dc.contributor.author |
Jayaramulu, Kolleboyina
|
|
dc.contributor.author |
Datta, Kasibhatta Kumara Ramanatha
|
|
dc.contributor.author |
Shiva, Konda
|
|
dc.contributor.author |
Bhattacharyya, Aninda J.
|
|
dc.contributor.author |
Eswaramoorthy, M.
|
|
dc.contributor.author |
Maji, Tapas Kumar
|
|
dc.date.accessioned |
2016-10-28T05:57:56Z |
|
dc.date.available |
2016-10-28T05:57:56Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Microporous and Mesoporous Materials |
en_US |
dc.identifier.citation |
206 |
en_US |
dc.identifier.citation |
Jayaramulu, K.; Datta, K. K. R.; Shiva, K.; Bhattacharyya, A. J.; Eswaramoorthy, M.; Maji, T. K., Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous and Mesoporous Materials 2015, 206, 127-135. |
en_US |
dc.identifier.issn |
1387-1811 |
|
dc.identifier.uri |
https://libjncir.jncasr.ac.in/xmlui/10572/1883 |
|
dc.description |
Restricted access |
en_US |
dc.description.abstract |
A simple methodology has been developed for the synthesis of functional nanoporous carbon (NPC) materials using a metal-organic framework (IRMOF-3) that can act as a template for external carbon precursor (viz, sucrose) and also a self-sacrificing carbon source. The resultant graphitic NPC samples (abbreviated as NPC-0, NPC-150, NPC-300, NPC-500 and NPC-1000 based on sucrose loading) obtained through loading different amounts of sucrose exhibit tunable textural parameters. Among these, NPC-300 shows very high surface area (BET approximate to 3119 m(2)/g, Langmuir approximate to 4031 m(2)/g) with a large pore volume of 1.93 cm(3)/g. High degree of porosity coupled with polar surface functional groups, make NPC-300 remarkable candidate for the uptake of H-2 (2.54 wt% at 1 bar, and 5.1 wt% at 50 bar, 77 K) and CO2 (64 wt% at 1 bar, 195 K and 16.9 wt% at 30 bar, 298 K). As a working electrode in a supercapacitor cell, NPC-300 shows excellent reversible charge storage thus, demonstrating multifunctional usage of the carbon materials. (C) 2015 Elsevier Inc. All rights reserved. |
en_US |
dc.description.uri |
1873-3093 |
en_US |
dc.description.uri |
http://dx.doi.org/10.1016/j.micromeso.2014.12.008 |
en_US |
dc.language.iso |
English |
en_US |
dc.publisher |
Elsevier Science Bv |
en_US |
dc.rights |
?Elsevier Science Bv, 2015 |
en_US |
dc.subject |
Applied Chemistry |
en_US |
dc.subject |
Physical Chemistry |
en_US |
dc.subject |
Nanoscience & Nanotechnology |
en_US |
dc.subject |
Materials Science |
en_US |
dc.subject |
Nanoporous carbon |
en_US |
dc.subject |
Metal-organic framework |
en_US |
dc.subject |
Hydrogen storage |
en_US |
dc.subject |
Carbon dioxide storage |
en_US |
dc.subject |
Supercapacitor |
en_US |
dc.subject |
Metal-Organic Frameworks |
en_US |
dc.subject |
Porous Coordination Polymers |
en_US |
dc.subject |
Mesoporous Carbon |
en_US |
dc.subject |
Energy-Storage |
en_US |
dc.subject |
Hydrogen Storage |
en_US |
dc.subject |
Recent Progress |
en_US |
dc.subject |
Adsorption |
en_US |
dc.subject |
Functionalization |
en_US |
dc.subject |
Nanocomposites |
en_US |
dc.subject |
Electrodes |
en_US |
dc.title |
Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application |
en_US |
dc.type |
Article |
en_US |