Abstract:
We review a few simulation methods and results related to the structure and non-equilibrium dynamics in the coexistence region of immiscible symmetric binary fluids, in bulk as well as under confinement, with special emphasis on the latter. Monte Carlo methods to estimate interfacial tensions for flat and curved interfaces have been discussed. The latter, combined with a thermodynamic integration technique, provides contact angles for coexisting fluids attached to the wall. For such three-phase coexistence, results for the line tension are also presented. For the kinetics of phase separation, various mechanisms and corresponding theoretical expectations have been discussed. A comparative picture between the domain growth in bulk and confinement (including thin-film and semi-infinite geometry) has been presented from molecular dynamics simulations. Applications of finite-size scaling technique have been discussed in both equilibrium and non-equilibrium contexts.