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Synopsis

In this thesis, we have looked at the development and application of both
computational and analytical methods to study quantum many-body systems
out of equilibrium. The thesis consists of six chapters and two appendices.

In Chapter 1, we introduce and motivate the subject matter of the thesis
from both the phenomenological and method aspects. In Chapter 2, we im-
plement the steady-state Keldysh second order perturbation theory (KPT2)
and study the transport through a quantum dot connected to leads with spin-
orbit coupling (SOC) with a DC bias. In Chapter 3, we look at the e↵ect
of valence fluctuations which arise through the gate voltage of the quantum
dot connected to leads with SOC by applying the steady-state interpolative
approximation (SSIPA). In Chapter 4, we develop the steady-state local mo-
ment (SSLMA) approach by generalizing the LMA out of equilibrium. In
Chapter 5, we implement and use the transfer matrix method to study the
e↵ect of piecewise constant driving protocols on the topology and dynamical
quantum phase transitions in the Kitaev chain. In Chapter 6, we derive the
time-dependent projection operator method to obtain the e↵ective Kondo
Hamiltonian of a single impurity Anderson model (SIAM). We summarise
and conclude in Chapter 7. The appendices consist of an introduction to the
Keldysh field-theoretic method and the detailed calculation of the second-
order self energies used in chapters 2 and 3.

Chapter 1 is an introduction to quantum many-body systems out of equi-
librium. We begin with the motivation for studying such systems including
the applicability to a wide variety of systems and the possibility of novel
phases of matter not present in equilibrium. We next move to phenomenology
and explain the general di↵erences between equilibrium and non-equilibrium
quantum many-body systems with a detailed look at some experimental re-
sults. The third section of the chapter deals with the extant methods and the
motivates the need for development of methods in the thesis. We conclude
with an overview of the structure of the thesis.

In Chapter 2, we implement the KPT2 method to the SIAM coupled to
leads with SOC. We begin with extensive benchmarking of the method in



both equilibrium and out of equilibrium. Next, we study the scaling and
universality in the linear response regime of the system. The system has two
parameter regimes viz. a weak-intermediate coupling and strong coupling
regimes. We calculate the spectral function and conductance in both these
regimes and are able to explain the experimental observations in an equivalent
system.

In Chapter 3, we apply the SSIPA method to the system considered is
in Chapter 2 along with a gate-voltage applied on the quantum dot. This
takes the system away from the particle-hole symmetric limit and controls the
cost for valence fluctuations. We evaluate the IPA ansatz self-consistently
and derive the self-energy. This is followed by evaluation of the current
and the details of the numerical implementation. We conclude with the
results including benchmarks and the e↵ect of particle-hole asymmetry both
in equilibrium and when a DC bias is applied across the leads.

Chapter 4 deals with the development of the SSLMA method which is a
generalization of the equilibrium LMA, and its application to the steady-state
SIAM. The formalism of the method is presented followed by some analytical
limits of the theory and details of the numerical implementation. The method
is extensively benchmarked in both zero and finite temperatures with the
equilibrium results. Some results concerning the transport and universality
calculated by the application of the method are also presented.

In Chapter 5, the transfer matrix method has been used to study the
e↵ect of piecewise constant driving in the Kitaev chain. The chapter firstly
deals with the details of the Kitaev chain, including the topological phase
diagram and the general form of the ground state. This is followed by a
derivation of the transfer matrices for the square wave, noise and quench
driving protocols. The definition of the Loschmidt echo and characterization
of dynamical quantum phase transitions follows. In the last part, the results
including benchmarking and for the three driving protocols are presented.

Chapter 6 involves the derivation and application of the time-dependent
projection operator method (TDPOM) to the driven SIAM. We begin with
the derivation of the TDPOM in the general case and use it to calculate the
e↵ective Hamiltonian of the driven SIAM. In particular, we consider the case
of sinusoidal driving and look at the e↵ect of driving on the nature of the
emergent Kondo model and calculate the time-dependent Kondo coupling.
We look at the dependence of the Kondo coupling on the parameters of the
driving in the U = 1 limit and at specific values.

Chapter 7 consists of the summary of the thesis and concludes with the
major findings of all the chapters. We also look at the future outlook.
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Chapter 1

Out-of-Equilibrium:
Phenomenology and Methods

1.1 Motivation

While it has been almost a century since the time-dependent Schrödinger
equation was proposed, the field of non-equilibrium quantum physics is still
in its nascency with multiple groups exploring a wide variety of systems
with even more fundamental questions remaining unresolved definitively.
Non-equilibrium quantum phenomena are ubiquitous from nuclear particle
physics, to both Fermionic and Bosonic condensed matter physics, all the way
up to early universe cosmology1. In particular, many-body quantum systems
are all the more ubiquitous since most realistic systems involve interaction
or correlation between their constituent particles.

Non-equilibrium many-body quantum physics not only makes an appear-
ance in all sorts of phenomena across time, energy and length scales but also
leads to novel phases of matter not present in or near equilibrium. Given
the ubiquity, these phenomena have naturally seen much sustained interest
from both the theoretical and experimental quarters. In particular, recent
experimental methods like optical lattices2, quantum point contacts3, ultra-
fast spectroscopy4, etc. have opened new avenues for exploration. These
phenomena are not just of interest to the academic but also have a large
number of applications in diverse fields like spintronics, quantum informa-
tion, heat/charge transport in electronic devices, etc.
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1.2 Phenomenology

A question which immediately arises when one begins research into non-
equilibrium quantum phenomena is: what are the general di↵erences between

equilibrium and non-equilibrium systems? While the question can be an-
swered in a large number of ways with varying levels of detail, let us consider
a few phenomena which will make the answer a bit more apparent. The
first phenomenon of interest would be the origin of irreversibility out of equi-
librium, given that the microscopic laws that govern the systems are time-
reversal symmetric. Another phenomenon is the non-ergodicity of systems
out of equilibrium compared to their equilibrium counterparts. A defining
feature of non-equilibrium systems is the presence of particle and/or energy
currents either within the system (closed systems) or with external baths
(open systems). Non-equilibrium systems can also vary from equilibrium
due to the presence of noise, fluctuation and other such stochastic processes.

Each of the phenomena considered above leads to a class of systems and
correspondingly a class of methods to solve the said systems. While the
general comparison is fruitful, non-equilibrium systems also allow for specific
novel phenomena which do not have any equilibrium counterparts. Consider
the prototypical example of a quantum dot connected to leads across which
a source-drain bias has been applied and is subject to a split-gate voltage.
While a detailed analysis of this model is carried out in chapters 2 and 3,
the experimental findings in quantum point contacts (QPCs) in heterostruc-
tures like LaAlO3/SrTiO3 see the presence of both integer and half-integer
quantization in the conductance in units of 2e2/h. This is seen in Fig. 1.1
and the presence of half-integer plateaus is only possible out of equilibrium
when the source-drain bias is finite.

Another possibility is the emergence of new phases which have no equilib-
rium counterparts when systems are subjected to driving. A great example
of such a phenomenon is the observation of time crystals. Both discrete6 and
continuous time crystals7 have been experimentally observed when systems
are subject to specific driving protocols. In particular, driving a chain of Yb
atoms with inter-atomic coupling as seen in Fig. 1.2 in a tripartite periodic
protocol which involved a global rotation, interaction and disordered parts,
resulted in a discrete time crystal. This was characterized by the magneti-
zations of each of the individual ions getting locked into the sub-harmonic
response, i.e. the peak of the Fourier transform of the time-dependent mag-
netizations is at !/2, where ! is the driving frequency.

Thus depending on the system under consideration, the phenomenology
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Figure 1.1: The di↵erential conductance plotted as a colour map with varying
source-drain voltage Vsd and split-gate voltage Vsg for the LaAlO3/SrTiO3

quantum point contacts. Notice the integer quantization of conductance (in
units of G0 = 2e2/h) in the Vsd = 0 case and the appearance of half-integer
plateaus when Vsd 6= 0. Figure taken from A. Jouan et al.5

would involve getting an accurate theoretical description of various quanti-
ties like current and conductance (for transport) or time-evolved states and
e↵ective Hamiltonians (for novel phases), etc. Each such quantity is best
calculated using one of the various methods that exist to study systems out
of equilibrium.

1.3 Methods

Let us now focus on the theoretical methods to study quantum systems out
of equilibrium. In trying to study non-equilibrium systems, we see that the
familiar aspects like fluctuation-dissipation theorem, time-reversal symme-
try, conservation laws, Luttinger theorem, Ward identity, Gell-Mann Low
theorem, Wick’s theorem, etc. are either absent or need to be modified to a
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Figure 1.2: A discrete time crystal was observed by J. Zhang et al.6 in
a Yb spin chain (shown in the bottom) with interatomic interactions as
shown (top part) when subject to a tripartite periodic driving protocol. The
time crystal was characterized by a sub-harmonic response in the individual
magnetizations of the ions. Image taken from Prof. N. Yao’s research page

large extent. Thus, generalising equilibrium methods to non-equilibrium is a
non-trivial task and hence has seen sustained interest across the fields of con-
densed matter physics, nuclear physics, atomic physics, high energy physics
and cosmology. The challenges in the generalization of equilibrium methods
have also led to a lack of definitive conclusions and a lack of consensus in the
resolution of many fundamental questions.

For example, unlike in equilibrium, where the methods of Bethe ansatz
and numerical renormalization group (NRG) act as benchmarks in the study
of Kondo physics, there have not been any such defining methods in the
case of non-equilibrium. Even the generalizations of the Bethe ansatz8 and
NRG9 to out-of-equilibrium systems have their limitations either in the abil-
ity to capture all the energy scales or in computational limits due to the
exponentially growing density matrices. While quite a bit of progress has
been made in the steady-state case, the time-dependent driving is even more
di�cult to tackle due to the increased size of matrices required or in the case
of Floquet theory10, to truncate the Magnus expansion to O(⌦�1) terms.
Accounting for interactions in the Floquet method is especially hard due to
the occurrence of higher-order terms in the Magnus expansion.

Another class of methods which allows access to both closed and open
systems are the methods based on the quantum kinetic equations or Boltz-
mann transport. While these methods capture the relaxation to a thermal
state, they involve weak-coupling perturbation in addition to a semi-classical
approximation or a gradient expansion11. Thus it is the need of the hour
for the development of novel methods to study even simple non-equilibrium
systems.
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1.4 Outline of the thesis

While the plethora of methods which already exist to study non-equilibrium
quantum systems may seem more than su�cient at first glance, the short-
comings of each method warrant the development of novel methods which
can tackle at least some of these shortcomings. In this thesis, we develop and
apply methods to study transport, the e↵ect of driving on topology, noise
and emergent e↵ective Hamiltonians.

In chapter 2, we numerically implement and apply the steady-state inter-
polative approximation12 (ssIPA) to study transport through a quantum dot
coupled to leads with spin-orbit coupling across which a DC bias is applied.
The system described above is generalized to include valence fluctuations
through the means of a gate voltage in chapter 3 and requires a modifica-
tion to the ssIPA ansatz. Chapter 4 deals with the generalization of the
local moment approach13 (LMA), a very successful and inexpensive method
in equilibrium to study steady-state transport in the single impurity Ander-
son model (SIAM). We change gears in chapter 5 where we implement the
Transfer Matrix method14 to study the e↵ect of piecewise constant driving
(including square-wave driving, noise and quenches) on the topology of the
Kitaev chain15. In chapter 6, we derive the time-dependent e↵ective Hamil-
tonian for the SIAM subject to sinusoidal driving using a generalization of
the projection operator method to nonequilibrium.
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Chapter 2

Steady-state dc transport
through an Anderson impurity
coupled to leads with spin-orbit
coupling

2.1 Introduction

The Kondo e↵ect and its interplay with bias in the leads is a rich and well-
studied problem. This non-equilibrium Kondo e↵ect has been observed in
a wide variety of systems such as quantum dots1–3, molecular systems4;5,
carbon nano tubes6–9, and quantum point contacts10–14. Correspondingly,
experiments also observe a wide range of phenomena in these systems such as
quantum interference15, spin-selective transport16, etc. The single impurity
Anderson model (SIAM) has been the standard paradigm for modelling such
systems both in and out of equilibrium. The SIAM in equilibrium has been
studied extensively using methods such as the Bethe ansatz17 and numerical
renormalization group18;19.

In recent years, a whole range of theoretical methods has been developed
and used to study Kondo systems out of equilibrium. However, unlike in
the case of equilibrium, where a reasonable consensus has been achieved, the
physics of nonequilibrium interacting systems is still under debate. In the
case of the SIAM, the splitting of the Kondo peaks, the e↵ects of magnetic
field and spin-orbit coupling (SOC) on the Kondo e↵ect, and the e↵ects of
bias and temperature have been studied using various methods such as nu-
merical renormalization group20–23, non-crossing approximation24, perturba-
tive methods25–27, quantum Monte Carlo methods28, exact diagonalization
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methods29, Bethe ansatz30, hierarchical equation of motion31 and master
equation approaches32 among many others.

SOC is an important parameter, and is well known to be an integral aspect
of exotic materials such as topological insulators, and topological magnets
and is useful in many spintronics applications. Quantum dot systems have
been studied both with SOC on the dot and with SOC in the leads. Ex-
periments with the SOC on the dot include directly measuring the SOC in
two-atom quantum dots33, the observation of an anomalous Josephson cur-
rent34, and controlling the SOC using magnetic field direction35 among many
others. The case with SOC in the leads has also been studied with phenom-
ena such as the gate voltage tunability of SOC14;36, magnetotransport37, etc.
having been observed.

In equilibrium, the e↵ect of the SOC on the Kondo resonance has been
theoretically studied in detail38–40. A driven quantum dot, coupled to normal
metallic leads, with SOC on the dot has been investigated using the finite-U
slave boson method41 and the findings show that the Rashba spin-orbit cou-
pling (RSOC) introduces new conductance peaks next to the Kondo peak
while suppressing the Kondo peak. Quantum wire systems have also been
studied and interesting observations, such as the destruction of spin accu-
mulation due to an impurity42 and multichannel e↵ects43 have been made.
A quantum dot connected to a nanoribbon with SOC has also been studied
using the Hubbard III approximation26.

A powerful tool in experimentally studying the e↵ect of bias on quantum
systems is the paradigm of quantum point contacts (QPCs). QPCs are re-
alized by constricting a two-dimensional (2D) electron gas between contacts
which have a source-drain and gate voltage applied. Multiple experiments
on QPCs have observed quantized conductance along with some well-known
anomalies44–46. Recent experiments in systems with quantum point contacts
have also seen the interplay of SOC and Kondo physics. In particular, Smith
et al.

14, have realized a QPC setup where they can tune the SOC and have
observed a two-peak conductance in the large SOC regime along with an
increase in the zero bias conductance (ZBC) with temperature.

In this chapter, we study the interplay between Rashba spin-orbit cou-
pling on the leads, a constant bias and interactions on the steady-state dc
transport through a quantum dot system. As mentioned before, the e↵ect
of Rashba SOC in the leads on the Kondo e↵ect in equilibrium has received
significant attention38–40. When subjected to a dc bias, the studied system
will be out of equilibrium and the interplay of bias and SOC in the leads
becomes an important consideration. We employ the interpolative approxi-
mation(IPA)47 , which reduces in the particle-hole (p-h) symmetric limit to
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the Keldysh second-order perturbative theory (KPT2), to investigate trans-
port through the dot with Rashba SOC on normal metallic two-dimensional
leads. Since the method is approximate, we begin with a benchmarking of
the method against exact methods such as the time-evolving block decima-
tion (TEBD)29 and identify the regimes within which the results from KPT2
are reliable. We have investigated the e↵ect of SOC on (i) universality and
scaling in the linear response regime and, subsequently, on (ii) di↵erential
conductance in the non-linear bias regime. We find the equilibrium universal
scale, i.e. the quasiparticle weight controls the extent of the linear response
regime and is also crucial in determining the thermal scaling of the system
when comparing the theoretical and experimental results. The features in
di↵erential conductance are investigated in a wide parameter space, and char-
acteristic signatures of the interplay of bias, interactions, Rashba SOC and
temperature are identified. Finally, we compare some of our results corre-
sponding to the strong coupling regime to recent experiments, and o↵er a
qualitative explanation for some of the observations.

2.2 Formalism

The Hamiltonian for a quantum dot system connected to two leads with
Rashba spin-orbit coupling (RSOC) can be written as

H = H0 +Hd +HRSOC +Hhyb , (2.1)

where the two-dimensional conduction band reservoirs (L/R) are represented
by H0 =

P
↵k� ✏↵kc

†
↵k�c↵k� and the Hamiltonian for the quantum dot is given

by Hd =
P

�
✏dd†�d� + Und"nd#, where ↵ = L/R and � =" / # are the lead

and spin indices respectively. The RSOC term is represented by38

HRSOC =
X

↵k

� †
↵k(k⇥ ~�)z ↵k , (2.2)

where k = (kx, ky), and  †
↵k = (c†

↵k," c†
↵k,#). Finally, the hybridization be-

tween the quantum dot and the leads is given by

Hhyb =
X

↵k�

⇣
Vkc

†
↵k�d� + h.c

⌘
. (2.3)

The conduction band terms, namely, H0 and HRSOC, may be combined38,
which leads to the emergence of chiral conduction bands. This is accom-
plished using the angular momentum expansion (details in Appendix B) to
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obtain the following form of the Hamiltonian:

H =
X

khm

✏̃kh(c
m+

1
2

kh
)†c

m+
1
2

kh

+
X

khm

�m,0Ṽk

⇣
(c

m+
1
2

kh
)†d" + h(c

m� 1
2

kh
)†d# + h.c

⌘

+Hd ,

(2.4)

where h = ±1 is an emergent chiral quantum number. This also allows
us to define an emergent angular momentum quantum number, given by
jm = m+ h

2
, with only the bands corresponding to jm = ±1

2
coupling to the

dot, while the rest of the bands are decoupled. The renormalized dispersion
✏̃kh, now depends on h and the spin-orbit interaction �, as given by the
expression ✏̃kh = (✏k + h�k)/k = ✏̃k + h�. For a free-electron like dispersion,
✏̃k will be linear in k. Hence RSOC introduces a Zeeman-type splitting of
the conduction band, without breaking the time-reversal symmetry. Further,
the hybridization matrix elements are assumed to be isotropic, i.e, Vk = Vk,
and Ṽk = Vk

p
2⇡/k.

In order to study the interplay between the RSOC and a constant voltage
bias, we consider the left and right leads to have a lead-dependent chemical
potential µ↵ applied to all the emergent h, jm channels in each lead, such that
the voltage bias is given by Vsd = µL � µR. This leads to the Hamiltonian

Heff =
X

↵=L,R

H↵ +Hhyb +Hdot , (2.5)

where the individual terms are given by

H↵ =
X

khjm

✏̃
k↵h

c†
↵khjm

c
↵khjm

, (2.6)

Hhyb =
X

↵kh

Ṽ
k↵

⇥
c†
↵kh

+1
2

d" + hc†
↵kh

�1
2

d# + h.c.
⇤
, (2.7)

Hdot =
X

�

✏dn� + Un"n# , (2.8)

with ✏̃k↵h = ✏̃kh + µ↵. The model described above can be visualized by
the schematic in fig. 2.1. We note that this model was investigated using
a quantum master equation (QME) approach in a recent work14, and the
results were used to explain specific experimental observations of di↵erential
conductance reported in the same work. The present work, using the IPA,
provides a di↵erent perspective and fresh insight into these experiments14

and hence may be viewed as complementary to the QME results.
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Figure 2.1: Schematic of the correlated quantum dot connected to two leads,
split further by spin-orbit coupling into chiral bands, subject to a voltage
bias, Vsd = µL � µR.

In the presence of a finite bias, ensuring particle-hole symmetry by setting
µL = Vsd

2
= �µR, we can compute the symmetrized the steady-state current

(J) can be computed using the Meir-Wingreen formula, given by48

J =
2ie

h

X

�

Z
d!

h
(�L(!)��R(!))G

<

d�
(!)

+2i (fL(!)�L(!)� fR(!)�R(!)) ImGr

d�
(!)

i
. (2.9)

In the above, the G<

d�
and Gr

d�
represent the lesser and retarded dot Green’s

functions computed within Keldysh formalism, and f↵ is the Fermi-Dirac
distribution function of the ↵th lead. The �↵(!) represents the dot-lead
coupling and is given by

�↵(!) = �Im�↵(!) , (2.10)

where the hybridization function for the ↵th lead, �↵(!), is given by

�↵(!) =
X

kh

Ṽ 2

k

!+ � ✏k↵h

=
X

k

Ṽ 2

k


1

!+ � ✏̃k↵ + �
+

1

!+ � ✏̃k↵ � �

�

=
X

h

�h↵(!) = E↵(!)� i�↵(!).

(2.11)
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With a suitable choice of the Ṽk-dependence on k as Ṽ 2

k
= V 2

0
f(k), we

can transform the summation over k into an integral that has the form of a
Hilbert transform, and hence the hybridization function can be obtained as:

�h↵(!) = V 2

0
H
⇥
!+ � µ↵ � h�

⇤
(2.12)

where H[z] is the Hilbert transform with respect to a ”density of states”
(DOS), ⇢0(✏), given by

H[z] =

Z
d✏
⇢0(✏)

z � ✏
. (2.13)

Note that the ⇢0(✏) in the above equation stems from the k-dependence of
the hybridization matrix element. The conduction band density of states is
already incorporated through the electron dispersion of a free-electron form
(see the discussion below Eq. (4)). We have explored three types of ⇢0(✏):
(i)a Gaussian (G), which is not bounded, but can be interpreted as having an
e↵ective finite bandwidth, (ii) a semi-elliptic (S) form which has a compact
support, and (iii) a wide, flat form (F). The expressions for the three forms
are

⇢G
0
(✏) =

1p
⇡t⇤

exp

✓
�✏

2

t2⇤

◆
(2.14)

⇢S
0
(✏) =

1

⇡t⇤

✓
1� ✏2

4t2⇤

◆1/2

(2.15)

⇢F
0
(✏) =

1

2t⇤
✓(t⇤ � |✏|) . (2.16)

We define an energy scale, �0 = ⇡V 2

0
⇢0(0) which is known to determine

the scaling of dynamics and transport properties in equilibrium49, and hence
can be expected to play an important role in the steady-state as well. In
terms of this scale, the dot-lead coupling is given by, �h↵(!) = �0⇢0(! �
µ↵�h�)/⇢0(0). For all our calculations, we have used the semi-elliptic or the
Gaussian forms with t⇤ = 1, except for benchmarking where we have used the
flat-DOS form with a large t⇤, but a finite�0. In all the calculations described
in this work, we have chosen �0 = 0.1, implying that the choice of V0 is not
the same for the three forms. The infinitely wide flat-DOS hybridization
is obtained by using the limit t⇤ ! 1, and a concomitant scaling of V0 ⇠p
t⇤, such that �0 = 0.1. Thus, in such a limit, the hybridization does

not have a bias or spin-orbit coupling dependence while the semi-elliptic
and the Gaussian forms do, and this di↵erence leads to several observable
consequences as we will discuss in Sec. III.
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The dot Green’s functions used in the current expression, given by Eq. 2.9,
may be computed using the Dyson’s equations given by47

[Gr

d
(!)]�1 = [gr

d
(!)]�1 � ⌃r(!) , (2.17)

G<

d
(!) = |Gr

d
(!)|2

 
g<
d
(!)

|gr
d
(!)|2 � ⌃<(!)

!
, (2.18)

where gr
d
, g<

d
represent the non-interacting (U = 0) Green’s functions of the

dot, and ⌃r,⌃< are the retarded and lesser self-energies respectively. Obtain-
ing the self-energies represents the greatest challenge in computing the cur-
rent. We have employed the interpolative perturbative approximation (IPA),
introduced by Aligia47, which is equivalent to the second-order Keldysh per-
turbation theory (KPT2) in the steady-state p-h symmetric limit, and to
the iterative perturbation theory IPT50 in the equilibrium limit, to get the
self-energies. The second-order expressions for the retarded and lesser self-
energies are as follows47 (see appendix B):

⌃r(!) = U2

Z  
3Y

i=1

d✏iD(✏i)

!
(!+ + ✏3 � ✏2 � ✏1)

�1

⇥
h
f̃(�✏1)f̃(�✏2)f̃(✏3) + f̃(✏1)f̃(✏2)f̃(�✏3)

i
(2.19)

and

⌃<(!) = �2i⇡U2

Z
d✏1d✏2D(✏1)D(✏2)D(✏1 + ✏2 � !)

⇥
h
f̃(✏1)f̃(✏2)f̃(! � ✏1 � ✏2)

i
(2.20)

where D(!) = �(1/⇡) Im{g̃r
d
(!)} is the spectral function calculated from the

Hartree-corrected, retarded dot Green’s function given by

[g̃r
d�
(!)]�1 = !+ �

X

↵

�↵(!) , (2.21)

and f̃(!) =
P

↵
�↵(!)f↵(!)/

P
↵
�↵(!) is the weighted Fermi function, with

�↵(!) = �Im�↵(!) (Eq. 2.11), and f↵(!) = f(!�µ↵) is the Fermi function
for the ↵th lead. In writing the above, we have assumed the p-h symmetric
limit, where ✏d = �U/2 cancels the first order Hartree contribution. To
obtain the lesser Green’s function [G<

d
(!)], we need the Hartree-corrected

lesser Green’s function of the dot, which is given by

g̃<
d�
(!) = 2i|g̃r

d�
(!)|2

X

↵

�↵(!)f↵(!) . (2.22)
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Solutions of Eqs. 2.9 to 2.22 yield the physical picture of the interplay of
bias, interactions and SOC on the spectra and current-voltage characteris-
tics. The self-energies in Eq. (2.19) and (2.20) are evaluated as convolutions
using the Fourier transform. The details of the numerical implementation
of the convolution can be found in earlier works51. The di↵erential conduc-
tance is calculated as G = dJ/dVsd, and numerically implemented through
a derivative of the splined current1. We present our results for spectra and
transport quantities in the next section.

2.3 Results

In equilibrium studies of the p-h symmetric Anderson model, the IPT50,
based on the second-order perturbation theory, is a good approximation in
the weak coupling limit, and by coincidence also reproduces the atomic limit.
Hence, the IPT has been extensively used as an interpolating approxima-
tion for lattice models such as the Hubbard model and the periodic An-
derson model within the dynamical mean-field theory to investigate Mott
transition and heavy fermion physics52. Various Keldysh perturbation the-
ory based approximations including IPA have been used quite widely in the
out-of-equilibrium case as well25;27;47. In this work, we carry out a simple
benchmarking exercise to ascertain the regime of validity of the IPA and
subsequently use it to investigate the e↵ect of spin-orbit coupling.

2.3.1 Benchmarking

As a first benchmark, we compare the current-voltage (IV) curves for the
flat-DOS and the semi-elliptic DOS cases with the steady state results from
Nuss et al.

29 who have used the time-evolving block decimation (TEBD)
method on a model with 150 sites comprising two leads and a quantum dot
subjected to a dc bias. As shown in fig. 2.2 we find that the J � Vsd curves
match the TEBD results very well2. The presence of a peak in the current
at a specific bias roughly around half the bandwidth is seen in the case of
the finite bandwidth semi-elliptic DOS case. The peak position moves to
higher bias values for increasing interaction strength and concomitantly the
peak current magnitude decreases. In the case of the infinitely wide, flat

1
Codes for reproducing the IPA data in figs. 2.2 and 2.6 are provided at the GitHub

link (https://github.com/nsvraja/ssIPA_ZF_phsym). A README is also included for

ease of use.
2
For a fixed energy scale �0, the hybridisation strength V0, needs to have a multiplica-

tive factor of
p
2 for a quantitative comparison with the TEBD results
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hybridization function, we see a saturation of the current at high bias values
and the saturation current decreases with increasing U . Both of these results
show that the IPA captures the current characteristics very well over a wide
range of interaction strengths.

As a second benchmark, we compare our results with fourth-order per-
turbation theory by Fujii et al.

25 (for a flat/uniform hybridization, with
U = 6�0 and SOC strength � = 0) in fig. 2.3 and see that the interacting
dot DOS matches very well with their results. We see that there is a reduc-
tion in the zero frequency weight with increasing bias and also splitting and
broadening of the central peak. Next, we examine the e↵ect of equilibrium
scales on transport characteristics in the linear response regime.

2.3.2 Linear response regime: scaling and universality

The excellent agreement with TEBD and fourth-order perturbation theory
yield strong confidence in the validity of IPA in a wide bias and interaction
range. We now explore the extent of the linear response regime and examine
if equilibrium quantities describe the response of the system at finite bias,
but close to equilibrium.

As we can see from fig. 2.2, the linear dependence of the current at low
values of bias agrees well with the TEBD calculations and the extent of
the linear response regime depends on the value of the interaction and SOC
strengths. In equilibrium, the quasiparticle weight, which can be calculated
as Z0 = [1�Re(d⌃(!)/d!|!=0)]�1, where ⌃(!) is the self energy, happens to
be proportional to the Kondo scale, and hence determines the extent of the
universal regime49. In order to understand the dependence of the self-energy
on SOC and bias, we have carried out a simple analysis (details in the Ap-
pendix) of the second-order expression (Eq. 2.19) assuming that the Hartree-
corrected density of states is not varying rapidly in the neighbourhood of
! = 0 for low values of bias, and SOC, i.e D(!) ' D0 = � Im{g̃r

d�
(! = 0)}

for |!|, |Vsd|,� << t⇤. D0 may be found by considering the expressions for
the retarded Green’s functions in Sec. II, as shown below. From Eq. 2.21,
we see that

[g̃r
d�
(! = 0)]�1 = V 2

0

X

↵h

Z
d✏

⇢0(✏)

µ↵ + h�+ ✏� i⌘
(2.23)

where ⌘ ! 0+. Using the above expression, we note that at ! = 0, the
Hartree-corrected non-interacting Green’s function g̃r

d�
is purely imaginary,

since

Re (g̃r
d�
(! = 0))�1 = V 2

0

X

↵h

P
Z

d✏
⇢0(✏)

µ↵ + h�+ ✏
= 0 (2.24)
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Figure 2.2: The current-voltage curves computed within IPA (� = 0) for var-
ious values of U (mentioned as legends) compared to TEBD results of Nuss et
al.

29. The solid lines represent the current computed for a semi-elliptic hy-
bridization, while the dashed lines correspond to the flat hybridization. The
symbols are data extracted from Nuss et al.29 and the current is scaled by a
factor of 3.33.
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Figure 2.3: The DOS of the dot computed within IPA for U = 6�0 and the
flat hybridization in the absence of SOC. A splitting of the zero frequency
peak with increasing bias (indicated as legend) is seen, which matches with
the results of a fourth-order calculation of Fujii et al.25.
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for a p-h symmetric ⇢0(✏). In the above equations, µL = Vsd/2, µR =
�Vsd/2, h = ±1, and P denotes the principal value. Thus,

g̃r
d�
(! = 0) = � i

⇡V 2

0

P
h↵
⇢0(µ↵ + h�)

(2.25)

using which we can write, for zero bias, D0 = (4⇡2V 2

0
⇢0(�))�1. We find that

the imaginary part of the retarded self-energy in terms of D0 is given by (for
! ! 0 and T = 0, details are provided in the Appendix)

� 1

⇡
Im⌃r(!) =

U2D3

0

2


!2 +

3V 2

sd

4

�
(2.26)

Using the Kramers-Krönig transformation, the real part of the retarded self-
energy is given by

Re⌃r(!) = �U2D3

0

⇤


⇤2 � 3V 2

sd

4

�
! , (2.27)

where ⇤ is a high-energy cuto↵ that represents the extent of the quadratic
dependence of the imaginary part of the self-energy.

Thus, using the definition of the quasiparticle weight as Re⌃r(!) = !(1�
1

Z
) we get the analytical expression (please refer to the Appendix for details

of the calculation),

Z(U,�, Vsd) =

✓
1 +

U2D3

0

⇤


⇤2 � 3V 2

sd

4

�◆�1

. (2.28)

Using this, we note that, since the IPA is based on second-order pertur-
bation theory, the equilibrium quasiparticle weight, Z0 = Z(U,�, Vsd = 0)
decays algebraically with increasing interaction strength (at zero bias) as
U�2. The dependence on SOC enters through D0. For a flat density of
states, since D0 does not depend on �, the quasiparticle weight, Z0 will be
independent of SOC. The Kondo scale is proportional to the product of band-
width and Z0, and since the chiral bands move outward with increasing �,
the e↵ective bandwidth will increase and hence will give rise to a linearly
increasing Kondo scale.

However, for a frequency-dependent density of states such as the semi-
elliptic or Gaussian density of states, D0 increases as ⇢�3

0
(�). For example,

for the Gaussian and semi-elliptic forms of the hybridization, the D0 is pro-
portional to exp(3�2/t2⇤) and (1� �2/4t2⇤)

�3/2 respectively. Hence the quasi-
particle weight will decrease sharply with increasing � as Z0 / D�3

0
[from

Eq. 2.28]. So, even though the e↵ective bandwidth increases linearly with

24



increasing SOC in parallel to the flat hybridization case, the strong decrease
due to the factor of D�3

0
dominates. The equilibrium quasiparticle weight,

Z0 shown in the bottom left panel of fig. 2.4, for the semi-elliptic and the
Gaussian hybridization functions (denoted as SE and G respectively), is seen
to decrease sharply with increasing �/�0 in agreement with the arguments
above.

Consistent with the decrease of Z0 with �, the linear response regime in
the current-voltage (J�Vsd) relationship shrinks considerably with increasing
interaction strength (for � = 0) as seen in the top left panel of fig. 2.4 and
with increasing � for U = 20�0 as seen in the top right panel. However, when
the current and bias are scaled by Z0, all the curves of the top two panels
collapse up to a bias of Vsd ' Z0�0 (shown in the bottom right panel),
which confirms that the equilibrium quasiparticle weight, or equivalently,
TK , determines the extent of the linear response regime53.

Equilibrium investigations of the SIAM have shown that the Kondo scale
decreases exponentially with increasing U for � = 017. In the presence of �
on the leads and U on the dot, the Kondo scale has been shown to increase
or decrease depending on whether the leads have a wide, flat form or a finite
bandwidth38;40 respectively.

In our work, we have shown [see Eq. 2.28] that the quasiparticle weight,
and hence the Kondo scale depends on U algebraically (decreasing as U�2)
and on � through the density of states, namely as (⇢0(�))3. The algebraic
decrease of the scale with U is known to be an artefact of the perturbative
approximation employed to obtain the self-energy, while exact methods such
as Bethe ansatz17 find an exponential decrease. Since ⇢0(✏) is usually chosen
to have a maximum at the chemical potential, and decreases monotonically
with increasing |✏|, the Kondo scale will also decrease monotonically with
increasing � as discussed above. The precise form of this decrease will depend
on the form of the density of states.

We see from fig. 2.4, (bottom-left panel) that the quasiparticle weight
scale decreases sharply with increasing �. Although the qualitative trend
is the same for the semi-elliptic and the Gaussian hybridization, the scale
decreases much more rapidly for the latter. For the same value of the param-
eters, the scale corresponding to the Gaussian hybridization is much smaller
than that of the semi-elliptic case. Hence for the strong coupling regime, we
choose to work with the Gaussian hybridization.

Additionally, in the strong coupling3 (TK ! 0) regime, a clear separation

3
In practice, we consider the system to be in the strong coupling regime when the

Z0 . 0.1, since the low-temperature scale, i.e TK ⇠ Z0�0 will be at least one order of

magnitude smaller than the non-universal scales, �0, bandwidth, U , etc.
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Figure 2.4: Current (J/�0) as a function of bias (Vsd/�0) is shown in the top
two panels. The left panel shows the result for various values of interaction
strength U/�0, and SOC strength � = 0, while the right panel shows the
result for U = 20�0 and various values of �/�0. The bottom left panel
shows the dependence of equilibrium (Vsd = 0) quasiparticle weight Z0 on
the spin-orbit coupling for the semi-elliptic (SE) and Gaussian (G) forms of
hybridization. The bottom right panel shows the collapse of all the curves in
the top two panels up to a bias given by Vsd ' Z0�0, when the current and
bias are scaled by Z0, thus determining the linear response regime.
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of scales (TK vs bandwidth, U) occurs, which is the best distinguishing fea-
ture of this regime, and will be seen to have important consequences on the
evolution of spectra and conductance with increasing temperature, and will
be discussed later.

Subsequent to the benchmarking and a study of the scales and the linear
response regime, we now present the main results of our work, which focus
on the interplay of spin-orbit coupling and electron-electron interactions on
the single-particle spectra and the di↵erential conductance. Since the SOC
does not alter the hybridization functions in the case of the infinitely wide,
flat/uniform DOS, the results do not show any dependence on �. Therefore,
we will consider the semi-elliptic and Gaussian hybridization forms where the
e↵ective bandwidth is modified by � as seen from Eqs. 2.12- 2.16.

2.3.3 Evolution of density of states with interactions,
SOC, bias, and temperature

Since the separation of scales is an important consideration in our analysis,
we will investigate the transfer of spectral weight in the weak/intermediate
coupling and strong coupling regimes separately.

Weak/intermediate coupling regime

In order to be in the weak/intermediate coupling regime, we will choose
U = 20�0,� = 15�0 and the semi-elliptic hybridization, for which, as the
bottom left panel of fig. 2.4 shows, the Z0 ' 0.2. At equilibrium (zero
bias), and in the absence of SOC, but with finite U (& bandwidth), the dot
spectral function acquires Hubbard bands at ! & ±U/2 as the top panel
of fig. 2.5 shows. For a flat/uniform hybridization, the Hubbard bands are
known to lie close to ±U/254, but for a dispersive DOS such as semi-elliptic
or Gaussian, these incoherent peaks lie somewhat beyond ±U/2. If we now
turn on SOC, keeping Vsd = 0, then as the middle panel shows, the left, and
right lead hybridization functions broaden significantly. This is because the
chiral bands that are split by the SOC, when superimposed give rise to a
hybridization, that has a width equal to D + 2�, and for the middle panel,
since D = 40�0, and � = 15�0, the band-edges are at ±(D/2+�) = ±35�0.
Since, for this larger bandwidth, the hybridization appears less dispersive
and appears similar to a uniform DOS, the Hubbard bands become more
prominent, and their location is almost at ±U/2.

Next, as bias is turned on and raised to 20�0, the band centres (chemical
potentials) of the two leads move apart (µL = Vsd/2 and µR = �Vsd/2),
and concomitantly, the dot spectrum (solid black line in the bottom panel of
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fig. 2.5) goes over to a two-peak structure in non-equilibrium from a three-
peak structure at equilibrium. In the same panel, the red dashed and blue
dot-dashed lines, which are the left and right lead hybridizations, have small
bumps at precisely these energies for Vsd = 20�0. Since the Hubbard bands
are also at ±U/2, which are ±10�0 in fig. 2.5, a maximum in conductance
may be expected to occur when the bias becomes equal to the peak position
di↵erence of the Hubbard bands25. Indeed, this will be confirmed in Sec. III
D-1.

Strong coupling regime

In parallel to the previous section, we will analyze the changes in the spectra
and hybridization as we sequentially turn on SOC, temperature, and bias for
U = 20�0. The strong coupling regime will be accessed through a choice of
the value of the SOC, and the hybridization function, as � = 18�0, and the
Gaussian, for which as the left bottom panel of fig. 2.4 shows, the scale is
Z0 ⇠ 10�3.

Figure 2.6 (please see footnote4) shows the left lead and the right lead
hybridization functions as �L and �R in black and blue colours respectively.
The dot spectral function is shown in the centre as a red solid line. The
vertical axis is energy/frequency. Figure 6(a) represents a situation where
U = 20�0, but � = T = Vsd = 0. The dot spectral function has a three-
peak structure, with the central peak being the Kondo peak, and the other
two being the Hubbard bands at ±U/2. As we turn on � = 18�0, keeping
T = Vsd = 0, Fig. 6(b) shows that the central peak in the dot spectral
function becomes extremely narrow (width' Z0�0 ⇠ 10�4), while �L and �R

show the development of chiral bands due to the SOC. The clear separation
of the Kondo peak and the Hubbard bands is evident and is a characteristic of
the strong coupling regime. When we turn on a small, but finite temperature
of T = 0.05�0, Fig. 6(c) shows that the central peak melts leaving the
Hubbard bands as the only distinct features in the spectrum. Finally, when
a bias of Vsd = 25�0 is turned on, there are minor changes in the positions of
the spectral peaks, while the �L and �R move up and down respectively. The
occupied region of the left lead is seen to overlap with the region between the
Hubbard bands, and the unoccupied region of the right lead. This overlap
can very likely lead to finite bias peaks in the conductance. Next, we analyze
the dependence of the di↵erential conductance on the bias, SOC, interactions

4
The figure has been made to appear as a schematic, but it has been made using data

obtained from IPA, and the curves in the four panels are not mere sketches. The purpose

of this figure is to allow a direct comparison of the calculated results with the schematic

shown in Fig. 1 of Ref
14
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Figure 2.5: The dot spectral function (solid black line), and the left and right
lead hybridization functions (red dashed and blue dot-dashed lines respec-
tively) as a function of !/�0 showing the variation of spectral features with
increasing SOC and bias for a fixed interaction strength, U = 20�0. The top
panel is for � = Vsd = 0, while � = 15�0 is turned on in the middle panel
keeping bias zero, and the bottom panel has � = 15�0 and Vsd = 20�0. The
semi-elliptic hybridization function has been used here.

29



Figure 2.6: The hybridization and the dot density of states, for the Gaussian
hybridization function in the strong coupling regime. �↵ is the lead hy-
bridization with ↵ = L/R for left (black)/right (blue), and the central (red)
curve shows the dot density of states. Similarly, µ↵ represents the chemical
potential of the ↵th lead. The interaction strength is fixed at U = 20�0, while
SOC, temperature and bias are turned on sequentially from (a)-(d) as follows:
(a) � = T = Vsd = 0; (b) � = 18�0, T = Vsd = 0; (c) � = 18�0, T = 0.05�0,
Vsd = 0; (d)� = 18�0, T = 0.05�0, Vsd = 25�0. The shaded regions repre-
sent the T = 0 occupied states. The dotted and dashed lines are guides to
the eye.
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and temperature.

2.3.4 Conductance

We have divided the conductance results into two sections. In the first sec-
tion, we present the di↵erential conductance in the weak/intermediate cou-
pling regime focusing on the evolution of various features with U,�, SOC
and T . The second section focuses on the strong correlation regime and
qualitative comparison to experimental results.

Weak/Intermediate coupling regime

Figure 2.7 shows colour contour plots of the conductance for various values
of U 2 [0, 20]�0 and � 2 [0, 15]�0 at T = 0, computed with the semi-elliptic
hybridization function. Within this range of parameters, the quasiparticle
weight is in the range of Z0 2 [0.2, 1], so the choice of the range of parameters
corresponds to the weak/intermediate coupling regime. The conductance is
computed by fitting a cubic spline to the current vs Vsd data and taking
the first derivative. The colour bar on the right of each panel shows the
association of a given colour with the value of the conductance. The top left
and right panels represent varying interaction strength on the y-axis, but
fixed SOC of zero and 15�0 respectively, while the bottom left and right
panels represent varying SOC on the y-axis, but fixed U of zero and 15�0

respectively. The ZBC peak is seen to be a universal feature in all panels, and
it is interesting to note that the width of this peak decreases with increasing
U with or without �, while the e↵ect of � on the peak width at U = 0 is
very weak (bottom left panel), but in the presence of U , � leads to a sharp
narrowing of the zero bias peak (bottom right panel), which is consistent
with the bottom left panel of fig. 2.4.

With increasing bias, a negative di↵erential conductance (NDC) regime
is seen in all panels. In order to understand the origin of the NDC, we first
focus on the U = 0 results, since the calculation of conductance for U = 0
does not depend on the second-order approximation for the self-energy, and
is hence exact. The non-interacting regime also exhibits NDC at high bias
values as seen in the top panels and the bottom left panel. We confirm that
the finiteness of the bandwidth of the hybridization is responsible for the
NDC55 since the wide, flat hybridization does not yield NDC. Additionally,
the top right panel shows an intermediate bias regime where NDC is obtained
at large U values. In the strong coupling regime, reached by increasing
U and/or �, the width of the central Kondo peak in the dot DOS, being
proportional to TK , shrinks exponentially. However, adiabatic continuity to
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Figure 2.7: Variation of the di↵erential conductance with interaction (U),
spin-orbit coupling (SOC) and bias. The colours correspond to the values of
the conductance G = dJ/dVsd as mentioned in the colour bar with certain
values marked by the black contours. The dashed lines represent the negative
di↵erential resistance regime The top left and right panels correspond to
varying U and fixed SOC equal to zero and 15�0 respectively. The bottom
left and right panels correspond to varying SOC and fixed U equal to zero
and 15�0 respectively. Note that the top and bottom right panels show the
x-axis on the logarithmic scale for clarity since the linear response regime is
highly compressed for large U and/or SOC.
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the non-interacting limit ensures that the Kondo peak has precisely the same
form as the non-interacting dot DOS if the frequency is scaled as !/Z0�0

56.
This fact implies that the system has an e↵ective bandwidth of Z0�0 in the
strong coupling regime, and hence as the bias value crosses the linear response
regime, an NDC regime may be obtained in parallel to the non-interacting
regime. Since IPA is perturbative, and not accurate in strong coupling the
NDC seen in strong coupling at intermediate bias values could be due to
both the finite support of the hybridization and the approximation used for
computing the self-energy.

The top left panel of fig. 2.7 shows that in the absence of SOC, the conduc-
tance decreases monotonically with increasing bias, and the linear response
regime (over which the conductance is close to 1) shrinks with increasing in-
teraction strength. The top right panel shows that in the presence of strong
SOC (15�0), the conductance becomes highly non-monotonic, and a light
band (for U & 10�0) appears signifying a peak at a non-zero bias, that
shifts to higher bias with increasing interaction strength. We observe that
the bias value at which the peak occurs is almost the same as the interac-
tion strength. Another interesting observation can be made from the bottom
right panel of fig. 2.7, which shows the existence of a finite bias conductance
peak for � & 10�0, whose position (on the bias-axis) is almost independent
of the value of SOC. Thus, we see that the position of the finite bias peak
correlates very well with the interaction strength, but is independent of �,
which suggests that the Hubbard bands and their increasing prominence with
increasing � are giving rise to this peak. A physical basis for the emergence
of this finite bias conductance peak in terms of the spectral functions and
the hybridization functions may be constructed using the results of Sec. C-1.

As fig. 2.5 shows, an argument for the conductance peak at a bias value
equal to interaction, is that the chemical potential of the left lead matches
with one Hubbard band, while that of the right lead matches with the other,
and hence the conductance is peaked due to a resonant situation when the
SOC is large (& 10�0), as the bottom right panel of fig. 2.7 shows. Indeed,
the left bottom panel, for which U = 0, shows that the conductance decreases
monotonically with increasing bias, while the bottom right panel shows a
peak at bias around 15�0 which is present only for large SOC (& 10�0), but
independent of the value of SOC. Thus, we find that, at T = 0, in addition
to the zero bias peak, a finite bias peak arises in the presence of strong spin-
orbit coupling, which is positioned at a bias roughly equal to the value of the
interaction strength.

We now focus on finite temperature e↵ects on conductance and also ex-
amine whether the IPA results conform to the universal Kondo scaling of the
ZBC. We extend the bias to negative values, and show the conductance at
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Figure 2.8: The main panel shows the T = 0 di↵erential conductance in units
of G0 as a function of scaled bias (Vsd/�0) for three values of interaction
strength, namely U = 0 (dot-dashed line), 10�0 (dashed line), 20�0 (solid
line). The SOC is fixed at � = 15�0 and a semi-elliptic hybridization function
has been used in the calculations. The left inset shows G vs Vsd/�0 for
U = 20�0 at four di↵erent temperatures, mentioned as legends. The central
peak is seen to melt with increasing temperature. The right inset shows the
ZBC as a function of T/TK ; The black symbols represent IPA data, and the
red dashed line represents a fit, G(T ) = G0(1 + (21/s � 1)(T/TK)2)�s with
s = 0.22 and TK = 0.58�0 as appropriate for universal Kondo behaviour
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zero temperature and a fixed SOC of � = 15�0 as a function of bias, for vari-
ous U values, and a semi-elliptic hybridization function, in the main panel of
fig. 2.8. The conductance at T = 0 is seen to have a three-peak form consis-
tent with the p-h symmetric regime, and the results of fig. 2.7. For the finite
U values, the locations of the side peaks correspond closely to the value of
U/�0, while the zero bias peak is characteristic of the linear response regime.
We can also see that the full width at half maximum (FWHM) of the central
peak decreases sharply with increasing interaction, while the conductance at
zero bias is pinned at unity. The width of the central peak is roughly propor-
tional to the zero bias quasiparticle weight57, which decreases exponentially
(algebraically within IPA) with increasing U/�0. The left inset of fig. 2.8
shows the temperature dependence of the conductance for the largest U/�0

considered in the main panel. Interestingly, the central peak melts, and thus,
at modest temperatures, we see a two-peak structure, which resembles the
results of a recent experimental study14. However, the right inset shows
that the conductance at zero bias decreases monotonically with increasing
temperature in accordance with the universal Kondo behavior1, while the
‘double zero bias peak’ feature seen in experiments14 exhibits the opposite
behaviour, namely an increase of G with temperature. A rise in the ZBC
is indeed observed at higher temperatures, but the rise is very modest and
bears little comparison to experimental results14. Moreover, the finite bias
peaks melt rapidly with increasing temperature (left inset, fig 2.8), leading to
a broad featureless conductance. Such “spectral weight” transfer over large
scales is indeed a characteristic of the weak/intermediate coupling regime.
Hence, the finite bias conductance peak in the weak/intermediate coupling
regime fails to explain the experimental results. As we will show below, the
latter is best understood within the IPA framework from a strong correlation
perspective.

Strong correlation regime and comparison to experiments

As we noted earlier, the experimental results of Smith et al.
14 are in clear

disagreement with our results from the low/intermediate correlation regime.
Thus, in this subsection, we will study the system in the strong correlation
regime. The temperature interval over which the resistivity shows universal
behaviour when viewed on an absolute scale, i.e as T/�0 (and not as T/TK)
shrinks drastically in the strong interaction and strong spin-orbit coupling
regime, because T/�0 = (T/TK)(TK/�0), and the latter term is exponen-
tially small in the strong coupling regime. In such a regime, a clear separation
of scales happens in the conductivity as well as in the spectra. We show this
in the top left panel of fig. 2.9, where the conductance is shown as a function
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Figure 2.9: Scaled conductance, G(Vsd, T ) as a function of bias, Vsd/�0 for
various temperatures, T/�0 indicated as legends in the main panel. The
parameters (except for bias) are the same as those considered in fig. 2.6(c).
The left inset shows the zero temperature conductance as a function of scaled
bias, while the right inset shows the ZBC, G(Vsd = 0, T ) as a function of
scaled temperature.
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of bias, computed within IPA at T = 0 for U = 20�0,� = 18�0, using the
Gaussian form of hybridization.

The quasiparticle weight that determines the linear response regime, and
the U scale that determines the finite bias conductance peak show up as
distinct features in the form of an extremely narrow zero bias peak (width
⇠ Z0�0 ⇠ 10�3�0), and broad, finite bias peaks. The top right panel shows
that the ZBC decreases rapidly with increasing temperature, and reaches a
value three orders of magnitude smaller than the T = 0 unitary limit at
T ⇠ 10�2�0. The ZBC follows the evolution of the dot spectral function
and as fig. 2.6 shows, the melting of the Kondo peak manifests in the rapid
decrease of the ZBC. However, as the temperature reaches non-universal
values beyond 0.5�0, the Hubbard bands become accessible, and the ZBC
starts to rise again. The bottom panel shows the conductance as a function of
bias for various temperatures in this rising ZBC regime. The two finite bias
peaks are the only distinct features of the conductance in a wide temperature
interval of T 2 (10�3�0, 0.5�0). For T & 0.5�0, consistent with the top
right panel, the ZBC starts rising, filling in the gap between the finite bias
peaks, and concomitantly the latter slightly diminishes in magnitude. An
isosbestic point, commonly seen in many correlated systems, is visible around
Vsd ' 10�0. In contrast to the results of the weak/intermediate coupling
regime of the previous section, the finite bias peaks retain their form even
at T/�0 = 6.0 as the bottom panel of fig. 2.8 shows, and this behaviour is
characteristic of the strong coupling regime.

In a recent experiment by Smith et al.
14, the conductance through a

point contact in an InGaAs/InAlAs heterostructure and a split-gate geometry
was measured as a function of source-drain bias with varying in-plane and
transverse magnetic fields. The highlight of this study was the tunability
of the Kondo e↵ect through the tuning of the Rashba spin-orbit coupling
of the leads. The split-gate voltage, Vsg, was used to control the electron
density, which in turn, determines the strength of the RSOC (�). At a fixed
temperature of about 25mK, a single zero bias peak was observed at low �,
while a ’double zero bias peak’ was observed at high � (see fig1(i) of Smith
et al.

14).
The zero bias peak is known to be related to the equilibrium Kondo scale,

and in the absence of a magnetic field, the zero bias peak must be present
in the conductance at T = 0, no matter how strong the correlation is. But
since the experiment is performed at a fixed and finite absolute temperature,
the scenario becomes drastically di↵erent. As � is increased, the TK value
decreases, so the ratio of T/TK increases exponentially. This implies that
the system with low � experiences a low T/TK ratio, while the system with
high � is at a very high T/TK ratio for a given T . We have shown infig. 2.9
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that the central zero bias peak melts rapidly on a scale of TK at high �,
while the finite bias peaks retain their form. Thus, we conjecture that the
experimental finding of a crossover from a single peak to a two-peak structure
by increasing � is arising through a combined crossover of a weak to strong
coupling (exponentially decreasing TK) and from a low T/TK ratio to a high
value of T/TK (due to a fixed T ).

We consolidate this speculation in fig. 2.10, where the top two panels
show the conductance as a function of bias at low � = 2�0 (left panel) and
high � = 18�0 (right panel) computed within IPA at a fixed temperature
of T = 0.05�0, and U = 20�0 for a Gaussian hybridization. We see that
a single zero bias peak has transformed into a double peak structure. We
emphasize that the single zero bias peak is a universal feature implying that
its form and temperature dependence are determined by the Kondo scale, but
the finite bias peaks are non-universal features whose position, and form are
determined by non-universal parameters such as Vsd, U and �. The bottom
panel shows the conductance for the same parameters as the top two panels,
but with varying � marked as numbers. The conductance curves are shifted
vertically by a constant number to provide clarity. The graph shows the
gradual evolution of the single-peak structure into a two-peak structure. The
dashed line marks the evolution of these finite bias peaks (marked by crosses).

Interestingly, the central peak is flanked by two satellite structures, which
we identify visually (marked by stars). These peaks drift to higher Vsd with
increasing �, and merge with the ‘Hubbard peaks’, and continue the blue
shift for higher � values. Similar features are observed in the experimental
results (see Fig. 4(c) of Smith et al.

14).
Naturally, experimental results are far richer than what our simple model

and the perturbative calculation reveal. However, the theoretical model used
for explaining the experimental results14 is exactly the same as the one used
in the present work, and our results based on IPA may be viewed as comple-
mentary to those found by the quantum master equation approach.

2.4 Discussion and conclusions

We have investigated the interplay of electron-electron interactions, bias, and
spin-orbit coupling on the conductance through an Anderson impurity, using
a second-order Keldysh approach. We validated the method and our imple-
mentation through extensive benchmarks. The linear response regime and
its relation with the equilibrium quasiparticle weight (Z0) is explored, and
the decrease of Z0 with increasing spin-orbit coupling (�), for finite band-
width hybridization functions, is highlighted and discussed in detail. This
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Figure 2.10: The conductance plotted as a function of Vsd/�0 for various
values of SOC strengths as marked on the curves. The interaction and tem-
perature are kept fixed at U = 20�0, T = 0.05�0 respectively. The crosses
track the location of the Vsd = ±U peak, while the stars track a satellite
feature of the zero bias peak. The left and right insets correspond to the
low (� = 2�0) and high (� = 18�0) SOC strengths respectively. The insets
show the di↵erent single and double peak conductance in these regimes.
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decrease turns out to be crucial for explaining the experimental observation
of a crossover of a single zero bias peak into a double peak structure with
increasing �. The quantum master equation approach14, which was used for
explaining the experimental results14, while recovering the split peak struc-
ture, addresses the finite field e↵ects. However, the dependence of the Kondo
scale on � was not incorporated, and finite temperature e↵ects have not been
addressed, and these two aspects have been incorporated and investigated in
detail in our work.

One of the inferences made from the experimental results14 is that the
Kondo scale increases with increasing �. This inference directly contradicts
our results, since in our study the Kondo scale is represented by Z0�0 which
has been found to decrease with increasing � (fig. 2.4 and hence deserves
a discussion. We note that the TK is determined experimentally for the
experimental system at high � by increasing the magnetic field (parallel to
the SOC field), which induces Zeeman splitting of the spin-degenerate levels,
until the double peak form of the conductance converges to a single zero bias
peak structure, and then fitting the temperature dependence of the ZBC. It
is well known from equilibrium studies that the quasiparticle weight increases
monotonically with increasing magnetic field58, so the determination of TK

for the high magnetic field system is probably not representative of the TK

for the zero-field system with the double peak conductance. In fact, for this
system, if our results are any indication, then the TK is probably around the
lower limit of the temperatures considered in the experiments. Increasing the
magnetic field is akin to a crossover from strong to weak coupling regime, and
hence is equivalent to decreasing spin-orbit coupling. And hence the merging
of the double peak conductance to a single peak with increasing magnetic
field may be viewed as decreasing � in fig. 2.9.

A 0.7 anomaly has been observed in the experimental results and we pro-
vide a brief discussion of this feature vis-a-vis our results. The 0.7 anomaly
is seen as a plateau or shoulder in the conductivity when the gate voltage
is varied. The origin of the 0.7 anomaly has been under intense study and
has been attributed to the Kondo e↵ect45 and more recently to van Hove
ridges59;60. While the Kondo and van Hove ridge physics apply to quantum
dots and 1D nanowire models, it has been shown that the low energy physics
of the two systems are identical59. In the present work, changing the gate
voltage amounts to moving away from the p-h symmetric limit. The scope of
the present chapter is limited to the p-h symmetric limit, and broad feature-
less hybridization functions (hence ruling out van-Hove singularities), hence
even in principle, the present work does not have any bearing on the physics
of the 0.7 anomaly.

While the IPA has been shown to work well in the parameter regime under
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consideration, it fails to capture many subtler aspects such as the exponential
decrease of Z0 with increasing interaction strength, which requires a method
capable of capturing true strong coupling physics where spin fluctuations
are incorporated non-perturbatively. The IPA has been generalized for finite
magnetic fields47 as well as for the p-h asymmetric case47, incorporating
which will yield fresh insights into magnetotransport measurements and the
influence of valence fluctuations, and possibly the 0.7 zero bias anomaly.
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Chapter 3

Influence of valence fluctuations
on conductance of a quantum
dot coupled to chiral leads

3.1 Introduction

As we have seen in chapter 2, the steady state single impurity Anderson
Model (SIAM) and the related class of models serve as a prototypical model
to study the interplay between the local Coulomb interaction on the dot and
the DC bias on the leads. While we considered only the particle-hole (p-h)
symmetric limit in chapter 2, the more general case of p-h asymmetry can
be accessed by varying the dot energy level, which can be experimentally
realised by varying the gate-source voltage.

Valence fluctuations occur in strongly-correlated systems due to the in-
teraction between the localized and conduction electrons leading to a mixed-
valence regime where the valence configuration of the strongly-correlated
(generally transition metal) atom fluctuates. The fluctuations occur in a
regime when there is strong hybridisation between the lead and dot electronic
levels and is generally seen in experiments with variation of the temperature
or pressure1;2. However, the gate voltage also determines the valence fluctu-
ation cost by changing the dot energy and subsequently determines whether
the system is in the Kondo coupling or in the mixed valence regimes3. Going
beyond the p-h symmetric limit via the gate voltage also allows access to
di↵erent regimes like Coulomb blockade4.

Out of equilibrium, varying the gate-source voltage allows the observation
of phenomena like Kondo ridges in the conductance5 and can also be used to
indirectly control other parameters of the system like spin-orbit coupling6.
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In systems which can be modelled as multiple dots, other parameters like
the long-range RKKY interaction can also be varied by the gate voltage7.
Quantum point contacts, which can be modelled as quantum dots8 also show
interesting physics with the variation of the gate-source voltage including the
well-studied 0.7 anomaly and the accompanying zero bias conductance peak9.

In this chapter, we study the interplay between the spin-orbit coupling
and other system parameters like the p-h asymmetry, onsite interaction and
the DC bias. Spin-orbit coupling (SOC) is central in applications like topo-
logical materials, spintronics, etc. while also giving rise to interesting physics
like the zero bias conductance peaks seen in chapter 2. SOC has been mea-
sured directly in two-atom quantum dots10 among other experimental obser-
vations including an anomalous Josephson current11. The SOC has also been
shown to be tunable using a magnetic field12 and gate-voltage6 and hence
is tenable experimentally. The interplay of SOC with interactions has been
well studied in equilibrium13–15 and also out of equilibrium16 (see chapter 2).
Coming to the interplay between p-h asymmetry and SOC, while a few theo-
retical studies17 exist in equilibrium, the interplay between the gate voltage
and SOC has been well studied out of equilibrium experimentally18–21.

The SIAM has been studied using various theoretical methods such as
numerical renormalization group22–25, non-crossing approximation26, pertur-
bative methods27–29, quantum Monte Carlo methods30, exact diagonalization
methods31, Bethe ansatz32, hierarchical equation of motion33 and master
equation approaches34, etc. While each method has its strengths and weak-
ness, in this chapter, we use the interpolative approximation (IPA) proposed
for the p-h symmetric case by A.A Aligia35. The method is based on the iter-
ative perturbation theory (IPT) in equilibrium and similarly uses an ansatz
for the retarded second-order self-energy by calculating two parameters using
the atomic limit and the high frequency limits of the model. In equilibrium,
the IPT is known to perform well in the mixed valence regime.

While the IPA has been applied to the p-h symmetric case35, incorpo-
rating the p-h asymmetry and studying the e↵ect of gate voltage requires
that the Luttinger theorem (in zero bias and temperature) and the current
continuity (in finite bias) are respected. Also, the 0.7 anomaly which is seen
in experiments with QPCs has been modelled both in terms of the SIAM8

and other models9. The 0.7 anomaly is seen most clearly in strong magnetic
fields, but is thought to have signatures in the zero field limit too. As seen in
chapter 2, the SOC has an e↵ect of decreasing the equilibrium scale and also
broadening the hybridisation between the leads and the dot. We investigate
the e↵ect of the SOC on both the spectral function and on the current. We
also investigate whether there is any signature of the 0.7 anomaly in the case
of the QD coupled to chiral leads and subsequently the e↵ect of SOC on the
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same.
In this chapter, we first introduce the problem, followed by a discussion

of the formalism. In the formalism section, we derive the IPA self-energies,
the interacting Green’s functions and the expression for the current. We also
mention some numerical details involved in the calculation. The formalism
is followed by the results where we begin by benchmarking the method and
look at the e↵ect of SOC and gate voltage in both equilibrium and on the
current. Finally, we conclude with a summary of the chapter.

3.2 Formalism

In this chapter, we look at the e↵ect of valence fluctuations on the steady-
state DC bias transport of the SIAM coupled to leads with SOC. The valence
fluctuations are induced by the means of a source-gate voltage, which can be
modelled as the dot energy.

3.2.1 Hamiltonian

The Hamiltonian for the system can be written as

H = H0 +Hd +HSO +Hhyb , (3.1)

where, the conduction bands of the leads are represented by

H0 =
X

↵k�

✏kc
†
↵k�c↵k� (3.2)

and the isolated quantum dot is given by

Hd =
X

�

(✏d)d
†
�
d� + Und"nd#. (3.3)

The Rashba spin-orbit interaction in the two-dimensional conduction band
may be described as

HSO =
X

↵k

� †
↵k(k⇥ ~�)z ↵k , (3.4)

where k = (kx, ky), and  †
↵k = (c†

↵k,� c†
↵k,�̄). Finally, the hybridization

between the quantum dot and the conduction band is given by

Hhyb =
X

↵k�

⇣
Vkc

†
↵k�d� + h.c

⌘
. (3.5)
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We can use the angular momentum expansion13 (detailed in Appendix
B) to write the e↵ective Hamiltonian with the emergent chiral leads as

H =
X

khm

✏kh(c
m+

1
2

kh
)†c

m+
1
2

kh

+
X

khm

�m,0Ṽk

⇣
(c

m+
1
2

kh
)†d" + h(c

m� 1
2

kh
)†d# + h.c

⌘

+Hd ,

(3.6)

where h = ±1 is an emergent chiral quantum number, and jm = m+ h/2 is
the angular momentum quantum number.

3.2.2 Green’s functions and self-energy

In order to study the system, we need to calculate the dot Green’s functions
and subsequently the observable quantities like current, etc. Since we are
working in the non-equilibrium limit, the Keldysh Green’s functions (details
in Appendix A) need to be calculated. This can be done by evaluating the
matrix Dyson equations

G =

✓
0 Ga

d

Gr

d
2G<

d
+Gr �Ga

◆
=

✓
0 ga

d

gr
d

2g<
d
+ gr � ga

◆
+ g

✓
⌃r � ⌃a � 2⌃< ⌃r

⌃a 0

◆
G

= g + g⌃G (3.7)

Which can be written by using the relationship between the di↵erent Green’s
functions as the pair of equations

[Gr

d
(!)]�1 = [gr

d
(!)]�1 � ⌃r(!) , (3.8)

G<

d
(!) = |Gr

d
(!)|2

 
g<
d
(!)

|gr
d
(!)|2 � ⌃<(!)

!
, (3.9)

The free Green’s functions can be calculated using the equation of motion
approach and are given by

[gr
d�
(!)]�1 = ! � µ̃0 �

X

↵

�↵(!)

g<
d�
(!) = 2ı|gr

d�
(!)|2

X

↵

�↵(!)f(! � µ↵)
(3.10)
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where we have the hybridisation function (refer to appendix B for details)

�↵(!) = V 2

0
H
⇥
!+ � µ↵ � h�

⇤
(3.11)

where H is the Hilbert transformation defined as

H[z] =

Z
d✏
⇢0(✏)

z � ✏
. (3.12)

for a Gaussian density of states ⇢0 and �↵(!) = � Im{�↵(!)}.
The e↵ect of interaction enters through the self-energy ⌃r,<(!) which

in turn can be calculated using the interpolative approximation (detailed
calculations are found in appendix B). The self energies are given by

⌃r(!) = Uhndi+ ⌃r

int
(!) (3.13)

⌃<(!) = ⌃<

int
(!) (3.14)

Where we have nd, the dot occupancy and ⌃r

int
is the retarded IPA self energy

that can be calculated (see appendix B for details) using the ansatz

⌃r

int
(!) =

A1⌃r2(!)

1� A2⌃r2(!)
(3.15)

We have the coe�cients A1 and A2 obtained by considering the atomic and
high-frequency limits and given by

A1 =
hndi(1� hndi)
hn0

d
i(1� hn0

d
i) (3.16)

A2 =
µ̃0 � ✏d � (1� hndi)U

U2hn0

d
i(1� hn0

d
i) (3.17)

which when substituted give

⌃r

int
(!) =

hndi(1� hndi)⌃r2(!)

hn0

d
i(1� hn0

d
i) + [µ̃0 � ✏d � (1� hndi)U ][⌃r2(!)/U2]

. (3.18)

Similarly, the lesser than IPA self energy ⌃<

int
can be calculated using the

ansatz

⌃<

int
(!) =

Im⌃r

int
(!)

Im⌃r2(!)
⌃<2(!) (3.19)

The ⌃r2,<2 are the self energies corresponding to the second order of the
perturbation theory in U (details again in appendix B) and are given by the
expressions

⌃r2(!) = U2

Z
d✏1d✏2d✏3

⇢0(✏1)⇢0(✏2)⇢0(✏3)

!+ + ✏3 � ✏2 � ✏1
⇥ [f̃(�✏1)f̃(�✏2)f̃(✏3) + f̃(✏1)f̃(✏2)f̃(�✏3)] (3.20)
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and

⌃<2(!) = �2ı⇡U2

Z
d✏1d✏2⇢

0(✏1)⇢
0(✏2)⇢

0(✏1 + ✏2 � !)

⇥ [f̃(✏1)f̃(✏2)f̃(! � ✏1 � ✏2)] (3.21)

with ⇢0 = � 1

⇡
Im{gr

d
(!)}, the dot density of states and the weighted Fermi

function f̃(!) =
P

↵
�↵(!)f↵(!)/

P
↵
�↵(!). The interacting Green’s func-

tions can be calculated from the Dyson equations (eq. (3.8)).

3.2.3 Current

The central quantity to be calculated in order to study transport is the
current. This can be calculated by using the Meir-Wingreen formula36

j↵ =
2e

~

Z
d!

2⇡
Re

⇢ X

(khjm)(d�)

Ṽ 2

k↵
[Gr

d�
(!)g<

k↵hjm
(!) +G<

d�
(!)ga

k↵hjm
(!)]

�

(3.22)
which can be simplified by writing in terms of the dot Green’s functions and
the hybridisation as

j↵ = ±↵

Z 1

�1
d!(2i�↵(!)) [2if↵ Im{Gr

d
(!)}+G<

d
(!)] (3.23)

where we have the ± signs for the left and right leads respectively. We have
also set e/~ = 1 and defined f↵ = f(! � µ↵) for convenience.

3.2.4 Numerical details

While at the outset it may seem that the IPA self-energy and subsequently
the Green’s functions involve a straight forward calculation, one should notice
that the IPA self-energy depends on the dot occupation nd, which is further
calculated using the interacting Green’s functions as

nd =
1

⇡

Z
d!G<(!) (3.24)

Thus, we need to self consistently evaluate nd and the self-energy. This can
be achieved by tuning µ̃0 while keeping the dot energy ✏d fixed.

Apart from the self-consistency, we also require adiabatic continuity to
the Fermi liquid and hence require that the Luttinger theorem holds. This
requires that the Luttinger integral

IL = Im

Z
0

�1

d⌃r(!)

d!
Gr

d
(!) = 0 (3.25)
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Figure 3.1: Flowchart for the calculations of ssIPA in the p-h asymmetric case
with the constraints indicated depending on the parameters of calculation

In the zero temperature, equilibrium limit, the µ̃0 is varied while keeping the
self-consistently derived nd constant in order to satisfy IL = 0. The Luttinger
theorem no longer holds away from these limits and the constraint of IL = 0
is relaxed.

Since we are considering a closed system, conservation of charge is a
necessary condition and leads to another constraint in the finite bias case.
In the finite bias case, we require in addition to the self-consistency, the
conservation of charge, via the current continuity equation jL = �jR. This
constraint is again satisfied by varying µ̃0 while keeping the self-consistent
nd fixed. The steps involved in calculation for all the calculation parameters
are shown in the flowchart fig. 3.1.

The calculation of the µ̃0 subject to the constraints above is not always
guaranteed to be numerically stable and we calculate the results for param-
eters where the discrepancy is less than a suitable tolerance.
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3.3 Results

Now that we have derived the equations and described the numerical details
of implementing the steady-state IPA, we can take a look at some of the
results. By choosing a reasonable tolerance in evaluating the constraints, we
are able to study the system in a wide range of parameters including access
to the Vsd = 0 limit.

3.3.1 Benchmarks

Before we can investigate the interplay between U,�, Vsd and ✏d, we need
to benchmark the method away from p-h symmetry. This can be done by
looking at the variation of the zero bias conductance with the scaled dot
energy ✏d/U for various values of temperature, keeping the SOC strength
� = 0. These calculations are then compared to the NRG results of Izumida
et al.37 where we find nice qualitative agreement. The zero bias conductance
is calculated using the expression37

G0 =
2e2

h

Z
d!

✓
�@f
@!

◆
⇡⇢d(!)�0 (3.26)

Where f(!) is the Fermi function. We plot the variation of the zero bias con-
ductance with the dot energy ✏d/U using a Gaussian DOS for U = 20�0,� =
0 in fig. 3.2 for various temperature values as indicated in the legend. We
not only see a good qualitative agreement with the NRG results, but also see
the appearance of isosbestic points near G0 ⇠ 0.65 close to the ✏d = �U, 0
values. The value of G0 ⇠ 0.65 could indicate the origin to be related to the
0.7 anomaly reported in experiments with quantum point contacts, which
also have the same low-energy Hamiltonian38. In all our calculations, we
consider �0 = 0.1, U = 20�0 and the Gaussian DOS unless specified.

3.3.2 Equilibrium

Before going to the case of finite bias, we need to ascertain the e↵ects of an
interplay between the p-h asymmetry and the spin-orbit coupling �. We look
at the e↵ects of � and temperature T on the spectral function for various
values of ✏d.

We plot the spectral function in fig. 3.3 in each panel for di↵erent param-
eter ranges as mentioned in the caption. We begin with the zero temperature
and SOC case in the top-left panel to ascertain the behaviour of the spectral
function with ✏d. We calculate the spectral function for U = 20�0 (constant
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Figure 3.2: The zero bias conductance calculated using eq. (3.26) as a func-
tion of the scaled dot-energy ✏d/U for various values of temperature as indi-
cated. The method benchmarks well with the NRG calculations of Izumida
et al.37.We also notice isosbestic points around G0 ⇠ 0.65 which could be an
indication of the 0.7 anomaly reported in experiments.
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for all calculations presented) and see the appearance of the central Kondo
peak and the Hubbard bands in the p-h symmetric case. Changing the ✏d,
results in a spectral weight transfer away from the ! = 0 value. We see in
the top-right panel that the finite temperature has an e↵ect of the reducing
the ! = 0 peak, much like we see in chapter 2. The SOC too reprises its role
in reducing the equilibrium scale and reducing the width of the central peak
as can be seen in the bottom-left panel. The SOC also has an e↵ect on the
e↵ective bandwidth. The combined e↵ects of SOC and temperature can be
seen to broaden the peaks along with diminishing the sidebands as seen for
all values of ✏d in the bottom-right panel.

The zero bias conductance calculations show the clear e↵ect of tempera-
ture and can be re-calculated in the presence of finite SOC to further study
the interplay. We plot the zero bias conductance for � = 5�0 in fig. 3.4 for
various values of temperature. It is immediately apparent that the SOC has
an e↵ect of enhancing the e↵ect of temperature and the appearance of the
double peak happens at a lower temperature. This can be explained by the
fact that the SOC sharpens the Kondo peak, i.e. reduces TK , the universal
scale. Since the temperature should always be compared to TK , we see that
increasing SOC has a net e↵ect of increasing the e↵ective temperature.

3.3.3 Current

Turning on the bias Vsd on the leads and going out of equilibrium, we study
the e↵ects of SOC, p-h asymmetry and temperature on the IV characteristics.
We plot the current through the left lead in fig. 3.5 for di↵erent values of ✏d/U
for the range of SOC strengths � and temperatures T as considered in fig. 3.3.
Plotting the current for the � = 0, T = 0 case, we see that the p-h symmetric
limit has an oscillatory behaviour, while the IV curves corresponding to the
deeply p-h asymmetric values of ✏d = �1.5U, 0.5U are mostly positive. It is
also noteworthy that the ✏d = �U curve does not show any oscillation, while
the ✏d = 0 curve does. This clearly indicates a preferred direction of p-h
asymmetry. Since we are looking at only the current through the left lead,
this might be e↵ect of µL on the hybridisation due to the finite Gaussian
DOS. In the top-right panel, we see that the temperature does not have a
significant e↵ect on the general behaviour, but does a↵ect the linear response
regime, at least in the p-h symmetric case. Coming to the bottom-left panel,
we see that the SOC broadens the e↵ective hybridisation, and the oscillations
are pushed beyond the Vsd values considered here. The bottom-right panel
shows the combined e↵ect of SOC and temperature lead to a broadening of
the e↵ective hybridisation and a smoothening of the IV curve.
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Figure 3.3: In each of the panels, we plot the spectral function ⇢(!) as a
function of frequency ! for various values of ✏d/U . The black solid line
in all the panels corresponds to ✏d = �1.5U , while the black dashed line
corresponds to ✏d = 0.5U . Similarly, the red solid and dashed lines correspond
to ✏d = �U and ✏d = 0 respectively. The green solid line corresponds to the
p-h symmetric limit with ✏d = �U/2. The panels correspond to di↵erent
values of � and T , starting with the � = 0, T = 0 case on the top-left panel.
The top-right panel corresponds to � = 0, T = 0.1�0, the bottom-left panel
corresponds to � = 10�0, T = 0 while the bottom right panels looks at the
combined e↵ects with � = 10�0, T = 0.1�0
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Figure 3.4: The zero bias conductance plotted as a function of ✏d/U in the
presence of SOC (� = 5�0) shows the persistence of the isosbestic point for
various temperature values. The SOC has an e↵ect of enhancing the e↵ect
of temperature due to the corresponding reduction of the universal scale as
seen in chapter 2.
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Figure 3.5: The current through the left lead jL plotted as a function of
the Vsd for various values of ✏d/U calculated for di↵erent parameters in each
panel. The colour and line-styles correspond to the same ✏d/U as in fig. 3.3
and the panels correspond to the same � and T values considered. We see that
the current is enhanced and positive only away from p-h symmetry and an
oscillatory behaviour is seen for the p-h symmetric curve. The temperature
has an e↵ect on the linear response, while the SOC broadens the current
curve due to the increased e↵ective bandwidth.
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3.4 Summary

In this chapter, we have implemented the steady-state interpolative approx-
imation to study the interplay between the valence fluctuations and SOC in
DC transport through a quantum dot. The method has been benchmarked
in the equilibrium case with earlier results37 and we see a good agreement.
While the calculation of µ̃0 is not numerically stable for all parameter ranges,
we have been able to work with a wide range of parameters including the
zero bias, finite temperature and a large range of ✏d values.

In this chapter, we focus on mainly investigating the interplay between
the SOC and the p-h asymmetry. In equilibrium, we see that the e↵ect of
SOC in reducing the equilibrium scale lead to a larger e↵ective temperature
as evidenced by the e↵ect on the zero bias conductance for various values of
✏d/U . The reduction in the scale is also seen directly as the narrowing of the
Kondo peak in the spectral function.

Out of equilibrium, we see that the current through the lead has an oscilla-
tory behaviour and the emergence of negative current for the p-h symmetric
and the moderately low p-h asymmetric cases. The SOC has an e↵ect of
increasing the e↵ective bandwidth and thereby increasing the range of Vsd

where the current is positive for every value of ✏d/U considered.
Coming to the 0.7 anomaly, we see that the zero bias conductance shows

an isosbestic point very close to the value of 0.7 and could be a signature of
the same. Since we have not considered the magnetic field, this cannot be
substantiated and needs a systematic study of the same. Such a systematic
study in the presence of the magnetic field is a future direction which will be
investigated.
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Chapter 4

A non-perturbative Local
Moment Approach for systems
out of equilibrium

4.1 Introduction

As we have seen earlier, the solution of the Single Impurity Anderson Model
(SIAM) is important both as a paradigmatic benchmark for any method and
also in using the method as an impurity solver for Dynamical Mean Field
Theory (DMFT) based calculations. In this regard, the Local Moment Ap-
proach (LMA) has been a very successful method in equilibrium and has been
applied to a wide variety of systems like the SIAM1, the Gapped Anderson
Model2, Periodic Anderson Model3;4, Bilayer models5, etc. The success of
the LMA is in no small part due to the explicit inclusion of the local moment
via the Unrestricted Hartree-Fock (UHF) Green’s functions. The regular and
well-known deficiencies of the UHF are circumvented in the LMA by consid-
ering a two self-energy picture followed by a restoration of the symmetry1.
This allows the LMA to be applied to solve systems with a wide range of in-
teraction and coupling strengths, unlike the slave particle approaches, which
rely on U ! 1 and the 1/N approaches, which rely on N ! 1 limits and
cannot be accurately applied to a spin-1

2
(N = 2) and finite U scenarios.

Nonequilibrium quantum phenomena have been studied using a wide va-
riety of approaches like Keldysh perturbation theory6;7, Quantum Monte
Carlo methods8, Renormalization group methods9, Equation of Motion tech-
niques10, Exact diagonalization based approaches11, Master equation based
approaches12, etc. Experiments have measured transport quantities like cur-
rent, di↵erential conductance, etc. in systems with various parameters and
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found universal behaviour in the low bias linear response regime13;14. But
for large bias values beyond from the linear response regime, the universal-
ity is seen to break down and can lead to the emergence of non-universal
features. Even though there are quite a few theoretical methods, each suf-
fers from certain shortcomings that limit the scope of application. A few
examples of this would be the sign problem in the Quantum Monte-Carlo-
based approaches, the limited system size practically accessible with exact
diagonalisation-based methods and the unsystematic truncation of the hi-
erarchy of equations of motion in the equation of motion-based techniques.
This has resulted in consensus regarding many phenomena like the fate of
the Kondo e↵ect still not being established out of equilibrium. Capturing
the subtler aspects of universality, like an exponentially small Kondo scale,
is impossible with Keldysh perturbation theory-based methods, and a non-
perturbative approach is required. Keeping all these factors in mind, the
generalization of the LMA to the nonequilibrium scenario, as we have done
in this chapter, is indeed a much-needed and fruitful endeavour.

The LMA has been applied with great success in equilibrium, in partic-
ular by its excellent agreement with exact methods like Bethe ansatz and
NRG. The LMA has been known to capture accurately the strong-coupling
behaviour both at and away from particle-hole symmetry. It has also been
used to explain the universal features at finite temperature. It is not only
an accurate method, but is also computationally inexpensive compared to its
counterparts like the CTQMC, DMRG or Exact Diagonalization. Thus, it is
a great candidate for generalization to nonequilibrium.

The LMA is generalized to non-equilibrium by recasting Green’s functions
and the self-energies in terms of the Keldysh contour times and subsequently
using the Langreth rules to work with real-time quantities. We obtain gen-
eral time-dependent expressions for the aforementioned functions and then
restrict ourselves to the steady state scenario where we can use the Fourier
transform to express these quantities in terms of !. As a demonstration, we
consider the SIAM in the infinitely wide flat band limit where we can show
analytically that the expressions reduce to the equilibrium counterparts when
the bias is set to zero and the corresponding U ! 1 asymptotes for the self-
energy and the equilibrium scale !m. The results from our calculations can
be compared both to well-known equilibrium benchmarks and results from
other non-equilibrium techniques applied on the SIAM. In equilibrium, the
NRG results and earlier work with the LMA serve as sanity checks, while the
zero bias finite temperature conductance and the corresponding empirically
derived form serve as a good benchmark to look at universality14. It is well
known that the Kondo temperature, which is proportional to the location of
the polarization peak (!m) is the equilibrium scale and universality is seen
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to hold even for large values of temperature (T ⇠ 100!m)15. The role of !m

out of equilibrium and the extent of universality are important questions we
answer.

Mesoscopic transport has been well studied and continues to have sus-
tained interest16–18. In this regard, the IV (current-voltage) diagrams and
the di↵erential conductance are also interesting quantities that are obtained
from the generalized LMA. Unlike methods like CTQMC, the steady-state
LMA can be easily applied to both the zero and finite temperature regimes
and allows us to look at the e↵ect of temperature on the transport quantities
like the current and di↵erential conductance.

In this chapter, we have derived the formalism for the steady-state LMA
followed by analytical expressions in the case of equilibrium. This is followed
by a detailed explanation of the numerical implementation followed by the
results and their discussion. We conclude with the summary and conclusions
of the chapter.

4.2 Formalism

As we have seen, the Single Impurity Anderson Model (SIAM) is a paradigm
that is the ideal starting place to generalize the LMA to out-of-equilibrium.
The SIAM connected to leads with a DC bias is given by the following Hamil-
tonian:

H = ✏d d
†
�
d� + Un"n# +

X

k�,↵

⇣
✏k,↵c

†
k�,↵

ck�,↵ + Vk↵d
†
�
ck�,↵ + V ⇤

k↵
c†
k�,↵

d�
⌘

(4.1)

where d†
�
(d�) are the creation(annihilation) operators on the impurity site.

n"(#) = d†"(#)d"(#) is the number operator. c†
k�,↵

(ck�,↵) are the corresponding
operators for the noninteracting baths. ↵ 2 {L,R}, where L, R denote the
left and the right baths, which are set at the chemical potentials µL and µR,
respectively, and have a temperature T . ✏k,↵ are the bath dispersions and
Vk↵ denote the hybridisation between the baths and the impurity. To be able
to simplify the calculations and to derive analytical results, we consider the
limit where ✏k,↵ = ✏ and Vk,↵ = V , which correspond to the flat band and
k-independent coupling.

The generalization of the LMA to non-equilibrium involves the follow-
ing steps: derivation of the unrestricted Hartree-Fock Green’s functions,
constructing and evaluating the bare polarization diagrams using the UHF
Green’s functions, using the random phase approximation to derive the full
polarization and calculating the <,R self energies in terms of the polarization
and UHF Green’s functions. Since the LMA consists of two self-energies, the
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restoration of symmetry between these has to be done in equilibrium. The
details of these individual steps follows.

4.2.1 Unrestricted Hartree Fock Approximation

The LMA is built on the unrestricted Hartree-Fock (UHF) Approximation
which includes the local moment explicitly and allows us to later dynamically
couple the single-particle processes to the underlying low-energy spin fluc-
tuations. Since the UHF approximation is a mean-field approximation for
the interaction term, we can begin by writing the mean-field approximation
explicitly as

H = ✏d d
†
�
d�+U

X

�

(n�hn�̄i)+
X

k�,↵

⇣
✏k,↵c

†
k�,↵

ck�,↵ + Vk↵d
†
�
ck�,↵ + V ⇤

k↵
c†
k�,↵

d�
⌘

(4.2)
where the hni is the expectation value of the number operator in the ground
state. The local moment(M) and the occupation(n) on the dot can be cal-
culated using the expressions

M = |hn"i � hn#i|
n = hn"i+ hn#i

(4.3)

Using these definitions, we can write the interaction term as

U
X

�

(n�hn�̄i) =
X

�

U

2
(n� �M) (4.4)

The corresponding Green’s functions can be calculated using the Dyson equa-
tion

G(z, z0) = G0(z, z
0) +

Z

C
G0(z, z̄)⌃(z̄)G(z̄, z0)dz̄ (4.5)

Where G(z, z0) is the interacting Green’s function, G0(z, z0) is the non-interacting
Green’s function and ⌃(z̄) is the self-energy. The indices z, z0, z̄ correspond
to times on C, the Keldysh contour. The essential feature of the UHF is
the appearance of two degenerate solutions for the impurity moment namely
M = ±|M |, which we indicate with A,B respectively to get

G0 =
1

2
[GA� + GB�] (4.6)

The UHF approximation is an approximation for the self-energy and for the
particle-hole symmetric case, the dot energy level ✏d = �U

2
, and n = 1. This
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leads to the cancellation of the first term in eq (4.4) which gives the required
self-energy contribution

⌃0

A�
=

��U
2

M = �⌃0

B�
(4.7)

Which we can see is independent of time and hence a static approximation.
We can now use the Langreth rules (see §1 for the derivation) to go from the
Keldysh contour to real time. Since we choose to work in the steady-state
regime, only t � t0 the time di↵erence is relevant and allows us to use the
Fourier transform to obtain

GR

A�
(!) =

1

!+ + �UM

2
+ �(!)

G<

A�
(!) = 2iIm [�(!)]

⇢
f(! � µL) + f(! � µR)

2

�
|GR

A�
(!)|2

(4.8)

Where �(!) is the hybridisation function and f(! � µ↵) is the Fermi func-
tion. Corresponding equations can also be written for the B-solution. The
hybridisation function can be calculated as � =

P
↵
�↵, with the individual

lead hybridisations being given by

�↵(!) =
X

k

|Vk|2
!+ � ✏k↵

(4.9)

We can define a weighted Fermi function f̃(!) =
n

�Lf(!�µL)+�Rf(!�µR)

�L+�R

o
,

where �↵ = � Im{�↵} and the spectral function ⇢� = � 1

⇡
Im

�
GR

A�
(!)

 
to

write the following

Im
�
GR

A�(!)

 
= �⇡⇢�(!)

Im
�
GA

A�(!)

 
= ⇡⇢�(!)

G<

A�(!)
= 2⇡i⇢�(!)f̃(!)

G>

A�(!)
= �2⇡i⇢�(!)

⇣
1� f̃(!)

⌘
(4.10)

In the subsequent sections of this chapter, we restrict ourselves to the infinite
flat-band case and a k-independent coupling to the dot to get

�↵(!) = � i�0

2
. (4.11)

While in equilibrium the UHF recovers the noninteracting (U = 0) and
atomic (�0 = 0) limits, the Fermi liquid behaviour is violated and no cor-
responding Kondo resonance is captured. While this is a serious deficiency,
one can circumvent this issue is by dynamically coupling the single-particle
processes to the low-frequency spin fluctuations.
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Figure 4.1: The particle-hole ladder diagrams denoting the polarization ⇧+�
with bare propagators denoted by solid lines and the interaction denoted by
the squiggly lines. The time increases vertically

4.2.2 Polarization

The transverse spin fluctuations can be considered by calculating the corre-
sponding polarization propagators

⇧+�(z, z0) = ihT [S+(z)S�(z0)]i
⇧�+(z, z0) = ihT [S�(z)S+(z0)]i

(4.12)

Where we have dropped the A/B labels for convenience and use the expres-
sion for the A solution unless specified. The propagators can be calculated
by performing the ladder sum of the interactions as shown in figure 4.1

Zeroth Order

The zeroth order polarization bubble in figure 4.1 can be calculated using
the expression

0⇧+�(z, z
0) = iG#(z, z

0)G"(z
0, z). (4.13)

We can now go from the Keldysh contour to the real time by making use of the
Langreth rules corresponding to the product to get the real time components

0⇧R/A

+� (t, t0) = iGR/A

# (t, t0)G<

" (t
0, t) + iG<

# (t, t
0)GA/R

" (t0, t)
0⇧<

+�(t, t
0) = iG<

# (t, t
0)G>

" (t
0, t)

(4.14)
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Like before, we restrict ourselves to the steady-state, which allows us to use
the Fourier transform g(!) = 1/2⇡

R
d(t� t0)ei!(t�t

0
)g(t� t0) to get

0⇧R/A

+� (!) = i

Z
d✏

2⇡

h
G<

# (✏)G
R/A

" (✏� !) + GA/R

# (✏)G<

" (✏� !)
i

0⇧<

+�(!) = i

Z
d✏

2⇡

⇥
G<

# (✏)G>

" (✏� !)
⇤ (4.15)

While the convolutions above can be directly calculated, it is better for nu-
merical implementation to express the polarization in terms of the spectral
function ⇢� = � 1

⇡
Im

�
GR

�
(!)

 
. This can be achieved by using the spectral

representation for the retarded and advanced Green’s function as given below

GR/A

�
(✏) =

Z
d✏0⇢�(✏0)

✏± � ✏0
. (4.16)

Using the spectral representation and substituting the corresponding fre-
quencies, we get the expressions

0⇧R/A

+� (!) =

Z
d✏

2⇡


(iG<

# (✏))

✓Z
d✏0⇢"(✏0)

✏± � ! � ✏0

◆

+

✓Z
d✏0⇢#(✏0)

✏⌥ � ✏0

◆
(iG<

" (✏� !))

�
(4.17)

and
0⇧<

+�(!) = i

Z
d✏

2⇡
{iG<

# (✏)}{�iG>

" (✏� !)} (4.18)

where we have used the fact that G7 are purely imaginary.
While we have now represented the convolutions in terms of the spectral

function and other real functions like iG<

�
(✏), the integral in eqn (4.16) and

subsequently in the polarization cannot be directly implemented and needs
to be simplified. This can be done by using the Sokhotski–Plemelj theorem

Z
d✏0⇢�(✏0)

✏± � ✏0
= P

Z
d✏0⇢�(✏0)

✏� ✏0
± i⇡⇢(✏) (4.19)

where P stands for the Cauchy Principal Value. Then we require only the
imaginary parts of 0⇧r/<

+� (!), which are given by

Im
�
0⇧R

+�(!)
 
= �

Z
d✏

2

⇥�
Im

�
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# (✏)
 �
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�
Im

�
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" (✏� !)
 �⇤

(4.20)
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and

Im
�
0⇧<

+�(!)
 
= �

Z
d✏

2⇡
Im

�
G<

# (✏)
 
Im

�
G>

" (✏� !)
 

(4.21)

These expressions can now be expressed only in terms of real functions by
using the equations (4.10) and substituting the expressions for the lesser than
components to get

Im
�
0⇧R

+�(!)
 
= ⇡

Z
d✏
h
⇢#(✏)f̃(✏)⇢"(✏� !)� ⇢#(✏)⇢"(✏� !)(1� f̃(✏� !))

i

(4.22)
and

Im
�
0⇧<

+�(!)
 
= 2⇡

Z
d✏⇢#(✏)f̃(✏)⇢"(✏� !)

⇣
1� f̃(✏� !)

⌘
(4.23)

Hard-core Boson constraint

We see in the eqn (4.23) the appearance of the product f̃(✏)[1 � f̃(✏ � !)].
This product is responsible for carrying the information about the occupation
of the dot in the self energy. We can now simplify this product using the
expressions

1� f̃(✏) =
(1� fL(✏)) + (1� fR(✏))

2

1� fL(✏) =
1

e�(�✏+µL) + 1

(4.24)

Where we have used f↵(✏) = f(✏�µ↵) and the definition of the Fermi function
in terms of � = 1/kBT , the inverse temperature. If we now work in the bias
range where the particle-hole symmetry is conserved, i.e. µL = �µR = µ, we
get

1� fL(✏) =
1

e�(�✏�µR) + 1
= fR(�✏)

1� f̃(✏) =
fR(�✏) + fL(�✏)

2
= f̃(�✏)

(4.25)

Using this identity, we can now simplify the product of Fermi functions in
eqn (4.23), as follows

f̃(✏)[1� f̃(✏� !)] = f̃(✏)f̃(�✏+ !)

=
1

4
[fL(✏) + fR(✏)] [fL(�✏+ !) + fR(�✏+ !)]

(4.26)
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Which gives rise to four terms

I : fL(✏)fL(�✏+ !)

II : fR(✏)fR(�✏+ !)

III : fL(✏)fR(�✏+ !)

IV : fR(✏)fL(�✏+ !)

(4.27)

Now, let us consider the Ist term. We can use the definition of the Fermi
functions to write

fL(✏)fL(�✏+ !) =
1

e�(✏�µ) + 1

1

e�(�✏+!�µ) + 1

=
e�(✏�!+µ)

(e�(✏�µ) + 1) (e�(✏�!+µ) + 1)

(4.28)

The product can now be simplified using partial fractions to get

fL(✏)fL(�✏+ !) =
e�(✏�!+µ)

e�(✏+µ) � e�(✏�µ)


1

e�(✏�µ) + 1
� 1

e�(✏�!+µ) + 1

�

=
e�(�!+µ)

e�(�!+µ) � e�(�µ)
[fL(✏)� fR(✏� !)]

=
1

1� e�(�2µ+!)
[fL(✏)� fR(✏� !)]

= �nB(! � 2µ)[fL(✏)� fR(✏� !)]

(4.29)

Where we have the Bose function nB(! � 2µ) = 1

e�(!�2µ)�1
. Also, using

2µ = Vsd, the source-drain bias, we have

I : fL(✏)fL(�✏+ !) = �nB(! � Vsd)[fL(✏)� fR(✏� !)] (4.30)

Carrying out a similar exercise for the other terms yields

II : �nB(! + Vsd)[fR(✏)� fL(✏� !)]

III : �nB(!)[fL(✏)� fL(✏� !)]

IV : �nB(!)[fR(✏)� fR(✏� !)]

(4.31)

Thus the product in eqn (4.23) reads

f̃(✏)[1� f̃(✏� !)] = �1

4

h
nB(! � Vsd)[fL(✏)� fR(✏� !)]

+ nB(! + Vsd)[fR(✏)� fL(✏� !)]

+ 2nB(!)[f̃(✏)� f̃(✏� !)]
i

(4.32)
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The Bose functions arising in the expressions above correspond to a spin-flip
when an electron with spin � hops into and out of the impurity site resulting
in an electron with spin �̄ correspondingly hopping o↵ or into the impurity
site. Since the spin-flip occurs as a result of Fermion hopping, the number
of spin-flips at a given energy is limited by the electronic occupation of the
impurity site at that energy. Hence, the spin-flips are hard-core Bosons. This
implies that while at zero temperature, the expressions in eqn (4.23) can be
directly used to compute the polarization, at finite temperature, the Bose
function needs to be treated carefully.

At finite temperature, if one uses the eqn (4.32) directly, the Bose function
corresponds to free Bosons, which allow the possibility of an infinite number
of spin-flips and hence have to be replaced with the physically correct hard-
core Bosons. This can be done by replacing the finite temperature Bose
function with its zero temperature counterpart, i.e. nB(!) ! �⇥(�!). This
constraint though physically motivated is not being derived diagrammatically
and is hence an assumption of the method. Not imposing such a constraint
results in incorrect results even in equilibrium. Thus we have the corrected
expression

Im
�
0⇧<

+�(!)
 
=
⇡

2

Z
d✏⇢#(✏)⇢"(✏� !)

h
⇥(�! + Vsd)[fL(✏)� fR(✏� !)]

+⇥(�! � Vsd)[fR(✏)� fL(✏� !)]

+ 2⇥(�!)[f̃(✏)� f̃(✏� !)]
i

(4.33)

The expressions eqs. (4.22) and (4.23) are convolutions of real functions
and subsequently can be calculated easily using either the Fast Fourier Trans-
form (in case of a uniform grid) or explicit multiplication (in case of a
nonuniform grid). The real parts of the polarization can be found using
the Kramers-Kronig Transformation

Re{�(!)} =
1

⇡

Z
Im{�(✏)}
✏� !

d✏ (4.34)

Thus the zeroth order bubble of the Polarization can be calculated as
0⇧R

+�(!) = Re
�
0⇧R

+�(!)
 
+ i Im

�
0⇧R

+�(!)
 

0⇧<

+�(!) = i Im
�
0⇧<

+�(!)
 (4.35)

Since we considered only the A solution, we need a way to calculate the
corresponding zeroth order propagators for the B solution. While this can
be done by repeating the entire calculation, we can use the symmetry of A,B
solutions1 to write

0⇧R/<

A+�(!) =
0⇧R/<

B�+
(!) (4.36)
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We can also look at the form of the polarization ( eq. (4.13)) and notice that
by a change of variables that

0⇧R/<

A+�(!) =
0⇧R/<

A�+
(�!) (4.37)

Full Polarization - Random Phase Approximation

The LMA involves considering the spin fluctuation via the polarization prop-
agators which have a form as seen in fig. 4.1, these diagrams can be mathe-
matically expressed as

⇧+�(z, z
0) = G#(z, z

0)G"(z
0, z) +

Z
dz̄G(z, z̄)U(z̄)G(z̄, z0) + · · · (4.38)

The form of the diagrams allows us to calculate the propagators to all orders
by performing the ladder sum. The corresponding Dyson equation for this
reads as

⇧+�(z, z
0) = 0⇧+�(z, z

0) +

Z
dz̄0⇧+�(z, z̄)U⇧+�(z̄, z

0) (4.39)

Where we have used eq. (4.13) and the fact that U(z̄) = U . We once again
apply the Langreth rules to go from the Keldysh contour times to the real
times. This gives us the components

⇧R/A
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dt1
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+

Z
dt1
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A

+�(t1, t
0)

(4.40)

We first consider the retarded component. We now again restrict ourselves
to the steady state which allows us to apply a Fourier transform as shown
below

⇧R

+�(!) =
0⇧R

+�(!) + U

Z
dt1e

�i!1(t�t1)0⇧R

+�(t� t1)e
�i!2(t1�t

0
)⇧R

+�(t1 � t0)

(4.41)
The integral over the intermediate time can be simplified by using the identityR
dtei(!1�!2)t = �(!1 � !2) to get

⇧R

+�(!) =
0 ⇧R

+�(!) + U0⇧R

+�(!)⇧
R

+�(!) (4.42)
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Which we see is of the Random Phase Approximation (RPA) form and can
be written as

⇧R

+�(!) =
0⇧R

+�(!)

1� U0⇧R
+�(!)

(4.43)

Now we turn to the lesser-than component in eqn (4.40) which is given by

⇧<

+�(t, t
0) = 0⇧<

+�(t, t
0) +

Z
dt1

0⇧R

+�(t, t1)U⇧
<

+�(t1, t
0)

+

Z
dt1

0⇧<

+�(t, t1)U⇧
A

+�(t1, t
0) (4.44)

Again using the steady state condition, we can apply the Fourier transform
as shown below
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Z
dt1e

�i!1(t�t1)0⇧R

+�(t� t1)e
�i!2(t1�t

0
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Z
dt1e

�i!1(t�t1)0⇧<

+�(t� t1)e
�i!2(t1�t

0
)⇧A

+�(t1 � t0) (4.45)

This can once again be simplified using the identity
R
dtei(!1�!2)t = �(!1�!2)

to get

⇧<

+�(!) =
0 ⇧<

+�(!) + U0⇧R

+�(!)⇧
<

+�(!) + U0⇧<

+�(!)⇧
A

+�(!) (4.46)

In order to simplify this, we need the expression for ⇧A

+�(!). This can be
obtained without explicit calculation by comparing the Dyson equation (eqn
(4.40)) for the advanced and retarded components and noticing that they
have an identical structure. This allows us to write

⇧<

+�(!) =
0 ⇧<

+�(!)+U0⇧R

+�(!)⇧
<

+�(!)+U0⇧<

+�(!)
0⇧A

+�(!)

1� U0⇧A
+�(!)

(4.47)

which upon rearrangement of the terms gives

[1� U0⇧R

+�(!)]⇧
<

+�(!) =
0⇧<

+�(!)[1� U0⇧A

+�(!)] + U0⇧<

+�(!)
0⇧A

+�(!)

1� U0⇧A
+�(!)

.

(4.48)
This can be further simplified as

⇧<

+�(!) =
0⇧<

+�(!)

[1� U0⇧R
+�(!)][1� U0⇧A

+�(!)]
(4.49)
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Figure 4.2: The self-energy approximation of LMA. The solid lines are the
UHF propagators, with the spin-flip explicitly seen and the form consisting of
the UHF propagators along with the polarization bubble. The time increases
vertically

Thus we have the required components of the full polarization

⇧R

+�(!) =
0⇧R

+�(!)

1� U0⇧R
+�(!)

⇧<

+�(!) =
0⇧<

+�(!)

[1� U0⇧R
+�(!)][1� U0⇧A

+�(!)]

(4.50)

Once again we considered only the A solution for ease of notation, but the
B solution can also be calculated from this as the full polarization also has
the same symmetry expressed in eqn (4.36).

4.2.3 Self-Energy

The most crucial aspect of any many-body theory for solving the impurity
problem is the self-energy. The self-energy approximation of the LMA is
based on the fact that the dynamical spin-flip scattering as calculated using
the polarization propagators is essential to capture Kondo physics and is
considered by taking the self-energy to be the diagram in figure 4.2.

The self-energy can be expressed mathematically as

⌃A�(z, z
0) = iU2GA�̄(z, z

0)⇧A�̄�(z
0, z) (4.51)

In order to simplify the notation, we again drop the A label and without loss
of generality consider only the � =" case. We can use the Langreth rules to
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go from the times on the Keldysh contour to real times to get the components

⌃R

" (t, t
0) = iU2

⇥
GR

# (t, t
0)⇧<

+�(t
0, t) + G<

# (t
0, t)⇧A

+�(t
0, t)

⇤

⌃<

�
(t, t0) = iU2G<

# (t, t
0)⇧>

+�(t
0, t)

(4.52)

Restricting ourselves to the steady state case, we can use the Fourier trans-
form g(!) = 1/2⇡

R
d(t� t0)ei!(t�t

0
)g(t� t0) to get

⌃R

" (!) = iU2

Z
d✏

2⇡

⇥
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+�(✏� !) + G<
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Z
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2⇡
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# (✏)⇧
>

+�(✏� !)
(4.53)

Similar to the calculation for the zeroth order polarization, we express the
Green’s functions in terms of the spectral function ⇢(!) using the spectral
representation (eqn (4.16)) and use the expressions eqn (4.10) to get the
imaginary parts of the self-energy which read

Im
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= �U2
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2
⇢#(✏) Im

�
⇧<

+�(✏� !)
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Z
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(4.54)

Where we have used Im
�
⇧A

+�(!)
 
= � Im

�
⇧R

+�(!)
 
. While eqn (4.54) is

useful for calculations, we can also perform a change of variables to get
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⇣
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⌘

(4.55)
We now once again have the expressions in terms of convolutions of real

functions and can be evaluated either using FFT or explicit multiplication
as the grid may require. The corresponding real parts can be found using
the Kramers-Kronig Transform (eqn (4.34)) to give the full self-energy

⌃r

"(!) = Re
�
⌃r

"(!)
 
+ i Im

�
⌃r

"(!)
 

(4.56)

⌃<

" (!) = i Im
�
⌃<

" (!)
 

(4.57)
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The two labels A,B and the corresponding self energies ⌃A/B form the basis
of the Local Moment Approach. The expression for ⌃B can be obtained by
using the symmetry1 given by

⌃A�(!) = ⌃B�̄(!) (4.58)

which further allows us to obtain the self-energy for �̄ without explicit cal-
culation using

⌃A�(!) = �⌃⇤
A�̄

(�!). (4.59)

4.2.4 Symmetry Restoration

While we have described how the spin-flip dynamics are included in the
LMA via the polarization and the self-energy approximation, the major dif-
ference with LMA when compared to other methods is the concept of sym-
metry restoration. As has been seen, the UHF approximation could capture
the noninteracting and atomic limits, but failed to capture Fermi liquid be-
haviour. Since this is the deficiency we want to circumvent, the obvious
question which arises is: Under what conditions does the self-energy ⌃(!) as
! ! 0 give rise to Fermi liquid behaviour? Or in other words, what is the

condition required for ⌃(!)
!!0��! O(!2)?

This can be seen by looking at the full self-energy including both the
UHF and the self-energy approximations to be given by the expression

⌃̃A�(!) = ⌃
0

A�
(!) + ⌃A�(!)

⌃̃A�(!) = ��
2
UM + ⌃A�(!)

(4.60)

Where again the symmetries in eqn (4.36) apply. The condition for adiabatic
continuity to the non-interacting picture is given by the pinning of the ! = 0
spectrum or equivalently the Friedel sum rule. As we can see from eqn (4.10)
and the corresponding Dyson equations for the self-energy, this corresponds
to

⌃̃A�(! = 0) = 0 (4.61)

Which using the symmetries and dropping the A label reduces to

⌃̃"(! = 0) = ⌃̃#(! = 0) = 0 (4.62)

As can be seen in eqn (4.54) (and from discussions in1), the imaginary parts
of the self-energy components vanish at the Fermi level i.e. Im

�
⌃R

 
(! =

0) = 0, the condition needs to be only satisfied by the real part of the self-
energy, i.e.

Re
�
⌃R

�
(! = 0)

 
=
�

2
UM (4.63)
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which corresponds to

Re
�
⌃R

" (! = 0)� ⌃R

# (! = 0)
 
= UM (4.64)

In practice, the satisfaction of the condition is ensured by self-consistently
varying U for a fixed UM beginning with a guess value close to the U deter-
mined from the RPA form of the polarization.

While the symmetry restoration is necessary in the equilibrium scenario,
in case of nonequilibrium, the picture completely changes. Since the concept
of a ground state is no longer well defined and the system is not restricted
to the equilibrium ground state, the requirement for a Fermi-liquid picture
is relaxed. This is also seen in the fact that the Luttinger theorem arising
from the Friedel sum rule no longer holds. This is also the case for finite
temperature and the symmetry restoration is valid only in zero temperature.
Thus, when we consider a non-zero bias and temperature, we satisfy the
symmetry restoration only for zero bias and temperature and use the thus
calculated value of U to perform the finite bias and temperature calculations.

Spin Flip scale

Apart from the recovery of the Fermi-liquid physics, another important as-
pect of the symmetry restoration is the emergence of a low energy spin-flip
scale !m. As has been shown19, if one considers only the UHF approxima-
tion, self-consistently solving for the moment leads to a ! = 0 pole in the
polarization ⇧R

+�. This physically corresponds to the fact that the UHF solu-
tion is degenerate and has a zero energy cost for a spin flip. Since this is valid
only in the atomic limit, the zero energy spin flip is not correct for the case
of the Fermi-liquid regime where there is an adiabatic continuation to the
non-interacting limit. Since the local moment is determined self-consistently
while performing the symmetry restoration, the corresponding Im

�
⇧R

+�
 
(!)

does not have a pole at ! = 0, but in fact at a small finite value !m. This
scale has been shown to be proportional to the Kondo scale and subsequently,
the quasiparticle weight which is the universal scale in equilibrium.

4.2.5 Transport quantities

One of the most interesting aspects of out-of-equilibrium systems is trans-
port. In the subsequent discussion, we restrict ourselves to the steady-state
infinitely-wide flat-band case of the SIAM and calculate expressions for cur-
rent and di↵erential conductance. Before we calculate the current, we need
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to calculate the interacting dot Green’s function using the Dyson equations

GR = GR

0
+GR

0
⌃RGR

G< = GR⌃<GA
(4.65)

In the steady state case, using the Fourier transform and the expressions for
the self-energy and UHF Green’s functions, we get

GR/A

�
(!) =

1

!± + �UM

2
+ �(!)� ⌃R/A

� (!)

G<

�
(!) = GR

�
(!)⌃<

�
(!)GA

�
(!).

(4.66)

Current

The current through the lead ↵ into the central dot can be calculated using
the Meir-Wingreen formula16;20 using the interacting Green’s function as

j↵� =
ie

h

Z
d!�↵(!)[2if(! � µ↵) ImGR

�
(!) +G<

�
(!)] (4.67)

In steady-state, charge conservation will lead to the condition jL = �jR.
Further, we can use the infinitely-wide flat band limit (�↵ = � Im{�↵} =
�0/2) and symmetrise the current (j =

P
�

jL��jR�

2
), to get

j = ��0

Z
d! [f(! � µL)� f(! � µR)] Im

n
G̃R(!)

o
(4.68)

where we have defined G̃R(!) = 1

2
[GR

" (!) +GR

# (!)] and set e

h
= 1.

Conductance

The di↵erential conductance G is straight-forward to calculate once we have
obtained the current using

G =
dj

dVsd

(4.69)

Where Vsd = µL � µR, is the source-drain bias.

4.3 Analytical Expressions

As we have described in the earlier section, while the LMA expressions we
have derived hold for the case of the SIAM with an arbitrary lead density of
states, it is instructive to consider the case of the infinitely-wide flat band
limit. This not only simplifies the calculations of quantities like the current
but also allows us to analytically calculate expressions for the polarization
and self-energy.

81



4.3.1 Recovery of equilibrium

We see from the formalism, that the self-energy approximation is built on
the polarization and hence the first set of expressions we would like to derive
would be the zero bias limit of the polarization and show that we can recover
the equilibrium expressions by simply putting Vsd = µ↵ = 0. This serves
as a sanity check and also allows for clearly identifying various limits of the
quantities in question.

By looking at the form of the full polarization in eqn (4.50), we see that
it is su�cient to show the recovery of equilibrium for the zeroth order term
since the bias enters implicitly only through 0⇧R/<

+� (!). Moreover, as we
have seen earlier, we can use the Kramers-Kronig Transform ( eq. (4.34)) to
obtain the real part of the polarization and hence need to consider only the
imaginary components

Im
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0⇧R

+�(!)
 
= ⇡

Z
d✏
h
⇢#(✏)f̃(✏)⇢"(✏� !)� ⇢#(!)⇢"(✏� !)(1� f̃(✏� !))

i
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+�(!)
 
= 2⇡

Z
d✏⇢#(✏)

⇣
1� f̃(✏)

⌘
⇢"(✏� !)f̃(✏� !)

(4.70)

Where we recall that ⇢(✏) = � 1

⇡
Im

�
GR

�
(✏)
 
and f̃(!) =

n
�Lf(!�µL)+�Rf(!�µR)

�L+�R

o

. In order to recover equilibrium, let us consider Vsd = µ↵ = 0 and the
infinitely-wide flat band case. The weighted Fermi-function then reduces
to f̃(!) = f(!) and allows us to simplify the expression for the retarded
component of the zeroth order polarization as

Im
�
0⇧R

+�(!)
 
= ⇡

Z
d✏ [⇢#(✏)f(✏)⇢"(✏� !)� ⇢#(✏)⇢"(✏� !)(1� f(✏� !))]

(4.71)
If we additionally consider the case of zero temperature, then the Fermi
functions can be replaced with the corresponding Heaviside functions, i.e.
f(!) = ⇥(�!). This allows us to write

Im
�
0⇧R

+�(!)
 
= ⇡

Z
d✏ [⇢#(✏)⇥(�✏)⇢"(✏� !)]

� ⇡

Z
d✏ [⇢#(!)⇢"(✏� !)(⇥(✏� !))] (4.72)

where we have used the fact that 1 � f(!) = f(�!) and split the integral.
Using properties of the Heaviside function, we can now write the limits of
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integration explicitly as

1
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In order to compare this expression to the equilibrium result, we notice the
relation between the time-ordered and retarded Green’s functions in equilib-
rium is GT (!) = sgn(!)GR(!), where sgn is the sign function. We can use
this to rewrite the expression for the imaginary part as

1

⇡
Im
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+�(!)
 
= +⇥(!)

Z |!|

0

d✏ [⇢#(✏)⇢"(✏� !)]

+⇥(�!)
Z
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�|!|
d✏ [⇢#(!)⇢"(✏� !)] (4.74)

Which we see is precisely the expression (2.23a) derived by D. Logan et al.1.
Coming to the lesser-than component, we see that
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Z
d✏⇢#(✏)

⇣
1� f̃(✏)
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reduces upon substituting the Heaviside functions and using the identity
1� f(!) = f(�!) to

Im
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0⇧<

+�(!)
 
= 2⇡

Z
d✏⇢#(✏)⇥(✏)⇢"(✏� !)⇥(�✏+ !) (4.76)

which becomes

Im
�
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+�(!)
 
= 2⇡

Z |!|

0

d✏⇢#(✏)⇢"(✏� !). (4.77)

We also notice that in the expression for self-energy eqn (4.51), replacing the
contour-ordered components with the time-ordered components and subse-
quently performing the Fourier transform gives

⌃T

A�
(!) =

U2

2⇡i

Z
d✏GA�(✏)⇧A�̄�(✏+ !) (4.78)

which is precisely the expression (3.10) derived in D. Logan et al.1. Thus we
can see that the generalised LMA formalism reduces exactly to the equilib-
rium expressions when we consider Vsd = 0. This is in addition to the LMA
being able to recover the atomic limit exactly in equilibrium and speaks to
the robustness of the method.

83



Figure 4.3: Flowchart describing the various steps involved in the LMA cal-
culation. The processes in green deal with the main branch of calculations
while the ones in yellow and red deal with the symmetry restoration

4.4 Numerical Implementation

Now that we have discussed the formalism, we move on to the question
of numerical implementation. The sequence of calculations and the self-
consistency loop are described in the flowchart in figure 4.3.

4.4.1 UM as the input parameter

While the interaction strength U is a system parameter, it is computation-
ally more optimal to consider the product UM as an initialization parameter.
This choice is motivated by the fact that U enters only the full polarization

84



(eqn (4.50)) and the self-energy (eqn (4.56)) and necessitates us to recalculate
only these quantities in the self-consistency for symmetry restoration. This
allows us to solve for the roots of the symmetry restoration condition by vary-
ing U and we obtain a final value upon satisfying the condition. This is then
further used to calculate the interacting Green’s functions and subsequently
the current.

4.4.2 Non-uniform Grid

The first significant choice one must make while implementing the LMA
equations is the choice of the grid. While considerations like the extent of the
grid are obviously important, the choice of the grid spacing is crucial. As we
have seen, the symmetry restoration gives rise to a new equilibrium scale !m,
which is defined as the location of the pole in Im

�
⇧R

+�(!)
 
and a large density

of points (d! ⇠ 10�5) are required near ! ⇠ !m to properly capture the scale.
One of the major advantages of LMA is the ability to accurately capture the
Fermi-liquid behaviour, which crucially relies on comparing values at ! = 0.
This again necessitates a very large density (d! ⇠ 10�10) of points near zero
to accurately capture the exponentially narrow Kondo resonance accurately.
While these are theoretically feasible to be achieved by considering a uniform
grid of very fine spacing, it is practically more feasible to work with a locally
refined grid with the required characteristics.

The non-uniform grid of our choice can be described completely by a set of
seven parameters viz. ✏0,!fine, ✏2, ✏3, ✏4, ✏box,!max. The most straightforward
among these is !max which gives us the extent of the grid. The grid is
generated in such a way that the frequencies near zero have the maximal
density with d!(! = 0) = ✏0. The grid is generated using the GP

!n = k!n�1 = k(n�1)✏0 (4.79)

Where k = 1 + ✏2
!fine

is determined by the extent !fine of the fine grid and
✏2, the largest spacing in the fine part of the grid. While these parameters
ensure that the grid is very dense near ! = 0, we still need to account for
the density required at !m.

This is done by inserting a ’box’ in the grid for ! 2 [!m

10
, 3!m]. This

corresponds to fixing the grid density to be ✏3 if the value of !m > !fine or
the value d!(! = !m

10
) if otherwise. Whichever the choice, the corresponding

density of points is represented by ✏box.
After inserting the box and considering the fine grid, there is no necessity

to have a large density of points all the way to !max, thus we consider a
coarse grid from ! = max(!fine, 3!m) to the full extent ! = !max. The
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corresponding density of points of this coarse grid is represented by ✏4. All
these features can be seen when the density of points is plotted against the
frequency as shown in figure 4.4.

4.4.3 Convolution

We see from the expressions for 0⇧+�(!) and ⌃�(!), we need to calculate
the imaginary parts using convolutions, which are defined as

(f ? g)(!) =

Z
d✏f(✏)g(✏� !) (4.80)

In the case of the uniform grid, one can use the Convolution theorem which
allows evaluation by means of the Fourier transform. But in our case, we
need to calculate the convolution on a locally refined grid and have to resort
to explicit multiplication. A point to be noted here is the fact that while the
Fourier transform exists for a non-uniform grid, the corresponding inverse
transform is not defined in a straightforward way and the evaluation of that
would require some non-trivial approximations.

In order to calculate the convolution, we notice that ✏�! may lie outside
the range ✏ 2 [�!max,!max] and one either needs to pad the arrays to be of
size [�2!max, 2!max] or restrict the integral to values ✏ 2 [✏min, ✏max] for every
value of ! such that

✏min = max(! � !max,�!max)

✏max = min(! + !max,!max)
(4.81)

Another thing to notice is that since the grid is finite, ✏� ! need not lie on
a point of the grid for all values of ✏,!. Thus, this requires us to construct a
new grid to include all such points i.e. !̄ij = ✏i � !j. This necessitates us to
interpolate the function g(✏�!) for these values, which we achieve by linear
interpolation. A similar set of arguments and hence a similar solution is also
required to implement the Kronig-Kramers Transform which is implemented
by considering an interlacing grid !̄j =

1

2
(!j + !j�1).

4.4.4 Root Solver

The crucial condition for LMA in equilibrium is that of symmetry restoration.
We do the symmetry restoration by self-consistently calculating the expres-
sions for ⇧+�(!) and ⌃�(!) starting from a guess value of U . The Uguess is
chosen to be slightly less than the value of Ucrit = 1/Re

�
0⇧R

+�(! = 0)
 
. The
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Figure 4.4: The grid spacing d! plotted vs the frequency ! for a typical LMA
calculation (UM = 6, Vsd = 0). The parameters ✏0, ✏2, ✏4,!fine are marked
with corresponding colours. Since the spin-flip scale for this calculation was
!m = 0.03 which is lesser than the extent of the fine grid !fine = 0.231, the
box spacing ✏box is determined by the spacing d!(! = !m/10) = 5.8341⇥10�5

and not by ✏3. The coarse grid spacing ✏4 is also marked. Only the values of
frequency in the vicinity of ! 2 [�0.5, 0.5] are considered in order to see the
di↵erent grid parameters clearly. Hence, !max = 45 is out of these bounds
and is not represented in the figure.
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symmetry restoration is carried on via a root solver which finds the root of
the condition

Re{⌃"(0)}� Re{⌃#(0)}� UM = 0 (4.82)

In our implementation, we first calculate the di↵erence for Uguess and an
initial step size �U . This allows us to ascertain the direction of root finding
and allows us to come to a coarse solution using bisection. This is further
refined using linear interpolation to obtain the symmetry-restored value of
U for a given tolerance.

4.5 Results and discussion

We begin with extensive benchmarking with equilibrium results in both zero
and finite temperature limits. Since the method is novel, we need to compare
the accuracy and the limits of the method with other methods and the LMA
in equilibrium.

4.5.1 Zero temperature benchmarks

The polarization which takes into account the spin fluctuations is compared
with the results from equilibrium LMA21 by plotting the imaginary part
as a function of frequency. In the main plot of the top panel of Fig. 4.5,
we plot the imaginary part of the RPA polarization ⇧R

+�(!) for UM = 12
as a function of frequency and plot the imaginary part of the zeroth order
polarization ⇧0

+�(!) in the inset. In the bottom panel, we have Fig 2 from
Logan et al.(1998)21 for comparison, where they have considered Ũ = U

⇡�0
=

4 and !̃ = !

�0
. Since we have considered �0 = 1 here, the corresponding

U = 4⇡ ⇠ 12. We see that the polarization matches very well with the
equilibrium results.

Since the retarded self-energy ⌃R(!) (eqn (4.54)) has both the ⇧R,< con-
tributions, it needs to be compared to the equilibrium case where it is eval-
uated using only the ⇧+� polarization21. In order to do this, we use the
equilibrium code developed in the group earlier5 and plot the real and imag-
inary retarded self-energy ⌃R

" for UM = 12 in Fig. 4.6. We see a one-to-one
matching with the ⌃R obtained from this method and earlier calculations.

4.5.2 Finite temperature benchmarks

In finite temperature, the hardcore Boson constraint becomes relevant and
needs to be benchmarked with earlier calculations. We do this by calculating
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Figure 4.5: Comparison of the polarization for the equilibrium. The top
panel is calculated from the code, the bottom panel is taken from Fig. 2 of
Logan et al (1998).21. The UM = 12 for our calculation while the paper uses
Ũ = U/⇡�0 = 4. Since we have taken �0 = 1, the corresponding value of
U = 4⇡ and !̃ = !/�0 = !. The inset shows the corresponding imaginary
part of the zeroth order polarization.
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Figure 4.6: Real and Imaginary Parts of self-energy benchmarked with the
equilibrium flat band LMA code for UM = 12 with �0 = 1 at zero temper-
ature.
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Figure 4.7: The spectral function ⇢(!) as a function of ! for UM = 5�0 and
T = 10!m plotted in black. The red line is the benchmark obtained from
earlier implementations of the equilibrium LMA.

the spectral function ⇢(!) = � 1

⇡
Im

n
G̃R

o
for UM = 5�0 and T = 10!m

case and comparing it to calculations from earlier implementations. We use
�0 = 1 and plot the ⇢ as a function of ! in Fig. 4.7 and see excellent
agreement with the benchmark obtained from earlier implementation.

We now look at the e↵ect of temperature in equilibrium and benchmark
with the results obtained by Logan et al. (2002)15. We look at the scaled
spectral function ⇡�0⇢(!;T ) as a function of the scaled frequency !/!m

for various values of temperature. We plot the results for UM = 20�0

in Fig. 4.8 for �0 = 0.1 and temperatures T 2 [0, 100!m]. In order to
look at the variation of the Kondo peak, we look at the zoomed-in range of
!/!m 2 [�50, 50]. Comparing Fig 4.8 with Fig. 5 of Logan et al. (2002)15,
we see good agreement.
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Figure 4.8: The scaled spectral function ⇡�0⇢(!;T ) plotted as a function of
the scaled frequency !/!m for di↵erent values of temperature as indicated
in the legend. The figure shows the variation of the central Kondo peak and
hence is plotted only for !/!m 2 [�50, 50]. The calculations were carried
out for UM = 20�0, with �0 = 0.1 and Vsd = 0
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4.5.3 Transport

A central quantity of interest in transport across the system is the current.
We look at the zero temperature limit and consider the weak-intermediate
coupling (UM < 10�0) and the strong coupling (UM > 10�0) regimes. In
Fig. 4.9, we plot the j � Vsd (IV) curves for both the weak-intermediate
coupling regime (top panel) and the strong coupling regime (bottom panel).
Since we are working in the infinitely wide flat band limit, we see that the IV
curves saturate to a finite value for all values of UM . The weak-intermediate
coupling regime shows IV behaviour similar to the results from ssIPA (Fig.
2.2), while we see a non-universal satellite feature appear in the strong cou-
pling regime. This satellite feature is not seen in other methods and could be
a shortcoming of the ssLMA method. The strong coupling regime is charac-
terised by very low values of !m and the satellite feature could be due to the
same. Since we find excellent agreement for equilibrium results, a detailed
look at the diagrams considered to construct the ssLMA might be needed.

Looking at the e↵ect of Vsd on the spectral function, we see that there is
a re-entrant behaviour of the peaks with increasing Vsd. We plot the spectral
function ⇢(!) as a function of ! for UM = 5 and Vsd 2 [0, 50] in Fig. 4.10
and see that the central peak vanishes around Vsd = 0.5 and re-emerges at
Vsd = 50. The sidebands which correspond to the ! = ±UM in the zero bias
case move out with increasing Vsd up to Vsd = 0.5 before re-entering at larger
values.

4.5.4 Universality

Another aspect which is captured by the LMA in equilibrium is universality.
We start by looking at the case of zero bias and zero temperature and see
that there is an emergent universality in the scaled spectral function ⇡�0⇢(!)
as a function of the scaled frequency !/!m for values of UM > 12�0. The
onset of universality defines the strong coupling regime and agrees well with
earlier results. In Fig. 4.11, we plot the scaled spectral function ⇡�0⇢(!)
for various values of UM 2 [10�0, 20�0] at zero temperature and bias with
�0 = 0.1. We show the behaviour for ! 2 [�150!m, 150!m] which zooms in
on the central peak and we see the collapse for values of UM > 12�0.

Next, we look at the variation of the zero bias conductance with temper-
ature and see the emergence of universal behaviour when the temperature is
scaled with !m. We plot the conductance G(T )/G(0) as a function of scaled
temperature T/!m for various strong coupling values of UM in Fig. 4.12.
The universal collapse can be observed up to T ⇠ 20!m for all curves with
higher values of UM showing universality for even larger values of T . We
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Figure 4.9: Zero temperature IV curves for various values of UM in weak-
intermediate coupling (Top panel) and strong coupling (Bottom panel)
regimes as indicated in the legends. We see that the curves saturate for
both regimes as seen from results from other methods, while there is a satel-
lite feature emerging in the strong coupling regime.
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Figure 4.10: The spectral function ⇢(!) plotted vs ! for various values of Vsd

as indicated in the legend. The calculations were performed for UM = 5�0

and �0 = 1. The rentrant behaviour of the sidebands can be seen for Vsd > 1
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Figure 4.11: The zero temperature scaled spectral function ⇡�0⇢(!) plotted
as a function of the scaled frequency !/!m in the zoomed in region ! 2
[�150!m, 150!m] for various values of UM as indicated in the legend. The
collapse of the curves for UM > 12�0 shows universality and serves as
the marker for strong coupling. We have used �0 = 0.1, Vsd = 0 for the
calculations.
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Figure 4.12: The zero-bias conductance plotted for di↵erent values of UM
in the strong coupling regime showing a universal behaviour with scaled
temperature T/!m. The dashed line corresponds to the Hamann form22 of
the conductance eqn. (4.83). The results agree well with Fig. 8 of Logan et
al. (2002)15

plot the Hamann approximation22 of the conductance given by

G(T )

G(0)
=

1

2

8
<

:1� ln(T/TK)
⇥
ln(T/TK)

2 + 3⇡2

4

⇤ 1
2

9
=

; (4.83)

We have used the fact that TK , the Kondo temperature is proportional to
!m in order to compare our results. We see a good agreement between our
calculations Fig. 4.12 and Fig. 8 of Logan et al. (2002)15.

Finally, we look at the linear response regime and plot the scaled current
j/!m as a function of scaled bias Vsd/!m for various values for UM and see
that the !m, which is the universal scale in the equilibrium case controls the
extent of the linear response regime. In Fig. 4.13, we see that the curves for
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Figure 4.13: Scaled IV curve showing linear response regime and an emergent
isosbestic point at Vsd = !m. The equilibrium scale !m controls the extent
of the linear response regime.

di↵erent values of UM collapse up to Vsd = 0.5!m with the linear response.
The curves are still universal even beyond Vsd = 0.5!m while being non-
linear up to Vsd = !m followed by an isosbestic point where they break o↵
into non-universal curves. The breaking o↵ subsequent to Vsd = !m leads to
the satellite feature in the IV curves and subsequently the NDR regime.

4.6 Summary and conclusions

In this chapter, we have derived the steady state Local Moment Approach
(ssLMA) and applied it to study the quantum dot connected to lead with
DC bias. We work in the infinitely wide flat band limit and calculate the
polarization, self-energy, full Green’s functions and subsequently the observ-
ables like spectral function and current. We also see that we can analytically
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recover the equilibrium results when Vsd = 0.
The method has been benchmarked extensively with equilibrium in both

the zero and finite temperature limits and shows excellent agreement. We
also have looked at the transport quantities and see the IV characteristics
are captured well for the weak-intermediate coupling regime, while a satellite
feature appears in the strong coupling regime. The spectral function shows a
re-entrant behaviour of the sidebands and a re-emergence of the central peak
with increasing bias. The method is able to capture the universal behaviour
and shows that the spin-flip scale (!m) is the universal scale in equilibrium
and controls the extent of the linear response regime out of equilibrium. We
see that the zero bias and zero temperature curves collapse when scaled with
!m which defines the strong coupling regime. We also see that the zero bias
conductance follows a universal behaviour for large temperatures (even up
to T ⇠ 100!m) and compares well with earlier results. In the nonequilibrium
case, we see a universal linear response of the scaled IV curves up to a
Vsd ⇠ 0.5!m followed by a non-linear universal curve up to Vsd ⇠ !m. This
is followed by an isosbestic point and subsequent breaking o↵ of the scaled
IV curves for di↵erent UM values and is responsible for the satellite feature
in IV curves.

The satellite feature in the IV curves in the strong coupling regime is not
seen in other methods and could be a shortcoming of the method. As exten-
sive benchmarks show, the satellite feature is not a numerical/implementation
fault and needs a deeper analysis of the physics, including a systematic look
at the diagrams considered. This is an open question and will be considered
in the future.
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Chapter 5

Piecewise constant driving
protocols in the Kitaev chain

5.1 Introduction

The Kitaev chain1, a 1D tight-binding model with p-wave superconducting
pairing, has been the subject of much attention due to it being capable of
hosting Majorana Zero Modes(MZMs). These MZMs in addition to being
interesting for the fundamental physics aspects like non-Abelian statistics,
also have potential applications as qubits in fault-tolerant computation2.
The MZMs appear in the ends of a Kitaev chain and their presence/absence
is associated with a Z2 topological index called the parity. The Kitaev chain
has not only been studied extensively as a theoretical model3–7, but has also
received experimental attention8–15. The Kitaev chain can also be shown to
map to the well-studied transverse field Ising model (TFIM) via the means
of a Jordan-Wigner transformation and the topological phases can be char-
acterised using the coe�cients of the corresponding TFIM.

Systems driven out of equilibrium by periodic driving have been known to
exhibit a great number of emergent phenomena like topology16–20, time crys-
tals21–23, artificial gauge fields24;25, emergent metastable states26;27, nonequi-
librium quantum phase transitions28–31, etc.. The Floquet theory based on
the Floquet theorem, the counterpart of the Bloch theorem for time coupled
with High Frequency Expansion (HFE) has been used to study a wide variety
of systems under a large number of driving protocols. Experimental tech-
niques like ultrafast spectroscopy and optical lattice techniques have allowed
for the realisation of many theoretical proposals. In fact, recent years have
seen the field of Floquet Engineering emerge32, where one can construct a
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driving protocol to obtain desired emergent Hamiltonians and correspond-
ing states. While a majority of the work on periodically driven systems has
been through the use of Floquet theory as described above, the HFE used in
the same is also the weakest link due to the requirement of the driving fre-
quency to be the largest energy scale in the system. While there has been the
simultaneous development of other approaches like Renormalization Group
methods and Keldysh based methods which circumvent this problem, they
su↵er from their own shortcomings either in the truncation of terms in the
e↵ective Hamiltonian or in computational expense.

Coming to periodic driving in the Kitaev chain, Thakurathi et al18 have
shown that by applying periodic �-function kicks through the chemical po-
tential, the Floquet Hamiltonians of the driven Kitaev chain and the cor-
responding TFIM show the emergence of topology even when the initial
parameters correspond to the topologically trivial phase. They have seen
that this emergence can be characterised by both the winding number calcu-
lated from the Floquet Hamiltonian for the TFIM as well as the number of
Floquet MZMs arising in the edges of the Kitaev chain. They also see that
there is a maximum frequency of driving above which no topology change
is observed, while the winding number increases for lower frequencies. The
Floquet MZMs are very sensitive to the periodicity of the driving protocol
and even an infinitesimally small aperiodicity leads to their destruction33. In
this chapter, we benchmark the method in case of the square wave driving
and investigate the e↵ects of square wave driving in various phases.

Electrical noise is ubiquitous in experiments measuring transport quanti-
ties. It is seen to be of many types like thermal noise, shot noise, 1/f noise,
etc. While a host of empirical and theoretical proposals have looked at the
origin of electrical noise, a larger number of studies have looked at the e↵ect
of noise on various emergent properties. For example, studies of noise in pe-
riodically driven systems have looked at both randomness in the frequency
as well as the amplitude of the driving and studied the e↵ect of noise on
emergent properties like topology, metastable states, etc. The noise in peri-
odically driven systems has been studied using a number of approaches like
the Floquet scattering theory, transfer matrix method, master equation ap-
proach etc., some of which allow for the calculation of exact solutions. In the
case of the Kitaev chain, an exact solution has been worked out when tempo-
ral noise is present in the chemical potential, hopping or pairing terms34. In
this chapter, we will use the Transfer Matrix method (by D. Nghiem and R.
Joynt35) to study various piecewise constant driving protocols. The Trans-
fer Matrix method allows the calculation of the time evolution operator as
a product of transfer matrices corresponding to each constant piece in the
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driving protocol. The method allows for exact solutions and has been ap-
plied to study telegraphic noise36. The e↵ect of the noise on the emergence
of topology when driving needs a detailed investigation. This is done by
the calculation of the disorder averaged transfer matrices and looking at the
e↵ect of the disorder on the topology via the rate function.

Apart from periodic driving, a common way of achieving non-equilibrium
is through quenches. In case of the Kitaev chain in particular, studies involv-
ing quenching to and across the boundaries of topological and trivial phases
have seen that the survival probability of the MZMs decay when quenched
across the boundary but have a periodic re-emergence when quenched to
the boundary values37. Systems when quenched and allowed to evolve with
time, display the possibility of having dynamical quantum phase transitions
(DQPTs) where physical quantities become nonanalytic as a function of time.
These DQPTs are not driven by conventional control parameters like temper-
ature, pressure, etc., but occur just due to the evolution in time. The central
quantity for characterising these DQPTs is the Loschmidt echo, which has
been well studied both in theory and experiments. The DQPTs are signalled
by nonanalyticites in the Loschmidt echo and have been both proposed the-
oretically and observed experimentally in optical lattice systems. The emer-
gence of these DQPTs in the TFIM following a quench across topologically
invariant phases has been studied in detail with attention paid to both the
dynamical order parameters and scaling and universality of these phase tran-
sitions29. The time at which these DQPTs arise and the mechanism of how
the associated topology change needs to be studied in detail. The calculation
of the critical time and the corresponding gap closing serve as an explanation
for the change in topology.

In this chapter, we use the transfer matrix method to look at three driv-
ing protocols - square wave periodic, piecewise constant noise in the chemical
potential and quenches across various parameter regimes. We begin with the
Hamiltonian and derive the ground state and the di↵erent phases of the
model. This is followed by the derivation of the transfer matrices for the
square wave, noise and quench cases. The descriptions of the Loschmidt
echo and Dynamical quantum phase transitions follow. In the following sec-
tion, subsequent to benchmarking, we present the results for all the three
protocols. Finally, we conclude with a summary of the chapter.
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5.2 Model Hamiltonian

Let’s consider the Hamiltonian of the Kitaev chain

H =
N�1X

n=1

[�(f †
n
fn+1+f †

n+1
fn)+�(fnfn+1+f †

n+1
f †
n
)]�

NX

n=1

µ(2f †
n
fn�1) (5.1)

Where the � is the hopping term, � is the pairing term and µ is the chemical
potential. If we take the periodic boundary condition fN+1 = f1, then we
can write

H =
NX

n=1

[�(f †
n
fn+1 + f †

n+1
fn) +�(fnfn+1 + f †

n+1
f †
n
)]� µ(2f †

n
fn � 1) (5.2)

We can now perform the Fourier transform into k-space with k 2 [�⇡, ⇡] and
step-size 2⇡

N
, the notation we use for the Fourier transform is

fn =
1p
N

⇡X

k=�⇡

fke
�ıkn (5.3)

In order to simplify notation, we represent
P

⇡

k=�⇡
⌘
P

k
. We can now define

�k = �ı� sin(k) (5.4)

✏k = [� cos(k)� µ] (5.5)

Subsequent to this definition, the Hamiltonian reads

H =
X

k

n
✏k(f

†
k
fk + f †

�k
f�k)��⇤

k
f�kfk ��kf

†
k
f †
�k

+ µ
o

(5.6)

With this, the hopping term and chemical potential term become

Hhopping = 2�
X

k

cos(k)f †
k
fk (5.7)

Hchem pot = �µ
X

k

(2f †
k
fk � 1) (5.8)

while the pairing term becomes

Hpairing = �
⇡X

k=�⇡

fkf�ke
ık + f †

�k
f †
k
e�ık (5.9)
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We can split the summation
P

⇡

k=�⇡
=

P
0

k=�⇡
+
P

⇡

k=0
. Using a dummy

index, we find that

Hpairing = 2ı�
⇡X

k=0

sin(k)[fkf�k + f †
�k
f †
k
] (5.10)

Now we note that sin(�k) = � sin(k) and also that the operators pick up a
�ve sign when k ! �k, thus the product is an even function and we can useP

⇡

k=0
= 1

2

P
⇡

k=�⇡
to write

Hpairing = ı�
⇡X

k=�⇡

sin(k)[fkf�k � f †
�k
f †
k
] (5.11)

Thus we can write the full Hamiltonian as

H =
X

k

n
2[� cos(k)� µ]f †

k
fk + ı� sin(k)[f †

k
f †
�k

� f�kfk] + µ
o

(5.12)

5.2.1 Bogulibov transformation

We can rewrite the Hamiltonian using the spinor notation as

H =
X

k

 †(✏k�z +�k�x) (5.13)

�i the Pauli matrices, and the spinor  =

✓
fk
f�k

◆
. Which we can see is o↵-

diagonal and is inconvenient for calculating the eigenstates and eigenvalues.
We can diagonalize the Hamiltonian using the Bogoliubov transformation as
in Jishi (Pg 305). We can do this by making the following substitutions

�k = �ı� sin(k) (5.14)

✏k = [� cos(k)� µ] (5.15)

under these substitutions, the Hamiltonian in eqn (5.12) becomes

H =
X
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n
✏k(f

†
k
fk + f †
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f�k)��⇤
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f�kfk ��kf
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(5.16)

The Hamiltonian in Jishi considers spinful fermions. Since we are working
with spinless fermions, we have suppressed the spin index using

P
k�
✏kf

†
k
fk =
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1

2

P
k
(✏kf

†
k
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†
�k
f�k). This allows us to perform the Bogoliubov trans-

formation given by
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Here the �(†)
k

annihilates(creates) a Bogoliubovon and we have |uk|2+ |vk|2 =
1. Substituting these expressions in the Hamiltonian, we can look at the
kinetic energy term given by

X
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and the pairing term in the Hamiltonian given by
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Combining these, we can write
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†
k
�k + �†�k

��k)

+
�
[2✏kukvk ��ku

2

k
+�⇤

k
v2
k
]�†

k
�†�k

+ h.c
�o

(5.21)

We use the fact that the Bogoliubov transformation diagonalizes the Hamil-
tonian, i.e.

2✏kukvk ��ku
2

k
+�⇤

k
v2
k
= 0 (5.22)

In order to solve this, we will consider uk = |uk|eı✓k ; vk = |vk|eı�k ;�k =
|�k|e2ı�k . This reduces the equation to

2✏k|ukvk|eı(✓k+�k) � |�k||uk|2e2ı(✓k+�k) + |�k||vk|2e2ı(�k��k) = 0 (5.23)

If we choose ✓k = ��k = ��k and using the constraint |uk|2 + |vk|2 = 1, we
find

|uk|2 =
1

2

h
1 +

✏kp
✏2
k
+ |�k|2

i
(5.24)

|vk|2 =
1

2

h
1� ✏kp

✏2
k
+ |�k|2

i
(5.25)
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If we recall, we had

�k = �ı� sin(k) (5.26)

✏k = [� cos(k)� µ] (5.27)

We can choose � = |�|eı⇡2 , so that �k is real. If we consider ✏k also real,
then we have ✓k = 0, which will give us the diagonal Hamiltonian

H =
X

k

Ek(�
†
k
�k + �†�k

��k) +
X

k

(2✏kv
2

k
��kukvk + µ)

| {z }
numerical factor

(5.28)

Where we have Ek =
p
✏2
k
+ |�k|2 and the numerical factor which corre-

sponds to the ground state energy.

5.3 Ground state

The ground state of the Hamiltonian is a vacuum of Bogoliubovons. Thus
we have

�k| 0i = ��k| 0i = 0 (5.29)

Hence we can use this to construct a ground state as

| 0i =
Y

k

�k��k|0i (5.30)

Where |0i is the electron vacuum state. The G.S. in terms of the electron
creation operators becomes

| 0i =
Y

k

(uk + vkf
†
k
f †
�k
)|0i (5.31)

Calculating the Ground state energy using the Schrodinger equationH| 0i =
"0| 0i, we get only the numerical factor

"0 =
X

k

{2✏kv2k � 2�kukvk + µ} (5.32)

5.4 Topology and phase diagram

Let us consider the Hamiltonian of the Kitaev chain (eqn(5.12)) given by

H =
X

k

n
2[� cos(k)� µ]f †

k
fk + ı� sin(k)[f †

k
f †
�k

� f�kfk] + µ
o

(5.33)
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Figure 5.1: Phase diagram of the model with the phases I,II,III marked.
Taken from Thakurathi et al.18

We see that the Hamiltonian can be diagonalised (eqn (5.28)) and has a
dispersion given by

Ek =
q
✏2
k
+ |�k|2 =

q
(� cos(k)� µ)2 +�2 sin2(k) (5.34)

where we have substituted the expressions for ✏k and �k from eqn (5.4). We
can now consider the two-dimensional parameter space defined by µ/� and
�/�. We see that there are two routes to having a zero crossing of the Ek

in this parameter space. The first is if we consider the case of the k = 0/⇡
momentum, we can see that Ek has a gap closing for the lines µ/� = ±1.
On the other hand, if we consider �/� = 0, we can see that the gap closes
for the momentum k = cos�1(�µ/�). These zero crossings give rise to three
distinct phases and can be represented as in the phase diagram Fig 5.1.

While we have explained the zero crossing lines, we actually see that the
phases they demarcate, viz. phases I,II, and III in the phase diagram, are
actually di↵erent topological phases. In order to see this, we work with the
Majorana basis. This can be achieved by writing the Hamiltonian in terms
of the Majorana operators given by

a2n�1 = f †
n
+ fn

a2n = i(fn � f †
n
).

(5.35)

110



We see that these Majorana operators are Hermitian and satisfy a2
2n

=
a2
2n�1

= 1 and {aj, ak} = 2�jk. This allows us to write the Hamiltonian
in eqn (5.1) as

H = i
N�1X

n=1

(Jxa2na2n+1 � Jya2n�1a2n+2) + i
NX

n=1

µa2n�1a2n (5.36)

with Jx = 1

2
(� � �) and Jy = 1

2
(� + �). We can see that the Kitaev

chain in the Majorana representation can have either intra-site or inter-site
pairing of the Majoranas and leads to either a topologically trivial phase
with all Majoranas paired up within their sites or a topologically non-trivial
phase with Majoranas in the bulk paired up across the sites leaving two
unpaired Majorana modes on either end. The labels Jx,y are chosen since
they correspond to the TFIM which can be seen when we perform the Jordan-
Wigner transformation given by

a2n�1 =

 
n�1Y

j=1

�z

j

!
�x

n

a2n =

 
n�1Y

j=1

�z

j

!
�y

n

(5.37)

where �x,y,z are the Pauli matrices. Applying the transformation to the
Hamiltonian, we get

H = �
N�1X

n=1

�
Jx�

x

n
�x

n+1
+ Jy�

y

n
�y

n+1

�
�

NX

n=1

µ�z

n
. (5.38)

Coming back to the phase diagram fig 5.1, if we consider an open chain
with an even number of sites, we see that in phase I, i.e. �/� < 0;�1 <
µ/� < 1, the a2N mode is uncoupled on the right and the a1 mode is uncou-
pled on the left. This also corresponds to the case of �x long-range ferro-
magnetic order in the TFIM. Phase II, i.e. �/� > 0;�1 < µ/� < 1, has the
a2N�1 mode and the a2 modes uncoupled on the right and left respectively
while corresponding to the �y long-range ferromagnetic order in the TFIM.
Phase III, i.e. |µ/�| > 1, is a topologically trivial phase with no unbound
Majorana modes and corresponds to a paramagnetic phase of the TFIM with
no spin order.

While we have described the topological order in terms of the Majorana
modes, another useful approach would be to look at the bulk Hamiltonian
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(eqn (5.12)) and define a topological invariant. This can be achieved by
representing the Hamiltonian in terms of the Pauli matrices as

H = a2k�
y + a3k�

z (5.39)

Where we have two k-dependent functions given by a2k = 2(� cos k � µ)
and a3k = 2� sin k in this case. While a2/3k are known for the Hamiltonian
in consideration, they can also be generalised for other Hamiltonians of the
same form. This allows us to define the vector ~Vk = a2kŷ + a3kẑ and the
angle �k = tan�1 a2k

a3k
.

The winding number W can then be calculated using the integral

W =
1

2⇡

I

C

d�k

dk
dk. (5.40)

We can verify that this is indeed the winding number by using the Cauchy’s
integral formula and constructing a function z(a2k, a3k) which has a pole at
the origin. We can think of an integral

I =

Z

C

f(z)

z � z0
dz (5.41)

Where f(z) is analytic and the integrand has a pole at z0, i.e. the problem
of finding the winding number of the coe�cients of the e↵ective Hamiltonian
can be mapped onto this by considering

z = a2k + ıa3k

dz =
⇣@a2k
@k

+ ı
@a3k
@k

⌘
dk

f(z) = 1; z0 = 0

By using the Cauchy’s integral formula, the integral is given by f(z0), which
is

I =
1

2⇡ı

Z
⇡

�⇡

dk
(@ka2k + ı@ka3k)

a2k + ıa3k
(5.42)

Since the z is a construct, we can simplify the calculation by taking z = reı�,
which gives

I =
1

2⇡ı

Z
⇡

�⇡

dk
@

@k

⇥
ln(|a2k + ıa3k|) + ı�k

⇤
(5.43)

From which we can verify that I is indeed the winding number with �k =
tan�1(a2k

a3k
). We see that W = 0/1 in each of the phases and becomes unde-

fined on the phase boundaries. This allows us to define the winding number
as a Z topological invariant and will be calculated as the primary means of
ascertaining the topology in the calculations that follow.
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5.5 Time evolution

In order to look at the time evolution of the system, we need to calculate the
evolution operator

U(t, 0) = exp(�ıHt) = exp

 
�ıt

X

k

Ek[�
†
k
�k + �†�k

��k]

!
exp(�ı"0t) (5.44)

The ground state energy part will give rise to a phase when acted upon the
initial state. Suppressing this term, we can use the algebraic properties of
the Bogoliubov operators (i.e. �2 = 0) to write

U(t, 0) =
Y

k

⇥
1 + �†

k
�k(e

�ıEkt � 1)
| {z }

I

+ �†�k
��k(e

�ıEkt � 1)
| {z }

II

+ �†
k
�k�

†
�k
��k(e

�ıEkt � 1)2
| {z }

III

⇤
(5.45)

Since we are looking at piece-wise constant noise, we can consider the Hamil-
tonian to be independent of time in each piece and look at the evolution of
the wavefunction from one piece (index (0)) to the next (index (1)). In this
way, we can break up the entire time evolution into pieces and track the
evolution of the wave function. Looking at the form of the evolution opera-
tor, we see that the BCS ground state wave function is an eigenstate of the
evolution operator. If we go back to the fermionic operator notation and put
↵k = (e�ıEkt � 1), we can see that the three parts of the evolution operator
become

I = ↵k(|uk|2f †
k
fk + |vk|2 � |vk|2f †

�k
f�k � u⇤

k
vkf

†
k
f †
�k

� ukv⇤kf�kfk)(5.46)

II = ↵k(|uk|2f †
�k
f�k + |vk|2 � |vk|2f †

k
fk � u⇤

k
vkf

†
k
f †
�k

� ukv⇤kf�kfk)(5.47)

III = ↵2

k
(f †

k
fkf

†
�k
f�k � u⇤

k
vkf

†
k
f †
�k

� ukv
⇤
k
f�kfk

+|vk|2[1� f †
�k
f�k � f †

k
fk])

(5.48)

Let us consider the action of this evolution operator on the ground state.
The details of the piece-wise evolution are hidden in the uk, vk and hence
also in ↵k. Hence, we use the labels (0/1) to di↵erentiate the parameters of
the initial state and the evolution operator which takes it to the next step.
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Thus, the action of the three parts on the BCS ground state is given by

I| 0i = ↵(1)

k
[
�
u(0)

k
|v(1)

k
|2 � u(1)

k
v⇤(1)
k

v(0)
k

�

+
�
|u(1)

k
|2v(0)

k
� u⇤(1)

k
v(1)
k
u(0)

k

�
f †
k
f †
�k
]|0i

(5.49)

II| 0i = ↵(1)

k
[
�
u(0)

k
|v(1)

k
|2 � u(1)

k
v⇤(1)
k

v(0)
k

�

+
�
|u(1)

k
|2v(0)

k
� u⇤(1)

k
v(1)
k
u(0)

k

�
f †
k
f †
�k
]|0i

(5.50)

III| 0i = (↵(1)

k
)2[
�
u(0)

k
|v(1)

k
|2 � u(1)

k
v⇤(1)
k

v(0)
k

�

+
�
|u(1)

k
|2v(0)

k
� u⇤(1)

k
v(1)
k
u(0)

k

�
f †
k
f †
�k
]|0i

(5.51)

From the form of the resultant state, we can see that if (0) = (1), i.e. evolu-
tion of the initial state with the initial Hamiltonian, is the same state with a
phase factor. We also notice that the BCS ground state form is retained at
any arbitrary step of the evolution. Combining all the terms, the state reads

| 1i =
Y

k

(h
u(0)

k
+
�
u(0)

k
|v(1)

k
|2 � u(1)

k
v⇤(1)
k

v(0)
k

��
2↵(1)

k
+ (↵(1)

k
)2
�i

+
h
v(0)
k

+
�
|u(1)

k
|2v(0)

k
� u⇤(1)

k
v(1)
k
u(0)

k

��
2↵(1)

k
+ (↵(1)

k
)2
�i
f †
k
f †
�k

)
e�ı"

(1)
0 t|0i

(5.52)

Which we can see can be written as a BCS wavefunction with renormalized
values | 1i =

Q
k
(Ak +Bkf

†
k
f †
�k
)|0i, where

Ak = e�ı"
(1)
0 t

h
u(0)

k
+
�
u(0)

k
|v(1)

k
|2 � u(1)

k
v⇤(1)
k

v(0)
k

��
2↵(1)

k
+ (↵(1)

k
)2
�i
(5.53)

Bk = e�ı"
(1)
0 t

h
v(0)
k

+
�
|u(1)

k
|2v(0)

k
� u⇤(1)

k
v(1)
k
u(0)

k

��
2↵(1)

k
+ (↵(1)

k
)2
�i
(5.54)

This can be expressed in the matrix form as

✓
Ak

Bk

◆
= e�ı"

(1)
0 t

 
1 + �(|v(1)

k
|2) ��u(1)

k
v⇤(1)
k

��u⇤(1)
k

v(1)
k

1 + �(|u(1)

k
|2)

!

| {z }
Tk(g1;t�t0)

 
u(0)

k

v(0)
k

!
(5.55)

Where we have defined �k = (2↵(1)

k
+ [↵(1)

k
]2) with ↵(1)

k
= e�ıE

(1)
k

(t�t0) � 1.
The transfer matrix Tk(g; t) depends on the parameters g ⌘ (µ, �,�)

through the corresponding uk, vk, Ek and evolves the wavefunction from t0 to

t through �k(g, t) to get the state at t to be

✓
Ak(t)
Bk(t)

◆
= �k(t). We can now
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generalise to an arbitrary number of pieces of time evolution and can write
state for the mth piece of the time evolution as

�k(m⌧ + t0) = e�ı
P

m

i=1 "
(i)
0 ⌧

mY

i=1

�
Tk(gi, ⌧)

�
�k(t0) (5.56)

5.5.1 Square Wave

Let us now calculate the transfer matrix and the time-evolved state for var-
ious driving protocols. We begin with the case of the square wave driving
where the parameters g := (�, µ,�) are oscillating between two values in
each of the time steps ⌧ .

The time evolution operator for each period of the square wave (with
periodicity 2⌧) is given by

Tk(g1, g2; 2⌧) = Tk(g2; ⌧)Tk(g1, ⌧) (5.57)

where the transfer matrices Tk depend on the parameters of the evolution
g. We can use the piecewise constant nature of the driving, whereby the
transfer matrix for each piece can be written trivially as

Tk(g; t) = exp{[�ıH(g)t]} (5.58)

Thus, we can write the entire time evolution as a product of these individual
pieces as

�k(m⌧ + t0) = e�ı
m

2 ("
(1)
0 +"

(0)
0 )⌧

�
Tk(⌧)

�m
�k(t0) (5.59)

We can simplify this further by expanding

Tk(g; t) = 1 + �k(g; t)Sk(g) (5.60)

where,

Sk(g) =

✓
(|vk(g)|2) �uk(g)v⇤k(g)

�u⇤
k
(g)vk(g) (|uk(g)|2)

◆
(5.61)

If we consider the case where uk, vk are real, then we have

Sk(g) =
1

2Ek

✓
Ek � ✏k ��k

��k Ek + ✏k

◆
=

1

2Ek

[Ek1 � ✏k�z ��k�x] (5.62)

where we can notice by the structure of the matrix, that Sk(g)2 = Sk(g).
Thus we write

Tk(g; t) = (1 + �k(g; t)Sk(g)) = e�2ıEkSk(g)t (5.63)
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This can be expressed in terms of the Pauli matrices as

Tk(g; t) = e�ı[Ek1�✏k�z��k�x]t = e�ıEkteı
~Xk·~�t (5.64)

Where ~Xk = (�k, 0, ✏k). The full transfer matrix is given by T (g; t) =N
k
Tk(g; t), where we have used the fact that the various k dependent terms

are independent. This reads

T (g; t) =

0

B@
Tk1(g; t)

. . .
TkN

(g; t)

1

CA (5.65)

The time-evolved wavefunction can be written as

| (t)i =

0

BBB@

 k1(t)
 k2(t)

...
 kN

(t)

1

CCCA
(5.66)

which using the transfer matrix gives

| (t)i = T (gN ; tN � tN�1)T (gN�1; tN�1 � tN�2) . . . T (g1; t1 � t0)| (t0)i
(5.67)

5.5.2 Noise

In the case of the piece-wise constant noise, the parameter set g are uncor-
related random numbers drawn from a probability distribution P(g). This
allows us to calculate each instance of the driving as a product of transfer
matrices,

T (tN) = T (gN ; tN � tN�1)⇥ T (gN�1; tN�1 � tN�2) . . . T (g1; t1 � t0). (5.68)

These individual instances need to be averaged over disorder by considering
the probability distribution P(g). Thus the disorder-averaged wavefunction
is given by

| (t)i =
Z � NY

i=1

dgiP(gi)
�
T (gN ; tN � tN�1)

⇥ T (gN�1; tN�1 � tN�2) . . . T (g1; t1 � t0)| (t0)i. (5.69)
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Since the gi are independent in each step, we have

| (t)i =
Z

dgNT (gN ;�tN)P(gN)

Z
dgN�1T (gN�1;�tN�1)P(gN�1)

⇥ . . .

Z
dg1T (g1;�t1)P(g1)| (t0)i (5.70)

which can be written as

| (t)i = T (�tN)T (�tN�1) . . . T (�t1)| (t0)i (5.71)

Using the independence of the k-dependent terms, the full transfer matrix
under disorder averaging becomes

T (t) =

0

B@
T k1(t)

. . .

T kN
(t)

1

CA (5.72)

Where we have for each k, the disorder averaged transfer matrix T k(t) =R
dgP(g)Tk(g; t).

5.5.3 Quench

We have calculated the transfer matrix for multiple pieces in the earlier
sections and we now come to the simple case of a quench from a set of
parameters g1 to g2 and continued time evolution with the set g2. The transfer
matrix is given by

Tk(g1, g2; t) = Tk(g2; t)Tk(g1, ⌧) (5.73)

This product can be explicitly calculated as follows by writing the transfer
matrix as

Tk(g; t) = e�ıEk(g)teı
~Xk(g)·~�t (5.74)

In this expression, we see that the e�ıEkt part commutes and can be easily
calculated. To calculate the � part, we make use of the multiplication identity
of Pauli vectors,

eıan̂·~�eıbm̂·~� = eıcp̂·~� (5.75)

where,

cos c = cos a cos b� (n̂ · m̂) sin a sin b

p̂ =
1

sin c

⇥
n̂ sin a cos b+ m̂ cos a sin b� n̂⇥ m̂ sin a sin b

⇤ (5.76)
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By using this identity, we can calculate

T̃k(g2, g1; t+ ⌧) = e�ı(Ek(g2)t+Ek(g1)⌧)eıt
~Xk(g2)·~�eı⌧

~Xk(g1)·~� (5.77)

This gives us for the magnitude part,

cos ck = cos (Ek(g2)t) cos (Ek(g1)⌧)�
X̂k(g2) · X̂k(g1) sin (Ek(g2)t) sin (Ek(g1)⌧) (5.78)

with

X̂k(g2) · X̂k(g1) =
�k(g2)�k(g1) + ✏k(g2)✏k(g1)

Ek(g2)Ek(g1)
(5.79)

and the direction is given by the unit vector

p̂k · ~� =
1

sin c
[↵1k�x + ↵2k�y + ↵3k�z] (5.80)

with

↵1k =
�k(g2)

Ek(g2)
sin (Ek(g2)t) cos (Ek(g1)⌧) +

�k(g1)

Ek(g1)
cos (Ek(g2)t) sin (Ek(g1)⌧)

↵2k = �

�k(g2)✏k(g1)� ✏k(g2)�k(g1)

Ek(g2)Ek(g1)

�
sin (Ek(g2)t) sin (Ek(g1)⌧)

↵3k = � ✏k(g2)

Ek(g2)
sin (Ek(g2)t) cos (Ek(g1)⌧)�

✏k(g1)

Ek(g1)
cos (Ek(g2)t) sin (Ek(g1)⌧).

Thus we can write the e↵ective Hamiltonian Heff , which is defined by
Tk(g; t) = eıHeff (t) as

Heff =
3X

i=1

aik�i (5.81)

With ai = ck

sin(ck)
↵k. We also know that given an exponential of a Pauli

vector, we can write

T̃k = eıckp̂k·~� = cos (ck)1 + ı sin (ck)p̂k · ~� (5.82)

By using the algebra of the Pauli matrices and calculating the trace of the
matrices, we have

Tr(1T̃k) = 2 cos (ck) (5.83)

Tr(�iT̃k) = 2ı sin (ck)p̂ik (5.84)

Thus we can write the e↵ective Hamiltonian as

Heff = ckp̂ik · ~� (5.85)

Which gives

aik =
ck

2ı sin ck
Tr(�iT̃k). (5.86)
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Eigenvectors of the e↵ective Hamiltonian

We can calculate the time-dependent e↵ective Hamiltonian by using the
transfer matrix:

Tk(g; t) = eıHeff (t). (5.87)

We can evaluate this using the expression for the transfer matrix and the
properties of the Pauli vector. Using these we write

Heff (t) = a1k(t)�x + a2k(t)�y + a3k(t)�z. (5.88)

We can look at the winding of the coe�cients aik and look at the time at
which the topological transitions occur. We plot the minimum eigenvalue
and the winding number as a function of time in Fig. 5.2 and see that
some of the transitions also occur along with the zero level crossings of the
e↵ective Hamiltonian. The signature of these transitions is also seen in the
discontinuous change in the sign of the a3k coe�cient for k = 0,±⇡. The

eigenvalues of the e↵ective Hamiltonian are given by " = ±
qP

3

i=1
a2
ik

and
the corresponding eigenvectors are

|'+

k
i = 1p

2"(a3k + ")

✓
a3k + "

a1k + ıa2k

◆
(5.89)

|'�
k
i = 1p

2"(a3k + ")

✓
�a1k + ıa2k
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Since we can calculate the evolution of the states by operating the transfer
matrix on the initial state, we can track the overlap of the time-evolved state
with the corresponding eigenvectors of the instantaneous e↵ective Hamilto-
nian for all times. i.e

c+
k
= h k(t)|'+

k
(t)i c�

k
= h k(t)|'�

k
(t)i (5.91)

We see that there are three important k-points viz. k = 0,±⇡. Tracking the
changes of the overlaps of these points with time provides us with a signature
for the topological transition. We plot the overlap of the time-evolved state
with the eigenvectors for each value of the momentum in Fig. 5.3 and see
that the overlap has no zero crossings in the trivial case, but has multiple zero
crossings when the winding number is non-zero. We now look more closely
at the nature of the topological transitions. These topological transitions
involve a discontinuous change in the overlap for either the k = 0 or k = ±⇡.
We can see the two transitions happen with di↵erent time scales. We plot
the overlap of the time-evolved state in both the topological and trivial cases
for all values of the momentum k in Fig. 5.4. We see that the transitions are
driven by either a sharp change in the overlap of the k = ±⇡ or the k = 0
states.
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Figure 5.2: The change in winding number as a function of time. We can see
that the transitions occur when a3k=0,±⇡ changes sign. Also plotted is the
minimum value of the eigenvalue for each time point. We can see that some
transitions are accompanied by zero level crossings.
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Figure 5.3: Overlap of the time evolved state with |'±i for di↵erent winding
numbers
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Figure 5.4: Left panel: A topological transition driven by the change in the
overlap of the k = ±⇡ states. Right panel: The transition is driven by the
change in the overlap of the k = 0 state.

5.6 Loschmidt Echo

In order to look at the e↵ect of driving, we need to consider the di↵erence
between the initial and time-evolved wavefunctions. This can be done by
considering the Loschmidt echo as a function of time, which is defined as the
overlap between the initial and time-evolved step. That is

L(t) = |h (t)| 0i|2 (5.92)

In the case of the piecewise constant time evolution, we can consider the
overlap of the initial state and the state after the first piece of time evolution
| 1i. The Loschmidt amplitude can be calculated by noting that | 1i =Q

k
(Ak +Bkf

†
k
f †
�k
)|0i, thus the terms are

h 1| 0i =
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Applying the fermionic creation and annihilation operators to the vacuum
state |0i, we are left with

h 1| 0i =
Y

k

⇥
h0|(A⇤

k
u(0)

k
)|0i+ h0|(B⇤

k
v(0)
k
|0i
⇤

(5.94)
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In terms of the Bogulibov parameters uk, vk, this works out to be
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If we put [2↵(1)

k
+ (↵(1)
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)2] = �k, we can calculate
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Which simplifies to
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Since the time dependence is now restricted to �k, the time evolution of
the Loschmidt Echo L(t) can be easily calculated given the u(0/1)

k
, v(0/1)

k
in

both pieces. This procedure can also be applied to other piecewise constant
driving protocols with a corresponding calculation. The Loschmidt echo is
also the Majorana survival probability37 and allows us to ascertain the fate
of the Majorana end modes when time evolution occurs in each of the phases.

5.7 Dynamical quantum phase transitions

In equilibrium, phase transitions are known to be accompanied by the non-
analytic behaviour of the free-energy when the control parameter is varied. In
particular, quantum phase transitions are those where the control parameter
is independent of temperature and the transition can be observed even at
absolute zero. Extending this definition into non-equilibrium, one can look at
the dynamical quantum phase transition (DQPT) where the phase transition
is characterised by a non-analyticity when the system is evolved in time29.

In non-equilibrium, the concept of free-energy is no longer applicable and
hence cannot be the quantity which has the non-analyticity. We know that
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the partition function in terms of the free-energy is given by

Z = e��F (5.98)

where � = 1/kBT and F is the Free energy. Following Heyl29, we define the
Loschmidt amplitude

G(t) = h 0| (t)i = h 0|e�iHt| 0i (5.99)

This Loschmidt amplitude is formally similar to the partition function (for a
detailed discussion see §2.5 of29) with a particular dependence on the number
of degrees of freedom N in the large N limit that can be expressed as

G(t) = e�Ng(t) (5.100)

where g(t) is the associated rate function. This can be rewritten as

g(t) = � lim
N!1

1

N
log[G(t)]. (5.101)

A corresponding rate function can also be calculated for the Loschmidt echo
L(t) as

�(t) = � lim
N!1

1

N
log[L(t)] (5.102)

As mentioned above, the signature of a DQPT is the non-analyticity of
the rate function. This occurs when the time-evolved wavefunction becomes
orthogonal to the initial wavefunction, i.e h (0)| (t)i = 0.

This condition, for a time-independent Hamiltonian, such as in a quench
problem, is equivalent to G(t) = h (0)|e�iHt| (0)i = 0. Since we have found
the time evolution operator and the time-evolved wavefunction, we can find
the condition(s) for the vanishing of the Loschmidt amplitude (G(t)).
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(5.103)

The condition for the Loschmidt amplitude to vanish is that any one of
the terms in the product should vanish. Since �k(t) is the only term that
can change sign, and the other terms are real and positive-definite, a sub-
condition is that �k(t) is real and negative. This implies

2Ekc
tc = (2n+ 1)⇡ (5.104)
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for which �kc(tc) = �2. Simultaneously,
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(5.105)

should also be satisfied. These two conditions yield a specific combination
of momentum and time i.e. (kc, tc), for a specific quench from g0 to g1. The
above condition for kc yields

✏(0)
kc

�(0)

kc

=
�(1)

kc

✏(1)
kc

. (5.106)

Another way of arriving at this would be to use the transfer matrix. We
know that G(t) vanishes for (kc, tc) when the initial and final states become
orthogonal. We can write this condition as,

h kc
(t0)| kc

(tc)i = h kc
(t0)|T (g; tc) kc

(0)i = 0 (5.107)

Since �kc(tc) part of the transfer matrix only contributes to the global phase,

the orthogonality comes from the eı
~Xk·~�t ,which in terms of the uk, vk read
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Where by substituting, we can see
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Which can be simplified to give

�(1)

kc
�(0)

kc
+ ✏(1)

kc
✏(0)
kc

= 0 (5.110)

Substituting ✏k = �(� cos(k) � µ) and �k = � sin(k), we get the following
equation for kc:

(�0�1 ��0�1) cos
2(kc)� (�0µ1 + �1µ0) cos(kc) + (µ0µ1 +�0�1) = 0.

(5.111)
Thus we can work out the momentum which would be responsible for the
non-analyticity at the critical time tc. Furthermore, we see that these kc
correspond to either k = 0 or the k = ±⇡ states where the gap closes at tc.
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5.8 Results

Now that we have elaborated on the method, we come to the results. We
will first benchmark the method against other methods and known results.
We follow that by calculations of the rate function for three driving protocols
viz. the square wave, noise and quench.

5.8.1 Benchmarks

In order to verify the calculations, we first look at the winding number. As
given above, we calculate the winding number using the integral (eqn (5.40))

W =
1

2⇡

I

C

d�k

dk
dk. (5.112)

We can see that this expression is indeed correct and works in the time
evolved case by looking at the variation of the a2/3k when quenched from
phase III to phase II and looking at whether there is any winding around
the origin. This is seen in Fig. 5.5, where the a2/3k are plotted in the initial
phase (� = � = 1, µ0 = 3.0) on the left and the value post quench, at t = tc
into phase II (� = � = 1, µ0 = 0.0) is plotted on the right.

Coming to the case of the square wave driving protocol, we see that the
winding number changes in all the three phases, but has a minimum time
period required to observe such a change. We evolve the system in phase III
(� = � = 1, µ = 2.0) and plot in Fig. 5.6 the dependence of the winding
number on the frequency of the square wave. We see that there is a maximum
frequency above which there is no winding, while low frequency driving leads
to larger winding numbers. This is consistent with the results of Thakurathi
et al.18 in case of periodic �-function kicks.

Another benchmark is the observation of dynamical quantum phase tran-
sitions (DQPTs) when the system is quenched from one phase to the other.
We look at the quench from phase II to III in particular from � = � =
1, µ0 = 0 to � = � = 1, µ1 = 3.0. In Fig. 5.7 we plot the rate function
g(t) = � 1

N
log[G(t)] with the time and see that there appear nonanalytici-

ties. We scale the time with tc the critical time and show the behaviour over
a few multiples of tc in the main panel and an extended period of time in the
inset

5.8.2 Square Wave

Coming to the calculations using the transfer matrix method, we start with
the case of periodic driving. In this protocol, we consider without loss of
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Figure 5.5: The Hamiltonian coe�cients a2k, a3k plotted for a system
quenched from phase III to phase II. The left panel shows the initial pa-
rameters and the right panel corresponds to the final parameters post the
quench and evolution up to t=tc. The red dot indicates the origin and as can
be seen, the a2/3k get modified to wind around the origin post the quench.

generality, only the variation of the chemical potential between the two fixed
values.

We first look at the square wave driving where the parameters of both
the pieces lies within the same topological phase of the system. We plot
the rate function g(t) = � 1

N
log[G(t)] as a function of time within both the

topologically interesting and trivial phases. In particular, in the topological
phase, we consider the parameters to be � = � = 1 and the chemical poten-
tial fluctuates between the values µ0 = 0.5 and µ1 = 0.6 which corresponds
to phase II of the phase diagram (Fig. 5.1). Since the phase is topological,
we see the presence of the dynamical quantum phase transitions (DQPTs)
as evidenced by the non-analyticities in the rate function plotted in the left
panel of Fig. 5.8. On the right panel, we look at the topologically trivial
phase, in particular corresponding to the parameters � = � = 1 and the
chemical potentials µ0 = 3.0, µ1 = 3.1. This shows no non-analyticities as
expected within phase III.

Next, we look at the case where the chemical potential values lie on two
sides of the phase boundary between phases II and III. In particular, we
look at both the cases where the initial Hamiltonian corresponds to phase
II and III, while the other set of parameters belongs to phases III and II
correspondingly. We again plot the rate function as a function of time in
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Figure 5.6: The winding number for the square wave drive within phase III
plotted as a function of the driving frequency. We see a maximum frequency
above which there is no winding and lower frequencies give rise to larger
winding.
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Figure 5.7: The rate function g(t) plotted as a function of the scaled time
t/tc. The main panel shows the time evolution of g(t) up to t = 7tc, while the
inset shows the evolution for a longer range. We clearly see the non-analytic
behaviour occurring at odd multiples of tc. The details of the quench are
mentioned in the legend.
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Figure 5.8: Rate function plotted as a function of time for square wave driving
in phase II (� = � = 1;µ = 0.5) and phase III (� = � = 1;µ = 3.0) on the left
panel and right panels respectively. The left panel shows non-analyticites in
the topological phase while the right panel corresponding to the trivial does
not.

Fig. 5.9 with the initial phase being II in the left panel and III in the right
panel. Particularly, left panel corresponds to � = � = 1 with µ0 = 0.5 and
µ1 = 3.0, while the right panel corresponds to � = � = 1 with µ0 = 3.0 and
µ1 = 0.5. We We see that DQPTs are modified significantly and are present
in the case where the initial phase is the topological phase while the other
case does not show DQPTs. Both cases show smaller features and do not
have smooth lines as seen in the within the phase results.

5.8.3 Noise

The transfer matrix method was proposed35 in order to study the e↵ect of
noise in the transverse field Ising model and allows for an exact calculation
of the resulting time-evolved state. We use this method in our case to look
at the piecewise constant noise where the chemical potential is selected from
the uniform random distribution [�W,W ], where W is the half-width. We
look at the rate function in a similar manner to the square wave driving case
and consider both cases where W is chosen such that the parameters all fall
within a single topological phase and the case where some values can lie on
the other side of the phase boundary.

We begin with the case where the W is chosen such that the parameters
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Figure 5.9: Rate function plotted as a function of time for square wave
driving from phase II to III (� = � = 1;µ0 = 0.5, µ1 = 3.0) and phase III to
II (� = � = 1;µ0 = 3.0, µ1 = 0.5) in the left and right panels respectively.
The DQPTs are present in the left panel while not present in the right panel.

lie in the topological phase corresponding to � = � = 1 and the mean value
of the chemical potential is µ = 0.5. Starting from this initial condition, the
subsequent values are chosen such that µ1 = µ0 + w, where w is randomly
chosen from [�0.1, 0.1]. This is done for 1000 disorder configurations and
subsequently, the disorder averaged transfer matrix is calculated. The time
evolved state is calculated using this transfer matrix and is used to calculate
the rate function. The rate function as a function of time is plotted in the
left panel of Fig. 5.10. A similar exercise is carried out for the topologically
trivial phase with � = � = 1, µ0 = 3.0 and w 2 [�0.1, 0.1]. The rate function
for this case is plotted on the right panel of Fig. 5.10. We see that in the
case of disorder, the unitary nature of the operator is no longer maintained
and leads to the normalization no longer being unity. This is manifested
in the decaying trend of the rate function as time increases. Coming to the
non-analyticities, we see non-analytic behaviour in the case of the topological
phase, while any such features are absent in the trivial phase. While these
non-analyticities arise from the same tc, characterisation of them as DQPTs
(and associated geometric phase) may be more complicated due to the loss
of normalization.

We repeat the same procedure mentioned above for the case where the
noise window is broad enough to allow for the chemical potentials to lie on
either side of a phase boundary. In the left panel of Fig. 5.11, we consider
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Figure 5.10: Rate function plotted as a function of time for random noise
picked from a box distribution w 2 [�0.1, 0.1] with the chemical potential
becoming µ1 = µ0 + w in phase II (� = � = 1;µ = 0.5) and phase III
(� = � = 1;µ = 3.0) respectively. We see a decaying trend corresponding
to the loss of normalization and the presence of non-analyticities only in the
left panel.

the mean chemical potential to be in phase II, i.e. µ0 = 0.5 and picked the
value of the random number w from a larger range [�1, 1]. In the right panel
of Fig. 5.11, we consider the mean potential to lie in phase III and again pick
w 2 [�1, 1]. We see that the normalization is lost as expected and the rate
function shows a decaying trend. The non-analytic behaviour is restricted
only to the case where the mean chemical potential lies in phase II, while the
other case shows almost a linear decay of the rate function with time.

In order to look at the e↵ect of the size of the box distribution within
the same phase, we consider the case where the mean chemical potential is
µ0 = 0.5 and look at the rate function for various values of W ranging from
0.1-0.5. We plot the rate function in Fig. 5.12 and find no di↵erence in
the di↵erent values, at least for the parameter range considered. This shows
the significance of the mean chemical potential in determining the general
characteristics of the rate function.

5.8.4 Quench

Since both the square wave and noise protocols can be thought to be made
up of multiple pieces of a quench followed by time evolution, it would be
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Figure 5.11: Rate function plotted as a function of time when the noise is
applied post a quench across the phase boundary. The random noise is picked
from a box distribution w 2 [�1, 1] with the chemical potential becoming
µ2 = µ1 + w in phase II (� = � = 1;µ0 = 0.5, µ1 = 3.0) and phase III
(� = � = 1;µ0 = 3.0, µ1 = 0.5) respectively. The loss of normalization leads
to a decaying value of g(t) and see non-analyticities only in the left panel.

interesting to look at the e↵ects on the system when the Hamiltonian is
quenched from one set of parameters to another followed by time evolution.
As earlier, we restrict ourselves without loss of generality to � = � = 1
and look at quenches both within a topological phase and across the phase
transition boundary.

Let’s start with the case where the parameters are chosen such that the
system is in the same topological phase post the quench. We plot the rate
function for the quench within the topological phase II, i.e. � = � = 1 and
µ0 = 0.5, µ1 = 0.8 in the left panel of Fig. 5.13 and the rate function for
quench within the trivial phase III corresponding to � = � = 1 and µ0 =
3.0, µ1 = 3.3 in the right panel of Fig. 5.13. We see that the DQPTs arise
only in quench within the topological phase and the right panel shows smooth
variation with no non-analyticities. We next move on to the case where the
quench is across the phase boundary and consider both the quenches from
the topological phase II to the trivial phase III and vice versa. Keeping
� = � = 1 fixed, we consider in the left panel of Fig. 5.14, a quench from
µ0 = 0.5, in phase II to µ1 = 3.0 corresponding to phase III. In the right
panel of Fig. 5.14, we consider the opposite case with µ0 = 3.0 and µ1 = 0.5.
We find the occurrence of DQPTs in both cases, though corresponding to
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Figure 5.12: The dependence of the rate function on the magnitude of the
noise picked from a uniform distribution w 2 [�W,W ] for a system within
phase II (� = � = 1;µ = 0.5). We see no dependence of the positions of the
DQPTs for the di↵erent values of W as indicated in the legend.
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Figure 5.13: Rate function plotted as a function of time for a quench within
phase II (� = � = 1;µ0 = 0.5, µ1 = 0.8) and phase III (� = � = 1;µ0 =
3.0, µ1 = 3.3) in the left and right panels respectively. We see the DQPTs
only in the left panel corresponding to phase II.

di↵erent critical times.
Thus we have taken a broad look at the time evolution using three dif-

ferent protocols both within and across topological phases.

5.9 Summary

In this chapter, we have elucidated the transfer matrix method proposed by
D. Nghiem and R. Joynt35 and applied it to obtain the exact solutions for
the Kitaev chain subject to three di↵erent driving protocols. We have also
looked at the dynamical quantum phase transitions proposed by M. Heyl29

in various parts of the topological phase diagram under all the three driving
protocols. We have analytically derived the expressions for the critical times
tc and also the transfer matrices for each of the three protocols. We begin by
benchmarking the method with known results of M. Thakurathi et al.18 and
that of M. Heyl29 and verify that the method is valid for the square wave
and quench results respectively.

We further go on to study systematically the e↵ect of driving in both
within and across the topological phase diagram and look at the behaviour
of the rate function as a function of time. We see that in all the three
protocols, at least in the parameter regimes considered, that the DQPTs
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Figure 5.14: Rate function plotted as a function of time for a quench from
phase II to III (� = � = 1;µ0 = 0.5, µ1 = 3.0) and phase III to II (� =
� = 1;µ0 = 3.0, µ1 = 0.5) in the left and right panels respectively. We see
DQPTs arising in both cases with di↵ering critical times.

occur only when the topological phase (phase II in this case) is involved in
the time evolution.

In the case of the noise, we see that the normalization of the wavefunction
is no longer conserved due to the non-unitary nature of the transfer matrix
and hence see a decaying rate function. Further, we see that the width
of the disorder window W does not have any e↵ect on the position and
behaviour of the DQPTs and hence we see that the noise does not play a
role in determining the nature of the DQPTs.

In the case of quenches across the phase boundary, we see DQPTs arising
in both quenches from and to the topological phase, though with di↵ering
critical times. These critical times correspond to either a k = ±⇡ or k = 0
gap closing and subsequently correspond to either a decrease or increase in
the winding number respectively.
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Chapter 6

Mapping a periodically driven
quantum dot to a
time-dependent Kondo model:
a projector method approach

6.1 Introduction

In many condensed matter systems, one often sees that the low energy degrees
of freedom are most dominant in understanding the physics of the system.
Hence, it is much more fruitful to consider only the low-energy degrees of
freedom and systematically eliminate the higher-energy degrees of freedom.
While a simple ultraviolet cuto↵ may be the most straightforward way of
doing that, better methods exist whereby the Hilbert space is reduced while
including most of the high-energy contributions. In this regard, two broad
categories of slave particle approaches and renormalization group approaches
form the most studied methods. The slave particle methods1–5 involve pro-
jecting out the higher energy fluctuations via the introduction of auxiliary
degrees of freedom by means of the slave particles and corresponding con-
straints. The renormalization group approaches6–14 on the other hand seek
to integrate out the e↵ect of the higher energy fluctuations and arrive at an
underlying scale invariant e↵ective Hamiltonian.

A large body of research exists on studying interacting systems using
renormalization methods. Starting from the initial e↵orts in renormalization7

and Poor man’s scaling6 to modern methods like the numerical renormal-
ization group (NRG)11;15, density-matrix renormalization group (DMRG)10,
functional renormalization group (FRG)13, flow equation approach12, unitary
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renormalization group (URG)14, etc. While a host of these methods have
been successfully applied to various interacting systems, a simple but e↵ec-
tive method to arrive at an e↵ective low-energy Hamiltonian is the Schrie↵er-
Wol↵ Transformation (SWT)16. The SWT involves elimination of the higher
energy degrees of freedom by choosing a generator such that the e↵ective
Hamiltonian is first order in interaction. While there are systematic ways
of choosing the generator for certain models17, the generator for a general
system still needs to be chosen via an ansatz. This shortcoming of the SWT
is overcome by the Projection Operator Method (POM) elaborated by Hew-
son18 (not to be confused with the similarly named method by Nakajima
and Zwanzig), where the projection to the singly occupied subspace is done
explicitly via the projection operators, and no generator is needed. Both
the SWT and POM have been successfully applied in equilibrium to study
multiple systems, and more pertinent to our interest, the single impurity An-
derson model (SIAM) which has the Kondo impurity model as the e↵ective
low energy Hamiltonian.

Coming to nonequilibrium, multiple renormalization methods like NRG,
FRG, Flow equations, etc. have been generalized and applied to both sys-
tems in steady states and to study transient dynamics. In the case of periodic
driving, multiple experimental and theoretical studies have been conducted
on systems which exhibit exotic phenomena like time crystals19–21, artificial
gauge fields22;23, emergent topology24–28, etc. The Floquet theorem29, which
is the time-analogue of the Bloch theorem, not only allows for the calculation
of the time evolution operator in terms of a periodic function, but also allows
for the calculation of an e↵ective time-independent Hamiltonian whose eigen-
states form the basis for the extended Hilbert space. This Floquet Hamilto-
nian approach which can be calculated using a transformation to a rotating
frame along with the perturbative High Frequency Expansion (HFE) has
been successfully applied to multiple systems and driving protocols30. The
Floquet theory has also been used to derive the SWT for periodically driven
systems31 and some groups have claimed that the e↵ective Hamiltonian can
be a 2-Channel Kondo model32.

The interest in these systems is not merely theoretical, but can also be
used as a template for constructing quantum computing devices where more
e�cient calculations can be carried out via the exchange interaction33. The
SWT and the time-dependent projection operator method (TDPOM) can be
used to study systems where the exchange coupling can be tuned by means
of a time-dependent bias.

The projection operator Method (POM) as mentioned earlier, provides
a systematic alternative to the SWT and bypasses the need for an ansatz
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to calculate the generator. In this regard, we apply the POM on the time-
dependent many-body Schrödinger equation and derive an e↵ective Hamil-
tonian in the singly-occupied subspace. The SIAM subjected to sinusoidal
driving has been studied in the U = 1 limit using the TDSWT32 and an
emergent two-channel Kondo Hamiltonian has been found. The nature of the
Kondo e↵ect both in the finite and U = 1 limits when subject to sinusoidal
driving is a question answered in this chapter. The possibility of tuning
the Kondo coupling via driving is also studied for an example case. In this
chapter, subsequent to the introduction, we derive the general expressions
for the time-dependent POM followed by an application to the sinusoidally
driven SIAM. The e↵ective Kondo Hamiltonian is derived for both the sine
and cosine driving terms, followed by a comparison with the TDSWT. This is
followed by the time dependent Kondo coupling for a specific value of driving
parameters. Finally, we conclude with the summary of the chapter.

6.2 Formalism

The time-dependent projection operators can be obtained by considering the
time-dependent Schrödinger equation and projecting the Hamiltonian into
its constituent subspaces.

6.2.1 General preliminaries

We begin with the time-dependent Schrödinger equation given by

H(t) (t) = ı@t (t) (6.1)

which can be written in the matrix form as
2

4
H00 H01 H02

H10 H11 H12

H20 H21 H22

3

5

2

4
 0

 1

 2

3

5 =

2

4
ı@t 0

ı@t 1

ı@t 2

3

5 (6.2)

Where we have Hnn0 = PnH(t)Pn0 with Pm being the projection operator to
the m-occupied subspace. In order to simplify further calculations, we also
set H02 = H20 = 0 which corresponds to ignoring simultaneous two-particle
excitations. This gives us the set of equations

H00 0 +H01 1 = ı@t 0

H10 0 +H11 1 +H12 2 = ı@t 1

H21 1 +H22 2 = ı@t 2

(6.3)
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Eliminating  0 and  2 we have

[H11 +H10(ı@t �H00)
�1H01 +H12(ı@t �H22)

�1H21] 1 = ı@t 1 (6.4)

This expression is valid for any general time-dependent Hamiltonian H(t).
While the term H11 can be easily evaluated, the second and third terms, i.e.
terms of the form B†(ı@t � A)�1B need to be evaluated more carefully.

Fourier Series decomposition

In order to simplify the terms of the form B†(ı@t � A)�1B, we make use of
the Fourier decomposition of B. This is given by

B(t) =
X

n

e�ın⌦tB(n) (6.5)

where the Fourier components B(n) are given by

B(n) =
1

T

Z
T

0

dteın⌦tB(t) (6.6)

and T = 2⇡

⌦
. We now denote X = (ı@t � A)�1B and construct an ansatz of

the form
X = �A�1B(0) +

X

n 6=0

(n⌦� A)�1e�ın⌦tB(n) (6.7)

This ansatz can be verified as follows

B = (ı@t � A)X

= (ı@t � A)(�A�1B(0) +
X

n 6=0

(n⌦� A)�1e�ın⌦tB(n))

= B(0) +
X

n 6=0

e�ın⌦B(n) = B

(6.8)

Therefore, using the ansatz to calculate the cross terms we have,

B†(ı@t � A)�1B = �B†A�1B(0) +
X

n 6=0

B†(n⌦� A)�1e�ın⌦tB(n) (6.9)

In order to simplify the term B†(n⌦� A)�1B, we use the identity

1

n⌦� A
B(n) = B(n)

1

n⌦� A� b
(6.10)
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where b can be obtained by evaluating the commutator [A,B(n)] = bB(n).
Now, using the identity in the Fourier decomposition of B† Eq. (6.5) we
have

B†(ı@t � A)�1B = �
X

m

e�ım⌦t(B†)(m)A�1B(0)

+
X

n,m

e�ı(m+n)⌦t(B†)(m)(B(n))
1

n⌦� A� b
(6.11)

Also we have A�1B(0) = B(0) 1

A+b
, whereby equation (6.11) becomes

B†(ı@t � A)�1B =
X

n,m

e�ı(m+n)⌦t(B†)(m)(B(n))
1

n⌦� A� b
(6.12)

Thus we have a closed-form expression for evaluating all the projections of
the Hamiltonian.

6.2.2 Application to the Single Impurity Anderson Model

We now apply this formalism to the driven Single impurity Anderson model
(SIAM) given by the Hamiltonian

Hlead =
X

k↵�

✏k↵c
†
k↵�

ck↵� (6.13)

Hdot = Und"nd# +
X

�

✏dnd� (6.14)

Hhyb = v
X

k↵�

(c†
k↵�

d� + h.c.) (6.15)

Hdr(t) = ��0 sin(⌦t)(
X

k�

nkL� �
X

k�

nkR�) (6.16)

where c(†)
k↵�

are the annihilation (creation) operators of the ↵ = L,R leads
connected to an interacting (U) dot ✏d via the hybridisation term Hhyb and
the driving term Hdr corresponds to a sinusoidal AC bias on the left and
right leads. In order to eliminate the driving term, we use a canonical trans-
formation H̃(t) = U †(H(t)� ı@t)U given by

U = exp

✓
�ı

Z
Hdr(t)dt

◆

= exp

 
�ı⌘ cos(⌦t)

X

k�

nkL�

!
exp

 
ı⌘ cos(⌦t)

X

k�

nkR�

! (6.17)
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where ⌘ = �0
⌦
. Applying the canonical transformation to the full Hamilto-

nian, we can see that only the hybridisation term is modified and the new
term is given by

H̃hyb(t) = v
X

k↵�

(e±↵ı�(t)c†
k↵�

d� + h.c.) (6.18)

where �(t) = ⌘ cos(⌦t) and ±↵ is positive/negative for ↵ = L/R respectively.

Projection Operator method

We now apply the Projection operator for this Hamiltonian in order to get
the e↵ective Hamiltonian. We split the Hamiltonian into

H(t) = H0 + H̃hyb(t) (6.19)

and calculate the projections. The projection operators are given by

P0 = (1� nd")(1� nd#)

P1 = nd" + nd# � 2nd"nd#

P2 = nd"nd#

(6.20)

Applying these projection operators on H(t), we get the necessary projec-
tions. The diagonal terms are given by

H11 = HleadP1 + ✏dP1

H00 = HleadP0

H22 = HleadP2 + (U + 2✏d)P2

(6.21)

and the o↵-diagonal terms are given by

H01 = H†
10

= v
X

k↵�

e±↵ı�(t)c†
k↵�

d�(1� nd�̄) (6.22)

H21 = H†
12

= v
X

k↵�

e⌥↵ı�(t)d†
�
ck↵�nd�̄ (6.23)

We can see that only the o↵-diagonal terms are time-dependent and hence
we need to calculate only their Fourier decomposition. This can be done by
considering the Jacobi-Anger expansion

eı�(t) =
1X

n=�1
(ı)nJn(⌘)e

ın⌦t (6.24)
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where Jn(⌘) are the Bessel functions of the first kind. The Fourier decom-
position gives

H01 = H(0)

01
+
X

n

H(n)

01
e�ın⌦t (6.25)

H21 = H(0)

21
+
X

n

H(n)

21
e�ın⌦t (6.26)

where the Fourier components are given by

H(0)

01
= vJ0(⌘)

X

k↵�

c†
k↵�

d�(1� nd�̄)

H(n)

01
= (�1)n(ı)nvJ�n(⌘)

X

k�

[c†
kL�

d�(1� nd�̄) + (�1)nc†
kR�

d�(1� nd�̄)]

H(0)

21
= vJ0(⌘)

X

k↵�

d†
�
ck↵�nd�̄

H(n)

21
= (ı)nvJ�n(⌘)

X

k�

[d†
�
ckL�nd�̄ + (�1)nd†

�
ckR�nd�̄]

(6.27)
Before attempting to calculate the terms of the form (ı@t � A)�1B, we need
to find the commutator [A,B(n)].

If we consider the terms only of the form [A,B(n)] = bB(n) : b 2 C, we
can evaluate the commutators as

[H00, H
(n)

01
] = (�1)n(ı)nvJ�n(⌘)

X

k�

[✏kLc
†
kL�

d�(1� nd�̄)

+ (�1)n✏kRc
†
kR�

d�(1� nd�̄)] (6.28)

and

[H22, H
(n)

21
] = (U + 2✏d)(ı)

nvJ�n(⌘)
X

k�

[d†
�
ckL�nd�̄ + (�1)nd†

�
ckR�nd�̄] (6.29)

By considering only the terms of form [A,Bn] = bB(n), we ignore the terms
that are of the form

[H00, H
(n)

01
] = (�1)n(ı)nvJ�n(⌘)

X

k↵�

[✏kLc
†
k0↵�ck0↵�c

†
kL�

d�(1� nd�̄)

+ (�1)n✏kRc
†
k0↵�ck0↵�c

†
kR�

d�(1� nd�̄)] (6.30)

and

[H22, H
(n)

21
] = (U + 2✏d)(ı)

nvJ�n(⌘)
X

kk0↵�

[c†
k0↵�ck0↵�d

†
�
ckL�nd�̄

+ (�1)nc†
k0↵�ck0↵�d

†
�
ckR�nd�̄] (6.31)
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Where k0 6= k. We can now calculate
P

n,m
e�ı(m+n)⌦t(B†)(m)(B(n)) 1

n⌦�A�b
.If

we take both the leads to have ✏kL = ✏kR = ✏k, and noting that B† =
(B0)† +

P
m
(B(m))†e�ım⌦t, we get

X

n,m

H(m)

10
H(n)

01

e�ı(n�m)⌦t

n⌦�H00 � ✏k
= v2

X

n,m

e�ı(n�m)⌦t

n⌦�H00 � ✏k
(ı)n+m

⇥ J�n(⌘)J�m(⌘)
X

kk0��0

n
d†
�
(1� nd�̄0)

⇥
(�1)nckL�c

†
k0L�0 + ckL�c

†
k0R�0

+ (�1)n+mckR�c
†
k0L�0 + (�1)mckR�c

†
k0R�0

⇤
(1� nd�̄)d�0

o
(6.32)

and

X

n,m

H(m)

12
H(n)

21

e�ı(n�m)⌦t

n⌦�H22 � U � 2✏d
= v2

X

n,m

e�ı(n�m)⌦t

n⌦�H22 � U � 2✏d
(ı)n+m

⇥ (�1)mJ�n(⌘)J�m(⌘)
X

kk0��0

n⇥
c†
kL�

d�nd�̄0nd�̄d
†
�0ck0L�0

+ (�1)nc†
kL�

d�nd�̄0nd�̄d
†
�0ck0R�0 + (�1)mc†

kR�
d�nd�̄0nd�̄d

†
�0ck0L�0

+ (�1)m+nc†
kR�

d�nd�̄0nd�̄d
†
�0ck0R�0

⇤o
(6.33)

In order to simplify further, we can use the expression

1

n⌦�H0 � b
=

1

n⌦� b

⇣
1� H0

n⌦� b

⌘�1

(6.34)

and considering only terms to order v2 (Notice H0 ⇠ O(v)), we can ignore
the H0

n⌦�b
term.

Basis change

Instead of writing the terms in terms of the lead operators c(†)
L,R

, it is more
convenient to work with a new basis given by

bk(e/o)� =
1p
2
(ckL� ±e/o ckR�) (6.35)

In this basis, the terms read

H11 = HleadP1 + ✏dP1 (6.36)
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The O(v2) terms read

X

n,m

H(m)

10
H(n)

01

e�ı(n�m)⌦t

n⌦� ✏k
= v2

X

n,m

e�ı(n�m)⌦t

n⌦� ✏k
(ı)n+m

⇥ J�n(⌘)J�m(⌘)
X

kk0��0

n
d†
�
(1� nd�̄0)(1� nd�̄)d�0

⇥

bke�b
†
k0e�0{(�1)n + 1 + (�1)n+m + (�1)m}

+ bke�b
†
k0o�0{(�1)n � 1 + (�1)n+m � (�1)m}

+ bko�b
†
k0e�0{(�1)n + 1� (�1)n+m � (�1)m}

+ bko�b
†
k0o�0{(�1)n � 1� (�1)n+m + (�1)m}

⇤o
(6.37)

and

X

n,m

H(m)

12
H(n)

21

e�ı(n�m)⌦t

n⌦� U � 2✏d
= v2

X

n,m

e�ı(n�m)⌦t

n⌦� U � 2✏d
(ı)n+m

⇥ J�n(⌘)J�m(⌘)
X

kk0��0

n
d�nd�̄0nd�̄d

†
�0

⇥

b†
ke�

bk0e�0{1 + (�1)n + (�1)m + (�1)m+n}
+ b†

ke�
bk0o�0{1� (�1)n + (�1)m � (�1)m+n}

+ b†
ko�

bk0e�0{�1� (�1)n + (�1)m + (�1)m+n}

+ b†
ko�

bk0o�0{�1 + (�1)n + (�1)m � (�1)m+n}
⇤o

(6.38)

Now the indices m,n can take both even and odd values. This gives us four
cases. In equation (6.37) only one bb† term survives in each combination of
n,m being odd or even. The terms are tabulated below

n m ��0 Term

even even ee 4bke�b
†
k0e�0

even odd oe �4bko�b
†
k0e�0

odd even eo 4bke�b
†
k0o�0

odd odd oo �4bko�b
†
k0o�0

Table 6.1: The signs of the H10H01 terms

In the case of equation (6.38) we have only one b†b term surviving as well.
The terms are

149



n m ��0 Term

even even ee 4b†
ke�

bk0e�0

even odd oe 4b†
ko�

bk0e�0

odd even eo �4b†
ke�

bk0o�0

odd odd oo �4b†
ko�

bk0o�0

Table 6.2: The signs of the H12H21 terms

We can see that (ı)n+m is imaginary for n,m not both odd or even (mixing
terms) and is real otherwise. If we denote the surviving term by the index
� = e, o , we can write equations (6.37) and (6.38) compactly as

X

n,m

H(m)

10
H(n)

01

e�ı(n�m)⌦t

n⌦� ✏k
=

X

kk
0
��

0
��

0

J��
0

1

�
d†
�
(1� nd�̄0)(1� nd�̄)d�0bk��b

†
k0�0�0

 

(6.39)

where J��
0

1
= ±��

0

1
4v2

P
n,m

e
�ı(n�m)⌦t

n⌦�✏k
(ı)n+mJn(⌘)Jm(⌘), and

X

n,m

H(m)

12
H(n)

21

e�ı(n�m)⌦t

n⌦� U � 2✏d
=

X

kk
0
��

0
��

0

J��
0

2

�
d�nd�̄0nd�̄d

†
�0b

†
k��

bk0�0�0
 

(6.40)

where J��
0

2
= ±��

0

2
4v2

P
n,m

e
�ı(n�m)⌦t

n⌦�U�2✏d
(ı)n+mJn(⌘)Jm(⌘).

E↵ective Hamiltonian

Now that we have evaluated each of the components, we can put them to-
gether to find the e↵ective Hamiltonian from equation (6.4). The individual
terms are given in equations (6.21), (6.39), (6.40) and read

H11 = HleadP1 + ✏dP1

X

n,m

H(m)

10
H(n)

01

e�ı(n�m)⌦t

n⌦� ✏k
=

X

kk
0
��

0
�,�

0
=e,o

J��
0

1

n
d†
�
(1� nd�̄0)(1� nd�̄)d�0bk��b

†
k0�0�0

o

X

n,m

H(m)

12
H(n)

21

e�ı(n�m)⌦t

n⌦� U � 2✏d
=

X

kk
0
��

0
�,�

0
=e,o

J��
0

2

n
d�nd�̄0nd�̄d

†
�0b

†
k��

bk0�0�0

o

(6.41)
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Since we want to evaluate the e↵ective Hamiltonian in the singly occupied
subspace, we have

nd" + nd# = 1 (6.42)

nd"nd# = 0 (6.43)

Substituting these in the terms gives rise to the e↵ective Hamiltonian

He↵ = Hlead + ✏d +
X

k�

J��

1
+
X

kk
0

��
0

�

n�
� J��

0

1
nd� + J�

0
�

2
nd�̄

�
b†
k0�0�bk��

�
�
J��

0

1
+ J�

0
�

2

�
d†
�
d�̄b

†
k0�0�̄bk��

o
(6.44)

Ignoring the numerical factors ✏d +
P

k�
J��

1
, we get

He↵ = Hlead+
X

kk
0

��
0

�

n�
�J��

0

1
nd�+J�

0
�

2
nd�̄

�
b†
k0�0�bk���

�
J��

0

1
+J�

0
�

2

�
d†
�
d�̄b

†
k0�0�̄bk��

o

(6.45)

In equilibrium, we know that the low energy e↵ective Hamiltonian of
the SIAM considered in eqn (6.13) is the Kondo model. If we compare our
e↵ective Hamiltonian (eqn (6.45)) to a Kondo Hamiltonian of the form

HK = Hlead +
X

kk
0

��
0

n
Jz

kk
0

��
0
Szsz

kk
0

��
0
+ J+

kk
0

��
0
S+s�

kk
0

��
0
+ J�

kk
0

��
0
S�s+

kk
0

��
0

o
, (6.46)

we can make a direct comparison of terms for the Hlead and the S± terms to
get

J+

kk
0

��
0
= J�

kk
0

��
0
= �(J��

0

1
+ J�

0
�

2
) (6.47)

To simplify the
�
� J��

0

1
nd� + J�

0
�

2
nd�̄

�
b†
k0�0�bk�� term, we can use

nd� =
1±� Sz

2
(6.48)

b†
k0�0�bk�� =

1

2
(n�

0
�

kk0 ±� s
z

kk
0

�
0
�

) (6.49)
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where n�
0
�

kk0 =
P

�
b†
k0�0�bk�� and sz

kk
0

�
0
�

= b†
k0�0"bk�" � b†

k0�0#bk�#. This gives

X
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(6.50)

Which gives us
X
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The
P
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1
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)n�

0
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kk0 term is a potential scattering term and we can

ignore it. Then we have
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Thus from equations (6.47) and (6.52) we have

J(⌘, t) = Jz

kk
0

��
0
= J±

kk
0

��
0
= �(J��

0

1
+ J�

0
�

2
) (6.53)

Thus the e↵ective Hamiltonian in (6.46) is of the form

HK = Hlead +
X

kk
0

��
0

J(⌘, t)S · skk0
��

0
(6.54)

From the expressions for J1/2, we can calculate

J(⌘, t) = �(J��
0

1
+ J�

0
�

2
) = �4v2

X

n,m

e�ı(n�m)⌦tın+mJm(⌘)Jn(⌘)

⇥
h ±��

0

1

n⌦� ✏k
+

±�
0
�

2

n⌦� U � 2✏d

i
(6.55)
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Where we have for �, �0 = e, o

±��
0

1
=

✓
+ +
� �

◆
(6.56)

±��
0

2
=

✓
+ �
+ �

◆
(6.57)

Therefore we can see that we have

J(⌘, t) = �(J��
0

1
+ J�

0
�

2
) = ⌥4v2

X

n,m

e�ı(n�m)⌦tın+mJm(⌘)Jn(⌘)

⇥
h 1

n⌦� ✏k
+

1

n⌦� U � 2✏d

i
(6.58)

Where we have � for the ��0 = ee, eo and + for the ��0 = oo, oe cases
respectively. The indices m,n take odd or even values in the case of each
��0 = e, o according to the tables 6.1 and 6.2.

We now notice that since the mixing terms eo, oe are not always zero, the
two reservoirs are connected and form a single channel. Thus, the e↵ective
Kondo Hamiltonian is the single-channel Kondo model.

6.3 Results and Discussion

As mentioned earlier, the e↵ective Kondo Hamiltonian obtained using the
time-dependent projection operator method (TDPOM) is a single-channel
Kondo model due to the presence of mixing terms. The time-dependent
Schrie↵er-Wol↵ transformation (TDSWT) used by M. Eckstein et al.32, does
not capture these mixing terms at the v2 order correctly, leading to a false
identification of the e↵ective Hamiltonian with a two-channel Kondo model.

6.3.1 U = 1 Limit

In the U = 1 limit, the exchange coupling terms Je/o derived from the
TDSWT read

Je/o(⌘,⌦) = 4v2
X

l even(odd)

J|l|(⌘)2

|✏f |+ l⌦
(6.59)

where ✏f is the dot energy (✏d in our case).
In the TDSWT, the exchange coupling Jo corresponds to the ferromag-

netic case when ⌦ > |✏f | since for each |l|, the negative term J 2

|l|/(|✏f |� l⌦)

is greater in magnitude than the positive term J 2

|l|/(|✏f | + l⌦). This cor-
responds to the competition between a ferromagnetic channel (o) and an
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Figure 6.1: The exchange interaction Je/o from TDSWT plotted as a function
of ⌘ = ⌦

�0
for the antiferromagnetic case ⌦ < |✏f | in panel a and the ferro-

magnetic case ⌦ > |✏f | in panel b for the frequency ⌦ and ✏f as mentioned
in the legend. Taken from M. Eckstein et al.32.

antiferromagnetic channel (e). On the other hand, by similar arguments, it
can be seen that Jo corresponds to the antiferromagnetic case when ⌦ < |✏f |
and hence both the e/o channels are antiferromagnetic. This can be seen in
Fig. 6.1 taken from M. Eckstein et al.32, where the exchange couplings Je/o
are plotted as a function of ⌘ = ⌦

�0
for the antiferromagnetic case in panel a

and the ferromagnetic case in panel b.
In the same U = 1 limit, the Kondo coupling calculated from TDPOM,

i.e. eqn (6.58) reads

J(⌘, t) = ⌥4v2
X

n,m

e�ı(n�m)⌦tın+mJm(⌘)Jn(⌘)


1

n⌦� ✏k

�
(6.60)

Where we have � for the ��0 = ee, eo and + for the ��0 = oo, oe cases
respectively. The indices m,n take odd or even values in the case of each
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��0 = e, o according to the tables 6.1 and 6.2. We see that the coupling
has a similar form to that obtained from TDSWT (eqn (6.59)), in addition
to having non-zero mixing terms eo, oe and also the possibility of taking
imaginary values depending on ım+n.

6.3.2 Cosine driving

One thing to note is that the imaginary coupling does not arise in the case
when the driving term is given by

Hdr = �0 cos(⌦t)
�X

k�

nkL� � nkR�

�
(6.61)

due to the corresponding �(t) = ⌘ sin(⌦t) and the Jacobi-Anger expansion
reading

eı�(t) =
1X

n=�1
Jn(⌘)e

ın⌦t (6.62)

We can derive the exchange coupling following the same line of arguments
as in the case of sine driving to get

J(⌘, t) = �4v2
X

n,m

e�ı(n�m)⌦tJm(⌘)Jn(⌘)

⇥
h 1

n⌦� ✏k
± 1

n⌦� U � 2✏d

i
(6.63)

Where we have + for the ��0 = ee, oe and � for the ��0 = oo, eo cases
respectively. The indices m,n take odd or even values in the case of each
��0 = e, o according to the table 6.3 given below.

n m ��0

even even ee
even odd eo
odd even oe
odd odd oo

Table 6.3: The values taken by the indices m,n for ��0 with cosine driving

In the limit U = 1, the second term in eqn (6.58) becomes zero and
hence we have

J(⌘, t) = �4v2
X

n,m

e�ı(n�m)⌦tJm(⌘)Jn(⌘)


1

n⌦� ✏k

�
(6.64)

Where we again note that the mixing terms eo, oe do not become zero and
hence continue to give rise to a single-channel Kondo e↵ect.

155



6.3.3 Time-averaging

Also note that in the TDSWT method, due to the periodic nature of the
driving, the time-dependence was removed by considering the time-averaged
exchange coupling J(⌘) = 1

T

R
T

0
dtJ(⌘, T ), in order to obtain the Floquet ex-

change coupling and subsequently the time-independent Hamiltonian. Since
this is a further approximation and involves only keeping O(⌦�1) terms, we
can choose to retain the full time-dependent exchange coupling obtained from
the TDPOM.

Calculating the time-averaged J(⌘) allows us to compare the results ob-
tained from TDPOM and TDSWT. Integrating J(⌘, t) from eqn (6.60) over
one time period, we get

J(⌘) =
⌥4v2

T

X

n,m

ın+mJm(⌘)Jn(⌘)


1

n⌦� ✏k

� Z
T

0

dte�ı(n�m)⌦t (6.65)

If we consider ⌦ to be a very large energy scale of the system, i.e. tractable
to the Floquet formalism, we can use the identity 1

T

R
dte�ı(n�m)⌦t = �n,m, to

get

Je(⌘) = �4v2
X

n even

J 2

n
(⌘)


1

n⌦� ✏k

�

Jo(⌘) = �4v2
X

n odd

J 2

n
(⌘)


1

n⌦� ✏k

� (6.66)

Using the Bessel function identity J�n(⌘) = (�1)nJn(⌘), we can write

Je/o = �4v2
1X

n=0

n even/odd

Jn(⌘)


1

n⌦� ✏k
� 1

n⌦+ ✏k

�
(6.67)

In the time-averaged case, the eo, oe terms are no longer present and thus we
get a two-channel Kondo model and the expression eqn (6.67) recovers the
TDSWT results. We plot the Je/o in the antiferromagnetic and ferromagnetic
cases in the top and bottom panels of Fig. 6.2 for the values of ⌦ and ✏k
as indicated in the legend. The value of v = 0.5,�0 = 1 was fixed for both
cases

But it bears reiterating that the Jeo/oe terms are not present in the expres-
sion for the exchange coupling, eqn (6.67), only because of the time-averaging.
This is equivalent to keeping only the O(⌦�1) terms in the e↵ective Hamil-
tonian. In general, the J(⌘, t) will have non-zero mixing terms and cannot
be thought to give rise to an e↵ective two-channel Kondo Hamiltonian.
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Figure 6.2: The time averaged exchange coupling for the e, o channels plotted
as a function of ⌘. The top panel corresponds to the antiferromagnetic case
with ⌦ = 11 < ✏k = 12 and the bottom panel corresponds to the ferromag-
netic case with ⌦ = 2 > ✏k = 0.5. The hybridisation v = 0.5 and amplitude
of drive �0 = 1 for both panels. Comparing to Fig.6.1, one can see that the
TDSWT results are recovered.
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k J0(⌘) J1(⌘) J2(⌘) J3(⌘) J4(⌘) J5(⌘)
1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

Table 6.4: The first five roots of the Bessel functions J0···5(⌘). Taken from
Wolfram MathWorld.

6.3.4 Bessel roots

Another angle of approach to making sense of the exchange coupling is to
tune ⌘ such that Jn(⌘) = 0 for at least some n (low order) and look at the
e↵ect on the dynamics J(t). The first few roots jn,k of the Bessel functions
Jn(⌘) are given in Table 6.4.

Let us consider the case where we fix ⌘ = 2.4048, which is the first
zero of J0(⌘) and look at the time evolution of the various components of
J(⌘ = 2.4048, t). Since only J0(⌘) goes to zero at ⌘ = 2.4048, the higher m,n
terms are still present and contribute to all the ee, eo, oe, oo components.

Considering the sine driving protocol, we evaluate J(t) for the parameter
set v = 0.5,�0 = 1,⌦ = 11, ✏k = 12, U = 8, ✏d = �U/2. Plotting the di↵erent
components in Fig. 6.3 as a function of time for the first five periods of the
drive allows us to notice that the ee, eo components are the most dominant
and oscillate in sign. The oe, oo components are almost an order of magnitude
smaller and are negative at all times.

6.4 Summary

We have derived the time-dependent projection operator method for a general
time-dependent driving using the time-dependent Schrödinger equation and
also applied it to the specific case of the sinusoidally driven single impurity
Anderson model. While the method involves dropping terms not of the form
[A,B(n)] = bB(n) and also the terms of O(v3) and higher, the method is able
to capture all the terms at v2 order.

This allows us to see that the two emergent channels e, o are not inde-
pendent in all cases and in fact form a single channel via the mixing terms
Joe,eo. This is in contrast to the TDSWT results32 which are obtained post
a time averaging, which corresponds to the Floquet expansion keeping up
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Figure 6.3: Time dependence of the exchange coupling J(⌘ = 2.4048, t)
plotted for the first five periods. The components from top to bottom are
ee, eo, oe, oo respectively. We see that the ee, eo terms are almost an order
of magnitude more dominant compared to the oe, oo terms. The calculation
was performed for the parameters v = 0.5,�0 = 1,⌦ = 11, ✏k = 12, U =
8, ✏d = �U/2
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to O(⌦�1) terms. Performing a similar time averaging, we are able to re-
cover the TDSWT results analytically starting from the general expression
for J(⌘, t).

The TDPOM allows us to go further and look at the full time dependence
of the exchange coupling and we look at one example case where we choose
⌘ such that it is the first zero of the Bessel function J0(⌘). In this case,
we see that the ee, eo components are the most dominant and change sign
through the evolution. Fine tuning such a response might be useful for both
engineering materials similar to Floquet engineering34 and also possibly in
quantum computing via the exchange interaction33.
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Chapter 7

Summary and conclusions

In this thesis, we have considered both steady-state and time-dependent
methods to study quantum many-body systems out of equilibrium.

In chapters 2 and 3 we have applied the Keldysh second order perturba-
tion theory and steady-state interpolative approximation to study the e↵ects
of spin-orbit coupling (SOC) on the transport through a quantum dot con-
nected to leads with SOC. We consider the particle-hole symmetric limit in
chapter 2 and see that the Kondo scale decreases with an increase in the
SOC strength and can explain the experimental finding of the split zero bias
conductance peak. We also see that the linear response regime is determined
by the equilibrium scale.

In chapter 3, we introduce a gate voltage in the model, which allows us
to study the e↵ect of SOC away from particle-hole symmetry. We find that
the zero-bias conductance has isosbestic points around G0 ⇠ 0.65 and also
see the e↵ects of a reduced equilibrium scale and broadening of the e↵ective
hybridisation in the presence of SOC. The KPT2 and IPA introduced in
chapters 2 and 3 are e↵ective and e�cient impurity solvers and may be
clubbed directly with dynamical mean field theory in order to access systems
in higher dimensions.

While, we dealt with the application of existing methods in chapters 2
and 3, we derive a new method in chapter 4 by generalizing the local mo-
ment approach to the nonequilibrium case. Subsequent to rigorous bench-
marking, we see that the method is able to capture the transport in the
weak-intermediate coupling well and also capture the persistence of univer-
sality. While we see the emergence of a satellite feature in the strong coupling
regime, a detailed study into the diagrams involved in the method may shed
light on the origin and possible ways to take into account any physics not
captured by a straightforward generalization as done in chapter 4
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In chapter 5, we derive analytically an exact solution for the time evolu-
tion of a Kitaev chain subject to piecwise constant driving using the transfer
matrix method. We are able to account for the changing topology and emer-
gent Majorana zero modes with time evolution by deriving the critical time
scale for a gap closing. We also are able to study the emergence of dynam-
ical quantum phase transitions and the e↵ect of noise. The transfer matrix
method applied allows us to exactly solve for the time-dependent states of
the Kitaev chain when subject to piecewise constant driving. This can be
quite easily modified to study systems like the SSH model, which are in the
same class as the Kitaev chain. The emergence of higher order topological
invariants can also be studied with such a treatment.

In chapter 6, we have derived a time-dependent generalization of the pro-
jection operator method and have applied it to the sinusoidally driven single
impurity Anderson model to obtain the e↵ective low-energy Kondo model.
The method, much like its equilibrium counterpart does not need any ansatz
for the generator and is able to capture the mixing terms which the time-
dependent Schrie↵er-Wol↵ transformation misses. The time-dependent pro-
jection operator method (TDPOM) allows us to calculate the time-dependent
e↵ective low-energy Hamiltonians starting from the corresponding micro-
scopic Hamiltonians. The TDPOM needs to be paired with another method
in order to solve the time-dependent e↵ective Hamiltonian. While some
methods do exist in this regard, there is a great need for accurate and inex-
pensive methods which can solve the time-dependent problem.

In conclusion, the field of non-equilibrium quantum many-body systems
is a treasure trove of novel physics and the growing interest in such systems
is a testament to the possibilities that can be accessed. With increasing
interest in the physics, the development of methods to study such systems is
paramount and this thesis seeks to develop and apply a collection of methods,
both numerical and analytic to study both steady-state and time-dependent
quantum many-body systems.
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Appendix A

A brief introduction to Keldysh
field theory

In this chapter we will review the Keldysh1 field theoretic formalism and
hope to provide a concise introduction to the concepts needed for working
out the methods in chapters 2 to 4.

A.1 Preliminaries

Consider a time-dependent Hamiltonian of the form

H(t) = H0 + V +Hext(t) = H0 +H 0(t) (A.1)

Where H0 corresponds to the non-interacting, V to the interaction and
Hext(t) to the time-dependent parts respectively.

A.1.1 Schrödinger picture

The Schrödinger picture of quantum mechanics posits the time dependence in
the state | S(t)i which evolves according to the time-dependent Schrödinger
equation (TDSE)

i~ @
@t

| S(t)i = H(t)| S(t)i (A.2)

while the operators corresponding to the observable quantities do not have
an explicit time dependence.

The evolution of the state from an initial time t0 can be calculated by the
means of an evolution operator

| S(t)i = U(t, t0)| S(t0)i (A.3)
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where the evolution operator also satisfies the TDSE

i~ @
@t

U(t, t0) = H(t)U(t, t0) (A.4)

This equation can be solved by converting it into the integral form and iter-
atively breaking up the time evolution (refer to2;3 for details) to get

U(t, t0) = T exp

✓
�i

~

Z
t

t0

dt0H(t0)

◆�
(A.5)

where T is the time ordering operator. This is for ’forward’ time evolution
when t > t0, while the ’backward’ time evolution i.e. t < t0 has the time
ordering replaced by the anti-time ordering T̃ operator. It can be seen that
the evolution operator has the following properties

U(t, t) = 1

U †(t, t0) = U�1(t, t0) = U(t0, t)

U(t, t00)U(t00, t0) = U(t, t0)

(A.6)

The operators in the Schrodinger picture is time independent and the expec-
tation value of an observable is given by

hÔi(t) = h S(t)|ÔS| S(t)i (A.7)

where ÔS is the operator in the Schrödinger picture.

A.1.2 Heisenberg picture

Another picture of quantum mechanics is the Heisenberg picture, where the
time dependence is in the operators corresponding to the observables of the
system Ô, while the state is time independent. Since the two pictures refer
to the same system, we can see that the operators in the Heisenberg picture
ÔH(t) are related to the Schrödinger picture by

ÔH(t) = U †(t, t0)ÔSU(t, t0) (A.8)

The equation of motion for the operators follow from the Heisenberg
equation

i~ d

dt
Ô(t) = [Ô(t), Ĥ(t)] (A.9)

where Ĥ(t) = U †(t, t0)H(t)U(t, t0). Another useful observation is that the
operators at equal times follow the same commutation relations as that of the
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original (Schrödinger picture) operators, i.e. [Â(t), B̂(t)] = [A,B]. The states
in the Heisenberg picture are time independent and hence the expectation
value of an observable is

hÔi(t) = h H |ÔH(t)| Hi (A.10)

Or more generally in terms of the density matrix

hÔi(t) = Tr
h
⇢HÔ(t)

i
= Tr

h
⇢0Ô(t)

i
(A.11)

A.1.3 Interaction picture

We can also look at separating the non-interacting and interacting parts in
the Hamiltonian H(t) in order to aid calculation. This leads to the interac-
tion picture, which is intermediate between the Schrödinger and Heisenberg
pictures and has

| I(t)i = exp(iH0(t� t0)/~)| S(t)i
O(t) = exp(iH0(t� t0)/~)Ô(t) exp(�iH0(t� t0)/~)

(A.12)

Where we have dropped the ˆ to di↵erentiate between the Heisenberg and
interaction picture operators. The time-dependent state and operators each
follow their corresponding TDSE and Heisenberg equations

i~ @
@t

| I(t)i = H 0(t)| I(t)i

i~ d

dt
O(t) = [O(t), H0]

(A.13)

The evolution operator is now replaced by the scattering matrix defined
by H 0(t) instead of the H(t) in the evolution operator. This can be written
as

S(t, t0) =

8
<

:
T exp

h⇣
�i

~
R

t

t0
dt0H 0(t0)

⌘i
if t > t0

T̃ exp
h⇣

�i

~
R

t

t0
dt0H 0(t0)

⌘i
if t < t0

(A.14)

holding the corresponding identities as eqn (A.6) and

| I(t)i = S(t, t0)| I(t0)i
Ô(t) = S†(t, t0)O(t)S(t, t0)

(A.15)
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A.1.4 Equilibrium

Consider the time dependent perturbation Hext to be applied at t = 0, i.e.
Hext = h(t)⇥(t). The real time causal Green’s function can be defined as

G(1, 10) = �ihT [ H(1) 
†
H
(10)] (A.16)

where T is the time-ordering operator,  H(1) is the field operator and h· · · i
corresponds to the grand canonical average. Switching to the interaction
picture, we can write

T [ H(1) 
†
H
(10)] = ⇥(t� t0)S†(t, t0) (1)S(t, t

0) †(10)S(t, t0)

±⇥(t0 � t)S†(t0, t0) 
†(10)S(t0, t) (1)S(t, t0) (A.17)

where the ± correspond to Bosonic or Fermionic systems respectively. We
can use the properties of the scattering matrix to write the Green’s function

G(1, 10) = �ihS(t0, tm)T [S(tm, t0) (1) †(10)]i (A.18)

where tm = max(t, t0) and by expanding identity as S(tm,1)S(1, tm) = 1,
we can write

G(1, 10) = �ihS(t0,1)T [S(1, t0) (1) 
†(10)]i (A.19)

Now if we consider the equilibrium case, i.e. Hext = 0, the ensemble
average in eqn (A.19) reduces to an average over the interacting ground
state.

G(1, 10) = �ih 0H
|S(t0,1)T [S(1, t0) (1) 

†(10)]| 0H
i (A.20)

In order to obtain the expression in terms of the non-interacting ground state,
let us consider an adiabatically switching on and o↵ of the interaction term,
i.e.

V (t) = e�✏|t�t0|V (A.21)

where ✏ is a infinitesimally small number. This means that the ground state
evolves adiabatically slowly to the interacting ground state

| 0H
i = | 0I

(t0)i = S✏(t0,�1)| 0I
(�1)i (A.22)

where S✏ is the scattering matrix determined using V (t) and we get

G(1, 10) = �ih 0I
(1)|T [S✏(1,�1)T [S(1, t0) (1) 

†(10)]| 0I
(�1)i

(A.23)

168



Since both | 0I
(�1)i and | 0I

(1) = S✏(1,�1)| 0I
(�1) are ground states

of the non-interacting, non-degenerate H0, they should di↵er by at most a
phase factor ei�. Rewriting |�0i = | 0I

(�1)i allows us to write, after taking
the limit ✏! 0 (ensured by Gell-Mann Low theorem),

iG(1, 10) =
h�0|T [S(1,�1) (1) †(10)]|�0i

h�0|S(1,�1)|�0i
(A.24)

which is directly recognisable as allowing for a perturbation expansion through
the application of Wick’s theorem. The perturbation theory crucial relies on
the fact that the ground state is non-degenerate and consequently states in
the remote past and future coincide. This assumption breaks down in non-
equilibrium where the t = 1 state can be entirely di↵erent from the ground
state at t = �1. Thus, we need a new method of arriving at the perturbative
expansion.

A.2 Schwinger-Keldysh Contour

As we have seen earlier, Wick’s theorem and a perturbative expansion cannot
be written in a straight forward way for nonequilibrium systems. This can
be remedied by defining the evolution operator and Green’s functions on the
Schwinger-Keldysh1 contour.

The Schwinger-Keldysh contour is motivated by the observation that the
expression for the expectation value of the evolution operator can be written
as

hO(t)i = h 0|T̃
⇢
exp


�i

Z
t0

t

dt0H 0(t0)

��
O(t)

⇥ T

⇢
exp


�i

Z
t

t0

dt0H 0(t0)

��
| 0i (A.25)

where we have set ~ = 1 and defined | 0i = | I(t0)i. Expanding the expo-
nentials in powers of the Hamiltonian H 0(t0),we see that a generic expansion
consists of terms like

T̃ {H 0(t1)H
0(t2) · · ·H 0(tn)}O(t)T {H 0(t0

1
)H 0(t0

2
) · · ·H 0(t0

m
)} (A.26)

where we have all {ti} and {t0
j
} lie between t0, t. This motivates the definition

of the Keldysh contour
� ⌘ (t0, t)| {z }

�+

� (t, t0)| {z }
��

(A.27)
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Figure A.1: The Schwinger-Keldysh contour � with the forward branch run-
ning from t0 ! t and the backward branch t ! t0. Taken from G. Stefanucci
and R. van Leeuwen’s book3

which consists of two branches: the forward branch �� which goes from t0
to t and the backward branch �+ which goes from t to t0. A generic point
z 2 � can lie on either branch and can assume a value between t0 and t.
This is illustrated in Fig. A.1 with two possible times z1, z2 on branches ⌥
indicated. The operators at times on the contour can be written as

O(z0) ⌘
(
O�(t0) if z0 = t0� 2 ��
O+(t0) if z0 = t0

+
2 �+

(A.28)

Now that we have constructed the contour, we can define a contour or-
dering T such that T acts as a chronological time ordering on �� and anti-
chronological time ordering on �+. This also allows us to consider products
of operators on the branches

T [A(z1)B(z2)] =

8
>>>>>><

>>>>>>:

T [A�(t1)B�(t2)] if z1 = t1� and z2 = t2�

A�(t1)B+(t2) if z1 = t1� and z2 = t2+

A+(t1)B�(t2) if z1 = t1+ and z2 = t2�

T̃ [A+(t1)B+(t2)] if z1 = t1+ and z2 = t2+

(A.29)

While in general, the operators can have O+ 6= O�, for our purposes, we
consider only the operators which are equal in both branches, and they equal
the corresponding real-time argument. We can extend this to the case of
definite integrals on the contour and the details can be found in G. Stefanucci
and R. van Leeuwen’s book3. The contour as it has been defined has a
dependence on t, which does not allow for universal calculation. We can
have a universal contour by extending t ! 1.
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Thus with this, we can now define the contour ordered Green’s function

G(z1, z2) = �ihT [ (z1) 
†(z2)]i (A.30)

which can be represented in terms of the grand canonical partition function
as

G(z1, z2) =
�iTr

⇥
e��(H�µN)T { (z1) †(z2)}

⇤

Tr[e��(H�µN)]
(A.31)

where H = H0 + V is the time independent interacting Hamiltonian. Using
the expressions for the contour time ordering (eqn (A.29)) we have

G[z1, z2] =

8
>>>>>><

>>>>>>:

GT (t1, t2) if z1 = t1� and z2 = t2�

G<(t1, t2) if z1 = t1� and z2 = t2+

G>(t1, t2) if z1 = t1+ and z2 = t2�

GT̃ (t1, t2) if z1 = t1+ and z2 = t2+

(A.32)

where we recall that the <,> Green’s functions are defined as

G<(t, t0) = ⌥h †(t0) (t)i
G>(t, t0) = �ih (t) †(t0)i

(A.33)

Since we have

GT (t, t0) = �i⇥(t� t0)h (t) †(t0)i ⌥ i⇥(t0 � t)h †(t0) (t)i
GT̃ (t, t0) = �i⇥(t0 � t)h (t) †(t0)i ⌥ i⇥(t� t0)h †(t0) (t)i

(A.34)

We see that G<(t, t0)+G>(t, t0) = GT (t, t0)+GT̃ (t, t0). Thus, only three out of
the four Green’s functions are independent. We can also define the retarded
and advanced Green’s functions

GR(t, t0) = �i⇥(t� t0)h[ (t), †(t0)]⌥i = ⇥(t� t0)[G>(t, t0)�G<(t, t0)]

GA(t, t0) = i⇥(t0 � t)h[ (t), †(t0)]⌥i = ⇥(t� t0)[�G>(t, t0) +G<(t, t0)]
(A.35)

Switching to the Schwinger-Keldysh contour allows us to calculate the
perturbation theory using Wick’s theorem (see G. Stefanucci et al.3 for de-
tails) and hence allow us to formulate many-body perturbation theory based
methods. Another aspect is the introduction of the imaginary time Kadano↵-
Baym4 contour (t0 2 �� to t0 � i�), which allows one to start from the non-
interacting Green’s functions and build in the interactions (see R. Jishi2 and

171



G. Stefanucci’s3 books for a detailed treatment). The Gell-Mann Low theo-
rem allows for an adiabatic switching on of the interaction, and hence we can
consider the case where t0 ! �1 and drop the imaginary time piece of the
contour. This is the Keldysh contour and is defined to run from (�1,1) in
both directions.

Using this, the perturbation expansion of the contour ordered Green’s
functions can be written in the form of a Dyson equation given by

G(z1, z2) = G0(z1, z2) +

Z

�

dz0G0(z1, z
0)Uext(z

0)G(z0, z2)

+

Z

�

dz0
Z

�

dz00G0(z, z0)⌃⇤(z0, z00)G(z00, z2) (A.36)

where Uext is the external potential giving rise to the time-dependent pertur-
bation and ⌃⇤ is the self energy resulting from V , the interactions. We can
write the Dyson equation in a compact notation as

G = G0 + G0UG + G0⌃⇤G (A.37)

A.3 Real time Green’s functions

While we have seen the expansion for the contour ordered Green’s function,
it is imperative to calculate the real time Green’s functions based on which
other observables can be derived. An impediment to straightforward cal-
culation of them are the convolutions like

R
dz0G0(z1, z0)G0(z0, z2) and the

product terms like G0(z1, z2)G0(z2, z1).
In order to handle such terms, we need to convert the contour integrals

and the products into their real-time counterparts. These can be accom-
plished by using the Langreth rules5 detailed below.

Consider a convolution of the form

C(z, z0) =

Z

�

A(z, z00)B(z00, z0)dz00 (A.38)

where A,B,C are general operators on the Keldysh contour. We can look at
the < component

C<(t, t0) = C(t 2 ��, t
0 2 �+) =

Z

�

A(t 2 ��, z
00)B(z00, t0 2 �+)dz

00 (A.39)

Since z00 can lie on either branch, we split the integral over the whole contour
into two parts. Using the Keldysh contour and denoting t 2 �± = t±, we
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have

C<(t, t0) =

Z 1

�1
d(⌧�)A(t�, ⌧�)B(⌧�, t

0
+
) +

Z �1

1
d(⌧+)A(t�, ⌧+)B(⌧+, t

0
+
)

(A.40)
Using the expressions eqn (A.29), we have

C<(t, t0) =

Z 1

�1
[AT (t, ⌧)B<(⌧, t0)� A<(t, ⌧)BT̃ (⌧, t0)] (A.41)

We can use the relations AT = A< + AR and BT̃ = B< � BA to write

C<(t, t0) =

Z 1

�1
[AR(t, ⌧)B<(⌧, t0)� A<(t, ⌧)BA(⌧, t0)] (A.42)

Similarly we have an expression for C>(t, t0). Using the fact that CR(t, t0) =
✓(t� t0)[C>(t, t0)� C<(t, t0)] we can write the expression for CR(t, t0) as

CR(t, t0) =

Z 1

�1
AR(t, ⌧)BR(⌧, t0)d⌧ (A.43)

and a similar expression for CA(t, t0).
The product terms C(z, z0) = A(z, z0)B(z0, z) can be calculated using a

similar approach and are given by

C<(t, t0) = A<(t, t0)B>(t0, t)

C>(t, t0) = A>(t, t0)B<(t0, t)

CR(t, t0) = AR(t, t0)B<(t0, t) + A<(t, t0)BA(t0, t)

CA(t, t0) = AA(t, t0)B<(t0, t) + A<(t, t0)BR(t0, t)

(A.44)

Thus we can use the Langreth rules, which are collated in the Table A.1, to
solve for the convolution and product terms in the perturbation series.

A.4 Steady state Resonant Level Model

We now apply the Keldysh formalism introduced above to the case of the
resonant level model with DC bias across the leads in the steady state as a
pedagogical example. The Hamiltonian is given by

H = HL +HD +Hhyb (A.45)
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Table A.1: The Langreth rules

Definition c(z, z0) =R
�
dz̄a(z, z̄)b(z̄, z0)

c(z, z0) =
a(z, z0)b(z0, z)

k>(t, t0) = k(t+, t�) c> = a>bA + aRb> c> = a>b<

k<(t, t0) = k(t�, t+) c< = a<bA + aRb< c< = a<b>

kR(t, t0) = ✓(t �
t0)[k>(t, t0)� k<(t, t0)]

cR = aRbR cR = aRb< + a<bA

kA(t, t0) = �✓(t0 �
t)[k>(t, t0)� k<(t, t0)]

cA = aAbA cA = aAb< + a<bR

where HL is the Hamiltonian of the leads, HD is the dot Hamiltonian and
Hhyb is the hybridisation term. These are given by

HL =
X

k↵=L,R,�

✏k↵�c
†
k↵�

ck↵�

HD =
X

�

✏dd
†
�
d�

Hhyb =
X

k↵�

Vk↵�c
†
k↵�

d� + h.c.

(A.46)

The expression for current from the left lead into the dot is given by

IL = �e

⌧
dNL

dt

�
=

ie

~ [NL, H] (A.47)

Since NL commutes with all the terms except Hhyb, we can calculate the
commutator to write

IL(t) =
ie

~
X

k�

h
VkLnL�hc†kL�(t)d�(t)i � h.c.

i
(A.48)

This can be simplified by defining the mixed Green’s functions

G<

d,kL
(t, t0; �) = ihc†

kL�
(t0)d�(t)i

G<

kL,d
(t, t0; �) = ihd†

�
(t0)ckL�(t)i

(A.49)

Substituting and simplifying allows us to write the expression for the current
as

IL =
2e

~ Re
hX

k�

VkLG
<

d,kL
(t, t; �)

i
(A.50)
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In order to calculate the mixed Green’s functions, we first calculate the con-
tour Green’s function Gd,kL(z, z0; �). This gives a Dyson like expression for
the mixed Green’s functions

Gd,kL(z, z
0; �) =

1

~

Z

�

dz00Gd�(z, z
00)V ⇤

kL�
G0

kL�
(z00, z0) (A.51)

where we have
G0

kL�
(z, z0) = �ihT [ckL�(z)c

†
kL�

(z0)]i
Gd�(z, z

0) = �ihT [d�(z)d
†
�
(z0)]i

(A.52)

We now apply the Langreth rules to get the mixed Green’s function required
to calculate the current

G<

d,kL
(t, t0; �) =

1

~

Z 1

�1
dt00[GR

d�
(t, t0)G0<

kL�
(t00, t0)

+G<

d�
(t, t00)G0A

kL�
(t00, t0)]V ⇤

kL
(A.53)

Since we are looking at the steady-state case, the Green’s functions de-
pend only on the time di↵erence and we can apply the Fourier transform

G()

()
(t, t0) = G()

()
(t� t0) =

1

2⇡

Z 1

�1
d!G()

()
(!)e�i!(t�t

0
) (A.54)

for the various terms. Using the relation
R1
�1 dtei(!�!

0
)t = 2⇡�(! � !0) and

substituting the expression for G<

d,kL
(!) in the eqn (A.50), we get

IL =
e2

⇡~2

Z 1

�1
d!Re

(
X

kL�

|VkL|2[GR

d�
(!)G0<

kL�
(!) +G<

d�
(!)G0A

kL�
(!)]

)

(A.55)
The lead Green’s functions are given by

G0<

kL�
(!) = 2⇡ifL(!)�(! � ✏kL�/~)

G0A

kL�
(!) = (!+ � ✏kL�/~)�1

(A.56)

where fL(!) is the Fermi function in the left lead. Substituting this in the
current gives the expression

IL =
ie

2⇡~
X

�

Z 1

�1
d!Tr

�
�L�(!)

⇥
fL(!)

�
GR

d�
(!)�GA

d�
(!)

�
+G<

d�
(!)

⇤ 

(A.57)
where the hybridisation function �L� = 2⇡

~
P

k
|VkL|2�(! � ✏kL�).
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For the resonant level model, we have U = 0 and the self energy is given
by

⌃<(!) =
i

~(fL�
L + fR�

R) (A.58)

Therefore, substituting we get the symmetrised current

I =
e

2⇡~2

Z 1

�1
d![fL(!)� fR(!)]T (!) (A.59)

where T (!) =
P

�
Tr
�
�L�GR

d�
(!)�R�GA

d�

 
, is the transmission probability.

We see that the Landauer formula6 for the current is recovered.
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Appendix B

Second order perturbation
theory for the SIAM coupled to
chiral leads with DC bias

In this appendix chapter, we look at the system studied in chapters 2 and 3,
which is a single impurity Anderson model connected to leads with spin-orbit
coupling and subject to a DC bias. The Keldysh second order perturbation
theory (KPT2) forms the basis of the methods used in both these chapters
and will be dealt with in detail here.

B.1 Hamiltonian

We consider a quantum dot system connected to two 2D leads with SOC, for
which the Hamiltonian, H, is given in standard notation as

H = H0 +Hd +HSO +Hhyb , (B.1)

where, the two-dimensional conduction band reservoir is represented by

H0 =
X

↵k�

✏kc
†
↵k�c↵k� (B.2)

and the isolated quantum dot is given by

Hd =
X

�

(✏d)d
†
�
d� + Und"nd#. (B.3)

The Rashba spin-orbit interaction in the two-dimensional conduction band
may be described as

HSO =
X

↵k

� †
↵k(k⇥ ~�)z ↵k , (B.4)
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where k = (kx, ky), and  †
↵k = (c†

↵k,� c†
↵k,�̄). Finally the hybridization be-

tween the quantum dot and the conduction band is given by

Hhyb =
X

↵k�

⇣
Vkc

†
↵k�d� + h.c

⌘
. (B.5)

The conduction band terms, namely H0 and HSO may be combined and
simplified using the angular momentum expansion for the conduction band
operators as1:

ck� = ckxky� =
1p
2⇡k

1X

m=�1
ckm� exp(im✓k) , (B.6)

where k = |k|. The inverse transform is defined as ckm� =
q

k

2⇡

R
2⇡

0
d✓kck�e�im✓k

Substituting the above expansion (equation B.6) into the Hamiltonian, and
assuming an isotropic dispersion, such as ✏k = ~2k2/2m, the following form
of the Hamiltonian is obtained:

H =
X

khm

✏kh(c
m+

1
2

kh
)†c

m+
1
2

kh

+
X

khm

�m,0Ṽk

⇣
(c

m+
1
2

kh
)†d" + h(c

m� 1
2

kh
)†d# + h.c

⌘

+Hd ,

(B.7)

where h = ±1 is an emergent chiral quantum number, and jm = m+ h/2 is
the angular momentum quantum number. Thus, the system can be thought
of as a quantum dot coupled to emergent chiral leads with a DC bias between
them.

The dispersion, now depends on h and the spin-orbit interaction, � as
✏kh = (✏k + h�k)/k = ✏̃k + h�. Hence the SOC introduces a Zeeman-type
splitting of the conduction band.

The hybridization matrix elements are assumed to be isotropic, i.e Vk =

Vk, and Ṽk = Vk

q
2⇡

k
, with Vk 2 R. The above expression shows that the

bands with jm = ±1/2 couple to the dot, while the rest are decoupled and do
not a↵ect the dot dynamics at all. Thus, we rewrite the Hamiltonian, with
only those bands that couple to the dot to highlight this aspect. In order to
study the interplay between the SO and a D.C. bias, we consider two copies
of the conduction bath acting as a left and right lead with a common ±µ
chemical potential applied to all the emergent h, jm channels in each lead.
This leads to the Hamiltonian

He↵ =
X

↵=L,R

H̃↵ + H̃hyb +Hdot (B.8)
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Where we have

H̃↵ =
X

khjm

(✏kh)c
†
↵khjm

c↵khjm

H̃hyb =
X

↵kh

Ṽk↵

⇥
(c†

↵kh
+1
2

d" + h.c.) + h(c†
↵kh

�1
2

d# + h.c.)
⇤

(B.9)

and
Hdot =

X

�

(✏d � µ̄0)n� + Un"n# (B.10)

To simplify the notation, we define ✏k↵h = ✏kh + µ↵.

B.2 Current

The central quantity to be calculated in order to study transport is the
current. This can be calculated by using the Meir-Wingreen formula2

j↵ =
2e

~

Z
d!

2⇡
Re

⇢ X

(khjm)(d�)

Ṽ 2

k↵
[Gr

d�
(!)g<

k↵hjm
(!) +G<

d�
(!)ga

k↵hjm
(!)]

�

(B.11)

Where theGr/<

d�
are the retarded and lesser than interacting Green’s functions

of the dot and the g</a

k↵hjm
are the free lesser than and advanced Green’s

functions of the leads defined as

Gr

d�
(t, t0) = �ı⇥(t� t0)h{d�(t), d†�(t0)}i

G<

d�
(t, t0) = ıhd†

�
(t0)d�(t)i

ga
k↵hjm

(t, t0) = ı⇥(t0 � t)h{ck↵hjm(t), c
†
k↵hjm

(t0)}i
g<
k↵hjm

(t, t0) = ıhc†
k↵hjm

(t0)ck↵hjm(t)i

(B.12)

The lead Green’s functions can be exactly calculated using the equation of
motion approach

g<
k↵hjm

(t, t0) = ıf↵(✏khjm) exp{[�ı✏khjm(t� t0)]}
ga,r
k↵hjm

(t, t0) = ±ı⇥(⌥t± t0) exp{[�ı✏khjm(t� t0)]}
(B.13)

Since we are studying the steady-state regime, we can Fourier transform into
frequency space to get

g<
k↵hjm

(!) = 2⇡ıf↵(✏khjm)�(! � ✏khjm)

ga,r
k↵hjm

(!) =
1

!⌥ � ✏khjm

(B.14)
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From this we see gr(!) = [ga(!)]⇤ and g<(!) is purely imaginary. These
observations also hold true for the dot Green’s functions. Since we can write
for any complex number z 2 C, Re{z} = z+z⇤

2
, we can rewrite eqn (B.11) as

j↵ =
e

~

Z
d!

2⇡

X

(khjm)(d�)

Ṽ 2

k↵

⇢
[Gr

d�
(!)g<

k↵hjm
(!) +G<

d�
(!)ga

k↵hjm
(!)]

� [Ga

d�
(!)g<

k↵hjm
(!) +G<

d�
(!)gr

k↵hjm
(!)]

�
(B.15)

Which can be simplified to get

j↵ =
e

~

Z
d!

2⇡

X

(khjm)(d�)

Ṽ 2

k↵

⇢
[Gr

d�
(!)�Ga

d�
(!)]g<

k↵hjm
(!)

+G<

d�
(!)[ga

k↵hjm
(!)� gr

k↵hjm
(!)]

�
. (B.16)

We now define the hybridisation function,

�↵(!) =
X

khjm

Ṽ 2

k↵

!+ � ✏k↵hjm
⌘ E↵(!)� ı�↵(!) (B.17)

�↵(!) = 2⇡
X

khjm

Ṽ 2

k↵
�(! � ✏k↵hjm) (B.18)

From eqn (B.14), we see that ga
k↵hjm

(!) � gr
k↵hjm

(!) = 2⇡ı�(! � ✏k↵hjm).
This allows us to recast the current expression in terms of the hybridisation
function as

j↵ =
e

~

Z
d!

2⇡
ı�↵(!)

X

d�

⇢
[Gr

d�
(!)�Ga

d�
(!)]f↵(!) +G<

d�
(!)

�
(B.19)

Substituting this and using the Gr = (Ga)⇤ property of Green’s functions,
gives us the equation of the current which we implement

j↵ =
2ıe

h

Z
d!�↵(!)[G

<

d�
(!) + 2ıf↵(!) Im{Gr

d�
(!)}] (B.20)

In order to be able to calculate the current, it is apparent that we need a
way of calculating the interacting dot’s Green’s functions G<,r

d�
(!) and the

hybridisation function �↵(!). The calculation of these two quantities is given
in the following sections
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B.3 Dot Green’s functions

The full Green’s functions include the interaction on the dot and can be
treated via a self energy. The Keldysh formalism (see appendix A for a
detailed treatment) allows us to make use of the matrix Dyson equation

G =

✓
0 Ga

d

Gr

d
2G<

d
+Gr �Ga

◆
=

✓
0 ga

d

gr
d

2g<
d
+ gr � ga

◆
+ g

✓
⌃r � ⌃a � 2⌃< ⌃r

⌃a 0

◆
G

= g + g⌃G (B.21)

Where the upper/lower case G stand for the interacting and free Green’s func-
tions respectively and ⌃ is the self-energy. Since the advanced and retarded
Green’s functions are conjugates of each other, the independent quantities
are only the retarded and lesser than Green’s functions.

One can calculate the free Green’s functions using the equation of motion
technique (EOM) with U = 0 in the Hamiltonian. In the frequency domain,

we have the expressions for a general dot Green’s function Gr/<

AB
= hhA :

Biir/< in the Zubarev3 notation from Niu et al4.

hhA : Biir
!
= gr

0
h{A,B}i+ gr

0
hh[A,Hint] : Biir

!

hhA : Bii<
!
= g<

0
(!)h{A,B}i+ gr

0
(!)hh[A,Hint] : Bii<

!

+ g<
0
(!)hh[A,Hint] : Biia

!

(B.22)

Where the gr,<
0

are the retarded and lesser than Green’s functions of the
non-interacting uncoupled dot and Hint is the coupling and interaction parts
of the Hamiltonian.

The gr,<
0

can be calculated by using the EOM on the Hamiltonian Hdot =P
�
(✏d � µ̄0)d†�d�. This gives us

gr
0
(!) =

1

!+ � ✏d + µ̄0

(B.23)

g<
0
(!) = 2⇡ıf(!)�(! � ✏d + µ̄0) (B.24)

Since we are working with a non-interacting dot, Hint = H̃hyb. Using the
retarded part of equation (B.22) in order to calculate the free dot retarded
Green’s function, we have

hhd� : d†
�
iir

!
= (!+ � ✏d + µ̄0)

�1[{d�, d†�}+ hh[d�, H̃hyb] : d
†
�
iir] (B.25)
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which for the up and down spins gives

(!+ � ✏d + µ̄0)g
r

d"(!) = 1 +
X

k↵h

Ṽk

�
gr
(k↵h)(d")(!)

�

(!+ � ✏d + µ̄0)g
r

d#(!) = 1 +
X

k↵h

hṼk

�
gr
(k↵h)(d#)(!)

� (B.26)

Where the mixed Green’s functions gr
(k↵h)(d�)

are calculated recursively as
follows

(!+ � ✏k↵h)g
r

(k↵h)(d")(!) = Ṽk

�
gr
d"(!)

�

(!+ � ✏k↵h)g
r

(k↵h)(d#)(!) = hṼk

�
gr
d#(!)

� (B.27)

Which when substituted gives the expression for the dot Green’s function

(gr
d�
(!))�1 = !+ � ✏d + µ̄0 �

X

k↵h

|Ṽk↵|2
!+ � ✏k↵h

(B.28)

Similarly one can do the calculation for the lesser than Green’s function to
get the expressions

hhd� : d†
�
ii<

!
= 2⇡ıf(!)�(! � ✏d + µ̄0){d�, d†�}

+ (!+ � ✏d + µ̄0)
�1hh[d�, H̃hyb] : d

†
�
ii<

+ 2⇡ıf(!)�(! � ✏d + µ̄0)hh[d�, H̃hyb] : d
†
�
iia (B.29)

Using the mixed Green’s functions ga/<
(k↵h)(d�)

and calculating recursively as
done for the retarded case gives

[gr
d�
(!)]�1 = !+ � ✏d + µ̄0 �

X

↵

�↵(!)

g<
d�
(!) = 2ı|gr

d�
(!)|2

X

↵

�↵(!)f(! � µ↵)
(B.30)

Where we have used the hybridisation function

�↵(!) =
X

kh

V 2

k↵

!+ � ✏k↵h

�↵(!) = 2⇡
X

kh

Ṽ 2

k↵
�(! � ✏k↵h)

(B.31)

In order to calculate the full interacting Green’s functions, we can use the
properties [Gr]⇤ = Ga, [⌃r]⇤ = ⌃a to reduce the matrix Dyson equation (eqn
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(B.21)) to two Dyson equations, one for the retarded and the lesser than
Green’s functions given by

[Gr

d
(!)]�1 = [gr

d
(!)]�1 � ⌃r(!) (B.32)

G<

d
(!) = |Gr

d
(!)|2

 
g<
d
(!)

|gr
d
(!)|2 � ⌃<(!)

!
(B.33)

B.4 Hybridization

The e↵ect of coupling the dot to the leads is given by the hybridisation
function, which can be written as

�↵(!) =
X

kh

Ṽ 2

k

!+ � ✏k↵h

=
X

k

Ṽ 2

k


1

!+ � ✏̃k↵ + �
+

1

!+ � ✏̃k↵ � �

�

=
X

h

�h↵(!) .

(B.34)

We can see from the above expression that the hybridisation depends cru-
cially on the dispersion of the leads. A simple choice would be to work with
a uniform flat band dispersion would correspond to

�↵ = i
�0

2
(B.35)

where �0 is the constant parameter. But, this choice removes the e↵ect
of bias on the hybridisation and would be less interesting than the finite
bandwidth case. This led us to consider a Gaussian density of states for
the leads which can be thought of as an abstraction of the hybridising lead
orbitals. We also work with a free electron like dispersion, which gives us

Ṽk =
Vp
k
e��(k�kF )

2
/2 (B.36)

✏̃k =
✏

k
= ak (B.37)

✏̃k↵ = ak + µ↵ (B.38)
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Where a,� are undetermined constants and kF is the Fermi momentum.
Substituting these in the expression for hybridisation, we have

�↵(!) =
X

kh

V 2e��(k�kF )
2

k(!+ + µ0 � (ak + µ↵) + h�)
(B.39)

�↵(!) =
X

h

L2

(2⇡)2

Z 1

0

2⇡kdk
V 2e��(k�kF )

2

k(!+ + µ0 � (ak + µ↵) + h�)
(B.40)

By changing variables ak̄ = k� kF and choosing the lattice reference energy
µ0 = akF , we can write

�↵(!) =
X

h

L2V 2

2⇡

Z 1

�akF

✓
dx

a

◆
e��(x/a)

2

!+ � µ↵ + h�� x
(B.41)

Where L is the corresponding length. Denoting the coe�cients a,� via an
e↵ective hopping by a =

p
2�t⇤, we have

�↵(!) =
X

h

L2V 2

p
2�

1

2⇡t⇤

Z 1

�t⇤2⇡kF

dx
e�x

2
/2t

2
⇤

!+ � µ↵ + h�� x
(B.42)

Since
p
�kF � 1, the exponential ensures negligible contribution at large

negative values of x and allows us to take the lower limit of the integral to
�1. Representing the numerical coe�cient L

2
V

2
p
2�

= V 2

0
, we can write

�↵(!) =
X

h

V 2

0

1

2⇡t⇤

Z 1

�1
dx

e�x
2
/2t

2
⇤

!+ � µ↵ + h�� x
(B.43)

Which can be calculated as a Hilbert Transform H(z) which is defined as
follows

�↵(!) =
X

h

V 2

0
H(zh) (B.44)

zh = !+ � µ↵ + h� (B.45)

H(zh) =

Z
dx

✓
⇢0(x)

zh � x

◆
(B.46)

⇢0(x) =
1

2⇡t⇤
e�x

2
/2t

2
⇤ (B.47)

Where we have ⇢0 being the Gaussian density of states
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B.5 Self Energy

The most important ingredient needed to calculate the current is the self
energy which can be used in the Dyson equations to calculate the interacting
dot Green’s functions. We calculate the self-energy upto second order, which
forms the basis for the calculations in chapters 2 and 3. We recall from eqn
(B.32) that the Dyson’s equations are

[Gr

d
(!)]�1 = [gr

d
(!)]�1 � ⌃r(!)

G<

d
(!) = |Gr

d
(!)|2

 
g<
d
(!)

|gr
d
(!)|2 � ⌃<(!)

!
(B.48)

where the free Green’s functions gr,<
d

(!) are given by

[gr
d�
(!)]�1 = ! + µ̄0 �

X

↵

�↵(!)

g<
d�
(!) = 2ı|gr

d�
(!)|2

X

↵

�↵(!)f(! � µ↵)
(B.49)

We can write the dot energy as ✏d � µ̄0 = Ed + "eff where Ed = �U/2 +
1

2

P
↵
µ↵, which is the dot energy corresponding to the particle hole symmet-

ric limit in equilibrium and an arbitrary constant "eff which is used for the
perturbation. Recasting the equations in terms of "eff , we get

[gr
d�
(!)]�1 = ! � Ed � "eff �

X

↵

�↵(!)

g<
d�
(!) = 2ı|gr

d�
(!)|2

X

↵

�↵(!)f(! � µ↵)
(B.50)

B.5.1 First order perturbation

We begin with the first order perturbation in interaction. This gives us

⌃r1(!) = Ed � "eff + Uhndi (B.51)

⌃<1(!) = 0 (B.52)

Where the ⌃r,<1 are the first order self energies corresponding to the retarded
and lesser than Green’s functions and hndi is the average dot occupation given
by the expression

hn0

d
i = 1

2⇡

Z
d! Im{g<

d
(!)}

hndi =
1

2⇡

Z
d! Im{G<

d
(!)}.

(B.53)
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The hn0

d
i calculated from the free Green’s functions corresponds to the Hartree-

Fock term. The hndi uses the interacting Green’s functions and is evaluated
self-consistently.

B.5.2 Second order perturbation

In order to simplify the calculation of the second order perturbation, we
switch to the density of states representation

gr
d
(!) =

Z
d✏

⇢0(✏)

!+ � ✏
(B.54)

g<
d
(!) = 2ı⇡⇢0(!)f̃(!) (B.55)

Where we have ⇢0(!) = �1/⇡ Im{gr
d
(!)} and the weighted Fermi function is

given by

f̃(!) =
�L(!)f(! � µL) +�R(!)f(! � µR)

�L(!) +�R(!)
(B.56)

With this, we can evaluate the second order perturbative terms to be

⌃r2(!) = U2

Z
d✏1d✏2d✏3

⇢0(✏1)⇢0(✏2)⇢0(✏3)

!+ + ✏3 � ✏2 � ✏1
⇥ [f̃(�✏1)f̃(�✏2)f̃(✏3) + f̃(✏1)f̃(✏2)f̃(�✏3)] (B.57)

and

⌃<2(!) = �2ı⇡U2

Z
d✏1d✏2⇢

0(✏1)⇢
0(✏2)⇢

0(✏1 + ✏2 � !)

⇥ [f̃(✏1)f̃(✏2)f̃(! � ✏1 � ✏2)] (B.58)

where we have used the identity 1 � f(✏) = f(�✏). These are the required
KPT2 self-energies.
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