ' ' ' ' ' ' 'SD no. of communities pass 0' 'SD no. of communities pass 1'   

'SD no. of communities pass 2'  'SD no. of communities pass 3' ' ' 'n pass 0' 'n pass 1 ' 'n pass 

2 ' 'n pass 3'}; 

xlswrite(filename,heading,sheetname2,'A1'); 

temp = 1:no_replicates; 

xlswrite(filename,temp', sheetname2,'A2'); 

xlswrite(filename,ave_comm_levels',sheetname2,'B2'); 

xlswrite(filename,sd_comm_levels',sheetname2,'C2'); 

xlswrite(filename,n_comm_levels',sheetname2,'D2'); 

xlswrite(filename,ave_modularity,sheetname2,'F2'); 

xlswrite(filename,sd_modularity,sheetname2,'L2'); 

xlswrite(filename,n_modularity,sheetname2,'Q2'); 

xlswrite(filename,ave_no_comm,sheetname2,'W2'); 

xlswrite(filename,sd_no_comm,sheetname2,'AD2'); 

xlswrite(filename,n_no_comm,sheetname2,'AI2'); 

  

  

end 

 

 

 

 

 

 

 

 

 




