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Synopsis 

 

Layered materials refer to materials that are composed of two or more layers stacked on top of 

each other. These have emerged as an exciting area of research due to their unique properties 

and potential applications.  

 

Halide perovskite derivatives are a class of layered materials that have drawn a lot of interest 

recently because of their exceptional optoelectronic characteristics. These substances are made 

up of layers of metal cations and halide ions stacked in a perovskite fashion. The optical and 

electrical properties of the material can be adjusted by adding other metals and halides to the 

structure. As a result, a variety of halide perovskite derivatives have been created and are used 

in solar cells, light emitting diodes, and other optoelectronic devices. 

 

Another layered substance that has attracted a significant lot of interest recently is bilayer 

graphene. Bilayer graphene is made up of two layers of graphene that have been placed on top 

of one another. Graphene is a single layer of carbon atoms organised in a hexagonal lattice. 

Bilayer graphene has been demonstrated to exhibit a number of intriguing electrical properties 

as a result of the special electronic characteristics of graphene. 

Bilayer graphene has also been employed in a variety of applications, including the creation of 

quantum devices and high-speed transistors. Bilayer graphene's characteristics can be 

engineered for unique applications by adjusting the stacking arrangement. 

 

In chapter 1, we provide an introduction to the main theme  of the thesis. It involves a brief 

history of the field, followed by a short review of the recent advancements in this field.  

 

In chapter 2, we provide the methods and formalism needed for our computational simulations. 

We provide a basic insight into the density functional theory (DFT), and how it can be 

implemented in modern day computer simulations.  



 

In chapter 3, we focus on the electronic and optical properties of halide perovskite derivatives. 

Essentially, we focus on Cs3Sb2I9 which has immense optoelectronic applications. We employ 

DFT techniques and GW methods to study the optical absorption spectrum of the material and 

identify the electronic transitions responsible for such a spectrum.  

 

In chapter 4, we investigate sliding in irrational directions in bilayer graphene. We study the 

electronic and vibrational properties under such sliding. In fact, break in symmetry due to 

sliding gives rise to novel phenomena in these systems. The electronic band structure and the 

phonon spectrum do change a lot under such sliding motions.  
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Chapter 1  

 

Introduction 

 

Perhaps, one of the most influential works of Shakespeare involves the transcendental lines in 

his ‘Seven Ages of Man’. Quite ironically, humankind has seen growth in science and 

technology following the footsteps of what is referred to as the ‘Seven Ages of Materials’ [1]. 

Right from the Stone Age in the human prehistory to Bronze, Iron, Aluminium, Glass, Plastic, 

and finally the Silicon age, shows how intricately understanding materials is related to human 

civilization, and intellectual growth of humankind.  

One can say, however, that the eighth wonder in materials sciences is not a new material, but 

the advent of computers, and their immense functionality which has brought about quite a 

revolution in the field of the scientific endeavour to understand and appreciate the rich 

playground which materials science offers us. As rightly said by Karl Marx, that “social 

revolution” should draw “its poetry from the future” [2], scientific revolution too should rest 

its fulcrum over the shoulders of its futuristic imagery. Needless to say, computers have 

speeded up research in materials science to the future by manifold times.  

One of the precursors in this advancement, comes from the great minds of the intellects like 

Schrodinger, Bohr, Einstein, Feynman, and others, who have shaped for us “A Beautiful 

Mind”, more formally known as Quantum Mechanics [3]. It shows how a microscopic 

description of matter can be immensely successful in predicting and understanding matter itself 

and its properties on a fundamental level. The celebrated equation called the Schrodinger’s 

equation has proved itself time and again that it does have a herculean power of predicting 

what happens around us. But like all great things in life, Schrodinger’s equation too has its own 



 

limit. It turns out that solving it for a real system (with Avogadro number of particles) is 

impractically difficult. This was pointed out with an estimate by physicist Douglas Hartree, 

who said that to describe an iron atom on a coarse grid one would need to store more numbers 

than there are particles in the solar system. So, the way out there, is to approximate and simplify 

our problem.  

The nineteenth century saw a great deal of developments in simplifying the so called ‘many 

body problem’ with approximations and assumptions [4]. The theories given by eminent 

physicists like Born and Oppenheimer, Hartree and Fock, Thomas and Fermi, and others 

proved to be quite successful in describing the problem. However, perhaps, the state-of-the-art 

theory was still yet to be devised, and formulated.  

Walter Kohn, a young and enthusiastic jew in the 1950s, was a survivor from the holocaust by 

Nazi Germany [5]. He soon with his sheer dedication and perseverance was able to lay the 

foundations of the one of the most successful theories in quantum many body physics, 

alongside the geniuses of Pierre Hohenberg, and later Lu Jeu Sham. The theory which came to 

be known as the density functional theory (DFT), started to be used as one of the revolutionary 

ideas in the field of many body physics. With computers coming into the picture, DFT became 

even more popular, as now one could run calculations on a computer, which are difficult to 

solve manually otherwise. Walter Kohn was awarded the prestigious Nobel prize in 1998 in 

Chemistry "for his development of the density-functional theory".  

First principles calculations based on DFT helps us to predict properties of real materials to an 

extremely good accuracy. Experiments do validate mostly all the results obtained from DFT. 

It is indeed, a very successful theory to say the least. In fact, it is also one of the cheapest ways 

of predicting different properties of materials. The essential idea behind first principles 

calculations, as known as ab initio method, is to apply the basic laws and assumptions of many 

body physics and come up with the structure and properties of materials, without taking inputs 

from experiments. Both microscopic and macroscopic properties of a typical material, in the 

bulk form, surfaces and interfaces, can be easily predicted.  

Layered materials were perhaps always in use, right from ancient civilizations, but got special 

attention only very recently. Graphite, an allotrope of carbon, is probably the best-known 

example among these. It was already used by Neolithic Danubians, in 4000 BC, for paint used 

in pottery [6]. More recently, research in this field got accelerated increasingly once graphene 

sheets were exfoliated in 2004 [7]. According to John Dewey, "Every significant breakthrough 
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in science has issued from a new audacity of the imagination." Graphene's discovery served as 

a compelling argument. Canadian theorist John Russell Wallace already foresaw the relativistic 

behaviour of graphene electrons using tight binding models in 1947, though very few believed 

that such a monolayer could exist. However, in 2004, Andre Geim and Konstantin Novoselov 

changed the paradigm completely, when they could exfoliate graphene sheets experimentally, 

leading to the 2010 Nobel prize in Physics [8]. Researchers took interest in layered materials 

ever since. Among the other layered materials, transition metal dichalcogenides (e.g., MoS2, 

MoSe2), certain metal halides (e.g., PbI2 and MgBr2), and oxides (e.g., MnO2, MoO3), 

perovskites (general form ABO3), insulating hexagonal boron nitride (h-BN) and layered 

silicates (clays, micas) are notable mentions.  

This new class of materials is essentially interesting due to a broad range of emergent 

phenomena they exhibit in response to various perturbations. In this thesis, two extremely 

popular layered materials have been studied — a halide perovskite derivative Cs3Sb2I9, which 

has immense photovoltaic applications, and bilayer graphene which offers a rich playground 

for major fundamental understanding of condensed matter phases. The properties which have 

been looked upon are the electronic, optical, and vibrational properties.  
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Chapter 2  

 

Methods and Formalism 

 

The aim of this chapter is to briefly discuss the theoretical background and the computational 

methods involved in our first-principles calculations within the framework of density 

functional theory. The ability of quantum mechanics to predict the total energy of a system of 

electrons and nuclei has been the driving force to perform quantum-mechanical calculations. 

In the first section, we show how any property exhibited by a material can be described by the 

total quantum mechanical Hamiltonian involving the interaction between the electrons, the 

ions, and the interactions among themselves. We then describe certain approximations e.g., 

Born-Oppenheimer and classical nuclei approximations considered while calculating the 

electronic structure of a material.  

The next section involves converting these many body Schrödinger equation to a set of coupled 

one electron equations using Hohenberg-Kohn theorems and Kohn-Sham Ansatz. The Kohn-

Sham method can then be practically used to obtain the total energy of system of electrons and 

nuclei which is the essential quantity needed to calculate many physical quantities. The first 

order derivatives of total energy give important physical quantities like polarization, 

magnetization, and forces while dielectric constant, magnetic susceptibility, force constant can 

be obtained by taking the second order derivatives of the total energy. 

Furthermore, the next section involves discussing the theoretical approaches within the density 

functional perturbation theory (DFPT) used to describe phonons which are the quanta of lattice 

vibrations in a given material.  
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2.1 Grand Hamiltonian 
 

The full Hamiltonian of a material considering all possible interactions between electrons and 

ions [1] is given in Eq. (2.1) as,  

𝐻 =  − ∑
1

2𝑀𝐼
𝐼

∇I
2  −  

1

2
∑ ∇i

2

𝑖

+
1

2
 ∑  

𝐼

∑
𝑍𝐼𝑍𝐽

|𝑅𝐼 − 𝑅𝐽|
𝐼≠𝐽

+  
1

2
 ∑  

𝑖

∑
1

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

−  ∑  

𝐼

∑
𝑍𝐼

|𝑅𝐼 − 𝑟𝑖|
𝑖

  

(2. 1) 

Here, electrons are denoted by lowercase subscripts and nuclei by uppercase subscripts. The 

first term in the above expression is the kinetic energy of nuclei, the second term represents the 

kinetic energy of electrons, the third and fourth terms represent the interaction between 

electrons and the interaction between nuclei respectively. Fifth term also termed as external 

potential denotes interaction between electrons and nuclei. It should also be noted that we have 

used atomic units, where the charge of an electron, the mass of an electron, reduced Planck’s 

constant, and the electrostatic constant are all taken as unity.  

Given this total Hamiltonian of any system, we can write the time-independent Schrödinger 

equation as,  

𝐻𝜓(𝑹𝑰, 𝒓𝒊) = 𝐸𝜓(𝑹𝑰, 𝒓𝒊) 

(2. 2) 

where 𝜓(𝑹𝑰, 𝒓𝒊) is the total wave function consisting of the electronic and ionic part. 

If total energies can be calculated, any physical property that can be related to total energy can 

be determined computationally. The problem in obtaining exact quantum mechanical total 

energy is to solve a set of very complicated coupled differential equation. This is because any 

material has a very large number of ions and electrons with their degrees of freedom coupled 

to each other. The only possible solution is taking into account reasonably good 

approximations.  
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2.2 Adiabatic Born-Oppenheimer Approximation 
 

The adiabatic approximation (Born-Oppenheimer approximation [2]) is one of the most 

important assumptions made to simplify the grand Hamiltonian of a system of interacting 

electrons and ions. This assumption is based on the fact that the mass of the nucleus is 

approximately 1836 times larger than that of an electron hence the time scale associated with 

the motion of the nuclei (ions) are much slower than that associated with electrons. Therefore, 

kinetic energy of nuclei can be neglected in comparison to that of electrons. The electrons 

instantaneously follow the motion of the ions while remaining in the same stationary (adiabatic) 

state (ground or excited). If this condition is followed, then the dynamics is said to be adiabatic. 

If H is the total Hamiltonian of the system, then, 

𝐻 = 𝑇𝑛 + 𝑈𝑛𝑛 + 𝐻𝑒  

(2. 3) 

where the electronic Hamiltonian of a system can be written in a short notation as,  

𝐻𝑒 = 𝑇𝑒 + +𝑈𝑒𝑒 +  𝑉𝑒𝑥𝑡 

(2. 4) 

where 𝑇𝑒 and 𝑇𝑛 are the kinetic energies of electrons and nuclei respectively. 𝑈𝑒𝑒 and 𝑈𝑛𝑛 are 

electron-electron and nuclear-nuclear interaction potential respectively. 𝑉𝑒𝑥𝑡 is the interaction 

potential between the electrons and nuclei.  

Though Born-Oppenheimer approximation reduces the difficulty to determine the ground state 

for a given set of atoms and their positions, quantum mechanical solution of Eq. (2.3) for the 

large number of atoms is still a challenge. Therefore, determination of the ground state is quite 

hard and requires additional approximations. 

2.3 Classical nuclei approximation  
 

The second most important assumption made in simplifying the electronic structure of a matter 

is the classical nuclei approximation. Since the nuclear masses are very heavy as compared to 

electrons, the wave functions for nuclei are much more localized and therefore one can assume 

that quantum phase coherence of the nuclear wave functions is very less or does not exist at 

all. This led to the safe assumption of treating nuclei as classical particles. Within this 
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approximation, the total nuclear wave function can be expressed as the product of all individual 

nuclear wave function. By doing so we can neglect the exchange and correlation interactions 

among them. The dynamics of the mean values of position and momentum operators can be 

obtained through Ehrenfest's theorem.  

2.4 Independent electron approximation 
 

Independent electron approximation is the oldest approximation which considers two basic 

independent-particle approaches that may be classified into "non-interacting" or Hartree 

method and Hartree-Fock method. In Hartree method, only the classical electrostatic Coulomb 

interaction energy is considered while neglecting the exchange and correlation effects. Hartree 

did not consider the asymmetric nature of electronic wavefunctions.  

But in Hartree-Fock method, in addition to the electrostatic interaction energy, the exchange 

effect due to Pauli principle and correlation effect are taken into account. Antisymmetric nature 

of electrons was considered in the Hartree-Fock Approximation. In this framework, 

asymmetric electronic wavefunction can be written in the form of a Slater determinant such 

that the wavefunctions are indistinguishable.  

In modern DFT, the electronic Hamiltonian is taken to be non-interacting like in Hartree 

approach and electrons are assumed to move in an effective external potential chosen so as to 

incorporate the exchange-correlation effect approximately.  

2.5 Hohenberg-Kohn theorems 
 

The framework of DFT is based on two theorems called Hohenberg-Kohn theorems [3]: 

Theorem I: The external potential 𝑉𝑒𝑥𝑡 (𝒓) of any system of interacting particles can be 

determined uniquely by the ground state particle density 𝑛0(𝒓) within an additive constant. 

Theorem II: For any given external potential 𝑉𝑒𝑥𝑡 (𝒓), the universal functional for energy E[n] 

of the system can be defined in terms of particle density 𝑛(𝒓). The exact ground state energy 

of the system is the global minimum value of this functional, and the density 𝑛(𝒓) that 

minimizes this functional is the exact ground state particle density 𝑛0(𝒓). 
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Based on these two theorems, the 3Ne (Ne is number of electrons) variables in the problem are 

reduced to a problem involving function of only three variables of 𝑛(𝒓), and the total energy 

functional can be written: 

𝐸𝐻𝐾[𝑛] = 𝐹𝐻𝐾[𝑛] +  ∫ 𝑑3𝑟 𝑉𝑒𝑥𝑡 (𝒓) 𝑛(𝒓) + 𝐸𝑛𝑛 

(2. 5) 

𝐹𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛] 

(2. 6) 

Here, 𝐹𝐻𝐾[𝑛] is the includes kinetic energy 𝑇[𝑛] and potential energy 𝐸𝑖𝑛𝑡[𝑛] of the interacting 

particles electrons, and 𝐸𝑛𝑛 is the nuclei-nuclei Coulomb interaction in the system.  

Though these two theorems prove existence of a universal functional 𝐹𝐻𝐾[𝑛] (only a functional 

of density 𝑛(𝒓)), they do not provide a practical scheme for determining the ground state 

density 𝑛0(𝒓). In 1965, Kohn and Sham proposed an ansatz for the ground state density 𝑛0(𝒓) 

to simplify the problem. 

2.6 Kohn-Sham Ansatz 
 

Kohn-Sham ansatz [4] is a mathematical assumption that replaces the ground state density of 

an original interacting many-body system by a system of auxiliary noninteracting particles. 

Thus, calculations of an original system can be performed on an auxiliary non-interacting 

particles system with the total energy functional given by, 

𝐸𝐾𝑆[𝑛] = 𝑇𝑠[𝑛] +  ∫ 𝑑3𝑟 𝑉𝑒𝑥𝑡 (𝒓) 𝑛(𝒓) + 𝐸𝐻[𝑛] + 𝐸𝑋𝐶[𝑛] + 𝐸𝑛𝑛 

(2. 7) 

Here, 𝑛(𝒓) is charge density of auxiliary system determined by the sum of square of 𝑁𝑒 

non-interacting electrons wave functions 𝜓𝑖( 𝒓) 

𝑛(𝒓) =  ∑ |𝜓𝑖( 𝒓)|2

𝑁𝑒

𝑖=1

 and 𝑁𝑒 =  ∫ 𝑑𝒓  𝑛(𝒓)  

(2. 8) 

Furthermore, 𝑇𝑠[𝑛] is the kinetic energy of the non-interacting electrons, and is given by,  
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𝑇𝑠[𝑛] =  −
1

2
 ∑ <  𝜓𝑖 (𝒓) | ∇2 | 𝜓𝑖(𝒓) >

𝑁𝑒

𝑖=1

 

(2. 9) 

Also, 𝐸𝐻[𝑛] is the Hartree energy, classical interaction energy of the electron density 

interacting with itself, and defined as,  

𝐸𝐻[𝑛] =
1

2
∫

𝑛(𝒓) 𝑛(𝒓′)

| 𝒓 − 𝒓′| 
 𝑑𝒓 𝑑𝒓′ 

(2. 10) 

Again, 𝐸𝑋𝐶[𝑛] is the exchange-correlation energy of electrons that takes into account all the 

quantum mechanical effects of 

(i) difference in kinetic energy of the many body interacting system and set of non-

interacting system, and  

(ii) residual energy contributions due to the exchange asymmetry of electrons and their 

spatial correlations.  

Thus, 𝐸𝑋𝐶[𝑛] is given by, 

𝐸𝑋𝐶[𝑛] =   (𝑇[𝑛] − 𝑇𝑠[𝑛]) + (𝐸𝑖𝑛𝑡[𝑛] − 𝐸𝐻[𝑛])  

(2. 11) 

The exact form of 𝐸𝑋𝐶[𝑛] is unknown and will be discussed shortly. In this approach, the 

Hamiltonian of an auxiliary non-interacting particles is called Kohn-Sham Hamiltonian (𝐻𝐾𝑆), 

and written as, 

𝐻𝐾𝑆 =  − 
1

2
∑ ∇i

2

𝑖

+ 𝑉𝐾𝑆(𝒓) 

(2. 12) 

Here, the Kohn Sham potential 𝑉𝐾𝑆(𝒓) is expressed as the sum of the external potential 𝑉𝑒𝑥𝑡(𝒓), 

Hartree potential 𝑉𝐻(𝒓), and the exchange correlation potential 𝑉𝑋𝐶(𝒓).  

𝑉𝐾𝑆(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) +  𝑉𝐻(𝒓) +  𝑉𝑋𝐶(𝒓) 

(2. 13) 

The exchange correlation potential can be obtained from the exchange correlation energy as: 
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𝑉𝑒𝑥𝑡(𝒓) =
𝜕𝐸𝑋𝐶[𝑛]

𝜕𝑛(𝒓)
  

(2. 14) 

The Hartree term describes the electronic charge distribution of the electrons. 

𝑉𝐻 =
1

2
∫

𝑛(𝒓′)

| 𝒓 − 𝒓′| 
𝑑𝒓′ 

(2. 15) 

Now, the single particle Kohn-Sham equations are: 

(− 
1

2
∑ ∇i

2

𝑖

+ 𝑉𝐾𝑆(𝒓)) 𝜓𝑖(𝒓) = 𝜀𝑖  𝜓𝑖(𝒓)  

(2. 16) 

or        𝐻𝐾𝑆 𝜓𝑖(𝒓) = 𝜀𝑖 𝜓𝑖(𝒓) 

(2. 17) 

Since Kohn-Sham equations are non-linear equations (Eq. 2.16), a self-consistent iterative 

method is used to solve them as illustrated in figure 2.1. 

 

Figure 2.1 Flow chart showing the self-consistency loop for the iterative solution of Kohn- 

Sham equations. 
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2.7 Approximations to the Exchange-Correlation 

Functional 
 

As mentioned earlier, the exact form of 𝐸𝑋𝐶[𝑛] is unknown, and it requires further 

approximations. Towards this, many approximations have been proposed, and among all 

available approximations, local density approximation (LDA) [5-8] and generalized gradient 

approximation (GGA) [9] are the most commonly and widely used schemes to estimate the 

exchange-correlation energy. 

2.7.1 Local Density Approximation (LDA) 
 

In LDA, the effect of exchange and correlation are considered to be local in nature as it was 

assumed by Kohn & Sham [4]. In this approach, the inhomogeneous system is thought to be 

locally homogeneous. The exchange-correlation energy can be obtained by integrating the 

exchange-correlation energy density at each point over whole space. The LDA approximation 

proves to be very successful for many systems especially for those whose electron density is 

quite uniform such as bulk metals, ionic crystals etc. LDA fails to produce some properties 

(e.g., band gap) in semiconductors, strongly correlated systems due to fact that the excitation 

spectrum of homogeneous electron gas is gap-less, and exchange-correlation energy is regular. 

Another failure is its ability to capture weak inter-molecular bonds, hydrogen bonds etc. 

The exchange-correlation energy in LDA is thus given by, 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛] =  ∫ 𝑑3𝒓 𝑛(𝒓)𝜀𝑋𝐶[𝑛(𝒓)] 

(2. 18) 

In LDA several aspects like inhomogeneity of electrons, non-local exchange correlation effect, 

complete cancellation of self-energies of electrons etc were not present. 

The parametrizations by Perdew-Zunger (PZ), Perdew-Wang (PW), and Vosko-Wilk-Nusair 

(VWN) in the exchange correlation functional are the LDA functionals used commonly in DFT 

calculations [5-8].  
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2.7.2 Generalized Gradient Approximation (GGA) 
 

The improvement of LDA resulted in the development of GGA. In general, the exchange-

correlation energy in GGA can be written as, 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛] =  ∫ 𝑑3𝒓 𝑛(𝒓)𝜀𝑋𝐶[𝑛(𝒓), ∇𝑛] 

(2. 19) 

Here, the exchange-correlation energy is expressed as a sum of contributions from each point 

in real-space depending only on the density and its gradient at each point and independent of 

other points. The GGA method turns out to be better than LDA in the sense that it improves 

binding energies, bond lengths. GGA also improves the band gap of semiconductors over LDA. 

Semiconductors are also better described in GGA than LDA. 

Perdew and Wang (PW91) and Perdew, Burke and Ernzerhof (PBE) are some of the 

parametrizations of the GGA functional [9].  

2.8 Pseudopotentials 
 

Based on the nature of chemical activity of electrons in a material, they can be divided into two 

types, (i) core electrons, and (ii) valence electrons. In solids or molecules, the core electrons 

are tightly bound to the nucleus and hence are not involved in bonding. The core electrons are 

relatively unaffected by the chemical environment of an atom. The contribution of core 

electrons to the total binding energy remains unaffected when isolated atoms are brought 

together to form a molecule or a crystal. The actual energy differences of interest involve 

changes in the valence electron interaction and energies. The contribution of valence electrons 

to the total binding energy is a much larger fraction than that of valence electrons and makes it 

easier to calculate accurately. The reason is the difficulty in numerical representation of highly 

localized core electron wave functions because of strong nuclear Coulomb potential. So, core 

electrons are removed from the calculation, and the interaction of the valence electrons with 

the nucleus plus the core states is replaced by an effective screened potential.  

Pseudopotential approximation [10] takes this into account and removes core electrons by 

replacing their effects and strong ionic potential by a weak and smooth pseudopotential that act 

on a group of pseudo wavefunctions of valence electrons.  
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Pseudopotentials are constructed using a cut off radius (rc) which sort of separates out the 

valence region from the core region. The region beyond rc is treated as a valence region and 

within rc as the core region. The value of rc is chosen in such a way that the last node of the all 

electron wavefunction fall inside it. Pseudopotential and all electron wavefunction are identical 

outside the cut off radius. Traditionally, a pseudopotential is divided into local and non-local 

parts, where the former is long-ranged, and the latter is typically short-ranged. 

                                            

Figure 2.2 Schematic representation of all-electron (dashed lines) and pseudo electron (solid 

lines) potentials and their corresponding wavefunctions. The radius at which all electron and 

pseudo electron value matches is designated rc. This figure is taken from 

https://en.wikipedia.org/wiki/Pseudopotential. 

 

2.9 Basis Sets 
 

In order to numerically solve the Kohn Sham equations, one requires to choose a mathematical 

representation for the one electron orbital. The requirement is a basis to expand the wave 

functions  and then truncating the basis such that the calculation time remains finite. Different 

classification of basis sets includes plane-waves [11], atomic orbitals [12, 13], and their 

combination (mixed basis) [14]. The atomic orbital basis is the most commonly used basis set 

for isolated systems such as atoms and molecules. A basis set of mutually orthonormal plane 

waves is used for representation of extended periodic systems.  
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Plane-wave basis set is widely used in the simulations of materials that have periodicity at least 

in one dimension. Typically, one should have as many number of plane waves as possible to 

get most accurate results (in principle, infinity).  

The potential experienced by an electron is a periodic one in solids, and is invariant under 

crystal lattice translation i.e., 𝑉𝑒𝑥𝑡(𝒓) = 𝑉𝑒𝑥𝑡 (𝒓 + 𝑹) where, R is a lattice vector. Bloch's 

theorem states that in periodic solid each electronic wave functions can be written as,  

𝜓𝑛𝑘 =  𝑢𝑛𝑘(𝒓)𝑒𝑖𝒌.𝒓 

(2. 20) 

Here, 𝑢𝑛𝑘(𝒓) is a periodic function which can be further expanded in terms of plane waves 

following Fourier theorem.  

𝑢𝑛𝑘 =
1

√𝑉
 ∑ 𝐶𝑛𝑘 (𝑮) 𝑒𝑖𝒌.𝑮

𝐺

 

(2. 21) 

Therefore, the electronic wave functions can be written as a sum of plane waves.  

𝜓𝑛𝑘 =
1

√𝑉
 ∑ 𝐶𝑛,𝑘+𝐺 (𝑮) 𝑒𝑖(𝒌+𝑮).𝒓

𝐺

 

(2. 22) 

Where G and k are reciprocal lattice vector and Bloch wave-vector in the Brillouin zone, 

respectively, and 𝐶𝑛,𝑘+𝐺 is an expansion coefficient. In practice the sum is truncated by 

introducing a kinetic energy cut-off (𝐸𝑐𝑢𝑡) which determines the number of plane-waves 

satisfying the following condition: 

ℏ2𝑘2 

2𝑚𝑒
 | 𝒌 + 𝑮|2  ≤ 𝐸𝑐𝑢𝑡  

(2. 23) 

The cut-off energy (𝐸𝑐𝑢𝑡) is increased until the energy differences converge to a desired 

accuracy.  
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2.10 Phonons 
 

Phonon is a quasiparticle and quantum of vibrational energy associated with collective motion 

of atoms in materials. The concept of phonons provides a powerful tool to study the properties 

of materials which are governed by atomic displacements.  

Phonon-dispersion which is the behaviour of vibrational frequency (ꞷ) versus wave-vector (q), 

reveals interesting physics of materials that governs stability of structures, thermodynamic 

properties, and structural phase transformation of crystalline materials.  

2.10.1 Linear response 
 

DFT linear-response (DFT-LR) [15] is an approach to computing the second derivative of the 

total energy with respect to a given perturbation. Since the force constant matrix is a second 

derivative of ground state energy with respect to atomic displacements (u), the linear response 

provides a powerful mechanism to calculate phonons at an arbitrary wave-vector (q). This 

method is efficient and hence widely used in first-principles calculations, and also known as 

density functional perturbation theory (DFPT). In this approach, the force constant matrix 

(𝐾𝑖𝛼,𝑗𝛽) 

𝐾𝑖𝛼,𝑗𝛽 =
𝜕2𝐸

𝜕𝑢𝑖𝛼𝜕𝑢𝑗𝛽
=  

𝜕2𝐸𝑖𝑜𝑛−𝑖𝑜𝑛 

𝜕𝑢𝑖𝛼𝜕𝑢𝑗𝛽
+  ∫ 𝑛(𝒓)

𝜕2𝑉𝑒𝑥𝑡

𝜕𝑢𝑖𝛼𝜕𝑢𝑗𝛽
 𝑑𝒓 + ∫

𝜕𝑛(𝒓)

𝜕𝑢𝑖𝛼
 
𝜕2𝑉𝑒𝑥𝑡

𝜕𝑢𝑗𝛽
 𝑑𝒓 

(2. 24) 

It is clear from Eq. (2.24) that 𝐾𝑖𝛼,𝑗𝛽  depends on the ground state charge density (𝑛(𝒓)) and 

its first derivative (linear-response) with respect to atomic displacement 
𝜕𝑛(𝒓)

𝜕𝑢𝑖𝛼
.  

To calculate 𝐾𝑖𝛼,𝑗𝛽   Eq. (2.24) is evaluated within the framework of first-principles 

calculations by solving first-order Kohn-Sham equations.  

2.11 GW Method 
 

It is evident that a popular technique for predicting the ground state properties of materials, 

such as energy, lattice parameters, force, mechanical strength, vibrations, etc., is density 

functional theory (DFT). Yet, it is not very successful in identifying the many-body system's 

excited state features, such as the bandgap, optical spectra, and excitons. Consequently, it is 
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necessary to move beyond the single particle framework in order to explain the system's excited 

state features. Going from a single particle to Landau's quasi-particle (QP) energies [16] is 

essential since the latter may be measured through experiments. These experiments mainly 

involve photoemission and inverse photoemission spectroscopy techniques, which adds and 

subtracts electrons from the system. Similar to this, single particle calculations are used to 

determine QP energies. The many body perturbation theory (MBPT) uses Green's function 

methods [17]. It describes how an electron's addition or removal spreads throughout the system. 

Similar to how difficult it is to solve the exchange-correlation term in DFT, self-energy is the 

most challenging term in this context. Self-energy is an abstract, energy-dependent concept. 

The lifetime of the particle and the propagation of the electron or hole from one point to another 

within the system are described, respectively, by the real and imaginary parts of self-energy. 

In the GW approximation the electrons are not considered to be independent particles, instead 

an electron that moves through a material interacts with the other electrons and polarizes its 

surroundings. The electrons are said to be dressed by this polarization cloud they induce in 

their immediate environment. These dressed electrons are called quasiparticles. 

These quasiparticles (eigenstates and eigen energies) are obtained by solving the following 

one-electron equation:  

(𝑇 + 𝑉𝑒𝑥𝑡 + 𝑉𝐻 )𝜓𝑛𝑘 + ∫ 𝑑𝒓 Σ(𝒓, 𝒓′, 𝐸𝑛𝑘)𝜓𝑛𝑘(𝒓′) = 𝐸𝑛𝑘𝜓𝑛𝑘(𝒓) 

(2. 25) 

In the QP equation, the self-energy term  Σ(𝒓, 𝒓′, 𝐸𝑛𝑘) is mentioned explicitly. The eigenstates 

and eigenvalues of the single-particle excitations must be ascertained in order to solve the eigen 

value problem that results from the solution of the quasi-particle equation. Self-energy 

computation is an extremely difficult task. This technique, sometimes known as the GW 

approach, was first put forth by Hedin in 1965 [17-19].  

In GW the self-energy Σ, is approximated as Σ=𝐺𝑊, the product of a Green's function 𝐺 and 

the screened Coulomb interaction 𝑊, hence the name. The dielectric screening of the Coulomb 

interaction is commonly calculated within the random-phase approximation (RPA): in this 

approximation the electronic interactions between an electron that travels through a medium 

and its environment are strictly limited to polarization events. 
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DFT orbitals serve as the starting point for GW computations. Initial G and W are subsequently 

built. Depending on how G and W are updated, GW methodology can take many distinct forms. 

The most popular and straightforward technique is single shot GW (G0W0). For this kind of 

calculation, a relevant starting point is crucial. Hence, the initial starting point, or DFT orbitals, 

is crucial for a single shot GW. Bandgap is mostly delivered via the single shot GW method in 

accordance with experimental data. 

However, GW has several real-world drawbacks, such as high computational cost and 

enormous memory storage requirements. This is because there must be a big number of free 

bands, as well as a large number of basis functions N. The electronic polarizability and the 

correlation portion of the self-energy operator must converge before the former can be used. In 

theory, it requires an infinite number of bands, making it virtually impossible. The accurate 

prediction of the self-energy and the optical response function depends on the convergence of 

the number of unoccupied bands and the basis function N. Hence, one must carefully take 

sufficient number of bands so that convergence is achieved.  
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Chapter 3  

 

Optical Properties of Cs3Sb2I9: 

First-principles Analysis* 

 

3.1 Introduction 
 

The energy crisis is a major threat to the sustainable development of our planet. The 

predominant source of energy being fossil fuels has resulted in a considerable amount of 

greenhouse gas production, which is a key cause of climate change and global warming. 

Moreover, there is a serious concern regarding the limited availability of fossil fuels implying 

that soon they will eventually run out. This could lead to economic instability and geopolitical 

tensions as countries compete for the remaining resources. 

Due to these consequences, environmentally friendly and sustainable energy sources are now 

required. These sources must not harm the environment. Renewable energy sources including 

sun, wind, hydro, geothermal, biomass, and others are plentiful, unrestricted, and free of 

hazardous emissions or pollutants. 

One of the most promising renewable energy sources is solar energy. It is copious and 

unrestricted. It is interesting to note that some materials can be used to harvest it. Such materials 

usually go by the name of photocatalytic or photovoltaic materials. Light energy is converted 

into electrical energy by photovoltaic materials and chemical energy by photocatalytic 

materials.  

*In collaboration with the group of Prof. Hiren Ghosh, Institute of Nano Science and Technology 

(INST), Mohali, Ajit Singh Nagar, Punjab 140306.  
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These materials provide a flexible option for energy production since they may be incorporated 

into a wide range of applications, such as building materials, transportation systems, and 

electrical gadgets.  

Photovoltaic and photocatalytic materials are mainly semiconductors, whose band gaps are in 

the visible light range. Both photocatalyst and photovoltaic methods utilize the bandgap 

difference of the semiconductors. Albeit both show a huge difference in terms of mechanism, 

conversion, and end product. 

In the recent years, hybrid organic-inorganic lead halide perovskites have been widely used in 

optoelectronic applications, such as photodetectors and light-emitting diodes [1-3]. Recent 

investigations on the use of lead halide perovskites for photocatalytic purposes, such as the 

degradation of organic dyes, the reduction of CO2, and the production of hydrogen, have been 

published [4-9]. This is essentially due to the novel optoelectronic properties of these materials.  

Among such materials, methylammonium lead iodide (CH3NH3PbI3) has emerged as a 

remarkable photovoltaic absorber material in recent years [10-12]. However, the main concern 

in these materials is the presence of lead, which is toxic. Moreover, they are unstable under 

ambient moist air. Therefore, the quest for a lead-free material having photovoltaic, and 

photocatalytic applications is quite impeccable.  

Halide perovskite derivatives like Cs3Sb2I9 fill up the void here [13-14] . These materials are 

lead-free, hence nontoxic, and have the band gap (typically around 2.05 eV) lying in the visible 

region. Very recently, some works have experimentally synthesized this material, and have 

found the desired results. In fact, it has been well reported that the optical absorption of 

Cs3Sb2I9 is comparable to that of CH3NH3PbI3. Thus, Cs3Sb2I9 is an ideal candidate to replace 

the lead-based photo devices, due to its superior properties.  

Cs3Sb2I9 has two polymorphic structures — 2 D layered form (space group P3̅ m1, no. 164) 

and a 0 D dimer form (space group P63/mmc, no. 194) [13]. In this chapter, we explore the 2D 

layered structure of Cs3Sb2I9 as a potential candidate for optoelectronic applications from first 

principles density functional theory calculations. This work has been done in collaboration with 

the group of Professor Hiren Ghosh*, who performed the experiments and measured the optical 

absorption spectrum of the material.  
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3.2 Computational Details 
 

The plane wave basis implementation of the quantum mechanical density functional theory 

(DFT) was used in our calculations, as provided by the Vienna Ab initio Simulation Package 

(VASP) [15-17]. A generalized gradient approximation (GGA) as parameterized by Perdew-

Burke-Ernzerhof (PBE) [18-19] was used to treat the exchange correlation energy functional 

in DFT. At the same time, PBEsol [20-21] another version of the PBE parameterization was 

used to study its effect on the crystal structure, and other physical properties of Cs3Sb2I9. To 

represent the interaction between ionic cores and valence electrons, a projector-augmented 

waves (PAW) pseudopotential [22] was used.  

 

In implementation of VASP, the cut-off energy to represent the electronic wave functions was 

taken to be 500 eV. Brillouin zone integrations were sampled on  Γ -centered uniform mesh of 

4x4x3 k-points in our calculations. Electronic occupation numbers were smeared using 

Gaussian smearing with a broadening of 0.04 eV. Kohn Sham (KS) equations were solved 

iteratively till the total energy was converged within 10-8 eV/cell. Structural relaxation was 

performed till the Feynman-Hellman forces on each atom were less than 10-3 eV/Å and each 

component of the stress tensor was less than 10-2 GPa. 

 

Optical properties of Cs3Sb2I9 were further calculated by using the PBE and PBEsol 

functionals. Norm conserving pseudopotentials were used for such calculations, followed by 

non-self-consistent calculations over a 12x12x8 k mesh to carry out the Brillouin zone 

integration. Optical absorbance (in arbitrary units) was calculated from the following relation: 

 

                                                𝛼(𝜔)  =
√2⋅𝜔

𝑐
(√(𝜀1

2 + 𝜀2
2) − 𝜀1)

1

2
 

(3. 1) 

                              

In equation (1), 𝛼 (𝜔), 𝜀1 and  𝜀2 are frequency dependent absorption coefficient, real and 

imaginary parts of dielectric constant, respectively.  
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Accurate band structures were obtained from hybrid functional calculations, as standard GGA 

underestimates the band gap of Cs3Sb2I9. In our calculations, HSE06 [23], and HSEsol [24] 

hybrid functionals were used. These functionals mix a fraction of non-local Hartree Fock 

exchange with PBE (for HSE06) and PBEsol (for HSEsol), where, in both cases, the mixture 

fraction α was taken to be 0.25, in addition to the implementation of the screened parameter ω 

= 0.2 Å−1.   

 

To have a more accurate understanding of the optical properties of Cs3Sb2I9, excited state 

method-based calculations like the many body perturbation theory within the framework of 

single shot GW calculations (G0W0) [25-26], which incorporate the random phase 

approximation (RPA) were performed. The GW method is proved to be more accurate and 

involves the screened Coulombic interaction and improves the Hartree Fock approximation  

The PBE functional was considered to be the starting point in such a case. We have considered 

a sufficient number of unoccupied bands, i.e., a total of 560 bands which is quite larger than 

the number of occupied orbitals, in our calculations.  

  

We have used post-processing tool VASPKIT [27] to obtain (a) electronic energy structure, (b) 

orbital projected density of states, (c) transition dipole moment (TDM) between states from 

valence bands to conduction bands, and (d) visualization of electronic wavefunction at valence 

band maximum (VBM) and conduction band minimum (CBM). We have used VESTA 

package to visualize structure.   

 

3.3 Results and Discussions 
 

3.3.1 Crystal Structure 
 

The crystal structure of Cs3Sb2I9, as shown in figure 3.1 (a), is found to be trigonal with space 

group P3̅ m1 (number 164) under ambient conditions. It should be noted that Cs3Sb2I9 is 

essentially a halide perovskite derivative, which exists in a layered structural form.  
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(a)                                                                         (b) 

Figure 3.1 (a) Crystal structure of Cs3Sb2I9 crystallizing in a trigonal structure under 

ambient conditions, having a space group P3̅ m1 (number 164). (b) The Brillouin Zone of 

Cs3Sb2I9, showing the high symmetry k points and the path along such a high symmetry 

direction.  

It is well known from previous studies [13] that local density approximation (LDA) cannot 

reproduce the lattice parameters to an accurate level. Therefore, the Generalized Gradient 

Approximation (GGA) has been used to see how well the lattice parameters are reproduced in 

the geometrically relaxed structure. In fact, two versions of GGA, namely PBE and PBEsol 

have been used and the lattice parameters obtained have been given in Table 3.1.   

 

Table 3.1 Comparison of lattice parameters from present calculations, and prior theoretical 

and experimental values in literature.    

Calculation 

Method 

Lattice parameter a (Å) Lattice parameter c (Å) 

 
Present Theory Experiment Present Theory Experiment 

PBE (GGA) 8.68 8.661[13] 

8.664[14] 

 

8.420[28] 

10.60 10.625[13] 

10.633[14] 

 

10.386[28] 

PBEsol 8.34 − 10.29 − 

 

It is interesting to note that PBEsol captures the lattice parameters of the crystal structure with 

much higher accuracy. The previous theoretical studies complement our results based on PBE, 

indicating that the present theoretical level is credible. Prior to this work, PBEsol has not been 

tested for this materials. However, studies [29] have been performed on similar materials like 

hybrid halide perovskites where PBEsol have been shown to reproduce the lattice parameters 
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quite accurately. Even in such studies, PBEsol very slightly underestimates the lattice 

parameters with respect to experiments, very similar to our present calculations, and unlike 

PBE functional, which slightly overestimates the lattice parameters. Indeed, one can see that 

the accuracy level of PBEsol in reproducing the lattice parameters is significantly higher than 

its PBE counterpart.  

 

3.3.2 Electronic Properties 
 

The calculated band structure of Cs3Sb2I9 along the high symmetry k-points in the Brillouin 

zone is shown in figure 3.1 (b). Both PBE, and PBEsol versions of the GGA reproduce the 

band structure qualitatively. It is a well-known problem that GGA underestimates the bandgap 

of a given material. In order to overcome this problem, we have performed hybrid functional 

calculations with HSE06 and HSEsol hybrid functionals, where the DFT functional part in the 

hybrid functional was taken from both PBE and PBEsol functionals respectively, mixed with 

Hartree-Fock exchange.  The HSE06 calculations were performed on PBE geometry, and the 

HSEsol calculations were performed on PBEsol geometry, where both the geometries are the 

fully relaxed structures.  

 

Quite interestingly, PBEsol, which captures the lattice parameters quite accurately, but fails to 

reproduce the band structure to a quantitative accuracy, than the PBE functional. The PBE 

functional emerges to be a better candidate for analysing the band structure of this material. In 

fact, when the HSE06 hybrid functional is used, the one made using a mixture of PBE and 

Hartree Fock exchange, gives a very accurate estimate of the band gap, in comparison to the 

HSEsol hybrid functional which is made using PBEsol and Hartree Fock exchange.   

  

(a)                                                                        (b) 
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                                           (c)                                                                       (d) 

Figure 3.2 Band structures of Cs3Sb2I9 along high symmetry paths using (a) PBE functional, 

(b) PBEsol functional, (c) HSE-PBE functional, and (d) HSE-PBEsol functional.  

 

The estimate of band gap with HSE06 is 2.02 eV which is in good agreement with experimental 

results suggesting 2.05 eV, and prior theoretical calculations suggesting 2.04-2.06 eV. The 

results have been summarized in Table 3.2.  

 

Table 3.2 Comparison of the band gap value from present calculations and prior theoretical 

and experimental data in the literature.   

Calculation 

Method 

Present Work: 

Band gap (eV) 

Theory: 

Band gap 

(eV) 

Experiment: 

Band gap 

(eV) 

PBE 1.55 −  

 

2.05[28] 

PBEsol 1.31 − 

HSE06 2.02 2.06[13] 

2.04[14] 

HSEsol 1.73 − 

 

Furthermore, the orbital projected density of states of Cs3Sb2I9 shows the various contributions 

of different orbitals in giving rise to different bands in the band structure.  
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(a)                                                                       (b) 

Figure 3.3 Orbital projected density of states (PDOS) with (a) PBE functional, and (b) 

PBEsol functional. 

It is clear from the band structure as shown in figure 3.2 (a)-(d), that Cs3Sb2I9 has a direct band 

gap, as the valence band maxima (VBM) and the conduction band minima (CBM) occur at the 

same point (Г). The orbital projected density of states, as in figure 3.3, shows that the VBM is 

dominated mainly by I 5p orbitals, and the CBM is dominated by I 5p and Sb 5s orbitals. This 

is further verified by the visualization of the electronic wavefunctions at the VBM and CBM 

corresponding to the Г point, as shown in figure 3.4.  

                     

                                 (a)                                             (b) 

Figure 3.4 Isosurfaces of wavefunctions of the states at (a) valence band maximum (VBM), 

and (b) conduction band minimum (CBM) at Г point.  

 

3.3.3 Optical Properties 
 

The optical absorption spectrum has been calculated for Cs3Sb2I9. Both PBE and PBEsol 

functionals have been used in the calculation of the absorption coefficient of Cs3Sb2I9. All 

results have been shown in figure 3.5.  
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Figure 3.5 Theoretically calculated optical absorption spectra using PBE and PBEsol 

functionals.  

It can be seen that PBE functional matches the experimental absorption spectra (as measured 

by the group of Professor Hiren Ghosh) to a slight better accuracy than PBEsol functional. The 

peaks in the absorption spectra correspond to several optical transitions from VBM to CBM. 

The peaks marked in figure 3.5 (dashed lines) are the experimental peaks denoted as EA, EB, 

and EC. As a matter of fact, no prior study has shed light on the details of the electronic 

transitions giving rise to such distinct peaks in the absorption spectra. In order to identify such 

transitions, we have calculated the electron band-wise transition dipole moment (TDM) 

between different bands along the high symmetry paths in the Brillouin zone, which essentially 

gives an understanding of the probabilities of transitions from different valence bands to 

conduction bands, as shown in figure 3.6 (b), and marked the different optical transitions in the 

band structure of Cs3Sb2I9, as shown in figure 3.6 (a).  
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                                                                           (a) 

 

 

 

 

 

 

 

 

                                                                          

                                                                            (b) 

 

Figure 3.6 (a) The optical transitions in the HSE06 band structure of Cs3Sb2I9 along the high 

symmetry path, and (b) the band wise transition dipole moment (TDM) showing the 

probabilities of different transitions from several valence bands to conduction bands along 

the same high symmetry path. 

 

The different optical transitions, as shown in Fig. 3.6.(a), are as follows: 

1. EA has a value of 2.02 eV, in theory, and 2.20 eV from experiments. The transition 

takes place from the VBM of the highest occupied band to the CBM of the lowest 

unoccupied band, at the Г point, which in fact corresponds to the band gap.  

2. EB has two possibilities in theory, one being 2.48 eV, and the other being 2.51 eV, when 

the experimental value is reported to be 2.60 eV. These transitions corresponding to 
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2.48 eV and 2.51 eV, occur from the VBM of the highest occupied band to the CBM 

of the lowest unoccupied band, at the L point and at a point between H point and A 

point, respectively. These transitions are probabilistically allowed, as seen from the 

TDM plot.  

3. EC has a value of 3.16 eV, in theory, and 3.34 eV from experiments. The transition takes 

place from the VBM of the band just below the highest occupied band to the CBM of 

the band just above the lowest unoccupied band, at the H point. This transition too, as 

it turns out, is probabilistically allowed, as seen from the TDM plot.  

 

Our G0W0 calculations, as shown in figure 3.7, fit the experimental absorption spectra in a 

much more accurate fashion. Although, PBE functional correctly captures the peaks in the 

absorption spectra, it fails to reproduce the quantitative nature of the experimental plot. The 

G0W0 calculations, on the other hand, overlap well with the experimental plot.  

 

In performing the G0W0 calculations, the PBE functional was considered to be a reliable 

starting point for our calculations. A detailed analysis has been performed over the convergence 

of the number of bands needed in our calculations. A study on the dependence of the 

quasiparticle band gap on the number of bands has been shown in Table 3.3. It can be seen that 

the sufficient number of bands required for calculations is 480. We have taken the number of 

bands to be 560 in our calculations. It is evident that the number of bands is sufficiently larger 

than the number of occupied orbitals.  

 

Table 3.3 Convergence of band gap with respect to the number of bands used in G0W0 

calculations. 

 

 S. No NBANDS Band Gap (eV) 

1 240 2.03 

2 320 2.03 

3 400 2.03 

4 480 2.04 

5 560 2.04 

6 640 2.04 
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(a)                                                                        (b)    

Figure 3.7 Comparison of G0W0 calculations with (a) experimental absorption spectrum, and 

(b) both experimental, and the PBE based absorption spectra.  

 

3.4 Conclusions 
 

Our first-principles DFT calculations confirm that Cs3Sb2I9 is a direct band gap semiconductor 

with a band gap of 2.02 eV at the Г point (using HSE06 calculations). It is also seen that the 

DFT calculations do a good job in figuring out the absorption spectra when compared to 

experiments. We also did G0W0 calculations to reproduce the experimental data to a better 

accuracy. We identified for the first time, to the best of our knowledge, the optical transitions 

responsible for distinct peaks in the absorption spectra of Cs3Sb2I9. These transitions are not 

only from the highest occupied band to the lowest unoccupied band, but also from states lower 

in energy than the highest occupied states to the states higher in energy than the lowest 

unoccupied state.  
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Chapter 4  

 

Investigations in Sliding Bilayer 

Graphene 

 

4.1 Introduction 
 

Graphite, which is one of the most prevalent carbon allotropes, is a layered material in which 

infinite sheets of hexagonal carbon networks are stacked over each other [1]. When isolated, a 

single layer is called graphene. Being sp2 hybridized, carbon atoms in graphene are arranged 

in a honeycomb lattice, which is not a Bravais lattice. However, a honeycomb lattice can be 

viewed as a hexagonal Bravais lattice with a basis [2]. The primitive translation vectors and 

the carbon positions are given by [3],  

 

                        (4. 1) 

 

In graphite, the graphene layers are weakly coupled by van der Waals interactions with an 

equilibrium interlayer distance 3.35 Å. The minimum energy corresponds to Bernal stacking 

AB, and the AA stacking is energetically costly, and not found in nature [4,5]. In this work, we 

are interested in bilayer graphene (BLG) systems.  
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(a)                                                                        (b)  

 

Figure 4.1 (a) AA stacked bilayer graphene and (b) AB stacked bilayer graphene. 

 

It is to be noted that graphene research rose considerably when graphene sheets were exfoliated 

for the first time in 2004 [6]. It was soon followed by the discovery of some remarkable 

properties of graphene sheets, which led to the explosion of interest in this field. Most 

interestingly, at some special high symmetry points in the reciprocal space, electrons in 

graphene behave as massless relativistic fermions satisfying the Dirac equation [7]. The 

discovery of quantum hall effect in graphene was another celebrated result in the community 

[8]. Furthermore, properties like high mobility of charge carriers [9], high transparency [10], 

and highest Young’s modulus for a material ever tested [11], makes graphene a potential 

candidate for a large domain of applications.  

 

Bilayer graphene too, like graphene, shares similar properties. These include high electrical 

conductivity [12], high thermal conductivity [13, 14], high transparency [15], and high ability 

to be chemically functionalized [16]. However, bilayer graphene has been shown to have 

massive chiral quasiparticles instead of massless Dirac fermions, as in monolayer graphene 

sheets [17, 18]. Very recently, bilayer graphene systems have been shown to exhibit 

superconductivity, when one layer is twisted with respect to the other [19, 20]. This recent 

addition has given more impetus to look at bilayer graphene systems, yet once again.  

 

It is interesting to study how the various physical properties change if one of the layers slide 

over the other in an irrational direction. One can take the direction along y=mx, and declare 

‘m’ to be some irrational number, in order to define an irrational direction.  
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4.2 Methodology 
 

In bilayer graphene (BLG), we slide one of the layers by keeping the other fixed in a direction 

along the straight-line y=mx, where ‘m’ is some irrational number. We take m=
1

√2 
, i.e., an 

irrational number. Now, different configurations can be made by changing the coordinates of 

the atoms in one of the layers by some (Δx, Δy) given by Δ 𝑦 =
1

√2 
Δ𝑥. We choose different 

Δx to get different Δy. Thus, we get different configurations in BLG systems, which are 

denoted by α-BLG, β-BLG, and γ-BLG, for brevity.  

 Table 4.1 Different configurations of bilayer graphene by sliding one layer above another. 

Δx 

(Crystal Coordinates) 

Δy 

(Crystal Coordinates) 

Total Displacement 

(Crystal Coordinates) 

Configuration Name 

0.3333 0.2356 0.4079 α-BLG 

0.5000 0.3535 0.6123 β-BLG 

0.6666 0.4713 0.8163 γ-BLG 

 

                                        

Figure 4.2 The straight-line direction along which slide is performed. 

 

4.3 Computational Details 
 

We use the plane wave basis set implementation of the density functional theory (DFT) as 

provided by the Quantum Espresso (QE) package [21,22] with comparative studies of both 

local-density approximation (LDA) [23] as parametrized by Perdew and Zunger, and 

generalized gradient approximation (GGA) [24] as parametrized by Perdew, Burke and 

Ernzerhof,  to treat the exchange correlation energy functional and both projector-augmented 

𝑦 =
1

√2 
 𝑥 
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waves (PAW) and ultrasoft pseudopotentials to represent the interaction between ionic cores 

and valence electrons.  

 

A plane wave basis set (PWs) with cut-off energy of 48 Ry was used to represent the electronic 

wave functions, and PWs with an energy cut-off of 480 Ry were included for the representation 

of charge density. Integration over the Brillouin zone was carried out using the Monkhorst-

Pack scheme [25] with a 36x36x1 mesh of k points, and occupation numbers were smeared 

according to the Fermi-Dirac scheme with a spreading of 0.003 Ry. Kohn Sham (KS) equations 

were solved iteratively till the total energy was converged within 10-8 eV/cell. Structural 

relaxation was performed till the Feynman-Hellman forces on each atom were less than 10-3 

eV/Å and each component of the stress tensor was less than 10-2 GPa. 

 

Lattice-dynamical calculations (phonon spectrum) were performed within the framework of 

the self-consistent density functional perturbation theory [26]. Plane wave basis sets with cut-

off energies of 50 and 500 Ry were used to describe wave functions and charge density, 

respectively. Integration over the Brillouin zone is performed using a 75x75x1 mesh of k-

points. Such dense k mesh was used to keep the errors in the vibrational frequencies low. To 

understand detailed features of phonon spectra, force constant matrices (K) are obtained on a 

4x4x1 q-point mesh. The dynamical matrices at arbitrary wave vectors are determined using 

Fourier transform based interpolations of force constant matrices to obtain phonon dispersion. 

 

4.4 Results and Discussions 
 

4.4.1 Crystal Structure 
 

Bilayer Graphene in AB stacking configuration has a honeycomb lattice structure, which can 

be thought of as a hexagonal Bravais lattice with a two atom basis. It is to be noted that AB 

bilayer graphene is the stable configuration, and energetically favoured over the AA stacked 

configuration. The figure 4.3 shows the crystal structure of AB stacked bilayer graphene.  

                                                                     

Calculations show that in-plane C-C bond length and the interlayer distance are close to 

experiments if the following combinations are tried 
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a. GGA as the approximation for the energy correlation functional with Grimme d2 van der 

Waals correction implemented. Both PAW and ultrasoft pseudopotentials reproduce the 

same results.  

b. LDA as the approximation for the energy correlation functional with no van der Waals 

correction. Both PAW and ultrasoft pseudopotentials reproduce the same results.  

 

 

 

 

 

 

 

Figure 4.3 Crystal structure of AB stacked Bilayer Graphene. 

 

Table 4.2 Comparison of lattice parameters of BLG with present calculations and prior 

theoretical and experimental data in the literature.  

 

LDA functional reproduces reasonably good values for the interlayer distances without any 

van der Waals correction. On the other hand, one needs to incorporate van der Waals correction 

(more precisely Grimme d2 dispersion) for reproducing accurate interlayer distances with GGA 

functional. This is because LDA has a tendency to overbind [27], and therefore any further 

binding corrections are not needed. One can see that adding a van der Waals correction to LDA 

calculations further reduces the interlayer distance due to an even stronger binding.  

 

Exchange 

Corr 

Approx 

Pseudopotential vdW 

Correction 

C – C bond 

Length (Å) 

Interlayer 

Distance (Å) 

Experiments 

GGA PAW Grimme d2 1 .42 3.34  

 

 

dCC = 1.419 Å[3] 

 

 

∆zAB = 3.34 Å[27] 

Grimme d3 1 .42 3.54 

US Grimme d2 1 .42 3.34 

Grimme d3 1 .42 3.55 

LDA  

PAW 

Grimme d2 1 .41 3.00 

No vdW 1 .41 3.34 

US Grimme d2 1 .41 3.00 

No vdW 1 .41 3.34 
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The lattice parameters used are also given in the table below, and are in good agreement with 

the experimental result (a=2.459 Å [28]). The large c parameter has been taken to introduce 

vacuum into the system.  

 

Table 4.3 Lattice constants of BLG 

                                                                                 

   

                                                                                                                

 

                                                  

                                                    

It should be noted that when the different configurations are obtained by sliding a graphene 

layer over another, we do a constrained geometric relaxation which does not change the C-C 

bond length, and the interlayer distance.  

 

 

 

 

 

 

 

(a)                                                        (b)                                                (c)                                                                       

  Figure 4.4 (a) Configuration of α-BLG, (b) Configuration of B β-BLG, and configuration of 

γ-BLG. 

 

There is change in symmetry when one of the layers in AB stacked bilayer graphene slides 

over the other, which in turn has several effect on the properties of bilayer graphene. Bernal 

stacked graphene has P3̅ m1 space group symmetry, and the three other configurations after 

sliding have P 1¯ space group symmetry. It is interesting to note that inversion symmetry is 

retained in all three configurations. The symmetries which are broken after sliding are: 

A. A rotation of 180 degrees about [1,0,0] [0,1,0] and [1,1,0] crystal axes 

B. A rotation of 180 degrees about [1,0,0] [0,1,0] and [1,1,0] crystal axes.  

C. A rotation of 120 degrees about [0,0,1] and [0,0, -1] crystal axes.  

D. Inversion + Rotation of 180 degrees about [1,0,0] [0,1,0] and [1,1,0] crystal axes. 

E. Inversion + Rotation of 120 degrees about [0,0,1] and [0,0, -1] crystal axes. 

Ex Corr 

Approx 

a (Å) b (Å) c (Å) 

EXPT [28] 2.459 2.459 − 

GGA 2.468 2.468 16.71 

LDA 2.445 2.445 16.71 
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4.4.2 Electronic Structure 
 

Bilayer graphene has a well-known electronic band structure, which suggests that it is a zero 

gap semi-metal [3]. The band structures have been calculated along a high symmetry path in 

the reciprocal space. We have used both LDA and GGA to compare the results between the 

two. However, no significant difference in the band structure was observed. We selected GGA 

functional in conjunction with PAW pseudopotential and Grimme d2 van der Waals correction, 

for further calculations. We selected this scheme as it reproduced the crystal structure 

accurately, with the advantage of GGA functional being known to be an improvement over 

LDA, in general, due to the incorporation of the gradient of electron density into the functional, 

unlike LDA.  

                       

        

(a)                                                                    (b)  

Figure 4.5 The electronic band structure of bilayer graphene with (a) LDA functional with no 

vdW correction, and (b) GGA functional with Grimme d2 vdW correction, both obtained 

using PAW pseudopotential. 

 

As seen in the figure 4.5, in the low energy region, the upper half  (above Fermi level) in the 

band structure describes parabolic unoccupied conduction bands, and the lower half (below 

Fermi level) describes parabolic occupied valence bands [29]. The valence bands and 

conduction bands touch each other at the special points called Dirac points which exist at the 

K (or K’ by symmetry) points on corners of the Brillouin zones. The Fermi energy lies exactly 

at the Dirac point. This gives rise to semi-metallic behaviour. The density of states confirms 

the semi metallic nature of these materials.  

 

As one slides one of the layers of bilayer graphene over the other, the band structure changes 

very interestingly.  In the figure 4.6 given below, one can see the effects when zoomed into the 

low energy region near the K point. The results are summarized as follows: 
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a. In α-BLG, the valence bands slightly cross the Fermi level, showing metallic character.  

b. In β-BLG, the valence bands just cross the Fermi level, showing a slight metallic 

character. 

c. In γ-BLG, the valence bands and the conduction bands are separated below and above 

the Fermi level, and it shows a small band gap of 0.10 eV (indirect band gap).  

 

   

(a)                                                (b)                                                (c)                                 

    

                           (d)                                              (e)                                                   (f)           

 

Figure 4.6 Band structures of (a) α-BLG, (b) β-BLG and (c) γ-BLG, with zoomed in view 

around K point in (d) α-BLG, (e) β-BLG and (f) γ-BLG.                     

 

The same results are confirmed by calculating the density of states of these different 

configurations, in figure 4.7.  

 

 

(a)                                                  (b)                                                  (c) 
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                               (d)                                                  (e)                                                    (f) 

Figure 4.7 Density of states of (a) α-BLG, (b) β-BLG and (c) γ-BLG, with zoomed in density 

of states around K point for (d) α-BLG, (e) β-BLG and (f) γ-BLG.      

 

The reason for such observations may be attributed to the break in symmetry in these 

systems, on sliding. In AB BLG, the valence band maxima (VBM) and the conduction band 

minima (CBM) touch each other at the K point. The VBM, and the CBM are, thus, 

degenerate. As one of the layers is slid over the other, the symmetry is broken, and the 

degeneracy is lifted. The VBM and the CBM move away from each other, and the 

degeneracy is lost. In both α-BLG and β-BLG, the VBM and the CBM are separated but the 

VBM crosses the Fermi level, indicating metallic character. In case of γ-BLG, the VBM is 

below the Fermi level, and the CBM is above the Fermi level, realising a band gap.  

 

4.4.3 Vibrational Properties 
 

The phonon dispersion spectrum is calculated using density functional perturbation theory. A 

detailed comparative study has been performed to detect the effects of energy cut offs and 

density of the K mesh used in such calculations. The effects of different approximations to the 

exchange correlation energy functionals like LDA and GGA, and different pseudopotentials 

(PAW and ultrasoft) were also studied. We choose those schemes in our calculations, which 

reproduced accurate crystal structures for our system. This means that when GGA was 

implemented, a Grimme d2 van der Waals correction was incorporated as well. For calculations 

using LDA, we included no van der Waals correction.  

 

First, we performed a series of calculations by varying energy cut offs and density of the k 

mesh. All the results have been compared to the experimental values in graphite which also has 

AB stacking. We choose the LO mode, which is the highest vibrational  frequency, for 

comparing results to experiments [32], which turns out to be around 1588 cm
-1 

. 
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Table 4.4 Comparison of the phonon frequency of LO mode under the use of different 

exchange correlation functional approximation, pseudopotentials, energy cut offs, and k 

meshes.  

 

Exchange 

Correlation 

Approximation 

Pseudopotential Energy 

Cut off 

(Ry) 

K mesh Calculated Frequency of 

LO mode at Г point (in cm
-1) 

 

 

GGA 

 

PAW 

50 50×50×1 1565 

50 75×75×1 1568 

60 75×75×1 1567 

 

US 

50 50×50×1 1569 

50 75×75×1 1569 

60 75×75×1 1568 

 

 

LDA 

 

PAW 

50 50×50×1 1605 

50 75×75×1 1604 

60 75×75×1 1604 

 

US 

50 50×50×1 1605 

50 75×75×1 1605 

60 75×75×1 1604 

 

It should be noted that GGA values are underestimated, and LDA values are overestimated 

when compared to experiments. However, in both cases, a dense k mesh gives us results close 

to experiments.  

 

                                  

 

Figure 4.8 Phonon dispersion of AB-BLG with LDA functional in conjunction with PAW 

pseudopotential.  
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Secondly, we performed phonon calculations by taking into account different exchange 

correlation functionals (GGA and LDA), and pseudopotentials (PAW and ultrasoft). A Grimme 

d2 van der Waals correction was used for GGA, and no such correction was incorporated into 

LDA. A comparison was done with respect to all the phonon modes, alongside experiments 

[31, 32], and prior theoretical calculations [30].  

 

We note that LDA on a whole produces phonon frequencies which are closest to prior 

theoretical calculations [30], and experimental results [31, 32]. GGA produces softer modes 

than LDA. Therefore, we selected LDA, in conjunction with PAW, to be our scheme for the 

next set of calculations. In fact, it is well known that LDA gives better estimation of phonon 

frequencies than GGA in graphitic systems [30, 33].  

 

Table 4.5 Comparison of phonon frequencies (in cm-1) at Г point of present calculations with 

prior theoretical and experimental data in the literature.  

 

All the characteristic features of the phonon spectrum of bilayer graphene systems are captured 

by our ab initio calculations. Technically, we should observe twelve phonon branches as there 

are four atoms in the unit cell. However, we see fewer branches as some of the branches are 

degenerate. There are three acoustic modes, and nine optical modes.  

 

At low q vectors, the in-plane transverse acoustic (TA) and longitudinal acoustic (LA) modes 

show linear dispersions, and are . The out-of-plane acoustic mode (ZA), also called the flexural 

Mode GGA LDA Theory EXPT 

(Graphite) 
 

PAW US PAW US [30]  [31] [32] 

Grimme d2 Grimme d2 No vdW No vdW 

LO 1568 1569 1604 1605 1602 1583 1588 

TO 1561 1563 1598 1599 1596 1577 1581 

ZO 870 

868 

872 

870 

893 

890 

893 

891 

891 
 

867 

868 

LA 0 0 0 0 0 
 

0 

TA 0 0 0 0 0 
 

0 

C 38 43 30 50 27 
 

42 

ZO’ 45 47 76 76 75 
 

127 

ZA 0 0 0 0 0 
  



Investigations in Sliding Bilayer Graphene 47 

acoustic mode, shows a parabolic dispersion, denoting a characteristic feature of layered 

materials.  

 

At higher frequencies, there exists out-of-plane optical (ZO) modes which correspond to 

interlayer motion. Due to the interlayer coupling, at the Г point, the longitudinal optical (LO) 

and the transverse optical (TO) are doubly degenerate, both of which correspond to in-plane 

relative motion.  There also exists an out-of-plane layer breathing (ZO’) mode, which 

corresponds to an in phase out-of-plane motion of the atoms in the top and bottom layers.  

At the zone centre, we get an additional doubly degenerate low frequency optical mode. It is 

called the shear mode and it corresponds to a shearing displacement of the atoms.  

 

The visualization of the eigen vectors at the Г point in figures 4.9 - 4.12 shows the different 

modes of vibrations which are present in this system. The carbon atoms in the different layers 

have been marked with different shades of blue.  

 

 

 

           

(a)                                                                (b) 

 

Figure 4.9 Acoustic in-plane vibrations at Г point (a) Longitudinal Acoustic (LA) (b) 

Transverse Acoustic (TA) modes.  
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(a)                                                                 (b) 

Figure 4.10 Optical in-plane vibrations at the Г point  (a) Transverse Optical (TO) (b) 

Longitudinal Optical (LO) modes.  

 

 

    

 

 

 

 

 

 

Figure 4.11 Optical out of plane vibrations (ZO) at the Г point. 

 

 

                         

(a)                                     (b)                                            (c) 

Figure 4.12 (a) Flexural Mode (ZA), (b) Shear Mode (C), and (c) Layer Breathing Mode 

(ZO’) 
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The full phonon dispersion calculated using LDA gives us a fair estimate of all phonon 

frequencies at different high symmetry points. The qualitative nature of the phonon spectrum 

is well reproduced with this scheme.  

 

Table 4.6 Phonon frequencies (in cm-1) at high symmetry points and comparison of present 

calculation with prior theoretical and experimental data in literature.  

Mode Г M K 

 
Calculated EXPT 

[4] 

EXPT 

[5] 

Calculated EXPT 

[4] 

EXPT 

[5] 

Calculated EXPT 

[4] 

EXPT 

[5] 

LO 1604 1583 1588 1374 1323 1340 1234 1194 1218 

TO 1598 1565 1581 1434 1390 1399 1378 1265 - 

ZO 893 

890 

 
867 

868 

637 
 

630 540 
 

542 

LA 0 
  

1348 1290 1290 1203 1194 1218 

TA 0 
  

625 
 

628 995 
 

1007 

ZO’ 76 
 

127 479 
  

539 
 

542 

ZA 0 
  

474 
 

483 539 
 

542 

 

 

When one of the layers of bilayer graphene slides over the other, the degeneracy in the 

frequencies of the phonon branches is lifted, and twelve distinct phonon frequencies are 

obtained.  

 

      

(a)                                             (b)                                             (c)  

Figure 4.13 Full phonon dispersion of (a) α-BLG, (b) β-BLG and (c) γ-BLG. 

 

BLG has four atoms in the unit cell, suggesting that there should be twelve phonon branches. 

However, we see fewer branches in AB-BLG, as some of the branches are degenerate. In 

sliding bilayer graphene, we see all twelve phonon branches due to break in symmetry.  
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Table 4.7 Phonon frequencies (in cm-1) of different modes, and their symmetries and 

Raman/IR activity at the gamma (Г) point of α-BLG, β-BLG and γ-BLG.  

 
 

α-BLG β-BLG γ-BLG 

 
Frequencies  

(cm
-1

) 

Symmetry IR/Raman 

Activity 

Frequencies 

(cm
-1

) 

Symmetry IR/Raman 

Activity 

Frequencies  

(cm
-1

) 

Symmetry IR/Raman 

Activity 

LO1 

LO2 

1608 

1597 

Au 

Ag 

IR 

Raman 

1606 

1597 

Au 

Ag 

IR 

Raman 

1599 

1598 

Au 

Ag 

IR 

Raman 

TO1 

TO2 

1595 

1598 

Au 

Ag 

IR 

Raman 

1596 

1598 

Au 

Ag 

IR 

Raman 

1607 

1597 

Au 

Ag 

IR 

Raman 

ZO1 

ZO2 

892 

890 

Au 

Ag 

IR 

Raman 

892 

890 

Au 

Ag 

IR 

Raman 

893 

890 

Au 

Ag 

IR 

Raman 

LA 0 Au IR 0 Au IR 0 Ag Raman 

TA 0 Au IR 0 Au IR 0 Au IR 

ZA 0 Au IR 0 Au IR 0 Au IR 

C1 

C2 

-31 

34 

Ag 

Ag 

Raman 

Raman 

-21 

29 

Ag 

Ag 

Raman 

Raman 

-8 

37 

Au 

Ag 

IR 

Raman 

ZO’ 79 Ag Raman 82 Ag Raman 82 Ag Raman 

 

It should also be noted that the shear (C) modes split into two modes C1 and C2, where one 

of these are imaginary phonons. This can be attributed to the dynamical instability of these 

configurations. It is well known that AB BLG is the most stable configuration in bilayer 

graphene. When the one of the layers are slid over the other, there is a cost of energy that has 

to be overcome. Thus, α-BLG, β-BLG and γ-BLG are not the stable-most configurations. In 

fact, they are unstable along these shearing directions, as they have been brought into these 

configurations from AB BLG by sliding.  

 

 

 

4.5 Conclusion 
 

In conclusion, we have reported first principles density functional theory-based calculations of 

electronic structure and vibrational spectra of bilayer graphene, and the change in such 

properties change when one of the layers slides in an irrational direction. On sliding, bilayer 
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graphene suffers a break in symmetry from P3̅ m1 space group to P 1¯ space group. As a result, 

the degeneracies in the band structure, and phonon spectra are lifted resulting in the splitting 

of bands in the band structure and phonon dispersion respectively. For α-BLG, and β-BLG, a 

metallic character is observed in the band structure, while a band gap of 0.10 eV is obtained in 

case of γ-BLG. The phonon frequencies split into twelve distinct modes on sliding in all α-

BLG, β-BLG , and γ-BLG. One of the shear modes in these systems, is an imaginary mode 

which shows the dynamical instability due to the cost of energy in sliding.  
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