dc.contributor.author |
Ekuma, C. E.
|
|
dc.contributor.author |
Moore, C.
|
|
dc.contributor.author |
Terletska, H.
|
|
dc.contributor.author |
Tam, K. -M.
|
|
dc.contributor.author |
Moreno, J.
|
|
dc.contributor.author |
Jarrell, M.
|
|
dc.contributor.author |
Vidhyadhiraja, N. S.
|
|
dc.date.accessioned |
2016-12-22T11:23:49Z |
|
dc.date.available |
2016-12-22T11:23:49Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Physical Review B |
en_US |
dc.identifier.citation |
92 |
en_US |
dc.identifier.citation |
1 |
en_US |
dc.identifier.citation |
Ekuma, C. E.; Moore, C.; Terletska, H.; Tam, K. M.; Moreno, J.; Jarrell, M.; Vidhyadhiraja, N. S., Finite-cluster typical medium theory for disordered electronic systems. Physical Review B 2015, 92 (1), 18. |
en_US |
dc.identifier.issn |
2469-9950 |
|
dc.identifier.uri |
https://libjncir.jncasr.ac.in/xmlui/10572/1951 |
|
dc.description |
Restricted access |
en_US |
dc.description.abstract |
We use the recently developed typical medium dynamical cluster (TMDCA) approach [Ekuma et al., Phys. Rev. B 89, 081107 (2014)] to perform a detailed study of the Anderson localization transition in three dimensions for the box, Gaussian, Lorentzian, and binary disorder distributions, and benchmark them with exact numerical results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a typical environment for the proper characterization of the localization transition in all the disorder distributions studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths, and shows that the order parameter critical exponent for the Anderson localization transition is universal. The TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that the TMDCA provides a consistent and systematic description of the Anderson localization transition. |
en_US |
dc.description.uri |
2469-9969 |
en_US |
dc.description.uri |
http://dx.doi.org/10.1103/PhysRevB.92.014209 |
en_US |
dc.language.iso |
English |
en_US |
dc.publisher |
American Physical Society |
en_US |
dc.rights |
?American Physical Society, 2015 |
en_US |
dc.subject |
Condensed Matter Physics |
en_US |
dc.subject |
Metal-Insulator-Transition |
en_US |
dc.subject |
3-Dimensional Anderson Model |
en_US |
dc.subject |
Mobility Edge |
en_US |
dc.subject |
Renormalization-Group |
en_US |
dc.subject |
Multifractal Analysis |
en_US |
dc.subject |
Scaling Theory |
en_US |
dc.subject |
Localization |
en_US |
dc.subject |
States |
en_US |
dc.subject |
Universality |
en_US |
dc.subject |
Densities |
en_US |
dc.title |
Finite-cluster typical medium theory for disordered electronic systems |
en_US |
dc.type |
Article |
en_US |