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Abstract

This thesis is concerned with the theoretical study of the dynamics of two classes of complex
fluids - dilute polymer solutions (chapter 1) and active suspensions (chapter 2 and 3). In
chapter 1, we study the linear stability of pressure-driven pipe and channel flow of dilute
polymer solutions. We demonstrate a novel linear instability that describes a hitherto
unknown route to turbulence in dilute polymer solutions and explains recent experimental
observations of the same. In chapters 2 and 3, we discuss the dynamics of an important
class of active fluids viz. suspensions of run-and-tumble particles. In chapter 2, we obtain a
closed form solution for the time dependent probability density of run-and-tumble particles
in orientation-position space. We use this solution to study the radial and angular variation of
the probability density, with time, for an infinitely localized population at the initial instant.
In chapter 3, we formulate a fluctuating kinetic theory for bacterial suspensions, where the
bacteria are modeled as run-and-tumble particles, with long-range hydrodynamic interactions
now being included. We use this theoretical framework to study the variation of the fluid
velocity variance and the tracer diffusivity as the threshold for collective motion of the
suspension is approached.

Linear instability of Pipe and Channel flow of Dilute Polymer
Solutions

Turbulent flow of dilute polymer solutions is of fundamental importance since it exhibits
novel dynamics such as turbulent drag reduction [Toms, 1977]. Transition to turbulence in
polymer solutions has thus been extensively investigated in recent years [Graham, 2014].
In Newtonian fluids, the transition is initiated by the lift-up effect leading to a non-linear,
self sustaining process underlying the ensuing turbulent state, and with associated exact
non-linear solutions, that arise beyond a finite Reynolds number (Re), and that make up the
turbulent attractor [Kerswell, 2005]. Recent studies of dilute polymer solutions focus on the
modification of the Newtonian transition scenario due to the elasticity of the polymer solution,
parameterized by the Deborah number (De) [Graham, 2014]. The prevailing viewpoint, and
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methods of analysis, in the literature have all been driven by the overriding belief that the
canonical viscoelastic shearing flows (pipe and plane Couette) are linearly stable similar to
their Newtonian counterparts [Graham, 2014; Morozov and van Saarloos, 2007; Samanta
et al., 2013].

In contrast, both early (for example in [Little and Wiegard, 1970]) and recent experiments
(for example in [Samanta et al., 2013]) indicate a continuous transition to turbulence for pipe
flow of sufficiently concentrated dilute polymer solutions, and thus a linear instability of the
laminar state. Similar experimental observations have been made for pressure-driven channel
flow [Srinivas and Kumaran, 2017]. Motivated by these experiments, we carry out a linear
stability analysis for the canonical viscoelastic shearing flows: pressure-driven pipe and
channel flow, and plane Couette flow. We use the Oldroyd-B constitutive equation to model
the polymeric stress, where the polymer molecules are modeled as non-interacting Hookean
dumbbells. This leads to three governing parameters - (1) the Reynolds number (Re), (2) the
Deborah number (De) which represents a ratio of the relaxation time of the polymer molecule
to the flow imposed time scale and (3) the viscosity ratio (β ) which represents the ratio of the
solvent and total viscosity. The Oldroyd-B model predicts a shear-rate independent viscosity
and first normal stress coefficient in viscometric flows. It has been shown to reproduce
observations of linear instabilities in polymer solutions in the literature, and is therefore
a natural choice for the stability analysis. The eigenvalue problem is solved numerically
using a spectral collocation method. The eigenvalue, c(Re,De,k,β ), is dependent on four
parameters, where k is the non-dimensional axial wavenumber of the perturbation.

The eigenspectrum for pipe flow shows a single unstable mode, multiple damped discrete
modes and a pair of continuous spectra consisting of singular modes whose decay rates are set
by the polymer stress relaxation in the dilute limit. The unstable mode propagates at a speed
close to the base-state maximum, and is therefore termed a center-mode. The polymer force
field is localized near the centerline and reinforces the velocity field, leading to the instability.
For a given β and k, the instability is shown to exist in the asymptotic limit Re → ∞ and
De → ∞ with De/Re

1
2 → const confined to a finite interval. The unstable eigenfunction

becomes localized near the centerline in this asymptotic limit. Viscous diffusion balances
inertia in the near-centerline boundary layer, and the perturbation polymeric stress stays
comparable since De ∼ O(Re1/2). The instability thus requires a balance of inertia, viscous
and elastic polymer stresses close to the centerline. The instability qualitatively explains the
experimental observations of a linear pathway to turbulence in pipe flow of dilute polymer
solutions [Choueiri et al., 2021; Garg et al., 2018; Little and Wiegard, 1970; Samanta et al.,
2013].
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The instability of viscoelastic pipe flow discussed above is in striking contrast to New-
tonian pipe flow which remains linearly stable at all Reynolds numbers. A similar center-
mode instability is shown to exist for pressure-driven channel flow of an Oldroyd-B fluid.
Analogous results for the neutral curves and the boundary layer scalings, for the unstable
eigenfunctions, are obtained. Plane Couette flow is found to be stable at all Re and De values
examined. The stabilizing effect of stress diffusion is also examined. For realistic values of
the stress diffusivity, the instability remains virtually unaltered. Finally, we have extended the
analysis to include weakly non-linear effects on the unstable eigenmode for pressure-driven
channel flow, which is used to determine the nature of the bifurcation at onset.

Exact solution for the probability density of run-and-tumble
particles

Swimmer suspensions naturally constitute an important class of active systems since they
violate time reversal symmetry at the scale of a single swimmer [Bechinger et al., 2016].
Based on the stochastic dynamics of the orientation vector (ppp) of the swimmer, such active
particles have been further classified into Active Brownian Particles (ABPs) and Run-and-
Tumble Particles (RTPs) [Bechinger et al., 2016]. For ABPs, the orientation vector is subject
to Gaussian noise, and thus evolves through infinitesimal changes on the unit sphere. In
contrast, RTPs, the focus of this thesis, swim along straight trajectories (the run phase) before
executing an impulsive stochastic reorientation (the tumble phase) by a large amount [Berg,
1993]. The reorientation events are generally assumed to follow Poissonian statistics with a
mean tumble time τ . In the biological context, several species of bacteria exhibit run-and-
tumble motion [Berg, 1993]. Some artificially constructed colloidal microswimmers have
also been seen to behave as RTPs [Karani et al., 2019]. A closed form statistical description
for the temporal evolution of RTP populations is not available in the existing literature.

We derive the exact solution for the joint orientation-position space probability density of
RTPs (Ω(rrr, ppp, t)), which is governed by a conservation equation that includes convection due
to swimming (running along ppp), and relaxation to isotropy due to tumbling. We perform an
exact inversion of the ‘run-and-tumble operator’ in Fourier space, that governs the Fourier
transformed probability density (Ω̃(kkk, ppp, t)), in both two and three dimensions. Exact analyti-
cal expressions for the eigenfunctions (and their adjoints) of the run-and-tumble operator
in Fourier space are obtained by solving integral equations. Having established both the
orthogonality and completeness of the eigenfunctions, and their adjoints, these are then used
to construct the Green’s function, which can be interpreted as the time dependent probability



viii

density evolving from an infinitely localized initial condition in position-orientation space.
In the analysis above, and the results stated below, the time scale is non-dimensionalized by
the mean tumble time (τ) and the length scale by Usτ , where Us is the swim speed, so that
the mean tumble time and swim speed become unity in the non-dimensional units.

The eigenspectrum of the run-and-tumble operator comprises a set of continuous spectrum
modes and a regular discrete mode in 3D (a regular and two singular discrete modes in
2D). The continuous spectrum modes exist for both axisymmetric and non-axisymmetric
orientation modes in 3D (odd and even modes in 2D), while the discrete modes only exist
for axisymmetric orientation modes in 3D (even modes in 2D). The decay of the continuous
spectrum modes is solely governed by the mean tumble time and these modes therefore relax
at the same rate independent of the wavenumber. These denote the fastest decaying modes in
the spectrum. The finite decay rate, even in the limit of zero wavenumber, implies that the
continuous spectrum modes do not contribute to the long-time behavior. The regular discrete
mode shows wavenumber dependent relaxation, reducing to a diffusive mode in the long
wavelength limit with an effective, non-dimensional, diffusivity given by 1/3 in 3D (1/2 in
2D). The discrete eigenmode exists only for a finite range of wavenumbers, falling into the
continuous spectrum at k = 1/4 (k = 1/2π) in 3D (2D).

We examine the time evolution of the intermediate scattering function (ISF) (Ω̃(k, t)) for
RTPs. For k < 1/4 (k < 1/2π) in 3D (2D), the ISF shows purely diffusive decay, typical
of passive systems. For larger wavenumbers, the ISF shows an oscillatory decay. We next
examine the probability density (Ω(r, t)) of finding a swimmer at the radial distance r at time
t, with any orientation, starting from an infinitely localized population at r = 0 at the initial
time (t = 0).1 In both 2D and 3D, we expect to find a contribution of the form δ (r− t)e−t ,
corresponding to the exponentially decaying fraction of swimmers that have not tumbled until
time t. We examine ΩND(r, t) = Ω(r, t)−δ (r− t)e−t to focus on the spatial structure behind
the front. The Fourier inversion is carried out numerically by adding a translational diffusivity
(DT ), which regularizes Ω(r, t); the results are obtained by extrapolating the numerical results
to the limit of small DT . For the 2D case, we find that the swimmers initially aggregate at the
front and the spatial structure is dominated by the continuous spectrum contribution. At long
times, the diffusive discrete mode dominates and the probability density has a maximum
at r = 0. For all time t, ΩND diverges as (t − r)−1/2 on approaching the front. We also
examine Ω(r, t) in 3D, and its structure and variation with time is observed to be similar to
2D, although there is no divergence on approach towards the front from within (apart from
the delta function that represents the front itself).

1For the passive system, the simplest and classical example of which is an ensemble of diffusing spherical
Brownian particles, the probability density Ω(r, t) for the chosen initial condition is a Gaussian distribution
which exhibits a diffusive spread with time.
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Next, we obtain the evolution of the joint probability density (Ω(rrr, ppp, t)) in orientation-
position space in both two and three dimensions, assuming an infinitely localized population
at r = 0 with an isotropic orientation distribution at t = 0. In 2D, using a ppp-aligned co-ordinate
system, the joint probability density is parameterised by the radial vector (r cos(χ),r sin(χ)).
We study the dynamics of the joint probability density (Ω(r,χ, t)) for varying r and χ , with
Ω(r,χ, t = 0) = δ (r). For swimmers aligned with the radial direction (χ = 0), at early times,
we see an active regime - a power law scaling ΩND(r,χ = 0, t) ∝

1
t−r for all r. For longer

times, we see a transition to a passive regime - the swimmers accumulate near the origin
(r = 0) leading to a local Gaussian profile that exhibits a diffusive spread, but there is again
the algebraic divergence, given by Ω(r,χ = 0, t) ∝

1
t−r , in the neighborhood of the front.

We see similar phenomenology for other values of χ - there is an active-to-passive regime
transition with time for any value of χ , although the exact radial variation of Ω(r,χ, t) in the
two regimes varies with χ . We also obtain the angular variation of Ω(r,χ, t) with χ at a given
radial location and time. Similar results for the radial and angular variation are obtained in
3D.

Fluctuating kinetic theory for bacterial suspensions

Active matter systems involve energy injection at the microscale, and consequently break mi-
croscopic time reversal symmetry. This leads to non-trivial dynamics which are forbidden by
symmetry in equilibrium (or near-equilibrium) systems [Cates, 2012]. Bacterial suspensions
have been extensively studied, both experimentally [Gachelin et al., 2014] and theoretically
[Marchetti et al., 2013], over recent years as a prototypical example of such active matter
systems. Long-ranged hydrodynamic interactions lead to ‘collective motion’ in bacterial
suspensions on length scales much larger than a single bacterium [Koch and Subramanian,
2011]. The collective dynamics in turn affects the material properties of the suspension,
leading to enhanced velocity fluctuations and tracer diffusivities [Wu and Libchaber, 2000].
Understanding the dynamics of bacterial suspensions near ‘criticality’ would therefore lead
to a greater insight into the non-equilibrium dynamics of active matter systems. Motivated
by these considerations, we develop a fluctuating kinetic theory, which is used to study the
correlations that develop in a bacterial suspension near the onset of collective motion. Our
mathematical formalism allows us to obtain analytical results.

As mentioned earlier, an individual bacterium behaves as a run-and-tumble particle with
swim speed Us and mean tumble time, τ . To model a bacterial suspension, we therefore
consider a suspension of RTPs, with volume fraction nL3 where n is the number of particles
per unit volume and L the length of a particle. The swimming motion induces a long-ranged
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fluid flow, which in turn convects and rotates the other particles - these constitute the long-
ranged hydrodynamic interactions. The fluid flow in the suspension is governed by the Stokes
equations with an additional stress (ΣΣΣaaa) due to the swimming motion. The sign of the active
stress depends on whether the swimmers are pushers (like bacteria) or pullers (like algae).
A suspension of pushers alone shows a transition to collective motion at a finite threshold
(given by the non-dimensional number ((nL2Usτ)cr)) [Koch and Subramanian, 2011]. We
analyze correlations for both pusher and puller suspensions.

Since swimming implies broken time reversal symmetry at the microscale, we cannot
appeal to a fluctuation-dissipation theorem to derive the associated noise correlations. Instead,
we derive the noise correlations starting from the master equation governing the fluctuating
phase-space density (Ω(xxx, ppp, t)). For correlations in the homogeneous isotropic state the noise
is shown to become additive and its second moment suffices; a closed integro-differential
equation can then be obtained for the fluctuating density in Fourier space (Ω̃(kkk, ppp, t)). Analyt-
ical expressions for both the direct and adjoint eigenfunctions of this equation are obtained,
which are then used to obtain the Green’s function and the evolution of Ω̃. The Fourier
inversion is carried out numerically.

The fluctuating phase-space density is then used to derive the correlations for the fluid
velocity field. The fluid velocity variance, defined by ⟨uuu...uuu⟩, remains finite in a suspension
of pullers, but diverges as 1

((nL2Usτ)cr)−(nL2Usτ))1/2 for a suspension of pushers, near the

threshold (nL2Uτ)cr for collective motion. The fluid velocity covariance, ⟨uuu(rrr)...uuu(0)⟩,
decays increasingly gradually, reflecting the development of long-ranged correlations as
the threshold is approached. This behavior of the variance and covariance is explained by
noting that the decorrelation is dominated by length scales of O(nL2)−1, that characterize
the slowest decaying long-wavelength velocity fluctuations; these long-wavelength modes
denote the coordinated effect of the disturbance fields of large number of swimmers. In
contrast, away from the threshold decorrelation occurs on the length scale L of a single
bacterium. Next, we obtain the diffusivity (D) of a passive tracer convected by the bacterial
suspension using the Green-Kubo formula. The tracer diffusivity stays finite for pullers,
and diverges for pushers in the vicinity of the collective motion threshold. However, the
divergence of the diffusivity is stronger than that for the velocity variance, being proportional
to 1

((nL2Usτ)cr)−(nL2Usτ))3/2 . We also examine the polar and nematic orientation correlations
near the threshold.

We have also examined the correlations in a bacterial suspension away from the threshold.
Direct pair interactions due to the individual long-ranged disturbance flow fields also lead
to a non-trivial variation of the velocity variance and tracer diffusivity with the volume
fraction (nL3) and swimmer run length (Usτ/L). The variation of the velocity variance
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has been examined earlier and it was found at O(nL3)2, that the velocity variance diverges
logarithmically with the swimmer run length [Nambiar et al., 2021]. We extend the analysis
at O(nL3)2 to the tracer diffusivity. At O(nL3)2, the tracer mean squared displacement is
shown to undergo an increasingly broad crossover from the ballistic to the diffusive regime
for persistent RTPs (Usτ/L ≫ 1), with the tracer diffusivity exhibiting a stronger linear
increase with the swimmer run length.
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Chapter 1

Linear instability of Pipe and Channel
flow of Dilute Polymer Solutions

Please note that the work presented in this chapter has been done in collaboration with Prof.
Shankar at IIT Kanpur.

1.1 Introduction

Since the discovery by Toms that the addition of small amounts of a high molecular weight
polymer to a Newtonian fluid significantly reduces the pressure drop in turbulent pipe flow
[Toms, 1977; Virk, 1975], turbulent flows of dilute polymer solutions have been widely
studied for both their fundamental and industrial importance [Berman, 1978; Burger et al.,
1982; Lumley, 1969; Toms, 1977; Virk, 1975; White and Mungal, 2008]. Understanding
the transition to turbulence in shearing flows of viscoelastic fluids, including dilute polymer
solutions, is thus crucial [Graham, 2014; Morozov and van Saarloos, 2007]. A central
question underlying this field of study is if the laminar state is stable to infinitesimal amplitude
perturbations [Graham, 2014; Larson, 1992; Morozov and van Saarloos, 2007].

Newtonian pipe flow is known to be linearly stable at all Reynolds numbers (Re) [Drazin
and Reid, 1981; Gill, 1965; Kerswell, 2005; Meseguer and Trefethen, 2003; Schmid and
Henningson, 2001]. By carefully minimizing external perturbations, laminar flow has
been maintained in experiments upto Re ∼ 100,000 [Pfenniger, 1961]; in contrast, when
forced with finite amplitude disturbances, transition occurs around an Re of 2000 [Avila
et al., 2011; Ben-Dov and Cohen, 2007; Eckhardt et al., 2007; Hof et al., 2003; Mullin,
2011]. Theoretically, this sub-critical scenario is explained by the appearance, above a
threshold Re, of non-trivial three-dimensional solutions of the Navier-Stokes equations
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(termed exact coherent states) which are disconnected from the laminar state [Eckhardt
et al., 2007; Kerswell, 2005; Waleffe, 1998]. Rectilinear shearing flows, including pipe flow,
of dilute polymer solutions are also believed to be linearly stable at all Deborah numbers
(De) in the inertialess limit (Re = 0) [Gorodtsov and Leonov, 1967; Larson, 1992; Renardy
and Renardy, 1986; Wilson et al., 1999]; De here being the ratio of the polymer relaxation
time to the flow time scale. A non-linear mechanism has been proposed for transition
to (elastic) turbulence in such flows, where an initial finite amplitude perturbation induces
curved streamlines, which then become unstable to a hoop-stress-driven elastic instability that
operates at linear order in canonical curvilinear geometries [Bertola et al., 2003; Larson et al.,
1990; Morozov and van Saarloos, 2007, 2005; Pan et al., 2013; Shaqfeh, 1996]. Theoretical
work explaining transition, and turbulent drag reduction, at finite Re and De has focused
on the modification of the Newtonian scenario, by mapping the domain of existence of the
(simplest) exact coherent states in the Re-De plane [Graham, 2014; Roy et al., 2006; Stone
et al., 2004, 2002]. That a subset of these finite amplitude solutions do not exist above a
critical De, for fixed Re, is indicative of a distinct transition mechanism at larger De [Graham,
2014; Li et al., 2006]. A separate line of work has focused on the linear transient growth of
disturbances from a stable laminar state [Agarwal et al., 2014; Hoda et al., 2008; Lieu et al.,
2013]. In summary, the viewpoint with regard to transition in dilute polymer solutions is
rooted in the (assumed) linear stability of the laminar state everywhere in the Re-De plane
[Graham, 2014; Larson, 1992; Morozov and van Saarloos, 2007]. This is despite the absence
of a rigorous linear stability analysis for pipe flow valid at large Re and De.

There have, however, been scattered observations that point to a linear instability in
pipe flow experiments involving dilute polymer solutions. In a series of experiments in the
1960s and 70s, transition to turbulence was observed in dilute polymer solutions, at Reynolds
numbers much lower than the Newtonian threshold by several groups, the phenomenon
being dubbed ‘early turbulence’ [Forame et al., 1972; Goldstein et al., 1969; Hansen et al.,
1973; Hansen and Little, 1974; Hoyt, 1977; Jones and Maddock., 1966; Jones et al., 1976;
Little and Wiegard, 1970; Ram and Tamir, 1964; Zakin et al., 1977]. Later, Draad et al.
[Draad et al., 1998] observed an order of magnitude reduction in the natural (unforced)
transition Re for a polymer solution. More recently, Samanta et al. [Samanta et al., 2013]
studied transition in polyacrylamide solutions, in smaller diameter pipes, thereby accessing
higher Deborah numbers. In a 4 mm diameter pipe, the transition process for concentrations
lesser than 200 parts per million (ppm) was analogous to the Newtonian one with forced
and natural transitions occurring at disparate Reynolds numbers. In sharp contrast, for the
500 parts per million (ppm) solution, the transition occured at Re ∼ 800 independent of the
perturbation amplitude. Further, spatially localized structures (puffs), characteristic of the



1.2 Governing Equations 3

bistability associated with the Newtonian sub-critical transition [Barkley, 2016; Wygnanski
and Champagne, 1973; Wygnanski et al., 1975], were absent. Subsequently, this new
transitional pathway, connecting the laminar state to a novel elasto-inertial turbulent state, has
been demonstrated over a much wider parameter range [Chandra et al., 2018, 2020; Choueiri
et al., 2018].

Although a linear instability has occasionally been speculated upon [Forame et al., 1972;
Graham, 2014], the consensus in the field assumes otherwise [Morozov and van Saarloos,
2007, 2005; Pan et al., 2013; Samanta et al., 2013; Sid et al., 2018b]. This assumption is
sometimes stated as a fact, for instance in [Morozov and van Saarloos, 2005; Pan et al., 2013;
Sid et al., 2018b]. Even the authors of Samanta et al. [2013], despite observing signatures of
a linear instability, expect the transition to be governed by a non-linear process. Contrary to
this widely held view we demonstrate a linear instability in the Re-De plane in this chapter.

1.2 Governing Equations

We study the linear stability of the three canonical viscoelastic shearing flows - plane Couette,
plane Poiseuille and pressure-driven pipe flow. The governing system of equations for an
incompressible viscoelastic fluid (in non-dimensional form) is

Re(
∂

∂ t
+uuu ···∇∇∇)uuu =−∇∇∇p+

1−β

De
∇∇∇ ···AAAppp +β∇

2uuu,∇∇∇ ···uuu = 0, (1.1)

where uuu, p and AAAppp are the velocity field, pressure and the elastic stress tensor, respectively.
The relevant non-dimensional parameters are β = µs

µp+µs
, De = Usτ

a and Re = ρUsa
µs+µp

where µs

and µp are the solvent and polymer contributions to the viscosity, τ the relaxation time of the
polymer molecule, ρ the density of the fluid, a the pipe radius and Us (the centerline velocity)
the imposed velocity scale. The elastic stress is assumed to be governed by the Oldroyd-B
constitutive equation, corresponding to polymer molecules in the solution being modeled
as non-interacting Hookean dumbbells. This gives AAAppp ∝ ⟨RRRRRR⟩, where RRR is the dumbbell
end-to-end vector and ⟨.⟩ denotes a configurational average. The affine deformation of RRR,
together with linear relaxation in a time τ , leads to the following equation for AAAppp [Larson,
1988]:

(
∂

∂ t
+uuu ···∇∇∇)AAAppp −AAAppp ···∇∇∇uuu− (∇∇∇uuu)† ···AAAppp =−

AAAppp − I
De

. (1.2)

The Oldroyd-B model predicts a shear-rate independent viscosity and first normal stress
coefficient in viscometric flows [Larson, 1988]. It has been shown to reproduce observations
of linear instabilities in polymer solutions in various curvilinear [Shaqfeh, 1996] and exten-
sional flows [Poole et al., 2007] as well as the inertialess non-linear instability in rectilinear
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shearing flows [Bertola et al., 2003; Morozov and van Saarloos, 2007], and is thus appropriate
for a first effort. For β = 0, (1.1) and (1.2) reduce to the Upper Convected Maxwell (UCM)
model, with no solvent stress contribution.

1.2.1 Laminar Flow

The laminar velocity and stress profiles for an Oldroyd-B fluid are, for plane Couette flow,

U = y,Axx = 1+2De2,Axy = De,Ayy = 1, (1.3)

for plane Poiseuille flow,

U = 1− y2,Axx = 1+8De2y2,Axy =−2yDe,Ayy = 1, (1.4)

and finally for pipe flow,

U = 1− r2,Azz = 1+8De2r2,Arz =−2rDe,Arr = 1. (1.5)

Thus we see that the laminar velocity profile remains the same as in the Newtonian case.
However, an associated first normal stress difference (N1 = Axx −Ayy or N1 = Azz −Arr)
arises. This is owing to the polymer molecules being stretched and aligned with the flow,
leading to a tension along the streamlines.

1.2.2 Formulation of the linear stability problem

We study the stability of the laminar state to infinitesimal perturbations, (uuu =U +uuu′,AAAppp =

AAA+ aaa′, p = p0 + p′). For plane Couette and Poiseuille flow, we assume a normal mode
form for the perturbations f ′ = f̂ (y)eik(x−ct) where k is the axial wavenumber. Similarly
for pipe flow, the perturbations take the form f ′ = f̂ (r)eik(z−ct) where k is again the axial
wavenumber. Linearizing about the aforementioned base-state, one obtains the following
eigenvalue problem,

L f̂ff = c f̂ff ,

such that c = cr + ici where cr is the wave speed and ci the growth rate; ci > 0 implies
exponentially growing normal modes and thus an instability of the laminar state. c ≡
c(Re,De,k,β ). Therefore, the linear stability of the laminar state depends on 4 dimensionless
parameters. Note that we have restricted the formulation to two dimensional (axisymmetric)
perturbations here. This is not a restriction for the two planar shearing flows owing to the
existence of a Squire’s theorem [Bistagnino et al., 2007]. We had briefly examined three
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dimensional (non-axisymmetric) perturbations for pipe flow, and found no instabilities over
the parameter range of interest.

A spectral collocation method in which the perturbation fields are expanded in terms of
Chebyshev polynomials is used to solve the linear eigenvalue problem [Boyd, 1999; Schmid
and Henningson, 2001]. To avoid spurious modes, convergence was checked, for both
eigenvalues and eigenfunctions, with respect to N (the number of Chebyshev polynomials
in the spectral expansion). The only prior work on linear stability of viscoelastic pipe flow
neglected the convected derivative in (1.2) and hence is of restricted validity [Hansen, 1973].
We have verified the numerical scheme by reproducing earlier stability results for plane
Poiseuille flow of an Oldroyd-B fluid [Sureshkumar and Beris, 1995b; Zhang et al., 2013]
and for Newtonian pipe flow [Schmid and Henningson, 2001]. We also verified our linear
stability results against those provided by Prof. Shankar and his students, who have also
examined the same problem using two distinct numerical approaches.

1.3 Linear Instability

1.3.1 Pipe flow

We first discuss the stability of pipe flow. The eigenvalue spectrum in figure 1.1, for Re =
800,De= 65,β = 0.65,k= 1, shows a single unstable mode, multiple damped discrete modes
and a pair of continuous spectra (these appear as balloons due to the finite discretization).
The continuous spectrum eigenvalues are given by c =U − i/(kDe) and c =U − i/(βkDe),
with the first set corresponding to singular modes whose decay rates are set by the polymeric
stress relaxation [Graham, 1998; Grillet et al., 2002; Kupferman, 2005; Sureshkumar and
Beris, 1995b; Wilson et al., 1999; Zhang et al., 2013]. The unstable mode is an axisymmetric
center-mode propagating at a speed close to the base-state maximum. Figure 1.2 shows the
associated perturbation velocity and polymer force density (∇∇∇ ···aaa′) fields. The polymer force
field is localized near the centerline and reinforces the velocity field, leading to the instability.

Figure 1.3 shows the numerically obtained neutral curves, which mark the region of
existence of the instability in the Re-De plane for varying β and a fixed wavenumber (k). For
Re,De→∞, the neutral curves follow the scaling De∼Re1/2 at a given β and k. The unstable
region in the Re-De plane is seen to be highly sensitive to the viscosity ratio. To further
examine the dependence on β , Figure 1.4 shows the variation of the unstable eigenvalue
for varying De and β with Re and k fixed. Even at very high solvent viscosities (β → 1),
the instability survives with De ∼ (1−β )−1, which ensures that both solvent and polymeric
stresses stay comparable.
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Fig. 1.1 Numerically obtained eigenspectrum for pipe flow of an Oldroyd-B fluid for Re =
800,De = 65,β = 0.65 and k = 1 (for N = 200 and 400); the inset zooms into the region
around the unstable mode.
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Fig. 1.2 Perturbation velocity (left) and polymer force (right) fields for the unstable mode for
Re = 800,De = 65, β = 0.6 and k = 1.
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Fig. 1.3 The numerically obtained neutral curves for pipe flow for varying β with k = 1.
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Fig. 1.4 Tracking the unstable mode with varying De and β with Re, k and De(1−β ) fixed
for pipe flow.
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Fig. 1.5 The unstable center-mode eigenfunctions for the axial velocity (left) and radial
velocity (right) in scaled boundary-layer coordinates in the limit Re → ∞ and De → ∞ for a
fixed De/Re1/2 (k = 1 and β = 0.5).

Figure 1.5 shows the appropriately scaled axial and radial velocity eigenfunctions for
the unstable center mode, for varying parameters. In the limit Re,De → ∞ with De/Re1/2

(and k) fixed, the unstable eigenfunctions become increasingly localized in a boundary layer
of O(Re−1/4) around the centerline (figure 1.5). Viscous diffusion balances inertia in this
boundary layer, analogous to a Newtonian center-mode [Gill, 1965], and for the perturbation
polymeric stress to stay comparable requires De ∼ O(Re1/2). The instability thus requires a
balance of inertia, viscous and elastic polymer stresses close to the centerline. The centerline
localization is in contrast to the original Newtonian and the elastically modified Tollmien-
Schlichting instability for plane Poiseuille flow, where the eigenfunction is localized near the
channel walls for large Re [Schmid and Henningson, 2001; Sureshkumar and Beris, 1995b;
Zhang et al., 2013].

1.3.2 Plane Poiseuille flow

Figure 1.6 shows the elastoinertial eigenspectrum for plane Poiseuille flow. A center-mode
instability is also seen to exist in this case. Further, the results in Figures 1.7 and 1.8 show
that the instability dynamics and physical mechanism is very similar to that of pipe flow case
discussed earlier. Once again we see the crucial role played by the parameter β in delineating
the region of instability. Figure 1.9 shows the unstable eigenfunctions for plane Poiseuille
flow. Similar to the earlier case, we see the emergence of a boundary layer at the centerline
where polymeric, viscous and inertial forces balance.
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Fig. 1.6 Numerically obtained eigenspectrum for plane Poiseuille flow of an Oldroyd-B fluid
for Re = 300,De = 250,k = 1 and β = 0.95.
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k = 1.



1.3 Linear Instability 10

●●

■■

◆◆

▲▲

▼▼
○○

□□
◇◇ △△ ▽▽ ●●■■

0.996 0.997 0.998 0.999

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

cr

c
i

Re=400,k1=1,k3=0,N=300,De(1�β)=16

● De=40,β=0.6

■ De=50,β=0.68

◆ De=60,β=0.733

▲ De=80,β=0.8

▼ De=100,β=0.84

○ De=120,β=0.8667

□ De=160,β=0.9

◇ De=200,β=0.92

△ De=250,β=0.936

▽ De=350,β=0.954286

● De=450,β=0.964444

■ De=550,β=0.970909

Fig. 1.8 Tracking the unstable mode with varying De and β with Re, k and De(1−β ) fixed
for plane Poiseuille flow.
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Fig. 1.10 Numerically obtained eigenspectrum for plane Couette flow of an Oldroyd-B fluid
for Re = 2500,De = 100,k = 1 and β = 0.8.

1.3.3 Plane Couette flow

Finally, figure 1.10 shows the eigenspectrum for plane Couette flow which was found to be
stable at all Re and De values examined.

1.3.4 Inclusion of stress diffusivity for pipe flow

Artificial stress diffusion is often used for regularization when simulating viscoelastic flows
to ensure that the stress tensor remains positive definite [Sureshkumar and Beris [1995a],
Sureshkumar et al. [1997], Lopez et al. [2019]]. Recently, it has been shown that this
additional diffusivity can artificially impact the stress dynamics [Gupta and Vincenzi, 2019],
even suppressing elasto-inertial turbulence [Sid et al., 2018a]. In this section, we thus
briefly examine the effect of stress diffusion on the onset of the center mode instability. The
polymeric stress equation takes the form,

W
(

∂TTT
∂ t

+(vvv...∇∇∇)TTT −TTT ...(∇∇∇vvv)− (∇∇∇vvv)T ...TTT
)
+TTT +

Dλ

R2 ∇
2TTT =

1−β

Re
{∇∇∇vvv+(∇∇∇vvv)T}, (1.6)

where D is the stress diffusivity. El-Kareh and Leal [1989] showed that the stress diffusion
term results from the translational diffusion of the polymer molecules and estimated the
diffusivity D ∼ 10−12m2/s.

The linearized equations for the perturbations are derived following section 2 and solved
using a spectral method. Additional boundary conditions are now required for the stress
components. At the pipe wall (r = 1), the stress equation is imposed without the diffu-
sivity, while the regularity condition for the stress is imposed at the centerline [Beris and
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Fig. 1.11 The effect of stress diffusion (Dλ/R2) on the onset Re for pipe flow for different
E,β and k values.

Dimitropoulos, 1999; Lopez et al., 2019]. The addition of stress diffusivity regularizes the
continuous spectrum modes and leads to an additional family of diffusive, stable modes with
increasing decay rates. The decay rate of this family of modes increases with increasing
stress diffusion as characterized by the dimensionless parameter Dλ/R2 that appears in 1.6.
However, the modes that exist even in the absence of stress diffusion are only regularly
perturbed for small values of the diffusivity (Dλ/R2 → 0).

Figure 1.11 shows that the stress diffusivity has a stabilizing effect, as the onset Re
increases with increasing diffusivity (Dλ/R2). For Dλ/R2 → 0, the onset threshold becomes
independent of the diffusivity whereas the instability ceases to exist at a finite Dλ/R2.
The threshold diffusivity for stabilization is also seen to depend on E and β (see figure
1.11). The instability thus continues to exist for the experimentally relevant values of
Dλ/R2 ∼ 10−10 − 10−8 [El-Kareh and Leal, 1989]. However, the much larger values of
Dλ/R2 ∼ 10−4 −10−2 especially used in the early numerical simulations [Sureshkumar and
Beris, 1995a; Sureshkumar et al., 1997] suppress the instability. Thus, simulation techniques
which do not impose a large artificial diffusivity [Singh et al., 2011, 2022] are required to
access the phase-space structures associated with the center-mode instability.
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1.4 Weakly non-linear analysis

The dynamics at the onset of the center-mode instability can be further understood by
undertaking a weakly non-linear analysis. Near the threshold of the instability, we can derive
an equation for the amplitude (A) of the dominant unstable mode, such that

∂tA = cA+a3A3. (1.7)

Thus, the (Stuart-)Landau coefficient (a3) is the crucial element in the weakly non-linear
analysis. If a3 > 0, a stationary solution for the amplitude (A) does not exist and the instability
dynamics must be sub-critical in nature. On the other hand, if a3 < 0 a saturated non-linear
solution exists near the onset threshold and the dynamics are super-critical. To solve for
a3, we need to find the eigenfunction (eikx), the associated second harmonic (e2ikx), the
mean modification (e0ikx) and the adjoint. The corresponding linear problems for each
of the harmonics are solved using spectral collocation methods. Our numerical results
are validated by comparing with Morozov and Van Saarloos [2019] for varying De and
Chebyshev polynomials used, with Re = 0 , β = 0.05, kx = 1, kz = 2. We see a reasonable
agreement as shown below,

De N = 100 N = 250 N = 400 Morozov et al. (2019)
2 9.4881 9.4767 9.4756 9.5015

2.8 8.2216 8.2266 8.2282 8.0893
3.6 6.5493 6.5478 6.5475 6.3819

Figures 1.12 and 1.13 show the mean axial velocity and stress for the weakly non-linear
solution at onset for Re = 50, De = 90, β = 0.95 and k = 1. The stress shows enhanced
localisation and structure near the centerline, in agreement with the results of the linear
analysis. Such stress localisation is likely susceptible to inertio-elastic instabilities which
would provide a pathway towards turbulence [Baumert and Muller, 1999; Roy et al., 2022].
The structure of the mean stress is reminiscent of recent simulations of elasto-inertial tur-
bulence (for plane Poiseuille flow) wherein regions of high polymer stretch, localized in
the gradient direction, were observed [Dubief et al., 2013; Samanta et al., 2013; Sid et al.,
2018b]. However, an exact connection with the weakly non-linear results in this section is
not obviously clear.

First, we examine the Landau coefficient at the onset of the instability for a given elasticity
number E = De/Re and viscosity ratio (β ). For fixed E and β , the onset is determined by a
critical Reynolds number (Rec) with an associated critical wavelength (kc). The set of Rec-kc
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Fig. 1.12 The mean axial velocity profile (vx) at the onset for Re = 50, De = 90, β = 0.95
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onset for Re = 50, De = 90, β = 0.95 and k = 1.
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values were provided by Prof. Shankar and his students. Here, we find out the nature of the
instability at onset for these parameters by obtaining the Landau coefficient. For β = 0.65,
the Landau coefficient (a3) for different (Rec-kc) pairs, and along a sequence of increasing E,
is given by,

Rec E kc a3

1870.22 0.04 1.9621 −9.3387
1016.11 0.06 1.6036 −3.8523
657.37 0.08 1.3923 −2.1091
473.19 0.1 1.2389 −1.3645
341.18 0.12 1.1671 −0.8053
230.51 0.14 1.1985 −0.3604
159.29 0.18 1.0749 −0.3465
187.02 0.2 0.7975 −0.3291
246.83 0.21 0.5713 −0.2496

The instability is seen to be super-critical at these parameter values. For β = 0.98, the Landau
coefficient (a3), again for different (Rec-kc) pairs, is found to be as follows,

Rec E kc a3

107.512 1.5 3.3640 −3101.2595
67.991 2 2.7830 3421.1401
48.812 2.5 2.4519 637.3097
39.678 3 2.2760 459.6215
31.237 4 2.0090 246.3439
27.248 5 1.7910 150.5509
22.802 8 1.3035 52.7459
22.398 10 1.0559 30.7717
30.384 15 0.5155 8.3401

The instability is seen to be mostly sub-critical at higher β , pointing to the importance of
the viscosity ratio (β ) in determining the nature of the instability at onset.

Recall that, for fixed β and k, the neutral curves approach an Re ∝ De1/2 scaling form,
along which the eigenfunctions collapse to within an interval of O(Re−1/4) near the centerline.
One could try to see if a similar scaling is seen for the Landau coefficient (a3) along the
neutral curves, and figure 1.14 therefore shows the variation for the Landau coefficient
along the neutral curves in the Re−De plane. We see that, unlike the eigenfunctions, the
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Fig. 1.14 Variation of the Landau coefficient (a3) along the two branches of the neutral curves
in the Re−De plane for k = 1 and β = 0.8.

Landau Coefficient does not display any consistent pattern along the Re−De1/2 neutral
curve. Finally we consider the variation of the Landau coefficient with De as one moves
away from the neutral curve with the other parameters being fixed in figure 1.15. For the
particular choice of parameters, at larger De, the instability tends to be sub-critical. With the
various parametric combinations examined here, we see that there is no distinct pattern for
the Landau coefficient in the 4-dimensional parameter space (Re−De−β − k) that governs
the instability.
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Fig. 1.15 Variation of the Landau coefficient (a3) with De with the other parameters fixed at
Re = 300,β = 0.8,k = 1.

1.5 Discussion on the importance of the center-mode insta-
bility

The centermode instability is predicted to exist over a wide range of Re, even as low as
10-100 (see Figure 1.7). The regime Rec ∼ O(100), E ∼ O(1) is achievable in microfluidic
devices [Ram and Tamir, 1964; Srinivas and Kumaran, 2017]. For (E,β ) values such that
Rec is O(2000) or greater, pertinent to macroscopic geometries, the sub-critical Newtonian
transition might mask the linear instability unless external perturbations are carefully mini-
mized. A natural transition Re of around 8000 was reported by Draad et al. [1998] for a 20
parts per million (ppm) solution of partially hydrolysed polyacrylamide in demineralized
water (β ∼ 0.1 based on the zero shear viscosity); as opposed to the much higher transition
Re of 60,000 for Newtonian fluids for their experimental facility. Our calculations do yield
an unstable mode at the corresponding Re and β , for E = 0.01, although the strong shear
thinning exhibited by the solution prevents a quantitative comparison. Similar observations of
a significantly lower natural transition Re have been reported for dilute solutions of polyethy-
lene oxide [Paterson and Abernathy., 1972]. The instability also qualitatively explains the
observations of ‘early turbulence’ in Forame et al. [1972]; Goldstein et al. [1969]; Hansen
and Little [1974]; Jones and Maddock. [1966]; Little and Wiegard [1970]; Ram and Tamir
[1964]. For the 500 ppm polyacrylamide solution used by Samanta et al. [2013], β = 0.65.
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The Rec for the instability at this β is well below that at which Newtonian turbulence sets
in. This is in qualitative agreement with the experiment where transition was reported at
Re ∼ 800. However, the minimum E required for the center-mode instability is around 0.05,
which is an order of magnitude larger than the experimentally reported value of 0.004, based
on a measurement of the relaxation time using a capillary break-up elongational rheometer
(CaBER). This discrepancy may be attributed to the known difficulty in associating the time
inferred from CaBER measurements to the relaxation rate relevant to the Oldroyd-B model
[Clasen et al., 2006; Neelamegam et al., 2013; Samanta, 2013; Srinivas and Kumaran, 2017;
Zell et al., 2010]. The (Re-De-β ) dependent threshold of the center-mode instability calls
for a re-examination of the expectation that early transition, even in the absence of finite
amplitude perturbations, is governed by a critical De, regardless of Re [Ram and Tamir,
1964; Samanta et al., 2013]. Observations of pressure-driven flow through a channel of
a polyacrylamide solution becoming turbulent at Re ∼ 350, De ∼ 250 and β = 0.92 were
reported in Srinivas and Kumaran [2017]. A center-mode instability exists at these parameter
values.

Recently Choueiri et al. [2021] have studied the transition in a 600 ppm polyacrylamide
solution in a water-glycerol mixture, ensuring a lower viscosity ratio (β = 0.5) than was
generally used in similar experiments in the literature earlier. Thus, the importance of the
viscosity ratio parameter, as the results in this chapter indicate, has been experimentally seen.
They have verified that the dynamics at the onset of "elasto-inertial turbulence" are indeed
controlled by the center-mode instability studied in this chapter. Further the experiments
observed transition even at Re values lower than that predicted by the linear analysis, thus
suggesting that for certain parameters the onset can still be dominated by non-linear dynamics,
which would point to the importance of the weakly-non linear analysis in section 1.4.

The instability described in this chapter should form the first step in a new pathway
to turbulence, and the maximum drag reduction (MDR) asymptote, in dilute polymer so-
lutions. The absence of bistability, characteristic of the Newtonian scenario [Avila et al.,
2011; Barkley, 2016], implies very different transitional dynamics. Complementing recent
experimental [Choueiri et al., 2018; Samanta, 2013] and numerical efforts [Dubief et al.,
2013; Sid et al., 2018b], ours is the first theoretical work that points to a state of elasto-inertial
turbulence (EIT) with novel spatiotemporal dynamics, particularly at large De, underlying
the MDR asymptote. At the linear instability threshold, elasto-inertial traveling wave solu-
tions, associated with the unstable center-mode eigenfunctions, would be created in a Hopf
bifurcation from the laminar state [Barkley, 1990; Soibelman and Meiron, 1991]. These
traveling wave solutions and associated phase space structures are expected to be relevant
for describing both EIT and MDR dynamics [Choueiri et al., 2018; Dubief et al., 2013;
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Fig. 1.16 Schematic showing the various possible dynamics in the Re-De plane when ac-
counting for the novel transition pathway examined in this chapter.

Samanta, 2013; Sid et al., 2018b]. Further the radial structure of the polymer forcing in the
unstable mode is reminiscent of recent simulations of elasto-inertial turbulence (for plane
Poiseuille flow) wherein regions of high polymer stretch, localized in the gradient direction,
were observed; however in the simulations these were observed closer to the walls unlike
what the linear stability results predict [Dubief et al., 2013; Samanta et al., 2013; Sid et al.,
2018b]. The implied contrast between the state space for viscoelastic pipe flow and the
Newtonian one has fundamental consequences for the dynamical systems interpretation of
the maximum drag reduction state which, currently, crucially relies on a similarity between
the two [Graham, 2014; Roy et al., 2006; Sid et al., 2018b; Stone et al., 2002; Xi and Graham,
2012]. Figure 1.16 sketches out a schematic summarizing how the various dynamics are
likely to be distributed in the parameter-space.

The general mechanism will be applicable to inertial flows of other viscoelastic fluids such
as wormlike micellar surfactant solutions which show drag reduction [Samanta, 2013; Zakin
et al., 1998]. Practically, a detailed understanding of the transitional pathway associated with
the instability would help develop control strategies to induce early (or delayed) transition to
turbulence, which would be of special relevance to microfluidic devices [Hong et al., 2016;
Kumaran, 2015; Li et al., 2012; Lim et al., 2014; Squires and Quake, 2005].



Chapter 2

Exact solution for the probability density
of run-and-tumble particles

2.1 Introduction

Recent years have seen an enormous interest in the study of active matter systems where
constituent particles, at the micro-scale, break the time-reversal symmetry [Bechinger et al.,
2016; Cates, 2012; Doostmohammadi et al., 2018; Marchetti et al., 2013]. Consequently,
active matter systems show a host of surprising behavior ruled out in equilibrium [Kurchan,
2009]. To mention a select few, these include, large-scale collective motion and flocking
[Koch and Subramanian, 2011; Marchetti et al., 2013; Vicsek and Zafeiris, 2012], novel
forms of phase-separation [Cates and Tailleur, 2015; Cates and Tjhung, 2018; Chaté, 2020],
and surprising material properties [Ben Dor et al., 2018; Dufresne, 2019; Saintillan, 2018].
Understanding the origins of the aforementioned phenomena in terms of the underlying
constituents of such systems is therefore of immense interest.

Swimmers that instantaneously swim with an orientation (ppp) are the elementary con-
stituents of a wide-class of active systems [Bechinger et al., 2016; Elgeti et al., 2015; Lauga
and Powers, 2009; Subramanian and Nott, 2011]. Based on the stochastic dynamics of
the orientation vector (ppp) such particles have been further classified into Active Brownian
Particles (ABPs) and Run-and-Tumble Particles (RTPs) [Bechinger et al., 2016; Cates and
Tailleur, 2015; Romanczuk et al., 2012]. For ABPs, the rate of change of orientation is
subject to a white noise term, and thus evolves in a continuous manner through infinitesimal
changes on the unit-sphere. In contrast, RTPs, the focus of this chapter, swim along straight
trajectories (the run phase) before executing an impulsive stochastic reorientation (the tumble
phase) with the orientation changing by a large amount [Berg, 1993]. The reorientation
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event is generally assumed to follow Poissonian statistics with a mean tumble time τ . In the
biological context, several species of bacteria exhibit run-and-tumble motion, as shown in
the seminal work of Berg and co-workers [Berg, 1993, 2008; Berg and Brown, 1972; Koch
and Subramanian, 2011; Lauga, 2016]. It was recently shown that certain algae also execute
run-and-tumble motion [Bennett and Golestanian, 2013; Goldstein, 2015; Polin et al., 2009;
Wan and Goldstein, 2018]. Some artificially constructed colloidal microswimmers have also
been seen to behave as RTPs [Ebbens et al., 2010; Karani et al., 2019; Lozano et al., 2018].

The widespread relevance of the RTP paradigm, for the micro-scale motion of both
biological and synthetic swimmers, has thus inspired a large amount of work studying their
dynamics (see for instance Angelani [2013]; Detcheverry [2015]; Dhar et al. [2019]; Ezhilan
et al. [2015]; Malakar et al. [2018]; Martens et al. [2012]; Sevilla et al. [2019]; Solon et al.
[2015]; Tailleur and Cates [2009]; Thompson et al. [2011]; Wang et al. [2014]). Despite
such extensive interest, almost no analytical solutions are available describing the dynamics
of RTPs even in the absence of interactions. The joint-probability density (Ω(rrr, ppp, t)) of
finding a run-and-tumble particle at position rrr with orientation ppp at a given time t is governed
by an integro-differential equation in two and higher dimensions (see section 2.2.1). Thus,
analytical approaches are usually limited to one-dimension, where the orientation vector
takes only two discrete values [Ben Dor et al., 2018; Dhar et al., 2019; Malakar et al., 2018;
Tailleur and Cates, 2009]. The one dimensional case is unique since an exact closed form
solution can be obtained [Othmer et al., 1988; Schnitzer, 1993]. In higher dimensions, prior
studies have mostly focused on the position-space probability density (Ω(rrr, t)) of finding
a particle at position rrr with any orientation ppp. For instance, Martens et al. [2012] used an
analogy with the Lorentz-gas model to derive an analytical expression for Ω(rrr, t) in two
dimensions. Alternatively, in the long-time limit, the dynamics of RTPs may be studied
using either a moment-hierarchy approach [Ezhilan et al., 2015; Yan and Brady, 2015] or a
multiple-scales analysis [Vennamneni et al., 2020]. However, these methods only give limited
information about the joint orientation-position dynamics owing to the assumed separation
of scales, and one expects the short-time dynamics in particular to show distinct behavior.

Moving beyond the aforementioned limitations, in this chapter we provide the exact
solution for the joint orientation-position space probability density of RTPs in the absence
of an imposed external field for both 2D and 3D. Obtaining the exact solution requires
a detailed knowledge of the spectrum of the integro-differential run-and-tumble operator.
We show that this eigenspectrum has both a continuous spectrum and discrete modes. We
derive analytical expressions for the eigenfunctions (and their adjoints) of the run-and-
tumble operator, governing Ω(rrr, ppp, t), in Fourier space (section 2.2.2 and 2.2.3). Using a
bilinear superposition of the discrete and adjoint eigenfunctions, we then construct the exact
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Green’s function of the run-and-tumble operator (section 2.2.4). The Green’s function, when
interpreted as probability density, denotes the evolution of a population of RTPs from a delta
function initial condition in orientation-position space. Via a convolution integral with the
Green’s function as a kernel one may study the evolution of the joint-probability density
from an arbitrary initial condition. In section 2.3, we present results for the evolution of the
joint probability density in orientation-position space. Our results are valid at all length and
time-scales, and therefore yield complete information about the joint orientation-position
space probability density. We also show that our approach exactly recovers earlier limiting
results in two-dimensions derived by Martens et al. [2012], thus validating our eigenfunction
superposition. We show that the radial variation of Ω(rrr, ppp, t) undergoes a transition from an
active to passive-regime with increasing time for any orientation ppp. Further, our approach
allows us to study the regularizing effect of a finite translational diffusivity. We summarize
our results and briefly discuss possible extensions in section 2.4. At the end, section 2.5 gives
the exact steps for the detailed derivation of the adjoint eigenfunctions that are needed for
the Green’s function.

2.2 The run-and-tumble operator

2.2.1 Governing Equation

We examine run-and-tumble particles (RTPs) which swim in a given direction (ppp) with a
finite speed Us (the run event) whereafter they randomly reorient (the tumble event), changing
their swimming direction in the process (the new run event). The tumbles are assumed to
be instantaneous, and obey Poissonian statistics with the average time between two tumbles
being τ [Berg, 2008; Berg and Brown, 1972; Lauga, 2016; Subramanian and Koch, 2009].
For such RTPs in the absence of interactions induced by their disturbance fields, the joint-
probability density, Ω(rrr, ppp, t), of finding a swimmer at position rrr with orientation ppp at time t,
is governed by the conservation equation,

∂Ω

∂ t
+∇∇∇xxx ··· (Us pppΩ)+

1
τ
(Ω− 1

Ωist

∫
Ωdppp) = 0 (2.1)

where Ωist = 2π in 2D and Ωist = 4π in 3D. Here, we have assumed random tumbling with
no correlations between pre- and post-tumble orientations, which leads to the simplified
tumbling kernel in (2.1). On Fourier transforming (2.1) we get,

∂ Ω̃

∂ t
+2πikkk ··· pppUsΩ̃+

1
τ
(Ω̃− 1

Ωist

∫
Ω̃dppp) = 0, (2.2)
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where the Fourier transformed probability density, the characteristic function, is defined as
[Lighthill, 1958],

Ω̃(kkk, ppp, t) =
∫

Ω(xxx, ppp, t)e−2πikkk···xxxdxxx. (2.3)

We look for eigenfunctions of the Fourier transformed run-and-tumble operator, L in (2.2),
by substituting a normal-form with an exponential time dependence, Ω̃ = Ω̂(xxx, ppp)eσt , to get,

(σ +2πikkk ··· pppUs +
1
τ
)Ω̂ =

1
Ωistτ

∫
Ω̂dppp, (2.4)

where σ denotes the eigenvalue. To derive the eigenfunction, Ω̂, one needs to solve the
integral equation, (2.4). We outline the solution of (2.4) in both two and three dimensions.
To solve (2.4), we choose a wavevector-aligned co-ordinate system. In 2D, use of a plane
polar coordinate system gives,

(σ +2πik cosθUs +
1
τ
)Ω̂ =

1
2πτ

∫
Ω̂dθ , (2.5)

where we have used kkk ··· ppp= k cosθ and θ ∈ (−π,π). In 3D, use of a spherical polar coordinate
system gives

(σ +2πik cosθUs +
1
τ
)Ω̂ =

1
4πτ

∫
Ω̂sinθdθdφ , (2.6)

where θ is the polar angle (θ ∈ (0,π)) and φ is the azimuthal angle measured in the III − k̂kkk̂kk
plane (k̂kk being the unit vector along kkk).

Now, without loss of generality, one may express Ω̂ as the sum of odd and even parts
about θ = 0 (with θ ∈ (−π,π)) in 2D, Ω̂ = Ω̂o + Ω̂e; and as a sum of axisymmetric and
non-axisymmetric modes in 3D, Ω̂ = Ω̂0 +∑

∞
m=1 Ω̂m(k,θ)cos(mφ). Only the even (axisym-

metric) modes carry concentration perturbations and hence for the odd (non-axisymmetric)
eigenfunctions in 2D (3D), the integral kernel in (2.5) (or 2.6) vanishes. This gives in 2D, for
the odd mode,

(σ +2πikUs cosθ +
1
τ
)Ω̂o = 0, (2.7)

and, for the even mode,

(σ +2πikUs cosθ +
1
τ
)Ω̂e =

1
2πτ

∫
π

−π

Ω̂
edθ . (2.8)

In 3D, for the non-axisymmetric modes (for m ̸= 0)

(σ +2πikUsµ +
1
τ
)Ω̂m = 0, (2.9)
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and, for the axisymmetric mode,

(σ +2πikUsµ +
1
τ
)Ω̂0 =

1
2τ

∫ 1

−1
Ω̂

0dµ, (2.10)

where we have used cosθ = µ , and the integration over φ has been carried out.

2.2.2 Eigenspectrum of the Run and Tumble Operator L

Continuous Spectrum

In 2D, σ =−1/τ −2πiUsk cosθ0 for θ0 ∈ [−π,π] forms a continuous set of eigenvalues for
L . The associated odd eigenfunctions (Φo

cs) then satisfy the equation,

(cosθ − cosθ0)Φ
o
cs = 0, (2.11)

which is solved by,
Φ

o
cs(θ ;θ0) = δ (θ −θ0)−δ (θ +θ0), (2.12)

where the particular superposition of delta functions satisfies the constraint of being odd in θ .
The even eigenfunctions (Φe

cs) satisfy,

2πikUs(cosθ − cosθ0)Φ
e
cs =

1
2πτ

∫
Φ

e
csdθ . (2.13)

To solve (2.13), we assume Φe
cs = δ (θ − θ0)+ δ (θ + θ0)+ c 1

cosθ−cosθ0
, where both the

delta function superposition and the third term satisfy the constraint of being even in θ . On
substituting and simplifying we obtain,

Φ
e
cs(θ ;θ0) = δ (θ −θ0)+δ (θ +θ0)+

1
2π2ikUsτ

P
1

cosθ − cosθ0
, (2.14)

where P denotes a Principal-Value (PV) interpretation of the singularity [Balmforth and
Morrison, 1995b; Case, 1959; Gakhov, 2014; Roy and Subramanian, 2014a].

The eigenfunction and eigenvalue expressions are derived similarly in 3D. In this case,
σ = −1/τ −2πiUskµ0 with µ0 ∈ [−1,1] gives the continuous set of eigenvalues; the non-
axisymmetric eigenfunctions satisfying (2.9) are

Φ
m
cs(µ; µ0) = δ (µ −µ0), (2.15)
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and the axisymmetric eigenfunctions, satisfying (2.10), are

Φ
0
cs(µ; µ0) =

[
1− 1

4πikUsτ
−
∫ 1

−1

1
µ ′−µ0

dµ
′

]
δ (µ −µ0)+

1
4πikUsτ

P
1

µ −µ0
, (2.16)

where the second term may be derived in a manner similar to the 2D case above and again
has a PV-interpretation.

The continuous spectrum eigenfunctions are thus generalized functions [Lighthill, 1958].
Since the odd (non-axisymmetric) modes have no associated concentration inhomogeneity,
they correspond to spatially homogeneous modes that propagate with a phase speed that is
swimming velocity projected along the wave vector. The orientation space structure corre-
sponds to swimmers aligned along and against a particular direction in 2D; and to swimmers
on the surface of a cone in 3D. The PV term in the even (axisymmetric) eigenfunction, on
the other hand, denotes the contribution of the inverse tumbles (the integral terms in (2.13)
and (2.16)), and leads to a non-trivial orientation space structure. These continuous spectrum
eigenmodes decay due to tumbling at the rate τ−1, and are convected due to swimming with
a continuum of phase speeds in the interval [−2πUsk,2πUsk] which constitute the imaginary
part of the eigenvalues. In over-damped systems, complex eigenvalues signify the lack of
microscopic time-reversibility [Kurchan, 2009]. Thus, in the convective part of the eigenval-
ues we see the manifestation of the swimming-induced breakdown in time reversibility for
run-and-tumble particles [Cates, 2012].

While analysing Landau damping in plasmas, Van Kampen [1955] was the first one to
suggest the possibility of singular eigenfunctions associated with a continuous spectrum.
Such a continuous spectrum usually arises in physical situations without dissipative relax-
ations; examples include plasma oscillations where the singularity occurs in the probability
distribution in velocity space [Case, 1978, 1959; Sedlacek, 1971; Van Kampen, 1955], invis-
cid shear-flows where the singularity occurs in the vorticity field [Balmforth and Morrison,
1995a,b; Roy and Subramanian, 2014a,b] and the Kuramoto model of coupled oscillators
where one again has the orientation field [Strogatz and Mirollo, 1991; Strogatz et al., 1992].
We see here that RTPs, on the other hand, have singular eigenfunctions in orientation space
even in the presence of relaxation. This is because tumbling, in corresponding to a non-
local relaxation of orientation, does not penalize rapid angular variations of the orientation
probability and thus allowing for singular eigenfunctions.
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Regular Discrete Mode

In addition to the singular eigenfunctions discussed above, one may also look for regular
eigenfunctions of L i.e. the discrete modes. Such regular eigenfunctions only exist for
the even (axisymmetric) modes in 2D (3D). In 2D, we assume the following ansatz for the
discrete eigenvalue, σd =−1/τ −2πiUsk cosθd . The associated eigenfunction is then seen
to be

Φ
e
d(θ ;θd) =

1
cosθ − cosθd

, (2.17)

which lacks the Dirac delta function term seen earlier. On substituting (2.17) in the governing
equation (2.13), one can derive the relation for the discrete eigenvalue. After simplification,
we obtain the dispersion relation, in 2D, as

4π
2ikUsτ =

∫
π

−π

1
cosθ − cosθd

dθ , (2.18)

which leads to,

cosθd =−

(
1− 1

(2πkUsτ)
2

)1/2

, (2.19)

and finally,

θd = arccos

−

(
1− 1

(2πkUsτ)
2

)1/2
 , (2.20)

for 2πkUsτ ≤ 1. Similarly, in 3D, the discrete eigenvalue σd =−1/τ −2πiUskµd is associ-
ated with the eigenfunction,

Φ
0
d(µ; µd) =

1
µ −µd

. (2.21)

This leads to the dispersion relation,

4πikUsτ =
∫ 1

−1

1
µ −µd

dµ. (2.22)

with the solution
µd = icot(2πkUsτ) . (2.23)

Based on θd as given in (2.20), and µd in (2.23), the discrete eigenvalue is purely real, and
therefore non-oscillatory, signifying a monotonic decay of concentration fluctuations; these
fluctuations are obtained from integrating the discrete mode over orientation space. The
discrete mode exists only for a finite range of wavenumbers given by k ∈ (0,1/(2πUsτ)) in
2D and k ∈ (0,1/(4Usτ)) in 3D. For long times (t ≫ τ), RTPs behave as passive Brownian
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particles with an effective translational diffusivity and this long-time behavior is dominated
by the long-wavelength modes (k → 0) [Bechinger et al., 2016; Tailleur and Cates, 2008].
By taking the long-wavelength limit of the discrete modes, we recover the diffusive behavior
with the discrete eigenvalue representing a diffusive relaxation with an effective diffusivity
given by U2

s /2τ in 2D and U2
s /3τ in 3D. At the other extreme, the discrete mode falls into the

continuous spectrum for k → 1/(2πUsτ) (k → 1/(4Usτ)) in 2D (3D), with the discrete mode
eigenvalue approaching θd → 0 in 2D (and µd → 0 in 3D) which in turn implies σd →−1/τ

in both instances. In contrast, the continuous spectrum modes in contrast have a finite decay
rate for k → 0, and hence, do not contribute to the long-time behavior.

Singular Discrete Modes

The 2D dispersion relation in (2.18) has additional solutions given by

cosθI =±

(
1− 1

(2πkUsτ)
2

)1/2

, (2.24)

for any k > 1/(2πUsτ). Since cosθI ∈ [−1,1], the eigenfunction given by (2.17) has a
singularity. The singular eigenfunction associated with cosθI may be derived by taking the
limit of cosθd approaching the real axis in (2.17),

Φ
e
I (θ ;θI) = lim

ε→0

1
cosθ − cosθd + iε

, (2.25)

which gives, upon using the Sokhotski-Plemelj formula,

Φ
e
I (θ ;θI) = δ (θ −θI)+δ (θ +θI)+

1
2π2ikUsτ

P
1

cosθ − cosθI
, (2.26)

which is the same as the continuous spectrum eigenfunction for θ0 = θI . The need to single
out θI from the continuous spectrum arises when deriving the adjoint (see the discussion in
section 2.2.3).

Thus, once the discrete mode falls into the continuous spectrum (k = 1/(2πUsτ)) in
2D, it morphs into a pair of singular discrete modes for k > 1/(2πUsτ). Such singular
discrete modes were first discussed by Case [1978] in the context of plasmas, and have
also been found in inviscid shear flows [Balmforth and Morrison, 1995b]. In contrast, in
3D, as the discrete mode eigenvalue approaches the continuous spectrum, the eigenfunction
does not become singular, and there is no need to define a separate singular discrete mode.
To summarise, in 2D, on approaching the continuous spectrum the discrete eigenfunction
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Fig. 2.1 Schematic showing the eigenvalue spectrum of the run-and-tumble operator, L . As
discussed in the text, the regular discrete mode only exists for a finite range of k and the
singular discrete modes only exist in 2D.

approaches a limiting singular form, in contrast in 3D the discrete eigenfunction stays regular
as it crosses the CS. One thus expects the discrete mode in 3D to cross the continuous
spectrum, and move onto a distinct Riemann sheet, and behave as a quasi-mode thereafter;
the latter is known as the underlying reason for the phenomenon of Landau damping in
plasmas [Balmforth et al., 2013; Case, 1959; Roy and Subramanian, 2014b; Strogatz et al.,
1992; Van Kampen, 1955].

Summary of the Eigenspectrum

The eigenspectrum of the run-and-tumble operator, L , is summarized in figure 2.1. The
fastest decaying eigenvalues correspond to the continuous spectrum modes and have a real
part that equals the inverse of the mean tumble time (τ); no relaxation can occur on a smaller
time-scale. Further, all the continuous spectrum modes relax at the same rate independent of
the wavevector. The regular discrete mode shows wavevector-dependent relaxation, reducing
to a diffusive mode in the long-wavelength limit. The continuous spectrum modes include
both odd and even (axisymmetric and non-axisymmetric) orientation modes, while the
discrete modes only include even (axisymmetric) orientation modes.

This should be contrasted with the known eigenspectrum for active Brownian particles
(ABPs), where orientation relaxation occurs due to rotary diffusion. Such a local orientation
relaxation mechanism does not allow for the singular eigenfunctions associated with the
continuous-spectrum, and the eigenspectrum consists instead of an infinite number of discrete
modes [Kurzthaler et al., 2018; Kurzthaler and Franosch, 2017; Kurzthaler et al., 2016].
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2.2.3 Adjoint Eigenfunctions of L

The adjoint eigenfunctions are also needed to construct the Green’s function analytically,
and in this section we outline the expressions for the adjoints associated with each of the
eigenfunctions discussed in the previous section.

Continuous Spectrum

Adjoints for the continuous spectrum eigenfunctions may be derived by solving a singular
integral equation [Balmforth and Morrison, 1995b; Case, 1959, 1960; Roy and Subramanian,
2014a]. This rather involved calculation is detailed at the end of the chapter in section 2.5,
and here we just give the expressions for adjoints to the various eigenfunctions. In 2D, for
the odd eigenfunctions, the adjoint, corresponding to the eigenvalue θ0 with θ0 ∈ [−π,π], is
given by,

Φ̃
o
cs(θ0;θ

′) = δ (θ ′−θ0)−δ (θ ′+θ0), (2.27)

while the even adjoint eigenfunction, corresponding to the eigenvalue θ0, is given by,

Φ̃
e
cs(θ0;θ

′) =
1

D(θ0)

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
, (2.28)

where
D(θ0) = 1− 1

(2πkUsτ sinθ0)2 . (2.29)

D(θ0) is known as the dielectric function in the plasma literature [Nicholson, 1983]. Similarly,
in 3D, the non-axisymmetric adjoint eigenfunction, corresponding to the eigenvalue µ0, is
given by,

Φ̃
m
cs(µ0; µ

′) = δ (µ ′−µ0), (2.30)

while the axisymmetric adjoint eigenfunction, corresponding to the eigenvalue µ0, is given
by,

Φ̃
0
cs(µ0; µ

′)=
1

D(µ0)

[1− 1
4πikUsτ

−
∫ 1

−1

1
µ ′′−µ0

dµ
′′

]
δ (µ ′−µ0)+

1
4πikUsτ

P
1

µ ′−µ0

 ,

(2.31)
with the dielectric function,

D(µ) = 1− 1
2πikUsτ

−
∫ 1

−1

1
µ ′−µ

dµ
′−
(

1
4kUsτ

)2
1+

(
1
π
−
∫ 1

−1

1
µ ′−µ

dµ

)2
 . (2.32)
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Regular Discrete Mode

The adjoint for the discrete mode may be derived by imposing the the orthonormality
constraint

∫
π

−π
Φe

dΦ̃e
ddθ = 1. This gives, in 2D,

Φ̃
e
d(θd;θ

′) =
1

cosθ ′− cosθd

1∫
π

−π
(cosθ − cosθd)−2dθ

. (2.33)

Similarly in 3D, we get the adjoint for the discrete mode as

Φ̃
0
d(µd; µ

′) =
1

µ ′−µd

1∫ 1
−1(µ −µd)−2dµ

. (2.34)

Singular Discrete Mode

In 2D, the adjoint, given by (2.28), has singularities at θI =±arcsin
(

1
2πkUsτ

)
for 2πkUsτ > 1,

corresponding to the singular discrete modes discussed earlier. To compute the corresponding
adjoint, we displace θ0 in (2.28) from the real axis and then take the appropriate limit, as
follows,

Φ̃
e(θ0;θ

′)= lim
ε→0

1
1− 1

(2πkUsτ sinθ0)2 + iε

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
,

(2.35)
to give,

Φ̃
e(θ0;θ

′)=P
1

1− 1
(2πkUsτ sinθ0)2

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
+∑

θI

iπ
2

δ (θ0 −θI)
sinθI

cosθI

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
(2.36)

where the summation in the second term is over the two solutions for θI . The first term in
(2.36) is the adjoint for the continuous spectrum modes given as,

Φ̃
e
cs(θ0;θ

′)=P
1

1− 1
(2πkUsτ sinθ0)2

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
,

(2.37)
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and the second term gives the adjoint for the singular discrete modes with,

Φ̃
e
I (θI;θ

′)=∑
θI

iπ
2

δ (θ0−θI)
sinθI

cosθI

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
,

(2.38)

where θI =±arcsin
(

1
2πkUsτ

)
for 2πkUsτ > 1.

2.2.4 Greens Function of L

For a general operator in Hilbert space, the complete set of eigenfunctions and their adjoints
may be used to construct the Green’s function [Friedman, 1990; Ramkrishna and Amundson,
1985],

G(λ , t|λ ′,0) =
∫

Φcs(λ ;λ0)Φ̃cs(λ0;λ
′)eλ0tdλ0 +∑

n
Φd(λ ;λn)Φ̃d(λn;λ

′)eλnt , (2.39)

where the first and second term represent the continuous and discrete spectrum contributions,
respectively and λ represents the relevant variable while λ ′ the associated initial condition.
For (2.39) to be valid, the eigenfunctions and their adjoints must follow orthogonality
relations which are proved in section 2.5.3 at the end of this chapter.

Using (2.39), we obtain the exact Green’s function for the Fourier transformed run-and-
tumble operator (2.2) in 2D as,

Gk(θ , t|θ ′,0) =
∫

π

−π

Φ
e
cs(θ ;θ0)Φ̃

e
cs(θ0;θ

′)e−2πik cosθ0Ust− t
τ dθ0

+H

(
1

2πUsτ
− k
)

Φ
e
d(θ ;θd)Φ̃

e
d(θd;θ

′)e−2πik cosθdUst− t
τ

+H

(
k− 1

2πUsτ

)
∑

±arcsin
(

1
2πkUsτ

)Φ
e
I (θ ;θI)Φ̃

e
I (θI;θ

′)e−2πik cosθIUst− t
τ

+(δ (θ −θ
′)−δ (θ +θ

′))e−2πik cosθUst− t
τ , (2.40)
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and in 3D as,

Gk(µ,φ , t|µ ′,φ ′,0) =
1

2π

∫ 1

−1
Φ

0
cs(µ; µ0)Φ̃

0
cs(µ0; µ

′)e−2πikµ0Ust− t
τ dµ0

+
1

2π
H

(
1

4Usτ
− k
)

Φ
0
d(µ; µd)Φ̃

0
d(µd; µ

′)e−2πikµdUst− t
τ

+
∞

∑
m=1

δ (µ −µ
′)cos(m(φ −φ

′))e−2πikµUst− t
τ , (2.41)

where H denotes the Heaviside-function. In (2.40) and (2.41), the eigenvalue integral
over the odd and non-axisymmetric contributions is trivial, and has therefore been carried
out, leading to a particularly simple expression for the corresponding Green’s function
contribution. The integrated result displays non-separable dependence on orientation and
time, as is expected for the continuous spectrum.

Completeness

At t = 0, the Green’s function must equal the relevant orientation space Dirac delta function
by definition. Hence (2.40) and (2.41) reduce to the following completeness identities at
t = 0,

2δ (θ −θ
′) =

∫
π

−π

Φ
e
cs(θ ;θ0)Φ̃

e
cs(θ0;θ

′)dθ0 +H

(
1

2πUsτ
− k
)

Φ
e
d(θ ;θd)Φ̃

e
d(θd;θ

′)

+H

(
k− 1

2πUsτ

)
∑

±arcsin
(

1
2πkUsτ

)Φ
e
I (θ ;θI)Φ̃

e
I (θI;θ

′)+(δ (θ −θ
′)−δ (θ +θ

′)),

(2.42)

and

δ (µ −µ
′)δ (φ −φ

′) =
1

2π

∫ 1

−1
Φ

0
cs(µ; µ0)Φ̃

0
cs(µ0; µ

′)dµ0

+
1

2π
H

(
1

4Usτ
− k
)

Φ
0
d(µ; µd)Φ̃

0
d(µd; µ

′)+
∞

∑
m=1

δ (µ −µ
′)cos(m(φ −φ

′)).

(2.43)

The method of finding the adjoint ensures that these identities hold (see section 2.5.1 and
2.5.2). We have also verified (2.42) and (2.43) by numerical evaluation after integrating
over the initial condition. We have, thus, found the complete set of eigenfunctions of the
run-and-tumble operator. Hence, the Green’s function expression can be used to construct the
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solution for an arbitrary initial condition in both orientation-position space [Friedman, 1990;
Ramkrishna and Amundson, 1985]. For an arbitrary initial condition B(θ ′), in the 2D case,
the time evolution of the probability density in terms of the Green’s function is thus given by,

Ω̃(k,θ , t) =
∫

π

−π

Gk(θ , t|θ ′,0)(B(θ ′))dθ
′

= (B(θ)−B(−θ))e−2πik cosθUst− t
τ . (2.44)

To proceed further, we separate the initial condition into subsets with net-zero and finite
concentrations.

Initial Conditions with net-zero concentration of RTPs

An initial condition with net zero concentration of RTPs that is Ω̃(k,θ , t) satisfying
∫

π

−π
dθΩ̃(k,θ , t)=

0 would project only unto the odd (non-axisymmetric) part of the Green’s function. For an
arbitrary function, B(θ ′) in the 2D case, this initial condition may be written in the form
B(θ ′)−B(−θ ′) and the resulting evolution in time is simply given by,

Ω̃(k,θ , t) =
∫

π

−π

Gk(θ , t|θ ′,0)(B(θ ′)−B(−θ
′))dθ

′

= (B(θ)−B(−θ))e−2πik cosθUst− t
τ , (2.45)

where the even terms in the Green’s function integrate to zero. Similarly for a non-
axisymmetric initial condition, ∑

∞
m=1 B(µ ′)cos(mφ ′) in 3D, the axisymmetric terms in the

Green’s function integrate to zero and we get,

Ω̃(k,µ,φ , t) =
∫ 1

−1
Gk(µ,φ , t|µ ′,φ ′,0)

∞

∑
m=1

B(µ ′)cos(mφ
′)dµ

′
φ
′

=
∞

∑
m=1

B(µ)cos(mφ)e−2πikµUst− t
τ , (2.46)

Thus, we see that such initial conditions, representing pure orientation dynamics, have a
simple time evolution, being convected in space due to swimming, as the amplitude decays
exponentially due to tumbling. These initial conditions are important when considering
fluid velocity correlations in a bacterial suspension [Belan and Kardar, 2019; Nambiar et al.,
2021].
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Initial Conditions with a finite concentration of RTPs

Initial conditions corresponding to a non-zero concentration of RTPs project onto the even
(axisymmetric) parts of the Green’s function and develop a non-trivial spatial structure as
they evolve in time. For an isotropic initial condition, we obtain for the joint-probability
density in 2D,

Ω̃(k,θ , t) =
1

2π

∫
π

−π

Gk(θ , t|θ ′,0)dθ
′ =

1
2π

∫
π

−π

Φe
cs(θ ;θ0)

D(θ0)
e−2πik cosθ0Ust− t

τ dθ0

+
1

2π
Φ

e
d(θ ;θd)

4π2ikUsτ∫
π

−π
(cosθ − cosθd)−2dθ

e−2πik cosθdUst− t
τ

+
1

2π
∑

±arcsin
(

1
2πkUsτ

)Φ
e
I (θ ;θI)

iπ sinθI

2cosθI
e−2πik cosθIUst− t

τ

(2.47)

and similarly in 3D,

Ω̃(k,µ, t) =
1

4π

∫
Gk(µ,φ , t|µ ′,φ ′,0)dµ

′dφ
′

=
1

4π

∫ 1

−1

Φ0
cs(µ; µ0)

D(µ0)
e−2πikµ0Ust− t

τ dµ0

+
1

4π
H

(
1

4Usτ
− k
)

Φ
0
d(µ; µd)

4πikUsτ∫ 1
−1(µ −µd)−2dµ

e−2πikµdUst− t
τ . (2.48)

To derive (2.47) and (2.48), we have used the normalization expressions derived in section
2.5.3. (2.47) and (2.48) are used to further study the probability density in section 2.3.

Approaching the straight swimmer limit

We illustrate how the general solution approaches the straight swimmer limit (τ → ∞) in 2D.
Recall that the regular discrete mode only exists for a limited range where k ∈ (0,1/(2πUsτ)).
For τ → ∞, the discrete mode contribution thus vanishes and only the continuous spectrum
remains, where the CS eigenfunctions simplify as follows, with τ → ∞,

Φ
e
cs(θ ;θ0) = δ (θ −θ0)+δ (θ +θ0) (2.49)

where the additional singular term has dropped out. The odd CS eigenfunctions remain
unchanged. The same simplification happens for the adjoint eigenfunctions, and as a result
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the final limit of the Green’s function can be seen to be,

Gk(θ , t|θ ′,0) = δ (θ −θ
′)e−2πik cosθUst , (2.50)

which physically represents the initial probability density being convected unchanged a
swimming along a straight trajectory corresponding to the initial orientation. Similarly in
3D, we get

Gk(µ, t|µ ′,0) = δ (µ −µ
′)e−2πikµUst . (2.51)

2.3 Results

In the rest of the chapter, we present results for the evolution of run-and-tumble particles
calculated for an isotropic initial condition in orientation space and delta function initial
condition in position space at an arbitrary point which, without loss of generality, is taken
to be the origin. All length and time scales can naturally be non-dimensionalized by the
run length, Usτ , and the relaxation time, τ , respectively. The swim speed thus becomes
unity in non-dimensional units. All the results in this section are presented in terms of the
aforementioned non-dimensional variables.

2.3.1 Intermediate Scattering Function

We first examine the time evolution of the intermediate scattering function (ISF) for RTPs,
which in general is defined as,

Ω̃(kkk, t) =
∫

d pppΩ̃(kkk, ppp, t). (2.52)

Integrating (2.47) over the orientation degrees of freedom, and using the fact that the ISF
must be isotropic, gives an expression for the intermediate scattering function (ISF), in 2D as

Ω̃(k, t) =
∫

π

−π

1
D(θ0)

e−2πik cosθ0t−tdθ0

+H

(
1

2π
− k
)

(4π2ik)2∫
π

−π
(cosθ − cosθd)−2dθ

e−2πik cosθdt−t

+H

(
k− 1

2π

)
∑

±arcsin
(

1
2πkUsτ

) iπ sinθI

2cosθI
e−2πik cosθIt−t (2.53)
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Fig. 2.2 The time evolution of the intermediate scattering function for various wavenumbers
(k) in (a) 2D and (b) 3D; the chosen k values are indicated on the RHS of each figure. In (a)
the corresponding results from Martens et al. [2012] are plotted as dashed lines, and are in
perfect agreement.

and similarly from (2.48) in 3D,

Ω̃(k, t) =
∫ 1

−1

1
D(µ0)

e−2πikµ0t−tdµ0

+H

(
1
4
− k
)

(4πik)2∫ 1
−1(µ −µd)−2dµ

e−2πikµdt−t , (2.54)

where we have again used the normalization expressions derived at the end of the chapter in
section 2.5.3. (2.53) and (2.54) reduce to the ballistic and diffusive forms in the limits k → ∞

and k → 0, respectively. First lets consider the ballistic straight swimmer limit, where the
ISF is seen to be, in 2D from (2.53),

Ω̃(k, t) =
∫

π

−π

e−2πik cosθ0tdθ0

= 2πJ0(2πkt) (2.55)

where J0 represents the Bessel function of the first kind. The discrete mode contribution
drops off in this limit since the contribution comes from wavenumbers k such that k > 1/2π .
In 3D similarly we get from (2.54),

Ω̃(k, t) =
∫ 1

−1
e−2πik cos µ0tdµ0

=
sin(2πkt)

πkt
, (2.56)
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where the discrete mode again doesn’t contribute. In the diffusive regime, we get the
usual solutions for passive Brownian particles, with e−De f f k2t , where De f f = 1/2 in 2D and
De f f = 1/3 in 3D.

Figure 2.2 plots the time evolution of the intermediate scattering function for various
wavenumbers numerically evaluated from (2.53) and (2.54). For k < 1/2π (k < 1/4) in 2D
(3D), the ISF shows a monotonic decay, typical of passive systems. This is the range of
wavenumbers for which the discrete mode exists as discussed earlier. For larger wavenumbers,
the ISF shows an oscillatory decay, with the dynamics controlled by the continuous spectrum
modes. The oscillatory decay thus results from the convection due to swimming as discussed
earlier in the interpretation of the continuous spectrum modes. Wilson et al. [2011] measured
the ISF for motile bacteria using differential dynamic microscopy [Schwarz-Linek et al.,
2016]. However, they could access only very small length scales. More recently Kurzthaler
et al. [2018] have observed a transition from oscillatory to diffusive behavior of the ISF,
for self-propelled Janus particles which are modeled as active Brownian particles (ABPs)
[Kurzthaler et al., 2018, 2016].

The ISF for RTPs in 2D was earlier evaluated in closed form by Martens et al. [2012]
by using an analogy with the Lorentz gas. Although we have not been able to analytically
find a way to convert our integral superposition into their infinite series sum, the numerically
evaluated values from both the approaches shows excellent agreement (see figure 2.2a). In
3D, to the best of our knowledge, (2.54) is the only closed form expression for the ISF
available in the literature.

2.3.2 Position-space Probability density

The probability density (Ω(r), t) of finding a swimmer at the radial distance r, with any
orientation, is obtained by Fourier inversion of the ISF, Ω̃(k, t), given in (2.53) and (2.54).
Owing to the isotropy of Ω̃(k, t) the angular integrals can be carried out, but the remaining
integrals for the Fourier inversion need to be carried out numerically. Since RTPs swim at a
finite speed (Us, which is equal to 1 with the scaling used), at any given time t, no swimmer
can be found at a distance r > t. Thus, Ω(r) must have compact support [Cates, 2012] and
the Fourier inversion of (2.53) and (2.54) has numerical difficulties. They are overcome by
adding a translational diffusivity (DT ), which is expected to regularize Ω(r). ISF for a finite
Dt is easily obtained by multiplying the ISF (Ω̃(k, t)), in equations (2.53) and (2.54), with
e−DT k2t . Without translational diffusivity (DT = 0), there must be at least one swimmer at the
front, r = t, which would not have tumbled since t = 0 with the probability of finding such a
swimmer decreasing exponentially with time as e−t . Thus, in both 2D and 3D, in addition to
the compact support we also expect to find a singular front contribution to Ω(r), of the form
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Fig. 2.3 (a) The variation of the regularized probability density, ΩND(r), with the scaled
radial distance, r/t in 2D for DT = 10−5 at various time t. The expression for ΩND(r)
from Martens et al. [2012] is plotted as dashed lines and we see an exact match; note that
Martens et al. [2012] have DT = 0. (b) The effect of the translational diffusivity (DT ) on the
regularized probability density, ΩND(r) in 2D at t = 1. The inset highlights the effect of DT
at the front. (c) The variation of the regularized probability density, ΩND(r), with the scaled
radial distance, 1− r/t in 2D for DT = 10−5 at various time t on a log-log plot.
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δ (r− t)e−t for DT = 0. This expression also causes numerical difficulties for small DT and
hence is analytically removed from the exact expression to obtain a regularized probability
density that allows for effiecient numerical evaluation. We denote this form, with the delta
function contribution removed, by ΩND(r) in both 2D and 3D. Below, we present results for
the regularized probability density, ΩND(r) = Ω(r)−δ (r− t)e−t , in order to clearly focus
on the spatial structure behind the front.

Figure 2.3a shows ΩND(r) in 2D. The value of DT chosen is low enough such that the run
and tumble motion dominates and we can capture the DT → 0 behavior, with the diffusivity
only leading to a local regularization in the immediate neighborhood of the front for the
times considered. We see that initially the swimmers aggregate at the front and the spatial
structure is dominated by the continuous spectrum contribution. At long times, the diffusive,
discrete mode dominates and the radial probability density has a maxima at r = 0 instead.
However, 2.3c shows that ΩND(r) diverges as (t − r)−1/2 on approaching the front at all
times t implying that, for DT = 0, in addition to the front itself being singular, there is an
additional algebraic divergence on approach towards this singular front [Martens et al., 2012].
Note that for any finite DT , ΩND exhibits the algebraic divergence upon approaching the
front, until it is regularized in a certain DT dependent neighborhood of the front (see 2.3c).
Further, at low DT considered here, beyond the front, such that r > t, the probability density
is negligibly small compared to the values behind the front and hence it is not shown in the
figure. But this is expected since the probability density beyond the front is exactly zero
without DT . The results also show an excellent agreement with the expression derived in
Martens et al. [2012], thus validating our approach. Further note that Martens et al. [2012]
have DT = 0 exactly and thus the value of DT here is low enough to capture the run and
tumble dynamics. We use this for the rest of the results to choose the corresponding values of
DT . Figure 2.3b shows the effect of the translational diffusivity (DT ). As expected, for small
DT the regularizing effect is confined to the front, where spatial gradients are the largest.
Increasing DT smoothens out the singularity at the front, replacing it with a peak behind the
front (figure 2.3b). The probability density in the bulk on the other hand stays unaffected by
DT . For the same reason, the effect of DT is also less pronounced at later times when the
swimmers are primarily confined to the bulk (not shown).

Figure 2.4a shows the regularized radial probability density in 3D for small DT (= 10−4)

where the run and tumble motion dominates. The evolution with time is similar to 2D, but
the probability density peaks just before the front and sharply reduces to a finite value at
the front. Thus, unlike 2D, there is no additional, algebraic, divergence behind the front in
this case. Figure 2.4a shows that the sharpness of the peak reduces with increasing time and
figure 2.4b shows that with increasing DT the peak at the front disappears. To more closely
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Fig. 2.4 (a) The variation of the regularized position-space probability density, ΩND(r) with
the scaled radial distance, r/t in 3D for DT = 10−4 at various time t. (b) The affect of the
translational diffusivity (DT ) on the regularized position-space probability density, ΩND(r) in
3D at t = 1. (c) The structure of ΩND(r) just behind the front (0.99 < r < 1) upon decreasing
translational diffusivity (DT ) in 3D at t = 1.

examine what happens to the front, we examine the regularized position-space probability
density, ΩND(r), just behind the front for 0.99 < r < 1 upon decreasing DT in figure 2.4c,
which shows that the finite value of the regularized radial probability density just behind the
front in 3D is not due to a finite DT .

2.3.3 Orientation-position-space Probability density

The probability density, Ω(rrr, ppp, t), of finding a swimmer with orientation ppp at position rrr at
time t, starting from an isotropically localized population at the origin at t = 0, is obtained
by Fourier inversion of the expressions in (2.47) and (2.48), and the results are presented in
this section.
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Radial Variation in 2D

In 2D, using a ppp-aligned co-ordinate system, where the position-vector rrr is given by
(r cos χ,r sin χ) in 2D we get from (2.47),

Ω(r,χ, t) =
1

2π

∫
∞

0
dk
∫

π

−π

dθe2πikr(cosθ cos χ+sinθ sin χ)
∫

π

−π

Φe
cs(θ ;θ0)

D(θ0)
e−2πik cosθ0t−tdθ0

+
∫

∞

0
dk
∫

π

−π

dθe2πikr(cosθ cos χ+sinθ sin χ) 1
2π

Φ
e
d(θ ;θd)

4π2ik∫
π

−π
(cosθ − cosθd)−2dθ

e−2πik cosθdt−t

+
∫

∞

0
dk
∫

π

−π

dθe2πikr(cosθ cos χ+sinθ sin χ) 1
2π

∑
±arcsin

(
1

2πkUsτ

)Φ
e
I (θ ;θI)

iπ sinθI

2cosθI
e−2πik cosθIt−t .

(2.57)

The Fourier inversion is performed by carrying out the integrals numerically as in the previous
section. We again expect to find a ‘front’ contribution of the form δ (r− t)δ (χ)e−t due to
a bacteria that has not tumbled since t = 0. Like the previous section, we subtract this
contribution from the probability density to regularize it, the regularized probability density
being denoted by ΩND. We present results for ΩND(r,χ, t) = Ω(r,χ, t)−δ (r− t)δ (χ)e−t in
the rest of the section. Figure 2.5a-f show the regularized probability density ΩND(r,χ, t)
versus r in 2D for various t and relative angles χ ; note that for any χ ̸= 0, we have ΩND = Ω

since no regularization is required at the front for χ ̸= 0.
To examine swimmers aligned with the radial location (χ = 0) in more detail, in addition

to 2.5a, we plot ΩND(r,χ = 0, t) versus 1− r/t on a log-log plot in figure 2.6. This suggests
a power-law scaling for ΩND(r,χ = 0, t) ∝

1
t−r . The scaling is seen to hold everywhere in the

bulk at early times (t < 1) but is confined near the front for increasing t. The divergence at
the front is numerically regularized in a boundary layer at any finite translational-diffusivity
as it must be but we can capture the behavior sufficiently with DT = 10−3. Solon et al.
[2015] saw the same scaling for RTPs trapped in a potential-well when the trap radius was
smaller than the run-length (Uτ). In the previous section, we saw that the divergence for the
orientation-averaged position space probability density is milder ∝

1
(t−r)1/2 . This suggests that

a differential angular element of O((t − r)1/2) is the dominant contribution to the orientation
average. For longer times, the swimmers accumulate in two-distinct regions, a diffusive
region in the bulk with the swimmers concentrated near the origin and another region near
the front where again Ω(r,χ = 0, t) ∝

1
t−r . With increasing time, we thus see a transition

from an active-regime to a passive-regime.
We see similar phenomenology for other values of χ (see figure 2.5b-f). At early times,

one still sees accumulation near the front; however with increasing χ the maxima of Ω(r,χ, t)
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Fig. 2.5 The variation of the regularized joint orientation-position space probability density,
ΩND(r,χ, t) with the scaled radial distance, r/t in 2D for various χ (a) χ = 0, (b) χ = 2π/30,
(c) χ = 5π/30, (d) χ = 10π/30, (e) χ = 14π/30 and (f) χ = 20π/30; at various time t with
DT = 10−3.
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Fig. 2.6 The variation of the regularized orientation-position space probability density,
ΩND(r,χ = 0, t) with the scaled radial distance, 1− r/t in 2D for χ = 0 at various time t
with DT = 10−3.
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Fig. 2.7 The effect of the translational diffusivity (DT ) on the regularized orientation-position
space probability density probability density, ΩND(r,χ, t) in 2D at t = 1 for (a) χ = 0 (b)
χ = 2π/30 (c) χ = 10π/30.



2.3 Results 44

0 1 2 3
χ

0

0.1

0.2

0.3

0.4

0.5

Ω

r = 0.25

r = 0.5

r = 1

r = 1.5

r = 1.75

r = 1.9

(a)

0 1 2 3
χ

0

0.02

0.04

0.06

0.08

Ω

r = 1

r = 2

r = 3

r = 3.75

r = 3.9

(b)

Fig. 2.8 The angular variation of the joint orientation-position space probability density,
ΩND(r,χ, t) with χ in 2D for various r at time (a) t = 2 and (b) t = 4 for DT = 10−3.

moves away from the front and towards the origin. As χ ∼ π/2 we see that the maxima
has moved to the origin (figure 2.5e). For χ > π/2, the maximum number of swimmers is
at the origin even at early times, and Ω(r,χ, t) is a monotonically decreasing function of r.
However, the functional form of Ω(r,χ, t) is still distinct from a Gaussian at early times for
any χ . At long times one sees the expected transition to the diffusive regime for any value of
χ , with Ω(r,χ, t) having a maxima at the origin. Thus we see that there is an active-regime
to a passive-regime transition with time for any value of χ , although the form of the active
regime is itself dependent on χ . Malakar et al. [2018] have also found a similar active-passive
transition for RTPs in one-dimension.

Figure 2.7a-c shows results for joint orientation-position for varying DT . The effect of the
translational diffusivity is the largest for aligned swimmers i.e. for χ = 0. As DT is reduced,
the algebraic divergence extends further upto the front, while the probability density in the
bulk stays unaffected (see figure 2.7a). Thus in the absence of the translational diffusivity, the
probability distribution would diverge linearly on approaching the front. For χ ̸= 0, the effect
of translational diffusivity is not as pronounced. Further note that there is no divergence at
the front even in the limit of DT → 0 for non-aligned swimmers (see figure 2.7b-c).

Angular Variation in 2D

Figure 2.8a-b shows the angular variation of Ω(r,χ, t) with χ at a given radial location and
time. We see that the swimmers are isotropically distributed near the origin, with Ω(r,χ, t)
becoming increasingly anisotropic as we approach the front at r = t. Clearly, the closer the
swimmer is found to the front, the more aligned its orientation would be with the radial
vector. The probability of non-aligned swimmers (χ ̸= 0) while approaching the front is
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finite; this can also be seen in figure 2.5. In contrast to the radial variation discussed earlier,
we see no qualitative change in the angular variation with increasing time.

Radial Variation in 3D

In 3D, the position vector rrr in the ppp-aligned coordinate system is given by
(r cos(χ),r sin(χ)sin(ψ),r sin(χ)cos(ψ)). Clearly for an isotropic initial condition, Ω(rrr, ppp, t)
must be invariant of ψ for all times, so we only consider ψ = 0 here. Thus the joint probabil-
ity density is again given as Ω(r,χ, t) in 3D. The final expression is derived from (2.48) and
is given as,

Ω(r,χ, t) =
1
2

∫
∞

0
dk
∫ 1

−1
dµe2πikrµ cos χ

∫ 1

−1

Φ0
cs(µ; µ0)

D(µ0)
e−2πikµ0t−tdµ0

+
1
2

∫
∞

0
dk
∫ 1

−1
dµe2πikrµ cos χH

(
1

4Usτ
− k
)

Φ
0
d(µ; µd)

4πik∫ 1
−1(µ −µd)−2dµ

e−2πikµdt−t .

(2.58)

Figure 2.9a-c shows the variation of ΩND(r,χ, t) versus r for various times t and polar angles
χ . We thus see that the joint orientation-position dynamics are similar to that in 2D. For
aligned swimmers (χ = 0), figure 2.10 shows the log plot of ΩND(r,χ = 0, t) versus 1− r/t
which shows that the power-law scaling for aligned swimmers is different from 2D and is
given by ΩND(r,χ = 0, t) ∝

1
(t−r)2 . The angular variation of Ω(r,χ, t) in 3D is similar to 2D

and hence is not presented.
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Fig. 2.9 The variation of the joint regularized orientation-position space probability density,
ΩND(r,χ, t) with the scaled radial distance, r/t in 3D for various χ (a) χ = 0, (b) χ = 2π/30,
and (c) χ = 5π/30.
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Fig. 2.10 The variation of the joint regularized orientation-position space probability density,
ΩND(r,χ = 0, t) with the scaled radial distance, 1− r/t in 3D for χ = 0 for DT = 10−3.
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2.4 Conclusion

In this chapter, we have presented an exact solution for the time evolution of the joint-
probability density in orientation-position space of run-and-tumble particles. We constructed
the Green’s function of the run-and-tumble operator by deriving analytical expressions for the
eigenfunctions and their adjoints, and constructing the required bilinear superposition. We
have provided exact results in both two and three dimensions. Importantly, the eigenspectrum
governing the dynamics of RTPs would consist of a swimming-induced continuous spectrum,
and a regular discrete mode corresponding to long-time diffusive behavior, in any arbitrary
dimension greater than one. The Green’s function can also thus be constructed in any arbitrary
dimension following the method detailed in this chapter. We also showed that there is an
active to passive-regime transition with increasing time for the radial variation of the joint
probability density. This transition occurred in both two and three dimensions and should
persist in all higher dimensions.

Further generalizations are possible using the formalism developed in this chapter. It
is evident that our approach can be extended to dimensions higher than three. In arbitrary
dimension D, we would consider hyper-spherical polar coordinates, the radius (r), D− 2
polar angles and an azimuthal angle. By writing the swimming dependency in terms of the
D−2 polar angles and expanding the remaining polar angles dependency in terms of the
Legendre polynomials, we can separate out the equation for the concentration perturbation.
One would thus obtain a similar eigenspectrum in all higher dimensions, comprising of the
swimming induced continuous spectrum and the discrete mode that reduces to diffusion in
the k → 0 limit.

Here, we have considered the simplest realization of RTPs, where the runs are instan-
taneous and Poisson distributed. In nature bacteria show several variations on this basic
paradigm, some of which have been studied in the literature recently where the tumbles
could take a finite amount of time or the tumbles are correlated to each other [Angelani,
2013; Detcheverry, 2015, 2017; Stocker, 2011; Taktikos et al., 2013]. Our method could
be extended to study the dynamics of generic run-and-tumble motion, however it is not a
prior obvious whether complete analytic progress can be made in the general case. Further,
run-and-tumble particles subject to an external harmonic potential or shearing flows lead to
non-trivial dynamics and steady-state probability distributions, and have thus been intensely
studied in recent years [Cates, 2012; Malakar et al., 2018; Nash et al., 2010; Sandoval et al.,
2014; Solon et al., 2015; Vennamneni et al., 2020; Woillez et al., 2019].

Importantly, the methodology described in this chapter can be extended to study the
dynamics of hydrodynamically interacting RTPs. This is done in the next chapter to study
correlations in a bacterial suspension on approaching the collective motion threshold.
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2.5 Derivation of the adjoint eigenfunctions

2.5.1 Finding the adjoint eigenfunctions: 2D

To derive the adjoint eigenfunctions, we consider an arbitrary initial condition B(θ ,k). For
the eigenfunctions (and adjoints) since k can be considered to be fixed, B(θ ,k)≡ B(θ) can
be an arbitrary function of θ with k being treated as a parameter in in the following analysis
to derive the adjoint eigenfunctions. B(θ) can be projected unto the eigenfunctions discussed
earlier. In 2D this gives

B(θ) =
∫

π

−π

Λcs(θ0)φcsdθ0, (2.59)

where Λcs(θ0) is the unknown amplitude distribution that needs to be found. Without loss of
generality, we can separate any initial condition into odd and even parts. The odd component
of the initial condition clearly projects only onto the odd eigen-modes,

B(θ)−B(−θ) =
∫

π

−π

Λ
o
cs(θ0)Φ

o
csdθ0, (2.60)

and using the expression for Φo
cs, from (2.27), we get

B(θ)−B(−θ) = Λ
o
cs(θ)−Λ

o
cs(−θ), (2.61)

For purposes of deriving the adjoint, we take B(θ) = δ (θ −θ ′), in which case Λo
cs = Φ̃o

cs,
and the adjoint of the odd eigenfunction is seen to be given by,

Φ̃
o
cs = δ (θ ′−θ0)−δ (θ ′+θ0). (2.62)

For the even component of the initial condition,

B(θ)+B(−θ) =
∫

π

−π

Λ
e
cs(θ0)Φ

e
csdθ0. (2.63)

Using Φe
cs from (2.14), and on further simplifying, we get:

B(θ)+B(−θ) = Λ
e(θ)+Λ

e(−θ)+
1

2π2ikUsτ

∫
π

0

Λe(θ0)+Λe(−θ0)

cosθ − cosθ0
dθ0. (2.64)

Note again that when B(θ) = δ (θ −θ ′), Λe
cs = Φ̃e

cs. Thus, unlike the odd component we need
to solve the singular integral equation (2.64) for the unknown amplitude Λe

cs to derive the
adjoint eigenfunction. This was first carried out by Case in the context of plasma-oscillations
[Case, 1959, 1960] and has since been extended to inviscid shear flows [Balmforth and
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Morrison, 1995b; Roy and Subramanian, 2014b]. Here, we adapt the method for the Fourier
transformed run-and-tumble operator. Interpreting θ as a complex variable, we define the
following functions:

Φ =
1

2πi

∫
π

0

Λe(θ0)+Λe(−θ0)

cosθ − cosθ0
dθ0, (2.65)

Ψ =
1

2πi
1

2π2ikUsτ

∫
π

0

1
cosθ − cosθ0

dθ0, (2.66)

and
Q =

1
2πi

∫
π

0

B(θ0)+B(−θ0)

cosθ − cosθ0
dθ0. (2.67)

All the above three functions are singular integrals for θ ∈ [−π,π] so that there is a branch
cut for each of the integrals in (2.65)-(2.67). Using the Plemelj formula [Ablowitz et al.,
2003; Gakhov, 2014], we get for each of the integrals,

Φ
± =±Λe(θ)+Λe(−θ)

2(1− cosθ 2)1/2 +
1

2πi
−
∫

π

0

Λe(θ0)+Λe(−θ0)

cosθ − cosθ0
dθ0,

Ψ
± =± 1

2π2ikUsτ

1
2(1− cosθ 2)1/2 ,

and
Q± =± B(θ)+B(−θ)

2(1− cosθ 2)1/2 +
1

2πi
−
∫

π

0

B(θ0)+B(−θ0)

cosθ − cosθ0
dθ0.

We can show that

Q+−Q− = Φ
+−Φ

−+(2πi)(Φ+
Ψ

+−Φ
−

Ψ
−), (2.68)

Q+−Φ
+− (2πi)(Φ+

Ψ
+) = Q−−Φ

−− (2πi)(Φ−
Ψ

−), (2.69)

(2.70)

and hence the the particular combination of Q, Φ and Ψ given by Q−Φ− (2πi)(ΦΨ) is
continuous about the branch cut and by definition has no singularities elsewhere in the
complex plane. By using the Liouville theorem [Ablowitz et al., 2003; Gakhov, 2014], we
can then say that this combination must be a constant which then leads to,

=⇒ Q−Φ− (2πi)(ΦΨ) = const.= 0 (2.71)

=⇒ Φ =
Q

1+2πiΨ
. (2.72)
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Finally upon using,

Λ
e(θ)+Λ

e(−θ) = (Φ+−Φ
−)(1− cosθ

2)1/2 (2.73)

=

(
Q+

1+2πiΨ+
− Q−

1+2πiΨ−

)
(1− cosθ 2)1/2

2
, (2.74)

and simplifying we get,

Λ
e(θ)+Λ

e(−θ) =
B(θ)− 1

2π2ikUsτ
−
∫

dθ0
B(θ0)

cosθ−cosθ0

1− 1
(2πkUsτ sinθ)2

(2.75)

from which we can see the adjoint as,

Φ̃
e
cs(θ0;θ

′) =
1

D(θ0)

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
, (2.76)

which was stated in (2.28).

2.5.2 Finding the adjoint eigenfunctions: 3D

The procedure to derive the adjoint in 3D follows similar steps. We represent an arbitrary
condition B(µ,φ), without loss of generality, in terms of axisymmetric and non-axisymmetric
modes,

B(µ,φ) = B0(µ)+
∞

∑
m=1

Bm(µ)cos(mφ). (2.77)

It is evident that each of the modes would project independently unto the corresponding
eigenfunctions. Thus, we get for the non-axisymmetric modes,

Bm(µ) =
∫ 1

−1
Λ

m(µ0)Φ
m
cs(µ; µ0)dµ0. (2.78)

Using Φm
c s from (2.15), we arrive at the adjoint expression in (2.30) for the non-axisymmetric

modes. For the axisymmetric mode,

B0(µ) =
∫ 1

−1
Λ

0(µ0)Φ
0
cs(µ; µ0)dµ0. (2.79)
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and using Φ0
cs from (2.16), we get.

B0(µ) =

[
Λ

0(µ)− Λ0(µ)

4πikUsτ
−
∫ 1

−1

1
µ ′−µ

dµ
′

]
+

1
4πikUsτ

−
∫ 1

−1

Λ0(µ)

µ −µ0
dµ

0. (2.80)

with Λ0(µ0) is the amplitude that needs to be solved for. An integral equation (2.80) needs
to be inverted just like the 2D case [Balmforth and Morrison, 1995b; Case, 1959, 1960; Roy
and Subramanian, 2014b]. Again, three functions χ(µ), Ψ(µ) and Q(µ) are defined:

χ(µ) =
1

2πi

∫ 1

−1

Λ0(µ ′)

µ −µ ′ dµ
′, (2.81a)

Ψ(µ) =
1

2πi

(
1

Usτ

)∫ 1

−1

1
µ −µ ′dµ

′, (2.81b)

Q(µ) =
1

2πi

∫ 1

−1

B(µ ′)

µ −µ ′dµ
′. (2.81c)

(2.81a)-(2.81c) are singular integrals, for µ ∈ [−1,1], implying that this interval is the branch
cut. We therefore, use the Plemelj formulae [Ablowitz et al., 2003; Gakhov, 2014] to get:

χ(µ)± =±Λ0(µ)

2
+

1
2πi

−
∫ 1

−1

Λ0(µ ′)

µ −µ ′ dµ
′ (2.82a)

Ψ(µ)± =±1
2

(
1

Usτ

)
+

1
2πi

(
1

Usτ

)
−
∫ 1

−1

1
µ −µ ′dµ

′ (2.82b)

Q(µ)± =±B0(µ)

2
+

1
2πi

−
∫ 1

−1

B0(µ ′)

µ −µ ′ dµ
′. (2.82c)

Again Q+ −Q− = χ+ − χ− + 2πi(Φ+Ψ+ −Φ−Ψ−), so Q+ − χ+ − 2πiχ+Ψ+ = Q− −
χ−− 2πiχ−Ψ−. Just like the 2D case, Q− χ − 2πiχΨ is continuous about the branch
cut, and since its analytic everywhere else by definition, it is analytic in the finite complex
plane. Moreover, the fact that an entire function can only be a constant [Ablowitz et al.,
2003; Gakhov, 2014], and that each of the three functions decay to 0 as µ0 → ∞, gives
Q−χ −2πiχΨ = 0, or:

χ =
Q

(1+2πiΨ)
. (2.83)
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From (2.82a), Λ0(µ) = χ+− χ−, and on using (2.81b)-(2.81c) in (2.83), the amplitude is
now expressible as:

Λ
0(µ) =

∫ 1

−1
dµ0 B0(µ0)

1
D(µ)


[

1− 1
4πikUsτ

−
∫ 1

−1

1
µ ′−µ0

dµ
′

]
δ (µ −µ0)

− 1
4πikUsτ

1
µ −µ0

}
, (2.84)

D(µ) = 1− 1
2πikUsτ

−
∫ 1

−1

1
µ ′−µ

dµ
′−
(

1
4kUsτ

)2
1+

(
1
π
−
∫ 1

−1

1
µ ′−µ

dµ

)2
 . (2.85)

For B0(µ) = δ (µ −µ ′), we obtain the adjoint expression

Φ̃
0
cs(µ0; µ

′)=
1

D(µ0)

[1− 1
4πikUsτ

−
∫ 1

−1

1
µ ′′−µ0

dµ
′′

]
δ (µ ′−µ0)+

1
4πikUsτ

P
1

µ ′−µ0

 ,

(2.86)
which was stated in (2.31).

2.5.3 Normalization of the direct and adjoint eigenfunctions

Following Case [1959], the continuous spectrum eigenfunction for the even mode in 2D is
normalized as,∫

π

−π

Φ
e
cs(θ ;θ0)dθ =

∫
π

−π

δ (θ −θ0)+δ (θ +θ0)+
1

2π2ikUsτ
P

1
cosθ − cosθ0

dθ

= 1, (2.87)

where we have used that the PV-integral is the Glauert’s integral and similarly for the adjoint
eigenfunction

∫
π

−π

Φ̃
e
cs(θ0;θ

′)dθ
′ =

∫
π

−π

1
D(θ0)

(
δ (θ ′−θ0)+δ (θ ′+θ0)+

1
2π2ikUsτ

P
1

cosθ ′− cosθ0

)
dθ

′

=
1

D(θ0)
. (2.88)



2.5 Derivation of the adjoint eigenfunctions 53

Proceeding in the same manner we can easily derive the normalization in 3D as follows for
the axisymmetric continuous spectrum eigenfunction,

∫ 1

−1
Φ

0
cs(µ; µ0)dµ = 1, (2.89)

and similarly, for the corresponding adjoint eigenfunction

∫ 1

−1
Φ̃

0
cs(µ0; µ

′)dµ
′ =

1
D(µ0)

. (2.90)

The normalization for the discrete mode in 2D gives,∫
π

−π

Φ
e
d(θ ;θ)dθ = 4π

2ikUsτ, (2.91)

where we have used the dispersion relation in (2.18). Similarly for the adjoint,

∫
π

−π

Φ̃
e
d(θd;θ

′)dθ
′ =

4π2ikUsτ∫
π

−π
(cosθ − cosθd)−2dθ

. (2.92)

In 3D for the discrete mode we have,∫ 1

−1
Φ

0
d(µ; µd)dµ = 4πikUsτ, (2.93)

and for the adjoint, ∫ 1

−1
Φ̃

0
d(µd; µ

′)dµ
′ =

4πikUsτ∫ 1
−1(µ −µd)−2dµ

, (2.94)

2.5.4 Orthogonality of the eigenfunctions

The continuous spectrum eigencfunctions further satisfy the orthogonality constraint,

∫ 1

−1
Φ

0
cs(µ; µ0)Φ̃

0
cs(µ0; µ

′)dµ0 = δ (µ −µ
′). (2.95)
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Using the expressions for Φ0
cs from (2.16) and Φ̃0

cs from (2.31) gives,

∫ 1

−1
dµ0Φ

0
cs(µ; µ0)Φ̃

0
cs(µ0; µ

′)dµ0

=
1

D(µ ′)

[(
1− 1

4πikUsτ
−
∫ 1

−1

1
µ ′′−µ ′dµ

′′

)2

δ (µ −µ
′)

− 1
4πikUsτ

(
1− 1

4πikUsτ
−
∫ 1

−1

1
µ ′′−µ

dµ
′′

)
1

µ ′−µ

+
1

4πikUsτ

(
1− 1

4πikUsτ
−
∫ 1

−1

1
µ ′′−µ ′dµ

′′

)
1

µ ′−µ

−
(

1
4πikUsτ

)2 ∫ 1

−1
dµ0

1
µ0 −µ

1
µ0 −µ ′

]
. (2.96)

On recasting the final integral term on the right-hand side of (2.96) using the Poincaré-
Bertrand theorem [Balmforth and Morrison, 1995b; Gakhov, 2014], one obtains:∫ 1

−1
dµ0P

[
1

µ0 −µ

]
P

[
1

µ0 −µ ′

]
=−π

2
δ (µ −µ

′)

+
1

µ ′−µ

[
−
∫ 1

−1

1
µ ′′−µ

dµ
′′−−

∫ 1

−1

1
µ ′′−µ ′dµ

′′

]
,

(2.97)

which when used in (2.96), yields (2.95).
Similarly one can, easily, verify that the continuous spectrum and the discrete mode are
orthogonal to each other,

∫ 1

−1
Φ

0
d(µ; µd)Φ̃

0
cs(µ0; µ)dµ = 0, (2.98)

and ∫ 1

−1
Φ

0
cs(µ; µ0)Φ̃

0
d(µd; µ)dµ = 0. (2.99)

This ensures that any initial condition has independent projections on the continuous-spectrum
and discrete mode eigenfunctions, and implies the validity of the generic expression for the
Green’s function (2.39) [Friedman, 1990]. Analogous relations can be readily derived for the
2D eigenfunctions and the derivation is omitted for brevity.



Chapter 3

Fluctuating kinetic theory for bacterial
suspensions

3.1 Introduction

In the previous chapter we theoretically examined the dynamics of non-interacting run-and-
tumble particles, the latter being a standard paradigm for active particles. A collection of
such particles is often termed ‘active matter’ and has been widely studied in recent years
[Bechinger et al., 2016; Cates, 2012; Marchetti et al., 2013] . Active particles, by definition,
inject energy at the micro-scale and break time reversal-symmetry. Consequently, active
matter systems can often lead to non-trivial dynamics forbidden by symmetry in equilibrium
(or near-equilibrium) systems [Cates, 2012; Chaikin and Lubensky, 2000]. Thus, there
has been a lot of effort in understanding interactions between active particles, and how
such interactions can often lead to novel and non trivial dynamics on length scales much
larger than the individual particle. For instance, simple orientation-based nearest neighbor
interactions leads to flocking (interpreted as a phase transition) in 2D, seemingly in violation
of the Mermin-Wagner-Hohenberg theorem that holds for equilibrium systems [Chaté, 2020;
Vicsek and Zafeiris, 2012]. In another case, it has been shown that phase separation can
occurs in a system of dense active particles with purely repulsive interactions [Cates and
Tailleur, 2015; Stenhammar et al., 2013; Wittkowski et al., 2014]. Such models for active
matter do not involve hydrodynamic interactions, and can be termed as dry active matter.

In contrast, a wide variety of active matter does involve hydrodynamic interactions,
termed as ‘wet active matter’ [Elgeti et al., 2015; Koch and Subramanian, 2011; Thampi and
Yeomans, 2016; Zöttl and Stark, 2016]. Bacterial suspensions have been extensively studied,
both experimentally [Dombrowski et al., 2004; Gachelin et al., 2014] and computationally and
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theoretically [Marchetti et al., 2013; Wensink et al., 2012], over recent years, as a prototypical
example of wet active-matter systems. Further, both dilute and concentrated bacterial
suspensions have been thoroughly investigated, with novel phenomena observed in both
regimes [Baskaran and Marchetti, 2009; Chen et al., 2017; Dombrowski et al., 2004; Koch
and Subramanian, 2011]. For dilute bacterial suspensions, several instances of non-trivial
dynamics find mention in the literature. These include examples where a passive tracer in the
suspension exhibits an enhanced diffusivity due to swimmer-induced velocity fluctuations
[Chen et al., 2007b; Jepson et al., 2013; Wu and Libchaber, 2000]. Such suspensions
have also shown to possess novel rheological properties, including regimes of superfluidity,
due to the active stress induced by swimming bacteria [López et al., 2015; Nambiar et al.,
2017, 2019]. Further, long-ranged hydrodynamic interactions lead to ‘collective-motion’
in bacterial suspensions on length scales much larger than a single-bacterium [Koch and
Subramanian, 2011; Saintillan and Shelley, 2007]. Collective motion onset is dependent
on the bacterial volume fraction, occurring beyond a finite threshold that involves both
the volume fraction and appropriately scaled tumble time [Subramanian and Koch, 2009].
Numerical simulations have also shown non-trivial long-ranged orientation and velocity
correlations in dilute bacterial suspensions [Bárdfalvy et al., 2019; Krishnamurthy and
Subramanian, 2015; Stenhammar et al., 2017]. Owing to the expense involved in simulating
bacterial suspensions on large scales, the exact dynamics that contribute to the correlations,
especially close to collective motion onset, are not well understood, and complementary
theoretical approaches are needed.

As discussed in Chapter 2, individual bacteria are effectively modeled as run and tumble
particles (RTPs), where the run phase denotes the bacterium swimming through the fluid
along a straight line between successive (random) tumbles. Interactions in dilute bacterial
suspensions are primarily hydrodynamic, being mediated through the fluid flows generated
due to swimming [Koch and Subramanian, 2011]. Since the swimming motion is force-free,
the bacteria appear as dipoles in the far-field, and are termed ‘pushers’ owing to the fluid flow
pointing outwards along the axis of the bacterium. There is a second class of microswimmers,
examples of which include algae, where the flow is directed inwards along the swimming
axis - these are termed ‘pullers’. The long-ranged O(1/r2) fluid flow (r being the distance
from the bacterium) induced by the swimming motion of the bacterial dipoles is thus crucial
to the dynamics of dilute suspensions. Only dilute suspensions of pushers, like bacteria, are
known to exhibit collective motion. Building on the results from the previous chapter, herein,
we theoretically study the correlations in a dilute bacterial suspension that develops due to
the long ranged hydrodynamic interactions.
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First, in section 3.2, we study correlations away from the threshold of collective motion.
In this regime, it is pairwise hydrodynamic interactions that are dominant. This regime was
already analysed in Nambiar [2020] and we extend the analysis to determine the diffusivity of
a passive non-Brownian tracer. We show that the tracer diffusivity diverges linearly with the
swimmer run length at O(nL3)2, where nL3 is the swimmer volume fraction, this divergence
arising from a weaker logarithmic divergence of the fluid velocity variance. We also examine
the differences between pushers and pullers, and discuss the relevance of these results to
recent experimental observations.

In section 3.3, we study the correlations near the threshold of collective motion. For
equilibrium systems, correlations near a phase transition are studied using stochastic field
theories [Chaikin and Lubensky, 2000]. For example, Model B is used to study the dynamics
of a conserved scalar order parameter near a phase transition, while Model H incorporates
additional hydrodynamical effects. Existing studies have examined how such field theories
behave with additional terms that are used to phenomenologically model the consequences
of activity [Cates, 2019; Cates and Tjhung, 2018; Tiribocchi et al., 2015; Tjhung et al., 2018;
Wittkowski et al., 2014]. However, such models are not applicable to dilute bacterial sus-
pensions since they do not incorporate the effects of long-ranged hydrodynamic interactions
which are crucial to the collective motion [Koch and Subramanian, 2011; Krishnamurthy and
Subramanian, 2015; Saintillan and Shelley, 2007; Stenhammar et al., 2017]. To include the
effects of such interactions, we develop a fluctuating kinetic theory, from first principles in
section 3.3.1 and 3.3.2. Then, following the methodology outlined in Chapter 2, we develop
an exact solution of the governing stochastic integro-differential equation in section 3.3.3
and use the same to derive the phase space density correlation function in section 3.3.4. We
then use the phase space density correlation function to specifically examine the velocity
fluctuations (variance and co-variance), the diffusivity of a passive tracer and the orientation
(nematic) correlations as the threshold for collective motion is approached in section 3.3.5.
We also examine the differences between suspensions of pushers and pullers. Finally, we
conclude in section 3.4.

3.2 Correlations (Tracer diffusivity) away from the collec-
tive motion threshold

First, in this section, we examine correlations in a dilute bacterial suspension away from
the threshold of collective motion. The latter ensures that the correlations induced by the
long wavelength velocity fluctuations in the bacterial suspension are negligible and hence,
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all correlations arise due to pairwise interactions between bacteria. The nature of the fluid
velocity fluctuations away from the threshold have been studied earlier by Nambiar [2020]
where it was observed that direct pair interactions due to the long-ranged disturbance flow
fields of individual swimmers lead to a non-trivial variation of the velocity variance with the
volume fraction (nL3) and swimmer run length (Usτ/L); specifically at O(nL3)2, the velocity
variance diverges logarithmically with the swimmer run length. In this section, we extend
the analysis in Nambiar [2020] to examine the diffusivity of a passive tracer away from the
threshold of collective motion. Based on the above results for the velocity variance, and in
addition the known results for both the velocity variance and tracer diffusivity in a passive
suspension of sedimenting non-Brownian particles [Koch and Shaqfeh, 1991], one expects a
stronger divergence of the tracer diffusivity with the run length at the same order in nL3.

The velocity fluctuations in the bacterial suspension convect a passive non-Brownian
tracer. The dynamics of such a tracer is then governed by,

ẋxx = uuu(xxx), (3.1)

where uuu(xxx) is the suspension velocity field. During a tracer-slender swimmer interaction with
a separation of order the swimmer length L (the separations that contribute dominantly to the
tracer diffusivity), the velocity convecting the tracer is O(U/ lnκ) while the relative tracer-
swimmer velocity is O(U); κ here is the swimmer aspect ratio. Thus, the tracer displacement
during an interaction event is logarithmically small, and tracer statistics may be calculated, at
leading order, within an Eulerian approximation [Kasyap et al., 2014; Krishnamurthy and
Subramanian, 2015]. The expression for the mean-squared displacement (MSD) of the tracer,
at time t, is then given in terms of the time-dependent fluid velocity correlation function as,

⟨x2(t)⟩=
∫ t

0
dt1
∫ t

0
dt2⟨uuu(rrr, t1) ···uuu(rrr, t2)⟩, (3.2)

where the angular-brackets again denote an ensemble average [Balakrishnan, 2008; Zwanzig,
2001]. In terms of the Fourier-transformed variables, the tracer MSD is given as,

⟨x2(t)⟩=
∫

dkkk
∫ t

0
dt1
∫ t

0
dt2⟨ûuu(kkk, t1) ··· ûuu(−kkk, t2)⟩, (3.3)

which, to O((nL3)2), may be written as

⟨x2(t)⟩= ⟨x2(t)⟩|uncorr + ⟨x2(t)⟩|corr, (3.4)
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where ⟨x2(t)⟩|uncorr ∼ O(nL3) is the tracer MSD in a non-interacting swimmer suspension,
while ⟨x2(t)⟩|corr ∼ O(nL3)2 denotes the correlated contribution, with the correlation being
the consequence of swimmer interactions. We have thus,

⟨x2(t)⟩|uncorr =
∫

dkkk
∫ t

0
dt1
∫ t

0
dt2⟨ûuu(kkk, t1) ··· ûuu(−kkk, t2)⟩|uncorr, (3.5)

and
⟨x2(t)⟩|corr =

∫
dkkk
∫ t

0
dt1
∫ t

0
dt2⟨ûuu(kkk, t1) ··· ûuu(−kkk, t2)⟩|corr. (3.6)

3.2.1 Suspensions of non-interacting swimmers

For non-interacting swimmers, the Fourier-transformed velocity correlation function is given
by

⟨ûuu(kkk, t1) ··· ûuu(−kkk, t2)⟩|uncorr =
∫

ûuu(kkk) ··· ûuu(−kkk)Ĝ1
(

ppp1, t1|ppp′1, t2;kkk
)

Ω1 dppp1dppp′1, (3.7)

where Ω1 = n/4π is the steady-state singlet probability density in an isotropic swimmer
suspension, and Ĝ1(ppp1, t1|ppp′1, t2;kkk) is the Fourier transformed transition probability density
of finding a swimmer with orientation ppp1 at time t1 given that it had an orientation ppp′1 at t2.
The governing equation for Ĝ1 is then the same as the equation governing the relaxation of
the singlet probability density and is given by,

dĜ1

dt
+

(
Uτ

L

)
2πikkk ··· ppp1Ĝ1 +

(
Ĝ1 −

1
4π

∫
dppp1Ĝ1

)
= δδδ (ppp1 − ppp′1)δ (t − t ′). (3.8)

The orientation-space eigenmodes of the operator governing the transition probability density,
Ĝ1 in (3.8), that contribute to the velocity correlation function in (3.7) have no concentration
fluctuations. Thus, for these modes, the inverse-tumbling term in (3.8) vanishes and the
expression for Ĝ1 is then easily given as,

Ĝ1
(

ppp1, t|ppp′1, t ′;kkk
)
= δ (ppp1 − ppp′1)exp

((
−2πikkk ··· ppp1

Uτ

L
−1
)
(t − t ′)

)
. (3.9)

We emphasize that the expression for Ĝ1 is not complete since it does not capture the relax-
ation of the concentration modes. The complete expression for Ĝ1 is needed to characterize
the time-dependent evolution of a initially localized population of run-and-tumble swimmers,
and was discussed in Chapter 2. Using (3.9) in (3.7), and then (3.7) in (3.5) and upon simpli-
fying, we obtain the expression for the MSD of a passive tracer in an isotropic non-interacting
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swimmer suspension as:

⟨x2(t)⟩|uncorr =
nL3

(lnκ)216π7

∫
dppp1

∫ dkkk
k4


−1+ exp

(
−
(

2πikkk ··· ppp1
Uτ

L +1
)

t
)

(
2πikkk ··· ppp1

Uτ

L +1
)2


(
I− kkkkkk

k2

)
: ppp1 ppp1

sin4 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)
2

+
nL3

(lnκ)216π7 t
∫

dppp1

∫ dkkk
k4

(
1

2πikkk ··· ppp1
Uτ

L +1

)(
I− kkkkkk

k2

)
: ppp1 ppp1

sin4 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)
2 .

(3.10)

The behavior of the tracer falls into two distinct regimes depending on the fluid velocity
correlation time, which is O(τ) for Uτ/L ≪ 1 and O(L/U) for Uτ/L ≫ 1. For times much
shorter than the velocity correlation time, the tracer shows ballistic motion and the MSD
simplifies to,

⟨x2(t)⟩|uncorr =
t2

2
⟨ûuu(kkk, t) ··· ûuu(−kkk, t)⟩|uncorr

=
nL3

(lnκ)232π7

[∫
dppp1

∫ dkkk
k4

(
I− kkkkkk

k2

)
: ppp1 ppp1

sin4 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)
2

]
t2.(3.11)

The term within the brackets can be identified as the fluid velocity variance and hence the
magnitude of the MSD in the ballistic regime is hence set by the fluid velocity variance. On
the other hand for times much longer than the velocity correlation time, the tracer shows
diffusive motion with ⟨x2(t)⟩|uncorr = Dt |uncorrt, where the effective diffusivity is given by,

Dt |uncorr =
nL3

(lnκ)216π7

∫
dppp1

∫ dkkk
k4

(
1

2πikkk ··· ppp1
Uτ

L +1

)(
I− kkkkkk

k2

)
: ppp1 ppp1

sin4 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)
2 .

(3.12)
The diffusivity may also be derived directly using the Green-Kubo formula [Balakrishnan,
2008] and has also been obtained by Kasyap et al. [2014] using a different approach. On the
other hand, to the best of our knowledge, the complete expression for the MSD in (3.10) has
not been given in the literature even for non-interacting swimmers. The integrals in (3.10)
may be numerically evaluated with the choice of a kkk-aligned spherical coordinate system.
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3.2.2 Suspensions of interacting swimmers

For interacting swimmers, the Fourier-transformed velocity correlation function at O((nL3)2)

is given by

⟨ûuu(kkk, t1) ··· ûuu(−kkk, t2)⟩|corr =
∫

ûuu(kkk) ··· ûuu(−kkk)Ĝ2
(

ppp1, ppp2, t1|ppp′1, ppp′2, t2;kkk
)

Ω̂
(1)
2
(
kkk, ppp′1, ppp′2

)
dppp1dppp′1dppp2dppp′2, (3.13)

where Ω̂
(1)
2 is the correlated component of the Fourier transformed pair probability density,

Ω̂
(1)
2 is O(nL3)2/ logκ . It was derived by Nambiar [2020] and is given as,

Ω̂
(1)
2 =

3(nL3)2

32π5k2

(
Uτ

L

)(
1

πi(Uτ/L)kkk ··· (ppp2 − ppp1)+1

)(
I− k̂kkk̂kk

)
: ppp2 ppp1[

1
(kkk ··· ppp1)

sin2
(

π

2
kkk ··· ppp1

)
sin(πkkk ··· ppp2)+

1
(kkk ··· ppp2)

sin2
(

π

2
kkk ··· ppp2

)
sin(πkkk ··· ppp1)

]
.

(3.14)

Ĝ2 gives the Fourier transformed transition probability of finding a pair of swimmers with
orientations ppp1 and ppp2 at time t1, starting with the same pair of swimmers with orientations
ppp′1 and ppp′2 at time t2. The governing equation for Ĝ2 is then same as the equation governing
the relaxation of the pair probability density and is given by,

dĜ2

dt
+2πi

(
Uτ

L

)
kkk ··· (ppp2 − ppp1)Ĝ2 +

(
2Ĝ2 −

1
4π

∫
dppp1Ĝ2 −

1
4π

∫
dppp2Ĝ2

)
= δδδ (ppp2 − ppp′2)δδδ (ppp1 − ppp′1)δ (t − t ′). (3.15)

Similar to the case in section 3.2.1, the inverse tumbling terms in (3.15) again don’t contribute,
and the expression for Ĝ2 relevant to the evaluation of the velocity correlation function, is
given by,

Ĝ2
(

ppp1, ppp2, t|ppp′′′1, ppp′2,0;kkk
)
= δ (ppp1 − ppp′1)δ (ppp2 − ppp′2)exp

((
−2πikkk ··· (ppp2 − ppp1)

Uτ

L
−2
)

t

)
.

(3.16)
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Using this result and simplifying, we obtain the final expression for the MSD of a passive
tracer at O((nL3)2) as

⟨x2(t)⟩|corr =
1

(lnκ)34π6

∫
dppp1

∫
dppp2

∫ dkkk
k4


−1+ exp

((
−2πikkk ··· (ppp2 − ppp1)

Uτ

L −2
)

t
)

(
2πikkk ··· (ppp2 − ppp1)

Uτ

L +2
)2


(
I− kkkkkk

k2

)
: ppp1 ppp2

sin2 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)

sin2 (π

2 kkk ··· ppp2
)

(kkk ··· ppp2)
Ω̂

(1)
2 (ppp1, ppp2;kkk)

+
1

(lnκ)34π6 t
∫

dppp1

∫
dppp2

∫ dkkk
k4

(
1

2πikkk ··· (ppp2 − ppp1)
Uτ

L +2

)
(
I− kkkkkk

k2

)
: ppp1 ppp2

sin2 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)

sin2 (π

2 kkk ··· ppp2
)

(kkk ··· ppp2)
Ω̂

(1)
2 (ppp1, ppp2;kkk) .

(3.17)

At times much shorter than the velocity correlation time, the tracer shows ballistic motion
and the MSD simplifies to,

⟨x2(t)⟩corr =
t2

2
⟨ûuu(kkk, t) ··· ûuu(−kkk, t)⟩|corr

=
t2

(lnκ)38π6

∫
dppp1

∫
dppp2

∫ dkkk
k4

(
I− kkkkkk

k2

)
: ppp1 ppp2

sin2 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)

sin2 (π

2 kkk ··· ppp2
)

(kkk ··· ppp2)
Ω̂

(1)
2 (kkk, ppp1, ppp2) . (3.18)

The magnitude of the MSD in the ballistic regime is again set by the fluid velocity variance.
On the other hand, for times much longer than the velocity correlation time, the tracer shows
diffusive motion with ⟨x2(t)⟩|corr = Dt |corrt for any finite swimmer run-length (Uτ/L). The
effective diffusivity is given by,

Dt |corr =
1

(lnκ)34π6

∫
dppp1

∫
dppp2

∫ dkkk
k4

(
1

2πikkk ··· (ppp2 − ppp1)
Uτ

L +2

)(
I− kkkkkk

k2

)
: ppp1 ppp2

sin2 (π

2 kkk ··· ppp1
)

(kkk ··· ppp1)

sin2 (π

2 kkk ··· ppp2
)

(kkk ··· ppp2)
Ω̂

(1)
2 (kkk, ppp1, ppp2) . (3.19)

The integrals in (3.17) and (3.19) are again evaluated numerically. The total mean-squared
displacement of the tracer, to O(nL3)2, is obtained by combining the expressions in (3.10)
and (3.17), and is plotted in figure 3.1, as a function of nL3, for a suspension of pushers.
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Surprisingly, figure 3.1 shows that the time taken to transition from the ballistic to
the diffusive regime increases with increasing volume-fraction of the swimmers. This
surprising behavior can be explained by noting the differing time scales for the decay of
the velocity correlations at O(nL3) and O(nL3)2. At O(nL3), this time-scale (tc) is set by
the swimmer-tracer interaction time. For rapid tumblers (Uτ/L ≪ 1), the interaction is cut
off by the decorrelation of the swimmer orientation, implying tc ∼ O(τ). On the other hand
for straight swimmers (Uτ/L ≫ 1), the distance that the tracer is convected asymptotes to
a finite value for tracer-swimmer separations greater than O(L), and thus tc ∼ O(L/U). At
O(nL3)2, the decay of the velocity correlations, irrespective of Uτ/L, only occurs due to
orientation decorrelation of the swimmers on the time scale τ . As a result for nL3 of order
unity, the transition time between the ballistic and diffusive regimes diverges as Uτ/L. The
resulting broad cross-over gives the impression of an nL3-dependent anomalous exponent
in the interval L/U ≪ t ≪ τ (see the curve for nL3 = 2.5 in figure 3.1). For rapid tumblers
(Uτ/L ≪ 1), the transition time is O(τ) regardless of nL3, and there is no intermediate
anomalous scaling.

The inset in figure 3.1 shows the O(nL3)2 correlated contribution to the tracer diffusivity
(Dt |corr). In the straight-swimmer limit, Dt |corr diverges linearly in Uτ/L. This scaling may
be rationalized by starting from Dt ∼U2

t tc where Ut is the scale of the velocity convecting
the tracer and tc is the time scale of decay of the velocity correlations. Ut is O(U/ lnκ) for
(nL3) of order unity, while the tc scaling is discussed above. The resulting scaling for tracer
diffusivity in an interacting suspension, to O(nL3)2, is therefore given by,

nL3U2τ

(lnκ)2 (d̃1 +
nL3

lnκ

Uτ

L
d̃2) for Uτ/L ≪ 1, (3.20)

and
nL4U
(lnκ)2 (d1 +

nL3

lnκ

Uτ

L
d2) for Uτ/L ≫ 1. (3.21)

and confirms the scalings shown in figure 3.1 (inset) at O(nL3)2. The tracer diffusivity
variation with volume fraction also shows a pusher-puller bifurcation similar to the velocity
variance as shown in figure 3.2. Such behavior has been observed in numerical simulations
before [Krishnamurthy and Subramanian, 2015].

Several experiments probing bacterial suspension dynamics with passive tracers have
reported an intermediate super-diffusive regime and a volume fraction dependent cross-over
time [Argun et al., 2016; Chen et al., 2007a; Kim and Breuer, 2004; Patteson et al., 2016;
Peng et al., 2016; Valeriani et al., 2011; Wu and Libchaber, 2000]. Our analysis shows
that in a bath of interacting persistent swimmers (Uτ/L ≫ 1), the temporal and spatial
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Fig. 3.1 The evolution of the mean-squared displacement of the passive tracer, in a suspension
of pushers, with time for Uτ/L = 50 and κ = 8 for varying nL3. The inset shows the the
correlated tracer diffusivity (Dt |corr) at O(nL3)2 as a function of the run-length, Uτ/L, for
κ = 8; the dashed lines show the asymptotic scalings discussed in the text.

correlations of the (effective) noise experienced by the passive tracer increase to O(τ) and
O(Uτ) respectively. The simplistic approximation for the active noise often found in the
literature is thus seen to be insufficient [Argun et al., 2016; Kanazawa et al., 2020; Maggi
et al., 2014].
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Fig. 3.2 The variation of the diffusivity of a passive tracer versus the volume fraction of
swimmers (nL3) for a fixed run-length Uτ/L = 50 and aspect-ratio κ = 8.

3.3 Correlations near the collective motion threshold

Closer to the collective motion threshold, the correlations induced by the fluctuating sus-
pension velocity field are expected to become important. Thus, we need to use a stochastic
equation to theoretically examine the same. Stochastic partial differential equations are used
in analysing correlations near equilibrium phase transitions [Chaikin and Lubensky, 2000];
their active analogs have been used more recently in examining non-equilibrium transitions
in active suspensions [Cates, 2019; Cates and Tjhung, 2018; Tiribocchi et al., 2015]. We
develop a similar theory for a dilute bacterial suspension in this section by accounting for
the fluctuating flow induced by long-ranged hydrodynamic interactions between the bacteria.
Here, the mean-field interaction between all the bacteria is accounted for by introducing an
active stress field, which drives the fluctuating flow. This is in contrast to the correlations
examined in the previous section, which relied on pairwise interactions between the bacteria.

First, section 3.3.1 discusses the governing stochastic integro-differential equation and
section 3.3.2 derives the correlations for the associated noise. Next, section 3.3.3 and
section 3.3.4 discuss the solution to this stochastic equation and then derive a theoretical
expression for the phase space density correlation function; the analysis in 3.3.3 closely
follows the method outlined in Chapter 2. Finally, section 3.3.5 discusses the results for
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various correlations as the threshold for collective motion is approached. Specifically,
we examine the velocity variance and co-variance, the tracer diffusivity and the nematic
orientation correlations.

3.3.1 Stochastic run-and-tumble Operator for interacting bacteria

Consider a bath of bacteria, with volume fraction nL3, where n is the number of bacteria per
unit volume and L the length of a bacterium. Each bacterium swims with a speed U (the
run event), until it randomly reorients by a finite amount (the tumble event). The tumbles
are assumed to obey Poissonian statistics with an average rate (τ). The bacteria induces a
long-ranged fluid flow as it swims, which in turn convects and rotates the other bacteria. The
bath is characterized by the orientation-position density for the bacteria (Ω(xxx, ppp), t) and the
associated velocity field (uuu). The stochastic equation governing the phase space density Ω is
given by,

∂Ω

∂ t
+(U ppp+uuu)...∇xxxΩ+∇ppp...(ṗppΩ)+

1
τ

(
Ω− 1

4π

∫
Ω(ppp′, t)dppp′

)
= η(xxx, ppp, t), (3.22)

where the left hand side represents the deterministic evolution and the right hand side is the
noise term (η(xxx, ppp, t)), and we have assumed random tumbles. The deterministic evolution
is governed by convection due to swimming (U ppp) and the suspension velocity field (uuu)
interspersed with random decorrelating tumbles. The suspension velocity field (uuu), which is
governed by the Stokes equations with an additional active stress (ΣΣΣaaa) due to the swimming
motion,

−∇P+µ∇
2uuu = ∇.ΣΣΣaaa, (3.23)

where P is the suspension pressure and µ the viscosity of the suspending fluid. A bacterium
can be efficiently modeled as a slender fiber with a given distribution of forces ( fff (s)). This
gives a non-local expression for the stress,

ΣΣΣ
aaa =

1
2

∫
d ppp
∫ L/2

−L/2
ds
∫ s

−L/2
dŝΩ(xxx− sppp, ppp)( fff (ŝ)ppp+ ppp fff (ŝ)), (3.24)

with fff (s) = DµUsgn(s)/(log(κ))ppp, where κ is the bacterium aspect ratio. Note that D

distinguishes whether the swimmer is a pusher or a puller; for a force-free pusher D = 1,
while for a puller D = −1. Recall that bacteria are pushers so we will set D = 1 for the
analysis of bacterial suspensions in this chapter, but our formalism would also allow us to
easily study pullers.
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The governing equations (3.22)-(3.23) should be interpreted in the usual sense of stochas-
tic field theories, such as the classical Model H that is used to study phase transitions in
systems with conserved density and associated fluid flow [Chaikin and Lubensky, 2000]. The
correlations of the noise term in (3.22) are examined in the next section.

3.3.2 Noise Correlations for the Run-And-Tumble Operator

The swimming of the bacteria implies that time-reversal symmetry is broken at the micro-
scale in a bacterial bath. Thus, we cannot appeal to a fluctuation-dissipation theorem to derive
the noise correlations as is usually done in stochastic field theories describing equilibrium
critical phenomena [Cates, 2019; Chaikin and Lubensky, 2000; Täuber, 2014]. Instead, we
start from the phase space density (Ω) which is defined as,

Ω =
N

∑
i=1

δ (xxx− xiii(((ttt))))δ (ppp− piii) (3.25)

in a bacterial bath with N bacteria. The equation governing the evolution of the phase space
density can be written in a difference form as,

∆Ω+∆t((U ppp+uuu)...∇xxxΩ+∇ppp...(ṗppΩ)) =
N

∑
i=1

qi(−δ (ppp− pppiii(t))+δ (ppp− p̂ppiii))δ (xxx− xiii(t)),

(3.26)
where ∆Ω = Ω(xxx, ppp, t +∆t)−Ω(xxx, ppp, t). The RHS of (3.26) denotes the terms associated
with the spatially localized tumbling events for each of the N-bacterium. Here pppiii(t) and
p̂ppiii are the pre- and post-tumble orientations, respectively, of the i-th bacterium, and qi are
identical, independent Poisson-distributed random variables with mean ⟨qi⟩ = ∆t/τ and
variance (⟨qi −⟨qi⟩⟩)2 = ∆t/τ [Van Kampen, 1992]. Taking the continuum (∆t → 0) limit,
and subtracting out the mean of the tumbling terms on both sides, we obtain,

∂Ω

∂ t
+(U ppp+uuu)...∇xxxΩ+∇ppp...(ṗppΩ)+

N

∑
i=1

⟨qi⟩
∆t

(δ (xxx− xxxiii(t))δ (ppp− pppiii(t))

+δ (xxx− xxxiii(t))⟨δ (ppp− p̂ppiii)⟩) = η(xxx, ppp, t), (3.27)
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with the exact expression for the noise being given by,

η(xxx, ppp, t) = lim
∆t→0

[
N

∑
i=1

qi −⟨qi⟩
∆t

(−δ (ppp− pppiii(((ttt))))+δ (ppp− p̂ppiii)

+
N

∑
i=1

⟨qi⟩
∆t

(
1

4π
−δ (ppp− p̂ppiii)))δ (xxx− xxxiii(((ttt)))

)]
. (3.28)

Upon rearranging and using the definition of Ω, (3.27) reduces to the expected continuum
form,

∂Ω

∂ t
+(U ppp+uuu)...∇xxxΩ+∇ppp...(ṗppΩ)+

1
τ

(
Ω−

∫
Ω(p′, t)dp′

)
= η(xxx, ppp, t), (3.29)

which was stated in the previous section. From (3.28) it is easy to see that ⟨η(xxx, ppp, t)⟩= 0 as
expected. The pair correlations of the noise can be further calculated as,

⟨η(xxx, ppp, t),η(xxx′′′, ppp′′′, t ′)⟩= 1
τ

δ (xxx− xxx′′′)δ (t − t ′)
[

δ (ppp− ppp′′′)− 1
4π

]
⟨Ω(xxx, ppp, t)+Ω(xxx, ppp′, t)⟩.

(3.30)

where the presence of δ (xxx− xxx′′′) indicates that tumbling conserves locally the number of
bacterium. Thus, it does not induce any direct position-space correlations and is easily seen
from (3.30) as, ∫ ∫

⟨η(xxx, ppp, t),η(xxx′′′, ppp′′′, t ′)⟩dpppdppp′ = 0. (3.31)

Since the run-and-tumble process is Poissonian and not Gaussian, we expect higher moments
of the noise to not be dependent on just the second moment [Gardiner et al., 1985]. This
has been shown earlier in the context of the the non-linear stochastic Boltzmann-equation
[Ueyama, 1980]. Further note that (3.30) implies a multiplicative-noise interpretation, similar
to the Langevin equation for interacting Brownian particles [Dean, 1996] as well as the
stochastic Boltzmann-equation [Ueyama, 1980]. However, in this chapter we are only
considered with correlations that develop in a homogeneous isotropic swimmer suspension
with approach towards the collective motion threshold, and as we will see below, the noise
correlations simplify in this limit.

3.3.3 Solving the interacting Run-And-Tumble Operator

We look for small amplitude fluctuations about the homogeneous, isotropic mean state (n/4π)

such that Ω = n
4π

+Ω′. To solve for the fluctuating phase space density Ω′, we transform to
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Fourier space where

Ω̃(kkk, ppp) =
∫

Ω
′e−2πikkk···xxxdxxx, (3.32)

and similarly for the suspension velocity,

ũuu(kkk) =
∫

uuu′e−2πikkk···xxxdxxx. (3.33)

Upon linearizing (3.22) we obtain the following governing equation, in Fourier space, for the
fluctuating phase space density,

∂ Ω̃

∂ t
+2πikkk ··· pppUΩ̃+

1
τ
(Ω̃− 1

4π

∫
Ω̃d ppp)+

n
4π

∇ppp... ˜̇ppp = η̃(kkk, ppp, t), (3.34)

where ˜̇ppp is the Fourier transformed ṗpp, which denotes the rotation of the bacteria by the
fluctuating velocity gradient. For a slender-body it is given by [Subramanian and Koch,
2009],

ṗpp =
3

2L3

∫ L/2

−L/2
sds(δδδ − pppppp)...uuu′(xxx+ sppp), (3.35)

and
˜̇ppp =

∫
ṗppe−2πikkk···xxxdxxx. (3.36)

Inverting the Stokes equation in Fourier space and simplifying the active stress finally yields,
for the fluctuating velocity field,

ũuu(kkk, t) = D
U

log(κ)
i

2π3k2

∫
d pppΩ̃(kkk, ppp, t)

1
kkk...ppp

sin2(π
(kkk...ppp)L

2
)(δδδ − k̂kkk̂kk)...ppp. (3.37)

Using the above two expressions in (3.34) and simplifying finally leads to a integro-differential
equation for Ω̃. Omitting the intermediate steps, we finally obtain,

∂ Ω̃

∂ t
+2πikkk ··· pppUΩ̃+

1
τ
(Ω̃− 1

4π

∫
Ω̃d ppp)+

3nDU
32π4k2L log(κ)

∫
Ω̃(ppp′)d ppp′(δδδ − k̂kkk̂kk) : pppppp′

(sin2(π(L/2)(kkk...ppp′)))(sin(πLkkk...ppp))
(kkk...ppp′)

= η̃(kkk, ppp, t).

(3.38)

Using ⟨Ω(kkk, ppp, t)⟩= n/4π , the noise correlations in Fourier space reduce to

⟨η̃(kkk, ppp, t), η̃(kkk′′′, ppp′′′, t ′)⟩= 2n
4πτ

δ (kkk+ kkk′′′)δ (t − t ′)
(

δ (ppp− ppp′′′)− 1
4π

)
. (3.39)
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Note that the noise becomes additive for the homogeneous isotropic state. Using the Green’s
function expression, the solution for (3.38) is given as,

Ω̃(kkk, ppp, t) =
∫ t

0
ds
∫

d p̄ppG(kkk, ppp, t|||p̄pp,s)η̃(kkk, p̄pp,s), (3.40)

where the Green’s function (G(kkk, ppp, t) must satisfy the homogeneous equation,

∂G
∂ t

+2πikkk ··· pppUG+
1
τ
(G− 1

4π

∫
Gd ppp)+

3nDU
32π4k2L log(κ)

∫
G(ppp′)d ppp′(δδδ − k̂kkk̂kk) : pppppp′

(sin2(π(L/2)(kkk...ppp′)))(sin(πLkkk...ppp))
(kkk...ppp′)

= 0,

(3.41)

with the initial condition G(kkk, ppp,0) = δ (ppp− p̄pp). Note that in (3.41) the last term on the left
hand side arises from coupling of the fluid flow with the equations of motion for the bacterium.
We choose the following wavevector-aligned co-ordinate system to further simplify things,

ppp = cosθ k̂kk+ sinθ sinφ m̂mm+ sinθ cosφ
ûuu
|ûuu|

, (3.42)

along with using µ = cosθ in what follows. We can then expand

G = G 0 +Σ
∞
m=1G

m cosmφ , (3.43)

where we can neglect the sinmφ terms without loss of generality due to the nature of the
inhomogeneous terms in (3.41). For G 0, we obtain the equation,

∂G 0

∂ t
+2πikµG 0 +

L
Uτ

(G 0 − 1
2

∫
G 0dµ) = 0, (3.44)

with the initial condition ∂G 0(k,0) = 1. We see that for axisymmetric modes, the contribu-
tion of the mean flow field drops out and thus G 0 describes the evolution of independent
concentration modes as seen in Chapter 2.

For G 1, we obtain the equation,

∂G 1

∂ t
+2πikµG 1+

L
Uτ

G 1 =
−3nL3D

logκ32π3k3 sin(πkµ)(1−µ
2)1/2

∫ dµ ′

µ ′ G 1(1−(µ ′)2)1/2 sin2(
πkµ ′

2
),

(3.45)
with the initial condition ∂G 1(k,0) = cos(φ − φ̄). We thus see that the relevance of the fluid
velocity comes in only the non-axisymmetric mode m = 1. It is easily seen that the final term



3.3 Correlations near the collective motion threshold 71

in (3.41) does not contribute to any higher modes (m ≥ 2). Thus, the expressions for G 0 and
G m (m ≥ 2) remain identical to those already obtained in Chapter 2. One only has to solve
(3.45) to obtain G 1. This may again be done along the lines of Chapter 2 by first solving for
the corresponding eigenfunctions and writing G 1 as a bilinear superposition of the direct and
adjoint eigenfunctions.

G 1(λ , t|λ ′,0) =
∫

Φ
1
cs(λ ;λ0)Φ̃

1
cs(λ0;λ

′)eλ0tdλ0 +∑
n

Φ
1
d(λ ;λn)Φ̃

1
d(λn;λ

′)eλnt , (3.46)

Both the discrete and continuous spectrum eigenfunctions and the adjoints are obtained
exactly in the same manner as that in Chapter 2. While it is possible to derive the analytical
form of the eigenfunctions for (3.45) exactly, it is not possible to obtain the associated
phase space density correlation function analytically. Thus, here we have to make a further
simplification to make analytical progress which corresponds to assuming the bacterium
length to be much smaller than the wavelength of the fluid velocity fluctuations, which in
turn are constructed from a superposition of the aforementioned eigenfunctions. The bacteria
appear as dipoles on the length scales relevant to the suspension velocity and is equivalent to
using the approximation sinπkµ ≈ πkµ in (3.45), which leads to the following simplified
equation,

∂G 1

∂ t
+2πikµG 1 +

L
Uτ

G 1 =
−3nL3D

logκ128
µ(1−µ

2)1/2
∫ dµ ′

µ ′ G 1(1− (µ ′)2)1/2
µ
′. (3.47)

The detailed derivation of the eigenfunction and eigenvalues associated with G 1 in (3.47)
is exactly the same as that in Chapter 2, and thus the details are omitted here. The method of
obtaining the adjoints also follows the same steps as the previous chapter. The final forms of
the various eigenfunctions are given below, and these are used to derive analytic expressions
for the correlations. The dynamic discrete mode eigenfunction is,

Φ
1
d =

µ(1−µ2)1/2

µ −µd
, (3.48)

with the associated adjoint,

Φ̃
1
d =

µ ′(1− (µ ′)2)1/2

µ ′−µd
(
∫

dµ
µ2(1−µ2)

µ −µd
)−1 (3.49)

Upon solving the dispersion relation for µd , we find that there are two separate discrete
modes, and one of the eigenvalues crosses zero upon increasing nL2Uτ , which marks the
onset of collective motion. This result was originally derived by Subramanian and Koch
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[2009] and further studied in Subramanian et al. [2011], and thus we omit the details of the
eigenvalues here. The continuous spectrum eigenfunction is given by,

Φ
1
cs =

[
1−C

∫ 1

−1

(µ ′)2(1− (µ ′)2)

µ ′−µ0
dµ

′

]
δ (µ −µ0)+C

µµ0(1−µ2)1/2(1−µ2
0 )

1/2

µ −µ0
, (3.50)

where one sees the same overall structure as the CS eigenfunctions in Chapter 2 in terms of a
Dirac delta function and a PV-singular non-local contribution. In (3.50),

C =
3nL3iD

256πk log(κ)
. (3.51)

The continuous spectrum eigenvalue is given by σ =− L
Uτ

−2πikµ0 with µ0 ∈ [−1,1]. For
the dipole approximation, the functional form of the adjoint is identical to that of the CS-
eigenfunction, to within a normalisation constant (D(µ0)). This is of crucial importance
in a simplification in the next section when deriving the analytical form of the phase space
density correlation function. Note that the exact analytical form of the adjoint is not needed
for deriving the phase space density correlation function in the next section, and this omitted
here, but the same is analytically obtained by following the exact steps outlined in Chapter 2.

To summarise, we see that the eigenspectrum of the full operator consists of three classes
of modes. First, the kinematic discrete mode which carries the concentration fluctuations
in a non-interacting suspension and is associated with the axisymmetric mode. Second, the
dynamic discrete modes only arise due to the bath velocity coupling for the mode m = 1.
Finally, the continuous spectrum which arises due to swimming (see Chapter 2 for details)
and exists for all m. Note that the CS-eigenfunctions for m = 0 and m = 2 are identical to
those in Chapter 2, but that those for m = 1 are different as seen above.

3.3.4 Phase Space Density Correlation Function

Using the Green’s function expression, the solution for (3.34) is given as,

Ω̃(kkk, ppp, t) =
∫ t

0
ds
∫

d p̄ppG(kkk, ppp, t|||p̄pp,s)η̃(kkk, p̄pp,s). (3.52)

The phase space density correlation function is then given by,

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩=
∫ t

0

∫ t ′

0
dsds′

∫ ∫
dp̄ppdp̄pp′′′G(kkk, ppp, t|||p̄pp,s)G(kkk′′′, ppp′′′, t ′|||p̄pp′′′,s′)

⟨η̃(kkk, p̄pp,s)η̃(kkk′′′, p̄pp′′′,s′)⟩. (3.53)
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Using the noise-correlations given in (3.39), we get,

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩= 2n
4πτ

δ (kkk+ kkk′′′)
∫ t

0

∫ t ′

0
dsds′δ (s− s′)∫ ∫

dp̄ppdp̄pp′′′G(kkk, ppp, t|||p̄pp,s)G(kkk′′′, ppp′′′, t ′|||p̄pp′′′,s′)(δ (p̄pp− p̄pp′′′)− 1
4π

),

(3.54)

where the δ (kkk+kkk′′′) term is a signature of spatial homogeneity of the mean state. Substituting
the Green’s function expansion in terms of the modes from (3.43), we get,

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩= 2n
4πτ

δ (kkk+ kkk′′′)
∫ t

0

∫ t ′

0
dsds′δ (s− s′)∫ ∫

dµ̄dµ̄
′dφ̄dφ̄

′

[
1

2π
G 0(k,µ, t|||µ̄,s)+

∞

∑
m=1

1
π

G m(k,µ, t|||µ̄,s)cos(m(φ − φ̄))

]
[

1
2π

G 0(k′,µ ′, t ′|||µ̄ ′,s′)+
1
π

∞

∑
n=1

G n(k′,µ ′, t ′|||µ̄ ′,s′)cos(n(φ ′− φ̄
′))

]
(

δ (µ̄ − µ̄
′)δ (φ̄ − φ̄

′)− 1
4π

)
. (3.55)

Upon simplifying, we finally arrive at the expression for the phase space density correlation
function,

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩=
∞

∑
m=1

Ω
m
2 (k,µ,µ

′)cos(m(φ −φ
′))

=
2n

4πτ
δ (kkk+ kkk′′′)

∫ t

0

∫ t ′

0
dsds′δ (s− s′)[

1
π

∞

∑
m=1

∫
dµ̄G m(k,µ, t|||µ̄,s)G m(k′,µ ′, t ′|||µ̄,s′)cos(m(φ −φ

′))

+
1

4π

∫ ∫
dµ̄dµ̄

′G 0(k,µ, t|||µ̄,s)G 0(k′,µ ′, t ′|||µ̄ ′,s′)
(
2δ (µ̄ − µ̄

′)−1
)]

,

(3.56)

where we have separated out the non-axisymmetric and axisymmetric contributions to the
phase space density correlation function. It is clear that the non-axisymmetric modes con-
tribute to orientation and velocity correlations, and the axisymmetric mode to concentration
correlations. As we have seen in section 3.3.3, the bath velocity leads to non-trivial dynamics
only for the m = 1 mode and thus all the non-trivial correlation functions calculated later
only depend on the m = 1 component. In the rest of the chapter we focus on the same mode
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of the phase space density correlation function. Substituting the expression for G 1 from
(3.46) we get,

Ω
1
2(k,µ,µ

′, t, t ′) =
2n

4π2τ

∫ t

0

∫ t ′

0
dsds′

∫
dµ̄G 1(k,µ, t|||µ̄,s)G 1(−k,µ ′, t ′|||µ̄,s′)

=
2n

4π2τ
δ (kkk+ kkk′′′)

∫ t

0

∫ t ′

0
dsds′

∫
dµ̄

[
dµ0Φ

1
cs(µ; µ0)Φ̃

1
cs(µ0; µ̄)e(−2πikµ0− 1

τ
)(t−s)∫

dµ
′
0Φ

1
cs(µ

′; µ
′
0)Φ̃

1
cs(µ

′
0; µ̄)e(2πikµ ′

0−
1
τ
)(t ′−s′)

+ ∑
d

Φ
1
d(µ; µd)Φ̃

1
d(µd; µ̄)Φ1

d(µ
′; µ

′
d)Φ̃

1
d(µ

′
d; µ̄)e(−2πikµd− 1

τ
)(t−s)

e(2πikµ ′
d−

1
τ
)(t ′−s′)

]
, (3.57)

where we have used the property that the discrete and CS-spectrum eigenfunctions are
orthogonal to each other. Further, the following identity may be proven for the eigenfunctions,

∫
Φ̃

1
cs(µ0; µ̄)Φ̃1

cs(µ
′
0; µ̄)dµ̄ =

δ (µ0 −µ ′
0)

D(µ0)
. (3.58)

Note that this identity relies on the functional form of the eigenfunction and the adjoint
being identical to within a normalisation constant. This simplification only holds for the
case of dipoles and not for general slender bodies. Thus, analytical progress past this point
requires the additional approximation that we made in the previous section. Using this and
carrying out the time integration, we finally arrive at the expression for the phase space
density correlation function

Ω
1
2(k,µ, t,µ

′, t ′) =
n

4π2τ
δ (kkk+ kkk′′′)

(
e−

1
τ
(t−t ′)− e−

1
τ
(t+t ′)

)[∫
dµ0e(−2πikµ0)(t−t ′)

Φ1
cs(µ; µ0)Φ

1
cs(µ

′; µ0)

D(µ0)

+∑
d

(
e−(2πikτµd+1)(t+t ′)(t−t ′)− e−(2πikτµd+1)(t+t ′)

)
Φ1

d(µ; µd)Φ̃
1
d(µd; µ̄)

2πikτµd +1

]
.

(3.59)

The steady-state phase space density correlation function is given as,

Ω
1
2(k,µ,µ

′) =
n

4π2 δ (kkk+ kkk′′′)

[∫
dµ0

Φ1
cs(µ; µ0)Φ

1
cs(µ

′; µ0)

D(µ0)
+∑

d

Φ1
d(µ; µd)Φ̃

1
d(µd; µ̄)

2πikτµd +1

]
.

(3.60)
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Note that the eigenfunctions satisfy the following completeness identity for m = 1,

δ (µ −µ
′) =

∫
dµ0

Φ1
cs(µ; µ0)Φ

1
cs(µ

′; µ0)

D(µ0)
+∑

d
Φ

1
d(µ; µd)Φ̃

1
d(µd; µ̄), (3.61)

using which we get,

Ω
1
2(k,µ,µ

′) =
n

4π2 δ (kkk+ kkk′′′)

[
δ (µ −µ

′)+∑
d

Φ
1
d(µ; µd)Φ̃

1
d(µd; µ̄)

−2πikτµd

2πikτµd +1

]
. (3.62)

The delta-function term in (3.62) represents a lack of orientation correlations for non-
interacting swimmers. Thus, we see that the steady-state correlations all project onto the
discrete mode. A similar observation was made in the context of Kuramoto-model of coupled
oscillators [Hildebrand et al., 2007]. Note that this is only the component corresponding
to m = 1 of the phase space density correlation function. For nL3 → 0, the second term in
(3.62) disappears and the m = 1 contribution combines with the contributions for other m’s
to give the required answer for non-interacting swimmers. We further partition the phase
space density correlation function as,

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩= ⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩U + ⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩C , (3.63)

where

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩C =
[
Ω

1
2(k,µ, t,µ

′, t ′)−δ (µ −µ
′)δ (kkk+ kkk′′′)

]
cosφ cosφ

′, (3.64)

and

⟨Ω̃(kkk, ppp, t)Ω̃(kkk′′′, ppp′′′, t ′)⟩U =
2n

4πτ
δ (kkk+ kkk′′′)

[
1
π

∞

∑
m=1

δ (µ −µ
′)cos(m(φ −φ

′))

+
1

4π

∫ ∫
dµ̄dµ̄

′G 0(k,µ, t|||µ̄,s)G 0(k′,µ ′, t ′|||µ̄ ′,s′)
(
2δ (µ̄ − µ̄

′)−1
)]

.

(3.65)

These expressions are used in the next section to derive results for physically relevant
correlations, i.e. the velocity variance and the diffusivity of a passive tracer.
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3.3.5 Results

Using the formulation developed in the previous section, we now examine the fluctuations in
an active suspension near the threshold of collective motion. We study three specific quantities
- the fluid velocity variance and covariance, the diffusivity of a passive non-Brownian tracer
and the orientation (nematic) correlations between the swimmers.

Velocity Fluctuations - Velocity Variance

The velocity fluctuations in the swimmer suspension can be studied by examining the fluid
velocity variance and covariance. We can separate the total velocity variance (V ) into the
uncorrelated V U and correlated V C contributions as follows,

V = V U +V C

=
∫

dkkk
∫

dkkk′⟨ũuu(kkk,0)...ũuu(kkk′′′,0)⟩U +
∫

dkkk
∫

dkkk′⟨ũuu(kkk,0)...ũuu(kkk′′′,0)⟩C , (3.66)

where ũuu(kkk, t) is the fluid velocity in Fourier space. From the Fourier transformed Stokes
equation one obtains,

ũuu(kkk, t) = D
i

2πk

∫
dµdφ cosφΩ̃(k,µ,φ , t)(1−µ

2)1/2
µ. (3.67)

Under the point-dipole approximation the uncorrelated component is a divergent quantity, so
we use the slender body approximation to estimate the same [Nambiar, 2020].

Here, we calculate the correlated component of the velocity variance using the steady
state phase space density correlation from (3.62); the final expression for the fluid velocity
variance is obtained as,

V C =
∫

dkkk
∫

dkkk′⟨ũuu(kkk, t)...ũuu(kkk′′′, t)⟩C

= D2L3
∫

∞

0
dk

−1
(2πk)2

∫ 1

−1

∫ 1

−1
dµdµ

′dφdφ
′ cosφ cosφ

′(⟨Ω̃(k,µ,φ , t)Ω̃(k′,µ ′,φ ′, t)⟩C

(1−µ
2)1/2(1−µ

2′)1/2
µµ

′

= D2L3
∫

∞

0
dk

−π2

(2πk)2

∫ 1

−1

∫ 1

−1
dµdµ

′(Ω1
2(k,µ,µ

′)−δ (µ −µ
′))(1−µ

2)1/2(1−µ
2′)1/2

µµ
′,

= D2nL3
∫

∞

0
dk

−1
(4πk)2

∫ 1

−1

∫ 1

−1
dµdµ

′
∑
d

Φ
1
d(µ; µd)Φ̃

1
d(µd; µ̄)

−2πikτµd

2πikτµd +1

(1−µ
2)1/2(1−µ

2′)1/2
µµ

′, (3.68)
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We evaluate the integrals in the above expression numerically. Figure 3.3a shows the
variation of the total velocity variance for both pushers and pullers. Recall that a suspension
of pushers shows a transition to collective motion at a finite threshold; this threshold has
been shown to be given by the non-dimensional number density ((nL2Uτ)cr) [Koch and
Subramanian, 2011]; in the current non-dimensional formulation the threshold is numerically
20.125. On the other hand, a suspension of pullers does not show such a transition. Figure
3.3a shows that away from the threshold, as expected, the total velocity variance is the
same for both pushers and pullers. As the threshold is approached, a bifurcation is observed
between the two, and the velocity variance seems to diverge for pushers and stays finite for
pullers. Figure 3.3b shows just the correlated component of the velocity variance for pushers,
which confirms that the divergence is indeed due to correlations; the correlated component
of the variance is seen to diverge as 1

((nL2Uτ)cr)−(nL2Uτ))1/2 as the threshold (nL2Uτ)cr is

approached. This scaling can also be analytically seen by taking the nL2k → 0 limit of
(3.68). Near the threshold the discrete eigenvalue becomes O(k2) instead of O(1), and hence
the relaxation of the correlation function occurs on increasingly large length scales. This
long-ranged relaxation is also seen in equilibrium phase transitions [Chaikin and Lubensky,
2000]. The long ranged decay consequently leads to a divergence of the velocity variance.

Velocity Fluctuations - Velocity Co-variance

To study the spatial extent of the velocity fluctuations, we examine the velocity co-variance
which is defined as,

V (rrr) = ⟨uuu(rrr)...uuu(0)⟩.

It can again be divided into the uncorrelated and correlated contributions as before,

V (rrr) = V U (rrr)+V C (rrr).

The exact expression for the correlated component can be derived following the exact same
steps as the correlated component velocity variance earlier, and is as follows,

V C (r) = D2nL3
∫

∞

0
dk

−sin(2kπr)
(2kπr)(4πk)2

∫ 1

−1

∫ 1

−1
dµdµ

′
∑
d

Φ
1
d(µ; µd)Φ̃

1
d(µd; µ̄)

−2πikτµd

2πikτµd +1

(1−µ
2)1/2(1−µ

2′)1/2
µµ

′. (3.69)

Since we are considering correlations in an isotropic swimmer suspension, the covariance
is only a function of the scalar separation, r. The integral is again evaluated numerically;
to plot the results we normalize the velocity co-variance with the corresponding velocity
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Fig. 3.3 (a) The variation of the total fluid velocity variance, including the correlated (V C )
and uncorrelated contributions (V U ), for varying nL2Uτ for pushers and pullers; the velocity
variance is normalized by the uncorrelated component (V U ). (b) The variation of the
correlated contribution (V C ) to the velocity variance versus ((nL2Uτ)cr)− (nL2Uτ) on a
log-log plot, which shows that the power law of the divergence is −1/2 on approaching the
threshold of collective motion for pushers; (nL2Uτ)cr ∼ 20.125.
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Fig. 3.4 The spatial decay of the net fluid velocity co-variance, including the correlated and
uncorrelated contributions, for varying nL2Uτ for pushers; where the velocity co-variance
is normalized with corresponding velocity (V (0)) variance and the radial distance r is non-
dimensionalised by the length scale (nL2)−1. On approaching the threshold of collective
motion ((nL2Uτ)cr ∼ 20.125), the co-variance becomes long ranged.

variance and non-dimensionalise the radial distance r is by the length scale (nL2)−1. Figure
3.4 shows the spatial variation of the total fluid velocity co-variance, including the correlated
and uncorrelated components, for pushers. We see that the covariance decays over longer
distances and thus the spatial correlations for the fluid velocity thus become long-ranged
as the threshold is approached. This can be explained by noting that orientation relaxation
occurs at long length scales (r ∼ (nL2)−1) near the threshold; away from the threshold it
occurs at the length scale of a single bacterium. Thus, the fluid flow induced by bacteria
separated by long distances is increasingly correlated as the threshold for collective motion
is approached. Away from the threshold, the uncorrelated component dominates and the
velocity co-variance decays away as 1/r in the far-field as expected from earlier results
[Krishnamurthy and Subramanian, 2015; Underhill and Graham, 2011].
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Tracer Diffusivity

Using the Green-Kubo formula [Balakrishnan, 2008; Zwanzig, 2001], the diffusivity of a
non-Brownian passive-tracer convected by the bacterial bath may be given as,

D =
∫

∞

0

∫
dtdkkk

∫
dkkk′⟨ũuu(kkk, t)...ũuu(kkk′′′, t)⟩. (3.70)

We again separate the uncorrelated and correlated contributions as,

D = DU +DC

=
∫

∞

0
dt
∫

dkkk
∫

dkkk′⟨ũuu(kkk, t)...ũuu(kkk′′′,0)⟩U +
∫

∞

0
dt
∫

dkkk
∫

dkkk′⟨ũuu(kkk, t)...ũuu(kkk′′′,0)⟩C . (3.71)

The uncorrelated contribution is the diffusivity of a passive tracer in a suspension at O(nL3).
This was already derived in section 3.2 and is given in (3.12). Upon simplifying, following
similar steps as for the velocity variance, we obtain the final expression for the correlated
contribution to the tracer diffusivity as,

DC = D2nL3
∫

∞

0
dk

−1
(4πk)2

∫ 1

−1

∫ 1

−1
dµdµ

′
∑
d

Φ
1
d(µ; µd)Φ̃

1
d(µd; µ̄)

1
(2πikτµd +1)2

(1−µ
2)1/2(1−µ

2′)1/2
µµ

′. (3.72)

The final expression is again evaluated numerically. Figure 3.5a shows the total tracer
diffusivity, including the correlated and uncorrelated contributions, for suspensions of pushers
and pullers. Away from the threshold, where the uncorrelated contribution dominates we
see that the tracer diffusivity is the same for both pushers and pullers. As the threshold of
collective motion is approached, we see a divergence between the two. The diffusivity in a
pusher suspension starts to increase due to the correlated contribution and diverges as the
threshold is approached. Figure 3.5b shows just the correlated contribution and we see that
the divergence of correlated contribution to the diffusivity is stronger than that for the velocity
variance and is proportional to 1

((nL2Uτ)cr)−(nL2Uτ))3/2 . This scaling can also be analytically

recovered by taking the limit nL2k → 0 of (3.72). The stronger divergence in this case is
understood by noting that the divergence of the tracer diffusivity depends on the product
of the velocity variance scale, O(k2), and the scale for the correlation time, O(k2), as one
approaches the threshold which leads to the decay of the correlations being O(k2)2 near the
threshold. Note that in contrast, the diffusivity stays finite for pullers.
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Fig. 3.5 (a) The variation of the total tracer diffusivity, including the correlated and un-
correlated contributions, of a passive tracer for varying nL2Uτ for pushers and pullers.
(b) The variation of the correlated contribution (DC ) to the tracer diffusivity versus
((nL2Uτ)cr)− (nL2Uτ) on a log-log plot, which shows that the power law of the divergence
is −3/2 on approaching the threshold of collective motion for pushers; (nL2Uτ)cr ∼ 20.125.
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Fig. 3.6 The variation of the nematic correlations of the swimmers orientations for varying
nL2Uτ for pushers; (nL2Uτ)cr ∼ 20.125.

Orientation Correlations

To examine the orientation correlations, we consider the nematic parameter defined as
NNN = pppppp. The nematic correlations (N C ) in the suspension are given as,

N C = ⟨NNN(rrr) : NNN(0)⟩=
∫

dkkk
∫

dkkk′e2πikkk.rrr⟨pppppp : ppp′ppp′⟩C (3.73)

= D2nL3
∫

∞

0
dk

−sin(2πkr)
(2πkr)(4πk)2

∫ 1

−1

∫ 1

−1
dµdµ

′
∑
d

Φ
1
d(µ; µd)Φ̃

1
d(µd; µ̄)

−2πikτµd

2πikτµd +1
µ

2(µ ′)2.

Since the swimmer suspension is isotropic, the nematic correlations again only depend on
the radial distance (r) and we again evaluate the integral numerically. Figure 3.6 shows
the nematic correlations for suspensions of pushers. Unlike the velocity correlations, we
see that the nematic correlations neither diverge nor become long ranged as the threshold
for collective motion is approached. This can also be seen by taking the nL2k → 0 limit of
the integral and we see an O(1/r) decay of the correlations in the far-field. The orientation
correlations by themselves thus do not become long-ranged near the threshold. This points
to the crucial role of studying the velocity fluctuations when trying to get theoretical insight
into the transition to collective motion in dilute bacterial suspensions.
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3.4 Conclusion

In this chapter, we have theoretically studied the correlations in a bacterial suspension. First,
we examined the correlations away from the collective motion threshold where pairwise
hydrodynamic interactions dominate. The tracer diffusivity was found to diverge linearly
with the swimmer run length at O(nL3)2, where nL3 is the volume fraction. The correlations
also provide a distinction between pushers and pullers, where they enhance the diffusivity
only for the former. Next, we examine the correlations as the threshold of collective motion
is approached. This is done by formulating a fluctuating kinetic theory for the bacterial
suspension, following the stochastic field theories used to study phase transitions in equi-
librium systems. We derive an exact solution for the governing equation by deriving the
eigenfunctions and the adjoints, and then using them to derive the Green’s function. This
is used to derive the correlations when accounting for the long-ranged interactions near the
threshold of collective motion. Finally, we use our analytical expressions to examine the fluid
velocity variance, tracer diffusivity and orientation correlations. We show the fluid velocity
variance and tracer diffusivity diverge as the threshold is approached, but the orientation
correlations stay finite. The velocity variance (tracer diffusivity) diverges with the power law
-1/2 (-3/2) as the threshold is approached.

An approximation that is sometimes used to theoretically examine bacterial suspensions
in the literature is to assume swimmers that do not swim (i.e. have no run phase), but whose
orientation still decorrelates due to tumbling (see for instance Stenhammar et al. [2017]).
Here, the eigenvalue becomes independent of the wavenumber k since all relaxation occurs
on an uniform scale. For this case, the scaling analysis in turn suggests that the power law
associated with the divergence of the velocity variance (tracer diffusivity) is -1 (-2). This is
an important difference from the complete case that we have analysed. The no-swimming
approximation drops the spatial dependence of the relaxation of the correlation function
completely, and in turn leads to slightly misleading power-laws for the divergence. We thus
see that it is crucial to retain the swimming term when analysing the correlations in a bacterial
suspension.

We discuss a few possible generalisations of our results here. To make analytical progress,
we had simplified the suspension velocity, such that it was coming from a super-position of
dipoles in the far-field. While an exact solution for the case of slender bodies is not possible,
scaling analysis can be used to verify that the power-law of the divergence does not change in
this case. Another generalisation would be to incorporate the effect of the mean fluctuating
flow field on the pairwise hydrodynamic interactions studied in section 3.2 or to incorporate
external fields such as chemotaxis [Kasyap and Koch, 2012] or shear flow [López et al.,
2015], and examine if either of those change the divergence of the correlations near the
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threshold. A final possible generalisation would be two dimensions to, following the analysis
in Chapter 2.
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