
Density Functional Theory Calculations of Doped,

Alloyed, and Heterostructure Systems

A Thesis

Submitted to the

Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru

for the Degree of Doctor of Philosophy
in the Faculty of Science

by

Arpan Das

Jawaharlal Nehru Centre for Advanced
Scientific Research, Bengaluru, India.

JULY 2023





To my Mother and Father





DECLARATION

I hereby declare that the matter embodied in the thesis entitled “Density Func-
tional Theory Calculations of Doped, Alloyed, and Heterostructure Sys-
tems” is the result of investigations carried out by me at the Theoretical Sciences
Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
under the supervision of Prof. Shobhana Narasimhan and that it has not been
submitted elsewhere for the award of any degree or diploma.

In keeping with the general practice in reporting scientific observations, due ac-
knowledgement has been made whenever the work described is based on the findings
of other investigators. Any omission that might have occurred by oversight or error
of judgement is regretted.

Arpan Das





CERTIFICATE

I hereby certify that the matter embodied in this thesis entitled “Density Func-
tional Theory Calculations of Doped, Alloyed, and Heterostructure Sys-
tems” has been carried out by Mr. Arpan Das at the Theoretical Sciences Unit,
Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India under
my supervision and that it has not been submitted elsewhere for the award of any
degree or diploma.

Prof. Shobhana Narasimhan
(Research Supervisor)





Acknowledgements

First of all, I would like to thank my Ph.D advisor Prof. Shobhana Narasimhan

for introducing me to the fascinating world of research. She has helped me in

understanding the basics of solid state physics and how I can implement it into

daily research for problem solving as well as better understanding of the subject in

greater depth. She has introduced me to the fascinating experimental collaborative

works I have worked on in this thesis. Compared to when I joined her lab, she has

significantly improved my abilities as a researcher. I also learnt a lot from her on

‘how to write a scientific article?’ and ‘How to present a research work in a very

simple a way so that everyone can understand it?’ I will be always grateful to her

for giving me the opportunity to work internationally at the ICTP, Trieste, Italy for

a long two months visit during my Ph.D. Apart from academics, she has opened a

completely new and diverse fields of food in front of me.

I would like to thank all of my experimental and theoretical collaborators: Prof. Kr-

ishnakumar S. R. Menon, Prof. Suvankar Chakraverty, Prof. Ranjani Viswanatha,

Prof. Bivas Saha, Dr. Arunava Kar, Dr. Saptarshi Chakrabarty, Dr. Krishna C.

Maurya, Ruchi Tomar, Dr. Rajdeep Banerjee and Dr. Depbipto Acharya.

Specially, I want to thank Rajdeep da for helping and supporting in the starting



days of my PhD. He introduced me for the first time in the so called ‘DFT calcu-

lations’. I will never forget the long night discussions with Arunava da about our

project and later extended to many other topics of science, which finally lead to an

excellent friendship. I hope it will last life long. I visited many times to him at

SINP, those days will always be remembered. I am very thankful to Saptarshi da,

for his always respect towards theorists, which is very rare now a days. I learnt a

lot from him.

I am thankful to all of my course instructors for their outstanding teaching:

Prof. S. Narasimhan, Prof. N. S. Vidhyadhiraja, Prof. Meher K. Prakash, Prof. Bal-

asubramanian, Prof. Subir K. Das, and Prof. Kavita Jain,

I want to thank all other faculties of TSU: Prof. Umesh V. Waghmare, Prof. Swa-

pan K. Pati, and Prof. Srikant Sastry.

I want to acknowledge the present and past chairpersons of TSU for lot of helps

regarding official works: Bindu and Ashrita.

I acknowledge JNCASR for my Ph.D fellowship. I thank ICTP and JNCASR

student travel grant for bearing all of my expenses during my visit at ICTP.

I thank everyone in the Academic Section, especially Dr. Princy and Praveen. I

want to thank Mr. Joydeep Deb, Mr. Jayachandra, and all others in the Adminis-

trative Section for their help with all the administrative procedures. I thank all the

Dhanvantari staff for their medical assistance they provided, specially during the

terrific Covid time. I am highly grateful to the past & present CCMS staff Suresh,

Anoop, Salman and Pandurang for their help and support with computational fa-

cilities and cluster related problems. I want to thank all the library staff, all the

hostel staff, all the mess staff, all the cleaning staff.

I thank all my past and present labmates: Rajdeep, Debdipto, Sourav, Ab-

hishek, Devina, Nandana, Chiku, Garima, Harshdeep, Shivaranjani, and Ritam for

providing a pleasant and joyful research environment in my lab.



Special thanks to Sourav da and Abhishek da for various unforgettable memories

during Covid days. I thank Sourav da, I have learnt many things: from cooking to

data analysis, the learning spectrum is really wide. This converted into from lab

senior to a very close friend. I will always miss him for our ‘coffee time’. I am

also very thankful to Abhishek da for our outstanding memory in lab and Football

matches. I am thankful to Debdipto da for lot of discussions we had together

regarding science. I am thankful to Garima for her help in running some calculations

and discussion on projects during my thesis pressure time. I am really grateful to

have a lab mate like Ritam who was always stood in my side, whatever the situations

are.

I thank my friends and batch mates Bidhan, Prasenjit, Soumik, Supriti, Deben-

dra, Sinay, Krishna, Soumen, Oisikha, Anjana, Debattam, Bitan, and Angshuman,

for the wonderful time we spent together.

Special thanks to Bidhan, Prasenjit and Ritam for tolerating the ups and downs

and being witness of all the events of my Ph.D. I feel lucky to have Bidhan as a

friend, who doesn’t stay at his comfort zone at all. He made me a better person

through out the whole Ph.D journey. I am lucky to have a friend like Prasenjit,

who is an outstanding cook, I call him ‘Mutton da’ as he makes Mutton curry really

better than any five-star hotel cook. I am thankful to have a friend (not lab junior!!)

Ritam, who has an excellent frequency matching with me. He was the witness of the

last part of my Ph.D. We discussed science, quarrelled about ‘Mohun Bagan-East

Bengal’, hurt each other, improved each other, experienced and understood meaning

of life in depth. I will never forget our trip to Chennai, a lifetime unforgettable tour!!

He took care of me and helped to optimize in some steps of my Ph.D.

My respectful gratitude to Prof. C. N. R. Rao for providing world class research

facilities and outstanding scientific environment at JNCASR. He is kind of umbrella

to researchers like me.



Finally, I thank my parents, my family, Surajit, Abhijit da, and Indra da for

their love, constant support, motivation, and everything through out the whole

Ph.D journey and the journey I crossed in my life so far.



Synopsis

In this thesis, we have performed quantum mechanical simulations using density

functional theory (DFT) on a rich variety of systems such as: bulk crystals, metal

and semiconductor surfaces, surface alloys, pristine and doped halide perovskite

materials and heterostructures. We have used spin-polarized DFT for magnetic

systems, the DFT+U method for strongly-correlated systems, and relativistic DFT

to study the effects of spin-orbit coupling. This thesis studies the structural, elec-

tronic, magnetic, optical and vibrational properties of the above mentioned systems,

in great detail.

In Chapter 1, we have provided a very brief introduction to the problems we have

studied in this thesis, as well as to the kinds of systems studied. We have discussed

the approach of “the rational design of materials", and why this is superior to earlier

trial-and-error or brute force approaches.

In Chapter 2, we have summarized the methods we have used in this thesis

to perform DFT calculations to find different properties of materials. We have

briefly summarized the basics of DFT and the computational approaches used when

performing DFT calculations. We have also discussed the mathematical formalism

used to calculate different properties throughout the thesis. For example, we have

described, in brief, the theory of non spin-polarized and spin-polarized DFT, and

ix



the computational approximations made when using DFT for doing simulations of

real materials. We have also described relativistic DFT as we have incorporated

spin-orbit coupling in some cases, and the DFT+U method for strongly correlated

systems. We have also described methods used in this thesis to calculate the optical

and vibrational properties of materials.

In Chapter 3, we have studied the deposition of Sn atoms on an Ag(001) sub-

strate. This is collaborative work, done together with the experimental group of

Prof. K. S. R. Menon, of the Surface Physics and Materials Science Division, SINP,

Kolkata. Our theoretical calculations show that when Sn atoms are deposited on an

Ag(001) surface, very interestingly, Sn-Ag bimetallic surface alloys are formed for

all Sn coverages. This is in contradiction with the naive expectation of Sn atoms

forming an overlayer on the Ag(001) surface.

We discuss the reasons why these naive expectations are incorrect. The formation

of surface alloys is explained by the fact that, on the Ag(001) surface, the effective

size of deposited Sn atoms becomes very large. Thus, when these Sn atoms are

intermixed with the smaller Ag atoms, the tensile surface stress on the Ag(001)

surface is relieved. The calculated results are compared against the data from low

energy electron diffraction (LEED) experiments.

Then we calculate the electronic structure of the lowest energy stable structures

at each Sn coverage considered in our calculations. The calculated band structures

are compared with the angle-resolved photoemission spectroscopy (ARPES) mea-

surements. Overall, we see very good agreement between theory and experiment. An

interesting feature in both the experimentally measured and theoretically computed

band structures is the existence of a crossing point between two linearly dispersive

bands, similar to the Dirac cone in graphene, and a variation in its energy with the

Sn coverage. This variation is explained by a change in the surface electrostatic

potential with Sn coverage.



In Chapter 4, we have studied the structural, electronic, vibrational properties

of CsPbBr3, CsPbCl3, Fe-doped CsPbBr3 and Fe-doped CsPbCl3. This work is

in collaboration with the experimental group of Prof. Ranjani Viswanatha, New

Chemistry Unit, JNCASR, Bangalore. Our experimental collaborators were able to

dope Fe atoms successfully into CsPbBr3 and CsPbCl3 nanocrystals. They measured

the photoluminescence of the Fe-doped systems and compared these results with

those obtained from the corresponding pristine systems. They observed that the

photoluminescence is considerably quenched or reduced upon Fe doping, compared

to the pristine CsPbBr3 and CsPbCl3. However, the degree of this quenching was

much greater for Fe-doped CsPbCl3 than for Fe-doped CsPbBr3.

We have performed DFT calculations to see the effect of Fe doping on the lat-

tice. The electronic structures of the pristine systems and Fe-doped systems are

compared. We have found the effects of Fe doping in CsPbBr3 and CsPbCl3, and

compared the results with the pristine systems. We show that the experimentally

observed quenching of photoluminescence upon Fe-doping arises from the presence

of mid-gap states in one spin channel that arise from the dopants. We also show

that the different degrees of photoluminescence quenching in Fe-doped CsPbCl3 and

Fe-doped CsPbBr3 can be attributed to the stronger electron-phonon coupling in the

former than in the latter.

In Chapter 5, we have calculated the optical properties of CsPbX3 and Fe-doped

CsPbX3 (X = Br, Cl) perovskite materials. Our experimental collaborators in the

groups of Prof. Ranjani Viswanatha and Prof. Bivas Saha, JNCASR, Bangalore, have

measured the optical properties of the pristine materials. . Using ellipsometry, our

collaborators have measured frequency dependent optical constants (e.g., imaginary

part of dielectric function ϵ2(ω)) by observing the change in polarization of light

when it is reflected from or transmitted through CsPbBr3 and CsPbCl3. The peaks

found in the spectra of ϵ2(ω) are identified as different transitions from the different



states in the valence band to the states in the conduction band of these materials.

We have calculated the electronic structure and optical properties of CsPbBr3 and

CsPbCl3 using first principles DFT calculations. We have identified the valence

states and conduction states involved in the different optical transitions found in

the ellipsometry measurements. We have also identified the atomic orbitals involved

in these optical transitions. Further, we have calculated the frequency dependent

imaginary part of the dielectric function ϵ2(ω) and compared it with the experimental

spectra, for both CsPbBr3 and CsPbCl3. Further, we have calculated ϵ2(ω) spectra

for Fe-doped systems, and found there is a little blue shift (increase in band gap)

upon Fe doping with respect to the pristine systems, for both Fe-doped CsPbBr3

and Fe-doped CsPbCl3.

In Chapter 6, we have studied the electronic properties of the two-dimensional

electron gas (2DEG) formed at the LaVO3/KTaO3 (LVO/KTO) heterostructure in-

terface. This work has been performed in collaboration with the experimental group

of Prof. Suvankar Chakraverty, INST, Mohali, who formed the LVO/KTO interface

by depositing a thin film of LVO on a TaO2 terminated KTO(001) substrate, using

pulsed laser deposition (PLD). They have observed metallicity at the LVO/KTO

interface while measuring the 2D resistivity with temperature, above 3 monolayer

(ML) LVO thickness. The calculated carrier density and carrier mobility, in their

experiment, is very high at the LVO/KTO interface. We have first performed elec-

tronic structure calculations of the constituents LVO and KTO which are confirmed

to be insulating. However, our calculations of the LVO/KTO interface show a metal-

lic nature, consistent with the experimental observations. The calculated electronic

charge is maximum near the interface and decreases away from the interface, which

shows the two-dimensional nature of the conduction electrons. We also find that

an ‘electronic reconstruction’ is the origin of 2DEG formation at the LVO/KTO

interface.



In Chapter 7, we have summarized the main conclusions of each chapter and we

raise some open questions that can be addressed in future work. This can lead to

diverse directions for each project and possibly reveal even more interesting physics.
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6.1 (a) The unreconstructed interface has neutral (001) planes in SrTiO3
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to oscillate about zero and the potential remains finite. The upper free
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layer would be missing half an electron, which would bring the electric

field and potential back to zero at the upper surface. Reprinted with
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and EF denotes the Fermi level. Reprinted with permission from Ref.

38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3 Measured two-dimensional resistivity vs temperature for LVO/KTO

interface using four-probe method. Reprinted with permission from
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6.4 Cubic crystal structure of bulk KTaO3. It has the perovskite structure

in which each Ta atom is surrounded by six O atoms forming an TaO6

Octahedron. Here, a 2× 2× 2 supercell is shown. The primitive unit

cell contains five atoms: one K, one Ta and three O atoms. Atomic

color code: magenta: K, blue: Ta, red: O. . . . . . . . . . . . . . . . 206
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mination, (b) LVO/KTO interface in the superlattice model, and (c)

LVO/KTO interface with vacuum. The horizontal red dashed lines

indicate the locations of the interfaces. (b) contains two interfaces
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6.7 (a) Electronic band structure and (b) projected density of states

(PDOS) of bulk KTO without spin-orbit coupling (SOC). (c) Elec-

tronic band structure and (d) PDOS of bulk KTO with SOC. The

corresponding colors of the orbital projected DOS are shown in the

insets of (b) and (d). The calculated R − Γ indirect band gap is =

2.18 eV without SOC, and 2.04 eV with SOC. In each case, the Fermi

level is set at the valence band maximum (VBM) and is indicated by

the red dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
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6.8 Electronic band structure of the KTO(001) surface (a) without SOC

and (b) with SOC. The horizontal red dashed line represents the

Fermi level in each case. . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.9 PDOS of KTO(001) surface, calculated without SOC. Orbitals on

which the wavefunctions are projected are shown in the inset. The

horizontal red dashed line represents the Fermi level. . . . . . . . . . 216

6.10 Bands are projected on to all atomic orbitals of (a) top TaO2, (b)

3rd TaO2, (c) 5th TaO2 and (d) 7th TaO2 layer of KTO(001) surface,

without SOC. The color scales represent the amount of orbital pro-

jection. The horizontal black dashed line represents the Fermi level in

each case. The color scales represent the amount of orbital projection,

for each layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
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Chapter 1
Introduction

To be a scientist is to be naive. We

are so focused on our search for

truth, we fail to consider how few

actually want us to find it. But it is

always there, whether we see it or

not, whether we choose to or not.

The truth doesn’t care about our

needs or wants. It doesn’t care

about our governments, our

ideologies, our religions. It will lie

in wait for all time. Where I once

would fear the cost of truth, now I

only ask: “what is the cost of lies?"

Chernobyl

In this chapter, we give a very brief summary of ‘rational design’ of nanomate-

rials, its historical importance, technological applications and how we do rational

design using computer simulations and predict the properties of materials. We also

summarize the essence of each chapter of this thesis.

1
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1.1 Rational design of nanomaterials

Humans have used improved materials for better civilization from ancient ages.

Examples of this are the Stone age, the Bronze age and the Iron age. The study of

materials is not new; humans have been manipulating and utilizing materials since

ancient times. However, materials science as a distinct scientific discipline emerged in

the mid 20th century, driven by the need to understand and engineer materials with

specific properties for various applications. Humans have also (unknowingly) used

nanomaterials from ancient times, for diverse applications. For example, humans

used asbestos nanofibers to reinforce ceramic mixtures about four thousand years

ago.1 Also, about four thousand years ago, the ancient Egyptians knew about PbS

nanoparticles and used them for hair-dyeing.2;3 Another ancient example of the use

of nanomaterials is the Lycurgus Cup, made by the Romans in the fourth century

CE. It is a dichroic cup whose color changes based on the nature of the incoming

light. This color change is due to the presence of Au and Ag nanoparticles.4

The field of materials science has witnessed remarkable advances in recent years,

enabling the development of novel materials with extraordinary properties. From

high-performance alloys and flexible electronics to drug-delivery systems and energy

storage devices, the quest for designing materials with tailored functionalities has

become increasingly significant. A key part of this scientific pursuit is the concept

of rational design, which represents a paradigm shift from the traditional trial-and-

error approach to materials development.

Figure 1.1: Schematic of procedure of rational design of nanomaterials.
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The ‘rational design’ of materials is based on the concept of ‘design on purpose’,5

and refers to a deliberate and systematic approach toward designing new materials

with desired properties and functionalities based on a fundamental understanding

of their structure-property relationships. It involves using scientific principles, com-

putational modeling, and experimental techniques to guide the design process.

Traditionally, materials development relied heavily on trial-and-error approaches,

where researchers would explore various compositions and fabrication methods in the

hope of discovering new materials with desired properties. However, this approach

can be time-consuming, costly, and inefficient.

Rational design aims to overcome these challenges by leveraging our knowledge of

material properties at the atomic and molecular level. Fig. 1.1 shows the schematic

of steps followed in rational design of nanomaterials. It involves understanding how

the arrangement of atoms or molecules influences the material’s properties, and then

using this knowledge to design and synthesize materials with specific characteristics.

Advances in computational modeling, such as quantum mechanical simulations and

materials informatics, play a crucial role in rational design. These tools enable

researchers to predict material properties, simulate material behavior under different

conditions, and screen large databases of materials to identify promising candidates.

The problem is well defined first [see Fig. 1.1], then one does conceptual design

of the nanomaterials and verifies whether the material is suitable for the defined

problem, using theoretical calculations at the atomic scale. After the design phase,

experimentalists synthesize the predicted material and do measurements on it. If

the theoretically predicted properties match well with the experimental observations,

then it is fine. If they do not match, theoreticians try to understand the reason, at

the atomic level, for these deviations, and come up with better solutions based on the

insights gained. In this way, one does not have to synthesize all the nanomaterials

considered and measure their properties. Rather, theoretical calculations filter out
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most candidates until one is left with only a few nanomaterials which have to be

synthesized and studied by experimentalists. This saves an extremely huge amount

of time and effort.

By employing rational design strategies, scientists can develop materials with

enhanced properties such as strength, conductivity, durability, magnetism, catalytic

activity, or specific optical properties. This approach has applications in various

fields, including electronics, energy storage, catalysis, biomaterials, and more, lead-

ing to the development of innovative and tailored materials for specific applications.

Nanomaterials possess unique characteristics due to their nanoscale dimensions,

which typically range from 1 to 100 nanometers (nm). At this scale, materials exhibit

intriguing properties such as enhanced surface-to-volume ratio, quantum confine-

ment effects, and distinctive mechanical, electronic, optical, and catalytic behavior.

Rational design enables researchers to leverage these inherent nanoscale properties

and precisely engineer materials with desired attributes for specific applications.

Richard Feynman introduced the concept of ‘nanotechnology’ for the first time

in 1959 at the American Physical Society’s annual meeting; this is considered as

the first academic talk in nanotechnology. He said - “There is plenty of room at

the bottom" and “why can’t we write the entire 24 volumes of the Encyclopedia

Britannica on the head of a pin?" The broad vision was to create smaller materials

or nanomaterials, even at the atomic scale, to store extremely large amounts of

information.6

The research in the filed of nanotechnology has advanced by some breakthrough

discoveries and inventions, such as the scanning tunneling microscope (STM) in

1982 by Gerd Binnig and Heinrich Rohrer.7 Using STM, one can obtain images at

the single atom level, of systems such as atoms on surfaces. Shortly thereafter, the

atomic force microscope (AFM) was invented in 1986.8 Advances such as these, and
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the knowledge gained, ultimately helped to create hard disks with huge storage ca-

pacity. Research in the field of nanotechnology is evolving every day and nowadays

very powerful methods are available to tune different properties at the nanoscale.

Several applications of nanomaterials have already been reached at the commer-

cial level such as surface coatings, electronics, scratch-free paints, environmental

remediation, cosmetics, energy-storage devices, sports equipment, and sensors.9

Experimentalists use two main schemes for the synthesis of nanomaterials: (i)

top-down approach and (ii) bottom-up approach. In top-down approaches, bulk

materials are divided to produce nanomaterials. Top-down methods include sput-

tering, laser ablation, mechanical milling, etching, and electro-explosion. In bottom-

up approaches, individual atoms are assembled to form larger nanoparticles. Some

bottom-up approaches are chemical vapor deposition, spinning, solvothermal and

hydrothermal methods, sol–gel method, molecular condensation, soft and hard tem-

plating methods, reverse micelle methods, etc.

Nanomaterials have diverse emergent properties which are very different from

their bulk counterparts. The properties varies with the size, shape and composition

of the nanoparticles forming the nanomaterials.10;11 For example, a solution of large

Au particles is yellow in color, whereas a solution of Au nanoparticles is purple or red

in color, depending on the size of the nanoparticles. Electronic properties change

drastically at the nanoscale, compared to the corresponding bulk. e.g., boron in

its bulk structure is an insulator, whereas a two dimensional (2D) network of boron

atoms, i.e., borophene, shows a metallic nature. Mechanical properties are improved

at the nanoscale due to the enhancement of crystal perfection.12 Optical properties

of nanomaterials such as zero dimensional quantum dots depend on their size and

shape.13

Nanomaterials can have the following properties which are very different from

their bulk counterparts: (i) large surface area – nanomaterials have very large surface
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to volume ratio, compared to their bulk counterparts,14 (ii) magnetism – emergence

of magnetism at the nanoscale even when the bulk is non-magnetic.11, (iii) quantum

effects – these depend on the nature of the nanomaterials,15, (iv) enhanced electrical

and thermal conductivity. One example is graphene, obtained from graphite by

exfoliating a single layer of carbon atoms.16, (v) better mechanical properties,17,

(vi) better support for catalysts – increases the catalytic performance.18;19, (vii)

some nanomaterials have antiviral, antibacterial, and anti-fungal properties and

hence they have medical applications.20;21

One of the key aspects of rational design is the utilization of computational mod-

eling and simulation techniques. These tools provide invaluable insights into the

behavior of materials by elucidating the interplay between their atomic or molec-

ular arrangements and their macroscopic properties. Through the integration of

computer-aided design, data-driven approaches, and machine learning algorithms,

scientists can efficiently explore vast design spaces, accelerating the discovery and

optimization of new materials.

In this thesis, we have followed the path of rational design of materials by which

we can tune the structural, electronic, magnetic and optical properties of materials

at the nanoscale, to make them better suited for technological applications. Nano-

materials can have zero dimensions (e.g., single atom, molecule, quantum dot, nan-

ocluster of particles etc.), one dimension (nanowires, nanotubes, one-dimensional

(1D) coordination polymers etc.), two dimensions (graphene, surfaces, thin films,

etc.) or three dimensions (bulk crystals). When the size of material or the size in

one of the dimension is in the range of 1 to 100 nm, then they are usually defined to

be nanomaterials. This thesis presents atomistic modelling of bulk crystals, surfaces

and heterostructure interfaces, and density functional theory (DFT) calculations of

the structural, electronic, magnetic and optical properties of these systems.

Materials properties can be calculated using different ab initio computational
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techniques such as density functional theory (DFT),22;23 molecular dynamics,24

Monte Carlo simulations,25 etc. The meaning of ‘ab initio’ or ‘first-principles’ meth-

ods is that you need almost zero input from experiment; in DFT calculations the

only experimental inputs are, in principle, atomic masses and atomic numbers. This

has represented a huge step forward in the search for new materials and the rational

design of nanomaterials, and the goal of finding their properties. DFT has become

very popular nowadays due to huge improvements in computational power and re-

sources, and one is now in a position to tackle challenging calculations for very

complex systems.

In this thesis, we have performed DFT calculations to find structural, electronic,

magnetic and optical properties. The range of systems studied in this thesis cover

a broad spectrum such as bulk crystals, metal and semiconductor surfaces, alloyed

surfaces, bulk perovskite materials, transition metal doped perovskite systems, and

heterostructures of perovskite oxide materials.

1.2 Outline of the thesis

In Chapter 1, we provide a very brief introduction to the projects and problems we

have studied in this thesis. In this thesis, we have considered different kinds of sys-

tems, such as bulk crystals, the surfaces of bulk crystals, and interfaces between two

materials. Specifically, we have considered metal surfaces, alloy formation on metal

surfaces, bulk perovskite structures, transition metal atom doped bulk perovskites,

and heterostructure interfaces between two perovskite oxide materials.

In Chapter 2, we have summarized the methods we have used in this thesis to

perform density functional theory (DFT) calculations to find different properties of

nanomaterials. We have briefly summarized the basics of DFT and the computa-

tional approaches used when performing DFT calculations. We have also discussed
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the mathematical formalism used to calculate different properties throughout the

thesis. For example, we have described, in brief, the theory of non spin-polarized

and spin-polarized DFT, the computational approximations made when using DFT

for doing simulations of real materials. We have also described relativistic DFT as

we have incorporated spin-orbit coupling in some cases, and the DFT+U method

for strongly correlated systems, optical properties of materials and so on.

In Chapter 3, we have studied the deposition of Sn atoms on an Ag(001) sub-

strate. This is collaborative work, done together with the experimental group of

Prof. K. S. R. Menon, of the Surface Physics and Materials Science Division, SINP,

Kolkata. Our theoretical calculations show that when Sn atoms are deposited on an

Ag(001) surface, very interestingly Sn-Ag bimetallic surface alloys are formed for all

Sn coverages. This is in contradiction with the naive expectation of Sn atoms form-

ing an overlayer on the Ag(001) surface. We discuss the reasons why these naive

expectations are incorrect. The calculated results are compared against the data

from low energy electron diffraction (LEED) experiments. Then we calculate the

electronic structure of the lowest energy stable structures at each Sn concentration

considered in our calculations. The calculated band structures are compared with

the angle-resolved photoemission spectroscopy (ARPES) measurements. Overall,

we see very good agreement between theory and experiment. An interesting feature

in both the experimentally measured and theoretically computed band structure is

the existence of a crossing point between two linearly dispersive bands, similar to

the Dirac cone in graphene, and a variation in its energy with the Sn concentration.

We have also analyzed the electrostatic potential and charge density difference, to

gain insights into the origins of surface states and surface resonances.

In Chapter 4, we have studied the structural, electronic, photoluminescence and

optical properties of CsPbBr3, CsPbCl3, Fe-doped CsPbBr3 and Fe-doped CsPbCl3.

This work is in collaboration with the experimental group of Prof. Ranjani Viswanatha,
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New Chemistry Unit, JNCASR, Bangalore. They were able to dope Fe atoms suc-

cessfully into CsPbBr3 and CsPbCl3 nanocrystals. They measured the photolumi-

nescence of the Fe-doped systems and compared these results with those obtained

from the corresponding pristine systems. They observed that the photolumines-

cence is considerably quenched or reduced upon Fe doping, compared to the pristine

CsPbBr3 and CsPbCl3. We have performed DFT calculations to see the effect of

Fe doping on the lattice. The electronic structures of the pristine systems and Fe-

doped systems are compared. We have found the effects of Fe doping in CsPbBr3

and CsPbCl3, and compared the results with the pristine systems. We are able

to explain the fundamental origin of photoluminescence quenching in the Fe-doped

systems. Finally, we calculated the vibrational properties of Fe-doped CsPbBr3 and

Fe-doped CsPbCl3 and give an explanation of different degrees of photoluminescence

quenching in these materials.

In Chapter 5, we calculate the optical properties of CsPbBr3 and CsPbCl3 per-

ovskite materials. Our experimental collaborators in the group of Prof. Ranjani

Viswanatha, JNCASR, Bangalore, have done some optical measurements. Other

experimental collaborators, in the group of Prof. Bivas Saha, JNCASR, Banga-

lore, were trying to find the possible optical transitions occurring in CsPbBr3 and

CsPbCl3 perovskites, using ellipsometry measurements. They measured the band

edge transition, as well as other excited state transitions. Using ellipsometry, our

collaborators have measured frequency dependent optical constants (e.g., imaginary

part of dielectric function ϵ2(ω)) by observing the change in polarization of light

when it reflects or transmits from CsPbBr3 and CsPbCl3. The peaks found in the

spectra of ϵ2(ω) are identified as different transitions from the different states in

the valence band to the states in the conduction band of these materials. We have

calculated the electronic structure and optical properties of CsPbBr3 and CsPbCl3

using first principles DFT calculations. We have identified the valence states and
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conduction states involved in the different optical transitions found in the ellipsom-

etry measurements. We have also identified the atomic orbitals involved in these

optical transitions. Further, we have calculated the frequency dependent imaginary

part of the dielectric function ϵ2(ω) and compared it with the experimental spectra,

for both CsPbBr3 and CsPbCl3.

In Chapter 6, we have studied the electronic properties of the two-dimensional

electron gas (2DEG) formed at the LaVO3/KTaO3 (LVO/KTO) heterostructure in-

terface. This work has been performed in collaboration with the experimental group

of Prof. Suvankar Chakraverty, INST, Mohali, who formed the LVO/KTO interface

by depositing a thin film of LVO on a TaO2 terminated KTO(001) substrate, using

pulsed laser deposition (PLD). They have observed metallicity at the LVO/KTO

interface while measuring the two dimensional (2D) resistivity as a function of tem-

perature, above 3 monolayer (ML) LVO thickness. The calculated carrier density

and carrier mobility, in their experiment, is very high at the LVO/KTO interface.

We have first performed electronic structure calculations of the constituents LVO

and KTO which are confirmed to be insulating. However, our calculations of the

LVO/KTO interface show a metallic nature, consistent with the experimental ob-

servations. The calculated electronic charge is maximum near the interface and

decreases rapidly away from the interface, which shows the two-dimensional nature

of the conduction electrons. We also find that an ‘electronic reconstruction’ is the

origin of 2DEG formation at the LVO/KTO interface.

In Chapter 7, we have summarized the main conclusions of each chapter and we

raise some open questions that can be addressed in future work. This can lead to

diverse directions for each project and possibly reveal even more interesting physics.
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Chapter 2
Methods and Formalism

The important thing in science is

not so much to obtain new facts as

to discover new ways of thinking

about them.

W. L. Bragg

2.1 The many-body problem

A material, whether it is an atom, molecule, cluster, bulk solid, surface or nanowire,

and whether it is in the solid, liquid, or gas phase, and whether it be homogeneous

or heterogeneous, can be described as a set of interacting atomic nuclei and elec-

trons. Density Functional Theory (DFT) is a highly successful theory to describe

the electronic structure of such many-particle systems. In this thesis, we use DFT to

solve a variety of problems concerning many-electron systems. In this chapter, I will

give a brief overview of some of the formalism of DFT, and associated techniques

needed to perform DFT calculations on a computer.

15
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2.1.1 The Schrödinger equation and many-body problem

The quantum mechanical time-independent Schrödinger equation is given by:

ĤΨ(R, r) = EΨ(R, r). (2.1)

Here, Ψ(R, r) is the wavefunction of all the particles, i.e, electrons and nuclei, in

the system; it is a function of {R, r}, where R = {RI , I = 1, 2, ..., P}, is a set of P

nuclear coordinates and r = {ri, i = 1, 2, ..., N}, is a set of N electronic coordinates.

This wavefunction must be antisymmetric with respect to exchange of electronic

coordinates in r, and symmetric or antisymmetric with respect to exchange of nuclear

coordinates in R. The many-particle Hamiltonian operator Ĥ can be written as:1

Ĥ = −
P∑

I=1

ℏ2

2MI

∇2
I −

N∑
i=1

ℏ2

2me

∇2
i +

e2

2

P∑
I=1

P∑
J ̸=I

ZIZJ

|RI −RJ |

+
e2

2

N∑
i=1

N∑
j ̸=i

1

|ri − rj|
− e2

P∑
I=1

N∑
i=1

ZI

|RI − ri|
,

(2.2)

where RI , MI and ZI are the position, mass and the atomic number of the I th

nucleus, and ri is the coordinate of the ith electron. me is the mass of electron,

ℏ is Planck’s constant divided by 2π, e is the electronic charge. One can express

Eq. (2.2) as:

Ĥ = T̂n + T̂e + V̂nn + V̂ne + V̂ee, (2.3)

where T̂n and T̂e are the kinetic energy operators for the nuclei and electrons, respec-

tively. V̂nn, V̂ne and V̂ee are the potential energy operators for the nucleus–nucleus

interaction, nucleus–electron interaction and electron–electron interaction, respec-

tively. It is almost impossible to solve the above equation, analytic solutions and
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exact numerical solutions are available only in a few cases (e.g., hydrogenoid atoms,

H+
2 molecule). The separation of variables is very hard for the Coulomb interac-

tion term in the above Schrödinger equation and cannot be done analytically for

many-electronic systems. Hence, to solve the many-body Hamiltonian many ap-

proximations need to be made. I will discuss a few of them in the sections below.

2.1.2 The Born-Oppenheimer approximation

In an atom, the mass of the nucleus is much greater than the sum of masses of

the electrons (a proton is 1836 times heavier than a electron). Therefore, the time

scale associated with the motion of the nucleus is much slower than the time scale

associated with the electrons. Born and Oppenheimer showed2 in 1927 that the effect

of the nuclear motion on the electronic wavefunctions becomes negligible and as a

result the electronic motion becomes decoupled from the nuclear motion. That is, the

electrons do not undergo transitions between stationary states due to the interaction

with the nuclei. Also, if the nuclear mass is set to infinity, the kinetic energy

of the nuclei can be neglected. This is called the adiabatic or Born-Oppenheimer

approximation. As the nuclei change their coordinates, the electrons instantaneously

adjust their wavefunctions. Hence it helps to separate out the electronic Hamiltonian

from the nuclear Hamiltonian:

Ψ(R, r) = Ψnuc(R)Ψe(R, r). (2.4)

where Ψnuc(R) is the nuclear wavefunction. Ψe(R, r), which is the many-electron

wavefunction corresponding to a particular nuclear configuration, satisfies the time-

independent Schrödinger equation:

ĥeΨe(R, r) = ϵ(R)Ψe(R, r), (2.5)
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and the electronic Hamiltonian is,

ĥe = T̂e + V̂ee + V̂ne = Ĥ − T̂n − V̂nn. (2.6)

In the electronic Hamiltonian, the nuclear coordinates act as parameters. Now,

the main aim is to solve Eq. (2.5) to find the many-electron wavefunction Ψe(R, r)

and the total energy of the system.

2.2 Density Functional Theory

As the electrons interact via Coulomb two-body interactions, the probability of find-

ing an electron at a position in space depends on the positions of the other electrons.

This is called correlation. Hence, the many-electron wave function Ψe(R, r) cannot

be simply written as the product of the wavefunctions of the individual electrons.

Also, the many-electron wavefunction has to be antisymmetric i.e., if two electrons

are exchanged, the wavefunction must change sign. Two famous approaches were

first made to solve the many-electron problem: the Hartree approximation and the

Hartree-Fock approximation. The Hartree approximation includes neither exchange

nor correlation. The Hartree-Fock approximation includes exchange but not corre-

lation. It captures the Pauli exclusion principle and the antisymmetric nature of

the wavefunction. Also the wavefunctions are described by a single Slater determi-

nant, which is not sufficient. Other, more sophisticated, methods like Configuration

Interaction have also been subsequently developed to solve the problem.

A different idea was conceived by L.H. Thomas and E. Fermi at the same time

as Hartree (1927-28). They proposed, for the first time, the electron density as the

fundamental variable of the many-electron system. This Thomas-Fermi approxima-

tion set up a basis for the later development of the density functional theory (DFT),

which has become the most successful theory for electronic structure calculations
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in the last few decades. Dirac (in 1930) added exchange and correlation to the

Thomas-Fermi theory. In this Thomas-Fermi-Dirac (TFD) theory, for the very first

time, the total energy of a many-electron system was written as a functional of the

electron density. This idea was intuitive at that time; one had to wait more than

thirty years for a mathematical justification of this procedure. In 1964, Hohenberg

and Kohn proved two theorems that justified that the total energy in the ground

state can be expressed as a functional of the density; this expression of the total

energy in terms of the electron density remarkably simplified the problem from de-

pending on 3N degrees of freedom for N electrons to depending on only 3 variables

for the density.

2.2.1 Hohenberg-Kohn (HK) theorems

DFT is based on two fundamental theorems given by Hohenberg and Kohn (1964).3

Theorem I:4 For any system of interacting particles in an external potential Vext(r),

the potential Vext(r) is determined uniquely, up to an additive constant, by the

ground state particle density n0(r).

Corollary: Once the ground state electron density is known, then we know Vext

and the full Hamiltonian operator. Then, solving the Schrödinger equation gives

us the N -electron ground state wavefunction. Therefore all the properties of the

interacting system are completely determined, given only the ground state electron

density n0(r).

Theorem II: A universal functional for the energy E[n] in terms of n(r) can be

defined, valid for any external potential Vext(r). For any particular Vext(r), the exact

ground state energy of the system is the global minimum value of this functional,

and the density n(r) that minimizes the functional is the exact ground state density

n0(r).4

The second HK theorem states that the total energy E[n] of an interacting system
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can be written as a functional of the electron density n(r). This can be written as:1

E[n] = F [n] +

∫
d3r Vext(r)n(r), (2.7)

where:

F [n] =
〈
Ψe[n]|T̂e + V̂ee|Ψe[n]

〉
. (2.8)

F [n] is a “universal" functional i.e., it is valid for any external potential Vext(r). F [n]

includes all the internal energies: kinetic and potential energy of the interacting

electron system. It does not depend on the external environment, hence it is a

universal functional. Minimizing Eq. (2.7) with respect to n(r) calculates the ground

state total energy of the system and the ground state electron density. These two

theorems establish the mathematical foundation of DFT.

However, now a problem arises: the exact form of F [n] in terms of the density is

not known. The HK theorems only tell us how to calculate the ground state energy

and ground state density, but they do not tell us the form of F [n]. To address this,

in 1965, W. Kohn and L.J. Sham5 proposed an ansatz that enables us to deal with

this problem.

2.2.2 Kohn-Sham ansatz

The Kohn-Sham approach is to replace the original many-body problem by an aux-

iliary independent particle problem. Kohn-Sham’s main idea was: if one can find

a system of non-interacting electrons which produces the same electron density

as that of the true interacting system, the kinetic energy of the auxiliary non-

interacting system can be calculated exactly. This remarkably simplifies the inter-

acting many-body problem to independent-particle equations of the non-interacting

system which can be solvable exactly, except for the fact that all the unknowns are
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thrown into an exchange-correlation functional Exc[n(r)]. The ground state density

and ground state energy of the original interacting system can be found by solving

the independent-particle equations with an accuracy limited by the approximations

made in the expression of Exc[n(r)].

So, now consider a system of N non-interacting electrons whose ground state

density is the same as that of the interacting system. We call this non-interacting

system the non-interacting reference system, and it is described by the following

Hamiltonian:

ĤR =
N∑
i=1

[
− ℏ2

2m
∇2

i + VR(ri)

]
, (2.9)

where VR(r) is the reference potential and the density obtained from this Hamilto-

nian is the same as the density of the true interacting system. Therefore, the HK

theorem confirms that the ground state energy of this Hamiltonian is equal to the

ground state energy of the true interacting system.

Let us first consider the spin-independent case. The single-particle orbitals or the

one-electron orbitals ϕi(r) are the N/2 lowest energy eigenstates of the one-electron

Hamiltonian:

ĤKS = − ℏ2

2m
∇2 + VR(r). (2.10)

The one-electron orbitals ϕi(r), also known as the Kohn-Sham orbitals, can be

obtained by solving one-electron Schrödinger equations, known as Kohn-Sham equa-

tions:

ĤKS ϕi(r) = ϵi ϕi(r). (2.11)

In this scenario, the electron density is given by:
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n(r) = 2

N/2∑
i=1

|ϕi(r)|2, (2.12)

and the kinetic energy of the non-interacting reference system is expressed as:

TR[n(r)] = −2
ℏ2

2m

N/2∑
i=1

〈
ϕi(r)|∇2|ϕi(r)

〉
. (2.13)

Now, the Kohn-Sham total energy functional can be written as:

EKS[n] = TR[n] +

∫
Vext(r)n(r)dr+

1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n]. (2.14)

Remember that in this expression, the kinetic correlation neglected in TR[n], i.e.,

the difference in the kinetic energy of the interacting system and the non-interacting

reference system, viz., Te[n]− TR[n], is included in the exchange-correlation energy

functional Exc[n]. In the equation above, the second term on the right-hand-side

is the external potential, i.e., the interaction between nuclei and electrons. The

third term is the classical electrostatic interaction energy between electronic den-

sities at different points in space, known as the Hartree term. The fourth term is

the exchange-correlation energy that contains all the unknowns of the many-body

problem.

Now, applying the variational principle and minimizing the Kohn-Sham func-

tional under the constraint of particle conservation,

δ

δn(r)

(
EKS[n]− µ

∫
n(r)dr

)
= 0, (2.15)

we get,

δTR[n]

δn(r)
+ Vext(r) +

∫
n(r′)

|r− r′|
dr′ +

δExc[n]

δn(r)
= µ. (2.16)
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Comparing Eq. (2.10) and Eq. (2.16), we conclude that the reference potential

or the Kohn-Sham potential consists of three terms:

VKS(r) = VR(r) = Vext(r) + VH(r) + Vxc(r), (2.17)

with the Hartree potential VH(r) =
∫ n(r′)

|r−r′|dr
′, and the exchange-correlation poten-

tial Vxc(r) = δExc[n]
δn(r)

.

Notice that the Kohn-Sham potential depends on the electron density, which

however has to be calculated from the solution of the one-electron Kohn-Sham equa-

tions (by Eq. (2.12)). Therefore, this equation has to be solved self-consistently.

A flowchart describing the self-consistent procedure has been shown in Fig. 2.1.

2.2.3 Exchange-correlation functional

The total energy of a many-electron system is given by Eq. (2.14):

E[n] = TR + Vext + EH + EX + EC , (2.18)

where TR is the kinetic energy of the non-interacting electrons, Vext is the interaction

energy of the electrons with external potentials, in particular with the atomic nuclei,

EH is the classical density-density electrostatic energy known as the Hartree energy,

EX is the exchange and EC is the correlation energy. Here, the second and the

third terms are the explicit functionals of the electron density. The first and fourth

terms are functionals of the single-particle orbitals which are again functionals of

the density. The last term i.e., the correlation energy is the big unknown. Among

EH , EX and EC , the contributions come in order of decreasing energy: Hartree,

exchange and correlation.

Electrons being fermions obey Pauli’s exclusion principle, therefore two same-

spin electrons repel each other. The exchange term lowers the energy by keeping
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Figure 2.1: Flow chart showing the self-consistency loop for the iterative solution of
the KS equations.
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electrons of the same spin away from each other, thus reducing the Coulomb re-

pulsion, and provides extra stabilization to the system. The correlation energy is

defined as the difference between the exact energy of the many-body system and its

energy as calculated by the Hartree-Fock approximation (remember that Hartree-

Fock theory counts for the exchange but not the correlation). Correlation is a result

of the collective behaviour of electrons to screen and reduce Coulombic interaction.

Unlike the exchange term, the correlation becomes more important for opposite

spins as they are more likely to occupy nearby locations.

So, the form of the exchange-correlation energy is not known. Many approxima-

tions have been made so far for EXC . I will now discuss the two most widely used

approximations for EXC , namely the local density approximation and the general-

ized gradient approximation.

The local density approximation (LDA)

The local density approximation (LDA)6–9 has been the most extensively used

approximation for the exchange-correlation energy for a long time. The philoso-

phy of considering “inhomogeneous system as locally homogeneous" was first given

by Thomas-Fermi-Dirac (1930). According to this approximation, the exchange-

correlation energy can be written as:

ELDA
XC [n] =

∫
n(r)ϵhomXC [n(r)] dr, (2.19)

where ϵhomXC [n] is the exchange-correlation energy density of the homogeneous electron

gas, calculated locally by the density at every point in space. For the homogeneous

electron gas, the exact expression of the exchange energy was given by Dirac.10

Various approximations have been made for the correlation term.6–9. The most ac-

curate results are from the Quantum Monte Carlo simulations of Ceperley and Alder

(1980).7 Perdew and Zunger (1981)9 parameterized these results for the correlation.
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In practice, the exchange-correlation energy is calculated using Eq. (2.19) with

ϵhomXC [n] = ϵLDA
X [n] + ϵLDA

C [n], where the exchange energy density is given by:

ϵLDA
X [n] = ϵDirac

X [n] = −3

4

(
3

π

)1/3

n1/3 = −3

4

(
9

4π2

)1/3
1

rs
, (2.20)

where rs = (3/4πn)1/3 is the mean interelectronic distance, and the correlation

energy density is calculated by:9

ϵPZ
C [n] = A ln rs +B + Crs ln rs +Drs, rs ≤ 1

= γ/(1 + β1
√
rs + β2rs), rs > 1,

(2.21)

where A,B,C,D, β1, β2 are constants and fitted to the Monte Carlo simulations of

Ceperley and Alder. The LDA is especially successful for the bulk metals where

the electron density is reasonably uniform, and also for less uniform density systems

like molecules and ionic crystals. However, the LDA has several limitations: (i)

it underestimates bond lengths due to over-binding nature, (ii) it fails to cancel

the self-interaction for localized electrons, i.e., for strongly correlated systems (e.g.,

transition metal oxides), LDA fails to reproduce the band gap near the Fermi level,

(iii) the exchange-correlation potential decays exponentially instead of the correct

−e2/r behaviour in the vacuum region.

The generalized gradient approximations (GGA)

The electron density is not always homogeneous in real systems. In fact, in most

of the cases it is inhomogeneous. To deal with the issue of inhomogeneities in the

density, the natural way is to do expansion of the electron density in terms of the

gradient, Laplacian and higher order derivatives.

The exchange correlation energy for a GGA functional can be written as:11
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EGGA
XC =

∫
n(r) ϵXC

[
n(r), |∇n(r)|

]
dr, (2.22)

where ϵXC

[
n(r), |∇n(r)|

]
is the exchange-correlation energy per electron, which

depends on the local electron density n(r) at point r in space, as well as on the

gradient of the density |∇n(r)| in the vicinity of r. The Laplacian term ∇2n and

also the higher order derivative terms can also be incorporated into ϵXC .

One of the important things about the GGA is that the gradient expansion has

to be carried out very carefully, such that it retains all the important contributions

to the desired order. Another important point is that this expansion may violate

some exact conditions of the exchange-correlation holes, like normalization condi-

tion, negativity of the exchange density and the self-interaction cancellation. Perdew

showed that imposing these conditions on the functionals that originally do not sat-

isfy them results in a remarkable improvement (1986)12. Many gradient expansions

have been suggested between 1986 and 1996. The three most widely used GGAs

are Becke (B88),13 Perdew and Wang (PW91),14 and Perdew, Burke and Ernzerhof

(PBE 1996).11 The PBE functional is very satisfactory in the sense that it satisfies

many of the exact conditions of the exchange-correlation (XC) hole and it does not

have any fitting parameters.

GGAs have several successes compared to the LDA: they improve binding and

atomic energies, improve bond lengths and angles, and improve the computed en-

ergetics and dynamical properties of, for example, ice, water and water clusters.

However, the GGAs overestimate lattice constant of noble metals (Ag, Au, Pt).

Moreover, GGAs do not satisfy some known asymptotic behaviour, e.g., for isolated

atoms, the exchange-correlation potential: VXC(r) ∼ −e2/r as r → ∞, whereas

V
LDA/GGA
XC (r) decays exponentially as r → ∞. Further, VXC(r) → constant as

r → 0, whereas V LDA
XC (r) → constant, V GGA

XC (r) → −∞ as r → 0.
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These drawbacks arise due to several factors: the non-locality of the exchange

is not fully taken into account, and the GGAs do not cancel the self-interaction

present in the Hartree term, and hence produce wrong results for strongly-correlated

systems.

2.2.4 Plane wave basis sets

In order to carry out electronic structure calculations using the Kohn-Sham equa-

tions, we usually expand the Kohn-Sham one-electron orbitals, ϕi(r), in a general

basis set described by a set of functions {fα(r)} in the Hilbert space. The Kohn-

Sham orbitals can then be written as a linear combination of these basis functions:

ϕj(r) =
M∑
α=1

cjαfα(r), (2.23)

where j labels the Kohn-Sham orbitals (band index), the sum runs over all the basis

functions up to the dimension or size of the basis set M , cjα are the expansion

coefficients for the orbital j.

The basis set {fα(r)} can be of different types, such as plane waves,15;16 localized

atomic orbitals,17 Muffin Tin Orbitals,18 mixed (localized + extended), augmented

basis, etc. In all the work presented in this thesis, I have used plane waves as the

basis set. Plane waves are delocalized, independent of the nuclear positions, and

extended over the whole system. Hence they are particularly useful for extended

solid or liquid materials.

Crystalline solids are periodic. So, electrons must obey Bloch’s theorem in the

sense that the solution of the Schrödinger equation follows the translational period-

icity of the supercell. Considering this,

ϕ
(k)
j (r) = eik·r

M∑
α=1

c
(k)
jα fα(r) =

M∑
α=1

c
(k)
jα f

(k)
α (r), (2.24)
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where k is the Bloch’s wave vector in the Brillouin zone and the modified basis

functions are:

f (k)
α (r) = eik·rfα(r). (2.25)

According to Bloch’s theorem, fα(r) should be a periodic function with the same

periodicity as that of the crystal. In general, any function in real space (r) can be

expressed as the Fourier transform of a function in reciprocal space (g). However,

it can be shown that if the function in real space is periodic, the g vectors are

restricted only to the reciprocal lattice vectors G = n1b1 + n2b2 + n3b3, where bi’s

are the primitive reciprocal lattice vectors and ni’s are integers. In that case, the

Fourier transform becomes a Fourier series and the restriction that g’s can only be

G’s confirms that periodic boundary conditions (PBCs) are automatically satisfied.

Now, let’s define the plane wave basis functions as:

fα(r) = fG(r) =
1√
Ω
eiG·r. (2.26)

where Ω is the volume of the unit cell in real space and the factor 1√
Ω

is introduced as

the normalization constant such that the above basis functions become orthonormal

to each other. Substituting Eqs. (2.25) and (2.26) into Eq. (2.24) we get,

ϕ
(k)
j (r) = eik·r

∞∑
G=0

cjk(G)fG(r). (2.27)

Inserting the phase factor into the definition of the basis functions:

f
(k)
G (r) =

1√
Ω
ei(k+G)·r, (2.28)

we get,
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ϕ
(k)
j (r) =

∞∑
G=0

cjk(G)f
(k)
G (r). (2.29)

These are the Kohn-Sham one-electron orbitals, where the basis functions f (k)
G (r)

are given by Eq. (2.28). Notice that, now we have one-electron orbitals for each

band j and for each k-point k. The k vectors belong to the first Brillouin zone

(FBZ), and all the G vectors, except G = 0, always reside outside of the FBZ.

So far, we have seen that Bloch’s theorem confirms that the wavefunction of an

electron in an external periodic potential can be naturally expanded in a plane wave

basis set. In principle, an infinite number of plane waves, i.e., an infinite number

of G’s, are needed to represent the Kohn-Sham orbitals with complete accuracy. In

practice, however, the Fourier coefficients ck(G) decay with increasing |(k+G)|.

So the plane wave expansion can be truncated after a finite number of terms, i.e.,

taking into account all the plane waves with kinetic energy lower than some cutoff

Ecut:

ℏ2

2me

|k+G|2 ≤ Ecut. (2.30)

Thus, only those plane waves ei(k+G)·r which have kinetic energy ≤ Ecut are taken

into account for the computational calculations of the Kohn-Sham orbitals. One big

advantage of using a plane wave basis set is that a single parameter, Ecut, controls

the convergence of the basis set. Actually the Kohn-Sham orbitals are defined in

real space on a grid of points separated by ∆x = |ai|
ni

, where ai’s are the primitive

lattice vectors in real space. If some operations are done in reciprocal space, Fast

Fourier Transforms (FFTs) can be used to convert terms to real space.

If the true nuclear potential Z/r is retained, the true all-electron wavefunction

of a core electron has sharp peaks near the core region, while that of a valence

electron has many nodes in the core region. In both cases, the spatial variation of
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the wavefunction in the core region is very fast, so a large number of plane waves are

needed to expand the Kohn-Sham wavefunctions. This increase in the number of

plane waves increases the computational time hugely. This problem is solved by the

introduction of pseudopotentials, as described in greater detail in the next section

below. Instead of doing all-electron plane wave calculations, we consider only the

valence electrons, freezing the core electrons; moreover, the bare nuclear potential is

replaced by a smooth pseudopotential. The valence states are pseudized and made

nodeless inside the core region. The wavefunctions now become smooth enough that

decreasing the grid spacing, i.e., equivalently increasing the energy cut-off Ecut, does

not carry any additional information. Then it is said that the system is converged

with respect to the size of the plane wave basis. The cut-off can be calculated from

the pseudopotentials, but in general Ecut is computed for a specific property and

specific system. When the electron density, in terms of the sum of the square of the

Kohn-Sham orbitals, is written as a convolution in Fourier space, it becomes clear

that there should be a cut-off for the density equal to 4Ecut (except for the special

case of ultrasoft pseudopotentials, which have an additional augmentation charge).

Next, I will discuss the pseudopotential approximation.

2.2.5 Pseudopotential approximation

According to Bloch’s theorem, the Kohn-Sham wavefunctions for a periodic system

can be expanded as a linear combination of plane waves. If the true nuclear potential

Z/r is retained, the true all-electron wavefunction of a core electron is sharply peaked

in the core region, while the wavefunction of a valence electron has nodes in the

core region. So, the plane wave expansion of both core and valence wavefunctions

requires a large number of plane waves to adequately represent the wavefunction.

This increases the computational time and memory storage requirements hugely,

making DFT calculations very very expensive.
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The electronic states of an atom consist of (i) core states which are highly local-

ized and do not participate in chemical bonding, (ii) valence states which which are

extended and do participate in chemical bonding, (iii) semi-core states which are

localized and polarizable and generally do not contribute directly to the chemical

bonding. Based on the observations that, (i) core states are not essential for the

description of the chemical bonding, and (ii) a good description of the valence states

inside the core region is not strongly necessary, there is no lack of crucial informa-

tion if the true all-electron wavefunction inside the core region (within some cut-off

radius) is replaced by a pseudo wavefunction which is smooth and nodeless. This

pseudo wavefunction is the solution of the Schrödinger equation in the presence of

a pseudopotential, and can be determined from the inverse Schrödinger equation.

Since the pseudo wavefunction is smooth and nodeless, its spatial variation is com-

paratively weak, and requires much fewer plane wave components in an expansion

than the true all-electron wave function. This is known as the pseudopotential ap-

proximation.19–21 So, in this approximation, the core electrons are removed from

the calculations, and the interaction of the valence electrons with the ionic core is

replaced by an effective, screened potential. Due to the orthogonality conditions,

this screened potential depends on the angular momentum l of the valence electrons.

The computational expense is reduced hugely upon the use of pseudopotentials.

A good pseudopotential should have the following properties:

1. Smoothness: The pseudo wavefunctions and their first and second derivatives

should match smoothly with the true all-electron wave functions at the cutoff

radius which separates the core region from the valence region.

2. Transferability: The flexibility of using a pseudopotential generated for an

atom to use in a different chemical and structural environment.

3. Softness: To reduce the computational cost, a pseudopotential should have a
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low energy cutoff for the expansion of the wavefunctions using plane waves.

The lower the cutoff, the softer it is.

I have used two different kind of pseudopotentials in my calculations, namely

norm-conserving and ultrasoft pseudopotentials. I will very briefly discuss about

them now.

Norm-conserving pseudopotentials (NCPP)

This type of pseudopotential was first introduced by Hamann, Schlüter and Chiang

(1979).20 The norm-conserving pseudopotentials follow four properties:

(i) For a particular electronic configuration of an atom, the eigenvalues of the

pseudo-wavefunctions are exactly equal to the eigenvalues of the all-electron wave

functions.

(ii) The radial part of the pseudo-wavefunction RPS is nodeless, and it is exactly

equal to the all-electron wavefunction outside the chosen cutoff radius:

RPS(r) = RPS(r), r < rc

= RAE(r), r ≥ rc.

(2.31)

(iii) The norm conservation condition is that the norm of the true all-electron

wave functions and pseudo-wavefunctions are the same inside the core region (r <

rc):

∫ rc

0

r2|RPS(r)|2dr =
∫ rc

0

r2|RAE(r)|2dr. (2.32)

(iv) The logarithmic derivatives of the pseudo-wave function and all-electron

wave function match for r ≥ rc.

A lot of the success of norm-conserving pseudopotentials is due to the fact that
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the constraint of norm-conservation also automatically improves transferability, due

to the existence of a mathematical identity connecting norms to logarithmic deriva-

tives. However, norm-conserving pseudopotentials are “hard" in the sense that they

require a very large number of plane waves, especially for those valence states which

are nodeless and have no corresponding core states, with the same angular momen-

tum, with which they must be orthogonal. For instance, p-states of the first row

elements and d-states of the second row transition metals (e.g., C-2p and Cu-3d

states). To avoid this problem D.H. Vanderbilt introduced the concept of ultra-

soft pseudopotentials (1990)21 which reduces the plane wave cut off and hence the

computational time, hugely.

Ultrasoft pseudopotentials (USPP)

D.H. Vanderbilt relaxed the norm conservation constraint21 and developed a method

of using much smoother (softer) pseudopotentials, having larger cutoff radius rc and

still with high transferability. The logarithmic derivatives of the all-electron and

pseudo-wavefunctions still match for r ≥ rc. rc can be chosen very large, well be-

yond the maximum of the radial wavefunction. At larger cutoff the derivative of

the wavefunction is smaller, also sharp peaks in the wavefunction can be neglected

since the norm conservation constraint is released; this results in a smoother wave-

function, and it require much fewer plane waves in the expansion, compared to the

norm-conserving pseudopotentials. Thus ultrasoft pseudopotentials reduce compu-

tational time hugely. In this scheme, though the pseudo-wavefunction is the same

as the all-electron wavefunction outside the core region, the charge enclosed by the

pseudo-wavefunction inside the core region is different from that of the all-electron

wavefunction. Again, in the Kohn-Sham approach, the potential is unique for a

charge density. So, if the charge density is calculated using the pseudo-wavefunction,

then the lack of charge inside the pseudized region (or the core region) will produce
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an incorrect Kohn-Sham potential. This problem is solved by adding some “aug-

mentation charge" to the charge density of the pseudo-wavefunction. This method

has been remarkably successful for the last three decades, and substantially reduces

the plane wave cutoff. For example, for the same level of accuracy, the kinetic en-

ergy cutoff for an oxygen atom can be reduced from 150 Ry for a NCPP to only 40

Ry for USPP. It is important to note that in most DFT codes (including Quantum

ESPRESSO) one can use NCPP for some elements and USPP for other elements in

a given system.

2.2.6 Brillouin zone sampling and smearing

It can be shown, using Bloch’s theorem, that it is not necessary to calculate the

electronic wavefunctions throughout the whole space, it is sufficient to calculate

them in a unit cell. The wavefunctions in the neighbouring unit cells are the same

except for a phase factor eik·R. The calculation of the wavefunction for all the

electrons in an infinite crystal is replaced – via Bloch’s theorem – by the calculation

of the wavefunction for a finite number of electrons in the unit cell, at, in principle,

an infinite number of k-vectors in the first Brillouin zone (FBZ). However, to solve

for the Kohn-Sham orbitals at an infinite number of k-points is not possible in a

computational approach, and the larger the number of k-points, the greater the

computational time. k-points which are close to one another carry almost similar

information. Therefore, there will not be a large error in calculating the desired

physical properties (such as charge density, total energy, density of states, magnetic

moment, etc., which require an integration over the k-points in the FBZ), within

some numerical accuracy, by using the Kohn-Sham orbitals at a small and finite

number of k-points in the FBZ. This approximation of the full BZ integral with a

summation over some finite and discrete k-points of the FBZ is known as Brillouin

zone sampling. Numerically the integration can be replaced by summation over
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finite number of k-points in the FBZ. The most widely used k-points grid or mesh

is that defined by Monkhorst and Pack,22 using the following formula:

kn1,n2,n3 =
3∑

β=1

2nβ −Nβ − 1

2Nβ

bβ, (nβ = 1, 2, 3, ..., Nβ), (2.33)

where Nβ is an integer and gives the number of k-points in FBZ in reciprocal space

along the βth direction (β = 1, 2, 3), and b1,b2 and b3 are the primitive lattice

vectors in reciprocal space. It can also be shown that the total number of k-points

in the FBZ, i.e., N1N2N3 is equal to the total number of unit cells in the crystal.

The number of k-points corresponds to the number of unit cells involved in the

calculations.

If the crystal possesses some kind of symmetry, the calculation of the Kohn-Sham

one-electron wavefunctions further reduces to do calculations only for those k-points

which lie inside the irreducible part of the Brillouin zone (IBZ). In that case, the

general expression of the electron density, for an arbitrary number of replicas along

the direction of the three direct lattice vectors, is as follows:

n(r) =
∑

k∈IBZ

wk|ϕnk(r)|2, (2.34)

where the sum runs over all the k-points in the IBZ, wk’s are the weight factors

corresponding to a particular k-point, and it depends on the symmetry of the unit

cell. The IBZ contains all the symmetry-inequivalent k-points and all the informa-

tion of the whole FBZ can be found within the IBZ. Usually metallic systems having

no band gap require very dense k-points mesh to capture the properties around the

Fermi level. For semiconductors and insulators having band gaps, a coarse k-point

mesh is sufficient to capture all the properties.

So, for DFT calculations of crystalline solids, we have to solve the Kohn-Sham

equations at each k-point in the IBZ, and we get Kohn-Sham orbitals and eigenvalues
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for each k-point and each band:

{
− ℏ2

2m
∇2 + Vext(r) +

∫
n(r′)

|r− r′|
dr′ + VXC [n]

}
ϕik(r) = ϵikϕik(r). (2.35)

The electron density is given by:

n(r) =
∑

k∈IBZ

wk

Nk∑
i=1

fik |ϕik(r)|2, (2.36)

where Nk is the number of occupied Kohn-Sham orbitals at each k-point, and fik

is the occupation number of band i at wave vector k. If the system is an insulator

or semiconductor, the Fermi level lies in between the valence band maximum and

conduction band minimum; for this, fik = 1 independent of i and k and Nk = N ,

the total number of electrons involved in the calculation (or, rather N/2 if one

accounts for spin degeneracy). However, for metallic systems, there is no gap, and

the valence and conduction bands overlap. It can happen that at a particular k-

point a certain band is occupied and at just the next k-point the same band is

empty. Therefore, the occupation function changes discontinuously from non-zero

value to zero value, at the Fermi level. Thus, the calculation of the Fermi level

for the metallic systems requires a very dense k-point mesh. The Fermi level is

given by the highest occupied Kohn-Sham eigenvalue. The Fermi level is calculated

self-consistently, and a slightly different choice of the k-points can lead to bands

entering or exiting the above sum, depending on whether ϵik is below or above

the Fermi energy ϵF . So, the accurate determination of the Fermi level requires

a highly dense k-point mesh, which increases the computational cost hugely. To

computationally deal with the discontinuity of the occupation function fik at the

Fermi level, different “smearing" techniques have been introduced. The main idea

of the “smearing" technique is to replace the occupation function to be integrated
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by a smooth and continuous function, hence “smearing out" the discontinuity. Some

widely used smearing functions are Gaussian smearing,23 Fermi-Dirac smearing,

Methfessel-Paxton smearing,24 and Marzari-Vanderbilt cold smearing.25. After the

introduction of the smooth and continuous smearing function, the integration can

be done using standard methods. The larger the smearing width, the faster is the

convergence with respect to k-points, but the lower is the accuracy.

2.2.7 Calculation of forces: Hellmann-Feynman theorem

To find out the ground state geometry or equilibrium nuclear configuration, the

forces and stresses acting on the atoms should ideally be zero. Forces also need to

be computed if one wants to perform an ab initio molecular dynamics calculation.

The force acting on an ion I with coordinate RI can be calculated by computing

the first derivative of the total energy E with respect to the ionic position RI :

FI = − ∂E

∂RI

= −∇RI
E. (2.37)

To compute forces in this way requires the calculation of the total energy at different

nuclear positions, i.e., one has to compute the total energy using DFT for more

than one set of positions. The Hellmann-Feynman (HF) force theorem provides an

alternative way of calculating the force on an atom without any need for performing

total energy calculations for different nuclear positions. The forces acting on each

nucleus of a system can be calculated using the Hellmann-Feynman (HF) force

theorem26 which states that the force acting on a nucleus can be expressed as the

expectation value of the derivative of the Hamiltonian operator Ĥ with respect to

the nuclear coordinate. The HF theorem shows that total energy calculation at a

single configuration would be sufficient to compute the force. Mathematically,
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FI = − ∂E

∂RI

= −⟨Ψ| ∂Ĥ
∂RI

|Ψ⟩ , (2.38)

where E is the total energy for a given set of nuclear co-ordinates {RI} and Ψ is

the eigenfunction of the Hamiltonian Ĥ. Eq. (2.38) holds only when the basis set

is complete or position-independent, as is true in the case of a plane wave basis set,

and when the electronic wavefunction Ψ is an exact eigenstate of the Hamiltonian

Ĥ. If the basis set is not complete or is position-dependent, e.g., for atom-centered

orbitals like a Gaussian basis, additional contributions, known as Pulay forces, have

to be calculated.

2.2.8 Stress calculation

Stress is an intrinsic property of a material in a given structural configuration. It

results from internal forces acting between neighbouring atoms when the system

is under external force. Strain is the deformation of a material that results in

displacement of a point. In solid state systems, the state of the system is given

by the forces on each atom and the stress which is an independent variable. The

conditions for equilibrium are: (i) total force vanishes on each atom, and (ii) the

macroscopic stress is equal to the externally applied stress. The stress tensor σαβ is

defined as the derivative of the total energy with respect to the strain tensor ϵαβ:

σαβ = − 1

V

∂E

∂ϵαβ
, (2.39)

where V is the volume of the system, E is the total energy and ϵαβ is the strain

tensor, where α, β are the Cartesian indices. In analogy with the HF theorem,

Nielsen and Martin27 derived the stress theorem; the derivative of the total energy

with respect to strain can be written as the expectation value of the derivative of

the Hamiltonian with respect to strain:
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σαβ = − 1

V
⟨Ψ| ∂H

∂ϵαβ
|Ψ⟩ . (2.40)

Similar to the force calculations the truncation of the basis set can lead to an

error in the stress calculation. The stress converges usually at a higher kinetic energy

cutoff Ecut for plane waves than the total energy.

2.2.9 Spin-polarized density functional theory

In order to extend Kohn-Sham theory to spin-polarized or magnetic systems, we

have to consider that the total electron density is comprised of two spin densities:

n(r) = n↑(r) + n↓(r), where n↑(r) and n↓(r) are the up and down spin densities,

respectively. The spin-polarization or the magnetization density is given by: m(r) =

n↑(r)− n↓(r). The up and down spin densities are calculated from the Kohn-Sham

spin orbitals, which satisfy the following Kohn-Sham equations self-consistently:

{
− ℏ2

2m
∇2 + VR,s(r)

}
ϕi,s(r) = ϵi,sϕi,s(r), (2.41)

where the subscript s indicates the spin component ↑ or ↓. The reference or Kohn-

Sham potential is given by:

VKS,s(r) = VR,s(r) = Vext(r) + VH(r) + VXC,s[n↑, n↓](r), (2.42)

where the exchange-correlation potential is given by,

VXC,s[n↑, n↓](r) =
δEXC [n↑, n↓]

δns(r)
. (2.43)

Only the exchange-correlation energy depends on the spin densities which are

computed from the Kohn-Sham spin orbitals:
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ns(r) =
Ns∑
i=1

|ϕi,s(r)|2, (2.44)

where Ns is the number of occupied one-electron spin orbitals with spin projection s.

For spin-polarized systems, N↑ ̸= N↓. For non-spin-polarized systems, n↑(r) = n↓(r),

in this case the spin density functional theory (SDFT) reduces to the normal density

functional theory with double occupancy of the one-electron orbitals. In SDFT, the

expression of the total energy is as follows:

EKS[n↑, n↓] = TR[n↑, n↓] +

∫
n(r)Vext(r)dr

+
1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′ + EXC [n↑, n↓],

(2.45)

with the kinetic energy of the reference system given by,

TR[n(r)] = − ℏ2

2m

2∑
s=1

Ns∑
i=1

⟨ϕi,s(r)| ∇2 |ϕi,s(r)⟩ . (2.46)

Eqs. (2.45) and (2.46) are very similar to the corresponding equations (2.14) and

2.13 of the unpolarized system.

2.2.10 Modelling aperiodic systems

Some systems are periodic in all the three spatial directions (e.g., bulk crystals),

some are periodic in only two dimensions (e.g., surfaces of crystals, graphene, etc.),

some systems are periodic in only one dimension (e.g., carbon nanotubes, one-

dimensional chain of a coordination polymer), some systems are zero dimensional

(e.g., an isolated atom, a molecule, cluster of atoms, quantum dots etc.). The use

of a plane wave basis set requires periodic boundary conditions in all the three spa-

tial directions. For three-dimensional (3D) systems, this will not pose a problem.
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However, when modeling the two-dimensional (2D) surfaces which I have used in

my thesis, we need to introduce a large vacuum region in the unit cell considered,

along the direction of aperiodicity (e.g., a surface extended in xy plane is not pe-

riodic along the z-direction) such that, along the aperiodic direction the periodic

images of the unit cells will have a large separation which diminishes the artificially

introduced interactions along this direction between atoms of the periodic images of

the unit cells.

2.3 Relativistic DFT

Relativistic effects become important for heavier elements. Relativistic effects are

introduced in quantum mechanics through the Dirac equation. A. K. Rajagopal

and J. Callaway28 first formulated the extension of the HK theorem for the inho-

mogeneous electron gas to the relativistic domain using four component current

density as the basic variable. The corresponding Kohn-Sham equations have been

formulated by Rajagopal,29 and independently by MacDonald and Vosko.30 Start-

ing from the Dirac equation the relativistic Kohn-Sham equations, also known as

Dirac-Kohn-Sham equations, are given by:28

{
cα · p+ βmec

2 + αµV
µ
s (r)

}
ψν(r) = ϵνψν(r), (2.47)

where c is the speed of light in vacuum, p = −iℏ∇ is the momentum operator, me is

the mass of the electron, µ = {0, x, y, z}, ψν(r) and ϵν are the one-electron orbitals

and eigenvalues, α and β are the 4× 4 matrices:

α =

0 σ

σ 0

 , (2.48)

where σ denotes the 2× 2 Pauli spin matrices, and
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β =

I2 0

0 −I2

 , (2.49)

where I2 is the 2× 2 identity matrix.

The 4-component single-particle wave function is written as,

ψν(r) =



ϕ↑
ν(r)

ϕ↓
ν(r)

χ↑
ν(r)

χ↓
ν(r)


, (2.50)

where ϕν(r) and χν(r) are two-component spinors. For electrons (positive energy

solutions) ϕ is the large component and χ is the small component.

In Eq. (2.47), V µ
s is the effective four potential:

V µ
s (r) = V µ

ext(r) + V µ
H([j], r) + V µ

XC([j], r), (2.51)

where the 4-component Hartree potential is given by,

V µ
H(r) =

∫
jµ(r′)

|r− r′|
dr′, (2.52)

and the 4-component exchange-correlation potential is given by,

V µ
XC(r) =

δEXC [j
µ]

δjµ(r)
, (2.53)

and the 4-current is given by,

jµ(r) =
∑

−mc2<ϵν≤ϵF

ϕ̄ν(r)α
µϕν(r). (2.54)

Eq. (2.47) has to be solved self-consistently.
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The relativistic corrections to the Dirac Hamiltonian of Eq. (2.47) produce a

relativistic correction to the kinetic energy (also known as the mass-velocity term),

the Darwin term and the spin-orbit coupling (SOC) term. For scalar-relativistic (SR)

calculations, only the relativistic correction to the kinetic energy and the Darwin

term are considered. When the SOC is included in the calculation it is referred to

as a fully relativistic calculation.

2.3.1 Spin-orbit coupling

The spin-orbit coupling (SOC) is a relativistic effect. An electron in its rest frame

sees the nucleus moving in an orbit around it, generating a magnetic field pro-

portional to the orbital angular momentum, which in turn interacts with the spin

magnetic moment of the electron. So, SOC is basically the effective magnetic field

‘seen’ by the spin of the electron in its rest frame. This is the origin of spin-orbit

coupling, which results in a splitting of electronic energy levels. The energy level

splitting due to SOC is directly to proportional to the fourth power of the atomic

number Z. Therefore, for heavier elements in the periodic table, the effect of SOC

is significant. The expression of the SOC term is given by,

HSOC = − eℏ
4m2c2

σ · (E× p). (2.55)

For an electron in an electromagnetic field (E is the electric field), force = eE =

−∇V , for the spherically symmetric potential,

HSOC =
eℏ

4m2c2
σ · (∇V × p) =

1

2m2c2
1

r

dV (r)

dr
L · S, (2.56)

where orbital angular momentum L = r × p and the spin angular momentum S =

ℏ
2
σ. Here p is the momentum operator and σ denotes the Pauli spin matrices.

Upon the introduction of SOC in the Hamiltonian, orbital angular momentum l and
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spin angular momentum s are no longer good quantum number, the total angular

momentum j is now a good quantum number.

In my thesis, the SOC is introduced through fully relativistic pseudopotentials.31

2.4 Strongly correlated systems: the DFT+U method

Transition metal and rare earth elements are characterized by well-localized d or

f orbitals. This localization results in strong on-site correlations, such that if an

electron is occupying a state localized at a particular site, placing a second electron

in the same site is penalized with an additional energy U . These types of systems

are called strongly correlated systems. This type of systems are studied under the

Hubbard model (1965) Hamiltonian. In computational DFT calculations, if we

introduce the Hubbard onsite term, depending on whether we have combined it

with LDA or GGA, the calculational method is known as LDA+U or GGA+U ,

respectively.32–34

In this scheme, the total energy32 of the system is given by,

EDFT+U = EDFT +
1

2
U
∑
i ̸=j

fifj −
1

2
UN(N − 1), (2.57)

where EDFT is total energy calculated from normal DFT calculation, fi are orbital

occupancies for the localized d and f electrons. The second term on the right hand

side of the equation is the Hubbard correction, the third term is the double counting

term and hence it is subtracted. Here
∑

i fi = N , the total number of electrons. In

this thesis, I have used GGA+U .

The above model of Eq. (2.57) splits the energy level into lower and upper

Hubbard sub-bands, with eigenvalues that are given by:
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ϵi =
∂EDFT+U

∂fi
= ϵDFT + U

(
1

2
− fi

)
, (2.58)

such that the separation between the sub-bands is U . For Mott-Hubbard insula-

tors, the valence and conduction bands overlap, having no gap, according to the

conventional band theories. However, when the strong electron-electron correlations

of the localized d and f electrons are taken into consideration, they turn out to be

insulators, which is the correct description.

The value of the Hubbard parameter U can either be calculated or it can be

determined empirically, by fitting it to the experimental data. The U parameter

mainly affects the electronic structure, it moves the states away from the Fermi

level and thus creates a gap. The experimental gap of the Mott-Hubbard insulators

can then be compared with the calculated results to choose the U value. The value of

U can also be computed theoretically using density functional perturbation theory.35

2.5 Optical properties of solids: joint density of states

and dielectric function calculation

The optical properties of solids carry important insights on energy band structures,

lattice vibrations, impurity levels, localized defects, excitons and certain magnetic

excitations. Some observables like reflectivity, transmission coefficient, absorption

coefficient, light scattering etc., are experimentally measured. From these mea-

surements we deduce the frequency dependent complex dielectric function ϵ(ω) or

complex optical conductivity σ(ω), which are directly related to the energy band

structures of solids.

Consider a solid material subjected to electromagnetic radiation. It can be

shown, using the famous Maxwell’s electromagnetic equations, that when there is
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loss of the amplitude of the incident electromagnetic radiation within a material, the

dielectric function and the optical conductivity become complex quantities. There

can then occur intraband or interband processes. Intraband processes are basically

electronic conduction due to free carriers. Hence these are important for metals and

semimetals. These processes can be understood using the classical Drude theory or

classical Boltzmann equation or by the quantum mechanical density matrix tech-

nique. Interband processes are basically the absorption of electromagnetic radiation

by an electron in an occupied state below the Fermi level, thereby making a transi-

tion to an unoccupied state in the conduction bands. Interband processes are purely

quantum mechanical. They occur in semiconductors and insulators. The interband

transitions can be direct or indirect. In direct transitions, the crystal momentum

is conserved i.e., Ev(k) → Ec(k). Since the momentum of the photon involved in

an indirect transition is much less than the Brillouin zone dimension (105 and 108

cm−1 respectively), in direct optical transitions the wave vector of the electron does

not change significantly in going from the valence to conduction band. In indirect

transitions, as the wave vectors of the involved valence and conduction band states

are not the same, a third particle, namely a phonon, enters into the picture and

conserves momentum: kvalence = kconduction ± qphonon. In my calculations, I have

only considered direct interband transitions.

The Hamiltonian of an electron in a crystalline solid interacting with electro-

magnetic radiation is given by:36

H =
(p− eA)2

2m
+ V (r) =

p2

2m
+ V (r)− e

m
A · p+

e2A2

2m
, (2.59)

where p is the conjugate variable to position (the kinetic momentum is given by,

mv = p− eA), V (r) is the periodic potential of the crystal, A is the vector poten-

tial of the electromagnetic radiation, e and m are the electronic charge and mass,
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respectively. The one-electron Hamiltonian in the absence of the electromagnetic

radiation is,

H =
p2

2m
+ V (r), (2.60)

We can treat the electromagnetic radiation field as a perturbation term, which is

given by,

H ′ = − e

m
A · p+

e2A2

2m
. (2.61)

Optical fields are generally weak (if not generated by powerful lasers) and hence

we can consider only the term linear in A, the linear response regime. In that case,

from this perturbation theory, it is now clearly understandable why the interband

transitions depend on momentum matrix elements ⟨v|p |c⟩, which couple the valence

band state v and the conduction band state c, and determine the strength of the

optical transitions.

In order to get information about the optical transitions, we need Fermi’s golden

rule which gives the transition probability per unit time from an initial state |i⟩ to a

final state |f⟩,

W =
2π

ℏ
| ⟨i|H ′ |f⟩ |2ρ(Ef ), (2.62)

where | ⟨i|H ′ |f⟩ | is the matrix element of the perturbation given by the linear term

of Eq. (2.61): H ′ = − e
m
A · p, |i⟩ and |f⟩ are two eigenstates of the unperturbed

Hamiltonian H0, and ρ(Ef ) is the density of final states at the energy Ef . When

the initial and final states are separated by quantum of energy ℏω of the incident

electromagnetic radiation, the above equation can be written as,
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W =
2π

ℏ
∑
σ

∑
n∈V

∑
n′∈C

Ω

(2π)3

∫
d3k | ⟨i|H ′ |f⟩ |2δ(Ek,n′ − Ek,n − ℏω). (2.63)

Clearly, the eigenstates of the unperturbed Hamiltonian are Bloch states, and

in the above expression all the Bloch states of the valence and conduction bands (n

and n′ index belong to the valence bands V and conduction bands C, respectively)

separated by energy value ℏω, at all the wave vectors of the Brillouin zone are con-

sidered. Ek,n and Ek,n′ are the eigenvalues of the unperturbed Hamiltonian; they

are Kohn-Sham eigenvalues in DFT calculations. σ is the spin-multiplicity. For sim-

plicity assuming the perturbation matrix elements | ⟨i|H ′ |f⟩ |2 to be k-independent,

the remaining integral is defined as joint density of states between valence and con-

duction bands,

ρcv(ℏω) =
∑
n∈V

∑
n′∈C

2

(2π)3

∫
d3k δ(Ek,n′ − Ek,n − ℏω). (2.64)

Here, ρcv(ℏω) actually gives the number of states per unit volume, per unit energy

range, which occur with an energy difference between the conduction and valence

bands equal to the photon energy ℏω. For two-dimensions (2D) and one dimension

(1D), we replace d3k/(2π)3 by d2k/(2π)2 and dk/(2π), respectively. Considering the

interband transitions at finite temperature, we have to include Fermi functions to

represent the occupation of the bands at finite temperature; in that case the joint

density of states is expressed as,

ρcv(ℏω) =
∑
n∈V

∑
n′∈C

2

(2π)3

∫
d3k δ(Ek,n′ − Ek,n − ℏω)[f(Ek,n)− f(Ek,n′)], (2.65)

where f(Ek,n) is the Fermi distribution function that accounts for the occupation
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of the bands. For numerical calculations, the Dirac delta function is implemented

using a Gaussian function normalized to unity,

G(ℏω) =
1

Γ
√
π
e

(Ek,n′−Ek,n−ℏω)2

Γ2 , (2.66)

and the integration over k-vectors is replaced by a simple sum over k-points.

The imaginary part of the dielectric function ϵ
(2)
α,β(ω) is given by the following

equation:37–39

ϵ
(2)
α,β(ω) =

4πe2

mω2

∑
n,n′

∫
k

d3k ⟨ψk,n|p̂α|ψk,n′⟩ ⟨ψk,n′ |p̂†
β|ψk,n⟩ fi(1−fi) δ(Ek,n′−Ek,n−ℏω)

(2.67)

and we define square of the momentum matrix elements as,

M̂αβ = ⟨ψk,n|p̂α|ψk,n′⟩ ⟨ψk,n′|p̂†
β|ψk,n⟩ (2.68)

where ⟨ψk,n|p̂α|ψk,n′⟩ are the momentum matrix elements, |k, n⟩ and |k, n′⟩ repre-

sent the initial and final states involved in the optical transitions, fi is the Fermi

distribution representing the electronic occupation function in the initial states, e

and m are the electronic charge and mass, respectively. n, n′ are the valence band

and conduction band indices. k is a wave vector in the FBZ. ω represents the en-

ergy or frequency of the incoming electromagnetic wave. The Dirac delta function

conserves the energy during optical transitions.

The imaginary part of the frequency dependent dielectric function ϵ
(2)
α,β(ω) can

be viewed as a response function that comes from a perturbation expansion with

adiabatic turning on,40;41
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ϵ
(2)
α,β(ω) =

4πe2

ΩNkm2

∑
n,k

df(Ek,n)

dEk,n

ηωM̂αβ

ω4 + η2ω2

+
8πe2

ΩNkm2

∑
n̸=n′

∑
k

M̂αβ

Ek,n′ − Ek,n

Γωf(Ek,n)

[(ωk,n′ − ωk,n)2 − ω2]2 + Γ2ω2
,

(2.69)

where Γ and η are intersmear and intrasmear, respectively (broadening parameter

for interband and intraband transitions), Ω is the volume of the unit cell, ω is fre-

quency, Nk number of k-points in the FBZ, α, β correspond to Cartesian coordinates

(the double indices make it clear that the dielectric function is a tensor quantity), e

and m are electronic charge and mass, respectively. Ek,n′ − Ek,n correspond to the

transition energy, and the square of the momentum matrix elements are give by,

M̂αβ = ⟨uk,n′ | p̂α |uk,n⟩ ⟨uk,n| p̂†
β |uk,n′⟩

∝ u⋆k,n′(r)
d

dxα
uk,n(r) u

⋆
k,n(r)

d

dxβ
uk,n′(r),

(2.70)

where p̂α is one component of the momentum operator is and is represented as

−iℏ d
dxα

. |uk,n⟩ is the periodic part of the one-electron Bloch wave function for the

plane wave DFT calculations. For the plane wave basis set, I have already written the

Kohn-Sham orbitals in Eq. (2.29), having similar form of the Bloch wave functions.

In this case the square of the momentum matrix elements become,

M̂αβ =

(∑
G

c⋆jk(G)cj′k(G)Gα

)(∑
G

c⋆jk(G)cj′k(G)Gβ

)
. (2.71)

Note that here we have only considered direct interband transitions in which

crystal momentum k is conserved, we have not accounted for indirect interband

transitions. j is the band index here. In standard optics, the contribution to the

dielectric tensor coming from the intraband transitions is negligible due to very low
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momentum transferred by the incoming/outgoing photon.

Once we know the imaginary part of the dielectric function ϵ(2)α,β(ω), many things

can be calculated from it. The real part of the dielectric function can be found using

the Kramers-Kronig transformation relation:

ϵ
(1)
α,β(ω) = 1 +

2

π

∫ ∞

0

ω′ϵ
(2)
α,β(ω

′)

ω′2 − ω2
dω′. (2.72)

Operating a London transformation on ϵ
(2)
α,β(ω), the dielectric function can be

calculated on the imaginary axis,

ϵα,β(iω) = 1 +
2

π

∫ ∞

0

ω′ϵ
(2)
α,β(ω

′)

ω′2 + ω2
dω′. (2.73)

From this expression, the electron energy loss spectrum can be calculated as the

imaginary part of the inverse dielectric tensor on the imaginary axis,

Im

{
1

ϵα,β(iω)

}
=

ϵ
(2)
α,β(ω)

ϵ
(2)2
α,β (ω) + ϵ

(1)2
α,β (ω)

. (2.74)

The absorption coefficient is an important quantity for the optical performance

of a material and it can easily be calculated from the real and imaginary part of the

dielectric function,

α(ω) =
√
2ω

√√
ϵ21(ω) + ϵ22(ω)− ϵ1(ω). (2.75)

2.6 Codes and software used

I have performed quantum mechanical density functional theory (DFT) calculations

using the Quantum ESPRESSO (PWSCF) software package15;42 for structural, elec-

tronic, magnetic, chemical, and vibrational properties of solid state materials.

The atomic scale modelling of materials, charge density and redistribution plots,
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magnetization density etc. reported in this thesis, are obtained using the software

packages XCrySDen43 and VESTA.44 All two and three-dimensional graphs used in

the thesis are either plotted using the Xmgrace software package or obtained using

gnuplot.
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Chapter 3
Sn Deposited on Ag(001): Formation of

Surface Alloy and Evolution of Structural

and Electronic Properties

The highest education is that which

does not merely give us information

but makes our life in harmony with

all existence.

Rabindranath Tagore

In this chapter, we study the structural and electronic properties of Sn atoms

deposited on an Ag(001) substrate. This work was done in collaboration with the

experimental group of Prof. Krishnakumar S. R. Menon, Surface Physics and Ma-

terials Science Division, SINP, Kolkata, and his student Arunava Kar. In their

experiments, they deposited Sn atoms on an Ag(001) surface. Low energy electron

diffraction (LEED) experiments showed the existence of different superstructures

as a function of Sn coverage. They also measured the electronic structure of these

61
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systems using Angle Resolved Photoemission Spectroscopy (ARPES). We have per-

formed density functional theory (DFT) calculations to interpret and shed insight

on the experimental data. Somewhat counterintuitively, we find that an ordered

Sn-Ag surface alloy is formed in the topmost layer, with a structural configuration

and periodicity that changes with Sn coverage.

3.1 Introduction

The epitaxial growth of metal atoms on different metal substrates is a fantastic way

to control the structural, electronic, chemical, magnetic and topological properties

of the overlayer and/or substrate.1 The properties change significantly when the

deposited atoms form a thin epitaxial film that is only a single or a few atoms layer

thick on the substrate, and thus essentially confined to two dimensions. In such

systems, orbital hybridization between the states of the overlayer and substrate can

result in a drastic change in the electronic structure, compared to that of either the

clean substrate or the thin film deposited on it.

These properties depend crucially on the growth pattern and structure of the

overlayer. Even when the growth is pseudomorphic (i.e., the lattice constant of the

overlayer is the same as that of the underlying substrate), many kinds of structures

are possible for metal-on-metal pseudomorphic growth: (i) normal overlayer ad-

sorption, (ii) sub-surface adsorption, where the deposited (‘guest’) atoms get buried

under one or more layers of the single crystal substrate, (iii) the guest atoms can

substitute the host atoms from different layers of the clean surface and form an

ordered bimetallic surface alloy, etc. For example, when Cr is deposited on Ag(001),

the Cr atoms prefer to get buried under one Ag layer and form a 1Ag/Cr/Ag(001)

structure.2;3 In contrast, when Sn is deposited on an Ag(111) substrate, Sn atoms

substitute every third Ag atom from the surface layer, and form a surface alloy on
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Ag(111) at 0.33 ML Sn coverage.4;5 The study of such surface alloys is of great

interest because of their possible applications in multiple fields such as heteroge-

neous catalysis, corrosion-resistance, spintronic devices, surface hardening, etc.6;7

Recently, the study of surface alloys has gained added attention because of the

Rashba spin splitting in systems such as Bi/Ag(111), and its application to spin-

tronics.8

When atoms of one metallic species are deposited on atoms of another metal

substrate, the two atomic species need not always be confined to different atomic

layers. Instead the two atomic species can get mixed in layers at or near the surface,

resulting in the formation of a surface alloy.9;10 The formation of surface alloys

can stabilize alloy phases and structures that are not energetically favorable in the

bulk, i.e., one can get surface alloys out of bulk-immiscible constituents.11–15 Surface

alloys may possess superior and emergent properties which were not present in the

constituent elements. In surface alloys, one expensive metal can be ‘diluted’ with a

less expensive elements, and thus cost can be reduced.

One can ask the question: why might two bulk-immiscible atoms mix on the

surface and form a surface alloy? Two possible driving forces have been reported in

the literature: the possible reduction of surface stress,9 and (in spin-polarized sys-

tems) the possible lowering of exchange energy by increase of magnetic moments.11

An atom in the bulk (metal) crystal can be viewed as sitting at an optimal electron

density arising from its neighbors. An atom on the surface has a lower coordina-

tion number compared to an atom in the bulk. For example, a bulk atom in the

face centered cubic (FCC) crystal structure has coordination number 12; however

an atom on the FCC(001) surface has coordination number 8. So, a surface atom

would like to come closer to its neighbouring atoms to regain the optimal electron

density; this can happen either through surface reconstruction or interlayer relax-

ation. However, in many cases, surface reconstruction does not occur because this
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would result in the surface losing registry with the bulk, which costs energy. As a

result, if we imagine a spring connecting two surface atoms, the spring will be under

tension. This causes the very well known tensile surface stress of unreconstructed

metal surfaces.16 Equivalently, one can say that the effective size of a surface atom

is reduces compared to that of a bulk atom of the same species.

Now, if bigger atoms of another species are deposited on the metal surface, in-

stead of sitting as overlayer on the surface, the deposited (bigger) atoms can get em-

bedded into the surface layer by substituting some of the surface atoms of the metal

surface, thus forming a surface alloy. The formation of this surface alloy relieves

the tensile surface stress of the metal surface explained in the previous paragraph.

The effective ‘size’ of a surface atom can be calculated.17 In most previous work, the

effective size of atoms deposited on a metal surface of the same or different speciews

were always found to be smaller compared to the size of corresponding bulk atoms.

However, in this chapter, we will see that this need not be the case always.

The p-block metals (In, Sn, Sb, Tl, Pb and Bi) do not form bulk alloys with

other metals easily.18 This low bulk miscibility arises due to some factors such as the

two atoms having very different sizes, crystal structures or chemical affinities.19–21

Moreover, most of these p-block metals have low surface energies. Therefore, when

these atoms are deposited on the surface of another metal with a higher surface

energy, they tend to form an overlayer and wet the surface, instead of forming a

surface alloy.2;22 However, one would still like to explore the formation of surface

alloys from these p-block metals, motivated by various possible applications, e.g., as

catalysts.

Previous studies on surface alloys have primarily focused on structural properties;

understanding the electronic structure and its evolution with composition is still in-

complete for many of the systems. Although many interesting electronic properties
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induced by the p-block metals on metal substrates, like strong Fermi surface nest-

ing,23 Peierls-type charge-density-wave phase transitions,23 effects of the large spin-

orbit coupling,24;25 Dirac-like band dispersions,26 order-disorder structural phase

transitions,27 etc., have been studied, only a few reports of the evolution of elec-

tronic structure of their surface alloys are found in the literature.28;29 We note that

the study of electronic structure is difficult due to the presence of substrate states

near the Fermi level and their hybridization with the surface states and overlayer

states. However, there exists a projected bulk band gap at the zone edges, which

helps to separate out the substrate states from the surface states. This helps one

to study the evolution of the surface states with changing composition and surface

structures.

For the reasons stated above, in this work, we consider the case of Sn and Ag,

by studying what happens when Sn atoms are deposited on an Ag(001) surface.

One might naïvely expect that Sn and Ag will mix in the bulk, because they satisfy

two of the Hume-Rothéry rules30 that determine bulk miscibility: Sn and Ag have

almost identical atomic sizes in the bulk (diameters of 2.81 Å and 2.88 Å for Sn and

Ag, respectively)31;32, and they have almost identical electronegativities (1.96 and

1.93 for Sn and Ag, respectively, in the Pauling scale.33;34) However, the bulk phase

diagram35 of Sn and Ag shows eutectic behaviour at 3.5 wt. % Sn with a eutectic

temperature of 221 ◦C with solid solubility of about 0.05 wt. % of Ag. Moreover,

Sn and Ag form only a single intermetallic compound, Ag3Sn, in a narrow range of

composition in the phase diagram.36

However, will Sn and Ag atoms mix in surface to form surface alloy? A naïve

expectation is that they will not form any surface alloy for two reasons: (i) The first

Hume-Rothéry rule does not apply in the case of surface alloys.37 Rather, (binary)

surface alloys generally form when the two atomic species have very different sizes.

Therefore, one might expect that Sn and Ag atoms, having very similar (bulk) sizes,
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are unlikely to form a surface alloy. (ii) The surface energy of Sn(001) (0.709 J/m2)38

is lower than that of Ag(001) (1.27 J/m2).39 So, one might expect that deposited

Sn atoms will form an overlayer i.e., wet the Ag(001) surface, instead of forming a

surface alloy. However, in this work, in contrast to these naïve expectations, we will

see that when Sn atoms are deposited on an Ag(001) surface, Sn-Ag surface alloys

are formed at all values of the Sn coverage x, where 0 < x < 1. The reason for this

counter-intuitive behavior is very interesting: we find that while the effective size of

surface Ag atoms is smaller than that of bulk Ag atoms, the effective size of surface

Sn atoms is found to be larger than that of bulk Sn atoms. Moreover, Sn atoms

become larger than both surface and bulk Ag atoms on the Ag(001) surface.

We now briefly summarize some earlier studies of Sn deposition on different metal

surfaces. Previous studies of Sn deposition on metal substrates have mostly focused

on the (111) surfaces of FCC metals such as Pt, Ni, Cu and Au.4;40;41 It is found

that Sn forms stable two-dimensional surface alloy phases with a p(
√
3×

√
3)-R30◦

structure at Sn coverage of x = 1
3

monolayer (ML), beyond which dealloying sets

in.40 However, when deposited on Ag(111), Sn atoms were found to form a surface

alloy, with no dealloying observed even for higher coverages.4 Surface alloys of Sn on

FCC(001) metal surfaces have been observed on Ni(001) and Pt(001),42;43 with an

ordered c(2× 2) structure for x = 0.5 ML. A surface alloy was also observed for the

initial growth stage of Sn on Au(001).44 In experiments on Sn on Cu(001), the struc-

ture of the system was seen to evolve with Sn coverage.45 Density functional theory

(DFT) calculations on this system suggest that Sn deposition on Cu(001) results in

the formation of substitutional surface alloys, with complex alloy structures for high

coverages of Sn.46;47 We note that Menon’s group had earlier performed a prelim-

inary study of Sn/Ag(001).48 The results of this earlier study indicated that there

may be continuous formation of substitutional surface alloys with Sn coverage x. In

this chapter, we return to this system and study its structure in greater depth, along



3.2 Summary of experiments 67

with further low energy electron diffraction (LEED) experiments, as well as angle

resolved photoemission spectroscopy (ARPES) experiments, again performed by the

Menon group. Importantly, we have now performed DFT calculations to investigate

this system. The LEED data is interpreted by structural studies using DFT. The

electronic structure of the system is measured using ARPES, and computed using

DFT.

In the present chapter, we have systematically studied the evolution of the struc-

tural and electronic properties of ordered Sn-Ag substitutional surface alloys, upon

deposition on the Ag(001) surface of Sn atoms up to a monolayer coverage. With

some hints of possible unit cells from the LEED experiments, we have considered

several possible structures (including, but not limited to, surface alloys) for the

Sn/Ag(001) system for different Sn coverages x for our first-principles DFT calcu-

lations.

3.2 Summary of experiments

Our experimental collaborators in the group of Prof. Krishnakumar S. R. Menon,

Surface Physics and Materials Sciecne Division, SINP, Kolkata have performed low

energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy

(ARPES) experiments for clean Ag(001) surface and for the systems of Sn deposited

on the Ag(001) surface. LEED gives the reciprocal space image of a surface structure.

In the LEED experiments, a beam of electrons (typical energy 20 – 200 eV having

wavelengths 2.7 Å – 0.87 Å) is incident on a single crystal sample having well-

defined surface structure. The electrons get scattered elastically by the surface

atoms and by looking at the diffraction spots one gets information on the size and

symmetry of the surface unit cell, along with the size, symmetry and rotational

alignment of the adsorbate unit cell with respect to the surface unit cell (qualitative
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analysis). One could also, in principle, get information about the exact atomic

positions (quantitative analysis), though we have not carried out such an analysis.

ARPES is an experimental technique which directly extracts the band structure

of a crystalline solid. The most distinctive advantage of this technique is that it

can measure the energies and wave vectors of electrons simultaneously. ARPES is

a “photon in, electron out" process (similar to that occurring in the photoelectric

effect). If a crystal is illuminated by light of appropriate frequency (such that

the energy of these photons is greater than the work function of the material) the

electrons inside the material get enough energy to escape its potential barrier and

come out of the material. These electrons, called “photoelectrons", are then forced

to bend in a circular trajectory using an electric field. The radius of the circular path

taken by an electron depends on the initial kinetic energy of the electron, from which

one can calculate the binding energy of the electron in a band. Also, the take-off

angle with respect to the surface normal is directly related to the component of the

electron momentum parallel to the surface of the sample. So, from the radius and

take-off angle, we get information about the binding energy related to the energy

and wavevector simultaneously.

A clean and well-ordered Ag(001) surface was prepared by repeated cycles of

Ar+ ion sputtering (at 600 eV, 1 µA) for 15 min, followed by annealing to 823

K for 30 min, until a sharp p(1 × 1) LEED pattern was observed. High purity

Sn (99.999%) was deposited from a homemade resistive evaporator at a rate of 0.2

Å/min calibrated with a water-cooled quartz crystal thickness monitor. Here, cover-

age of 1 monolayer (ML) is defined as the atomic density in the topmost layer of the

bulk-truncated Ag(001) surface, ∼ 2×1019 atom/m2. The ultrahigh vacuum (UHV)

chamber base pressure was maintained at ≤ 2×10−10 mbar during the Sn deposition.

LEED measurements were performed using a four-grid LEED apparatus (OCI Vac-

uum Microengineering), to determine the crystalline quality of the deposited film, as
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well as the crystallographic symmetry directions. A highly-sensitive Peltier-cooled

12-bit CCD camera was used to collect the LEED images.

ARPES measurements were performed in an analysis chamber with base pressure

≤ 8×10−11 mbar attached to the growth chamber, using a VG SCIENTA-R4000WAL

electron energy analyzer and a high-flux GAMMADATA VUV He lamp with VUV

monochromator.49 All the ARPES measurements were performed at room temper-

ature (RT) using He Iα (21.2 eV) and He IIα(40.8 eV) resonance lines. The overall

energy resolution of the analyzer, including thermal broadening at room tempera-

ture, near the Fermi energy EF was 100 meV, while the angular resolution was set

to 1◦ with an acceptance angle of ±15◦. The appearance of a sharp and intense

Tamm-like surface state (SS) at the M symmetry point in the ARPES measure-

ments directly confirmed the cleanliness and surface ordering quality of the Ag(001)

substrate.50

3.3 Computational details

DFT calculations were performed using the Quantum ESPRESSO package.51 The

Kohn-Sham wavefunctions and the corresponding charge densities were expanded in

plane-wave basis sets having cutoffs of 45 Ry and 450 Ry, respectively. Exchange-

correlation interactions were treated using the Perdew-Burke-Ernzerhof form of the

Generalized Gradient Approximation (PBE-GGA).52 The interactions between va-

lence electrons and ionic cores were described by ultrasoft pseudopotentials.53

The clean Ag(001) surface was modeled using an eight-atomic-layer thick asym-

metric slab having a (1 × 1) surface unit cell. For Sn/Ag(001) systems, we have

considered a topmost SnxAg1−x alloy layer (or other possible structures as described

in Section 5.3), deposited over a substrate consisting of either four Ag layers (when

determining structures and energetics) or seven Ag layers (when computing band
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structures).

The following coverages (x) of Sn were considered: 0.2, 0.25, 0.33, 0.4, 0.5, 0.6,

0.67, 0.714, 0.75, 0.8 and 1.0 (all in units of ML). In general, at a given x, more than

one surface unit cell was considered; further, for a given x and surface unit cell, all

possible pseudomorphic configurations of surface Ag and Sn atoms within the cell

were studied. Details of the surface unit cells and configurations are given in the

Supporting Information (SI). Periodic images along the z direction (normal to the

surfaces of the slabs) were separated by a vacuum region of width ∼ 16 Å, which

sufficed to eliminate interactions between artificially periodic images. A ‘dipole

correction’ was introduced to offset the artificial electric field originating from the

asymmetric nature of the slab.54 Except for atoms belonging to the bottommost

two/three Ag layers (for energetics/band structure calculations), all atoms were

allowed to relax using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm55,

until all components of the forces on all atoms were less than 0.001 Ry/Bohr.

Brillouin zone sampling was done using a Monkhorst-Pack mesh56 commensurate

with a 36×36×1 sampling of the primitive 1×1 surface cell of the Ag(001) substrate.

We note that we found that such a relatively dense sampling was necessary in order to

get converged values of ∆H, the enthalpy of mixing of the surface alloy. Convergence

was aided by using Marzari-Vanderbilt cold smearing57 with a width of 0.001 Ry.

When using a supercell, the computed band structure needs to be ‘unfolded’ from

the supercell Brillouin zone (SCBZ) to the Brillouin zone of the surface primitive cell

(PCBZ), to enable a direct comparison of experimentally measured and theoretically

computed band structures.58 Further details of the band unfolding procedure can

be found in a previous publication,3 and are also described further below.

The bulk lattice constant of Ag is calculated to be 4.16 Å. This value is in good

agreement with previously reported theoretical values3;59 and with the experimental

value of 4.09 Å.60 This leads to an in-plane lattice constant on the Ag(001) surface
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of 4.16/
√
2 = 2.94 Å, and a metallic radius of 1.47 Å. The bulk lattice constant of

Sn (in the α-Sn structure) is found to be 6.66 Å, leading to rm = 1.44 Å. We will use

these these theoretically computed values of rm in discussions further below. Note

that this leads to a theoretically computed lattice mismatch of 2.04%, compared to

the experimental lattice mismatch of 2.78%.

In order to understand the nature of bonding at overlayer-substrate interfaces

and the charge redistribution upon forming the interface, we examine the charge

redistribution ∆ρ, where

∆ρ = ρ[Ovr/Ag(001)]− ρ[Ovr]− ρ[Ag(001)]. (3.1)

Here, the first term on the right-hand-side of the equation is the charge density of the

system consisting of the overlayer on Ag(001), and the second and third terms are

the charge densities of the overlayer alone and the clean Ag(001) surface slab, respec-

tively (all calculated at the relaxed geometries of the combined system). We also

calculated the corresponding planar-averaged charge density difference ∆ρavg(z),

given by

∆ρavg(z) =

∫
dx dy ∆ρ(x, y, z). (3.2)

3.3.1 Unfolding and projection of band structure

The energy bands calculated theoretically by DFT differ from ARPES data in three

aspects:61

(i) For a band structure calculation corresponding to a supercell, bands are

folded into the supercell Brillouin zone (SCBZ) while the ARPES measurements

always span over the primitive cell Brillouin zone (PCBZ).
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(ii) DFT calculations usually provide the electronic energy dispersion E(k).

ARPES spectra are related to the spectral function S(k, ϵ) which is reduced to

E(k) only within the picture of the single particle Green’s function.

(iii) The DFT calculated bands consist of all electronic states of the slab under

computation including contributions from surface layers and deep bulk layers. By

contrast, ARPES is a surface sensitive technique and hence probes only the electronic

states near the surface.

So we need to unfold the theoretically calculated band structure from the SCBZ

corresponding to the p(2× 2) supercell in real space to the PCBZ corresponding to

the p(1 × 1) primitive cell in real space for direct comparison between experiment

and theory. The theoretical formulation used for such an unfolding of bands has

previously been given in Refs. 58;62;63. Here we present a summary of these for the

calculation of projection and unfolding of band structure in a plane wave basis set

DFT formulation.

Suppose k and K are the wave vectors in the PCBZ [of two-dimensional (2D)

area ΩPCBZ ] and SCBZ (of 2D area ΩSCBZ) respectively. Clearly {K} ⊂ {k}. There

are NK number of reciprocal lattice vectors GSCBZ corresponding to the p(2 × 2)

cell, which satisfy the following equation:64

ki = K + GSCBZ
i , i = 1, 2, ...NK, (3.3)

where ki is any wave vector in the PCBZ and NK = ΩPCBZ/ΩSCBZ

Now, by solving the Kohn-Sham (KS) equations self-consistently using a super-

cell, we obtain single-particle KS wave functions for the supercell |ψSC
K, m⟩. Expanding

these in a plane wave basis set,

|ψSC
K, m⟩ =

∑
{GSCBZ}

cK−GSCBZ , m |K − GSCBZ⟩ , (3.4)
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where m is a band index, |K − GSCBZ⟩ are the plane wave basis functions and

cK−GSCBZ , m are the plane wave expansion coefficients. In a similar way, the KS

wave functions corresponding to the primitive cell |ψPC
k, ν⟩ can be written as:

|ψPC
k, ν⟩ =

∑
{GPCBZ}

ck−GPCBZ , ν |k − GPCBZ⟩ , (3.5)

where ν is the band index in the primitive cell. Note that the set of reciprocal lattice

vectors {GPCBZ} is a subset of {GSCBZ}. Thus Eq. 3.5 can be decomposed as:

|ψSC
K, m⟩ =

∑
{GPCBZ}

cK−GPCBZ , m |K − GPCBZ⟩ +

∑
{GSCBZ}≠{GPCBZ}

cK−GSCBZ , m |K − GSCBZ⟩ .
(3.6)

To obtain the set of reciprocal lattice vectors {GPCBZ} from the set {GSCBZ}

we have the following condition:

GSCBZ · R = 2πM, ∀ {GSCBZ}, (3.7)

where M is an integer and R is a Bravais lattice vector of the chemical structure

corrsponding to the primitive cell in real space. Eq. 3.7 gives nonzero contributions

only if GSCBZ ∈ {GPCBZ}.

Now we define a quantity, the spectral weight SK, m(k), which is the probability

of supercell KS states having the same character as primitive cell KS states:64

SK, m(k) =
∑
ν

∣∣⟨ψSC
K, m|ψPC

k, ν⟩
∣∣2 . (3.8)

Since ARPES always probes the band structure in the PCBZ, we need to calcu-

late the band dispersion in the PCBZ only. So we can ignore the second term on



74 Chapter 3.

the right hand side of Eq. 3.6, and using Eqs. 3.5 and 3.6 we get,

SK, m(k) =
∑

{GPCBZ}, ν

∣∣cK−GPCBZ , m

∣∣4 δmν . (3.9)

Now, expanding ψSC
K, m in the basis of atomic orbitals,

ψSC
K, m =

∑
q

Aqϕq, (3.10)

where {q} is the set of good quantum numbers, ϕq is the atomic orbital corresponding

to the state q and the Aq’s are the corresponding coefficients. The probability of

ψSC
K, m having the same character as an orbital ϕq is:

∣∣⟨ϕq|ψSC
K, m⟩

∣∣2 = |Aq|2. (3.11)

In all of our calculations, when carrying out such a projection, we have only

considered atomic orbitals belonging to the top two surface layers. By projecting

the supercell wave function (ψSC
K, m) onto different atomic orbitals (ϕq) of a varying

number of layers, we can control the surface sensitivity, i.e., the ability to probe

bands arising from different layers, and can compare our computed band dispersion

with ARPES probed band structure.

We have already mentioned that ARPES always probes bands in the PCBZ,

which is possible after unfolding the band dispersion from the SCBZ to PCBZ. So,

we have to calculate the probability of the primitive cell wave function having the

same character as an atomic orbital ϕq i.e., projected spectral weight P , which we

can write as:

P =
∣∣⟨ϕq|ψPC

k, ν⟩
∣∣2 = ∣∣⟨ϕq|ψSC

K, m⟩ ⟨ψSC
K, m|ψPC

k, ν⟩
∣∣2 = |Aq|2 SK, ν(k). (3.12)
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This P is an important quantity and is used to plot the amount of orbital projec-

tion in theoretically calculated band structures to compare with the ARPES data of

Sn/Ag(001). Note that for the clean Ag(001) surface (x = 0) and 1 ML Sn/Ag(001)

(x = 1.0), as no supercell is used for these systems, unfolding is not required. So P

indicates only the projected band structures in these cases.

3.4 Systems under study

We have first modelled the clean Ag(001) surface having a p(1× 1) surface unit cell.

For Sn/Ag(001) systems, for x = 0 and x = 1, we have taken p(1× 1) surface cells

for our theoretical calculations. For 0 < x < 1, we have considered different kinds of

surface structures, with different possible surface supercells at each particular value

of x to find out the most favourable geometry at the considered values of x. The

following coverages (x) of Sn were considered: 0.2, 0.25, 0.33, 0.4, 0.5, 0.6, 0.67,

0.714, 0.75, 0.8 and 1.0 (all in units of ML). For energetics calculations we have

considered an Ag(001) slab consisting of 4 Ag layers and for electronic structure

calculations we have considered an Ag(001) slab consisting of 8 Ag layers.

3.5 Results and discussion

We asked the questions: (i) whether Sn atoms form an overlayer on the Ag(001)

surface, or prefer to go subsurface, or form a surface alloy with the surface Ag atoms

of the Ag(001) surface, (ii) what factors favour the formation of the lowest-energy

structures? (iii) how the surface geometry changes with increasing Sn coverage on

Ag(001) surface, and (iv) what is the electronic structure of Ag(001) surface, how is

it modified upon Sn deposition and also what is the evolution of electronic structure

with Sn coverage?
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We first look into the energetics and structural properties of Sn/Ag(001) sys-

tems at different Sn coverages x. We first try to find the most favourable surface

structures at each x considered, among different types of atomic arrangements and

different supercells. We compare these results with the LEED experiment. Next we

make some insights from electronic structures for the stable surface geometries of

Sn/Ag(001). We compare our results with measured ARPES data.

3.5.1 Surface structure as a function of Sn coverage: results

from LEED

During the deposition of Sn atoms on Ag(001) surface at room temperature (RT),

our experimental collaborators have found some ordered surface superstructures as

the Sn coverage x changes [see Figs. 3.1(a)-(f)]. In some places we will use the

term coverage in ML unit and in some places we will use the term concentration

x; they are basically the same. The p(1 × 1) LEED pattern of the clean Ag(001)

surface [Fig. 3.1(a)] changes, upon increasing the Sn coverage, to a p(2× 2) pattern

[Fig. 3.1(b)] at nearly 0.25 ML (x = 0.25) Sn coverage. This pattern is observed up

to ∼ 0.4 ML, but its intensity gradually decreases with increasing Sn coverage. At

0.5 ML, a pattern corresponding to two orthogonal domains of a p(1× 10) structure

is observed [Fig. 3.1(c)], which changes to a p(1×5) twin domain pattern [Fig. 3.1(d)]

at a coverage of 0.6 ML. At 0.75 ML, a complex p(1 × 6) pattern with fractional

diffraction spots [Fig. 3.1(e)] is seen. Finally, at 1 ML coverage, the complex super-

structure spots disappear, and a well ordered p(1× 1) LEED pattern [Fig. 3.1(f)] is

again seen, suggesting pseudomorphic growth of a Sn layer on the Ag(001) substrate.
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Figure 3.1: LEED patterns of Sn/Ag(001) for different Sn coverage. (a) Clean
Ag(001) with primitive unit cell (yellow square) and (as an example) a p(2 × 2)
surface Brillouin Zone (red square) with high symmetry points. (b) 0.25 ML, (c)
0.50 ML, (d) 0.6 ML, (e) 0.75 ML and (f) 1.0 ML. The energy of the incident
electron beam is 55 eV. This Fig. is originally part of Dr. Arunava Kar’s (SPMS,
SINP) Ph.D thesis and used with permission.

3.5.2 Structure of Ag(001) and Sn/Ag(001): DFT results

In this subsection, we will first discuss the structure for x = 0.0 and x = 1.0 which

corresponds to clean Ag(001) and 1 ML Sn/Ag(001) systems, respectively.

At first, as a benchmark, we check our results for the clean Ag(001) surface.

The optimized lattice constant of bulk Ag having FCC crystal structure is found to

be 4.16 Å in our calculations. So, while modelling the Ag(001) surface, the surface

unit cell is square and the in-plane lattice constant is 4.16/
√
2 = 2.94 Å. We have

also calculated the percentage interlayer spacing ∆ij between the ith and jth layers,

which is given by:

∆ij =
dij − dB
dB

× 100, (3.13)

where dij is the separation between ith and jth layers upon relaxation and dB is the
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bulk separation between layers. We find that d12 is contracted with respect to dB by

−1.85%, and d23 and d34 are expanded by +0.74% and +0.15%, respectively. These

values are in good agreement with previous theoretical and experimental values.65;66

The calculated surface energy is 0.81 J/m2 which is in excellent agreement with

a previous theoretical value65 of 0.78 J/m2 and in reasonable agreement with an

experimental value of 1.27 J/m2.39 We further calculate the surface stress. The

surface stress of clean Ag(001) is found to be −1.07 J/m2, where a minus sign

corresponds to a tensile surface stress. This value falls in between two previously

reported values in the literature.67;68

We next consider the structure at full monolayer of Sn (x = 1.0) on Ag(001).

We have considered four types of structures; three of them correspond overlayer

adsorption of Sn atoms on the surface, with Sn atoms sitting at different sites, viz.,

hollow, atop and bridge. The fourth configuration is the sub-surface adsorption i.e.,

Sn monolayer is buried under an Ag layer, while maintaining the face centered cubic

(fcc) stacking.

Adsorption geometry Eads (eV) ∆Eads (eV)
Atop site −3.79 0.19

Bridge site −3.91 0.07
Hollow site −3.98 0.00

Subsurface adsorption −3.52 0.46

Table 3.1: Energetics of different geometries considered for the 1 ML Sn/Ag(001), as
obtained from DFT calculations. ∆Eads denotes the energy of a given configuration
with respect to the lowest energy configuration i.e., hollow site adsorption. The
number in boldface indicates the highest value of adsorption energy, and hence
corresponds to the most stable adsorption geometry.

We have shown the adsorption energy values for the above mentioned four con-

figurations in Table 3.1. The adsorption energy per adatom is calculated using the

following formula:
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Eads =
1

n

(
ESn/Ag(001) − EAg(001) − nESn−atom

)
, (3.14)

where ESn/Ag(001) is the total energy from DFT of the Ag slab with Sn atoms ad-

sorbed on the surface, EAg(001) is the total energy of the clean Ag(001) substrate,

ESn−atom is the total energy of isolated Sn atom and n is the number of Sn atoms

in the unit cell of the Sn/Ag(001) system.

DFT energetics calculations show (see Tab. 3.1) Sn atoms like to sit at the

hollow sites on the surface over any other sites. This result is expected and can be

explained in terms of surface energies. We note that the surface energy of Sn(001)

[experimental value38 = 0.709 J/m2 and theoretical value69 = 0.611 J/m2] is much

lower than that of Ag(001) [experimental value38;39 = 1.24 J/m2, 1.27 J/m2 and

theoretical value65 = 0.78 J/m2]. This indicates that it is unfavourable for Sn atoms

to get buried sub-surface under an Ag layer.

Next we attempt to calculate the effective “sizes" of the Sn and Ag atoms on

Ag(001), using three different methods:

Method 1 for Estimating Sizes of Ag and Sn Atoms on Ag(001): Looking

at Surface Stress

As noted above, if we consider bulk metallic radii, there is a very small size mismatch

between Ag and Sn atoms, with the latter being slightly smaller. However, the

effective sizes of surface Sn and Ag atoms that are deposited on an Ag(001) substrate

may be expected to be different from these values. We can get an idea of this by

examining the surface stress of the Ag(001) and Sn/Ag(001) systems. We find that

the computed surface stress on the relaxed Sn/Ag(001) system is +2.42 J/m2. This

may be compared to the value of −1.07 J/m2 obtained on the Ag(001) system.

The results for surface stress presented above suggest that the effective diameter
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of surface Ag atoms on the Ag(001) surface is less than 2.94 Å (which is an expected

result); however, the effective diameter of the surface Sn atoms on the Sn/Ag(001)

system is larger than 2.94 Å (since this system has a compressive surface stress).

This latter finding may initially seem like a surprising and counter-intuitive result.

However, this result can be justified using a relatively simple explanation. The basic

idea is similar to that of effective medium theory or the embedded atom method,70

i.e., that a metal atom in its bulk structure is sitting at an optimal electron density

from its neighbors; when the number of neighbors is changed, the atom would ideally

like to change the geometry so as to regain this optimal value of ambient electron

density. Let us first consider the case of Ag(001). Ag atoms in the bulk have a

(nominal) coordination number (CN) of 12, whereas a surface Ag atom has a CN

of 8. To compensate for the reduced coordination (and hence reduction in electron

density), a surface Ag atom would like, in principle, to come closer to its neighbors,

i.e., its effective size is reduced at the surface relative to the bulk. However, the

situation is quite different for Sn atoms in the Sn/Ag(001) system. A Sn atom in

the bulk has a CN of either 4 (in α-Sn) or 6 (in β-Sn). When a pseudomorphic Sn

overlayer is deposited on Ag(001), the Sn atoms in the overlayer now have a CN of 8.

Thus, to compensate for the increase in CN (and hence increase in electron density),

the Sn atoms would ideally like to increase their separation from neighboring atoms,

i.e., the effective size of the Sn atoms is increased. Further below, we will quantify

this argument by moving from the nominal CN to the effective coordination number

(ECN).

Above, we have qualitatively determined that on the Ag(001) surface, Ag (Sn)

atoms have sizes that are smaller (larger) than Ag bulk atoms. While it is possible

to quantify this result by computing the surface stress as a function of lattice con-

stant,37 the procedure is rather tedious, and involves various other approximations.

Below, we therefore will use two other approaches to numerically estimate the sizes
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of surface Sn and Ag atoms.

Method 2 for Estimating Sizes of Ag and Sn Atoms on Ag(001): Looking

at Interlayer Relaxations

The conclusions of the previous paragraph can be supported and also further quan-

tified by examining the geometries of the Ag(001) and Sn/Ag(001) systems. As

already mentioned above, for Ag(001), the first interlayer spacing d12 is contracted

by 1.85% with respect to dB, the bulk interlayer spacing in Ag(001) (the value of

d12 is 2.04 Å, while the value of dB is 2.08 Å). This confirms that surface Ag atoms

are smaller in size than bulk Ag atoms. However, for Sn/Ag(001), d12 is hugely

expanded by 12.91% (the value of d12 is 2.35 Å while the value of dB is 2.08 Å). This

confirms that the surface Sn atoms [when deposited on Ag(001)] are larger in size

than bulk Ag atoms, and hence also larger than both surface Ag atoms and bulk Sn

atoms. On feeding these data into a simple hard-sphere model, where we assume

that Ag atoms everywhere except in the topmost layer have a radius = rAg
b = 1.47

Å, we obtain rAg
s = 1.44 Å and rSns = 1.71 Å, where rAg

s is the radius of an atom in

the surface layer of Ag(001), and rSns is the radius of an atom in a Sn overlayer on

Ag(001). Once again, we see that rAg
s < rAg

B < rSns .

Method 3 for Estimating Sizes of Ag and Sn Atoms on Ag(001): Looking

at Effective Coordination Number (ECN)

We now use a third method to gauge the sizes of Sn and Ag atoms at the surface,

where we will put on a firmer footing the arguments stated above regarding number

of neighbors, expanding them to account for the fact that not just the number

of neighboring atoms, but also their chemical species, is changed. We define the

effective coordination number (ECN) ni
e of an atom i in a given system, as:71;72
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Figure 3.2: Plot of atomic radius vs effective coordination number (ECN) for (a) Ag
atom and (b) for Sn atom. We have considered sc, bcc, fcc and diamond structures
of Ag and Sn atoms. The blue lines are the cubic spline fitted curves. The red
vertical lines are drawn at ECN values of a surface Ag atom (8.3148) and a Sn atom
on Ag(001) (8.2132). The intersection of this vertical red line and blue curves gives
the atomic radius of a surface Ag atom (1.360 Å) and a Sn atom on Ag(001) (1.687
Å).

ni
e =

∑
j ρ

at(j)
j (Rij)

ρat(i)(Rbulk)
, (3.15)

where the sum runs over all neighbors j of the ith atom. Here, ρat(j)j (R) is the charge

density of an isolated atom, of species j, at a distance R away from the nucleus. Rbulk

is the nearest-neighbor distance for the bulk of the element corresponding to the ith

atom, and Rij is the distance separating the atoms i and j in the system under

consideration. Note that when this expression is computed for the bulk systems

(either Ag in the FCC structure or Sn in the α-Sn diamond structure), Eq. (3.15)

will return values of 12 and 4, respectively. However, for a different system, if,

e.g., the ambient electron density at the site of an Ag (Sn) atom is less than in

the corresponding bulk, we will get a value less than 12 (4), etc. The advantage of

the ECN over the usual definition of coordination number (where one just counts

the number of nearest-neighbor atoms) is that it accounts not just for how many

neighbors an atom has, but how far away they are, and what element they are.

We next calculate how the atomic size changes with ECN. To do this, we consider
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the following three-dimensional (hypothetical) periodic structures: simple cubic,

body centered cubic, diamond, and face centered cubic. In each of these structures,

we optimize the lattice constant for both Ag and Sn, and compute the corresponding

values of ECN. Note that to do this, while evaluating Eq. (3.15), we use values of

Rbulk corresponding to FCC for Ag and diamond structure for Sn.

Fig. 3.2 shows how the atomic size changes with ECN for (a) Ag and (b) Sn. It

is extremely interesting to note that the shape of the two curves is markedly dif-

ferent, with the atomic size increasing with ECN for Ag, but (counter-intuitively)

decreasing with ECN for Sn. Indeed, for Sn, as we go from the diamond structure to

the FCC structure, the ECN actually decreases, emphasizing that the information

contained in the ECN is quite different from that contained in the nominal coordi-

nation number. However, the fact that the nearest-neighbor distance is larger in the

FCC than in the diamond structure still holds.

The vertical red lines in Figs. 3.2 (a) and (b) are drawn at values of ECN corre-

sponding to those of a surface atom on Ag(001) and Sn/Ag(001) respectively, i.e.,

8.31 and 8.21, respectively. By reading the corresponding values of ordinate, we

obtain rAg
s = 1.36 Å and rSns = 1.69 Å. Once again, we obtain rAg

s < rAg
B < rSns .

3.5.3 Evolution of structure and stability as a function of Sn

coverage: DFT results

Next, we consider intermediate Sn coverages, that is, 0 < x < 1.

In general, we consider five kinds of structures [see Fig. 3.3]:

(a) Structures where the deposited Sn atoms form a Sn-Ag pseudomorphic sur-

face alloy overlayer SnxAg1−x on the Ag(001) substrate. For a schematic depiction,

see Fig. 3.3(a).

(b) Structures where the deposited Sn atoms form an ordered array of adatoms
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with coverage x on the Ag(001) substrate. For a schematic depiction, see Fig. 3.3(b).

(c) Structures where a non-pseudomorphic array of Sn adatoms sits atop a mono-

layer of pseudomorphic Sn-Ag surface alloy below which there is the Ag(001) sub-

strate. For a schematic depiction, see Fig. 3.3(c)]. This is consistent with our

conclusion, in the previous subsection, that Sn atoms deposited on Ag(001) have an

effective size that is larger than that of Ag atoms.

(d) Structures consisting of a non-pseudomorphic surface alloy with a lower den-

sity of surface atoms than is found on Ag(001). For an example, see the schematic

figure in Fig. 3.3(d).

(e) Direct exchange configurations,73 where the Ag atoms that have been replaced

by substituting Sn atoms now sit as adatoms over the Sn-Ag surface alloy layer,

occupying four-fold hollow sites [see Fig. 3.3(e)].

Figure 3.3: Schematic diagram of five different kinds of structures (top and side
views) considered for theoretical calculations. (a) substitutional surface alloy
SnxAg1−x/Ag(001), (b) overlayer adsorption of Sn adatoms, (c) a few Sn atoms
substitute Ag atoms from the surface layer and a few Sn atoms sit as adatoms, (d)
non-psuedomorphic alloy structure in which the atomic density in the surface alloy
layer is different from that in an Ag(001) layer, and (e) direct exchange: Sn atoms
substitute some Ag atoms, and the substitued Ag atoms sit like overlayer adatoms.
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To determine the most stable structure at each value of x considered, as well as

to determine the values of x correspond to the phases that are stable against phase

segregation, we calculate ∆H, the enthalpy of mixing. To normalize for the different

surface supercells we get enthalpy of mixing per unit area. For the particular case

of a pseudomorphic surface alloy SnxAg1−x in the topmost layer [Case (a) above]

this is computed as:

∆H

A
=

1

A

{
[E[SnxAg1−x/Ag(001)]

− xE[Sn/Ag(001)]− (1− x)E[Ag(001)]
}
.

(3.16)

Here, A is the area of the (m× n) cell used to compute all three total energy terms

on the right-hand-side of the above equation; E[SnxAg1−x/Ag(001)] is the total

energy of the system with a SnxAg1−x surface alloy on a l-layer Ag(001) substrate,

E[Sn/Ag(001)] is the total energy of a system consisting of a Sn overlayer on a l-

layer Ag(001) substrate, and E[Ag(001)] is the total energy of a (l+1)-layer Ag(001)

surface slab; all these total energies are computed from DFT for the corresponding

relaxed configurations.

For Case (b) above, where the deposited Sn atoms form an ordered array of

adatoms with coverage x, ∆H is computed as:

∆H

A
=

1

A

{
E[Snx/Ag(001)]

− E[Ag(001)]− x× (m× n)× µ(Sn)
}
.

(3.17)

Here, E[Snx/Ag(001)] is the total energy of a system consisting of adatoms of Sn,

with coverage x, on a l-layer Ag(001) substrate and E[Ag(001)] is the total energy

of a l-layer Ag(001) surface slab. µ(Sn) is the chemical potential of Sn, calculated

as the energy of a Sn atom in the α-Sn bulk crystal. All other terms are as before.
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For Case (c) above, where Sn adatoms of coverage z sit above a pseudomorphic

SnyAg1−y surface alloy which in turn is on an Ag(001) substrate, ∆H is given by:

∆H

A
=

1

A

{
E[Snz/SnyAg1−y/Ag(001)]

− yE[Sn/Ag(001)]− (1− y)E[Ag(001)]

− z × (m× n)× µ(Sn)
}
.

(3.18)

Here, E[Snz/SnyAg1−y/Ag(001)] is the total energy of a system consisting of Sn

adatoms of coverage z sitting above a SnyAg1−y surface alloy which in turn is on an

l-layer Ag(001) substrate; we note that in this system, the total deposited coverage

of Sn is x = (y + z). E[Ag(001)] is the total energy of an (l + 1)-layer Ag(001)

surface slab; all other terms are as before.

For Case(d) above, where the overlayer is comprised of a low density non-

pseudomorphic surface alloy SnxAgy, we have:

∆H

A
=

1

A

{
E[SnxAgy/Ag(001)]

+ (1− (x+ y))× (m× n)× µ(Ag)

− xE[Sn/Ag(001)]− xE[Ag(001)]
} (3.19)

Here, E[SnxAgy/Ag(001)] is the total energy of a system consisting of a non-

pseudomorphic SnxAgy surface alloy on a l-layer Ag(001) substrate, the other terms

are as before. We note that in this case, (x+ y) < 1 as the density of atoms in the

surface alloy layer is lower than the density of the clean Ag(001) surface layer. Some

substituted Ag atoms, with coverage [1− (x+ y)], are completely removed from the

surface as the bigger Sn atoms take their space.

Finally, for Case (e) above, where Ag adatoms of coverage x sit above a pseu-

domorphic SnxAg1−x surface alloy which in turn is on an Ag(001) substrate, ∆H is
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given by:

∆H

A
=

1

A

{
E[Agx/SnxAg1−x/Ag(001)]

− xE[Sn/Ag(001)]− (1− x)E[Ag(001)]

− x× (m× n)× µ(Ag)
}
.

(3.20)

Here E[Agx/SnxAg1−x/Ag(001)] is the energy of a system where Sn atoms of cover-

age x have substituted Ag atoms in the surface layer, and these displaced Ag atoms

now occupy adatom sites over the surface alloy layer, and µ(Ag) is the chemical

potential of Ag, defined as the energy of a bulk Ag atom; all other terms have been

previously defined.

Figure 3.4: Convergence of ∆H/A with k-point mesh for SnxAg1−x/Ag(001) systems
at (a) x = 0.6 and (b) x = 0.67, for different possible structures as shown in Figs. 3.11
and 3.12, respectively. In these examples, the structures which were higher in energy
at lower k-point density become lower in energy at higher k-point density. This
demonstrates the highly sensitive dependence of the enthalpy of formation on the
density of the k-point mesh. We see that the ∆H/A converges at very high k-point
density like 36× 36× 1 k-point mesh. So, to determine the lowest energy structures
at each value of x, we had to consider a very dense k-point mesh.

Fig. 3.4 shows how the computed value of the enthalpy of formation depends on

k-point density used, i.e., the density of the Brillouin zone sampling. For illustrative

purposes, we have only shown the results for two different x-values of 0.6 and 0.67

in Fig. 3.4(a) and (b), respectively. Here we plot the enthalpy of formation per

unit area, ∆H/A, as a function of the k-point density, with the x-axis representing
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equivalent number of k-points along each direction in the PCBZ. For Fig. 3.4(a)

we have taken the structures shown in Fig. 3.11(a)-(b), with x = 0.6 in p(1 × 5)

supercells. For Fig. 3.4(b) we have considered the structures shown in Fig. 3.12(b)-

(d), with x = 0.67 in p(1 × 6) supercells. We see in both panels that structures

having higher energy at lower k-point density become lower in energy at higher k-

point density. This shows that the enthalpy of formation ∆H is very sensitive to

the k-point density. This leads us to consider very high k-point density for all of the

energetics calculations at all x-values for all structures.

Figure 3.5: Enthalpy of formation per unit area, ∆H/A as a function of Sn coverage
x. Different colors of the data points correspond to different surface supercells used
in our DFT calculations, as shown in the inset. The red lines show the convex hull
drawn through the data. The arrow symbols represent surface alloy structures of
Fig. 3.6.

We want to mention one important thing here: that in evaluating Eqs. (3.16) -

(3.20), very dense k-points grids have been used in the DFT calculations, to make

sure that the results are converged with respect to Brillouin zone sampling; this

point has already been discussed above. We have also used the same (or equivalent)

grids for all systems on the right-hand-sides of these equations, to maximize the
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likelihood of k-point errors cancelling out.

In Fig. 3.5 we plot our results, from DFT calculations, for the enthalpy of mixing,

∆H/A, versus the Sn coverage x. When ∆H/A is positive, this means that these

structures are energetically unfavorable with respect to clean Ag(100) and 1 ML of

Sn on Ag(100), the system will phase segregate into these two phases, instead of

forming the mixed phase. At each value of x, the lowest-lying point indicates the

most stable configuration, for that coverage, among the structures examined by us.

The different colors of the different data points in this graph correspond to different

surface supercells used in our calculations as mentioned in the inset. The red line

is the convex hull obtained from this data; the configurations which fall on this

convex hull are the phases and structures that are stable against phase segregation

to other mixed phases. We found that many structures of type (b) have a very high

positive value of ∆H/A; these points are not plotted in Fig. 3.5. We also note that

in general, for a given x, among the above described structures, structures of types

(b), (c), (d) and (e) tend to lie much higher in energy than structures of type (a).

Fig. 3.6 shows top views of the structures found to lie on the convex hull, as

well as a few other low-energy structures of interest. At x = 0.0 and x = 1.0,

the favored configurations correspond to a pseudomorphic monolayer of Ag and Sn

atoms, respectively.

At intermediate values of x, the following configurations are found to fall on the

convex hull. We will discuss them in order of increasing values of x:

(i) At x = 0.25, a p(2×2) structure, in which one out of four surface Ag atoms is

substituted by a Sn atom to form a structure of type (a). This agrees with the LEED

result that upon increasing coverage from x = 0, the first pattern seen corresponds

to p(2 × 2), at x = 0.25. The structure of this configuration (top view) is shown

in Fig. 3.6(b). In this configuration, Sn atoms in the surface layer get eight-fold

coordination - four from the in-plane layer and four from the layer below. This is
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Figure 3.6: Surface alloy structures (top-views) predicted by DFT calculations and
LEED measurements at different Sn coverages x. (a), (b), (c), (d), (e) and (f) are
the structures which fall on the convex hull. (c′) and (c′′) are the 2nd and 3rd lowest
energy structure respectively, at x = 0.5. c′ is seen in the LEED pattern. (d′) is
the 2nd lowest energy structure at x = 0.75, which we have used when computing
the band structure. Color code: Green - Sn atoms, Orange - surface Ag atoms and
Gray - subsurface Ag atoms.

energetically more favorable than Sn atoms occupying four-fold coordinated hollow

adatom sites. The value of the surface stress of this structure is −0.90 J/m2, which

is in between the values at x = 0.0 and x = 1.0. This configuration is similar to

that seen earlier for Sn/Ni(001)74;75 and Sn/Cu(001).76;77

(ii) At x = 0.5, a p(2× 2) configuration, in which out of four surface Ag atoms,

two Ag atoms are substituted by two Sn atoms. Two diagonal surface Ag atoms

are substituted in this case. This is again type (a). The structure of this is shown

in Fig. 3.6(c). This partly agrees with LEED, in that the next stable pattern is

indeed observed at x = 0.5. However, experiments observed a p(1 × 10) pattern.

The configurations considered by us include all possible configurations with x = 0.5

and a p(1×10) unit cell; however, our calculations find that all of these lie somewhat

higher in energy (by > 4 meV/Å2) than the p(2×2) configuration. After the p(2×2)

structure, the two lowest-lying structures are the p(1 × 2) configuration shown in
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Fig. 3.6(c′) and one of the p(1× 10) configurations shown in Fig. 3.6(c′′).

(iii) At x = 0.75, a p(1× 4) configuration, in which three out of four surface Ag

atoms are substituted by three Sn atoms. This is again type (a). This configuration

is shown in Fig. 3.6(d). However, almost degenerate with this (lying higher in energy

by < 1 meV/Å2), DFT also predicts two p(2 × 2) configurations: one is a surface

alloy structure of type (a), shown in Fig. 3.6(d′), and the other is a structure of type

(c). LEED observed an ordered superstructure around x = 0.75, but with a p(1×6)

pattern. We note that it is not possible to have a pseudomorphic configuration

with x = 0.75 and a p(1× 6) unit cell. However, we can consider structures having

p(1× 6) unit cells at some values of x which are close to 0.75. In particular, we can

have such pseudomorphic configurations at x = 0.67 with p(1 × 6) unit cells, the

lowest energy structures among these is found to lie only slightly above the convex

hull, and may correspond to the structure seen in LEED experiments at around 0.75

ML. We have also considered some non-pseudomorphic structures. For example, a

non-pseudomorphic Sn-Ag surface alloy structure at x = 0.714 with a p(1× 6) unit

cell which contains seven atoms (five Sn atoms and two Ag atoms) in the surface

layer instead of the ideal six atoms per layer. After relaxation, we found that one

Sn adatom sits on top of a pseudomorphic (i.e., total six atoms in the surface layer)

surface alloy with four Sn atoms and two Ag atoms in the p(1 × 6) unit cell. This

structure lies very high in energy. One Sn atom sits as an adatom because we know

that size of the Sn atoms is larger on the surface. This also implies that the size of

the Sn atoms on Ag(001) is larger than the size of the surface Ag atoms.

(iv) Finally, our calculations predict one stable structure that is not clearly

observed in the LEED experiment: a p(1× 5) structure at x = 0.8; this is shown in

Fig. 3.6(e). However, it only just lies on the straight line connecting the points at

x = 0.75 and x = 1.0.

We also note that in addition to the structures mentioned above, a p(1 × 5)
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structure at x = 0.6 is observed in the LEED experiment; our calculations find that

the lowest energy such structure lies above the convex hull by ∼ 1.5 meV/Å2.

Now we show the other structures we have considered in our DFT energetics

calculations, in Fig. 3.7–3.13. These structures are not the lowest energy structures

at each x-values and hence not falling on the convex hull.

Figure 3.7: Different structures considered at x = 0.2, 0.33, and 0.4 for energetics
calculations. The Sn coverage and surface supercells along with the values of en-
thalpy of mixing ∆H/A are written below each figure. Atomic color code: green -
Sn, orange - surface Ag and gray - topmost layer of Ag substrate.

Figure 3.8: Different structures considered at x = 0.25 for energetics calculations.
The Sn coverage and surface supercells along with the values of enthalpy of mixing
∆H/A are written below each figure. Atomic color code: green - Sn, orange - surface
Ag and gray - topmost layer of Ag substrate.
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Figure 3.9: Different structures considered at x = 0.5 having p(1 × 10) cells for
energetics calculations. The Sn coverage and surface supercells along with the values
of enthalpy of mixing ∆H/A are written below each figure. Atomic color code: green
- Sn, orange - surface Ag and gray - topmost layer of Ag substrate.
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Figure 3.10: Different structures considered at x = 0.5 for energetics calculations.
The Sn coverage and surface supercells along with the values of enthalpy of mixing
∆H/A are written below each figure. Atomic color code: green - Sn, orange - surface
Ag and gray - topmost layer of Ag substrate.

Figure 3.11: Different structures considered at x = 0.6 for energetics calculations.
The Sn coverage and surface supercells along with the values of enthalpy of mixing
∆H/A are written below each figure. Atomic color code: green - Sn, orange - surface
Ag and gray - topmost layer of Ag substrate.

Figure 3.12: Different structures considered at x = 0.67 for energetics calculations.
The Sn coverage and surface supercells along with the values of enthalpy of mixing
∆H/A are written below each figure. Atomic color code: green - Sn, orange - surface
Ag and gray - topmost layer of Ag substrate.
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Figure 3.13: Different structures considered at x = 0.75 for energetics calculations.
The Sn coverage and surface supercells along with the values of enthalpy of mixing
∆H/A are written below each figure. Atomic color code: green - Sn, orange - surface
Ag and gray - topmost layer of Ag substrate.

For all Sn-Ag surface alloy phases, we see a significant buckling of surface atoms

along the z-direction (normal to the surface). In all of these, the Sn atoms in the

surface alloy layer are found to be raised higher than the Ag atoms in this layer;

this is consistent with our earlier conclusion that on the Ag(001) surface, Sn atoms

have a larger effective size than do Ag atoms. This is because when there is denser

packing of atoms on the surface the bigger atoms will always move out of the layer

to reduce the surface stress. Comparing the average z-coordinates of Sn atoms with

respect to the average z-coordinates of Ag atoms in the surface layer, we see that,

Sn atoms are found to be buckled outward; Sn atoms are sitting 2.72% higher for

x = 0.25, 2.62% higher for x = 0.5 and 4.66% higher for x = 0.75.

We also calculate the value of ∆12 using Eq. 6.1 for x = 0.25, 0.5 and 0.75.

For cases where there is more than one atom per layer per unit cell, we take the

average z-coordinates of the atoms in that layer, after relaxation. We see that d12 is

expanded for all the Sn-Ag surface alloys (with respect to dB for bulk Ag) and this

expansion increases with the Sn coverage x as shown in Fig. 3.14. The corresponding

values of d12 are 1.50%, 6.20% and 10.58% for x = 0.25, 0.5 and 0.75, respectively,

followed by the already mentioned value of 12.91% at x = 1. This further confirms
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Figure 3.14: Variation of percentage interlayer relaxation for the top two layers
with the Sn coverage x. The red circles are results from DFT optimization of the
structures, and the blue line is a linear fit to the data. The black dashed line is the
zero line of ∆12.

that the size of the Sn atoms on the Ag(001) surface is larger than that of the Ag

atoms.

Fig. 3.15 shows the surface stress as a function of the Sn concentration x. The

surface stress σsurf
XX is given by,

σsurf
XX =

σSC
XX × Lz

2
, (3.21)

where σSC
XX is the XX component of the stress tensor of the corresponding slab

supercell used for x = 0.0, 0.25, 0.5, 0.75 and 1.0, and Lz is the length of the slab

supercell along the z-direction, including vacuum. We note that calculations of

surface stress were performed using symmetric slabs (with the surface alloy on both

the top and bottom surfaces of the Ag slab), which is why we have to divide by 2.

We have already mentioned that for clean Ag(001) (x = 0.0) and 1 ML Sn/Ag(001)

(x = 1.0) σsurf
XX = −1.07 J/m2 and +2.42 J/m2, respectively. For x = 0.25, 0.5

and 0.75 the calculated value of σsurf
XX = −0.90 J/m2, −0.64 J/m2 and +0.71 J/m2,
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respectively [see Fig. 3.15]. The value of σsurf
XX increases as x increases. We see that

the surface stress is negative for x = 0.0, 0.25 and 0.5 and positive for x = 0.75

and 1.0. Here negative surface stress corresponds to the tensile surface stress and

positive surface stress corresponds to the compressive surface stress. Initially at low

Sn concentrations, though the Sn atoms become bigger on the surface, the overall

surface stress is still tensile because of the greater number of smaller-sized Ag atoms

in the surface layer. However, as x increases, the effect of the larger size of the Sn

atoms starts to dominate and overcome the tensile surface stress effect caused by

the smaller surface Ag atoms. That is why σsurf
XX increases as x increases and finally

becomes positive i.e., compressive at x = 0.75.

Figure 3.15: Variation of percentage surface stress σsurf
XX with the Sn concentration

x. The black dashed line is the zero line of σsurf
XX .

To summarize and discuss the results in this section, we find that at all values

of x, the lowest energy configuration corresponds to a pseudomorphic Sn-Ag surface

alloy. The driving force for the formation of such a surface alloy is the relief of

tensile stress on the Ag(001) surface, as has pointed out by Tersoff.9 As the Sn

atoms become bigger on Ag(001), these bigger atoms get embedded into the surface
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layer and relieve the tensile surface stress of the metal surface. Regarding the

favored structures in the phase diagram, the agreement between theoretically and

experimentally observed phases is reasonably good, but not perfect. There are some

phases observed in experiment that lie slightly above the theoretically obtained

convex hull. The most notable disagreement is at x = 0.5, where calculations predict

a p(2×2) structure to be favored, but actually a p(1×10) structure is observed in the

experiment. It is possible that these discrepancies (of the order of few meV/Å2) are

due to DFT errors, though we have taken good care of the convergences. Another

possible source of error may be due to the fact that the lattice mismatch in DFT is

slightly different from that in experiment.

3.5.4 Electronic structure: DFT results and comparison with

ARPES data

To obtain further insight into the electronic structure of the system, we used DFT to

compute the electronic band structure for a few values of Sn coverage x. Fig. 3.16(a)

shows the schematics of the PCBZ and SCBZ. The red square represents the PCBZ

i.e., the BZ corresponding to the p(1×1) cell in real space, the cyan squares represent

BZ corresponding to the p(2× 2) cell in real space. The unprimed symbols are used

for the high symmetry points of the PCBZ and primed symbols are used for the

high symmetry points of the SCBZ corresponding to the p(2× 2) cell. Fig. 3.16(b)

shows the projected bulk band structure of Ag along (001) direction of the BZ. The

blue shaded region corresponds to the projection onto the surface of the bulk states,

and the red lines correspond to the surface bands. We see that all the surface bands

fall within the bulk band region. We note that for x = 0, i.e., Ag(001), and x = 1,

i.e., Sn/Ag(001), our calculations were performed using a (1 × 1) surface unit cell,

shown in Figs. 3.6(a) and (f); the resulting band structures did not therefore require
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any unfolding. However, at intermediate coverages x, where supercells were used,

the unfolding procedure was carried out from the relevant SCBZ to the primitive

cell Brillouin zone (PCBZ) [see Fig. 3.16(a)]. The results presented in this section

for x ̸= 0 were obtained from calculations on the structures shown in Fig. 3.6(b),(c)

and (d′), all of which have a p(2 × 2) primitive unit cell. We recall that for x =

0.25, both LEED and DFT results agree that this is the most energetically favored

configuration, for x = 0.5, DFT (but not LEED) suggests that this is the most

energetically favored configuration, and for x = 0.75, this configuration, though

low in energy, is not found to be the most favored one. Nevertheless, for reasons

of computational feasibility (the unfolding procedure becomes very expensive when

working with large supercells), we computed the unfolded band structure obtained

from these configurations, and found very good agreement with the experimental

ARPES data, as shown below.

Figure 3.16: (a) Red square represents First Surface Brillouin Zone (FSBZ) of p(1×1)
primitive cell in real space, we call it primitive cell Brillouin zone (PCBZ), and light-
blue squares represent FSBZ of p(2× 2) supercell in real space, we call it supercell
Brillouin zone (SCBZ). Primed and un-primed letters represent the high symmetry
points of the PCBZ and SCBZ respectively. (b) Projection of bulk band structure
onto (001) surface termination. The blue shaded area represents the projection of
bulk states while bands computed for the surface slab are shown by red lines. Fig. is
taken from Dr. Arunava Kar’s (SINP) Ph.D thesis with permission.

Fig. 3.17(a) shows the coverage-dependent evolution of the crossing point of a
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Figure 3.17: (a) Line profile at X̄ as a function of Sn coverage. The inset represents
the evolution of the crossing point as a function of Sn coverage.The shaded area
represents the projected bulk band [see text for details]. (b) Schematic diagram of
the evolution of Sn-induced surface bands on Ag(001) surface at X̄ high symmetry
point. Fig. is taken from Dr. Arunava Kar’s (SINP) Ph.D thesis with permission.

surface state and a surface resonance, observed through a line scan at the X̄ point.

For clean Ag(001), an Ag-s peak is observed (marked with a red arrow) at around

−0.4 eV. Upon deposition of Sn atoms on Ag(001), another peak (marked with a blue

arrow) is observed at Sn coverage x = 0.1. This corresponds to the crossing point

of two two linearly dispersive bands, as discussed further below. At x = 0.25, this

new peak is very prominent and observed till x = 1.0. This peak shifts downward in

energy with increasing x. The change in energy of the crossing point with x is shown

in the inset of Fig. 3.17(a), and this variation is shown schematically in Fig. 3.17(b),

in which a band arising from a surface state (red line) and another band arising from

a surface resonance (blue line) cross each other. The crossing point shifts downward

in energy with increasing x. Also the peak width increases with increasing x, which

can be attributed to the enhanced Sn-Sn interaction. The Ag-s peak remains inside

the projected band region, but gets slightly shifted to higher binding energies with

increasing Sn deposition. This can be explained by the suppression of the indirect
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photoemission channel due to a reduction of the dielectric mismatch between the

Ag surface and vacuum after deposition of Sn.78

In the following figures of DFT calculated band structures, the orange bands show

the computed band structure for SnxAg1−x/Ag(001) along the Γ̄-X̄-Γ̄ and Γ̄-M̄ -Γ̄

directions of the PCBZ [see Fig. 3.16(a)], for x = 0.0, 0.25, 0.50, 0.75 and 1.0. In

these figures, the ‘white stars’ and ‘red triangles’ show experimentally obtained data

points from ARPES using He Iα and He IIα, respectively. As ARPES probes states

in the surface region, we have projected our theoretically computed bands onto the

atomic orbitals belong to atoms in the two outermost layers, and the size and color

of each orange dot in the figures indicate the value of this calculated projection,

as is indicated in the color scale to the right of each graph. The magnitude of

this projection is expected to correlate with the ARPES intensity. We note that

in addition to certain bright features, the computed spectra show dimmer discrete

bands in the energy range between −3 eV and 0 eV. These are projections of bulk

bands, which form a continuum in the experimental case, but show up as discrete

bands in the computational results because of the finite thickness of the slabs used for

DFT calculations. As was observed in the experimental ARPES data, the calculated

bands also show a Dirac cone-like crossing at the X̄ point, with the energy at which

this occurs lowering with increasing x. As one goes from x = 0 to x = 1, this energy

changes from 0.42 eV to 3.04 eV below the Fermi level. Fig. 3.18 shows the variation

of the crossing point of S2 and S3 states at the X̄ point with the Sn concentration x.

We see that the crossing point shifts downward in energy with increasing x, which

is similar to the schematic shown in the inset of Fig. 3.17(a).

The ARPES data are shown in Fig. 3.19 and 3.20 along the Γ̄−X̄ and Γ̄−M̄ di-

rection of the PCBZ, respectively. The experimental band dispersions obtained from

the ARPES spectra for both He Iα and He IIα are displayed on top of the calculated

spectra with the “white stars" and “red triangles", respectively for comparison.
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Figure 3.18: Position of the crossing point of S2 and S3 states at the X̄ point as a
function of Sn concentration x, from DFT calculated band dispersion.

We now discuss separately the results at the five values of x.

x = 0: Fig. 3.21(a) and 3.21(b) represents calculated band structrue of clean

Ag(001) substrate along the Γ̄− X̄ and Γ̄− M̄ directions of the PCBZ, respectively.

ARPES data indicated by the ‘white stars’ and ‘red triangles’ are superposed on the

calculated spectra. We see excellent agreement between calculated band structure

and the ARPES data, both in energy and momentum, as well as with the previ-

ously reported band structure.3 In particular the S1 state around the Γ̄ point of

Fig. 3.19(a) matches extremely well with the computed bands. As ARPES probes

extreme surface states, we have projected our calculated band structure onto the

atomic orbitals belonging to the two outermost layers of the asymmetric slab. In Fig.

3.21, the colour scale represents the amount of orbital contribution to the bands, or

it is the summation of the overlap between the Kohn-Sham states and the atomic

orbitals of the top two layers.

The computed bands also match very well with experiment near the X̄ point, in

binding energy (BE) as well as in intensity [Fig. 3.21(a)]. Due to the finite thickness

of the slab used in our calculations, we observe the presence of a finite number of
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Figure 3.19: Angle Resolved Photoemission Spectroscopy (ARPES) data along the
Γ̄− X̄ direction measured with hν = 21.2 eV at RT for (a) a clean Ag(001) surface
and (b)-(f) for 0.25− 1.0 ML of Sn/Ag(001). White and red lines are used to guide
our eye. Different surface states and resonances are marked with yellow arrow.
Fig. is taken from Dr. Arunava Kar’s (SINP) Ph.D thesis with permission.
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Figure 3.20: Angle Resolved Photoemission Spectroscopy (ARPES) data along the
Γ̄− M̄ direction measured with hν = 21.2 eV at RT for (a) a clean Ag(001) surface
and (b)-(f) for 0.25− 1.0 ML of Sn/Ag(001). White and red lines are used to guide
our eye. Different surface states and resonances are marked with yellow arrow.
Fig. is taken from Dr. Arunava Kar’s (SINP) Ph.D thesis with permission.
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Figure 3.21: Theoretically computed electronic band structure of the clean Ag(001)
surface along (a) Γ̄−X̄−Γ̄ and (b) Γ̄−M̄−Γ̄ of the PCBZ. Bands are projected onto
the atomic orbitals of the top two Ag layers. Value of the projection is represented
by the color scale.

discrete states with non-zero orbital contributions in our calculated band dispersion,

away from the X̄ point. In a real experimental scenario, because of the very large

thickness of the slab, we will have a diffuse continuum of states in this energy range.

In our theoretical plot, in the energy range −2.5 eV ≤ E−EF ≤ 0 eV, surface states

appear at −0.41 eV and −1.84 eV at the Γ̄ point and at −0.28 eV, −0.42 eV and

−0.51 eV at the X̄ point.

The theoretically computed and experimentally measured bands also match well

near the M̄ point, in particular [Fig. 3.21(b)]. Due to the reason already men-

tioned above, we again see some discrete states with non-zero orbital contributions

in the theoretically computed band structure. The high intensity and the spatial

localization in the ARPES spectra (S7 state of Fig. 3.20(a)) can be obtained by

combining all the bands located between M̄ and Γ̄ points of the calculated band

dispersion. In this case no states appear at the M̄ point in the energy range −2.5

eV ≤ E−EF ≤ 0 eV, where EF is the Fermi energy. From the orbital projected den-

sity of states (PDOS) calculation of clean Ag(001) [see Fig. 3.22], we observe, above

−2.5 eV up to the Fermi level, the dominant contribution is from Ag-5s orbitals,
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Figure 3.22: Projected density of states (PDOS) of the clean Ag(001) substrate,
showing contributions from 4d and 5s orbitals of Ag atoms belonging to the top two
surface layers. Ag 5s orbitals have a larger contribution near the Fermi level.

and below −2.5 eV the Ag-4d states contribute more.

x = 0.25: In Figs. 3.23(a) and (b), we compare the experimentally measured

and theoretically computed band structures for x = 0.25. Several new surface states

now appear: S2, S3, S4 and S5 along Γ̄ − X̄ and S7 along Γ̄ − M̄ . Once again, the

agreement between experiment and theory is excellent. In particular, we note very

good agreement for the dispersion of the S2 surface state and S5 surface resonance

[see Fig. 3.19(b)] along the Γ̄− X̄ direction, and the S2 surface state and S7 surface

resonance [see Fig. 3.20(b)] along Γ̄ − M̄ . We note that for some of these surface

states, the calculations show a set of discrete features instead of one continuous band,

due to the use of a relatively thin slab in the computations. Intense surface states

appear at the Γ̄ point at around −1.1 eV, −1.5 eV and −2.5 eV. [see Fig. 3.23(b)].

To gain further insight, in Figs. 3.24(a)–(e), we once again plot the band structure

for x = 0.25, but this time with the contributions from different orbitals (surface Ag-

5s, Sn-5s, Sn-5px, Sn-5py and Sn-5pz) plotted separately. (Note that, for simplicity,
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Figure 3.23: Theoretically computed electronic band structure of SnxAg1−x/Ag(001)
for x = 0.25 along (a) Γ̄ − X̄ − Γ̄ and (b) Γ̄ − M̄ − Γ̄ of the PCBZ. Bands are
projected onto the atomic orbitals of the top two Ag layers. Value of the projection
is represented by the color scale.

Figure 3.24: DFT calculated orbital projected band structures of (a)-(e) x = 0.25,
(f)-(j) x = 0.5, (k)-(o) x = 0.75, (p)-(t) x = 1.0 for SnxAg1−x/Ag(001) systems.
Here we have projected the Kohn-Sham orbitals on individual orbitals of Ag-sp,
Sn-5s, Sn-5px, Sn-5py, Sn-5pz, respectively.

in Fig. 3.24, we have only plotted bands along the Γ̄− X̄ direction.) By comparing

Figs. 3.24(a)–(e) with Fig. 3.23(a), we can conclude that the S2 surface state arises

primarily from hybridization of the Ag-5s orbitals with the Sn-5px orbitals, with a

small contribution from Sn-5s. The S4 and S5 surface resonances arise from Sn-5pz
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and Sn-5py orbitals, respectively.

Figure 3.25: Theoretically computed electronic band structure of SnxAg1−x/Ag(001)
for x = 0.5 along (a) Γ̄ − X̄ − Γ̄ and (b) Γ̄ − M̄ − Γ̄ of the PCBZ. Bands are
projected onto the atomic orbitals of the top two Ag layers. Value of the projection
is represented by the color scale.

x = 0.5: Figs. 3.25(a) and (b) show the comparison between the calculated and

experimentally measured bands at x = 0.5 structure with the ARPES measurements.

The most prominent features along Γ̄ − X̄ are the S2 surface state and S3 surface

resonance, which match excellently in calculation and experiment. As already noted

above, the crossing point between S2 and S3 is shifted downward, compared to

x = 0.25.

Along Γ̄ − M̄ , the calculations show a prominent surface resonant state with a

parabolic dispersion centered at M̄ ; this band does not show up in the ARPES data.

Figs. 3.24(f)-(j) show the individual orbital contributions to the bands, along

the Γ̄ − X̄ direction. We see that the S2 state mainly comes from the Ag-5s and

Sn-5px orbitals, whereas the S3 resonance mainly comes from the Sn-5s and Sn-5px

orbitals.

x = 0.75: In Figs. 3.26(a) and (b) we compare the calculated band structure

and experimentally observed ARPES data. We see that there is good agreement

between theory and experiment, specially along the Γ̄-X̄ direction. The crossing
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Figure 3.26: Theoretically computed electronic band structure of SnxAg1−x/Ag(001)
for x = 0.75 along (a) Γ̄ − X̄ − Γ̄ and (b) Γ̄ − M̄ − Γ̄ of the PCBZ. Bands are
projected onto the atomic orbitals of the top two Ag layers. Value of the projection
is represented by the color scale.

point of the linearly dispersive states S2 and S3 further shifts downward in energy.

The S3 state becomes more intense while the S2 state becomes more unclear. On

further decomposing in Figs. 3.24(k)-(o), we see that the S3 state is mostly coming

from the Sn-5px orbital, with very little contribution from the Sn-5s orbital. Ag-5s

contribution has become less as Sn concentration x increases.

x = 1.0: Figs. 3.27(a) and (b) show the comparison between the computed band

structure and ARPES data. Here, the most intense feature is the linearly dispersive

(or ‘V’-shaped) band i.e., the S3 state around the X̄ point, where we find excellent

agreement between calculation and experiment. The S2 state gets suppressed by the

core Ag-4d states, and the crossing point is located at −3.1 eV. The crossing point

is also visible at the M̄ point due to BZ periodicity but the band intensity is quite

low [Fig. 3.27(b)] in comparison with Γ̄-X̄ direction; the symmetry of the Brillouin

zone is reflected in the band dispersion characteristics. Around the X̄ point, we

also see the S6 state which has an inverted ‘V’-shape. Two nearly parabolic bands

around the M̄ point are observed with the same vertex point at the M̄ at around

−1.19 eV. These bands match with the experimental S8 and S9 states of Fig.3.20(f).
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Figure 3.27: Theoretically computed electronic band structure of the 1 ML
Sn/Ag(001) (i.e., x = 1.0) along (a) Γ̄ − X̄ − Γ̄ and (b) Γ̄ − M̄ − Γ̄ of the PCBZ.
Bands are projected onto the atomic orbitals of the top two Ag layers. Value of the
projection is represented by the color scale.

Calculation also shows some bands around the M̄ point below −2 eV, which are

missing in the ARPES data.

On further decomposing, along the Γ̄−X̄ direction, the contributions of different

orbitals are shown in Fig. 3.24(p)-(t). It is clear that the most intense linearly

dispersive or ‘V-shape’ feature is mainly coming from Sn-5px orbitals, with little

contribution from Sn-5s orbitals; so this has now purely Sn character. Sn-5pz orbitals

contribute to the bands away from the X̄ point. The S6 state is mainly coming from

the Ag-5s orbitals. We note that, as expected, the Sn-5px orbitals mainly contribute

in the Γ̄− X̄ direction and Sn-5py orbitals mainly contribute in the Γ̄−M̄ direction.

3.5.5 Insights from charge density difference plots

In order to understand the nature of the bonding at SnxAg1−x/Ag(001) interface

and the charge redistribution upon forming the interface, we examine the charge

density difference (CDD) ∆ρ, where

∆ρ = ρ[SnxAg1−x/Ag(001)]− ρ[Sn/Ag(001)]− ρ[Ag(001)]. (3.22)
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Here, the first term on the right-hand-side of the equation is the charge density of

the SnxAg1−x/Ag(001) surface alloy system, and the second and third terms are

the charge densities of the full coverage Sn/Ag(001) system and the clean Ag(001)

surface slab, respectively (all calculated at the relaxed geometries of the combined

system). We also calculated the corresponding planar-averaged charge density dif-

ference ∆ρavg(z), given by

∆ρavg(z) =

∫
dxdy ∆ρ(x, y, z). (3.23)

We now examine the charge density difference (CDD) ∆ρ plots and planar-averaged

CDD (∆ρavg(z)) plots for different Sn coverages x on the Ag(001) surface; these

results are depicted in Fig. 3.28. The interaction between adsorbate and substrate

atoms leads to a redistribution of the surface electron density. The small electroneg-

ativity difference between Sn (1.96) and Ag (1.93) results in charge sharing and is

responsible for covalent bonding in nature. For lower Sn coverage, it was observed

that the charge redistribution is relatively small, but it is found to increase with the

coverage. Accumulated electrons (indicated by red lobes) are getting localized on

top of the Sn atoms while the top layer Ag atoms are suffering from electron deple-

tion (indicated by blue lobes). Accumulation of electrons near Sn atoms leads to an

Sn-dominating orbital character in the band structure. Due to the redistribution of

charges at the interface, the surface potential decreases, and as a result the crossing

point at X̄ gradually shifts downward in energy and tje band structure has a lin-

early dispersive or ‘V-shape’ feature which indicates a Dirac-cone-like behaviour, as

observed for the 1 ML case.
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Figure 3.28: 3D charge density difference (CDD) plots ∆ρ (right Figs. along with
side and top views) and planar-averaged CDD plots (left Figs.) for (a) x = 0.25, p(2×
2) cell, (b) x = 0.5, p(2× 1) cell, (c) x = 0.75, p(2× 2) cell, and (d) x = 1.0, p(1× 1)
cell. Color scheme of the atoms: Sn – green, surface Ag atom – orange, below
Ag atom – light gray. Isosurface value for the CDD plots = +/− 0.001 e/bohr3.
Accumulation and depletion of electrons are represented by the red and blue colors,
respectively. The horizontal blue lines in each case correspond to the average heights
of the top two layers.

3.5.6 Evolution of electrostatic potential with Sn coverage

Next, we want to see the nature of the electrostatic potential in the system slabs,

specially in the Sn/Ag interface regions. So, we calculate the electrostatic potential

Ves, and its planar average taken over the xy plane:

Ves(z) =

∫
Ves(x, y, z) dxdy, (3.24)

where, Ves = Vbare+VH , is the sum of the bare electron-nucleus potential and Hartree

potential. The plots of Ves(z) are shown in Fig. 3.29, for (a) clean Ag(001), p(1× 1)

cell, (b) x = 0.25, p(2× 2) cell, (c) x = 0.5, p(2× 2) cell, (d) x = 0.75, p(2× 2) cell,

and (e) x = 1.0, p(1× 1) cell.

The potential is oscillating and periodic in the inside region of the slab, and

constant in the vacuum region. The vertical black dotted lines represent the average

height of the top layer atoms. We observe a sharp change in the potential near the

top layer which contains the Sn-Ag layer. For clean Ag(001), this change is very
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Figure 3.29: Electrostatic potential Vbare + VHartree as a function of z-coordinates of
the slabs for (a) clean Ag(001), p(1× 1) cell, (b) x = 0.25, p(2× 2) cell, (c) x = 0.5,
p(2× 2) cell, (d) x = 0.75, p(2× 2) cell, and (e) x = 1.0, p(1× 1) cell. The vertical
black dotted line represent average height of the top layer in each case. The change
in the potential is clearly observed in the Sn/Ag interface region; the potential is
decreasing as Sn concentration x is increasing.

minimal, and as the Sn concentration in the top layer increases, this sharp change

in the potential becomes prominent. For clean Ag(001), the peak (maximum in

potential energy curve) height of the periodic potential at the top layer is same as

that of the other inside layers, as well as of the bulk like layers, of the slab. Also, we

see one minimum in the planar averaged electrostatic potential energy curve, just

above the top layer. For x = 0.25, the peak height of the potential at the top layer

is decreased, also the depth of the minimum just above this peak is increased a little

bit. We see the trend that, as the Sn concentration increases, the height of the peak

of the electrostatic potential associated with the top layer decreases, as well as the

depth of the minimum just above it increases. Also, as the Sn coverage increases, the

position (z-height) of the vertical black dotted line shits towards this minimum, from

the top peak. For x = 0.75, the top peak has almost disappeared, and the depth

of the minimum above it reaches a negative value. For the full Sn monolayer, i.e.,

x = 1.0, the depth of the minimum is reduced further and reaches a more negative
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value, with the black dotted line falling exactly at this depth which represents the

height of the Sn monolayer. This continuous decrease of the electrostatic potential

with Sn concentration, in the Sn/Ag interface region, causes a shift in the bands

associated with the Sn atoms (linearly dispersive V-shape-like bands) downward in

energy in the ARPES measurements and in the DFT calculations.

Figure 3.30: Variation of the crossing point below the Fermi level with surface
electrostatic potential for different Sn concentration x. Blue filled squares are for
the structures for which band structures are calculated, and green filled circle is for
x = 0.5, p(1× 10) cell.

The correlation between the surface electrostatic potential and the energy of

the crossing point can be seen in Fig. 3.30. Here, the blue filled squares are for

the structures for which band structures are calculated above, and the green filled

circle is for x = 0.5, p(1 × 10) cell, which is the structure observed in LEED.

We believe that the (unfolded) band structure is primarily sensitive to the surface

electrostatic potential, which in turn is primarily sensitive to the concentration of

Sn atoms in the surface alloy. For example, at x = 0.5, LEED gave p(1 × 10) unit
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cell and our DFT calculations gave p(2 × 2). So we have calculated the surface

electrostatic potential for both the structures; see the green dot and blue square,

respectively, at x = 0.5 in Fig. 3.30). We see that though the geometry is very

different, replacing one structure by the other would not make a significant difference

in the behavior of surface potential as a function of x, and hence the position of the

crossing point as a function of x. This could be a possible explanation for why we get

such good agreement between our DFT calculated unfolded and surface-projected

band structures and the ARPES data, even for cases (such as at x = 0.5) where

DFT and experiment do not seem to agree about the structure of the lowest-energy

surface alloy configuration.

3.5.7 Further discussion

During the creation of the surface, atoms of the topmost layer lose some bonds as

the lattice symmetry gets broken due to the presence of vacuum on one side. Due

to this lack of bonding, the excess charge accumulates at the surface which causes a

modification of the surface potential. It is well known that the modified potential due

to excess charge gives rise to the surface states at M̄ of both Ag(001) and Cu(001)

surfaces,29;48 in which dx2−y2 bands are pushed out from the bulk continuum by

the Coulomb repulsion of excess sp electrons at the surface. After Sn deposition,

when Ag surface atoms make bonds with Sn atoms, the confined charges get spread

over the interface and lower the surface potential. The experimentally observed

downward shifting of the M̄ surface states with Sn adsorption on Ag(001)79 is direct

evidence of this. Similarly, due to the reduction of surface potential, an interfacial

state is formed which gets split off from bulk Ag sp bands. The hybridization

between Sn-5sp and Ag-sp bands is responsible for the formation of the interfacial

states with bonding-antibonding characters. Due to the existence of the projected

band gap region between sp and d bands at X̄,29 the interfacial state has a larger



116 Chapter 3.

amplitude at the Ag-Sn interface at this symmetry point. The extensive dispersion of

the S2 band at lower coverage may suggest that the interfacial states are not localized

as metallic ones, but have a more covalent nature and are laterally delocalized.

As the p-block metals have the general electronic configurations of s2p1−s2p3, the

filling of the p bands decides the evolution of the electronic structure across the series

and the s orbital contribution is expected to be insignificant due to the inner pair

effect. In the literature, only a few cases of p-block metals on other substrates have

been explored. On noble metal (001) surfaces, the cases of Bi/Ag(001), Pb/Ag(001),

and In/Cu(001) are known and we compare the case of Sn/Ag(001) with them for

a better understanding of the electronic structure evolution.23;80, In the case of a

half-filled Bi/Ag(001) system, several Bi induced surface bands were observed near

the Fermi surface.28 At the X̄ point, a band similar to S2 is observed for different

Bi coverages, although the movement of this band with Bi coverage is opposite.28

For 0.75 ML of Bi coverage, the band position at X̄ is found to be lower in energu

than that for the 0.5 ML Bi coverage. However, the experimental ARPES results

are complicated by the band foldings resulting from the different (4×4) surface

orderings. It is not very clear whether any surface alloying or Ag surface segregation

occurs in the Bi/Ag system. The observation of a constant Auger signal intensity

above 0.8 ML of Bi coverage without the formation of any new structural phases

is interesting. For the Pb/Ag(001) system, only the pseudo-hexagonal monolayer

case that is commensurate with a c(6×2) coincidence cell to the Ag substrate,81

is studied along the Γ̄ − M̄ direction. Although different Pb bands are observed,

the band folding makes it difficult to understand and detailed studies are required,

especially along with the Γ̄− X̄ direction of Ag(001) in the bulk band gap region.

On Cu(001) substrates, there have been extensive studies of the growth of Sn and

Indium. In the case of Sn/Cu(001), the focus of the studies has been their atomic

structure due to their complex phase diagrams. From a recent ab initio study,46



3.5 Results and discussion 117

it has been suggested that up to an Sn coverage of 0.5 ML, the Sn goes into a

substitutional site making a substitutional surface alloy, beyond which Sn goes to the

adatom site, forming a complex surface alloy. The electronic structure of the system

has been studied in the Γ̄ − M̄ direction to understand the charge-density-wave

(CDW) formation, however with little emphasis on the electronic structure evolution

with alloy formation. However, indium on Cu(001) is a relatively well-studied system

due to the presence of the CDW phase. For RT deposition, the Indium atoms are

incorporated into the surface lattice for low coverages while for higher coverages,

surface dealloying occurs with indium atoms forming overlayers.23;80 The evolution

of the electronic structure of the In/Cu(001) system was studied by ARPES and

a band similar to S2 (see Fig. 3.19) is observed with a higher BE shift with In

coverage. Interestingly, the BE of this S2-like band with In coverage [see Fig. 13(b)

of T. Aruga’s paper23], does get saturated beyond 0.7 ML In coverage, where the

de-alloying occurs and no more In goes into the substitutional sites. Comparing

this with the behaviour of the Sn on Ag(001) case as shown in Fig. 3.16(b), we do

not observe any saturation in the BE of the S2 band, suggesting that the Sn atoms

keep getting substituted into the Ag surface lattice up to the monolayer coverage,

in complete agreement with our DFT calculations. This also suggests that the

behaviour of the S2 band intensity at the X̄ point (crossing-point) with the coverage

of the solute atoms is a good measure of the incorporation (substitution) of the

solute atoms into the substrate lattice. This can be understood by the change of the

potential experienced by the solute atoms continually by the continuous substitution

in the host lattice.
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3.6 Conclusions

In summary, our experimental collaborators have deposited Sn atoms on the Ag(001)

surface. Our naive expectation was that Sn atoms would wet the Ag surface and form

an overlayer, because the surface energy of Sn(001) is less than that of Ag(001), and

also the metallic radii of the Sn and Ag atoms )are very similar in their respective

bulk crystals. However, in contrast to our expectation, very interestingly, Sn-Ag

substitutional surface alloys are formed at all values of Sn concentration x considered

in our experiments and DFT calculations.

We have found the reason why the formation of Sn-Ag surface alloys is favored

over the formation of overlayer or sub-surface structures. We have shown that Sn

atoms “become larger” on Ag(001) ,and they become bigger than the surface Ag

atoms which results in the formation of Sn-Ag surface alloy, and helps to relieves

tensile surface stress of the Ag(001).

The surface alloys are purely 2D, since no Sn atoms are found in the second or

third layer below the surface atomic layer. The surface alloy structures predicted by

DFT calculations match quite well with the LEED experiments, but the agreement

is not perfect.

We further computed the electronic structure calculations and compared with the

APRES data at different values of x. We see very good agreement between theory

and experiment at all values of x. This is true even for cases where the structure

found by DFT differs from that suggested by LEED, suggesting that the electronic

structure is more sensitive to the Sn concentration than the details of the geometric

structure of the surface alloy. The main feature of the band structure is two linearly

dispersive bands crossing each other and forming a Dirac-like-cone; the upper half

of which comes from the Sn orbitals and the lower half of which comes from the

Ag orbitals. As x increases, the crossing point downshifts in energy. and finally at
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full monolayer (i.e., x = 1.0) only the upper half cone exists with a ‘V’-shape with

complete Sn contribution. The surface potential and the charge redistribution at

the interface predominantly determine the characteristics of the band structure.
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Chapter 4
Structural, Electronic and Vibrational

Properties of CsPbX3 and Fe-doped

CsPbX3 (X = Br, Cl)

Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that

we may fear less.

Marie Curie

In this chapter, we study the electronic, photoluminescence and optical properties

of pristine CsPbBr3 and CsPbCl3, and Fe-doped CsPbBr3 and CsPbCl3. This is col-

laborative work with the group of Prof. Ranjani Viswanatha, New Chemistry Unit,

JNCASR, Bangalore. They were able to successfully dope Fe atoms in CsPbBr3

and CsPbCl3 nanocrystals. They measured the photoluminescence of the Fe-doped

systems, and compared this with the pristine systems. They also did some optical

measurements of the pristine CsPbBr3 and CsPbCl3 perovskite materials. We have

modelled the pristine CsPbX3 systems along with the Fe-doped CsPbX3 systems (X

131
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= Br, Cl) at the atomic scale and performed DFT calculations to make insights on

structural, electronic, electronic and optical properties.

4.1 Introduction

Perovskite materials have attracted enormous attention due to the very large num-

ber of compounds whose crystals form in the perovskite structures, and the fact

that their various physical and chemical properties are often of interest for various

applications. Perovskite materials have the formula ABX3, where A is an organic or

inorganic cation such as methylammonium (MA+, CH3NH+
3 ), formamidinium (FA+,

CH3(NH2)+2 ), Cs+ etc., B is a metal ion such as Pb2+, Sn2+, Bi2+, and X is an anion

like halide (F−, Cl−, Br− and I−) or oxide (O2−). Halide perovskites have recently

received a lot of attraction due to their potential applications in devices such as

photovoltaic cells,1 solid-state planar perovskite solar cells,2 etc. Halide perovskites

have achieved high quantum efficiencies of over 8% in the visible and near infrared

regions.3–5 Very recently, single-junction solar cells made of an organic-inorganic

hybrid halide perovskite showed a record efficiency of 23.3%, which is almost com-

parable to those of the conventional photovoltaics that use materials such as GaAs,

CdTe, Si and CuInGaSe. Halide perovskites can also be used as lasers and they

have achieved high quality factors.6 Perovskite photo-detectors and X-ray detectors

have shown high sensitivity with low noise.7;8 All these potential applications arise

from the excellent electronic and optoelectronic properties of the halide perovskites.

Changing the composition of the halide ions in the halide perovskites, the band gap

can be tuned and as a result, one can obtain better properties such as increased

photoluminescence quantum yield (PLQY) and better stability. However, this com-

positional engineering has a few limitations: intrinsic structural phase transition

and weak stability against moisture, high temperature and light.9–11
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Doping of foreign atoms into the halide perovskite lattice is a more effective way

of tuning the electronic and optoelectronic properties of the pristine systems. A

low doping percentage is enough to change the properties of the pristine systems

hugely and such low percentage doping does not change the crystal structures of

the pristine systems. The doping strategy can lead to more optimized and better

optoelectronic properties for the technological applications of the halide perovskites.

Over the years, many metal ions such as Mn2+, K+, Bi3+, Rb+, Ce3+, Tb3+, Yb3+,

etc. have been doped into the lattices of halide perovskites. This doping strategy

changes and improves many of the properties of the pristine systems. To give a few

examples, doped halide perovskites can have larger stability, higher PLQY, reduced

defect state densities, new emission characteristics etc., which leads to outstanding

optoelectronic properties compared to the pristine counterparts.12–16 However, there

still remain some topics that are not well understood yet, e.g., it is not well under-

stood whether dopants are incorporated into the matrices of the halide perovskites

or they remain at the surface. Also, how and why do the dopant atoms change the

properties of a pristine system?

Transition metal dopants in perovskite crysals can tune the electronic and optical

properties of the pristine systems and could also introduce magnetism in the halide

perovskites, which could have applications in spintronics devices.17–19 Because of

the synthesis challenges, very few magnetic dopants have been successfully incorpo-

rated into the bulk lattices of the halide perovskites till now. The most common

is Mn2+, which gives dual emission: the host’s band edge emission and Mn d − d

emission.13;20;21 For example, Mn-doped CsPbCl3 nanocrystals (NCs) display band

edge emission at 402 nm, and Mn d − d yellow emission (4T1 - 6A1) at 586 nm

(∼ 2.1 eV). Due to the spin-forbidden nature, the lifetime of this emission is very

high (1.6 ms). For magnetic dopants in the II-VI semiconductors, there is strong

exchange interaction between the charge carrier of the host and the d electrons of the
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transition metal (e.g., Mn), which drives the excitation energy transfer and creates

coupled electronic states between the exciton and the dopant.22;23 This results in

long-lifetime dopant luminescence and magnetically coupled excitons.24–27 In lead

halide perovskites, the high tolerance for trap states favors exciton energy transfer

to the transition metal d states and hence d− d emission. Another example is Ni2+,

which increases PLQY in the halide perovskites NCs.28–30

One of the less studied transition metal dopants is Fe; it is abundant in the

earth, environmently friendly and cheap in price. It was recently found that Fe

doping in II-VI semiconductor quantum dots (QDs) results in a magneto-optical

Stark effect which has potential applications in spintronics devices.31 Fe3+ doping in

CsPbBr3 and CsPbCl3 microwires results in the enhancement of the non-linear ab-

sorption coefficient by one order of magnitude, compared to other halide perovskite

NCs, which suggests that Fe helps in the two-photon absorption process.32 It has

been predicted theoretically that upon Fe doping in CsPbBr3, the efficiency of CO2

conversion into CH4 increases,33 which has been further experimentally proved.34

Fe acts as a luminescence quencher for II-VI semiconductors,35;36 but the effects of

Fe on the optical and electronic properties of halide perovskites are not well un-

derstood till date. Also, the effect of magnetism of the Fe dopants on the halide

perovskites is less understood. Therefore, a detailed investigation of electronic and

optical properties of Fe-doped halide perovskites is highly desirable.

In this chapter, we have carried out theoretical investigations on the structural,

magnetic and electronic properties of CsPbBr3 and CsPbCl3 upon Fe doping, using

DFT calculations. We first look into the effects on the structural properties of Fe

incorporation into the lattices of CsPbBr3 and CsPbCl3. We also look into the mag-

netic properties of the Fe-doped systems. Next, we examine the electronic structure

of pristine CsPbBr3 and CsPbCl3 and compare the results with those for Fe-doped

CsPbBr3 and CsPbCl3. We also suggest a possible reason for the photoluminescence
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(PL) quenching upon Fe doping in CsPbBr3 and CsPbCl3. Finally we look into the

vibrational properties of the Fe-doped CsPbBr3 and CsPbCl3 to try and understand

why the PL intensity completely dies, at higher Fe concentration, in one material,

but remains constant at a finite value in the other material.

Figure 4.1: Experimental photoluminescence (PL) spectra of pristine CsPbX3 and
Fe-doped CsPbX3 systems (X = Br, Cl). (a) and (c) show the change in the PL
intensity and absorbance with increasing Fe concentration for Fe-doped CsPbBr3
and Fe-doped CsPbCl3, respectively. (b) and (d) show change in the area under the
PL curve with Fe concentration. This figure is taken from Saptarshi Chakraborty’s
(NCU, JNCASR) Ph.D thesis and used with permission.

4.2 Experimental motivation

Our experimental collaborators (PhD student Saptarshi Chakraborty and Prof. Ran-

jani Viswanatha at JNCASR) investigated the change in the electronic structure of

some perovskite quantum dots (QDs) due to the presence of isoelectronic dopants.
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They were able to synthesise nanocrystals (NCs) of CsPbBr3, CsPbCl3, Fe-doped

CsPbBr3 and Fe-dopedCsPbCl3 using a colloidal method. They investigated the

structural and optical properties of the NCs using X-ray absorption fine struc-

ture (XAFS) spectroscopy and steady-state absorption and emission spectroscopy.

Fig. 4.1 shows the measured PL intensity of pristine CsPbBr3, CsPbCl3 and Fe-

doped CsPbBr3, Fe-doped CsPbCl3, with different Fe concentrations. Fig. 4.1(a)

and (c) show PL intensity and absorbance of pristine systems and Fe-doped sys-

tems. Fig. 4.1(b) and (d) show the variation of area under the PL curve with

Fe concentration, for both Fe-doped CsPbBr3 and Fe-doped CsPbCl3, respectively.

It was seen in the experiments that upon Fe doping in the pristine CsPbBr3 and

CsPbCl3 NCs, the PLQY is reduced. The PL spectra and PLQY behave differ-

ently for Fe-doped CsPbBr3 and Fe-doped CsPbCl3. They observed that as the

Fe concentration increases, the PL intensity decreases drastically and is completely

quenched at around 9% Fe concentration for Fe-doped CsPbCl3. However, for Fe-

doped CsPbBr3, though the PL intensity reduces with respect to pristine CsPbBr3

with increasing Fe concentration, the PL intensity is not quenched completely and

remains constant at a finite value for Fe concentrations beyond 2%.

Based on the above described experimental observations we ask the following

questions: (i) why is the PL intensity reduced upon Fe doping in both CsPbBr3 and

CsPbCl3 crystals, and (ii) why is the behaviour different in Fe-doped CsPbBr3 and

Fe-doped CsPbCl3 at higher Fe concentrations?

4.3 Computational details

DFT calculations were performed using the Quantum ESPRESSO software pack-

age.37;38 The Kohn-Sham wavefunctions and the corresponding charge densities were

expanded in plane-wave basis sets having cutoffs of 40 Ry and 400 Ry, respectively.
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Exchange-correlation interactions were treated using the Perdew-Burke-Ernzerhof

form of the Generalized Gradient Approximation (PBE-GGA).39 The interactions

between valence electrons and ionic cores were described using ultrasoft pseudopo-

tentials.40

The pristine CsPbBr3 and CsPbCl3 crystals were modelled with five-atom cubic

unit cells, forming perovskite structures. In the perovskite unit cells, we have a

Pb-Br6 or Pb-Cl6 octahedral environment in which one Pb atom is surrounded by

six Br/Cl atoms. For the Fe-doped systems we considered 2 × 2 × 2 supercells in

which either one Pb atom was substituted by one Fe atom to make 12.5% Fe-doped

systems, or two Pb atoms were substituted by two Fe atoms to make 25% Fe-

doped systems. For the pristine systems we have optimized the lattice parameters;

due to the symmetry of the systems, all forces on atoms were zero. For the Fe-

doped systems, all the cell parameters and atomic coordinates were relaxed using

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm41–44, until all components

of the forces on all atoms were less than 0.001 Ry/Bohr. Brillouin zone sampling

was done using an 8 × 8 × 8 Monkhorst-Pack k-point mesh for the primitive unit

cells and 4 × 4 × 4 for the supercells.45 Marzari-Vanderbilt cold smearing of width

0.005 Ry was used to improve convergence. Since there are heavy elements like

Pb and Br, we have taken into account the spin-orbit effects using fully relativistic

pseudopotentials.

The vibrational properties of Fe-doped CsPbBr3 and Fe-doped CsPbCl3 are cal-

culated in their optimized geometries, by calculating the dynamical matrices using

Density Functional Perturbation Theory (DFPT), as implemented in ‘PHONON’

package37 of Quantum ESPRESSO. We have used a 2×2×2 q-point mesh for these

calculations. Scalar-relativistic ultrasoft pseudopotentials are used for the DFPT

calculations of phonons. The threshold for self-consistency of DFPT calculation

was chosen to be 10−14.



138 Chapter 4.

Figure 4.2: Systems studied in our DFT calculations: (a) 12.5% Fe-doped CsPbBr3,
(b) 25% Fe-doped CsPbBr3, (c) 12.5% Fe-doped CsPbCl3, and (d) 25% Fe-doped
CsPbCl3. A 2× 2× 2 supercell contains 8 Cs, 7(6) Pb, 1(2) Fe and 24 Br/Cl atoms
for 12.5%(25%) Fe concentrations. Only the lowest energy structures are shown at
25% Fe concentration in which two Fe atoms are 2nd NN or face-diagonal. Atomic
color code: Cyan – Cs, Gray – Pb, Green – Br, Yellow – Cl, Red – Fe.

4.4 Systems under study

Though the experiments were performed on NCs and not bulk crystals, the size of

the NCs is very large (few tens of nm). We have therefore performed theoretical

calculations using density functional theory (DFT) by taking the bulk structures of

the pristine and Fe-doped perovskite materials. We have used DFT for the electronic

structure calculations and density functional perturbation theory (DFPT) for the
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vibrational properties of the crystalline solids. We took cubic crystals of CsPbBr3

and CsPbCl3 perovskites which consist of 1 Cs atom, 1 Pb atom and 3 Br/Cl atoms in

the primitive unit cell. For the Fe-doped systems, we considered 2× 2× 2 supercells

in which one Pb atom was substituted by one Fe atom to make 12.5% Fe-doped

systems and 2 Pb atoms were substituted by 2 Fe atoms to make 25% Fe-doped

systems. Fig. 4.2 shows the structures of 12.5% and 25% Fe-doped CsPbBr3 and Fe-

doped CsPbCl3 in the 2× 2× 2 supercells. Various inequivalent ways of positioning

these two substituent atoms in the supercell are possible; this point is discussed

further below. Though in the experiments the Fe concentration was less than 13%,

we have considered higher concentrations in our calculations to avoid the use of

larger supercells which would be computationally costly. We note also that the only

difference found in the experimental PL spectra of Fe-doped CsPbBr3 and Fe-doped

CsPbCl3 was at higher Fe concentrations.

4.5 Results and discussion

4.5.1 Lattice parameters of CsPbX3 and Fe-doped CsPbX3

(X = Br, Cl)

We have calculated the optimized lattice constant of pristine CsPbBr3 as 6.01 Å,

which is in excellent agreement with a previous theoretical value of 6.00 Å,46 but

larger than our experimental value of 5.85 Å for the CsPbBr3 NC and an earlier

experimental value of 5.87 Å47 for bulk CsPbBr3. Our optimized lattice constant

for CsPbCl3 is 5.74 Å which is in excellent agreement with a previous theoretical

value of 5.73 Å46 but larger than our experimental value of 5.62 Åfor the CsPbCl3

NC and an earlier experimental value of 5.61 Å47 for bulk CsPbCl3. The difference

in the lattice parameters between theory and experiment is presumably an example
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of the well known tendency of the GGA to overestimate lattice constants.

Figure 4.3: Lattice constants of pristine CsPbBr3 and Fe-doped CsPbBr3 (black
circles), and of CsPbCl3 and Fe-doped CsPbCl3 (red circles). Black and red lines
are linear fits to the data.

Next, we consider Fe doping in the pristine systems. We have taken 2 × 2 × 2

supercells of CsPbBr3 and CsPbCl3 and substitute one or two Pb atoms by one or

two Fe atoms to get 12.5% and 25% Fe-doped systems. Upon Fe doping into the

systems, all the atomic coordinates as well as the cell parameters are relaxed to find

the ground state structures.

For 12.5% Fe-doped CsPbBr3 and Fe-doped CsPbCl3, only one nonequivalent

structure is possible – all the eight Pb sites are identical for a Fe atom. However,

for 25% Fe-doped CsPbBr3 and Fe-doped CsPbCl3, there are three nonequivalent

structures are possible - (i) two Fe atoms can occupy nearest-neighbor Fe sites, i.e.,

they sit side by side at a distance equal to the lattice parameter of CsPbCl3, (ii)

two Fe atoms can occupy next-neighbor Fe sites, i.e., they sit along the diagonals of

a square at a distance
√
2 times lattice constant of CsPbCl3, and (iii) two Fe atoms
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Fe-Fe arrangement ∆E for FM (meV) ∆E for AFM (meV)
1st NN 364 333
2nd NN 0 71
3rd NN 387 379

Table 4.1: DFT energetics of different structures of Fe-doped CsPbBr3, for 25% Fe
concentration. In the different structures, the two Fe atoms in the unit cells are
at different distances from each other; they also differ in their relative magnetic
ordering. ∆Eads denotes the energy of a given configuration with respect to the
lowest energy configuration.

Fe-Fe arrangement ∆E for FM (meV) ∆E for AFM (meV)
1st NN 397 384
2nd NN 0 36
3rd NN 329 330

Table 4.2: DFT energetics of different structures of Fe-doped CsPbCl3, for 25% Fe
concentration. In the different structures, the two Fe atoms in the unit cells are
at different distances from each other; they also differ in their relative magnetic
ordering. ∆Eads denotes the energy of a given configuration with respect to the
lowest energy configuration.

can occupy next-nearest-neighbor Fe sites, i.e., they sit along the body diagonals of

a cube at a distance
√
3 times lattice constant of CsPbCl3. We have considered all

these configurations of Fe doping and optimized the lattice parameters. Tables 4.1

and 4.2 show the DFT calculated energetics of different configurations which differ in

the relative position of the two Fe dopant atoms, i.e., they are at different distances

from each other [such as first nearest neighbor (NN) or adjacent, second NN or face-

diagonal and third NN or body-diagonal], and also have different magnetic ordering

with respect to each other [the two Fe atoms have ferromagnetic (FM) ordering

or anti-ferromagnetic (AFM) ordering] for 25% Fe-doped CsPbBr3 and 25% Fe-

doped CsPbCl3, respectively. We see that for both the systems, the lowest energy

configuration is when the two Fe atoms are second NN or face-diagonal, having FM

ordering. All the further calculations are done for these lowest energy configurations
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only.

The calculated lattice parameters of 12.5% and 25% Fe-doped CsPbBr3 are 5.899

Å and 5.802 Å, respectively. Similarly, the calculated lattice parameters of 12.5%

and 25% Fe-doped CsPbCl3 are 5.629 Å and 5.538 Å, respectively. We see a gradual

decrease in the lattice constant upon increasing the Fe concentration. This is due

to the smaller size of a Fe atom than a Pb atom. We also find a linear relationship

between the lattice constant and Fe concentration, as shown in Fig. 4.3.

4.5.2 Stability of pristine CsPbX3 and Fe-doped CsPbX3 (X

= Br, Cl)

Though all-inorganic halide perovskites have gained tremendous attention due to

their potential applications, they have some problems: they are thermally unstable,

and are also unstable with respect to oxidation and moisture. Doping of foreign

atoms such as transition metal ions into the matrix of the pristine systems provides

better stability to the systems.

We will first check whether Fe-doping makes any improvement on the stability

of CsPbBr3 and CsPbCl3. For this, we calculate the formation energy of pristine

and Fe-doped systems.

The formation energy of pristine CsPbX3 (X = Br, Cl) is given by,

∆H =
1

N
[ECsPbX3 − µCs − µPb − 3µX ] . (4.1)

The formation energy of Fe-doped CsPbX3 (X = Br, Cl) is given by,

∆H =
1

N
[EFe−CsPbX3 − µCs − (1− x)µPb − 3µX − xµFe] , (4.2)

where, ECsPbX3 and EFe−CsPbX3 are the total energy of pristine and Fe-doped sys-

tems, µ’s are the chemical potentials of the atoms and are taken as the total energy
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of isolated atoms, x is the dopant Fe concentration. There is no universal rule for

how to choose of chemical potentials of the elements, in the above equations. Some

authors use the total energies of the isolated atoms (as we have done), others use

the bulk atom energy, and yet others use many other reference systems (depending

on the method of synthesis) to calculate the single atom’s energy.

System Formation energy (eV)
CsPbBr3 −2.31

12.5% Fe-CsPbBr3 −2.37
25% Fe-CsPbBr3 −2.44

CsPbCl3 −2.62
12.5% Fe-CsPbCl3 −2.69
25% Fe-CsPbCl3 −2.77

Table 4.3: Calculated formation energies of pristine and Fe-doped systems.

Table 4.3 shows the calculated formation energy of pristine CsPbX3 and Fe-

doped CsPbX3 (X = Br, Cl) systems. We see that formation energy becomes more

negative upon Fe doping for both Fe-doped CsPbBr3 CsPbCl3. This means Fe

doping increases the stability with respect to the pristine counterparts. Also, we see

that stability increases with increasing Fe concentration. Another point is that the

chloride systems are more stable than the bromide systems, even after Fe doping.

4.5.3 Electronic structure of pristine CsPbBr3 and CsPbCl3

The electronic structure of pristine CsPbBr3 is shown in Fig. 4.4. The band structure

and orbital projected density of states (PDOS) confirm that there is a finite gap in

this material which indicates that this material is a semiconductor. We have done

calculations both without spin-orbit coupling (SOC) and with SOC, and compared

the results. Our PBE-GGA calculated band gap of CsPbBr3, without SOC, is 1.79

eV; this is in excellent agreement with a previous DFT calculated value of 1.79

eV46 and smaller than the experimental gap of 2.36 eV48 for bulk CsPbBr3, and
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Figure 4.4: Electronic structure of pristine CsPbBr3. Panels (a) and (b) show the
orbital-projected band structure and projected density of states(PDOS), respec-
tively, of CsPbBr3, without spin-orbit coupling (SOC). Panels (c) and (d) show the
orbital-projected band structure and PDOS, respectively, of CsPbBr3, with SOC.
The PDOS confirms that the main contributions come from Pb-6p and Br-4p or-
bitals, we have projected the band structures onto these orbitals and shown the
relative contributions from these two orbitals according to the color scale. Orbital
contributions in the band structure plots: Green - Pb-6p and Blue - Br-4p.

our experimental gap of 2.42 eV for the CsPbBr3 NCs. This underestimation in the

calculated value for band gap is due to the use of PBE-GGA. We have projected the

Kohn-Sham wave functions onto the individual atomic orbitals for band structure

and density of states calculations. The projected density of states (PDOS) tells us

that the valence bands mainly arise from Br-4p orbitals and the conduction bands

mainly arise from Pb-6p orbitals. Hence, we have projected the band structure onto

these two orbitals and compared the orbital contributions as shown by the two-color

band structures in Fig. 4.4(a) and (c). We see that both valence band maximum

(VBM) and conduction band minimum (CBM) lie at the R point of the Brillouin
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zone (BZ), giving CsPbBr3 as a direct gap semiconductor. Upon the inclusion of

SOC, some degenerate bands split, both in the conduction and valence states. There

is no splitting in VBM as this has mostly Br character, and Br is a light element.

In contrast, the CBM splits as this is due to heavy Pb element, which results in

a decrease in the band gap. The value of the band gap in the presence of SOC

is 0.567 eV. This value matches well with a previous PBE-GGA calculated value

of 0.61 eV.49 The PDOS is shown with each j resolved in Fig. 4.4(d). We observe

significant splitting in the Pb-6p states into j1/2 and j3/2 energy levels.

Figure 4.5: Electronic structure of pristine CsPbCl3. (a) and (b) are projected
band structure and PDOS, respectively, of CsPbCl3, without spin-orbit coupling
(SOC). (c) and (d) are the same of CsPbCl3, with SOC. PDOS confirms that the
main contributions come from Pb-6p and Cl-3p orbitals, we have projected the band
structures onto these orbitals and shown a comparison according to the color scale.
Orbital contributions in the band structures plots: Green - Pb-6p and Blue - Cl-3p.

The band structure and PDOS of CsPbCl3 are shown in Fig. 4.5, without and
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with SOC. This is also a semiconductor with a calculated gap of 2.22 eV in our PBE-

GGA calculation, without SOC; this is in excellent agreement with a previous DFT

calculated value of 2.21 eV and smaller than the experimental gap of 3.0 eV48 for bulk

CsPbCl3, and our experimental gap of 3.0 eV for CsPbCl3 NCs. Similar to the case of

CsPbBr3, the valence and conduction bands are mainly contributed by Cl-3p and Pb-

6p orbitals, respectively. CsPbCl3 is also a direct gap semiconductor with VBM and

CBM both lying at the R point of the BZ. The two-color projected band structures

show the relative contributions of Pb-6p and Cl-3p orbitals. Upon the inclusion of

SOC, splitting is observed in both valence and conduction bands. However, similar

to the case of CsPbBr3, the VBM does not split as its main contributions come from

the relatively light Cl atoms. However, the CBM at the R point splits, as its main

contributions are from theheavy Pb atoms; it moves downward in energy, which

decreases the band gap. The value of the SOC induced gap is 0.985 eV.

4.5.4 Spin-polarization of Fe-doped CsPbBr3 and Fe-doped

CsPbCl3

Pristine CsPbBr3 and CsPbCl3 are non-magnetic materials. When we do the sub-

stitutional doping of the Fe atoms, as Fe atoms have very large magnetic moments,

this makes the Fe-doped CsPbBr3 and Fe-doped CsPbCl3 magnetic or spin-polarized.

For all the Fe-doped systems considered here, the DFT calculated total magnetiza-

tion is 4.00 µB per Fe atom per unit cell. For 12.5% Fe-doped CsPbBr3, the value

of the magnetic moment on each Fe atom is 3.57 µB and that on each adjacent Br

atom is 0.05 µB. For 25% Fe-doped CsPbBr3, the moment on each Fe atoms is

3.55 µB and that on each adjacent Br atom is 0.08 µB. For Fe-doped CsPbCl3, the

moment on each Fe atom is 3.62 µB and that on each adjacent Cl atom is 0.05 µB.

For 25% Fe-doped CsPbCl3, the moment on each Fe atom is 3.60 µB and that on
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each adjacent Cl atom is 0.08 µB.

Figure 4.6: Isosurfaces of the spin-polarization density or magnetization density
[m(r) = n↑(r) − n↓(r)] of Fe-doped CsPbBr3 for (a) 12.5% and (b) 25% Fe con-
centration, and of Fe-doped CsPbCl3 for (c) 12.5% and (d) 25% Fe concentration.
Red and blue lobes represent m(r) > 0 and m(r) < 0, respectively. We note strong
magnetic moments on Fe atoms, plus small magnetic moments on the Br/Cl atoms
adjacent to the Fe atoms. Isovalue used = +/− 0.001 e/bohr3. We do not see any
blue lobes at this isovalue.

Fig. 4.6 shows the spin-polarization density (or magnetization density) for the

Fe-doped systems, where the magnetization density is given by, m(r) = n↑(r)−n↓(r);

here n↑(r) and n↓(r) are the electronic densities for up and down spins, respectively.
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Red lobes correspond to m(r) > 0, indicating that the majority spins are up spins

at that location in space, and blue lobes correspond to m(r) < 0, indicating the

majority spins are down spins at that location in space. The isovalue used for the

magnetization density plots is +/− 0.001 e/bohr3. The size of the lobe surrounding

an atom is an indication of the magnitude of the magnetic moment on that atom. We

clearly see high magnetic moments on the Fe atoms, along with small moments on

the adjacent Br/Cl atoms, consistent with the previous paragraph. In these plots, we

see only red lobes, we do not see any blue lobes, which means m(r) > 0 everywhere

in space, indicating all the spins are aligned in the same direction, making the

systems ferromagnetic. The values of the magnetic moments on Cs and Pb atoms

are negligible, also the moments on the Br/Cl atoms which are far away from the

Fe atoms are also negligible.

4.5.5 Electronic structure of Fe-doped CsPbBr3 and Fe-doped

CsPbCl3

Next, we considered the effect of the incorporation of the Fe atoms in CsPbBr3

and CsPbCl3. For that, we have considered substitutional doping of Fe atoms in

place of the Pb atoms in the unit cell of CsPbBr3 and CsPbCl3. Though in the

experiments, Fe-doping concentrations were always less than 13%, we have taken

2× 2× 2 supercells to reduce computational costs; we therefore substitute one/two

Pb atoms by one/two Fe atoms to achieve a 12.5%/25% Fe-doping concentrations

in our DFT calculations.

We have done both without SOC (scalar-relativistic) and with SOC (fully-relativistic)

calculations. The projected density of states (PDOS) plots for Fe-doped CsPbBr3

are shown in Fig. 4.7. Fig. 4.8 shows the orbital projected band structure of Fe-

doped CsPbBr3. Fig. 4.9 shows the PDOS of Fe-doped CsPbCl3 and Fig. 4.10 shows
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Figure 4.7: Orbital projected density of states (PDOS) of Fe-doped CsPbBr3 and
comparison with the PDOS of pristine CsPbBr3. (a) and (d) are PDOS of pris-
tine CsPbBr3 without SOC and with SOC, respectively. PDOS of 12.5% Fe-doped
CsPbBr3 is shown in (b) without SOC, for spin up and down, and (c) with SOC.
PDOS of 25% Fe-doped CsPbBr3 is shown in (e) without SOC, for spin up and
down, and (f) with SOC. The main contributions come from three orbitals: Fe-3d,
Br-4p and Pb-6p.

the orbital projected band structure of Fe-doped CsPbCl3. These figures contain

results for 12.5% and 25% Fe concentrations, without SOC and with SOC. Both

Fe-doped CsPbBr3 and Fe-doped CsPbCl3 show very similar electronic structure.

For better comparison, the PDOS plots also contain the PDOS of the respective

pristine systems.

After Fe doping, similar to the pristine systems, the valence bands are mainly

contributed by Br-4p (for Fe-doped CsPbBr3) or Cl-3p (for Fe-doped CsPbCl3)

orbitals and the conduction bands are mainly contributed by Pb-6p orbitals [see

Fig. 4.7(b)-(d) and 4.9(b)-(d)]. Upon Fe doping, the main change we notice is the

appearance of Fe-3d states in both Fe-doped CsPbBr3 and Fe-doped CsPbCl3, in

the middle of the band gap region of the respective pristine systems. Near the

Fermi level, the main contributions come from three atomic orbitals: Fe-3d, Br-4p
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Figure 4.8: Orbital projected band structure of Fe-doped CsPbBr3. At 12.5% Fe
concentration, (a), (b) are without SOC, for spin up and down, respectively, and (c)
is with SOC. At 25% Fe concentration, (d), (e) are without SOC, for spin up and
down, respectively, and (f) is with SOC. The bands are projected onto three atomic
orbitals, which have the most contributions near the Fermi level, as shown in the
three-color triangle - red: Fe-3d, blue: Br-4p and green: Pb-6p. The intermediate
colors indicate the extent of mixing of these orbital contributions.

or Cl-3p and Pb-6p. That is why the bands are projected onto these three orbitals,

the relative contributions are shown by three-color plots as shown in Fig. 4.8 and

4.10, where red, blue and green represent contribution of Fe-3d, Br-4p or Cl-3p and

Pb-6p states, respectively. Intermediate colors represent the degree of mixing or

hybridization of the orbitals.

Doping by the magnetic Fe atoms makes the Fe-doped systems magnetic. When

SOC is not included, near the Fermi level, there are no spin up states which crosses

the Fermi level. However, there are some Fe-3d spin down states which cross the

Fermi level 4.7(b), (e) and 4.9(b), (e). This suggests that both Fe-doped CsPbBr3

and Fe-doped CsPbCl3 are half-metallic, i.e., one spin channel can conduct and the

other spin channel is insulating, making these materials useful for spintronics devices.
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Figure 4.9: Orbital projected density of states (PDOS) of Fe-doped CsPbCl3 and
comparison with the PDOS of pristine CsPbCl3. (a) and (d) are PDOS of pris-
tine CsPbCl3 without SOC and with SOC, respectively. PDOS of 12.5% Fe-doped
CsPbCl3 is shown in (b) without SOC, for spin up and down, and (c) with SOC.
PDOS of 25% Fe-doped CsPbCl3 is shown in (e) without SOC, for spin up and
down, and (f) with SOC. The main contributions come from three orbitals: Fe-3d,
Cl-3p and Pb-6p.

In both the Fe-doped systems, two types of Fe-3d states arise: one consists of very flat

and localized Fe-3d states, in the mid gap region and the other is broadly dispersive

and more extended Fe-3d states very close to the conduction bands hybridizing with

the Pb-6p states. When SOC is incorporated, the splitting of the Br-4p or Cl-3p

valence states is less, whereas since SOC is higher for the heavy Pb elements, making

a large splitting of the Pb-6p states in the conduction band into j = 1/2 and j = 3/2

states. The SOC induced splitting is shown according to the j-values of the orbitals

(j is a good quantum number when SOC is included) in the PODS plots [see Fig. 4.7

and 4.9]. Pb-6p, j = 1/2 states shift downward in energy which leads to stronger

hybridization with the Fe-3d states. This hybridization is also clear in the orbital

projected band structures [see Fig. 4.8 and 4.10].

When a photon of band-edge energy is incident on the pristine systems, an

electron makes a transition from the Br-4p or Cl-3p valence band to the Pb-6p
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Figure 4.10: Orbital projected band structure of Fe-doped CsPbCl3. At 12.5% Fe
concentration, (a), (b) are without SOC, for spin up and down, respectively, and
(c) is with SOC. At 25% Fe concentration, (d), (e) are without SOC, for spin up
and down, respectively, and (f) is with SOC. The bands are projected onto 3 atomic
orbitals, which have the most contributions near the Fermi level, as shown in the
three-color triangle - red: Fe-3d, blue: Cl-3p and green: Pb-6p. The intermediate
colors correspond to mixing of the orbital contributions.

conduction band. This leads to the formation of a bound state between the electron

in the conduction band and the newly born hole in the valence band. This bound

electron-hole pair is called an exciton. To release its excitation energy, the excited

electron then comes back to the valence band and recombines with the hole, resulting

in the emission of a photon of band-edge energy and high photoluminescence (PL)

i.e., the excitation energy of the electrons is converted into photons of the same

energy. This is known as radiative recombination. This leads to a very high PL

intensity for the pristine systems [see Fig. 4.1].

As already mentioned, in both Fe-doped CsPbBr3 and Fe-doped CsPbCl3, Fe-3d

states arise in the mid gap region and hybridize with Pb-6p conduction bands. As

a result, the excited electrons in the conduction bands do not directly recombine
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with the hole in the valence bands, instead, they get trapped by the mid-gap Fe-3d

states. This transition from the Pb-6p states in the conduction band to the Fe-3d

mid gap states is not photon-emitting or not radiative, unlike in the pristine systems.

Rather the excitation energy of the electrons is converted into the lattice thermal

vibrational energy i.e., phonons. Since no photon is emitted in this process, this is

called a non-radiative process, and this is the reason for the reduction in the PL

intensity in the Fe-doped systems as observed in the measurements (recall Fig. 4.1).

So, this explains why the PL intensity is less in the Fe-doped systems than in the

pristine systems.

Another point is that the sharp Dirac-delta like nature of the Fe-3d states in

the mid gap region (as shown in the PDOS plots, see Fig. 4.7 and 4.9) hints that

there should be some Fe-3d flat bands in the mid gap region; this is reflected in the

three-color projected band structure plots [see Fig. 4.8 and 4.10], where we see some

completely non-dispersive flat Fe-3d bands in the mid gap region. The effective mass

of the trapped electrons in the flat bands is extremely large. So, once the excited

electrons get trapped by these flat Fe-3d bands, it is very difficult for them to return

back to the conduction bands or combine with a hole in the valence bands. These

flat bands also lie away from both valence and conduction bands, hence the flat

bands act like deep trap states. This increases the non-radiative decay and hence

results in PL quenching.

We also observe that as the Fe concentration increases, the density of the Fe-3d

energy levels in the mid-gap region increases, as clear in the DFT calculated three-

color band structure plots in Fig. 4.8 and 4.10, as well as from the peak heights in

the PDOS plots in Fig. 4.7 and 4.9, which results in an increase in the non-radiative

decay process from the Pb-6p conduction bands to the Fe-3d mid-gap levels. So,

the PL intensity is quenched more as the Fe concentration increases (see Fig. 4.1),

consistent with the experimental observations.
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Since the electronic structure is similar in both Fe-doped CsPbBr3 and Fe-doped

CsPbCl3 systems, one would expect, based on the above arguments, that the PL

quenching should increase with increasing Fe concentration and the PL intensity

should finally be completely quenched, in both the systems. However, this is not

the case, we will next try to understand this.

4.5.6 Vibrational properties of Fe-doped CsPbBr3 and Fe-

doped CsPbCl3

As the electronic structure is similar in both Fe-doped CsPbBr3 and Fe-doped

CsPbCl3 systems, one might expect that the PL quenching should increase with

increasing Fe concentration and then finally the PL should be completely quenched,

in both the systems. However, as discussed above, experiments show a difference be-

tween the behavior of Fe-doped CsPbBr3 and Fe-doped CsPbCl3. At around 3% Fe

concentration, the PL intensity reduces to zero for the Fe-doped CsPbCl3, whereas

for Fe-doped CsPbBr3 the PL intensity does not go zero, rather it remains constant

at some finite value as the Fe concentration increases (see Fig. 4.1). This discrep-

ancy leads us to calculate the vibrational properties of the Fe-doped CsPbBr3 and

Fe-doped CsPbCl3.

We wish to see whether the behaviour of vibrational properties is different in

both the systems. There might possibly be different vibrational behaviour of the

two lattices; it might happen that in one lattice, the excitation energy of the elec-

trons is converted to the lattice vibrational energy to a greater extent than in the

other lattice, due to different electron-phonon (EPC) coupling strengths in the two

materials. X. Gong et al.,50 explained the dramatically different PLQY in PhC2

and C4 crystals by showing different electron-phonon coupling strengths in these
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Figure 4.11: Phonon dispersion along with atomic contributions, calculated without
SOC for 12.5% Fe-doped systems. (a) and (b) are for Fe-doped CsPbBr3 and Fe-
doped CsPbCl3, respectively. The phonon branches are colored according to the
weights of the atomic contributions. Color code: Red – Fe, Blue – Br/Cl and Green
– Pb, as shown in the triangle. The intermediate colors correspond to the mixing of
the atomic contributions.

Figure 4.12: Phonon or vibrational density of states along with atomic contributions,
calculated without SOC for 12.5% Fe-doped systems. (a) and (b) are for Fe-doped
CsPbBr3 and Fe-doped CsPbCl3, respectively. Color code: Magenta – Fe, Blue –
Br/Cl and Green – Pb.

two materials, though the trap densities are comparable and similar in the two ma-

terials. This paper calculated the EPC coupling strength from the full widths at

half maxima FWHMs of the temperature dependent PL spectra, and fitting this

data with a model. There are also other papers which also calculate the EPC using
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the above mentioned approach.51;52

We first calculate the vibrational properties i.e., phonon dispersion(Fig. 4.11])

and the phonon density of states [see Fig. 4.12], along with the atomic contributions

to them. The vibrational properties are calculated using density functional pertur-

bation theory (DFPT) and only for the 12.5% doped systems, and for reasons of

computational cost, SOC is not included in the phonon calculations.

The phonon dispersion with atomic contributions and atom projected phonon

partial density of states are shown in Fig. 4.11 and 4.12, in the frequency range of

Fe atoms’ contributions (for both the Fe-doped systems, Fe atoms vibrate in the

frequency range 135 cm−1 to 180 cm−1) as we are interested to see the effect of Fe

in the pristine systems. We observe that there is significant vibrational coupling

between Fe and Br atoms for Fe-doped CsPbBr3, and Fe and Cl atoms for Fe-

doped CsPbCl3. The contribution of Pb atoms in the frequency range of Fe atoms’

contribution is very small. Being a heavy element, Pb atoms contribute primarily

to phonons below 110 cm−1 in frequency. Also, Cl atoms, being a light element,

contribute to vibrations even at 200 cm−1 at which Br atoms’ Ph-PDOS vanishes,

since Br atoms are heavier than Cl atoms. So, Fe-Br or Fe-Cl vibrational couplings

are observed in the frequency range 135 cm−1 to 180 cm−1 and this range is almost

the same in both the materials. Next, we calculate the value of electron-phonon

coupling in the following.

4.5.7 Origin of different photoluminescence behaviour in Fe-

doped CsPbBr3 and Fe-doped CsPbCl3: Explanation

from electron-phonon coupling

Though the electronic structures and trap states are similar in both Fe-doped

CsPbBr3 and Fe-doped CsPbCl3, the experiments show different PL behaviours
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in these materials; at higher Fe concentration, the PL intensity completely died

for Fe-doped CsPbCl3, while it remained finite for Fe-doped CsPbBr3. We spec-

ulate that this arises from the fact that in one material (Fe-doped CsPbCl3) the

conversion of electronic excitation energy into lattice vibrational energy is more ef-

fective than in the other material (Fe-doped CsPbBr3), which results in increased

non-radiative transitions in Fe-doped CsPbCl3 leading to complete quenching of

photoluminescence in it. So, we next attempt to calculate electron-phonon coupling

(EPC) strengths in these two Fe-doped systems.

To estimate the strength of the electron phonon coupling, we follow previous

authors by first computing the deformation potential, which is a measure of EPC.50

The deformation potential (D) is defined as the change in electronic band energy

due to small atomic displacements (e.g., due to application of strain) and is given

by,

D =
∆E

∆l/l0
(4.3)

where, ∆E is the change in band energy due to small strain ∆l, and l0 is the

optimized lattice parameter of the concerned unit cell. Here, we apply strain of −1%

and +1% in the unit cells of both Fe-doped CsPbBr3 and Fe-doped CsPbCl3. We

have calculated the electronic band structure with no strain (i.e., with the optimized

lattice parameter), and with −1% and +1% applied strain.

Figs. 4.13(a) and (b) each contain three superimposed band structures (i.e., all

the band structures calculated with no strain and strain are shown in the same

plot) calculated with different strains (i.e., −1% (blue bands), 0% (black bands)

and +1% (red bands)), for 12.5% Fe-doped CsPbBr3 and 12.5% Fe-doped CsPbCl3,

respectively. Notice that, to enable an appropriate comparison and to identify the

changes due to strain, here all bands are shifted in energy with respect to the
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corresponding Cs-5s core level, which is assumed to be unaffected by strain.

In Fig. 4.13, black, red and blue lines correspond to the bands due to 0%, +1%

and −1% strains, respectively. A closer look helps us to notice that mainly Fe-3d

mid gap levels and the valence band maximum (VBM) change significantly with

strain as the red and blue lines are not falling on the black lines and are quite

perceptibly shifted with respect to the black lines, for both Fe-doped CsPbBr3 and

Fe-doped CsPbCl3. The changes in the conduction band minima (CBM) are not so

large. However, a more zoomed-in view tells that the change in VBM and CBM is

a little higher for Fe-doped CsPbCl3 than that in Fe-doped CsPbBr3; these changes

we will quantify below.

Figure 4.13: Electronic band structure of (a) 12.5% Fe-doped CsPbBr3 and (b)
12.5% Fe-doped CsPbCl3, with different applied strains. For comparison, all the
band structures with three different strain values are shown in the same plot. Black,
red and blue lines correspond to bands due to 0%, +1% and −1% strain.

We notice that the Fe-3d levels in the mid gap region are very sensitive to the

applied strain. In fact, for Fe-doped CsPbCl3, the triply degenerate Fe-3d flat bands

split into two flat bands for −1% strain. The other less dispersive Fe-3d mid gap

states are also changed hugely due to −1% strain. Though Fe-3d mid gap levels

change for Fe-doped CsPbBr3 also, however, this is not so large in compared to the

large change (in fact large splitting) in Fe-doped CsPbCl3. For simple comparison,

we have drawn a green rectangle in each panel of Fig. 4.13, to demarcate the region

we wish to focus on. We observe a very large splitting and shifting in Fe-3d mid gap
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levels for Fe-doped CsPbCl3, while the change in electronic band energy is not so

large for Fe-doped CsPbBr3.

Next, we quantify the change in the electron band energy due to applied strain,

i.e., calculate the deformation potential D 53 using Eq. 4.3.

We calculate the change in electronic energy at some points of the band struc-

ture due to applied strain. We consider a few points in some bands: (i) VBM at

the Γ point, (ii) CBM at the R point, (iii) maximum and minimum of Fe-3d flat

bands, and (iv) maximum and minimum of Fe-3d less dispersive bands. We have

considered these bands as they are important for band edge transition induced pho-

toluminescence and trapping of electrons. Different colors correspond to different

points of bands in the band structure as mentioned above and full lines are for 12.5%

Fe-doped CsPbBr3 and dashed lines are for 12.5% Fe-doped CsPbCl3.

First we calculate the change in electronic band energy of the above mentioned

bands at the above mentioned points, and then compute the average. Our calcula-

tions gives D = 3.71 eV for 12.5% Fe-doped CsPbBr3 and D = 10.55 eV for 12.5%

Fe-doped CsPbCl3. This implies DFe−CsPbCl3 is 2.84 times larger than DFe−CsPbBr3 .

To calculate the electron-phonon coupling matrix element, we also need to know

the elastic constant C11. Here we will make the assumption that the value of this

elastic constant for the Fe-doped systems can be approximated by that for the

pristine systems, which we believe to be a valid assumption since in the experimental

systems, the Fe concentration is small. So, we have calculated the elastic constant

C11 of pristine CsPbBr3 and pristine CsPbCl3 using the following two equations for

cubic systems:54

∆E = 3V (C11 − C12)e
2
1 +O(e31), (4.4)

and,54
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3B = C11 + 2C12, (4.5)

where ∆E is the difference in total energy of a strained system with respect to the

unstrained system, V is the optimized volume of the unit cell, e1 is applied strain,

and B is bulk modulus of the system. We have considered some geometries in which

the unit cells of CsPbBr3 and CsPbCl3 are strained with tensile and compressive

strain, by increasing and decreasing the lattice constant such that the volume remain

constant at the optimized volume V . Then we fit the ∆E vs e1 curve with a 3rd

order polynomial, which become mostly parabola as the 3rd order contribution is

very less. By extracting the fitting parameters we obtain C11 − C12 as given in

Eq. 4.4. Also, bulk modulus of CsPbBr3 and CsPbCl3 have been calculated and

thus we obtain C11+2C12 as given in Eq. 4.5. By solving Eqn. 4.4 and 4.5 we obtain

C11 = 42.42 GPa for CsPbBr3 and C11 = 49.15 GPa for CsPbCl3.

Now, for an electron making a transition from initial state k to the final state k′

via interaction with phonons created by lattice vibration, the transition probability

is given by the matrix element:55

|M |2 = kBTD
2

V C11

, (4.6)

where kB is the Boltzmann constant, T is the temperature, V is the volume of crystal,

C11 is the elastic constant. D is the deformation potential already computed above.

That is, the transition probability is proportional to the square of the deformation

potential and inversely proportional to the elastic constant.55 Since this transition

probability from state k to state k′ is occurring via interaction with phonons, this

is a measure of electron-phonon coupling in the system. So, the electron phonon

coupling (EPC) ∝ D2/C11.

We have calculated the value of the transition matrix element |M |2 using Eq. 4.6.
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We have taken T = 300 K i.e., room temperature, and V has been taken as unit

cell volumes of CsPbBr3 and CsPbCl3. Our calculation gives: |M |2 = 2.1 × 10−45

for CsPbBr3 and |M |2 = 17× 10−45 for CsPbCl3, both in SI units.

So, we see that, |M |2 or EPC is 8.1 times larger in Fe-doped CsPbCl3 than

that in Fe-doped CsPbBr3. This larger EPC in Fe-doped CsPbCl3 is responsible for

larger non-radiative recombination in this system than in Fe-doped CsPbBr3. This

leads to complete quenching of photoluminescence in Fe-doped CsPbCl3 at higher

Fe concentrations.

4.6 Summary and conclusions

In conclusion, experiments showed photoluminescence (PL) quenching upon Fe dop-

ing in CsPbBr3 and CsPbCl3 nanocrystals. However, at higher Fe concentration,

PL quenching is different for these two materials: in Fe-doped CsPbBr3 PL inten-

sity remains finite at a constant value and in Fe-doped CsPbCl3 PL was completely

quenched.

We have performed DFT calculations on the pristine and Fe-doped materials,

with 12.5% and 25% Fe concentrations. We find that Fe doping increases the stabil-

ity of these materials. However, upon computing the band structure, we find that Fe

doping results in the appearance of Fe-3d states in the mid gap region of the pristine

systems, for both Fe-doped CsPbBr3 and Fe-doped CsPbCl3. As a result, excited

electrons are trapped by the Fe-3d levels. This non-radiative recombination reduces

the PL intensity in the Fe-doped systems with respect to the pristine systems. The

density of Fe-3d states in the mid-gap region increases with increasing Fe concentra-

tion, and as a result, more and more excited electrons get trapped in these states,

which explains why the photoluminescence intensity decreases with increasing Fe

concentration. However, the very similar electronic structure in the two Fe-doped
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halide perovskites cannot explain different PL behaviour.

We have calculated the electron-phonon coupling (EPC) in these systems via

the deformation potential D. The calculated value of D for Fe-doped CsPbCl3

is much larger than that in Fe-doped CsPbBr3, as is the value of the electron-

phonon coupling matrix element M . This indicates that the conversion of electronic

excitation energy into lattice vibrational energy is much larger for Fe-doped CsPbCl3

than for CsPbBr3, leading to complete quenching of PL in the latter system at higher

Fe concentrations.

Our results show that though Fe doping confers additional stability, this comes

at the cost of PL quenching. The degree of PL quenching depends on the particular

halide, due to different strengths of electron-phonon coupling.
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Chapter 5

Optical properties of CsPbX3 and

Fe-doped CsPbX3 (X = Br, Cl)

Dreams are something you have to

believe in. I almost gave up on

mine. To all of you out there,

please keep your dreams alive.

Ke Huy Quan

In this chapter, we study the optical properties of CsPbBr3 and CsPbCl3. This

work was done in collaboration with the experimental groups of Prof. Ranjani

Viswanatha (PhD student - Saptarshi Chakraborty), New Chemistry Unit, JN-

CASR, Bangalore and Prof. Bivas Saha (PhD student – Krishna C. Maurya), Chem-

istry and Physics of Materials Unit, JNCASR, Bangalore. They performed photolu-

minescence (PL) and optical properties measurements. We have done first-principles

density functional theory calculations to study the optical properties of these mate-

rials.
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5.1 Introduction

All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, I) nanocrystals

(NCs) have received significant attention due to their potential applications in pho-

tovoltaic and optoelectronic devices such as solar cells, light-emitting diodes (LEDs),

photodetectors, low-threshold optically pumped lasers, field-effect transistors, lasers

and memristors.1–8 They show outstanding photophysical properties such as high

photoluminescence quantum yield (PLQY), short exciton life times, narrow emis-

sion bandwidth, etc. By changing the halide species one can obtain light emission

throughout the whole visible region.9;10 For example, NCs of CsPbCl3 give emission

at ∼406 nm, i.e., a blue emission which has potential applications in lasers, light-

emitting diodes, ultraviolet (UV) or high energy photodetectors and displays.11–15

As CsPbCl3 NCs are excellent in UV light absorption they can be used in transpar-

ent optoelectronic devices. These NCs can also host rare-earth or transition metal

ions which give stability to the pristine systems and are very important in funda-

mental science as well as in applications: excitons can transfer energy to these ions

which further gives emission in visible or near infrared (IR) region. Mn2+-doped

CsPbCl3 NCs can convert ‘wasted’ energy in the UV region into usable visible light,

which increases the power conversion efficiency (PCE) of solar cells.16;17

For traditional semiconductor solar cells, such as silicon solar cells, it took more

than twenty years to achieve PCE of ∼ 20%, while for halide perovskite solar cells,

the PCE has been improved from 3.81% to ∼ 20% within a few years.18–21 All-

inorganic perovskite materials are better than organic-inorganic halide perovskite

in the sense that they possess greater stability, are better able to deal with oxygen

and moisture, have higher melting points (> 500◦C), and have better photostabil-

ity. Also, NCs of all-inorganic perovskites possess a very high PLQY, with emission

in the whole visible region [see Fig. 5.1], with narrow line widths (12 – 40 nm).
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Figure 5.1: All-inorganic perovskite NCs show emission throughout the whole visible
region. Used with permission from Ref. 1. Further permission related to the material
excerpted should be directed to the ACS.

These properties make the all-inorganic perovskites ideal candidates for optoelec-

tronic applications.22 Within a very short period of time, all-inorganic perovskites

have become very popular because of their better photoluminescence and electrolu-

minescence properties, compared to the conventional cadmium based chalcogenide

NCs. In particular, they can be used to make next generation LEDs with high

efficiency and high tunability.

All-inorganic halide perovskite show PLQY as high as ∼ 90% with tunable PL

wavelength from near UV to near IR region. By varying the halide from chloride

to iodied, one can go from longer to shorter wavelengths of emission, with CsPbBr3

emitting in the green region of the spectrum.

However, the air-stability and thermal-stability of these halide perovskites is

still an issue. Several authors have suggested that doping these materials with a

metal can increase the stability.23;24 It is not clear, however, whether or not this will

impact the optical properties. This is the issue we will explore in this chapter. We

are particularly interested in substituting (partly) the toxic element Pb.
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5.2 Experimental motivation

Our experimental collaborators from the group of Prof. Ranjani Viswanatha, New

Chemistry Unit, JNCASR, Bangalore and Prof. Bivas Saha, Chemistry and Physics

of Materials Unit, JNCASR have studied the optical properties of CsPbBr3 and

CsPbCl3. In particular, they have attempted to determine the possible optical

transitions in these perovskite materials using ellipsometry experiments. They have

found the absorption peaks corresponding to the band edge transitions of CsPbBr3

and CsPbCl3. In addition, the ellipsometry measurements can probe some more

transitions besides the band edge transitions. These transitions are excited state

transitions from the valence band maxima of the two materials.

Ellipsometry is an experimental technique to measure the change in the polariza-

tion of light as it reflects or transmits from a material. The linearly polarized light

is incident on and is reflected from the sample, and becomes elliptically polarized

light upon reflection. Ellipsometry measures the change in the polarization of light

in terms of an amplitude ratio Ψ and phase difference ∆. From these two quantities

Ψ and ∆, one can obtain frequency dependent fundamental optical constants, such

as the complex index of refraction and complex dielectric function of a material:

ϵ̃(ω) = ϵ1(ω) + iϵ2(ω), where ϵ1 is the real part of the dielectric function and ϵ2

is the imaginary part. These quantities ϵ1 and ϵ2 are measured as a function of

the photon energy (which is proportional to the frequency of the electric field of

the incoming electromagnetic wave) of the incoming light. As the absorption of a

material is directly proportional to its ϵ2, so this also produces absorption spectra

of the concerned materials. The peaks in the ϵ2 spectra or the minimum of the d2ϵ2
dE2

spectra gives the possible optical transitions in CsPbBr3 and CsPbCl3.

Our main aims in this chapter are to (i) find the origin of these optical transitions

i.e., identify the states which are responsible for these transitions, and (ii) compare
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the experimentally measured values of ϵ1 and ϵ2 (obtained from the ellipsometry

data) with the results obtained from our first-principles density functional theory

(DFT) calculations.

5.3 Computational details

All calculations have been performed using density functional theory (DFT) as

implemented in the Quantum ESPRESSO package.25;26 The interactions between

the valence electrons and ionic cores were described using norm-conserving pseu-

dopotentials.27 The exchange correlation functional was treated using a Generalized

Gradient Approximation of the Perdew-Burke-Ernzerhof (PBE-GGA) form.28 The

Kohn-Sham wavefunctions and the corresponding charge densities were expanded in

plane-wave basis sets having cut-offs of 80 Ry and 320 Ry, respectively. Brillouin

zone sampling was done using an 8 × 8 × 8 Monkhorst-Pack mesh,29 along with

Marzari-Vanderbilt cold smearing of width 0.001 Ry.30 The pristine CsPbBr3 and

CsPbCl3 crystals were modelled with cubic unit cells containing five atoms, forming

perovskite structures.

The optical properties of CsPbBr3 and CsPbCl3 have been calculated using the

epsilon.x post-processing routine that is a part of the Quantum ESPRESSO pack-

age.25;26 The imaginary part of the dielectric tensor ϵ2, has been calculated using

the Drude-Lorentz model, using the formula:31

ϵ2α,β =
8πe2

ΩNkm2

∑
n∈V

∑
n′∈C

∑
k

M̂α,β

Ek,n′ − Ek,n

× Γωf(Ek,n)

[(ωk,n′ − ωk,n)2 − ω2]2 + Γ2ω2
, (5.1)

where α, β run over the Cartesian directions x, y, z. Ω is the volume of the unit cell,

n and n′ index the valence (V ) and conduction bands (C) respectively, k indexes
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the wave-vectors sampled in the Brillouin zone, Nk is the total number of such k-

points, ω is the frequency, Ek,n are the Kohn-Sham eigenvalues, Ek,n′ −Ek,n are the

transition energies, e and m are the electronic charge and mass, respectively, of the

electron, Γ is the interband broadening parameter, and f(Ek,n) is the Fermi-Dirac

distribution function that accounts for the occupation of the bands. Here, M̂α,β

are the squared matrix elements of the momentum operator. We note that only

direct transitions are considered, and contributions from the non-local part of the

pseudopotential are neglected. The value of the interband broadening parameter Γ

was set to 0.2 eV (in order to identify the peaks due to individual transitions) or 0.4

eV (to compare with the experimental data).

5.4 Systems under study

We have taken pristine CsPbBr3 and CsPbCl3 in the cubic structures containing five

atoms in their respective unit cells. We note that though, at a temperature of 0 K,

previous authors have found some octahedral distortions from the cubic perovskite

structures, these distortions disappear at room temperature.32 As the experiments

we wish to compare with were carried out at room temperature, we do not consider

these octahedral distortions in our calculations. We have computed the electronic

structure (band structure) and also the optical properties calculations. Finally we

have identified the possible optical transitions measured experimentally in these

materials.
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5.5 Results and discussion

5.5.1 Optical properties of pristine CsPbBr3 and CsPbCl3

The electronic band structures of CsPbBr3 and CsPbCl3 are shown in Figs. 5.2(b)

and 5.3(b), respectively. Our PBE-GGA calculations indicate a direct band gap at

the R point, equal to 1.79 eV for CsPbBr3 and 2.22 eV for CsPbCl3. In Table 5.1,

we compare our results for the band gap, with previously calculated values,33;34 as

well as experimentally measured values.35 It can be seen that while our results are

in good agreement with earlier GGA values, the band gaps are underestimated with

respect to experimental values, which is a well-known shortcoming of DFT within

the GGA.

Material Eg (ours) Eg (previous) Eg (expt)
(eV) (eV) (eV)

CsPbBr3 1.79 1.76 (PBE-GGA)33 2.3035

CsPbCl3 2.22 2.20 (PBE-GGA)34 3.0035

Table 5.1: Band gap Eg of CsPbBr3 and CsPbCl3. Comparison between our calcu-
lated values, previously calculated values and experimentally measured values.

From ellipsometry measurements, we have extracted the spectrum of ϵ2(E) for

both CsPbBr3 and CsPbCl3 [see red curves in Figs. 1(b) and 2(b)]. The critical

points in the spectra for CsPbBr3 and CsPbCl3 are identified as the minima of the

corresponding d2ϵ2
dE2 curves.

Accordingly, we have found three critical points for CsPbBr3 and four critical

points for CsPbCl3 in the energy range 0 – 7 eV. These are marked as Ea, Eb, Ec

and Ed in Figs. 5.2(b) and 5.3(b). The critical points for CsPbBr3 are Ea = 2.55

eV, Eb = 3.25 eV and Ec = 4.56 eV, and for CsPbCl3 are Ea = 3.10 eV, Eb = 3.42

eV, Ec = 4.53 eV and Ed = 5.56 eV. We note that the minimum corresponding to
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Eb for CsPbBr3 is rather broad and flat, and there is therefore a particularly large

error bar associated with the reported value of 3.25 eV.

Figure 5.2: (a) Calculated band strcuture of CsPbBr3. Scissor correction of 0.76 eV
has been applied to the conduction bands. The vertical blue arrows indicate direct
transitions that have been identified with the peaks in the dotted blue curves in (b).
(b) Imaginary part of the dielectric function ϵ2 from ellipsometry measurements (red
curve) and DFT calculations (blue and green curves) for CsPbBr3. The dotted blue
and solid green curves were computed using broadening parameters Γ = 0.2 eV and
0.4 eV, respectively.

We have also computed the imaginary part of the dielectric function ϵ2 using

DFT, to compare with the ellipsometry data. We actually want to identify a one-

to-one correspondence behind the creation of each peak in the ϵ2 spectra with the

possible transitions in the corresponding band structure of the relevant. ϵ2 is calcu-

lated with two different values of the interband broadening parameter Γ = 0.2 eV

and 0.4 eV. These are shown as, respectively, the dotted blue and solid green curves

in Figs. 5.2(b) and 5.3(b).

The first peak of the experimental ϵ2 spectrum [red curves in Figs. 5.2(b) and

5.3(b)] is the first critical point Ea, and is found at 2.55 eV for CsPbBr3 and 3.10

eV for CsPbCl3. These correspond to the band-edge excitonic absorption peak for

the corresponding material. We recall that our theoretically calculated values of the

band gap are 1.79 eV for CsPbBr3 and 2.22 eV for CsPbCl3. To account for the
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Label of
Expt.
peak

Transition
energy
(eV)

(Expt.)

Label of
Calc. peak

Identified
transitions

(Calc.)

Transition
energy
(eV)

(Calc.)

Orbitals
involved

Ea 2.55 e1 R → R 2.55 Br-4p → Pb-6p
− − e2 Ca → Ca 2.86 Br-4p → Pb-6p
Eb 3.25 e3 Cb → Cb 3.23 Br-4p → Pb-6p
− − e4 M → M 3.56 Br-4p → Pb-6p
− − e5 R2 → R 3.89 Br-4p → Pb-6p
− − e6 M2 → R 4.28 Br-4p → Pb-6p
Ec 4.56 e7 X → X 4.56 Br-4p → Pb-6p
− − e8 R4 → R, M3 → M 4.95 Br-4p → Pb-6p
− − e9 X3 → X, X4 → X 5.26 Br-4p → Pb-6p
− − e10 Γ → Γ 5.80 Br-4p → Cs-6s

Table 5.2: Identified optical transitions from calculation for CsPbBr3 and compar-
ison with ellipsometry measurements. The values of the transitions energies are
written and compared between calculation and experiment. The orbitals involved
in the transitions are also mentioned. All the theoretical values are shifted up with
0.76 eV.

DFT underestimation of the band gap, we match the first peaks of ϵ2 as measured

experimentally and calculated from DFT, by shifting up the theoretically calculated

spectra by an amount ∆,36 we note that this corresponds to applying a ‘scissors

correction’ ∆ to the conduction bands, which is a standard procedure in the field.

The values of this shift are ∆CsPbBr3 = 0.76 eV and ∆CsPbCl3 = 0.88 eV. We note that

our values for Ea are slightly higher than those reported by previous authors;37;38

we attribute this slight discrepancy to the small size of the nanocrystals of CsPbBr3

and CsPbCl3 used in our experiments.

By looking at Fig. 5.2(b), we see that for CsPbBr3 we have excellent agreement

between the experimentally measured spectrum (red curve) and the theoretically

computed values (green curve), for both the shape and the width of the curve, though

the calculated values appear to be larger than the theoretical values in magnitude by

a factor of ∼ 2. In contrast, for CsPbCl3 [see Fig. 5.3(b)] the magnitude of ϵ2 agrees

well between experiment and theory; however, the width of the overall spectrum

appears to be overestimated in the calculations, with a notable red shift.
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Figure 5.3: (a) Calculated band strcuture of CsPbCl3. Scissor correction of 0.88 eV
has been applied to the conduction bands. The vertical blue arrows indicate direct
transitions that have been identified with the peaks in the dotted blue curves in (b).
(b) Imaginary part of the dielectric function ϵ2 from ellipsometry measurements (red
curve) and DFT calculations (blue and green curves) for CsPbCl3. The dotted blue
and solid green curves were computed using broadening parameters Γ = 0.2 eV and
0.4 eV, respectively.

Due to the small value of the broadening parameter Γ used to compute ϵ2(E) in

the blue dotted curves in Figs. 5.2(b) and 5.3(b), one can see that the spectrum is

composed of individual peaks, and one can identify each peak as arising from specific

transitions in the band structure. These transitions are indicated by the blue arrows

in Figs. 5.2(a) and 5.3(a), and the corresponding peaks are labeled in Figs. 5.2(b)

and 5.3(b). We note that not all the peaks observed in the theoretically computed

dotted blue curves are experimentally resolved as critical points in the spectrum of

ϵ2.

In Table 5.2 and Table 5.3, we have listed (for CsPbBr3 and CsPbCl3, respec-

tively) the energies of the theoretically computed peaks as well as the experimen-

tally determined critical points. By comparing the two, we can assign the tran-

sitions responsible for the experimentally determined critical points. Accordingly,

for CsPbBr3, we make the following assignments: Ea: R → R, Eb: Cb → Cb, and

Ec: X → X. As mentioned above, there is considerable uncertainty in the value of
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Eb and it is therefore also possible that it arises from M → M transitions, as has

been claimed by previous authors.37 Similarly, for CsPbCl3, we tentatively assign

Ea: R → R , Eb: Ca → Ca, Ec: Cc → Cc and Ed: R4 → R. We note that the points

Ca, Cb and Cc are not high symmetry points in the Brillouin zone, but correspond

to points [see Figs. 5.2(a) and 5.3(a)] where the band structure has inflection points.

Label of
Expt.
peak

Transition
energy
(eV)

(Expt.)

Label of
Calc. peak

Identified
transitions

(Calc.)

Transition
energy
(eV)

(Calc.)

Orbitals
involved

Ea 3.10 e1 R → R 3.1 Cl-3p → Pb-6p
Eb 3.42 e2 Ca → Ca 3.41 Cl-3p → Pb-6p
− − e3 Cb → Cb 3.73 Cl-3p → Pb-6p
− − e4 M → M 4.18 Cl-3p → Pb-6p
Ec 4.53 e5 Cc → Cc 4.57 Cl-3p → Pb-6p
− − e6 R2 → R 4.94 Cl-3p → Pb-6p
− − e7 R3 → R, M2 → M,

X → X
5.35 Cl-3p → Pb-6p

Ed 5.56 e8 R4 → R 5.67 Cl-3p → Pb-6p
− − e9 M3 → M 5.91 Cl-3p → Pb-6p
− − e10 X2 → X 6.21 Cl-3p → Pb-6p
− − e11 Γ → Γ 6.57 Cl-3p → Cs-6s

Table 5.3: Identified optical transitions from calculation for CsPbCl3 and comparison
with ellipsometry measurements. The values of the transitions energies are written
and compared between calculation and experiment. The orbitals involved in the
transitions are also mentioned. All the theoretical values are shifted up with 0.88
eV.

We have projected the Kohn-Sham wavefunctions onto the atomic orbitals to

get information about the contribution from various atomic orbitals to the valence

and conduction band states in different parts of the Brillouin zone. We find that

the highest states in the valence bands in CsPbBr3 (CsPbCl3) have contributions

primarily from the Br−4p (Cl−3p) orbitals. In contrast, the lowest states in the

conduction band mainly arise from the Pb−6p states, throughout the Brillouin zone

BZ), except in the vicinity of the zone-center Γ, where Cs−6s orbitals contribute

more. Thus, the orbital involvement in all the direct transitions is Br−4p (Cl−3p)

→ Pb−6p for all k-points, except at the Γ point where a Br−4p (Cl−3p) → Cs−6s



182 Chapter 5.

transition takes place.

5.5.2 Comparison between CsPbBr3 and CsPbCl3: Experi-

ment vs. Calculations

Figs. 5.2(b) tells us that, for CsPbBr3, the calculated ϵ2(ω) spectra are in excellent

agreement with the ellipsometry data, at least regarding the shape of the curve,

though there is a discrepancy in the absolute values. Fig. 5.3(b) tells, in contrast,

for CsPbCl3 the shape and width of the spectrum does not match well when one

compares experiment and calculation (though the absolute values match very well

between our calculation and experiment). In this section, we provide a possible

explanation for why there is this discrepancy for CsPbCl3 but not for CsPbBr3.

Our calculations are done using DFT which is a 0 K theory, and ellipsometry

measurements are done at room temperature (RT), ∼ 300 K. As each peak in the

ϵ2(ω) spectrum corresponds to one transition between valence and conduction bands

in the respective band structures, the origin of deviation in the ϵ2(ω) spectrum for

CsPbCl3 must come from inability to capture exact band energies in our (zero-

temperature) calculations.

We want to check if the electronic band energies change with temperature. At

RT, thermal energy creates a large number of phonons. A large electron-phonon

coupling can result in a significant change in the band energy with temperature.

This was something we had looked at in the previous chapter when calculating the

deformation potential D.

However, to try to understand the results obtained in this chapter, it does not

suffice to compute the change in energy of an individual state in a band n with

wavevector k. Instead we have to look at differences in two steps: (i) first we have

to look at how the energy of a given transition changes, by looking, for a fixed k,
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at how the energy of the transition from bands n → n′ changes, by looking at the

change in band energies of the states (n,k) and (n′, k); (ii) how the shape of ϵ2(ω)

changes, for example by looking at W , the difference in energy in ωBE and ωpk,

which are the energies of the band edge transition and peak transition, respectively.

Figure 5.4: Calculated band structure of (a) CsPbBr3 and (b) CsPbCl3 for −1%
(blue bands), 0% (black bands) and +1% (red bands) strain.

To estimate the temperature difference of these quantities, we will look at the

electron-phonon coupling for these states, which in turn we will estimate (as in the

previous chapter) by computing their response to a strain applied to the crystal.

Fig. 5.4 shows the band structures calculated with 0% strain (black bands), −1%

strain (blue bands) and +1% strain (red bands) for both CsPbBr3 and CsPbCl3.

Here, for an appropriate comparison, all bands have been shifted with respect to

the Cs-5s core level for each system, which is expected to be relatively insensitive

to strain.

In Table 5.4 we present our results obtained by analyzing the shifts in band en-

ergies with strain (shown in Fig. 5.4). We note that for both CsPbBr3 and CsPbCl3,

the band edge energy ωBE corresponds to a transition from the valence band maxi-

mum (VBM) to the conduction band minimum (CBM) at the R point. This is the

transition labeled e1 in both Fig. 5.2 and Fig. 5.3. The peak energy ωpk corresponds

to the e7 transition (at the X point) for CsPbBr3 and the e8 transition (at the R
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System Strain (∆l/l0) Band edge ωBE (eV) Peak ωpk (eV) W = ωpk − ωBE (eV)

CsPbBr3

−1% 1.686 3.960 2.274

0% 1.791 3.907 2.116

+1% 1.885 3.850 1.965

δ − − − 15.45

CsPbCl3

−1% 2.105 4.984 2.879

0% 2.218 4.858 2.640

+1% 2.317 4.731 2.420

δ − − − 22.95

Table 5.4: Variation in the transition energies corresponding to the band edge (ωBE)
and peak (ωpk) in ϵ2(ω) with applied strain, for both CsPbBr3 and CsPbCl3. W is
the difference in energy between the peak and band edge transitions, and δ (defined
in the text) is a measure of electron-phonon coupling.

point) for CsPbCl3. We note that the values listed in this table are the ‘bare’ val-

ues obtained from DFT and have not been shifted to align the experimental and

computed band edge energies, unlike the values listed in Tables 5.2 and 5.3. These

values are all listed at zero strain, and at isotropic strains of +1% and −1%.

We have also listed the values of the width W = ωpk − ωBE. Now, in analogy

with the deformation potential, we define:

δ =
∆W

∆l/l0
. (5.2)

δ is a measure of how strongly the shape (width) of ϵ2(ω) is affected by electron-

phonon interactions, and hence temperature. We find that δ = 22.95 for CsPbCl3

and δ = 15.45 for CsPbBr3. Thus, the effect of electron-phonon couplings (and hence

temperature) on the width of ϵ2(ω) is almost one-and-a-half times larger for CsPbCl3

than for CsPbBr3. We note that with this rather simple treatment of electron-

phonon coupling, one may expect to get a qualitative trend but not quantitative
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accuracy. We believe our results can explain why there is a considerable mismatch

in the experimental and computed widths of the broad peak in ϵ2(ω) for CsPbCl3

but not for CsPbBr3. We also note that several authors who have computed optical

spectra for similar systems have noted that in addition to a lateral shift, they also

have to apply an overall broadening/narrowing to their computed spectra to obtain

a match with experiment. We suggest that strong electron-phonon coupling may be

at least a part of the reason for this.

5.5.3 Comparison of dielectric function: pristine and Fe-doped

CsPbX3 (X = Br, Cl)

For optoelectronic applications of Fe-doped CsPbBr3 and Fe-doped CsPbCl3, we

need to know the optical performance of these materials. For this, we have to look

how these materials interact when they are illuminated. The frequency dependent

(frequency of the incoming electromagnetic wave) imaginary part (ϵ2(ω)) of dielectric

function is a very important quantity to measure the optical properties of a material.

These properties are a measure of how the electrons within a material interact with

the photons of the incoming electromagnetic wave, when the material is illuminated.

The equations for calculating ϵ2(ω) are given in the ‘Methods and Formalism’ chapter

of this thesis.

Figs. 5.5(a) and (b) show the imaginary part of the frequency dependent dielectric

function ϵ2(ω) for pristine CsPbBr3, 12.5% Fe-doped CsPbBr3 and CsPbCl3, 12.5%

Fe-doped CsPbCl3, respectively. We note that the calculated ϵ2(ω) spectra capture

all the direct transitions, with crystal momentum conserved i.e., no phonons are

involved in the process.
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Figure 5.5: Calculated imaginary part (ϵ2) of frequency dependent dielectric func-
tion for (a) CsPbBr3, 12.5% Fe-doped CsPbBr3 and (b) CsPbCl3, 12.5% Fe-doped
CsPbCl3. Color code of curves: magenta – pristine systems and blue – Fe-doped
systems. Green vertical lines and black arrows represent the first peak in ϵ2 spectra
for all the systems.

For 12.5% Fe-doped CsPbBr3 and 25% Fe-doped CsPbBr3 the calculated direct

band gaps at the Γ point are 1.82 eV and 2.00 eV, respectively, while for pristine

CsPbBr3 the calculated band gap was 1.79 eV. Also for 12.5% Fe-doped CsPbCl3

and 25% Fe-doped CsPbCl3 the calculated direct band gaps at the Γ point are 2.24

eV and 2.41 eV, respectively, while for pristine CsPbCl3 the calculated band gap

was 2.22 eV. So, the band gap (excluding the Fe-induced mid gap states) increases

upon Fe-doping and it is increasing with increasing Fe concentration. Band gap

increase indicates decrease in wavelength of photoluminescence and therefore there

is a ‘blue shift’ upon Fe-doping. The first peak of the ϵ2(ω) spectrum corresponds

to the lowest energy band edge transition in the band structure. We see that upon

Fe doping the first peak in the ϵ2(ω) spectrum is shifted a little upward in energy,

for both bromide and chloride systems, as shown by green vertical lines and black

arrows in Fig. 5.5(a) and (b). This is due to the fact that the direct band gap

increases upon Fe-doping with respect to pristine systems, for both the materials.

This small blue shift in photoluminescence upon Fe doping is consistent with the

experimental observations [see Fig. 4.1 in the previous chapter].
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5.6 Conclusions

In summary, our experimental collaborators have done ellipsometry measurements

of pristine CsPbBr3 and pristine CsPbCl3 and identified the band edge transitions as

well as some higher energy excited state optical transitions from the peaks obtained

in the ϵ2(ω) spectra.

We have calculated the electronic band structures of pristine CsPbBr3 and CsPbCl3.

As the optical transitions depend on the momentum matrix elements and the den-

sity of the final states given by the Fermi’s golden rule, we further calculated the

frequency dependent imaginary part of the dielectric function ϵ2(ω) which captures

these things together. As GGA calculations underestimate the band gap, the cal-

culated ϵ2(ω) spectra has to be shifted (for both CsPbBr3 and CsPbCl3) upward

in energy to match the first peak (i.e., the band edge transition) of the calculated

spectra with the experimental spectra.

The calculated spectra is compared with the experiment and the band edge

transition as well as the higher energy optical transitions are identified. Overall, for

CsPbBr3 ϵ2(ω) the spectrum matches very well with the experiment. The calculation

overestimates the peak energy for CsPbCl3. We suggest that the reason for this

disagreement is a strong electron-phonon coupling in CsPbCl3, resulting in a large

change in the energies of some electronic transitions with temperature.

The ϵ2(ω) spectra has been calculated for Fe-doped CsPbBr3 and Fe-doped

CsPbCl3 also and compared with the pristine systems. We see that the band gap

increases upon Fe doping which causes a blue shift with respect to the emission and

absorption of the pristine systems.
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Chapter 6

Electronic Properties of Two Dimensional

Electron Gas at LVO/KTO Interface

If you are receptive and humble,

Mathematics will lead you by the

hand.

Paul A. M. Dirac

In this chapter, we study the electronic properties of the two dimensional elec-

tron gas (2DEG) formed at the interface of LaVO3 and KTaO3. These materials are

commonly referred to as LVO and KTO, respectively, and the interface formed by

them is referred to as LVO/KTO. The work presented in this chapter was performed

in collaboration with the experimental group of Prof. Suvankar Chakraverty, INST,

Mohali, who experimentally created an LVO/KTO interface, and studied its prop-

erties. We have performed first-principles density functional theory calculations on

this system, to gain insight into the electronic properties of the 2DEG formed at the

LVO/KTO interface.

195
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6.1 Introduction

A two-dimensional electron gas (2DEG) refers to a system of electrons confined

within a two-dimensional plane, typically at the interface between two different

insulators or two semiconductors or one insulator and one semiconductor. In such

systems, electrons are free to move in two dimensions but are tightly confined in the

third dimension.

This confinement along the third direction leads to the quantization of electronic

energy levels along that direction. The spacing between the electronic energy levels

in the third direction is greater than the thermal energy kBT , where kB is Boltz-

mann’s constant and T is the temperature, so that thermal energy alone cannot lead

to the motion of the electrons along the third dimension, and the wavefunction has

the form of standing wave along the third dimension.

The most commonly observed 2DEGs are found at interfaces in metal oxide

semiconductor field effect transistors (MOSFETs). In MOSFETs, the electrons are

extremely confined to the vicinity of the interface between a semiconductor (eg., Si)

and metal oxide (which is an insulator, e.g., SiO2) by an externally applied positive

gate voltage. At low temperatures, only the lowest electronic energy level along the

direction perpendicular to the interface is occupied, and hence the motion of the

electrons perpendicular to the interface is ignored. However, the electrons can freely

move parallel to the interface, thus forming a 2DEG.

Already, two Nobel prizes have been awarded in the field of 2DEG research: one

in 1985 to Klaus von Klitzing for the discovery of the Integer Quantum Hall effect,

and the other in 1998 to Daniel Tsui, Horst Störmer and Robert Laughlin for the

discovery of the Fractional Quantum Hall effect.

Oxide materials exhibit many diverse properties like magnetism, ferroelectricity,
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superconductivity, etc.1 When two or more oxides are combined to form heterostruc-

tures, a rich variety of phenomena emerges.2;3 These oxide heterostructures can be

made experimentally by recently developed thin film deposition techniques such as

pulsed laser deposition and molecular beam epitaxy.

Transition metal oxide heterostructures are very famous and fundamentally im-

portant for diverse emergent properties. This vast range of emergent properties

includes magnetism, half-metallic behavior, multiferroicity, high temperature super-

conductivity, optical and electrical effects, quantum oscillations in conductivity and

colossal magnetoresistance.4–13

In 2004, Ohtomo and Hwang observed electronic conduction or a metallic phase,

for the first time, at the interface of two insulator perovskites, LaAlO3 and SrTiO3.14

Since then, the LaAlO3/SrTiO3 interface, commonly referred to as LAO/STO,

has become very well known, and has been extensively studied for the past two

decades.15;16 In this system, a metallic phase emerges at the interface of the two

materials, while the individual bulk components LAO and STO are insulators. It

is observed that the metallic phase is confined to a region within a few nanome-

ters of the interface, and thus this can be treated as a two-dimensional electron gas

(2DEG).17 The 2DEG has a very high charge carrier density of ∼ 1013 cm−2 and

large mobility of ∼ 103 cm2 V−1 s −1 which makes it of great interest for applications

in nanoelectronics, e.g., oxide field-effect transistors.18–21

The LAO/STO interface also shows some fascinating emergent properties such as

magnetism, superconductivity, quantum Hall effect, coexistence of ferromagnetism

and superconductivity, photoconductivity, resistance switching, Shubnikov-de Haas

oscillations, etc.4;10;12;20;22–28

Further, the charge carrier density and hence the conductivity of the 2DEG at

the interface can be tuned by means of an applied electric field and/or electromag-

netic radiation.12;20;24;29 The charge carrier density increases as the light illumination
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increases. Even after switching off the light, this increased conductivity remains

for several days; this is known as ‘persistent photoconductivity’.29–31 In addition

to LAO/STO, this phenomenon has also been observed in other interfaces, e.g.,

LTO/STO (LTO = LaTiO3).

Figure 6.1: (a) The unreconstructed interface has neutral (001) planes in SrTiO3 ,
but the (001) planes in LaAlO3 have alternating net charges (ρ). If the interface
plane is LaO/TiO2, this produces a non-negative electric field (E), leading in turn
to an electric potential (V ) that diverges with thickness. (c) The divergence catas-
trophe at the LaO/TiO2 interface can be avoided if half an electron is added to
the last Ti layer. This produces an interface dipole that causes the electric field to
oscillate about zero and the potential remains finite. The upper free surface is not
shown, but in this simple model the uppermost AlO2 layer would be missing half
an electron, which would bring the electric field and potential back to zero at the
upper surface. Reprinted with permission from Ref. 15.

A spin-polarized 2DEG has been found at the interface of two non-magnetic

materials LAO and STO.8 Magnetism emerges at the cost of exchange splitting of

the Ti-3d conduction electrons; this is confirmed by first-principles calculations of

LAO/STO.32;33 First principles calculations have also found spin polarization at the

LaTiO3/SrTiO3 interface.34 These findings are of interest for possible applications

in spintronics.35 Standard electronic devices such as transistors and diodes carry

information using the charge degrees of freedom of electrons; carrying information

using instead (or in addition) spin degrees of freedom could have different advantages

such as low power cost, better energy efficiency, and new devices can be constructed

like spin transistors.36

An enormous amount of work, both experimental and theoretical, has been done
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in the past two decades, on 2DEGs at oxide interfaces. However, the origin of

2DEGs in many oxide interface systems is not very clear: many mechanisms have

been proposed, and there is still an ongoing debate. Two mechanisms have be-

come particularly popular.37;38 The most popular mechanism, arguably, is known as

‘electronic reconstruction’ due to ‘polar catastrophe’.15 This mechanism is shown in

Fig. 6.1. In oxide interfaces such as LaMO3/SrTiO3 (M = metal atom), along the

(001) direction, the LaMO3 is comprised of alternating LaO and MO2 planes. If

we consider formal ionic charges, this consists of alternating (LaO)+1 and (MO)−1

charged planes. In contrast, SrTiO3 consists of alternating (SrO)0 and TiO0 neutral

layers. This causes a finite polarization inside LaMO3. Therefore, when a LaMO3

film is grown on a TiO2 terminated SrTiO3(001) surface, a polarization discontinuity

exists at the interface region which increases the electrostatic potential as the LaMO3

film thickness increases. Thus there exists a potential divergence, this is called the

‘polar catastrophe’. This makes the system unstable. To eliminate the polar catas-

trophe, 1
2

electron is transferred, from the surface of LaMO3 to the LaMO3/SrTiO3

interface, thereby eliminating the divergence of potential. This mechanism is known

as ‘electronic reconstruction’ due to ‘polar catastrophe’.

Another well accepted mechanism for 2DEG formation at the interface of two

semiconductors is ‘modulation doping’, shown in Fig. 6.2. In modulation doping,

the conduction electrons (holes) are spatially separated from their donor (acceptor)

impurity ions.39 Suppose there is an interface formed between a wider band gap

semiconductor and narrower band gap semiconductor and the wider gap semicon-

ductor is doped with some donor (acceptor) impurity ions. In this case the band

alignment is such that that the conduction band minimum of the wider gap semicon-

ductor is above the conduction band minimum of the narrower gap semiconductor

and this conduction band minimum is crossing the Fermi level at the interfacial re-

gion. Due to these relative conduction band offsets, the electrons (holes) donated by
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Figure 6.2: Principle of modulation doping. Electrons from the donors in the ma-
terial with the higher-conduction band edge transfer into the conduction band of
the semiconductor on the other side of the interface, creating a 2DEG. The elec-
trons are spatially separated from their donors, and ionized impurity scattering is
thus reduced. EC and EV denote the conduction band edge and valence band edge,
respectively, and EF denotes the Fermi level. Reprinted with permission from Ref.
38.

their donors (acceptors) are transferred to the partially occupied conduction band of

the narrower gap semiconductor at the interface. The transferred electrons (holes)

will not go away from the interface as they will remain attracted by their correspond-

ing donors (acceptors), thus creating a 2DEG at the interface. Due to this spatial

separation between electrons (holes) and their donors (acceptors), the scattering or

trapping is dramatically reduced, which increases the mobility of the 2DEG. One

example of a system where one observes 2DEG formation by modulation doping is

AlGaAs/GaAs heterostructures having extremely high carrier mobility of 3 × 107

cm2 V −1 s−1.40;41 This method has very important device applications such as in

high-electron-mobility transistors (HEMTs).42;43

There are other mechanisms suggested in the literature, for 2DEG formation at

the interface of two insulating perovskites, such as oxygen vacancies44–46 and cation
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intermixing47–49.

Charge transfer can also happen at the interfaces of LaMO3/SrTiO3 superlattice,

if the LaMO3 is nonstoichiometric i.e., LaMO3 is terminated with LaO layers on

both sides. For this case, an ‘extra’ electron is introduced into the system due to

the uncompensated ionic charge on the additional (LaO)+1 monolayer, a mechanism

which is equivalent to electron doping.50

As already mentioned above, the most studied system in the perovskite ox-

ide 2DEG community is LaAlO3/SrTiO3 (LAO/STO). This is an example of a

polar/non-polar interface as LAO is a polar material and STO is a non-polar mate-

rial. Considering 2DEG formation at the interface of two band insulators perovskite

oxides, 2DEG is discovered for the first time at this interface and from then this

system is being studied even till now, over two decades of fascinating research. The

formation of 2DEG at LAO/STO is ‘electronic reconstruction’ due to polar catas-

trophe, as described above. LAO/STO is an example of polar/non-polar interface,

where LAO is a polar material as it consists of alternating charged (LaO)+ and

(AlO2)
− layers and STO is a non-polar material as it consists of alternating neutral

(SrO)0 and (TiO2)
0 layers. At the (LaO)+/(TiO2)

0 interface, 1
2

electrons are trans-

ferred from the charged (LaO)+ layer to the neutral (TiO2)
0 layer at the interface,

to avoid the polar discontinuity and hence polar catastrophe. These transferred

electrons then partially occupy the Ti-3d orbitals of STO and create conduction at

the interface.15

It has also been observed that for less than 4 unit cells (u.c.) of LAO film

thickness, the LAO/STO interface remains insulating. So there exists a critical film

thickness of 4 u.c. above which the conducting nature starts at this interface.20

Theoretical studies have shown that this critical thickness for forming a 2DEG at

the interface is strongly related to the polar distortions or electric polarization in

the LAO film.51;52 M. Behtash et al.,52 have shown that the polarization strength
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decreases as the thickness increases for LAO. When the LAO film thickness is below

5 u.c., the polarization strength within the LAO is strong enough to cancel the

polar catastrophe induced electron transfer. At the 5 u.c. LAO thickness, the

polarization is sufficiently weak that polar catastrophe induced electron transfer can

only be partially opposed and thus a few electrons will be transferred to the interface

which forms the metallic states. The calculated interfacial charge carrier density is

1.6 × 1013 cm−2, which is well consistent with the experimental value of 1-2×1013

cm−2.20;53–56

2DEGs can also be formed at non-polar/non-polar interfaces. We have seen

above that the electronic reconstruction due to polar catastrophe can be the origin

of 2DEG formation at the polar/non-polar LAO/STO interface. Electronic recon-

struction due to polar catastrophe can also be the reason of forming 2DEG at the

non-polar/non-polar interfaces. One such example is CaZrO3/SrTiO3,57;58 in which

both CaZrO3 and SrTiO3 consist of neutral layers and hence there is no polar dis-

continuity at the interface. Chen et al. have found a 2DEG at the CaZrO3/SrTiO3

interface for the first time.57 S. Nazir et al.58 performed first-principles calculations

and showed that the compressive strain due to lattice mismatch between CaZrO3

and SrTiO3 can induce a strong polarization in CaZrO3 and the CaZrO3/SrTiO3

heterostructure shows an insulator to metal transition as the CaZrO3 thickness in-

creases. This is in agreement with the experimental observations.57

So, we have given examples of 2DEG formation at polar/non-polar (e.g., LAO/STO)

and non-polar/non-polar interfaces (e.g., CaZrO3/SrTiO3). The third possibility is

the polar-polar interfaces, in which both the film ans substrate are polar materials.

Examples of such heterostructure systems are LaAlO3/KNbO3, LaAlO3/KTaO3,

LaAlO3/NaNbO3, LaAlO3/NaTaO3 etc.59;60 For polar/polar heterostructure sys-

tems, when the interface consists of two donor layers (i.e., cation layers), e.g.,
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a (LaO)+/(TaO2)
+ interface in LaAlO3/KTaO3, both the donor layers could do-

nate electrons to the interface and we could have a higher interfacial charge carrier

density compared to the polar/non-polar and non-polar/non-polar interfaces, as in

polar/non-polar interfaces there is only one donor layer. Similarly, if the interface

consists of two acceptor layers (i.e., anion layers), then they could donate holes to

the interface, thus leading to the creation of a two dimensional hole gas (2DHG).

Here, the reason people choose Nb and Ta based perovskites as the substrate

materials is that Nb-4d and Ta-5d states are less localized than Ti-3d states, which

increases the carrier mobility in these materials compared to STO based interfaces.

Also, Nb and Ta have larger spin-orbit coupling than Ti, which can gives rise to in-

teresting physics. Zou et al.,61 have successfully created polar/polar LaTiO3/KTaO3

heterostructures in which LaTiO3 is a Mott insulator and KTaO3 is a band insula-

tor. They observed a higher interfacial charge carrier density and carrier mobility

than in the widely studied LAO/STO interface.

Recently, people got interested in KTaO3 (KTO) based heterostructure interfaces

due to several reasons: (i) KTO has Ta-5d electrons which are less localized than

the Ti-3d electrons of SrTiO3. This increases the mobility of the 2DEG formed at

the KTO based heterointerfaces,62 and (ii) KTO has a very high spin-orbit coupling

which is one order of magnitude larger than in STO. This can lead to interesting

spin-orbit physics and potential applications in spin-electronic devices.62;63 Only a

very few KTO based heterostructures have been found which can host a 2DEG at

their interfaces, such as LaTiO3/KTaO3, LaVO3/KTaO3 and EuO/KTO.61–64

Research on 2DEGs is important with respect to fundamental physics and also

has tremendous potential applications. Superconductivity has also been observed at

the LAO/STO interface.10;23;65 Many potential and diverse applications have been

reported for 2DEGs. For example, the 2DEG at the LAO/STO interface can be

used for sensors66, field-effect transistors20;21, thermoelectrics67;68, solar cells69;70,
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nanophotodetectors71 etc. The photoconductivity of 2DEGs has a lot of potential

applications such as optical switches, photodetectors, holographic memory etc.29;71–73

6.2 Experimental motivation

Our experimental collaborators in the group of Prof. Suvankar Chakraverty, INST,

Mohali have grown thin film of LVO on a TaO2-terminated KTO(001) substrate

using pulsed laser deposition, at 600 ◦C substrate temperature.62 They have pre-

pared different samples of different LVO thickness. Atomic force microscopy (AFM)

confirms that the KTO(001) substrate is single terminated or TaO2 terminated.74

X-ray diffraction (XRD), reflection high-energy electron diffraction (RHEED) and

X-ray photoemission (XPS) measurements confirm that a high quality LVO thin

film is grown epitaxially on the KTO substrate.62

Our experimental collaborators measured the temperature dependent two-dimensional

(2D) electrical resistivity (ρ2D) for conduction parallel to the LVO/KTO interface,

using the standard four-probe method.62 These results are shown in Fig. 6.3. The

resistivity is found to increase with increasing temperature, which confirms that the

interface behaves like a metal and is a two-dimensional electron gas (2DEG) as the

conduction electrons are confined near the interface. Also, the I − V characteristics

show linear behaviour which also confirms the ohmic or metallic nature of the inter-

face. It is very clear from Fig.6.3 that, for 2 monolayer (ML) LVO film thickness,

the value of resistivity is very large and also the resistivity decreases with increasing

temperature, hence interface becomes insulating. The interface is found to be insu-

lating below 3 ML film thickness, and conductive above 3 ML film thickness. Fig. 6.3

shows ρ2D vs T , we see that all the samples having LVO film thickness greater than

3 ML are conducting at room temperature (RT), and they are conducting down

to 1.8 K. As the resistivity increases with increasing temperature, it indicates the
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metallic behaviour of the interface.

Figure 6.3: Measured two-dimensional resistivity vs temperature for LVO/KTO
interface using four-probe method. Reprinted with permission from Ref. 62.

They performed Hall measurements and measured the charge carrier density

and carrier mobility, at 300 K and 1.8 K. They observed that once the LVO/KTO

interface becomes conducting, the carrier density and mobility are independent of

the LVO film thickness. This is compatible with the ‘electronic reconstruction’

mechanism of the 2DEG formation, where once the critical film thickness has been

achieved to avoid the ‘polar catastrophe’, increasing the film thickness does not add

further carriers to the interface. They obtained a high carrier mobility of ∼ 600

cm2 V−1 s −1 at 1.8 K. The obtained carrier density at the LVO/KTO interface is

1 × 1014 cm−2.74 This interfacial charge carrier density is one order of magnitude

higher than that of the polar/non-polar (e.g., LAO/STO) interfaces.

They have also studied the effect of light and electric field on the electrical

conductivity of the 2DEG formed at the LVO/KTO interface.74 The interface shows

‘persistent photoconductivity’. They observed that the conductivity increases under

light illumination.

We want to theoretically study the electronic properties of the LVO/KTO inter-

face and gain further insights into this system using first-principles DFT calculations.
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6.3 Systems studied

We have considered several systems in our first-principles DFT calculations. KTO

has the perovskite structure and it is cubic at all temperatures. Fig. 6.4 shows the

cubic crystal structure of KTO. We have shown a 2× 2× 2 supercell in this figure.

However, the calculations have been performed using the 1 × 1 × 1 primitive unit

cell.

Figure 6.4: Cubic crystal structure of bulk KTaO3. It has the perovskite structure
in which each Ta atom is surrounded by six O atoms forming an TaO6 Octahedron.
Here, a 2×2×2 supercell is shown. The primitive unit cell contains five atoms: one
K, one Ta and three O atoms. Atomic color code: magenta: K, blue: Ta, red: O.

Bulk LVO possesses a monoclinic crystal structure below 140 K, with C-type an-

tiferromagnetic ordering (C-AFM). Above 140 K, LVO is non-magnetic (NM) and

it has an orthorhombic structure. In our calculations we have considered the room

temperature (RT) orthorhombic phase, as shown in Fig. 6.5(a). We have also con-

sidered a hypothetical tetragonal structure of bulk LVO. This is considered because
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the LVO layers have been found experimentally to have a tetragonal structure when

grown on the KTO(001) substrate. The tetragonal structure of LVO is shown in

Fig. 6.5(b).

Figure 6.5: Structure of bulk LaVO3: (a) orthorhombic and (b) tetragonal. The
orthorhombic structure can be derived from the cubic structure by introducting a
pattern of alternating distortions in the VO6 octahedra. The primitive unit cell of
(a) contains a total of 20 atoms: four La, four V and twelve O atoms. The primitive
unit cell of (b) contains five atoms: one La, one V and three O. Atomic color code:
green: La, brown: V, red: O.

Next, we have considered a TaO2 terminated KTO(001) surface as shown in

Fig. 6.6(a). To form this surface, we have taken a nine-layer KTO(001) surface slab.

The bulk-truncated slab contains 4.5 unit cells of KTO. The width of the vacuum

region (introduced to obtain artificial periodicity along the z direction) is greater

than 15 Å.

Next, we have done atomistic modelling of the LVO/KTO interface, using two

different kinds of systems: (i) an infinitely repeating LVO/KTO superlattice (no

vacuum region introduced along z). Note that in this system, each supercell con-

tains two LVO/KTO interfaces. (b) by including a vacuum along the z-direction,

the system we are effectively studying consists of a KTO slab and a LVO slab

with a single interface between them (one interface per supercell). The thicknesses
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of the LVO film and KTO substrate are varied. Fig. 6.6(b) and 6.6(c) show the

(LVO)4.5/(KTO)4.5 superlattice and the slab model, respectively. Here 4.5 means

that the system is comprised of 4.5 unit cells (u.c.) i.e., 9 atomic layers. As found

in the experiment, we have considered a TaO2 terminated KTO(001) substrate and

a LaO terminated LVO film. Thus at the interface we have adjacent LaO and TaO2

layers.

6.4 Computational details

We have performed spin polarized density functional theory (DFT) calculations as

implemented in the Quantum ESPRESSO (QE) software package.75;76 Exchange-

correlation interactions are treated using the Perdew-Burke-Ernzerhof form of the

Generalized Gradient Approximation (PBE-GGA).77 The interactions between va-

lence electrons and ionic cores are described by ultrasoft pseudopotentials.78

In the systems studied in this chapter, i,e., LVO, KTO bulk, KTO(001) surface

and LVO/KTO interface, there exist strongly localized V-3d and Ta-5d orbitals

which need correction for the strong electron-electron correlation using Hubbard

U (and J) parameters. We have done DFT+U calculations to capture the strong

localization and correct for the self-interaction error of the V-3d and Ta-5d orbitals.

We have used two different variants of these calculations. For geometry optimization

we have used the DFT+U method of Cococcioni and de Gironcoli,79 (keyword:

lda_plus_u_kind = 0 in QE-6.5), which uses only the Hubbard U parameter, where

U is the onsite Coulomb repulsion. In the rest of this chapter we will refer to this as

the C-dG method with atomic projection. This is the only DFT+U option available

in QE for geometry optimization calculations. For electronic structure calculations,

we have used the rotationally invariant scheme of Liechtenstein et al.80 (keyword:

lda_plus_u_kind = 1 in QE-6.5), which uses Hubbard U and J parameters, where
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Figure 6.6: Optimized structure of (a) 9-layers KTO(001) slab with TaO2 termina-
tion, (b) LVO/KTO interface in the superlattice model, and (c) LVO/KTO interface
with vacuum. The horizontal red dashed lines indicate the locations of the inter-
faces. (b) contains two interfaces per unit cell and (c) contains only one interface
per unit cell. Atomic color code: green: La, brown: V, red: O, magenta: K, blue:
Ta.

J is the onsite exchange interaction. In the rest of this chapter we will call this as L

method, with ortho-atomic projection. This rotationally invariant scheme is used in

addition to the C-dG method as spin-orbit coupling (SOC) calculations are possible

in QE only with this option. We have also used the ortho-atomic projection as it is

claimed to give better results for electronic structure,81 than the atomic projection.
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IThe values of U and J parameters for V-3d states are chosen so that it matches

correct experimental band gap in its RT orthorhombic phase. This is discussed

under electronic structure of bulk orthorhombic LVO. Hubbard U parameter for

Ta-5d orbital is chosen from the literature.59

The Kohn-Sham wave functions and the corresponding charge densities are ex-

panded in plane-wave basis sets having cutoffs of 40 Ry and 400 Ry, respectively.

Brillouin zone sampling is done using a Monkhorst-Pack mesh.82 We have used an

8× 8× 8 k-mesh for bulk cubic KTO, 8× 8× 6 k-mesh for bulk orthorhombic LVO,

8×8×8 k-mesh for bulk tetragonal LVO, and an 8×8×1 k-mesh for the KTO(001)

surface and LVO/KTO interface models. For metallic systems, convergence is im-

proved using Marzari-Vanderbilt cold smearing83 of width of 0.005 Ry.

For SOC, we have used fully relativistic pseudopotentials for all the atoms.

For bulk LVO and KTO, all atoms are allowed to relax. For the KTO(001)

surface, the bottom two layers of the slab are kept fixed at the bulk coordinates and

all other layers are allowed to relax. For LVO/KTO superlattice model all the atoms

as well as the supercell parameter along the z direction are allowed to relax, and for

LVO/KTO interface with vacuum, only the bottommost layer is kept fixed and all

other layers are allowed to relax. For geometry optimization, we use the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm84, until all components of the forces

on all atoms are less than 0.001 Ry/Bohr.

6.5 Results and discussion

Before examining the electronic properties of the LVO/KTO interface, we first

study the structural and electronic properties of the constituents, i.e., cubic KTO,

KTO(001) surface, orthorhombic LVO and tetragonal LVO. This will help us in un-

derstanding the structural and electronic properties, as well as emergent properties,
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if there are any, of the LVO/KTO interface.

6.5.1 Constituent: Bulk KTO

Structural properties of bulk KTO

KTO possesses the cubic perovskite structure, as shown in Fig. 6.4 above, at all

temperatures. In this system, each Ta cation is coordinated by six O anions to form

the TO6 octahedra, while the K cation has 12 nearest neighbour O anions. The

coordination number of each O anion is 2, coordinated by two Ta atoms. Our PBE-

GGA calculated lattice constant = 4.011 Å, which is very close to the experimental

value of 3.989 Åand previous theoretical values, as shown in Table 6.1. The cal-

culated bulk modulus is also compared with previous theoretical and experimental

results and tabulated in Table 6.1.

Property Our calc. Previous calculations Expt
(PBE-GGA)

a0 4.011 Å 4.031 Å (PBE-GGA)85 3.988 Å86

4.028 Å (PBE-GGA)87 3.989 Å88

3.989 Å (PBEsol-GGA)85

3.950 Å (LDA)89

B0 190.7 GPa 183.51 GPa (PBE-GGA)85 218 GPa90

200.07 GPa (PBEsol-GGA)85

224.85 GPa (LDA)89

Table 6.1: Our PBE-GGA calculated optimized lattice constant (a0) and bulk mod-
ulus (B0) of bulk KTO. The values are compared against previous calculations with
different functionals and with experiments.

Electronic structure of bulk KTO

Next, we calculate the electronic structure of cubic KTO. The band structure and

orbital projected density of states (PDOS) of bulk KTO are calculated both without

and with spin-orbit coupling (SOC). Fig. 6.7 show the band structure and PDOS
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Figure 6.7: (a) Electronic band structure and (b) projected density of states (PDOS)
of bulk KTO without spin-orbit coupling (SOC). (c) Electronic band structure and
(d) PDOS of bulk KTO with SOC. The corresponding colors of the orbital projected
DOS are shown in the insets of (b) and (d). The calculated R−Γ indirect band gap
is = 2.18 eV without SOC, and 2.04 eV with SOC. In each case, the Fermi level is
set at the valence band maximum (VBM) and is indicated by the red dashed lines.

without and with SOC. We see that cubic KTO is an insulator as there is no state

which crosses the Fermi level. Our PBE-GGA calculated band gap is 2.18 eV (with-

out SOC), which matches excellently with previous theoretical results [see Table 6.2].

However, this value is lower than the experimental value of 3.60 eV91, which is a well

known shortcoming of DFT calculations performed using GGA exchange-correlation.

The band dispersion also agrees well with previous theoretical resultss.85. Hybrid

functionals and GW approximation methods correctly reproduce the experimental

band gap; however, we have not attempted these because of the high experimental

cost. Ojha et. al.,92 calculated the band gap after including a Hubbard U parameter.

Without any Hubbard U , their calculated band gap is 2.05 eV. With U = 1.35 eV,
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the band gap is 2.10 eV. In other words, the band gap does not improve significantly

with GGA+U.

Our calc. Previously calculated Experimental
band gap Eg band gap Eg band gap Eg

(eV) (eV) (eV)
2.18 (PBE-GGA) 2.05 (PBE-GGA)92 3.6091

2.15 (PBE-GGA)85

2.14 (PBEsol-GGA)85

2.10 (PBE-GGA+U)92

2.16 (LDA)89

3.61 (HSE06)93

3.60 (HSE06)92

3.57 (GW)94

Table 6.2: Our PBE-GGA calculated band gap of bulk KTaO3. The value is com-
pared against other calculated values with different functionals and methods, and
also with the experiment. As usual, GGA underestimates the band gap.

Fig. 6.7(a) show that the valence band maximum (VBM) lies at the R point in

the Brillouin zone (we note that the energies are almost degenerate at the M and R

points) and the conduction band minimum (CBM) lies at the Γ point. So, bulk KTO

has an indirect band gap. Examining the PDOS in Fig. 6.7(b) indicates that the

valence bands are mainly contributed by the O-2p orbitals, with less contribution

from the Ta-5d states. This hybridization confirms the covalent bonding between O

and Ta atoms. The conduction bands are mainly contributed by the Ta-5d states

with less contribution from O-2p orbitals. The contributions coming from the other

atomic orbitals are very small.

As there is the heavy atom Ta present in this system, we include spin-orbit

coupling (SOC) to see the effect on the band structure of KTO. Upon the inclusion

of SOC, KTO remains an indirect band gap insulator, with the VBM remaining

at the R point and the CBM remaining at the Γ point. As the valence bands

are dominated by O-2p states and the conduction bands are mainly contributed

by the Ta-5d states [see Fig. 6.7(b)], SOC mainly affects the splitting of the states
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in the conduction band. The splitting of the states in the valence band is also

present, but not as noticeable, due to significant contribution coming from Ta-5d

orbitals. Due to splitting of the states, the band gap reduces a little bit, the SOC

induced band gap is = 2.04 eV. Here, the important splitting is the splitting of the

lowest energy conduction band level at the Γ point [see Fig. 6.7(c)]. The amount

of splitting is 417 meV, in our calculations. This value agrees excellently with

a previous LDA calculated value of ∼ 400 meV.95 This SOC induced splitting is

one order of magnitude larger than that in STO. This made people interested in

studying KTO-based heterostructure as they can show interesting physics as well as

spin-electronics applications.

6.5.2 KTO(001) surface

As the LVO/KTO interface is formed by the epitaxial growth of a LVO film on a

TaO2 terminated KTO(001) surface, we next study the KTO(001) surface.

Structural properties of the KTO(001) surface

Fig. 6.6(a) above shows the optimized structure of the KTO(001) surface. To model

the KTO(001) surface we have taken a nine-layer-thick (4.5 u.c.) asymmetric slab

with TaO2 surface termination, along with a vacuum with thickness of more than

15 Å. The bottom two layers are kept fixed at the bulk coordinates. All other layers

are allowed to relax. We found that the KTO(001) surface is also non-magnetic, as

is bulk KTO.

Next we calculate the percentage interlayer relaxation for a few top layers:

∆ij =
dij − dB
dB

× 100, (6.1)

where dij is the separation between the ith and jth layers upon relaxation and dB
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is the bulk separation between layers. The numbering of the layers starts from

the topmost layer i.e., d12 is the separation between the topmost (first) layer and

second layer, d23 is the separation between the second and third layers, and so on.

The KTO(001) surface slab consists of alternating KO and TaO2 layers. We have

used the average z-coordinate of all the atoms in a layer to calculate dij and hence

∆ij. We obtain ∆12 = 2.52%, i.e., d12 is expanded with respect to dB by 2.52%.

Similarly, d23 is expanded by 3.99%, and d34 is expanded by 1.43%. In the near-

surface layers, we see that the O atoms are a little bit higher in z-height compared

to the corresponding Ta or K atoms, depending on whether we are considering a

TaO2 or KO layer; this buckling within a layer is clearly visible in Fig. 6.6(a).

Electronic structure of the KTO(001) surface

Next we calculate the electronic structure of the KTO(001) surface. Fig. 6.8 shows

the band structure of the KTO(001) slab, both without and with SOC. The main

interesting feature is that there are some bands which cross the Fermi level and

hence the KTO(001) surface is metallic, though bulk KTO is insulator. Another

important feature is the existence of some parabolic bands crossing the Fermi level,

and just above it, centered around the Γ point. These bands might be responsible for

the formation of a two-dimensional electron gas (2DEG) at the LVO/KTO interface.

Some Rashba type splittings are observed in the band structure upon the inclusion

of spin-orbit coupling (SOC) [see Fig. 6.8(b)]. Our calculated band dispersion is

consisted with previous calculations.96–98

Fig. 6.9 shows the PDOS of the KTO(001) slab, without SOC. Near the Fermi

level, Ta-5d orbitals mainly contribute, with a very small contribution from O-2p

orbitals. This also makes clear that due to the existence of heavy Ta bands, there

is large SOC splitting in the conduction bands.

We further show the band structure projected onto each layer of the KTO(001)
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Figure 6.8: Electronic band structure of the KTO(001) surface (a) without SOC
and (b) with SOC. The horizontal red dashed line represents the Fermi level in each
case.

Figure 6.9: PDOS of KTO(001) surface, calculated without SOC. Orbitals on which
the wavefunctions are projected are shown in the inset. The horizontal red dashed
line represents the Fermi level.

surface slab, to identify the origin of each band layer-wise. Fig. 6.10 shows the pro-

jected band structures in which the bands are projected onto all the atomic orbitals

of the top TaO2, third TaO2, fifth TaO2 and seventh TaO2 layer of the KTO(001)

surface slab. Contributions from the alternating KO layers of the KTO(001) surface

slab are negligibly small, and hence projection onto the KO layers are not shown.
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Figure 6.10: Bands are projected on to all atomic orbitals of (a) top TaO2, (b) 3rd
TaO2, (c) 5th TaO2 and (d) 7th TaO2 layer of KTO(001) surface, without SOC.
The color scales represent the amount of orbital projection. The horizontal black
dashed line represents the Fermi level in each case. The color scales represent the
amount of orbital projection, for each layer.

6.5.3 Constituent: Bulk LVO

We have studied bulk LVO in two structures [see Fig. 6.5]. One is the orthorhombic

structure, which is the experimentally observed RT phase. The other is the tetrago-

nal phase, the reason for studying this is that this is the structure that grows when

LVO is deposited epitaxially on KTO.

Bulk LVO in orthorhombic structure

Structural properties of bulk orthorhombic LVO

Our DFT optimized structure of bulk LVO in RT orthorhombic crystal is shown in

Fig. 6.5(a). The orthorhombic LaVO3 structure can be formed from the 2 × 2 × 2

cubic perovskite, by displacing the V and O atoms from their mean positions. See

Fig. 6.11, which show the 2 × 2 × 2 cubic perovskite and the formation of the

orthorhombic crystal due to the deformation of the VO6 octahedra with respect to
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the cubic structure. We have optimized the cell parameters and atomic positions

in our calculations. The optimized lattice parameters are consistent with previous

calculated results and with the experimental values. Table 6.3 shows the comparison

of our calculated lattice parameters, calculated with U = J = 0, with the previous

calculated results and experimental values.

Lattice
parameter

Our PBE-GGA
DFT calculated

value

Previous calculated
value99

Expt.
value100

a 5.547 Å 5.632 Å 5.555 Å
b 5.571 Å 5.614 Å 5.553 Å
c 7.952 Å 7.843 Å 7.848 Å

Table 6.3: Table of lattice parameters of orthorhombic LVO. Our PBE-GGA calcu-
lated optimized lattice parameters (here, U = J = 0) are compared against previous
calculations with different functionals and with experiments.

Figure 6.11: (a) Schematic representation of a 2×2×2 standard perovskite (RVO3)
structure. Each vanadium atom is surrounded by an oxygen octahedron (for simplic-
ity only one oxygen octahedron is shown). Orthorhombic RVO3 structure is derived
from the above 2× 2× 2 standard perovskite structure as shown by thick red line.
(b) Orthorhombic crystal structure of RVO3. Reprinted with permission from Ref.
101.

Electronic structure of bulk orthorhombic LVO

Next, we show the calculated band structure and PDOS of orthorhombic bulk LVO,
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both without and with SOC.

LVO is a Mott insulator102 i.e, under the conventional band theory it emerges as a

metal, which does not match with the experimental finding. Actually, orthorhombic

LVO has been experimentally determined to have a band gap of 1.1 eV102. How-

ever, there exist strongly localized V-3d orbitals and if the strong electron-electron

correlation of the V-3d electrons are captured correctly, LVO can show the correct

insulating behaviour in calculations too.

To correct for the self interaction of the strongly correlated V-3d electrons, we

have calculated the band structure of bulk orthorhombic LVO with the DFT+U

method. We have used two different kinds of DFT+U methods as implemented in

the Quantum ESPRESSO (QE) package: (i) C-dG method79 and (ii) L method80.

These are described in the computational details section above. Fig. 6.12 shows

the band structure obtained for different DFT+U methods, with different values

of Hubbard onsite Coulomb repulsion parameter U and onsite Coulomb exchange

parameter J . In all of these cases, the atomic positions are relaxed with the corre-

sponding U value. However, the cell parameters a, b, and c are taken to be the same

as those obtained for the U = J = 0 calculation [See Table 6.3].

Fig. 6.12(a) shows the band structure of bulk orthorhombic LVO without any

Hubbard parameters i.e., U = 0 here. Band structure shows existence of bands

crossing the Fermi level and hence the system turns out as a metal. So, to capture

the correct band gap, we show the band structure calculated with both the C-dG

method and the L method.

Figs. 6.12(b)-(d) show the band structure calculated with the C-dG method with

different U values. For U = 0 eV, the system is a metal and at smaller U values

(e.g., U = 2.0 eV) the system remains metallic. Upon increasing U further, the gap

opens up and the band gap Eg increases. However, for the range of U values used

in our calculations, Eg does not match with the experimental value of 1.1 eV.
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Figure 6.12: Electronic band structure of bulk orthorhombic LVO with DFT+U
calculations. Two types of DFT+U calculations are used, as implemented in QE:
(i) C-dG method79, and (ii) L method80. Used different combinations of values of
U and J parameters to match the experimental band gap of 1.1 eV. The method,
values of U and J , and Eg are written at the top of each figure.

Figs. 6.12(e)-(g) show the band structure calculated with the L method with

different (U , J) values. To compare with results from the C-dG method, we note

that Ueff = U−J of the L method is equivalent to the U value of the C-dG method;

the values of U and J have been chosen accordingly to facilitate this comparison. For

smaller values of (U , J) (e.g., U = 2.5 eV and J = 0.5 eV), LVO remain a metal. For

higher U and J values a gap opens up and Eg increases as Ueff increases. We see that



6.5 Results and discussion 221

for U = 5.65 eV and J = 0.65 eV, the calculated Eg = 1.1 eV [see Fig. 6.12(g)], which

matches with the experimental value of 1.1 eV. Thus an appropriate combination

of U and J or ‘correct’ treatment of electron-electron correlation can produce the

experimental band gap of orthorhombic LVO. Hence, LVO is a Mott insulator. Note

that orthorhombic LVO has a direct gap at the Γ point.

Figure 6.13: PDOS of bulk orthorhombic LVO without SOC. Here we have used
DFT+U with kind = 1 of QE, ortho-atomic projection, U = 5.65 eV, J = 0.65 eV.
The orbitals on which the wave functions are projected on are shown in the inset.
The Fermi level is represented by the red dashed line.

Figure 6.14: Electronic band structure of bulk orthorhombic LVO (a) without SOC
and (b) with SOC. Here we have used DFT+U with kind = 1 of QE, ortho-atomic
projection, U = 5.65 eV, J = 0.65 eV. The Fermi level is set at the VBM and is
represented by the red dashed line in each case.

In subsequent calculations presented in this chapter we will use the L method

because it allows one to incorporate SOC. All further results presented in this chapter
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will be performed with the L method and U = 5.65 eV and J = 0.65 eV for V-3d

orbitals. (However, since geometry optimization has not yet been implemented in

the code with the L method, all relaxed structures are first obtained using C-dG

model and U = 5 eV.

We note that our values for the optimal values of U and J differ slightly from

those of previous authors. S. Kumari et al.,101 reported that they found the correct

band gap of 1.1 eV at U = 4.65 eV and J = 0.8 eV.

By examining the band structure shown in Fig. 6.12(g) we see that the system

displays electronic features characteristic of a Mott insulator, with the lower Hub-

bard subband between −1.1 eV to 0 eV, and the upper Hubbard subband between

1.1 eV and 2.2 eV.

We have also calculated the orbital projected density of states (PDOS) as shown

in Fig. 6.13. It is observed that the VBM (here lower Hubbard band) and CBM

(here upper Hubbard band) are mainly contributed by the V-3d orbitals, with little

hybridization with the O-2p orbitals.

As there are heavy La atoms, we incorporate SOC in the system to see the effect

on the band structure. We show the band structure without SOC and with SOC side

by side in Fig. 6.14(a) and Fig. 6.14(b), respectively, to enable ease of comparison.

We do not see any observable splitting of the valence and conduction bands.

This is due to the fact that the orbitals of heavy La atoms do not contribute to

these bands [clear from the PDOS of Fig. 6.13]. The bands arising from the heavy

La atomic orbitals are expected to be affected by SOC. The band gap does not

change upon inclusion of SOC. Very minimal splittings are observed at E −EF > 3

eV where La orbitals contribute. However, these bands are not important for us as

they are much higher in energy with respect to the Fermi level.
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LVO in tetragonal phase

Structure of bulk tetragonal LVO

Next we have considered a tetragonal structure of bulk LVO. Note that free-

standing LVO is not found in this structure. However, this structure can form when

the in-plane lattice parameters are strained due to pseudomorphic epitaxial growth

on a substrate with a different lattice constant from that of freestanding LVO. Thus,

in our case, when LVO is grown on KTO, the LVO layers are found (experimentally)

to assume a tetragonal structure, whose in-plane (x and y) lattice parameters are

determined by that of the cubic KTO substrate. Fig. 6.5(b) shows the tetrago-

nal structure of bulk LVO, with in-plane lattice parameters determined by KTO

(a = b = 4.011 Å = aKTO
0 ). The DFT optimized out-of-plane lattice constant is

c = 3.95 Å.

Magnetic ground state of bulk tetragonal LVO

Here, since this is a hypothetical bulk structure, we do not have experimental

information about the magnetic configuration. Magnetism can arise from the local-

ized V-3d orbitals. We have considered different possible magnetic configurations

of LVO in the tetragonal structure: non-magnetic (NM), ferromagnetic (FM), and

three different types of antiferromagnetic ordering (A-AFM, C-AFM and G-AFM)

[see Fig. 6.15]. We have computed the total energy in these configurations to find the

magnetic ground state and hence the magnetic ordering of the V atoms of tetragonal

LVO.

In order to consider NM and FM ordering, a unit cell of tetragonal crystal con-

taining five atoms (one formula unit of LVO) is sufficient. However, for the AFM

orderings we had to consider supercells: 1× 1× 2 supercell (two formula units) for

A-AFM,
√
2×

√
2× 1 (two formula units) for C-AFM, and

√
2×

√
2× 2 supercell

(four formula units) for G-AFM. So, in order to compare the relative energetics of
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Figure 6.15: Different types of anti ferromagnetic (AFM) orderings. C-AFM means
ferromagnetic stacking of antiferromagnetic layers, A-AFM means antiferromagnetic
stacking of ferromagnetic layers, and G-AFM means antiferromagnetic stacking of
antiferromagnetic layers. Reprinted with permission from Ref. 101.

these different magnetic configurations, we have compared values of the total energy

per formula unit (f.u.), as shown in Table 6.4. A-AFM ordering is found to be the

lowest energy magnetic configuration over NM, FM, C-AFM and G-AFM ordering.

The relative energies of the other magnetic configurations, with respect to the en-

ergy of A-AFM, are shown in Table 6.4. For the A-AFM ordering, the value of total

magnetization is zero, and the value of absolute magnetization is 4.25 µB/cell, with

magnetic moments on the V atoms of ±1.97 µB.

Magnetic ordering of V atoms ∆E (meV/f.u.)
NM 1692
FM 73

A-AFM 0
C-AFM 143
G-AFM 244

Table 6.4: Comparison of total energy of different magnetic configurations of tetrag-
onal bulk LVO. ∆E is the total energy difference with respect to the lowest energy
configuration A-AFM. It is taken per formula unit of LVO to compare the total
energies.

Electronic structure of bulk tetragonal LVO

As A-AFM is the magnetic ground state for tetragonal LVO, we further calculate

the band structure and PDOS for A-AFM ordering only. Fig. 6.16 shows the band

structure and PDOS of tetragonal LVO without SOC. We see that the tetragonal
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LVO is also non-metallic like orthorhombic LVO. The states in the valence bands

mainly arise from the V-3d and O-2p orbitals while the lower energy states in the

conduction band mainly arise from V-3d and La-5d orbitals.

Figure 6.16: (a) Electronic band structure and (b) PDOS of bulk tetragonal LVO
calculated without SOC. The atomic orbitals on which the wave functions are pro-
jected on are shown in the inset of (b). Black dashed line represents the Fermi level
in each case.

6.5.4 LVO/KTO Interface

Now we present the calculated results of the LVO/KTO interface.

Structural properties of LVO/KTO interface

The relaxed structures of systems containing LVO/KTO interfaces are shown for

both the superlattice system (periodic along z-direction) and the slab with vacuum

(only artificial periodicity along the z-direction due to introduction of the vacuum

region) are shown in Fig. 6.6(b) and 6.6(c), respectively. For these systems, the

in-plane lattice parameters (a and b) are kept fixed at the optimized lattice param-

eter of the bulk cubic KTO substrate (aKTO
0 = 4.011 Å). So, the LVO film is under

tensile strain when it is grown on the KTO substrate. However, the strain is small,

less than 1%, which makes it possible to successfully grow the LVO film epitaxially

and pseudomorphically on the KTO substrate. The out-of-plane lattice constant of
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the superlattice and all the atomic positions are allowed to relax. Different thick-

nesses of the LVO and KTO are considered. Fig. 6.17 shows the structure of a

(LVO)4.5/(KTO)8.5 superlattice.

Figure 6.17: Structure of (LVO)4.5/(KTO)8.5 superlattice model. The red dashed
lines represent the locations of the interfaces. Atomic color code: green: La, brown:
V, red: O, magenta: K, blue: Ta.

Further analyzing the structural properties of superlattice, the interlayer relax-

ations of (LVO)4.5/(KTO)8.5 (this symbol means 4.5 unit cells of LVO film is grown
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on 8.5 unit cells of KTO substrate) superlattice are plotted in Fig.6.18(a). We ob-

serve that, interlayer relaxations mainly occur around the interface region as the

most structural reconstruction happens there, and this decays rapidly away from

the interface (the black dashed line), on both LVO and KTO sides. Also, LVO

undergoes large structural reconstruction, as the amplitude of ∆ij is very large on

LVO side compared to the KTO side.

We define the relative displacement or polar distortion as (zcation−zanion), where

zcation and zanion are the average z-coordinates of the cations and anions in each

layer of the relaxed superlattice structure. The calculated relative displacement of

cations and anions (polar distortions) for each layer are plotted in Fig.6.18(b).

Figure 6.18: (a) Percentage interlayer relaxations ∆ij(%) and (b) relative dis-
placement or polar distortion between cations and anions for each layer of
(LVO)4.5/(KTO)8.5 superlattice. The black dashed line represent the location of
the interface.

We see ferroelectric-like distortions in which positively charged K, Ta, La and

V ions and negatively charged O ions are displaced relative to each other, for each

layer. This polar distortion creates local electric dipoles. All the electric dipoles

created by these polar distortions point in the same direction on LVO and KTO

sides. We see that relative displacement is negative on the KTO side and positive

on the LVO side. This indicates that the O−
2 anions in each layer (for both LVO

and KTO sides) want to come closer to the interface. Hence, the electric dipoles
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created in each layer of KTO point in the direction away from the interface. This is

also true on LVO side, all the electric dipoles in each layer on LVO side point in the

direction away from the interface. Hence polarization vectors are created on KTO

and LVO sides which are antiparallel. We observe that the amplitude of the polar

distortions is maximum near the interface region and it decreases rapidly as we go

away from the interface. Similar behaviour has also been previously observed by

S. Okamoto et al.34 for LaTiO3/SrTiO3 superlattices.

Magnetic ground state of LVO/KTO interface

Though there exists one previous DFT study of LVO/KTO interfaces, the authors

did not consider spin-polarization in their calculations.103 However, as there are

magnetic V atoms, we believe that one should consider spin-polarization in this

system.

So, we calculate the magnetic ground state i.e., the preferred magnetic ordering

of the V atoms in the LVO/KTO superlattice. Different magnetic configurations of

V atoms in (LVO)4.5/(KTO)4.5 superlattice are considered, based on the magnetic

moments on the V atoms: NM, FM, A-AFM, C-AFM and G-AFM. The total ener-

gies are compared per formula unit for these magnetic configurations, these results

are shown in Table 6.5

Magnetic ordering of V atoms ∆E (meV/f.u.)
NM 6433
FM 21

A-AFM 0
C-AFM 352
G-AFM 459

Table 6.5: Comparison of total energy of different magnetic orderings of V atoms in
(LVO)4.5/(KTO)4.5 superlattice. ∆E is the total energy difference with respect to
the lowest energy configuration A-AFM. It is taken per formula unit of LVO/KTO
to compare the total energies.
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We see that A-AFM ordering is energetically the most favourable magnetic con-

figuration over NM, FM, C-AFM and G-AFM. Table 6.5 shows the relative energy

of the other magnetic configurations with respect to the energy of A-AFM. We recall

that for bulk tetragonal LVO also V atoms preferred A-AFM ordering.

We have calculated the magnetization density (or spin-polarization density) given

by: m(r) = n↑(r) − n↓(r), for the A-AFM ordering. Here, n↑(r) and n↓(r) are

the spin-up and spin-down electron densities, respectively, at the point r in space.

Isosurfaces of the magnetization density for A-AFM ordering are shown in Fig. 6.19.

Figure 6.19: Magnetization density of (LVO)4.5/(KTO)4.5 superlattice model for A-
AFM ordering. Red and blue lobes correspond to excess of spin-up and spin-down
electron densities, respectively. Isosurface value = 0.003 e/bohr3. Atomic color code:
green: La, brown: V, red: O, magenta: K, blue: Ta.

Here, when m(r) > 0, then, n↑(r) > n↓(r). This means at point r in space,

the spin-up electron density is larger than the spin-down electron density. This is
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represented by the red lobes in Fig. 6.19. Similarly, when m(r) < 0, then, n↑(r) <

n↓(r). This means at point r in space, the spin-down electron density is larger

than the spin-up electron density. This is represented by the blue lobes in Fig.6.19.

There are alternating red and blue lobes on the V atoms along the z-direction,

corresponding to A-AFM ordering, i.e., an antiferromagnetic stacking along the z

direction of (in-plane) ferromagnetic layers.

Electronic structure of LVO/KTO interface

Next we show the electronic structure of the LVO/KTO interface. Fig.6.20(a) and

(b) show the electronic band structure, without SOC, of (LVO)4.5/(KTO)4.5 and

(LVO)4.5/(KTO)8.5, respectively.

Figure 6.20: Electronic band structure of (a) (LVO)4.5/(KTO)4.5 superlattice and (b)
(LVO)4.5/(KTO)8.5 superlattice. Both are calculated for A-AFM ordering, without
SOC. Red lines represent spin up bands and blue dashed lines represent spin down
bands. The Fermi level is represented by the black dashed line in each case.

Appearance of many partially occupied bands crossing the Fermi level which

indicates that both the (LVO)4.5/(KTO)4.5 and (LVO)4.5/(KTO)8.5 superlattices are

metallic. This is emergence i.e., though the constituents (bulk orthorhombic LVO,

bulk tetragonal LVO and bulk cubic KTO) are insulators, the LVO/KTO interface

is metallic. There exist many parabolic bands around the Γ point which cross the

Fermi level. Parabolic bands correspond to the free electron like behaviour (as
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free electrons have parabolic dispersion, E = ℏ2k2
2m

). These parabolic bands are

responsible for the conduction of the 2DEG at the LVO/KTO interface. We also

notice that some lower energy partially occupied bands are spin-polarized i.e., spin

up bands and spin down bands have different energies. We will show later that

these bands are mainly coming from the magnetic V atoms and interfacial Ta atoms

which also gain some moments.

Layer-resolved orbital-projected density of states

To get more into the origin of the 2DEG, we plot the layer-resolved PDOS, shown in

Fig. 6.21(a). Fig. 6.21(b) shows the corresponding structure of (LVO)4.5/(KTO)8.5

superlattice, with the PDOS aligned with the corresponding layer. As the structure

is mirror symmetric, we have shown the plots of PDOS only for the layers from the

middle layer of KTO part, up to the middle layer of the LVO part. Color code for

PDOS: Magenta - Ta-5d, red - O-2p, blue - V-3d and cyan - La-5d orbitals. Full

lines represent spin up and dashed lines represent spin down states.

Here, only the states which cross the Fermi level are responsible for the conduc-

tion electrons. We see that, at the interface, the conduction or free electrons (which

form the 2DEG) arise primarily from from Ta-5d orbitals of the interfacial TaO2

layer (Ta-5d spin up states). The other TaO2 layers also contribute to the 2DEG,

as the PDOS of these layers also cross the Fermi level, but with less contribution

compared to the interfacial TaO2 layer. Also, different PDOS of spin up and spin

down states for the interfacial TaO2 layer indicates spin polarization. This spin

polarization is very minimal for the other TaO2 layers away from the interface. The

KO layers do not have any conduction electrons and thus do not contribute to the

2DEG.

On the LVO side, the PDOS of the VO2 layers crosses the Fermi level and hence

they carry conduction or free electrons which contribute to the 2DEG. The VO2
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Figure 6.21: (a) Layer-resolved and spin-resolved PDOS of (LVO)4.5/(KTO)8.5 su-
perlattice. (b) shows the corresponding structure from the middle of the KTO part
to the middle of the LVO part. Color code in (a): magenta - Ta-5d, blue - V-3d, red
- O-2p, cyan - La-5d. The full lines represent spin up and the dashed lines represent
spin down states.

layer closest to the interface has only spin up states which are partially occupied,

and these are mainly coming from the V-3d orbitals with little contribution from the

O-2p orbitals. PDOS of the next VO2 layer also has partially occupied spin down
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states which are mainly coming from the V-3d orbitals with very little contribution

from the O-2p orbitals. This again confirms the A-AFM ordering of the V atoms.

The LaO layers do not have any free electronic charge.

So, we can say that the metallicity at the LVO/KTO interface is mainly coming

from the interfacial TaO2 layer, and VO2 layers closer to the interface. The 2DEG

is not very sharply confined to the interface, it has tails on both the KTO and

LVO sides. However, the tail decays away from the interface. Therefore, we can

say that the conduction electrons can move freely in the xy-plane, but they are

confined within an extremely narrow region perpendicular to the interface. Thus

the conduction electrons have a two dimensional nature and form a 2DEG.

We calculate the electron density of the 2DEG by integrating the PDOS from the

conduction band minimum up to the Fermi level (i.e., for −1.33 eV ≤ E−EF ≤ 0 eV).

The calculated interfacial electron density is 5.05×1014 electrons/cm2, which is rea-

sonably consistent with the experimental value of 1.02× 1014 electrons/cm2.62 This

value is one order of magnitude higher than that of the polar/non-polar LAO/STO

interface.20 This is because we have two donor layers (LaO)+ and (TaO2)
+ at

LVO/KTO interface, whereas LAO/STO has only one donor layer (LaO)+ at the

interface.

Orbital projected band structure

It is clear from the layer-resolved PDOS [see Fig. 6.21] that mostly Ta-5d and V-3d

states cross the Fermi level and are responsible for the partially occupied bands in the

band structure [see Fig. 6.20], with very little contribution from the O-2p orbitals.

So, the partially occupied bands and hence the 2DEG are completely coming from

the TaO2 and VO2 layers.

Now, we want to focus on individual bands which cross the Fermi level. We want

to see which bands are coming from which atomic orbitals. For this we show bands
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projected on Ta-5d [see Fig. 6.22] and V-3d [see Fig. 6.23] orbitals of each layer of

the superlattice.

Figure 6.22: (a) Bands are projected on to Ta-5d states of each layer of
(LVO)4.5/(KTO)8.5 superlattice. (a)-(e) are for spin up and (f)-(j) are for spin down
bands. Color scales represent the amount of orbital projection.

In Fig. 6.22 and 6.23, the numbering of layers is as before: positive and negative
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Figure 6.23: (a) Bands are projected on to V-3d states of each layer of
(LVO)4.5/(KTO)8.5 superlattice. (a)-(b) are for spin up and (c)-(d) are for spin
down bands. Color scales represent the amount of orbital projection.

integers for LVO and KTO part, respectively, with increasing magnitude as we go

away from the interface. e.g., Layer: −1 combines interfacial TaO2 layers closest to

both the interfaces, Layer: −2 combines next TaO2 layers from both the interfaces,

and so on. As the (LVO)4.5/(KTO)8.5 superlattice is mirror symmetric, we get a

pair of bands coming from each pair of layers, one from near the interface and the

middle of the superlattice unit cell and the other from near the interface at the edge

of the superlattice unit cell.

We see that, among the bands crossing the Fermi level, only the bands coming

from the interfacial TaO2 layer, and the two VO2 layers closest to the interface have

lower energy and they are much downward in energy from the Fermi level (around 1

eV below the Fermi level) at the Γ point. We note that these bands completely come

from Ta-5d and V-3d orbitals. More specifically, they come from the dxy orbitals,

i.e., the conduction electrons can move freely only in the xy-plane, and they have

very minimal z-extension. This proves the two-dimensional nature of the electron

gas.
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The other partially occupied bands barely cross the Fermi level and they all come

from the other TaO2 layers away from the interface. This also confirms that most

of the conduction electrons are mainly coming from the interfacial TaO2 layer and

two VO2 layers closest to the interface.

Electron density of the 2DEG at the interface

We calculate the electron density of 2DEG for each layer of the (LVO)4.5/(KTO)8.5

superlattice, by integrating the density of states of each layer for both the majority

and minority spin states; a similar procedure has been followed by previous authors

for other systems.104 This layer-resolved and spin-resolved (red circles are for spin

up states and blue squares are for spin down states) electronic charge is shown in

Fig. 6.24. As the superlattice structure is mirror symmetric, only half the layers

are shown. The counting of layers starts from the interface and is represented by

positive and negative integers for LVO and KTO part, respectively, as before.

Figure 6.24: Layer-resolved and spin-resolved electronic charge for
(LVO)4.5/(KTO)8.5 superlattice. Being mirror symmetric, only the layers around
the middle interface are shown. Black dashed line represents the position of the
middle interface. Counting of layers starts from the interface and represented by
positive and negative integers for LVO and KTO part, respectively.
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For integration of the PDOS, we have chosen an energy window from the mini-

mum of the partially occupied bands or conduction bands up to the Fermi level,104–106

i.e., −1.337 eV ≤ E−EF ≤ 0 eV. We notice that the interfacial TaO2 layer (layer:−1)

on the KTO side and the two VO2 layers closest to the interface (layer:2 and layer:4)

on the LVO side have the largest electronic charge. The interfacial TaO2 layer has

0.62 × 1014 electrons/cm−2 for spin-up and 0 electrons/cm−2 for spin-down states.

This corresponds to 100% spin polarization for this layer. The VO2 layer which

is closest to the interface has 2.67 × 1014 electrons/cm−2 for spin-up states and

0 electrons/cm−2 for spin-down states. The next VO2 layer has 0 electrons/cm−2

for spin-up states and 1.74 × 1014 electrons/cm−2 for spin-down states. This again

confirms A-AFM ordering of the V atoms. The VO2 layers also have 100% spin

polarization. Thus we get a layer-wise spin-polarized 2DEG at the LVO/KTO in-

terface. We can say that the electrons accumulate mainly on the interfacial TaO2

layer and on the two VO2 layers closest to the interface, with a tail on both the

KTO and LVO sides. The 2DEG at LVO/KTO system is mainly coming from the

contribution of interfacial TaO2 layer and the VO2 layers adjacent to the interface.

However, the 2DEG has tail on both LVO and KTO sides with decaying amplitude

away from the interface, which means the other TaO2 and VO2 layers away from

the interface also have minimal contribution to the 2DEG. This is consistent with

previous theoretical calculations for other systems,17 and also with the experimental

report that for the LVO/KTO system, the 2DEG is confined to a region of width

10 nm perpendicular to the interface region. All the KO layers on the KTO side

and LaO layers on the LVO side do not have significant electronic charge and they

do not contribute to the 2DEG. However, the amount of electronic charge decays

rapidly away from the interface which indicates the two dimensional nature of the

electron gas.
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Integrated local density of states (ILDOS)

Next we plot the planar-averaged local density of states (LDOS) integrated in a

small energy window from the conduction band minimum up to the Fermi level,

known as the integrated LDOS or ILDOS97. The ILDOS is defined as,

ILDOS =
∑
n

∑
k

∫ ϵmax

ϵmin

|ψn,k(r)|2 δ(E − En,k) dE, (6.2)

where n is the band index, k is the wave vector in the first Brillouin zone, [ϵmin, ϵmax]

defines the energy window of integration, ψn,k(r) is the wavefunction of band n at

k-point k, and the delta function counts only the terms for which the energy is

a Kohn-Sham eigenvalue. After calculating the ILDOS, we average it over the

xy-plane. This quantity is plotted in Fig. 6.25.

Figure 6.25: Planar-averaged ILDOS for (LVO)4.5/(KTO)8.5 superlattice. Black
dashed lines represent the position of the interfacial TaO2 and LaO layers. Structure
is also aligned to better understand the peak positions along the z-axis. Atomic color
code: green: La, brown: V, red: O, magenta: K, blue: Ta.

Fig. 6.25 shows our results for the ILDOS for the (LVO)4.5/(KTO)8.5 superlat-

tice. Here, the calculated ILDOS tells us the locations of the conduction electrons.

The peak of the planar-averaged ILDOS reveals that the conduction electrons are
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mainly located near the interfacial region, with a very high peak on the VO2 layers

closest to the interface, and smaller peaks on the next VO2 layers. We also see that

on the KTO side, some conduction electrons also reside on the interfacial TaO2 layer.

There is a very small amount of conduction electrons also present in other TaO2 lay-

ers which are away from the interface. The height of the peaks decreases rapidly

away from the interface and is almost negligible with respect to the peak heights

on VO2 layers closer to the interface. Thus the electron gas has an essentially two

dimensional nature. Away from the interface, 2DEG has a very small tail on both

LVO and KTO sides. The electron gas is primarily confined to a width of about 20

bohr (i.e., about 10 nm) about the interface, which is in excellent agreement with the

experimental estimate. This result is consistent with the layer-resolved PDOS and

layer-resolved electronic charge, as discussed above. We note that this localization

would be more clear if we had a thicker LVO region in the superlattice; we plan to

confirm this in future calculations.

Planar-averaged charge density difference and charge redistribution

To understand the charge redistribution upon the formation of LVO/KTO inter-

face from the constituents LVO and KTO, we calculate the planar-averaged charge

density difference, given by,

∆ρ̃(z) = ρ̃SL(z)− ρ̃subs(z)− ρ̃film(z), (6.3)

where,

ρ̃system(z) =
1

S

∫
ρsystem(x, y, z) dxdy, (6.4)

is the planar-averaged charge density taken over the xy plane and S is the surface

area of the xy plane of the LVO/KTO superlattice model. Here, ρ̃SL(z), ρ̃subs(z)
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and ρ̃film(z) correspond to the planar-averaged charge densities of the LVO/KTO

superlattice, KTO substrate and LVO film, respectively.

Figure 6.26: Planar-averaged charge density difference ∆ρ̃(z) in units of e/bohr3 for
(LVO)4.5/(KTO)8.5 superlattice. The vertical black dashed lines represent the inter-
facial TaO2 and LaO layers, at the middle and end interfaces of the supercell. The
structure is also aligned with the z-coordinates for better understanding. Atomic
color code: green: La, brown: V, red: O, magenta: K, blue: Ta.

Fig. 6.26 shows the charge density difference ∆ρ̃(z) as a function of the z-

coordinate of the (LVO)4.5/(KTO)8.5 superlattice, we have also shown the geometric

structure below the graph, with the atomic coordinates appropriately aligned with

the abscissa of the graph, so as to promote understanding. ∆ρ̃(z) is a measure of the

charge redistribution upon the formation of the LVO/KTO interface, from the con-

stituents. Large oscillations in the plot of ∆ρ̃(z) indicates that charge redistribution

mainly occurs around the interface region (indicated by vertical black dashed lines)

and on the LVO side. KTO side has smaller oscillations in ∆ρ̃(z), compared to the

LVO side, which indicates that the KTO side has minimal charge redistribution. On
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the KTO side, the oscillations decay very rapidly and become zero after 2 u.c. away

from the interface. We can say that there is electronic charge redistribution, i.e.,

electronic reconstruction is occurring in the LVO/KTO system which is the main

mechanism for the origin of the 2DEG at this interface.

Layer-resolved magnetic moments on atoms

We now calculate the magnetic moments on the atoms of each layer. Fig. 6.27 shows

magnetic moments on atoms for each layer of (LVO)4.5/(KTO)8.5 superlattice. We

separately show the spin up and spin down moments, indicated by red and blue

circles, respectively.

Figure 6.27: Magnetic moments on atoms of each layer for (LVO)4.5/(KTO)8.5 su-
perlattice. Red and blue represnt spin up and down moments, respectively. Being
mirror symmetric, only the layers around the middle interface are shown. Black
dashed line represents the position of the middle interface. Counting of layers starts
from the interface and represented by positive and negative integers for LVO and
KTO part, respectively.

As the superlattice structure is mirror symmetric, only the layers in half the

superlattice are shown. The counting of layers starts from the interface and isrepre-

sented by positive and negative integers for the LVO and KTO parts, respectively, as
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before. We see that the VO2 layers (layer:2 and layer:4 in Fig.6.27) posses very large

moments as expected, and alternating VO2 layers have opposite moments which is

basically the effect of A-AFM ordering. For example, layer:2 has only spin up mo-

ments and layer:4 contains only spin down moments. Also, interestingly, we see

some induced moments on the Ta atoms of the interfacial TaO2 layer (layer:−1),

with small spin up moments on it. The other TaO2 layers which are further away

from the interface do not posses any magnetic moments. This is consistent with the

layer-resolved PDOS discussed earlier [see Fig. 6.21 and section-5.4.4].

6.5.5 Conclusions

In conclusion, we have gained insight into the electronic properties of two-dimensional

electron gas (2DEG) formed at the interface of a Mott insulator LaVO3 (LVO) and

a band insulator KTaO3 (KTO), using first-principles DFT calculations.

We have shown that while the constituents (bulk LVO and KTO) are insulators,

the LVO/KTO interface becomes metallic and hosts a two-dimensional electron

gas. The calculated layer-resolved electronic charge shows that the free charge is

mainly located on the interfacial TaO2 layer and on the VO2 layers close to the

LVO/KTO interface, and the electronic charge decreases away from the interface

which proves the two-dimensional nature of the conduction electrons. In agreement

with experiments, the width of the 2DEG is found to be about 10 nm.

The 2DEG is spin-polarized due to the strong electron-electron correlations of

the localized V-3d and Ta-5d orbitals. DFT calculations show that in the LVO/KTO

superlattice structure, V atoms assume an A-type antiferromagnetic ordering, also

the interfacial Ta atoms gain some magnetic moments while other Ta atoms away

from the interface are non-magnetic.

We identify ‘electronic reconstruction’ due to polar catastrophe as the origin of

the 2DEG at the LVO/KTO interface.
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Both atomic layers at the interface, viz., (LaO)+ and (TaO2)
+, are cationic or

donor-like in nature, which which increases the electron density at the interface. Our

calculated electron density at the interface is, in agreement with experiment, one

order higher in magnitude in compared to the two-dimensional electron gas formed

at a polar/non-polar interface such as LaAlO3/SrTiO3.
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Chapter 7
Summary and Future Directions

We have no right to assume that

any physical laws exist, or if they

have existed up until now, that

they will continue to exist in a

similar manner in the future.

Max Planck

In this thesis, we performed quantum mechanical simulations using density func-

tional theory (DFT) on a rich variety of systems such as bulk crystals, metal and

semiconductor surfaces, surface alloys, pristine and doped halide perovskite mate-

rials and heterostructure. We used spin-polarized DFT for magnetic systems, the

DFT+U method for strongly-correlated systems, and relativistic DFT for incorpo-

rating spin-orbit coupling. Using these techniques, we sudied the structural, elec-

tronic, magnetic, optical and vibrational properties of the above mentioned systems

In Chapter 1, we provided a very brief introduction to the problems we studied in

this thesis. We discussed the importance of materials science in a historical context,

and why it is desirable to use a rational design approach to engineer new materials.

The specific systems we have studied are metal surfaces, surface alloys on metal
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surfaces, bulk perovskites, transition metal atom doped bulk perovskites, and the

interfaces between two perovskite oxide materials. We explained why these systems

were worth studying, due to either a fundamental physics point of view, or the

possibility of technological applications.

In Chapter 2, we summarized the methods we used in this thesis. We have

summarized the basics of density functional theory (DFT) and the computational

approaches used when performing DFT calculations. We also discussed the mathe-

matical formalism used to calculate different properties throughout the thesis. For

example, we described, in brief, the theory of non spin-polarized and spin-polarized

DFT, and the computational approximations made when using DFT for doing simu-

lations of real materials. We also described relativistic DFT, which we used when in-

corporating spin-orbit coupling in systems containing heavy atoms. Another method

that we described was the DFT+U method, used for a more appropriate treatment

of strongly correlated systems. We also described approaches used in this thesis to

calculated the optical and vibrational properties of materials.

In Chapter 3, we studied the deposition of Sn atoms on an Ag(001) substrate.

This was collaborative work, done together with the experimental group of Prof. K.

S. R. Menon, of the Surface Physics and Materials Science Division, SINP, Kolkata.

Our theoretical calculations showed that when Sn atoms are deposited on an Ag(001)

surface, very interestingly Sn-Ag bimetallic surface alloys are formed for all Sn cov-

erages. This is in contradiction with the naive expectation that Sn atoms would

form an overlayer on the Ag(001) surface. We discuss the reasons why these naive

expectations are incorrect. Even though the metallic radii of Sn and Ag atoms in

their respective bulk structures are very similar, when Sn atoms are deposited on

Ag(001), their effective size becomes much larger than that of the Ag surface and

bulk atoms. As a result, the incorporation of the large Sn surface atoms within the

topmost Ag layer (by the formation of a surface alloy) relieves the tensile surface
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stress present in the bare Ag(001) surface. The calculated results were compared

against the data from low energy electron diffraction (LEED) experiments. The sta-

ble phases predicted by our DFT calculations matched reasonably well with those

found in experiment, though there were a few discrepancies.

Then, we calculated the electronic structure of the lowest energy stable structures

at each Sn coverage considered in our calculations. The calculated band structures

were compared with the angle-resolved photoemission spectroscopy (ARPES) mea-

surements. Overall, we see very good agreement between theory and experiment.

Surprisingly, this was found to be true even in cases where the ground state con-

figuration predicted from DFT seemed to differ from that observed in LEED. We

believe this is because the main features in the unfolded band structure are primarily

sensitive to the surface electrostatic potential, which is relatively insensitive to the

actual geometric arrangement of atoms, and depends primarily on the Sn coverage.

An interesting feature in both the experimentally measured and theoretically

computed band structure was the existence of a crossing point between two linearly

dispersive bands, similar to the Dirac cone in graphene, and a monotonic variation

in its energy with the Sn coverage. This variation is attributable to the change in

surface electrostatic potential with Sn coverage.

As mentioned above, at some values of Sn coverage x, the lowest energy geometry

is different from that observed in the LEED experiments. For example, for x = 0.5,

the DFT calculated lowest energy structure has a p(2×2) unit cell, while a p(1×10)

cell is observed in the LEED experiment. Due to computational feasibility, we were

able to perform the band unfolding calculations only for the p(2 × 2) structure.

Though we obtained good agreement with ARPES data, as mentioned above, in

future, we would like (if we have adequate computational resources) to perform the

computationally expensive band unfolding calculations also for the p(1×10) cell, and

provide direct confirmation of our belief that the unfolded band structure is primarily
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sensitive to the Sn coverage, and not the details of the atomic arrangement in the

surface alloy. It would also be nice to understand why DFT and LEED disagree

about the lowest energy structures at some values of x.

In Chapter 4, we studied the structural, electronic and vibrational properties

of CsPbBr3, CsPbCl3, Fe-doped CsPbBr3 and Fe-doped CsPbCl3. This work was

done in collaboration with the experimental group of Prof. Ranjani Viswanatha, New

Chemistry Unit, JNCASR, Bangalore. They were able to dope Fe atoms successfully

into CsPbBr3 and CsPbCl3 nanocrystals. They measured the photoluminescence of

the Fe-doped systems and compared these results with those obtained from the

corresponding pristine systems. They observed that the photoluminescence was

considerably quenched or reduced upon Fe doping, compared to the pristine CsPbBr3

and CsPbCl3.

We performed DFT calculations to see the effect of Fe doping on these halide

perovskites. The electronic structures of the pristine systems and Fe-doped systems

were computed and compared. We are able to explain the fundamental origin of

photoluminescence quenching in the Fe-doped systems: the introduction of the Fe

atoms results in the formation of mid-gap states that trap electrons, resulting in

photoluminescence quenching.

We also found that the electron-phonon coupling is much stronger in the chloride

than in the bromide systems. This finding explains the greater degree of photolumi-

nescence quenching observed in the former systems, as the stronger electron-phonon

coupling results in greater non-radiative losses.

We had calculated the electron-phonon coupling in these systems somewhat in-

directly, by calculating the deformation potential, which is obtained by computing

the change in electronic eigenvalues when the crystal is subjected to strain.1 In fu-

ture, we would like to calculate the electron-phonon coupling strengths for Fe-doped
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CsPbBr3 and Fe-doped CsPbCl3 more directly, using density functional perturba-

tion theory (DFPT),give ref here from which we can also get information about

the coupling of electrons to optical phonons. This information can then be inserted

into the Huang-Rhys factor, which can give us the number of phonons emitted after

excited electrons get trapped by the mid-gap Fe-3d energy levels. Thus it can pro-

vide information about the amount of excitation energy which is getting converted

into lattice vibrational energy and we can compare this for Fe-doped CsPbBr3 and

Fe-doped CsPbCl3.

In Chapter 5, we calculated the optical properties of CsPbX3 and Fe-doped

CsPbX3 (X = Br, Cl) perovskite materials. Our experimental collaborators in the

group of Prof. Ranjani Viswanatha, JNCASR, Bangalore, have done some optical

measurements. Other experimental collaborators, in the group of Prof. Bivas Saha,

JNCASR, Bangalore, studied optical transitions occurring in CsPbBr3 and CsPbCl3

perovskites, using ellipsometry measurements. They measured the frequency de-

pendent optical constants (e.g., the imaginary part of dielectric function ϵ2(ω)) by

observing the change in polarization of light when it reflects from or is transmitted

through CsPbBr3 and CsPbCl3.

We calculated the electronic structure and optical properties of CsPbBr3 and

CsPbCl3 using first principles DFT calculations. We identified the valence states

and conduction states involved in the different optical transitions measured in the

ellipsometry measurements. We have also identified the atomic orbitals involved

in these optical transitions. Further, we have calculated the frequency dependent

imaginary part of the dielectric function ϵ2(ω) and compared it with the experimental

spectra, for both CsPbBr3 and CsPbCl3.

Upon introducing a linear shift in frequency (which is a standard procedure

in the field) we found good agreement with experimental data for the CsPbBr3;

the agreement was not as good for CsPbCl3. Once again, we believe this can be
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explained by stronger electron-phonon coupling in the latter system.

We also calculated ϵ2(ω) for Fe-doped systems, and found that there is a little

blue shift (increase in band gap) upon Fe doping with respect to the pristine systems,

for both Fe-doped CsPbBr3 and Fe-doped CsPbCl3.

In future, we would like to repeat these calculations using better functionals such

as hybrid functionals, which generally give more accurate values for the band gap

and capture better band dispersion, but are computationally more expensive.

In Chapter 6, we studied the electronic properties of the two-dimensional elec-

tron gas (2DEG) formed at the LaVO3/KTaO3 (LVO/KTO) heterostructure inter-

face. This work was performed in collaboration with the experimental group of

Prof. Suvankar Chakraverty, INST, Mohali. They formed the LVO/KTO interface

by depositing a thin film of LVO on a TaO2 terminated KTO(001) substrate, using

pulsed laser deposition (PLD). They observed metallicity at the LVO/KTO inter-

face, above 3 monolayer (ML) LVO thickness, upon measuring the two-dimensional

(2D) resistivity as a function of temperature. The measured carrier density and

carrier mobility, in their experiment, is very high at the LVO/KTO interface.

We first performed electronic structure calculations of the constituents LVO and

KTO which were confirmed to be insulating. However, our calculations of the

LVO/KTO interface showed a metallic nature, consistent with the experimental

observations. The calculated electronic charge was maximum near the interface and

decreased away from the interface, which shows the two-dimensional nature of the

conduction electrons. We also found that an ‘electronic reconstruction’ is the origin

of 2DEG formation at the LVO/KTO interface.

In future, we can calculate the layer-resolved and spin-resolved orbital projected

density of states for slab structure of LVO/KTO interface and can show the better

picture of ‘electronic reconstruction’ due to polar catastrophe. As there are heavy

Ta atoms in the system, we can explore interesting Rashba physics by incorporating
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spin-orbit interaction.

For each chapter, we have chosen the problems based on the experimental ob-

servations, we have explained them using DFT calculations and provided additional

insights into the problems. Though we have tried to understand and provide insights

in great detail for all the problems considered, it may happen that this is just the

‘tip of the iceberg’ and thus we can explore many more things which can lead to

even more interesting physics.
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